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Dimensional transitions in small Yukawa clusters
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We provide a detailed analysis of structural transitions leading to rapid changes in the dimensionality of small
Yukawa clusters. These transformations are induced by variations in the shape of confinement as well as the
screening strength. We show that even in the most primitive systems composed of only a few strongly interacting
particles, the order parameter exhibits a power-law behavior in the vicinity of the critical point of the continuous
transition. The critical exponent γ = 1/2 is found to be universal in all studied cases, which is consistent with
the general theory of continuous phase transitions.

DOI: 10.1103/PhysRevE.86.016404 PACS number(s): 52.27.Lw, 64.60.−i, 61.46.Bc

I. INTRODUCTION

The emergence of ordered patterns within complex systems
of interacting entities draws the attention of researchers in
diverse fields, including physics, biology, mathematics, and
computer science [1–3]. Confined Wigner crystals are among
the most primitive systems in which the phenomenon of
self-organization is observed. A small number of charged
particles is placed into a confining potential well, where in
the limit of low temperatures ordered structures are formed.
This crystalline type of matter was successfully realized
experimentally in a variety of well known systems, such as
electrons on the surface of liquid helium [4,5], cooled ions
in traps [6], or strongly coupled particle clusters in complex
plasmas [7].

Systems of strongly coupled particles are of high scientific
interest due to various collective phenomena, e.g., cooperative
dynamics, waves, and phase transitions. First-order transitions
between solid and liquid states of matter, namely melting
and crystallization, were widely investigated in the studies of
many-particle dusty plasma crystals, also known as Yukawa
clusters [8,9]. Crystalline structures formed by dust particles
in complex plasmas turned out to be an extremely handy tool
for these studies, as the convenient length and time scales,
stability, and transparency of these systems allow for direct
optical observation and accurate measurements [7]. On the
other hand, there is another type of transition occurring in
the simplest few-particle systems confined by asymmetric
traps. These transitions are observed when a small change
in one of the control parameters causes a sudden change in
the dimensionality of the system, and they are therefore called
dimensional or zigzag phase transitions [10]. Note that these
transitions take place in finite systems and are analogous to the
second-order phase transitions commonly defined and studied
in the thermodynamic limit.

Dimensional transitions in small two-dimensional Yukawa
clusters have been studied extensively in Ref. [11] both
experimentally and numerically. The authors demonstrated an
excellent agreement between the computed configurations of
particles and the arrangements observed in complex plasma
experiments. Structural zigzag transitions were induced by
variations in the number of particles, the value of the Yukawa
shielding parameter κ , or the shape of the confinement
potential. A power-law behavior of the order parameter

in the vicinity of the phase transition was observed and
was interpreted as a characteristic feature of second-order
phase transitions. However, the numerical values of critical
exponents provided in [11] cast some doubt. These values are
distinctly different from the classical mean-field value 1/2
which one would naturally expect in a finite system of just
a few particles. This value is dictated by the fact that the
total energy is an analytical function (see, e.g., Appendix A).
Therefore, one of the main motivations behind the current work
is to provide the results of numerical modeling with higher
precision and show the universality of critical exponents. We
also extend the investigation to the clusters of different sizes
and dimensional transitions of other types.

Our paper is organized as follows. In Sec. II, the model
system is described and the procedure of our calculations is
presented. Section III presents the results of the numerical
modeling of dimensional transitions, grouped by their type in
subsections. The main points of the article are summarized
in Sec. IV. Additionally, Appendix A provides details on
the analytically solvable cases and exact values of critical
parameters.

II. NUMERICAL PROCEDURE

We investigate numerically systems of N identical particles
of mass m and charge Q, interacting through the Yukawa
interparticle potential. The interaction energy of two charges
embedded in a screening environment thus reads

Vij = Q2

4πε0

e−κrij

rij

, (1)

where κ stands for the shielding strength (inverse screen-
ing length) and controls the range of interaction. Parti-
cles are kept together by a harmonic confinement poten-
tial Vc(r) = 1

2mω2
0(x2 + α2y2 + z2) in three dimensions or

Vc(r) = 1
2mω2

0(x2 + α2y2) in two dimensions. The anisotropy
parameter α controls the shape of the confinement, which
reduces to the symmetric spherical or circular form at α = 1
and takes the shape of an oblate (α > 1) or prolate (α < 1)
spheroid in three dimensions and an ellipse in two dimensions.

In the regime of strong correlations, the potential energy
dominates over the kinetic one, and the total energy of the
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model system is given by

U (r1, . . . ,rN ) =
N∑

i=1

1

2

(
x2

i + α2y2
i + z2

i

) +
N∑

i>j

1

rij

e−κrij . (2)

The units of length and energy are conveniently chosen as
r0 = (Q2/4πε0mω2

0)1/3 and E0 = Q2/4πε0r0. Obviously, κ

is now measured in r−1
0 . In two dimensions, the z coordinates

of all particles are set to zero so that all the particles lie within
the x-y plane.

Stable arrangements of particles correspond to the local
and global minima of the potential energy (2). In our present
work, stationary states are located by the method of multiple
heating-relaxation cycles, based on the Monte Carlo and
numerical minimization algorithms. The method was already
proven to be efficient and reliable in our previous studies
[12]. As it turned out, the potential energy landscape of (2)
is rather complex even for small values of N and might
be described as a collection of local minima separated by
potential barriers of various heights. In a first stage of the
algorithm, thermalization takes place, that is, the system is
heated to a temperature that is high enough to overcome
all the potential barriers. This stage is accomplished by
performing a large number (a few thousand) of METROPOLIS

Monte Carlo steps [13], which leads to a configuration that
may be regarded as drawn randomly from the Boltzmann
distribution corresponding to the given temperature. Each
minimum controls a certain area of coordinate space, called
the basin of attraction. The area of attraction varies from basin
to basin, which means that different stable states are realized
with different probabilities [12,14]. Some of the minima are
located within the regions with steep walls, while others lie
in broad shallow valleys and therefore require a consider-
able effort to find. In a second stage of the computational
procedure, the temperature of the system is suddenly set
to zero and the closest local minimum of potential energy
is located by employing the steepest descent and Newton
optimization techniques. As frequently there is more than one
local minimum [12], the whole cycle of thermalization and
relaxation is repeated a large number of times to ensure that
all of the basins are visited and all stationary points of (2) are
revealed.

Departure of the anisotropy parameter α from unity breaks
spherical (or circular in two dimensions) symmetry, and, as a
result, prolate or flattened structures are formed. Eventually,
at the critical value of parameter αc, dimensional transitions
are observed; three-dimensional (3D) clusters become planar
while two-dimensional structures are transformed into linear
ones. To determine the critical values of α with high precision,
we repeat our calculations by incrementing α in small steps. As
will become evident shortly, the properties of Yukawa clusters,
including the critical values of the anisotropy parameter and the
critical exponents, depend strongly on the screening parameter
κ . Therefore, in most cases we use four different values of
Yukawa screening strength, κ = 0, 1, 2, 3. In the simplest case
of κ = 0, the interparticle potential reduces to the simple
unscreened Coulomb interaction.

A second-order phase transition is marked by the sudden
appearance or disappearance of some property of the system,
called an order parameter, in response to a small change

FIG. 1. (Color online) Value of the order parameter 〈y〉 as a
function of the anisotropy α for 2D clusters with N = 3–5 particles.
Insets show typical arrangements of particles in various stages of
compression. Note how quickly metastable state (1, 4) disappears
(top left corner).

in a control parameter. We investigate dimensional phase
transitions by keeping an eye on the total potential energy
and order parameter 〈y〉, which is defined as the root mean
square of the coordinate y:

〈y〉 =
(

1

N

N∑
i=1

y2
i

)1/2

. (3)

Naturally, dimensional transitions are signified by a sudden
change of 〈y〉 to zero. In particular, 〈y〉 is a good choice for an
order parameter, since 〈y〉 = 0 in the 1D (2D) configuration
and 〈y〉 > 0 in the 2D (3D) configuration. The state variables
that determine the system configuration are then N , κ , and α.

III. RESULTS

A. 2D → 1D transitions

We first investigate the simplest few-particle two-
dimensional systems undergoing 2D → 1D structural tran-
sitions. In the case of α = 1, the confinement potential is
symmetric and particles form ordered states, which were
previously observed experimentally and modeled theoretically
[15,16]. Systems with N = 3, 4, 7 particles form only one
stable configuration (ground state), while clusters with N =
5, 6 particles in symmetric traps support one ground-state
and one metastable configuration. Various states can be
represented by listing the occupation numbers of different
shells—the ground state of a five-particle system is therefore
the configuration (0, 5) and the metastable state is (1, 4) (for
the arrangements of particles, see Fig. 1). As the anisotropy
parameter α departs from unity, metastable states can become
ground states, some states can disappear, and new ones can
appear. In all the investigated cases, however, there is only one
stationary configuration near the dimensional transition—a
zigzag-shaped pattern, which soon becomes a 1D linear chain
of particles at α > αc.
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In the simplest symmetric case of N = 3, particles form
an equilateral triangle in the x-y plane. As the value of α

increases, the triangular configuration is gradually deformed
until the transition occurs at α = αc ≈ 1.55, as shown in Fig. 1
with κ = 0. In fact, dimensional transition in a three-particle
system can be modeled analytically, which gives the value of
αc = √

12/5 (see Appendix A). Numerical simulation gives
exactly the same value.

The structural transition is slightly more intriguing in the
case of N = 4 particles. As can be deduced from the evolution
of 〈y〉 in Fig. 1, there is a discontinuity in a first derivative of
the order parameter d 〈y〉 /dα at the value of the anisotropy
parameter α ≈ 1.69. As it turns out, there are two stages of the
four-particle cluster compression. In the first (slow) stage, four
particles form a rhombus-shaped structure, with the particles
located exactly on the x or y axis. Later, the stage of rapid
compression takes over, with two particles departing from the
line x = 0 and forming a zigzag-shaped pattern. Two typical
rhombus- and zigzag-shaped configurations are presented in
the insets of Fig. 1. As was shown in the previous study, the
transition between these two stages is followed by the specific
oscillation of the heat capacity [17]. An analogous scenario
applies to the other clusters with an even number of particles.
The dimensional transition is observed at αc ≈ 2.04, where
〈y〉 suddenly drops to zero.

Two competing configurations are first observed in the
case of N = 5 particles, namely states (0, 5) and (1, 4). As
is depicted in Fig. 1, the metastable state (1, 4) exists only in
the narrow window of anisotropy, 1 < α < 1.05. On the other
hand, the pentagonal ground state undergoes a continuous
structural transformation, forms a zigzag-shaped cluster, and
finally becomes linear at αc ≈ 2.50.

Structural transitions become more complex for the systems
with N � 6. Six particles in a symmetric confinement can
form two stable states. As α increases, the metastable (0, 6)
state vanishes at α = 1.05, only to reappear and become a
new ground state later. The former ground state (1, 5) then
disappears completely near α = 1.22. Six- and eight-particle
clusters both feature the same discontinuity in d 〈y〉 /dα as the
four-particle system, as discussed above.

We have already seen in Fig. 1 that the critical value of
the parameter αc increases with N when the interparticle
interaction is of the Coulomb type. As might be expected,
αc also grows as the Yukawa potential screening parameter
κ is increased, which is shown in Fig. 2 for N = 3–6. The
critical value of the anisotropy increases rapidly for κ < 1.5
and almost saturates for high values of screening, i.e., κ > 4.0.

The lines in Fig. 2 represent boundaries between different
phases of clusters. The structures are two-dimensional below
the line and form linear configurations above. Although we
devote most of the present work to the transitions induced by
deformations of the confinement well, structural changes can
actually be caused by variations in any of three parameters α,
κ , or N . As the figure shows, a two-dimensional cluster can
become linear without any changes in α, e.g., when a value
of κ is diminished or when a particle is removed from the
system.

We further examine the power-law behavior of the order
parameter 〈y〉 near its critical point αc in more detail. The
power law is easily identified by plotting the logarithm of

FIG. 2. (Color online) Phase diagram for two-dimensional
Yukawa clusters of N particles. Below the corresponding line, the
cluster of N particles is two-dimensional and one-dimensional above.
We see that dimensional transitions can be induced by variations in
any of three parameters α, κ , or N .

the order parameter, log10 (〈y〉), as a function of log10(αc −
α). The function turns out to be linear for small values of
(αc − α). This observation confirms that in the vicinity of the
transition point, the order parameter 〈y〉 demonstrates a power-
law behavior, which is a typical property of second-order phase
transitions:

〈y〉 ∝ (αc − α)γ . (4)

We determine the values of the exponent γ near the
critical point by analyzing the slope of the above-discussed
log-log plot. Namely, we take the numerical derivative of the
function log10 (〈y〉) = f [log10 (αc − α)]. Calculated exactly at
the critical point, this derivative yields the exact “theoretical”
value of the critical exponent. However, in an experimental
or numerical investigation, the precise location of the critical
point may not be known. Thus, by calculating the numerical
derivative a bit away from the critical point, we are able
to mimic the uncertainty and errors present in a realistic
experimental situation. It turns out that in all cases, γ = 1/2
as long as α is close to its critical value αc (Fig. 3). However,
the local value of the exponent (determined as the numerical
derivative) is very sensitive to the deviation of the anisotropy
parameter from αc.

Figure 3 shows the dependence of the power-law exponent
γ on the deviation of α from its critical value. The case of a
2D cluster with N = 3 particles and four different values of
screening length is presented. We see that γ departs from the
value of 1/2 significantly when the deviation from αc reaches
the third decimal and attains its minimum near the first decimal.
Furthermore, the exponent γ attains significantly lower values
far from αc in the systems with stronger screening. Other than
that, there are no qualitative differences in the critical behavior
of systems with different values of κ . The exponent γ of the
other systems with N > 3 behaves similarly to the case of
three particles presented here.

A thorough analysis of transitions in a planar cluster of
five particles was reported by Sheridan in [11]. The given
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FIG. 3. (Color online) Critical exponent of the transition observed
in 2D three-particle systems as a function of deviation of α from its
critical value αc for different strengths of screening.

value of the critical parameter is αc = 2.96 and the critical
exponent is said to be γ = 0.39 �= 1/2, while we find the
critical anisotropy parameter to be αc = 3.01. According to
the results of our calculations, a value of α = 2.96 corresponds
to the exponent γ = 0.37, which is close to the value reported
by Sheridan et al. Therefore, the reason for the differences
between the results published in [11] and our discoveries lies
almost certainly in the extreme sensitivity of 〈y〉 to the value
of the anisotropy parameter and the distance from its critical
value. Thus, the accuracy of the results presented in [11] is
probably not sufficient.

As was demonstrated in [11] and shown in Fig. 2,
continuous transitions might also be induced by the variations
in the screening strength κ . By keeping N and α constant,
we gradually change a value of κ while tracking the changes
that parameter 〈y〉 undergoes. The dimensional transition takes
place when the value of 〈y〉 suddenly drops to zero, at which
point the critical value of κ is obtained (see the inset of
Fig. 4). It turns out that 〈y〉 exhibits the same power-law
behavior near the transition, i.e., 〈y〉 ∝ (κ − κc)β . Figure 4
shows the dependence of the critical exponent β on a logarithm
of the distance from the critical value κc for three systems. As
opposed to the results presented in [11], we see again that in
all cases close to the transition point, β = 1/2. Moving away
from the critical point, however, the exponent β departs from
the value of 1/2 significantly.

B. 3D → 2D transitions

We further investigate structural transitions in three-
dimensional Yukawa clusters with N = 4 to 8 particles and
integer values of screening parameter up to κ = 3. Increased
values of the parameter α turn the initially spherical structure
into an oblate one; eventually, after the anisotropy parameter
reaches its critical value αc, a dimensional phase transition
takes place and familiar two-dimensional clusters are formed.
In three-dimensional transformations of five- and six-particle
clusters, two different final states are possible, as opposed
to the zigzag transitions in two dimensions, where only one
linear configuration can be formed. Therefore, in 3D →

FIG. 4. (Color online) Critical exponent β as a function of
deviation of κ from its critical value κc for three 2D clusters. The
inset shows the evolution of the order parameter 〈y〉 close to the
dimensional transition.

2D transitions, there is a distinct value of αc for each final
configuration and we are concerned with the properties of
phase transitions of a particular stable state.

As the confinement potential well is squeezed in the y

direction, it is handy to label small clusters according to the
arrangement of particles in the projection to the x-z plane, in
a manner similar to the state labeling by shell occupation
numbers in two dimensions. Moreover, particles in three-
dimensional anisotropic traps frequently organize themselves
within the layers, parallel to the x-z plane. For the sake of
clarity and an unambiguous definition of the configurations,
we will also use a list of particle numbers in distinct layers,
enclosed within curly brackets.

The simplest system undergoing a nontrivial 3D → 2D
transition is the cluster composed of four particles. Not
surprisingly, four particles in a symmetric three-dimensional
trap form a regular tetrahedron, and there is only one possible
square-shaped (0, 4) state in two dimensions. Figure 5 shows
the dependence of the order parameter 〈y〉 and potential energy
of a system E on the anisotropy parameter α. We see that 〈y〉
changes continuously and the transition is remarkably similar
to the one in the 2D case of N = 3 particles. The potential
energy increases gradually as the potential trap is flattened,
until a two-dimensional structure is formed at αc ≈ 1.22. As
is demonstrated in Appendix A, this symmetric transition can
be modeled analytically; the critical value turns out to be αc =
[4

√
2/(1 + 2

√
2)]

1/2
, exactly the same as determined in our

numerical modeling. Naturally, the value αc is sensitive to the
range of the interparticle Yukawa potential. As Fig. 7 shows,
the critical value of the anisotropy parameter increases rapidly
with the strength of screening for κ < 2 and significantly
slower after that, thus recalling the transitions from two- to
one-dimensional configurations.

As was already pointed out, there are two competing
stable states observed in a two-dimensional system with
N = 5 particles. Five particles in a spherically symmetric 3D
confinement potential, however, can form only one stable con-
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FIG. 5. (Color online) Order parameter 〈y〉 and potential energy
E of a four-particle 3D Coulomb cluster in the asymmetric potential
trap with anisotropy parameter α.

figuration. Slightly increased anisotropy leads to the formation
of a three-layer structure, with the arrangement of particles
within these layers being {2, 2, 1}. As parameter α increases
above the value of α = 1.05, two layers merge forming
a square and thus transforming the configuration into a
pyramidal structure {4, 1} with projection (1, 4)xz. This struc-
tural transition from a three-layered cluster to the pyramidal
configuration is signified by the discontinuity in the derivative
d 〈y〉 /dα (Fig. 6).

As is demonstrated in Fig. 6 for a pure Coulomb inter-
action, a second stable state appears when the anisotropy
parameter reaches the value of α0 ≈ 1.29. A new pentagonal
state undergoes an asymmetric dimensional transition and
is soon transformed into the new ground state (0, 5). The
metastable configuration (1, 4)xz, on the other hand, becomes
two-dimensional only at αc ≈ 1.60, through the so-called
“pyramidal” transition mechanism.

FIG. 6. (Color online) Order parameter 〈y〉 and potential energy
E of a five-particle 3D Coulomb cluster in the asymmetric potential
trap with anisotropy parameter α. Here and later, the insets show
projections of configurations to the x-z plane.

FIG. 7. (Color online) Critical value of anisotropy parameter αc

as a function of κ in a three-dimensional configuration with N = 4
particles and two states of N = 5 clusters. The line marked as α0

corresponds to the appearance of the metastable state in a five-particle
cluster.

Both the point of appearance of the second state in a
five-particle system, α0, and its critical value αc depend on the
type of the interaction potential and its screening parameter κ .
As is shown in Fig. 7, both parameters grow with the strength
of screening. The distance between α0 and αc, however,
diminishes rapidly. As the screening reaches the value of
κ ≈ 4.5, two lines merge and a new stable state appears already
in its two-dimensional pentagonal form (0, 5).

A pyramidal configuration might be described as a planar
base, composed of n = 4–6 particles lying parallel to the x-z
plane, and a single particle located right above the center of
the base, that is, configuration {N − 1, 1}, (1, N − 1)xz. A
pyramidal structural transition takes place when the apex of
the polyhedron is pushed into the base, thus becoming a two-
dimensional configuration with only one particle in the center.
A typical behavior of the order parameter 〈y〉 during such
transitions was already discussed and is presented in Figs. 6
and 8. As a matter of fact, the dimensional transitions of a
pyramidal type can be modeled analytically, and exact values
of critical parameters αc can be found; see Appendix A.

Even more stable configurations are observed in clusters
with N = 6 particles, as Fig. 8 shows for the Coulomb
interparticle potential. The evolution of the system starts with
a single stable state in the symmetric 3D trap—the octahedral
configuration (full line in Fig. 8). As the parameter α increases,
this bipyramid is deformed by pushing two of its particles lying
exactly on the y axis toward each other, thus lowering the
height and forming a configuration {1, 4, 1} with projection
(1, 4)xz. 〈y〉 decreases slowly until the aforementioned two
particles start to depart from the y axis near α ≈ 1.46, at which
point a phase of rapid deformation begins. Unfortunately,
right after this happens the stable state disappears. The
same scenario of bipyramidal deformation also applies to
the larger clusters, e.g., N = 7, 8, 9, and has a specific, well
recognizable shape of its 〈y〉 = f (α) curve, with the segments
of slow and rapid changes.
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FIG. 8. (Color online) Order parameter 〈y〉 and potential energy
E of the six-particle 3D Coulomb cluster in the asymmetric potential
trap with anisotropy parameter α.

A new metastable state emerges near α ≈ 1.06: the particles
lie on the six vertices of two parallel equilateral triangles,
centered precisely on the y axis and rotated by π/3 with
respect to each other, that is, state {3, 3} and (0, 6)xz.
These triangular layers are pushed toward each other by
deformations of the confinement, however they fail to ever
become a truly two-dimensional configuration. Instead, as is
demonstrated in Fig. 8, the configuration ceases to exist at
α ≈ 1.52 where the rms value of the y coordinate is still
〈y〉 ≈ 0.05 > 0. However, right before the disappearance, a
new similar purely two-dimensional state shows up. The new
planar configuration is composed of six particles lying on the
vertices of two triangles of slightly different sizes (see Fig. 8).
Therefore, in a brief range of α values these two states exist
simultaneously and there is no continuous transition between
them. Finally, a pyramidal configuration {5, 1} appears near
α ≈ 1.19 and undergoes the usual pyramidal dimensional
transition at αc ≈ 1.59, the value predicted by our analytical
model (Appendix A).

Close to the critical point of continuous transitions from
three- to two-dimensional systems, a power-law behavior
of the order parameter is detected once again, i.e., 〈y〉 ∝
(αc − α)γ . In the same manner as in the 2D case, Fig. 9
shows the dependence of the power-law exponent γ on the
logarithm of αc − α. It turns out that in close proximity to
the transition point, the critical exponent γ = 1/2 does not
depend on the screening strength κ . Deviations from this
value occur when the departure of α from its critical value
reaches the third decimal. Just as in the two-dimensional case,
the value of a critical exponent is lower for systems with
stronger interparticle potential screening, and it drops as low
as γ ≈ 0.35 for κ = 3. Essentially the same behavior of the
exponent γ is observed in larger three-dimensional systems,
where dimensional transitions take place, be they pyramidal
transitions or transformations of any other type.

As the number of particles grows, more and more stable
states emerge and, as a consequence, 〈y〉 = f (α) graphs
become convoluted and somewhat difficult to study. An

FIG. 9. (Color online) Critical exponent γ for a dimensional
transition, observed in 3D four-particle systems as a function of
deviation of α from its critical value αc for different strengths of
screening.

illustrative example is given in the inset of Fig. 10, where the
behavior of the order parameter in stable states of a 20-particle
Coulomb system is presented. We can still see a few distinct
continuous phase transitions in the vicinity of α ≈ 2.26,
however different lines become hardly distinguishable at the
lower values of α. In very large systems, the values of 〈y〉
for all metastable states lie virtually on the same line, as is
illustrated in Fig. 10 with a 100-particle cluster and κ = 0.

It might be worthwhile to discuss the structural evolution of
Yukawa clusters confined by traps with a prolate equipotential
surface. In our model, this effect is achieved by lowering the
value of anisotropy parameter α toward zero. In that way,
elongated clusters are formed, with low potential energies and
high values of 〈y〉. Consequently, to study this type of structural
transition, a new order parameter must be defined. We choose
to rely on the root mean square of the distance from the y

FIG. 10. Order parameter 〈y〉 of large Coulomb systems with
N = 100 and 20 (inset) particles as a function of the anisotropy α.
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FIG. 11. (Color online) Order parameter 〈ρ〉 as a function of the
anisotropy α < 1 for Coulomb clusters with N = 3–6 particles.

axis:

〈ρ〉 =
(

1

N

N∑
i=1

(
x2

i + z2
i

))1/2

. (5)

As Fig. 11 shows for N = 3–6, dependencies of the order
parameter 〈ρ〉 on the anisotropy α are not smooth and in
some cases feature discontinuities. We conclude that in fact
there is no direct transition from three- to one-dimensional
configurations. Instead, the system is first transformed into the
elongated 2D zigzag pattern, and only later does the 2D → 1D
structural transition take place. With that in mind, it is no
surprise that the values of the critical parameters αc found
by lowering α are the exact inverse of those determined in
Sec. III A.

Large three-dimensional clusters in prolate traps become
one-dimensional through the mechanism, which seems to
be universal for all values of N used in our modeling. At
first, the system is squeezed and elongated until the particles
arrange themselves into the shape of a double-helix. As α

is lowered further, the number of helical turns decreases
until the helix unwinds and the cluster becomes a two-
dimensional zigzag configuration. The 2D system then under-
goes the usual zigzag transition with the power-law behavior
near the critical point.

IV. CONCLUSION

Confined Yukawa clusters are among the physical systems
in which simple interparticle interactions lead to the emergence
of complicated patterns and spontaneous ordering. In this
article, we presented our findings in the numerical and
analytical studies of two- and three-dimensional clusters
confined by asymmetric parabolic traps.

We confirmed that dimensional transitions from oblate
three- to two-dimensional systems as well as from planar
to linear configurations can be induced by changes in the
anisotropy of the confinement α and screening strength κ . On
the other hand, there are no direct transitions from three- to

one-dimensional systems in prolate harmonic traps; two-stage
transformations take place instead.

A critical value of the anisotropy parameter in general
grows with the screening strength κ . The growth is steepest
for small values of κ and almost saturates for the large ones. In
close proximity to the dimensional phase transition, the order
parameter 〈y〉 exhibits a power-law dependence on a control
parameter, be it α or κ .

In all cases studied here, the critical exponent is found to
be universal and equal to 1/2, which is consistent with the
general theory of second-order phase transitions. However, a
value of the power-law exponent turns out to be very sensitive
to the deviations of a control parameter from its critical value.
Far from the critical point, the exponent attains lower values
in systems with stronger screening and shorter range of the
interparticle interaction.

APPENDIX: ANALYTICAL VALUES OF αc

In a few simplest cases of high symmetry, when the
total energy of a cluster after a transition depends on a
single generalized coordinate, values of a critical anisotropy
parameter αc can be identified analytically. These are the
transitions in a three-particle 2D system, a four-particle 3D
cluster, and all of the pyramidal transitions.

Consider the N -particle three-dimensional system under-
going a pyramidal 3D → 2D transition. Immediately after the
transition, a planar cluster consists of n = N − 1 particles,
positioned on the circumference of a circle with radius R, and
a single particle in the center of confinement. The 2D cluster
lies in the x-z plane. The total potential energy of the system
can be expressed as

U0(R) = 1

2
nR2 + n

R
f (n) + n

R
. (A1)

A second term here represents the Coulomb interaction energy
of n particles positioned on the circle with radius R, thus
forming a regular polygon. The function f (n) depends only
on the number of particles and is

f (n) =
⎧⎨
⎩

1
4 + 1

2

∑n/2−1
m=1 sin−1(mπ/n) if n is even,

1
2

∑(n−1)/2
m=1 sin−1(mπ/n) if n is odd.

(A2)

By setting ∂U0/∂R = 0, we find the equilibrium radius to be
simply

R = [1 + f (n)]1/3. (A3)

We further perturb the system by shifting the base by the
small distance of δy, and, keeping the center of mass at the
center of the confinement, an apex by the distance of nδy in
an opposite direction. Now, the total energy of the system is

Up = 1

2
n(R2 + α2δy2) + 1

2
α2(nδy)2

+ n

R
f (n) + n√

R2 + (n + 1)2δy2
. (A4)
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TABLE I. Values of the function f and critical parameter αc of 3D
Coulomb systems undergoing dimensional transition of the pyramidal
type.

N f (N − 1) αc

5
1

4
+

√
2

2
2

√
5

5 + 2
√

2
≈ 1.598 371 5

6

√
1 + 2√

5

√
3

√
5 + 2

√
5 −

√
5 ≈ 1.588 976 6

7
5

4
+ 1√

3
2

√
21

27 + 4
√

3
≈ 1.573 472 7

8 2.304 764 9 1.555 875 0

By expanding the right-hand side in powers of δy up to the
quadratic term, we get

Up ≈ U0 + 1

2
nα2δy2(1 + n) − n(n + 1)2δy2

2R3
. (A5)

By requiring that

δU = 1

2
nα2

c δy
2(1 + n) − n(n + 1)2δy2

2R3
= 0 (A6)

for any small δy, and making use of Eq. (A3), we find the
critical value of the anisotropy parameter to be

αc =
√

N

f (N − 1) + 1
. (A7)

Values of the function f (n) and corresponding critical
parameters of pyramidal transitions are collected in Table I
for all 3D clusters with this type of structural transformation.

We see that, in general, αc decreases slightly with N in the
range of five to eight particles.

In the two-dimensional case of N = 3 particles, the system
forms a triangular cluster. During the structural transition, one
of its particles is pushed in between the others, thus forming
a linear structure. This case is basically a generalization of
pyramidal transitions to two dimensions. Therefore, Eq. (A7)
is still valid and we find critical anisotropy to be αc = √

12/5,
which is exactly the value observed in our numerical modeling.

A slightly different mechanism of transformation is ob-
served in the 3D → 2D transition of a highly symmetrical
N = 4 particle cluster. The final configuration is a 2D square,
with potential energy

U0(R) = 1

2
NR2 + N

R
f (N ). (A8)

Minimization of (A8) by solving ∂U0/∂R = 0 in turn gives
R = f (N )1/3. Right before the transition, two particles sharing
a common diagonal in the final square are elevated by the
distance of δy above the x-z plane, while two others are located
at the same distance below it; ergo the energy of the perturbed
system,

Up = 1

2
N (R2 + α2δy2) + 1

4

N

R
+ N√

2R2 + 4δy2

≈ U0 + 1

2
Nα2δy2 − N

√
2δy2

2R3
. (A9)

By setting δU = Up − U0 = 0, we again get

αc =
√ √

2

f (4)
=

√
4
√

2

1 + 2
√

2
≈ 1.215 562 5. (A10)

This value is exactly the same as found by our numerical
procedure.
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