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Turbulent flows over a wavy wall are investigated in channels with a wavy bottom
and a flat top with different channel heights. Flow structures are determined from
proper orthogonal decompositions of velocity fields measured with particle image
velocimetry. Three different channel heights are considered, which are characterized
by blockage ratios β (half channel height to wave amplitude ratio) 3.3, 6.7, and 10.
Measurements are evaluated at comparable Reynolds numbers (Re) around 10 000.
Structural similarity of large-scale structures, which is valid at β = 6.7 and 10, no
longer holds at β = 3.3. Furthermore, characteristic regions of flows over wavy walls
exhibit different locations in the case of the smallest channel height. C© 2012 American
Institute of Physics. [http://dx.doi.org/10.1063/1.4719778]

I. INTRODUCTION

Turbulent flows over rough surfaces or obstacles are of interest in many technical and geophysical
situations. Roughness or obstacles add a degree of complexity to the flow over a flat surface, which
induces increased heat, mass, and momentum transport. In many studies a wavy wall is chosen as
a reference case. The turbulent flow over a wavy wall exhibits many characteristics of the above
described flow, such as flow separation, flow reattachment, and streamline curvature. Furthermore,
the geometry of the wavy wall is well defined by a sinusoidal curve, which is characterized by the
amplitude (a) to wavelength (λ) ratio α

α = 2a

λ
. (1)

Flow studies in water channels or wind tunnels with a wavy bottom wall and a flat top wall have been
conducted since the thirties of the last century.1, 2 The focus of early works was on the description
of non-separated flows over small amplitude waves (α < 0.03) by linear stability analysis.3, 4 With
increased α the flow starts to separate and the description with linear stability analysis becomes
insufficient. For the separated flow over waves three characteristic regions are identified,5, 6 which
are the separated region itself, and the regions of maximum positive and maximum negative Reynolds
shear stress. The influence of changes in the wave amplitude on the turbulent flow over solid waves
has been partly addressed in earlier studies.3, 7 Raupach et al.8 hypothesized that the outer flow over
rough surfaces has a universal character and is independent of the interaction with the wall.8 Scaling
the turbulence properties in the outer flow with the friction velocity, similarities between flat and
wavy surfaces have been observed.9, 10

Based on the observation of streamwise-oriented large-scale structures by Miller11 and Gong
et al.,12 Günther and Rudolf von Rohr13 applied proper orthogonal decomposition (POD) to quanti-
tatively investigate large-scale structures in a developed flow over a wavy wall. This study revealed
dominant eigenfunctions with a characteristic spanwise scale of 1.5λ at laminar and turbulent flow
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conditions. The energy content of the two most dominant modes is found to be almost 50%, and
these large-scale structures were found to meander laterally.14

The research on large-scale structures in flows over wavy walls and their impact on momentum
and scalar transport has been conducted further at our laboratory: Large-scale structures were
also observed in temperature fields of flows over heated wavy walls,15 and quantitative agreement
between these large-scale thermal and momentum structures was found.16 Considering the outer
flow over different wavy walls, structural similarity of the large-scale structures was found.17, 18

The two most dominant large-scale structures of the different wave profiles showed a characteristic
spanwise scale of 1.5H (where H denotes the channel height). These studies showed that the outer
variable to scale the most dominant eigenfunctions is the channel height H, not the wavelength
λ, as proposed earlier.13 Furthermore, the effect of large-scale structures on mass transfer18, 19 and
the role of large-scale structures in mixed convective flows over solid waves were investigated.20

These experimental works from our laboratory were further extended by numerical studies extracting
structural information of wavy wall flows.21, 22

The major finding of our research is the presence of large-scale structures, which are found
for each flow case and which are directly linked to the transport mechanisms of momentum and
scalars. POD on large-scale structures have revealed that the two most dominant flow structures
are structurally similar for different wavy flow situations, in a sense that POD eigenfunctions show
a characteristic spanwise scale of 1.5H. All flow studies for wavy walls of our laboratory were
conducted in the regime of flows over obstacles, in which similarities are less expected than in flows
over rough surfaces.

The question arises if structural similarity holds in channels, where the obstacle size is more
substantial, such as in narrow channels with wavy walls. Therefore, the channel height was varied
for flows over a wavy wall (α = 0.1) at comparable Re. The blockage ratio β, which characterizes
the ratio of the channel height to the roughness, is defined as

β = H

2a
, (2)

where H is the channel height. Structural similarity in dependence of the characteristic length scale
was investigated by Natrajan et al.23 in the case of turbulent capillary/pipe flows. In this study
hairpin-like structures and hairpin vortex packets are structurally similar for micro- and macroscale
wall turbulence.

In this paper, we present results of flows over a wavy wall (α = 0.1) with different β (3.3,
6.7, 10) at comparable Re, which enables us to systematically address the effects of flow blockage
on large-scale structures. In addition to the characterization of the large-scale structures, we also
focused on the characteristic regions of flows over wavy walls to achieve a more complete picture of
the present flow situation. The results contribute to the understanding of large-scale structures and
characteristic zones in narrow wavy channels.

II. FLOW SITUATION

In Fig. 1 the flow over a wavy bottom wall is drawn schematically with its characteristic regions.
The coordinate in streamwise direction is x1, x2 is normal to the wall and x3 points in the spanwise
direction. The corresponding velocity components are u1, u2, and u3.

The flow is characterized by the Reynolds number

Re = ub · H

2ν
, (3)

where H is the height of the channel and ν denotes the kinematic viscosity. ub is the bulk velocity
and is defined as

ub =
∫ λ

0

∫ H
x2,w

u1(x1, x2)dx2dx1

Hλ
. (4)
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FIG. 1. Flow over a wavy wall. Characteristic regions: I separation region, II maximum positive Reynolds shear stress, and
III maximum negative Reynolds shear stress.

The wavy wall profile is described by

x2,w(x1) = a · cos

(
2πx1

λ

)
, (5)

where a is the wave amplitude and λ is the wavelength.
Three characteristic regions of flows over wavy walls were defined by Cherukat et al.5 and Henn

and Sykes.6 In Fig. 1, region I is the separation region, and II and III, respectively, are regions of
maximum positive and maximum negative Reynolds shear stresses (−ρu′

1u′
2). The flow separates

due to too large positive pressure gradients, which are introduced by streamline expansions over
large wave amplitudes (α > 0.03). The shear layer, introduced by the separation, is bounded by the
characteristic regions II and III and is the location of turbulence production.

Large-scale structures of flows over wavy walls are first identified by Miller11 and Gong et al.12

as streamwise-oriented, counter-rotating vortices. A quantitative description based on POD has
revealed that the two most dominant structures have spanwise characteristic length scales of 1.5H.
The characteristic spanwise length scale has been confirmed for different amplitude-to-wavelength
ratios α (Refs. 17 and 18) and for a large range of Re between laminar and turbulent flow conditions.13

III. EXPERIMENTS

Experiments were performed in the water channel facility pictured in Fig. 2. The wavy surface
is represented by a wavy bottom wall in the test section with a wavelength of 30 mm and a wave
amplitude of 1.5 mm (α = 0.1). The top wall of the test section is flat and experiments were conducted
for channel heights H of 10, 20, and 30 mm (β = 3.3, 6.7, 10). The test section is 2150 mm long and

FIG. 2. Water channel facility. (1) Turning elbows, (2) honeycomb, (3) flat-walled entrance channel, (5) section with wavy
bottom, (4, 6-8) optical view ports, (9) reservoir, (10) frequency-controlled pump, (11) pipe, and (12) diffusor. Adapted from
Günther and Rudolf von Rohr.13

Downloaded 24 Oct 2012 to 144.82.165.37. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



055112-4 Zenklusen, Kuhn, and Rudolf von Rohr Phys. Fluids 24, 055112 (2012)

TABLE I. Field of view (FOV) and spatial resolutions of the different
measurements used for structural information. The vector grid spacing is
the resolution without 50% overlap of the interrogation areas.

Plane FOV Resolution (vector grid spacing)

β = 3.3 x1, x2 3 H × 1.4 H 0.78 mm × 0.78 mm
β = 3.3 x1, x3 4.1 H × 6.2 H 1.48 mm × 1.48 mm
β = 6.7 x1, x2 1.5 H × 1.2 H 0.84 mm × 0.84 mm
β = 6.7 x1, x3 2.65 H × 3.5 H 1.68 mm × 1.7 mm
β = 10 x1, x2 1 H × 1.1 H 1.08 mm × 1.1 mm
β = 10 x1, x3 2.27 H × 2.9 H 2.16 mm × 2.2 mm

the width of the channel B is 360 mm. The channel heights were adjusted by shifting the position
of the test section’s bottom. The intersection between the entrance channel (height 30 mm, length
2000 mm, width 360 mm) and the test section was therefore modified by inserting chokes of
angles of 2◦ in order to prevent flow separation. Experiments were conducted at Re up to 10 900
(Re = 8600 for β = 3.3, Re = 9200 for β = 6.7, Re = 10 900 for β = 10) with deionized water as
working fluid, which results in the following bulk velocities ub (1.62 m/s for β = 3.3, 0.96 m/s for
β = 6.7, 0.69 m/s for β = 10).

Particle image velocimetry (PIV) was applied to measure velocity fields in planes parallel to
the sidewalls and parallel to the top wall. Optical access through the sidewalls and the top wall is
provided at three different positions in the test section. Measurements are conducted for channel
heights 10 and 20 mm after the 40th wave crest and after the 50th wave crest, respectively, for
the channel height 30 mm in (x1,x2)- and (x1,x3)-planes. One thousand image pairs were recorded
in all measurements by a CCD camera with a pixel resolution of 1344 × 1024 pixels2 at a frame
rate of 4 Hz. As light source a Nd:YAG dual pulsed laser was used. The flow was seeded by
hollow glass spheres of 10μm in diameter (density: 1100 kg m−3). The sizes of the field of view
(FOV) of different measurements are given in Table I. For the subsequent adaptive cross correlations
these FOVs are subdivided in interrogation areas of 32 × 32 pixels2. The adaptive correlation of
Dantec’s DynamicStudio R© was used to calculate velocity vectors. Initial interrogation area sizes of
64 × 64 pixels2 are used, which are bisected for subsequent iterations. An overlap of 50% is applied
to all interrogation areas and spurious vectors are detected by local neighborhood validation based
on velocity gradients and are replaced by a local interpolation scheme. For the investigation of
the characteristic zones, an additional adaptive cross correlation step was performed to increase
the resolution of the near-wall regions, which results in a final interrogation area size of 16 × 16
pixel. Detailed information about FOVs and spatial resolutions of the different measurements are
summarized in Table I.

Sampling errors are estimated by a bootstrap analysis. For every measurement, the spatio-
temporal statistics are calculated from 800 randomly chosen velocity fields (out of 1000), and this
procedure is repeated 350 times. A confidence level, which is defined by twice the standard deviation
of the so obtained spatio-temporal turbulent statistics, was determined to estimate the uncertainty
of the rms velocity component. This method yields the following uncertainties for the data used to
examine large-scale structures: for u1, rms in (x1,x2)-plane 6% (β = 3.3), 5.14% (β = 6.7), 4.86%
(β = 10), and for u1, rms in the (x1,x3)-plane 5.14% (β = 3.3), 5.43% (β = 6.7), 4% (β = 10).
Uncertainties of the data to investigate the characteristic zones are: for u1 5.71% (β = 3.3), 5.14%
(β = 6.7), 4.86% (β = 10) and for u′

1u′
2 3.71% (β = 3.3), 4.29% (β = 6.7), 4.29% (β = 10).

For flows over wavy walls with comparable Reynolds number and similar experimental equip-
ment as used in this study, the uncertainty of the PIV method was estimated to be in the order of 1%.24

IV. RESULTS

Flow structures are extracted by performing a POD or a Karhunen-Loeve decomposition of the
flow field. The idea of POD is to describe a given statistical ensemble through a minimal number of
modes. The method of snapshots25 is applied on the streamwise velocity component u1.
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Reynolds averaging is applied and the streamwise velocity component u1 measured in the
(xi, xj)–plane is decomposed into a mean and fluctuating part

u1(xi , x j , t) = u1(xi , x j ) + u′
1(xi , x j , t). (6)

We consider discrete times ti with i = 1, . . . , M, and 1, . . . , N discrete locations in the (xi, xj)-plane,
where N = mn with xi: (1, m) and xj: (1, n). The resulting set of spatio-temporal data can be written
as the (N × M) matrix for u′

1:

M =

⎡
⎢⎢⎢⎣

u′
1,11 u′

1,12 . . . u′
1,1M

u′
1,21 u′

1,22 . . . u′
1,2M

. . . . . . . . . . . .

u′
1,N1 u′

1,N2 . . . u′
1,N M

⎤
⎥⎥⎥⎦ . (7)

Using the method of snapshots, the (M × M) covariance matrix reads

Ci j = 1

M

〈
Mi M j

〉
, i, j = 1, . . . , M, (8)

where 〈 · , · 〉 denotes the Euclidean inner product. Since this covariance matrix is symmetric its
eigenvalues, λi (i = 1, . . . , M), are non-negative, and its eigenvectors, φi (i = 1, . . . , M), form a
complete orthogonal set. The orthogonal eigenfunctions are

	[k] =
M∑

i=1

φ
[k]
i Mi , k = 1, . . . , M, (9)

where φ
[k]
i is the ith component of the kth eigenvector. The total energy E of the flow is obtained by

the summation over the eigenvalues λi (i = 1, . . . , M)

E =
M∑

i=1

λi . (10)

The fractional contribution of each eigenfunction to the total energy of u′
1 is given by the fractional

contribution of its associated eigenvalue

Ek

E
= λk

M∑
i=1

λi

. (11)

Using only the first K most energetic eigenfunctions an approximation of the original data is given
by

u1 = u1 +
K∑

i=1

ai	
[i], (12)

where the coefficients ai are calculated from the projection of the sample vector u′
1 onto the eigen-

function 	[i]:

ai = u′
1 · 	[i]

	[i] · 	[i]
. (13)

This operation corresponds to low-pass filtering and can be used to study the structure of the large-
scale structures. Structural similarity is usually identified using two-point correlation functions, but
it was shown that the covariance matrix yields the same dominant spatial modes as the two-point cor-
relation matrix.25 The eigenproblem of the covariance matrix is a much smaller and computationally
more tractable problem.

A. Large-scale structures in the (x1,x2)-plane

u1 and u2 are the most dominant velocity components for flows over wavy walls. Structural
information from the (x1,x2)-plane is therefore essential to describe the most dominant, most energetic

Downloaded 24 Oct 2012 to 144.82.165.37. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions
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λ

λ

λ

(a)

(b)

(c)

FIG. 3. First eigenfunctions of u′
1/ub . (a) 	1,u′

1/ub
at Re 8600 at β = 3.3. (b) 	1,u′

1/ub
at Re 9200 at β = 6.7. (c) 	1,u′

1/ub

at Re 10 900 at β = 10. All slices are located in the center of the channel.

flow structures, which are obtained by performing PODs on u′
1/ub in (x1,x2)-planes located in

the center of the channel. In Figs. 3(a)–3(c) the eigenfunction of the most dominant (or first)
eigenmode of the streamwise velocity normalized by the bulk velocity, 	1,u′

1/ub , is presented for the
three different channel heights at comparable Re. The position of the maximum is shifted towards
the wavy wall for decreasing β.
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FIG. 4. First eigenfunctions of u′
1/ub , 	1,u′

1/ub
for comparable Re. “©” β = 3.3, “×” β = 6.7, “�”β = 10.

Profiles of 	1,u′
1/ub at different positions along x1 are given in Fig. 4. The profiles of β = 6.7

and 10 are similar when they are scaled with the channel height. However, the profile of β = 3.3
is different to the other blockage factors at the wave crests and the wave trough. Especially in the
wave trough the maximum of the profile is shifted towards the wavy wall. The observed dissimilarity
between the first eigenfunctions at β = 6.7 and 10 and the first eigenfunction of β = 3.3 shows
structural dissimilarity of the most energetic large-scale structure.

In Fig. 5, profiles of the second most energetic eigenfunctions are presented. Similarity is
observed for the cases β = 10 and β = 6.7 for the eigenfunctions of the second most energetic
eigenmodes. In the case with the smallest channel height the profile is completely different compared
to the other cases.

The fractional energy contributions of the eigenmodes λi of the POD modes of u′
1/ub are

plotted in Fig. 6. The energy contributions among the different modes are similar for β = 10 and
β = 6.7. The most dominant eigenmode of u′

1/ub accounts for around 30% of the energy in these two

FIG. 5. Second eigenfunctions of u′
1/ub , 	2,u′

1/ub
for comparable Re. “©” β = 3.3, “×” β = 6.7, “�” β = 10.
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FIG. 6. Eigenvalues of u′
1/ub , λi,u′

1/ub
for comparable Re. “©” β = 3.3, “×” β = 6.7, “�” β = 10.

cases. Around 45% of the energy is given by the four most dominant eigenmode. For β = 3.3 the
eigenvalue spectrum is broader, so the most energetic mode of u′

1/ub accounts for 16% of the total
energy and the four most dominant modes around 30%. The energy contribution of the higher modes
is increased compared to the cases β = 6.7 and β = 10, meaning that the small scale structures
contain more energy and are more relevant for the flow. Also this dissimilarity between the spectra
of eigenvalues of β = 6.7 and β = 10, and the spectrum of eigenvalues of β = 3.3 is evidence of
structural dissimilarity of large-scale structures.

B. Large-scale structures in the (x1,x3)-plane

The measurement locations in the (x1,x3)-planes are chosen to match the maximum of the
	1,u′

1/ub profiles in the (x1,x2)-planes. For β = 6.7 and 10 these maximum positions are found at
0.26H from the wavy wall. In the case of β = 3.3, the maximum value of 	1,u′

1/ub is found in the
wave trough; therefore, we did chose a location of 0.32 H, which represents the maximum above the
entire wavy surface. The (x1,x3)-planes are obtained at slices, located in the center of the channel.

Figures 7(a)–7(c) show the first eigenfunction in streamwise direction normalized by the corre-
sponding bulk velocity, 	1,u′

1/ub , for β = 3.3, 6.7, and 10.
To quantitatively describe the characteristic spanwise length scales 
1,x3 of the first eigenmode

its profiles are presented in Fig. 8 for different β by streamwise averaging [ · ] and shifting 	1,u′
1/ub

in spanwise direction. 
1,x3 corresponds to 1.5H for β = 10, in the intermediate case of β = 6.7 
1,x3

increases to 1.7H, and for the smallest channel height this spanwise scale is 2.9H. For β = 6.7 and β

= 10, 
1,x3 is around 1.5H, whereas at β = 3.3 this spanwise scale deviates almost by a factor of 2.
The scaling with H does not hold anymore at β = 3.3, which in turn implies structural dissimilarity
of the most energetic large-scale structure. The eigenfunctions of the second eigenmodes of the
(x1,x3)-plane are considered in Fig. 9. For the second eigenmode, characteristic spanwise length
scales 
2,x3 for β = 10 and 6.7 are 1.4H and 1.8H, respectively. However, this characteristic
length scale for β = 3.3 is 2.6H. Here, the trend of the first eigenmode with similar characteristic
length scales for β = 6.7 and 10 around 1.5H is confirmed, which again deviates in the case of
β = 3.3. Also for the second eigenmode, it is concluded that it exhibits structural changes.

The eigenvalues λi,u′
1/ub of the (x1,x3)-plane are presented in Fig. 10. Again, for β = 6.7 and 10

the eigenvalue spectra are similar. The most energetic eigenmode accounts for roughly 15% of the
energy and the four most energetic eigenmodes contribute to around 40%. For the smallest channel
height (β = 3.3), the most energetic eigenmode accounts for 7% and the four most energetic for
around 25% of the energy. And also in the (x1, x3)-plane the eigenvalue spectra for β = 6.7 and
β = 10 are similar and deviations are observed for β = 3.3. Thus, the structural similarity of
large-scale structures in the outer flow is not anymore given.
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λ

λ

λ

λ

λ

λ

FIG. 7. (a) 	1,u′
1/ub

at Re = 8600 at β = 3.3. (b) 	1,u′
1/ub

at Re = 9200 at β = 6.7. (c) 	1,u′
1/ub

at Re = 10 900 at β = 10.

FIG. 8. First eigenfunctions of u′
1/ub , 	1,u′

1/ub
for comparable Re. “©” β = 3.3, “×” β = 6.7, “�” β = 10.
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FIG. 9. Second eigenfunctions of u′
1/ub , 	2,u′

1/ub
for comparable Re. “©” β = 3.3, “×” β = 6.7, “�” β = 10.

FIG. 10. Eigenvalues of u′
1/ub , λi,u′

1/ub
for comparable Re. “©” β = 3.3, “×” β = 6.7, “�” β = 10.

C. Characteristic zones

Sections IV A and IV B highlighted that large-scale structures in flows over wavy walls in
narrow channels are influenced by the channel height. In addition, reducing the distance between
the flat top and the wavy bottom wall will also influence the characteristic zones of flows over wavy
walls. The separation zone (region I) is addressed by comparing mean streamwise velocity profiles
at different blockage factors β and comparable Re in the vicinity of the wavy bottom along the wave
profile (Fig. 11). For this comparison the mean streamwise velocities u1 are normalized with the
friction velocity uτ , a quantity also used by Hudson et al.26 and Kruse et al.17 to normalize turbulent
quantities in wavy wall flows (for the determination of uτ for the different cases we refer to the
Appendix).

It is observed that the profiles of u1/uτ for β = 6.7 and 10 are nearly identical. Both show
reversed flow at x1/λ = 0.25, which clearly indicates the presence of the separation zone. However,
at β = 3.3 no separation zone is observed. Compared to β = 6.7 and 10, the inflection points of the
velocity profiles for β = 3.3 at x1/λ = 0.25 and 0.5 are shifted towards the wavy wall. According to
Hudson et al.,26 the region surrounding the inflection points corresponds to the shear layer (regions
II and III). The shift of the shear layer towards the wavy bottom wall for β = 3.3 will directly
influence the generation and transport of turbulence. Furthermore, uτ is only confirmed as proper
scaling parameter for β = 6.7 and β = 10, since for these two cases the normalized profiles coincide,
which is not the case for β = 3.3.

We address the shear layer developing after the wave crest by investigating the distribution
of the Reynolds stresses for the different channel heights. Contour plots of the Reynolds stress
u′

1u′
2 normalized by u2

τ are presented in Figs. 12(a)–12(c). It is observed that with increasing β

the horizontal extent of the shear layer decreases. For β = 3.3 the shear layer begins to develop at
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FIG. 11. Normalized mean streamwise velocities u1/uτ at Re around 10 000 at three different channel heights. x2 is the
distance from the wall. “©” β = 3.3, “×” β = 6.7, “�” β = 10.

λ

λ

λ

(a)

(b)

(c)

FIG. 12. (a) u′
1u′

2/u2
τ at Re = 8600 at β = 3.3. (b) u′

1u′
2/u2

τ at Re = 9200 at β = 6.7. (c) u′
1u′

2/u2
τ at Re = 10 900 at β = 10.

x2 is the distance from the wall.
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x1/λ = 0.1, whereas at β = 10 the development starts at x1/λ = 0.25. Furthermore, the smallest
vertical extent of the shear layer is found for the case β = 3.3. As already indicated by the inflection
points of the mean streamwise velocity profiles u1/uτ , the shift of the shear layer towards the wavy
bottom wall is also confirmed by the Reynolds stress data.

V. CONCLUSIONS

Flows over wavy walls in narrow channels are influenced by the channel height. PODs were
performed to characterize the influence of the channel height on the most dominant flow structures.
Narrower channels show flow structures with smaller spatial extensions. A common length scale
for all three cases was not found. At β = 6.7 and β = 10, the spanwise length scales of the most
dominant eigenmodes are ≈1.5H, whereas for β = 3.3 these spanwise scales increase to ≈3H. Also
the position of the most dominant eigenmode is shifted towards the wavy wall for narrower channels.
Here, for β = 6.7 and β = 10 the maximum position of the wavy wall is at ≈0.26H from the wavy
wall. In the most narrow channel, the maximum is at 0.1H in the wave trough. The eigenvalues of
the different cases have shown that the energy is similarly distributed among the flow structures
for β = 6.7 and β = 10. In contrast, at β = 3.3 increasingly broader energy spectra are found.
The different scaling of the eigenfunctions and the different energy spectra at comparable Reynolds
numbers indicate that the structural similarity of large-scale structures does not hold for the smallest
blockage ratio. To the authors knowledge such a deviation has never been reported before.

In addition to this blockage effect on the large-scale structures, we also observed an influence
on the characteristic zones. For the case β = 3.3 the flow is not separating after the wave crest and
compared to β = 6.7 and β = 10 the location of the shear layer is shifted towards the wavy wall.

These results show that the channel height plays an important role for flows over wavy walls.
Nakagawa et al.9 investigated wavy wall flows in a channel with β = 100 and found that the outer
flow can be compared to the outer flow over a flat wall. The investigated system is classified as flows
over a rough surface and universality of the outer flow is commonly believed for such kind of flows.
Measurements of Kruse et al.17 in narrower channels (β = 5 to 10) showed a universal behavior
of the outer flow independent of different wavy wall geometries. This is rather surprising, since the
observed flows are considered as flows over obstacles, which are supposed to be dependent on the
roughness geometry. This study reveals that the outer flow of an even narrower channel is different
compared to wavy channels investigated in the past. The energy spectra of the flow structures get
broader and the characteristic length scale of the most dominant flow structures have increased
relative to the channel height. Structural similarity at large scales of the outer flow is not anymore
valid in smaller dimensions. This finding is not in contradiction to the observed structural similarity of
hairpin-like structures and hairpin vortex packets observed by Natrajan et al.23 in turbulent capillary
and pipe flows. Hairpin vortices are, due to their small length scale, no large-scale structures in our
sense.
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APPENDIX: FRICTION VELOCITY

Hudson et al.26 and Kruse et al.17 used the friction velocity uτ to normalize turbulent quantities
in wavy wall flows. The good agreement of their measurements of turbulent quantities justifies uτ

as proper velocity scale. The friction velocity is defined as

uτ =
√

τw

ρ
,
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FIG. 13. Streamwise-averaged τ /ρ at Re around 10 000 at three different channel heights. x2 is the distance from the wall.

where τw is the shear stress at the wall and ρ the density. The shear stress in a turbulent flow over a
wavy wall consists of the viscous and the Reynolds shear stress and is given by

τ = μ
∂u1

∂x2
− ρu′

1u′
2.

In the near wall region the viscous stress dominates the flow due to the large velocity gradient and
the effect of the no-slip boundary condition on u1 and the blockage effects on u2. In Fig. 13, friction
velocities at β = 3.3, 6.7, and 10 and at Re around 10 000 are determined from linear extrapolations
of streamwise-averaged shear stresses from the outer flow towards the wall. Hudson et al.26 proposed
this methodology to determine the friction velocity for a flow over a wavy wall, due to the linear
variation of the outer flow’s shear stresses, which is also present for our cases.

We obtain the following friction velocities: uτ = 0.14 m/s (β = 3.3), uτ = 0.098 m/s (β = 6.7),
and uτ = 0.069 m/s (β = 10).

We also applied the bootstrap analysis to the friction velocity by taking into account the
normalized shear stresses τ /ρ in the outer region. The following sampling errors for the friction
velocities are obtained: 4.86% (β = 3.3 ), 4.29% (β = 6.7 ), and 4.29% (β = 10).
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