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A nature-inspired approach to
Q1

reactor and catalysis engineering
Marc-Olivier Coppens

Q2

Mechanisms used by biology to solve fundamental problems,

such as those related to scalability, efficiency and robustness

could guide the design of innovative solutions to similar

challenges in chemical engineering. Complementing progress

in bioinspired chemistry and materials science, we identify

three methodologies as the backbone of nature-inspired

reactor and catalysis engineering. First, biology often uses

hierarchical networks to bridge scales and facilitate transport,

leading to broadly scalable solutions that are robust, highly

efficient, or both. Second, nano-confinement with carefully

balanced forces at multiple scales creates structured

environments with superior catalytic performance. Finally,

nature employs dynamics to form synergistic and adaptable

organizations from simple components. While common in

nature, such mechanisms are only sporadically applied

technologically in a purposeful manner. Nature-inspired

chemical engineering shows great potential to innovate reactor

and catalysis engineering, when using a fundamentally rooted

approach, adapted to the specific context of chemical

engineering processes, rather than mimicry.
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Introduction
Nature-inspired engineering researches the fundamental

mechanism underlying a desired property or function in

nature, most often in biology, and applies this mechanism

in a technological context. In the context of chemical

engineering, we call this approach: nature-inspired chemical
engineering (NICE) [1].

Application of biological mechanisms to a non-physio-

logical context in reaction engineering requires adap-

tations, because the relevant time scales and available

building blocks are different. Also, we are able to manip-

ulate parameters such as temperature and pressure, which

are much less tunable in biology. Hence, like in an

abstract portrait, essential aspects of the subject are pre-

served, but not literally, emphasizing those features that

serve a desired purpose. Such features underpin the

rational design of an artificial structure that uses the same

fundamental mechanism as the natural system. The

ultimate implementation is assisted by theory and exper-

imentation. NICE aims to innovate, guided by nature,

but it does not mimic nature, and should be applied in the

right context.

Emphasizing reactor and catalysis engineering, we illus-

trate how mechanisms used in biology to satisfy compli-

cated requirements, essential to life, are adapted to guide

innovative solutions to similar challenges in chemical

engineering. These mechanisms include: (1) use of opti-

mized, hierarchical networks to bridge scales, minimize

transport limitations, and realize efficient, scalable

solutions; (2) careful balancing of forces at one or more

scales to achieve superior performance, for example, in

terms of yield and selectivity; (3) emergence of complex

functions from simple components, using dynamics as an
organizing mechanism. Figure 1 presents an overview.

In this way, NICE complements an ongoing revolution in

bioinspired chemistry and materials science [2��,3��,4–6],

which already sees applications in, for example, enzyme-

mimics and antibody-mimics for catalysis [7–10] and in

artificial photosynthesis [11�,12�,13–15]. These appli-

cations implement essential mechanistic steps of the

biological model system at molecular and supramolecular

scales. Hierarchically structured bionanocomposites have

superior properties by synergy, unmatched by their indi-

vidual components, inspiring novel material designs.

As we now illustrate, nature has more to offer to reaction

engineering when considering larger length scales and the

time domain. In addition, the manipulation of force

balances as an organizing mechanism merges bioinspired

chemistry, chemical and materials engineering.

Hierarchical transport networks
Transport is crucial to living systems, and to reaction

engineering alike. Trees and mammalian physiological

networks share common architectural traits that endow

them with vital properties. The vascular and respiratory

networks have a branched, hierarchical architecture that

is fractal between macroscopic and mesoscopic length

scales, having features that look similar under repeated

magnification [16��,17]. At those scales, convective flow is

the dominating transport mechanism and the channel

walls are impermeable. On the contrary, channels are
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almost uniformly sized at mesoscopic to microscopic length

scales, approaching those of individual cells. In capillaries

or in the acini of the lung, exchange occurs via the cell

walls, and diffusion is the principle transport mechanism.

This is most efficient, costing no metabolic energy [18�].
Indeed, the transition between biological circulatory net-

works and networks of exchanging channels frequently

corresponds to a Péclet number around 1. Furthermore, as

discussed below, such architectures are optimal in several

other ways that would benefit chemical engineering

applications.

The fractal architecture of the upper respiratory tract, the

arterial network and tree crowns connects multiple micro-

scopic elements to a single macroscopic feeding/collec-

tion point (trachea, heart, stem). This occurs via equal

hydraulic path lengths that provide equal transport rates

to and from the cells. Cell size is remarkably constant

across species, despite considerable differences in size

between organisms. Feeding more cells occurs via trees

with a larger number of branching generations. The

fractal geometry of biological transport networks facili-

tates scale-up, by preserving cell access and function

irrespective of size. Achieving uniform access and macro-

scopically homogeneous operation are chemical engin-

eering challenges as well. This insight has led to the

construction of fractal distributors and injectors for multi-

phase separation, mixing and reaction processes

[19,20�,21��].

Figure 2 includes an example of a two-dimensional

(D = 2) fractal distributor from our laboratory, produced

2 Reaction engineering and catalysis
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Overview of nature-inspired chemical engineering, as applied to catalysis and reactor engineering, from observation to concept, design and

realization. The bottom row indicates the stage of development, from green (ready for industrial development) to red (early-stage). All images personal,

and from [21��,23�,46�,57�,81,92,95�,102], except on top row: lung [103]; leaf [104]; GroEL heptamers [53]; bacterial colony on Petri dish [105].
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by stereolithography, for a PEM fuel cell design inspired

by the structure of the lung. Fluid entering the distributor

through a single inlet flows through the branching chan-

nels, and ultimately leaves the distributor through a

square array of outlets, which are hydraulically equidi-

stant from the inlet. Thus, the space under the distributor

is accessed uniformly. This fractal distributor could

uniformly feed air over the catalytic layer of a PEM fuel

cell, as well as collect water, circumventing non-uniform-

ity issues of serpentine and other channel geometries

[22]. Such structures could also homogeneously feed

high-throughput setups, or uniformly heat or cool sur-

faces. They could be integrated into microfluidic devices;

already common in multi-channel microreactors is a

binary tree, based on n times repeated Y-branching, to

serve a one-dimensional array of 2n channels (D = 1).

In nature, the fractal dimension, D, depends on the

transport network. The respiratory network of a lung fills

space, hence D = 3. In other cases, as for botanical trees,

the structure fills less than three-dimensional space, but is

more than area-filling, therefore 2 < D < 3. For example,

splitting all branch tips of a self-similar tree into 6 new

branches that are half as extended leads to a tree with

D = log 6/log 2 � 2.6. Such is the case for the fractal

injector shown in Figure 3 [21��,23�].
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Fuel cell design guided by the architecture of the lung, and the associated physical mechanisms.
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Submerged in a fluidized bed, this fractal injector

uniformly distributes gas throughout the reactor. Main-

taining at least minimum fluidization via a bottom dis-

tributor plate, extra gas injected via the fractal injector,

directly into the emulsion phase, promotes micromixing

around the branch tips. This increases mass and heat

transfer, and improves gas–solid contact, because of kine-

tically delayed bubble formation. For multiphase reac-

tors, the complex hydrodynamics are a major hurdle in

scale-up [24]. A fractal injector facilitates scale-up: like in

a lung or tree, the sizes of the outlets and the distances

between outlets are maintained in larger reactors, by

increasing the number of branching generations. The

optimal distribution of outlets and value of D depend

on mixing characteristics and reaction times [21��]. Uti-

lizing a fractal injector can bring the overall reactor

behavior closer to plug flow, which is often advantageous

to increase conversions and, depending on the kinetics of

the competing reactions, selectivity [23�]. For appli-

cations at high temperatures and large scales, the hier-

archical structure lends itself well to modular, metallic

construction.

Another remarkable feature of many scaling, anatomical

trees is that they are near optimal from the point of view

of flow resistance, thermodynamics, and robustness over

time and over a range of operating conditions. Often, this

is tied to the particular geometric progression of branch

lengths and radii, and the minimum length scale of the

scaling regime. Such observations date back almost a

century, when Murray showed that, for the vascular net-

work, mechanical resistance and the cost of maintenance

of blood in the body are minimal thanks to a branched

structure in which the sum of the cubes of the diameters

of daughter branches is equal to the cube of the diameter

of the parent branch [25,26]. West et al. [27�,28,29] further

postulated that space-filling, biological circulatory net-

works relate to mechanical and thermodynamic optim-

ality, and are the cause behind Kleiber’s allometric

scaling law (energy dissipation proportional to body mass

to the power). Bejan and co-workers [30��,31] introduced

a thermodynamic theory to derive optimal architectures

satisfying various criteria, for example, maintaining

uniformity, reducing flow resistance [32] or minimizing

the maximum temperature of a surface. Using this ‘con-

structal theory’ remarkable parallels between trees in

nature and engineering were found. Frequently, optim-

ality corresponds to architectures that realize equiparti-

tion of entropy production, as was discovered for the lung

[33]. Tondeur and Luo [34,35] applied constructal theory

to distributors that compromise costs related to pressure

drop, viscous dissipation, and hold-up volume.

When diffusion is the dominating transport mechanism,

the architecture of biological transport networks changes

from fractal, scaling, to uniform, non-scaling, in particular

when exchange processes via the walls occur, as in acini

and leaves. Translation to catalysis engineering requires

care, as objectives and constraints might differ. For

example, reactor-engineering requirements often deter-

mine minimum catalyst particle size, resulting in possible

diffusion limitations. Other criteria are problem depend-

ent: minimizing costly catalytic component to achieve a

certain yield, maximizing conversion, mitigating effects

of deactivation, achieving a particular product distri-

bution, and so on. We do not review this subject in depth

here, but refer to Ref. [36]. Simulation relies on a range of

modeling approaches [37], which are increasingly multi-

scale [38,39]. Recent possibilities to control pore network

properties at multiple length scales via new synthesis

methods [40,41,42�] should be accompanied by theoreti-

cal optimization. If the intrinsic catalytic activity per unit

nanoporous catalyst is kept constant, as in zeolites or

catalytic clusters supported on a mesoporous carrier, then

virtually no benefit is gained from a broad macro/meso-

pore size distribution to increase activity [43,44�],
increase stability [45,46�] or control selectivity [47]:

optimal porosity and optimal average macro/mesopore

size are the main parameters. Other criteria may lead

to different optima [48,49]. Most important is that the

hierarchically structured catalyst consists of nanoporous

domains or grains without local diffusion limitations,

interspersed by larger pore channels of optimized size.

Again, this matches physiology: cells of the same type are

of the same size, and interspersed by capillaries of more or

less uniform size that transport nutrients and remove

waste products by diffusion.

The ability to bridge scales and efficiently couple trans-

port and reaction processes by nature-inspired design

promotes process intensification [50]. This is illustrated

by Figure 2, showing how the structure of the lung

inspires the design of a PEM fuel cell, with the aim to

drastically reduce the required amount of expensive Pt

catalyst to achieve a desired power density, facilitate

water management, maintain uniform operation, increase

robustness, and facilitate scale-up.

Force balancing
From the DNA double helix to virus capsids, biology is

replete with supramolecular assemblies that self-organize

from molecular and ionic components via balanced, non-

covalent interactions [3,51]. Hierarchically structured

materials can be synthesized using biological templating

or mechanisms used in biomineralization and biological

layer-by-layer assembly [2��,4,5,6,52]. Their superior

properties are not trivially inferred from those of the

components.

Catalysis could also benefit from optimized force balan-

cing by implementing nano-confinement effects

observed in biology. A case in point are molecular cha-

perones, which prevent aggregation of a number of

proteins in crowded cells, and assist proteins to assume

4 Reaction engineering and catalysis

COCHE 32 1–9

Please cite this article in press as: Coppens M-O. A nature-inspired approach to [92]–>reactor and catalysis engineering, Curr Opin Chem Eng (2012), doi:10.1016/j.coche.2012.03.002

167168
169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191
192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221
222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256
257

258

259

260

261

262

263

264

265

266
267

268

269

270

271

272

273

274

275

276
277

278

279

280

Current Opinion in Chemical Engineering 2012, 1:1–9 www.sciencedirect.com

http://dx.doi.org/10.1016/j.coche.2012.03.002


their native conformation in vivo. The GroEL/GroES

system in E. coli contains protein heptamers surrounding

a nano-cage with a diameter of �4.5 nm [53]. Steric

confinement helps proteins fold, thanks to periodic elec-

trostatic interactions that result from a negatively charged

internal surface during the time of folding. While the

details are complicated, the GroEL/GroES system

informs us on how different degrees of steric confine-

ment, hydrophobicity, modulated surface charge and

confined water content could be employed to tune

protein stability [54,55,56�].

This insight can be applied to design catalysts consisting of

nanostructured porous materials, such as SBA-15 silica,

with constant, but tunable mesopore diameter, and

enzymes immobilized on the pore surface. We recently

observed that the catalytic activity of positively charged

lysozyme or myoglobin, electrostatically adsorbed on the

negatively charged pore surface of SBA-15, increased

several times with respect to that of the free enzyme in

aqueous solution, with minimal leaching [57�]. The highest

activity was measured in SBA-15 with the narrowest pores.

This smallest pore diameter (�6 nm) barely exceeds the

dimensions of lysozyme (3.0 nm � 3.0 nm � 4.5 nm) and

myoglobin (2.9 nm � 3.6 nm � 6.4 nm), and approximates

the cage diameter of GroEL. Confinement in nanopores

not only allows us to tune catalytic activity, but it also

facilitates enzyme recovery, may prevent denaturation,

and improves thermal and environmental stability [58�].
Spectroscopic studies indicated that the balanced electro-

static–steric interactions prevent unfolding, by stabilizing

the protein’s native conformation [57�]. On the contrary,

when the silica surface was functionalized with propyl

groups, rendering it hydrophobic, the protein’s confor-

mation changed considerably, and activity dropped.

Computer simulations of polypeptides in nano-confining

spaces provide clues on how confinement affects enzyme

structure [59–61,62�,63]. The structure of confined water

around enzymes in nanopores differs from that of bulk

water, so that water-mediated interactions often affect the

free energy landscape, and hereby enzyme stability

[64,65�].

Electrostatics, steric confinement, hydrophobicity, and

H-bonding all influence the activity and stability of

enzymes. Mechanistic understanding of biological pores

guide the design of artificial catalytic systems. In turn,

studies of model nanostructured catalysts with tunable

characteristics, like enzymes in functionalized SBA-15,

advance our insight into biological systems.

Dynamic self-organization
Living systems are dynamic. A third opportunity for

NICE lies in the time domain, essential to biological

processes, to generate desired spatiotemporal behavior by

synergy. Sometimes called ‘emergence of complexity’

[66,67�,68��], robust properties collectively emerge from

individual elements with much more basic functions.

Dynamic structuring is rarely consciously applied in

chemical engineering, and hardly in an optimal way.

Nanotechnology and microtechnology opens avenues to

realize [69�] what was originally only conceivable math-

ematically or on crystal surfaces [70,71,72�,73]. Learning

how versatile, adaptable patterns emerge from biological

system dynamics might guide new modes of reactor

operation, and the design of new catalytic materials.

Periodic perturbation of a nonlinear system may form

simple patterns [74��]. For example, the actions of water

or wind create regularly spaced ridges on sandy beaches

and dunes. Likewise, patterns develop when vibrating a

plate covered by a thin layer of solid particles [75], an

example of the rich, collective behavior of granular matter

[76,77]. Energy is constantly provided to a nonlinear

system, in which dissipation leads to pattern for-

mation—an example of dynamic self-assembly [78��].

Hence, the idea to structure gas–solid fluidized beds by

pulsing them with a periodically fluctuating gas flow,

superimposed on a constant flow to maintain minimum

fluidization [79�]. In a laterally thin, quasi-2D bed, this

led to a hexagonally ordered array of rising bubbles, with a

frequency that was half that of the pulsation, within a

range of frequencies of a few Hz. Fluidized beds have

complex hydrodynamics, which van den Bleek et al. [80]

described as deterministically chaotic. By pulsing the gas,

fluidization is more uniform, and channeling and clump-

ing are prevented. This improves the performance of

fluidized bed combustion and drying [81,82]. Periodically

perturbing the gas in a fluidized bed can suppress chaos

by ‘phase locking’ [83], however the periodicity of the

bubble pattern is remarkable [79�]. In pulsed 3D beds, we

observed patterns similar to those for vibrated granular

media [79�,84]. While not as high as in quasi-2D beds, the

patterns persisted in deeper beds than vibrated granular

matter, due to less frictional dissipation. Interestingly,

computational fluid dynamics (CFD) has not yet repro-

duced these experimental patterns, even though some

level of structuring has been demonstrated [85]. We

suggest that reproducing these patterns should be an

interesting fingerprint to test CFD codes.

Other ways to stabilize a nonlinear dynamic system use

closed-loop control. Hudson and co-workers [86] recently

used (de-)synchronization methods to tune the collective

response from weakly interacting rhythmic components,

similar to those in biological systems, and applied them to

control an electrochemical reaction system.

Bacterial communities present us with one of the most

exciting examples of a dynamically self-organized system.

Bacteria interact with their environment and each other,

but are also self-propelling and self-replicating. Together,

A nature-inspired approach to reactor and catalysis engineering Coppens 5
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they form complex communities that are more robust and

adaptive than individual bacteria [87�]. When starved,

they may self-organize into self-similar patterns [88,89],

reminiscent of diffusion-limited aggregation (DLA) and

other fractal aggregates seen in non-living systems [90],

but their adaptive, collective behavior is richer. Bacterial

communities attract interest in the context of biofilm

research and engineering for chemical production [91].

They also stand model for other self-organizing systems,

for example, in sociology [89].

Within the context of NICE, we see an opportunity to

design artificial catalytic systems from elements that are

not necessarily biological, yet use key aspects of bacterial

communities. Building upon von Neumann’s pioneering

work on self-replicating automata, agent-based methods

are ideally suited to explore the diversity of such bioin-

spired systems [92]. ‘Agents’ have internal states, can

store energy and information, interact, sense and respond

to their environment [66,93�]. Luisi and co-workers

[94,95�] have explored the use of synthetic self-reprodu-

cing vesicles as minimal cells. This leads us to postulate

that adaptive, self-replicating, internally or externally

driven catalytic systems could be implemented, even

based on purely artificial components.

Cooperative phenomena result from many interactions in

a network of synergistic links [68��]. However, not all

nodes and links are equally relevant. Some are more

important, sensitive or robust than others. Collective

behavior acts as an evolving, complex network [96–
100], frequently with universal features, like scaling,

clustering, and modularity [101�].

It would seem that insights in biological systems, reaction

pathways and social networks, gained from topology,

graph theory and information theory, could be useful

not only in synthetic biology and process control, but

also in generating more robust and adaptive bioinspired

catalytic systems.

Conclusions
What makes biological organisms especially interesting

from the viewpoint of chemical reaction engineering is

that efficiency, scalability, robustness, and adaptability are

quintessential to both, yet nature uses an arsenal of tools

barely touched in engineering. In the context of recent

progress, we have provided a personal view on how nature’s

hierarchical transport networks, force balancing and col-

lective dynamics might be employed in reaction engin-

eering design. At present, some fundamental mechanisms

that serve biology so well are slowly permeating materials

science and chemistry. However, they are scarcely applied

in chemical reactor design and catalysis engineering.

Perhaps this is because we are rooted in an atomistic,

bottom-up way of thinking that has helped us tremen-

dously over the past century, yet we are confronted with a

seemingly insurmountable gap between increasing

nanoscale insights and capabilities, where rational design

becomes a reality, and applications at the scale of macro-

scopic production, where empiricism seems inevitable.

Our examples show that this gap could be bridged by

rational design principles based on nature-inspired chemi-

cal engineering, with the potential to transform what is too

often and incorrectly considered a mature field, hereby

helping to create sustainable processes. Such designs unite

the atomistic and the holistic, using efficient mechanisms

in natural systems as guidance for artificial designs—but

not as models that are to be slavishly copied as automati-

cally superior, without regard for context.
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Springer Verlag; 2005:31-42.

34. Tondeur D, Luo L: Design and scaling laws of ramified fluid
distributors by the constructal approach. Chem Eng Sci 2004,
59:1799-1813.

35. Tondeur D, Fan Y, Luo L: Constructal optimization of
arborescent structures with flow singularities. Chem Eng Sci
2009, 64:3968-3982.

36. Coppens M-O, Wang G: Optimal design of hierarchically
structured porous catalysts. In Design of Heterogeneous
Catalysts. Edited by Umit Ozkan. Wiley; 2009:25-58.

37. Sahimi M, Gavalas GR, Tsotsis TT: Statistical and continuum
models of fluid solid reactions in porous media. Chem Eng Sci
1990, 45:1443-1502.

38. Salciccioli M, Stamatakis M, Caratzoulas S, Vlachos DG: A review
of multiscale modeling of metal-catalyzed reactions:
mechanism development for complexity and emergent
behavior. Chem Eng Sci 2011, 66:4319-4355.

39. Keil FJ: Multiscale modeling in computational heterogeneous
catalysis. Top Curr Chem 2012, 307:69-108.

40. Wang J, Groen JC, Yue W, Zhou W, Coppens M-O: Facile
synthesis of ZSM-5 composites with hierarchical porosity. J
Mater Chem 2008, 18:468-474.
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