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Power-law distribution of pressure fluctuations in multiphase flow

S. Gheorghiu,* J. R. van Ommen, and M.-O. Coppens
Department of Chemical Technology, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands

~Received 25 November 2002; published 29 April 2003!

Bubbling fluidized beds are granular systems, in which a deep layer of particles is set in motion by a vertical
gas stream, with the excess gas rising as bubbles through the bed. We show that pressure fluctuations in such
a system have non-Gaussian statistics. The probability density function has a power-law drop-off and is very
well represented by a Tsallis distribution. Its shape is explained through the folding of the Gaussian distribution
of pressure fluctuations produced by a monodisperse set of bubbles, onto the actual distribution of bubble sizes
in the bed, assuming that bubbles coalesce via a Smoluchowski-type aggregation process. Therefore, the Tsallis
statistics arise as a result of bubble polydispersity, rather than system nonextensivity.
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I. INTRODUCTION

Fluidized beds are a common form of a chemical reac
in which a stream of gas is blowing upward through a de
layer of fine solid particles, setting it in motion. At a certa
gas velocity, known as the minimum fluidization veloci
Um f , balance between gravity and drag is achieved, and
particles become suspended without being transported
creasing the gas velocity aboveUm f results in the excess ga
flowing through the bed as bubbles. The mixture is said to
‘‘fluidized,’’ and behaves in a way surprisingly similar to th
of a bubbling liquid~see, e.g., Ref.@1# for a primer on flu-
idization!. Despite this intuitive picture, the hydrodynami
of this two-phase system are highly complex and differ
from those of gas-liquid systems~e.g., there is no analog t
surface tension, and the gas-solid interface is not well
fined!. The excellent mass and heat transfer properties
fluidized beds make them the solution of choice for appli
tions such as combustion of solid fossil fuels and bioma
many exothermic reactions in the chemical industry, oil
finery, several metallurgical as well as biochemical and
vironmental cleanup processes. They are also extensi
used to heat, cool, dry, or coat particles such as pharma
ticals.

The present study uses a time series measurement of
sure to characterize the hydrodynamics. Pressure has sig
cant advantages over other measurements in fluidiza
technology. Cornerstone techniques in flow research suc
thin-film anemometry or laser Doppler anemometry ha
been used successfully to assess the velocity field, but
are rather impractical in fluidization because a fluidized b
is opaque and also because the probes sometimes ha
withstand very harsh physicochemical conditions within
bed. They are also intrusive as probes may distort the flow
their vicinity. In recent years, sophisticated nonintrusive
mographic techniques are becoming available for the st
of flow patterns in fluidization@2#, but they carry significant
costs and safety requirements. By contrast, pressure se
are both robust and relatively cheap, can be readily use
industrial equipment, and in addition can be made virtua
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nonintrusive. The main limitation of pressure is its intrins
cally nonlocal nature due to the assumption of incompre
ibility of the flowing fluids. Nevertheless, pressure has be
shown to be a useful quantity in turbulence research@3,4#. In
the theory of multiphase flows, it is well established th
local pressure fluctuations are representative of the hydro
namics~e.g., Ref.@5,6#!. Pressure at some point in the be
not only reflects local dynamics in the form of passi
bubbles, but also the combined effect of bubble coalesce
and breakup, bubble formation at the distributor plate a
eruption at the surface, all taking place some distance a
from the probe, therefore characterizing the dynamics of
bed as a whole@7#. Pressure data are typically used to va
date fluidization regimes@8# and to measure bubble size@9#.
Recently, analysis of local pressure measurements was
to advocate the chaotic behavior of fluidized beds@10–12#
and to monitor the quality of fluidization@13#.

II. STATISTICS OF PRESSURE FLUCTUATION
MEASUREMENTS

This study uses pressure measurements performed
sampling rate of 200 Hz at different positions inside a pil
size fluidized bed, 80 cm in diameter, filled with sand p
ticles of size 0.3–0.5 mm up to a settled bed height of 93 c
Air was injected through a porous bottom plate, at superfic
velocity U0 ranging from 0.24 m/s to 0.70 m/s, correspon
ing to 1.7–5.0 times the minimum fluidization velocit
Kistler 7261 piezoelectric transducers, which measure
pressure relative to average ambient pressure with an a
racy of'10 Pa, were used for the measurement of press
The sensors, together with associated tubing, were teste
distortion of pressure fluctuation amplitude and phase.
significant influence of the dead volume was found at f
quencies typical for gas-solid fluidized beds~0–50 Hz!. Dur-
ing acquisition, data were low-pass filtered at 50 Hz.

The probability density function~PDF! of pressure fluc-
tuations

DP~ t,Dt !5P~ t1Dt !2P~ t ! ~1!

was evaluated for different time delaysDt, in a manner
reminiscent of the analysis of longitudinal veloci
©2003 The American Physical Society05-1
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increments in a single-phase turbulence. While the use
PDF’s in the characterization and monitoring of fluidiz
beds is not new~e.g., Ref.@14#!, previous studies only ad
dressed the PDF of the peak-to-peak pressure differenc
the PDF of the pressure itself. In both cases, no temp
correlations between data points were taken into consi
ation. By contrast, our present calculation implicitly includ
the time scale and dynamics of the variable, and is m
robust since it removes artifacts due to fluctuations in the
flow and any long-time trends in the data.

Figure 1 shows typical PDF’s of pressure fluctuations~1!,
for time delayDt510 ms, different gas velocities, and di
ferent probe heights. The PDF’s are non-Gaussian, an
log-log representation reveals that the tails are represente
a power law, with large events much more frequent th
expected in a normal distribution~Fig. 2!. Very long-time
series~roughly 1 h of 200-Hz data! were used to ensur
accurate statistics.

FIG. 1. PDF’s of pressure fluctuations~1! Dt510 ms: ~a! U0

51.7Um f , probe heightH50.84 m, 0.54 m, 0.14 m~top to bot-
tom!; ~b! probe height 0.84 m, gas velocityU055.0Um f , 2.8Um f ,
1.7Um f ~top to bottom!. The top row is to scale; the bottom two a
shifted for clarity.

FIG. 2. Gaussian and Tsallis fits of the PDF forU051.7Um f ,
H50.54 m, Dt510 ms. Inset shows the fits in linear scale. On
the positive side of the PDF is shown for clarity.
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It has been known for several years that PDF’s of veloc
increments in a single-phase turbulence have the same q
tative features@15#, a fact traditionally associated with inte
mittency. Recently, several researchers@16–18# proposed a
novel explanation of this phenomenon based on nonex
sive thermodynamics. Becket al.showed that velocity incre-
ments in a high-precision measurement of Taylor-Coue
flow can be fitted to a Tsallis PDF@19#:

r~u!5
1

Zq
@11~q21!bua#1/(12q), ~2!

wherer(u) denotes the probability density of the longitud
nal velocity increments,b is related to the variance ofu,
while the so-called nonextensivity parameterq quantifies the
departure from the Gaussian distribution, anda is a real
parameter with a weak dependence onq. Zq is seen as a
q-dependent partition function that ensures normalizati
and the ‘‘classic’’ expressions forr and Z of Boltzmann-
Gibbs statistics are recovered ifq→1.

Inspired by Beck’s approach, we find that with consid
able accuracy, PDF’s of pressure fluctuations in fluidiz
beds are represented by

r~DP!5
1

Zq
@11~q21!buDPua#1/(12q). ~3!

Numerical fits of the data using Eq.~3! give a52.060.05,
and a nonextensivity parameterq in the range 1.0–1.5 for
Dt510 ms, for all probe heights and superficial gas velo
ties considered. All reported values refer to the positive s
of the PDF. A typical dataset is shown in Fig. 2, with fittin
parametersq51.45~95% confidence interval@1.446, 1.455#!
andb51.33 @1.328, 1.348#. With increasing time delayDt,
parametersq and b decrease: e.g., for measurements atU0
51.7Um f , H50.54 m, the values decay fromq51.45, b
51.33 at Dt510 ms, to q'1.0, b'0.5 at Dt5500 ms.
Therefore, the distribution is Gaussian for long-time dela
~Fig. 3!, a feature that has also been observed in turbule

FIG. 3. Decay of the PDF to a Gaussian.U051.7Um f , H
50.54 m. The top set is to scale, other sets are shifted down
clarity.
5-2
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data. Considering the typical velocity of bubbles at giv
fluidization parameters, time scales up to 500 ms corresp
roughly to spatial separations of the order of the larg
bubbles in the bed~10–20 cm!. There appear to be residu
Tsallis statistics (q*1) even at larger scales, but numeric
fits corresponding to long-time delays are less consistent
contrast the turbulence analysis, our numerical fits sho
rather constant valuea'2.0, as opposed to aq-dependent
one, and also the variation ofq is more significant.

The quality of the fit reveals another remarkable featu
Systematically, data for low superficial velocity (U0
51.7Um f) and a high probe position provide the best fi
and also the highestq values. As the gas flow is increase
the PDF still features well-defined fat tails, but only the
tails are well represented by the theoretical distribution~3!.
Based on this observation, we conjecture that the signal
two components, only one of which satisfies Eq.~3!. Indeed,
in a fluidized bed there are at least two distinct contributio
to the pressure. One is of local nature, represented by
tuations caused by bubbles passing the probe. This di
bance travels at a relatively low velocity, accompanying e
bubble as it rises. The other contribution is felt almost sim
taneously throughout the entire bed, and is given by co
pression waves generated by the formation of bubbles a
bottom distributor plate, their coalescence, and their fi
burst at the top of the bed@7#. The fast propagation of the
nonlocal compression waves allows, in principle, the sep
tion of the two components by using two simultaneous pr
sure measurements at different positions in the bed.

The separation of the two components is typically done
frequency space@20#. For the purpose of analyzing PDF’
we devised an algorithm that uses the frequency informat
but decomposes the signal in real space. Simultaneous
sure dataP(t) from a position within the bed and a positio
below the distributor plate@‘‘windbox’’ pressurePw(t)] were
used. The distributor plate transmits any fast compress
waves generated in the bed, but almost no bubble-indu
fluctuations due to their localization property. The ‘‘bubb
component’’ of P is then computed asPb(t)5P(t)
2CPw(t), where the constantC is chosen so that the cohe
ent output power betweenPb andPw is minimal. If P̂w and
P̂b denote the power spectral density of the windbox a
bubble signals, andX̂b,w denotes the cross spectral density
the two signals, then the coherent output power is define
@20#

Pcoh5gb,wP̂w , ~4!

wheregb,wP@0,1# is the coherence between the bubble a
windbox signals,

gb,w5
iX̂b,wi2

P̂bP̂w

. ~5!

In other words, the algorithm tries to remove all similariti
to the windbox~bubbleless! signal from the measuremen
leaving just the bubble component. Complete separation
not be achieved due to distortion of the compression wa
04130
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by the porous distributor plate, the fact that upward a
downward fast traveling waves have different attenuat
factors, and also to the imperfect localization of the bub
pressure fluctuations.

The PDF ofDPb is analyzed in the same way as that
the originalDP. The Tsallis fit~3! of the bubble componen
is better than the one corresponding to the raw data
shown by an overall drop in the fitting error~Fig. 4!. Addi-
tionally, the nonextensivity parameterq of the bubble com-
ponent is significantly larger, indicating a more pronounc
departure from a normal distribution. Meanwhile, the ana
sis of the windbox fluctuationsDPw yields a Gaussian fit of
comparable quality~Fig. 5!. The same value of paramete
a'2 was found in both the raw data and the bubble co
ponent data.

FIG. 4. Tsallis fits~solid lines! of the ‘‘raw’’ PDF ~a! and bubble
component PDF~b!. U055.0Um f , H50.84 m,Dt510 ms.q val-
ues are accompanied by 95% confidence intervals and the
mean-square error of the Tsallis fit. Gaussian fits~dotted! are shown
for comparison.

FIG. 5. Positive side of the PDF of the windbox signal and
Gaussian fit.U055.0Um f , Dt510 ms.
5-3
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To further consolidate the two-component picture, an
ternative calculation was carried out using simultane
pressure measurementsP1 and P2 coming from two probes
placed at the same height, but some horizontal distance a
from each other. The two signals were subtracted,Ps(t)
5P1(t)2P2(t), and then the PDF ofDPs was computed as
above. The fast-wave, coherent component ofP1 and P2 is
virtually the same and is therefore discarded, leaving a p
combination of ‘‘bubble signals.’’ The Tsallis fit of the PD
of DPs is excellent~Fig. 6!.

These results confirm the hypothesis that the bubble c
ponent of the pressure fluctuations is the sole carrier of
power-law characteristic. This conclusion is also suppor
by the previous observation that Tsallis fits are better
lower gas velocitiesU0 and at higher positions in the bed
With increasing gas flow, the gas uptake of the column
creases, together with the frequency of the phenomena
produce fast compression waves. Therefore, at higher
flows, the bubble component of the signal is more distort
Also, since bubbles produced at the bottom of the bed g
in size as they progress upwards, the bubble compone
more pronounced at higher measurement positions.

III. MODELING AND THEORETICAL INTERPRETATION

Several researchers have proposed that the power
form proposed by Tsallis for the probability of a microsta
of energye,

r~e!;@11~q21!be#1/(12q) ~6!

can arise from a weighted average over the Boltzmann
tors of ordinary statistical mechanics (e2be), provided the
weights are sampled from a gamma distribution@16,21,22#.
If the temperature or, equivalently, the energy dissipation
b fluctuates with the required distribution, even ordina
conventional thermodynamic systems can display abnorm
nonextensivelike statistics. Similar observations on

FIG. 6. Positive side of the PDF ofDPs , and corresponding
Tsallis and Gauss fits.U055.0Um f , H50.14 m, Dt510 ms. The
95% confidence interval onq is shown.
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particle velocity distribution in granular systems@23–25#
may apparently be explained using the same argument@47#.
Here we propose that a similar mechanism is producing
Tsallis PDF of pressure fluctuations in a fluidized bed.

At any moment in time, a fluidized bed is a collection
bubbles of various sizes. The pressure disturbance assoc
with a passing bubble can be felt a certain distance away
although no two bubbles coexist at the same position at
same time, a pressure sensor picks up a superpositio
signals from bubbles in an area typically;0.5 m around it
@48#.

The most widely used theoretical model for a bubble in
fluidized bed was given by Davidson and Harrison@26#. De-
rived from two-phase flow theory, it gives the pressure fie
around a passing spherical bubble with respect to the p
sure at the observer’s location:

P~r ,u!5rsg~12em f!H R3

r 2
cosu, r>R

rcosu, r ,R,

~7!

wherer andu are the polar coordinates of the observer w
respect to the bubble center,R is the bubble radius,rs is the
density of the solid phase, andem f is the void fraction cor-
responding to minimum fluidization. Furthermore, to a go
approximation, the velocity of bubbles depends on their s
asu50.7A2gR @26#.

We assume for simplicity that the pressure sensor
placed on the bubble path, the center of the bubble passe
observer at timet5t0, and the bubble pierces the detect
during the time intervalt02T,t,t01T. We make the
transformation R5Tu and introduce new variablesP*
5P/@rsg(12em f)#, andt* 50.7tA2g. This leads to

P* ~ t* !55
1

R2

~ t* 2t0* !2
, t* ,t0* 2AR

2~ t* 2t0* !AR, ut* 2t0* u<AR

2
R2

~ t* 2t0* !2
, t* .t0* 1AR.

~8!

Figure 7 shows the pressure time-trace and its derivative
A surrogate pressure signal consisting of bubbles o

fixed sizeR was constructed numerically as a superposit
of pressure traces~8! of bubbles with randomly positioned
centerst0. This is obviously not a complete model for th
measured pressure signal since it lacks the fast-wave com
nent, but it is a good representation of the ‘‘bubble comp
nent’’ that carries the power-law statistics, as discussed in
preceding section.

For short-time delays,DP* 'P* 8Dt* , and by differenti-
ating Eq.~8! it is easy to see that the range of the variab
DP* is proportional toAR. Since the bubbles in this surro
gate signal are identical and independent, the strong form
the central limit theorem guarantees that the PDF of the
perposition is Gaussian,
5-4
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r~DP* ,R!5
N

AR
e2(c/R)DP* 2

, ~9!

where N is the normalization factor andc depends on the
number of bubbles that coexist at one moment in the be
similar, slightly more involved calculation allows the exte
sion of this reasoning to bubbles traveling on paths that
not intersect the detector. Any random spatial distribution
identical bubbles can be shown to produce a normal dis
bution of pressure fluctuations~9!, with a standard deviation
proportional toAR.

Taking into account that in a freely bubbling bed, bubb
come in various sizes, an actual pressure measurement
samples the marginal probability distributionr(DP* )
5*r(DP* ,R) f (R)dR, where f (R) is the probability den-
sity function of bubble sizes in the fluidized bed. To ass
the validity of the hypothesis that this weighted average
responsible for transforming the Gaussian PDF~9! of a one-
size bubble signal into the Tsallis PDF~3! of the actual data,
accurate statistics of bubble sizes are therefore needed.

A direct, accurate, real-time measurement of bubble s
in a three-dimensional fluidized bed is very difficult to car
out. Tomographic techniques using x-rays,g radiation, or
electrical capacitance either do not have enough temp
resolution or have enough spatial resolution because of p
lems with the image reconstruction. Alternatively, simul
neous pressure measurements with multiple sensors ca
used to assess bubble size in multiphase flows@9,27#. Al-
though leading to more reliable data, these methods are
ill-conditioned in the language of inverse problems, and ty
cally need somea priori assumption about the bubble sha
and size distribution. Due to these difficulties and the lack
a solid theoretical basis for understanding the process
bubble creation and growth in fluidized beds, measu
bubble size data have so far been empirically fitted to ag
@28–31#, Rayleigh@29,30#, or log-normal distribution func-
tion @32#.

Here we propose an expression for the bubble size di
bution in the form

f ~R!5CR2te2a/R, ~10!

FIG. 7. Davidson-Harrison bubble, as seen by the sensor: p
sure trace~a!, derivative of the pressure~b!.
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with real parametersa,t.0, and normalization constantC.
This conjecture is based on the assumption that bubbles g
as they progress upwards by coalescence of smaller bub
in a process of aggregation described by a Smoluchow
type equation~e.g., Refs.@33–35#!. The place of time in the
classical treatment of aggregation is taken here by the v
cal measurement position. Under fairly general conditions
the ‘‘coagulation kernel’’@36,37#, Eq. ~10! would be an ac-
curate representation of the skewed, bell-shaped distribu
for moderate bubble sizes, high enough in the bed for c
lescence to be fully developed. The power-law decay has
exponential cutoff at smallR due to the fact that although
only small bubbles are injected at the bottom of the bed, t
progressively disappear by merging to form bigger bubb
higher up in the bed. The proposed distribution~10! was
fitted on bubble size data extracted from video recordings
a two-dimensional bed with satisfactory results~Fig. 8!.

Observing that Eq.~10! is a gamma distribution in vari-
able 1/R, we obtain for the PDF of pressure fluctuations

r~DP* !;E
0

` 1

AR
e2(c/R)DP* 2

R2te2a/RdR

5E
0

`

e2(a1cDP* 2)/RS 1

RD t23/2

dS 1

RD
5GS t2

1

2Da(1/2)2tS 11
c

a
DP* 2D (1/2)2t

, ~11!

as long ast.3/2. This expression is precisely of the for
~3!, with a52,

q511
1

t21/2
, ~12!

and c/a5b(q21)@rsg(12em f)#2. Parameterq is related
throught to the details of the bubble growth mechanism.

s-

FIG. 8. Distribution of bubble sizes near the top of a 40 c
two-dimensional fluidized bed from video data.U053.0Um f . The
solid line is the fit to Eq.~10!.
5-5
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To accurately capture the full bubble size distribution, E
~10! must be amended by an exponential decay at largeR,
since in agglomeration phenomena the cluster size distr
tion typically drops faster than any power law at largeR
@35–37#. Also at largeR, bubble breakup combined wit
finite-size effects become significant, so that bubbles can
grow without limit. Consequently, the PDF of pressure flu
tuations in fluidized beds will typically fall slightlybelowthe
theoretical PDF of Eq.~11! in the range of very largeDP.
The departure of the bubble size distribution from t
‘‘ideal’’ form ~10! may be slow to set in, especially in larg
systems, so the departure of the PDF from Eqs.~3! and~11!
may not be actually visible in measured data.

IV. RELEVANCE TO ‘‘NONEXTENSIVE
THERMOSTATISTICS’’

In recent years, we are witnessing an increasing intere
the formalism and applications of nonextensive statist
mechanics, first proposed by Tsallis@38# and since developed
by many others. The creators of this field argue that a g
eralized version of classical statistical mechanics may
more appropriate to describe the physics of systems op
ing far from equilibrium, many-body systems with long
range interactions@39,40#, systems displaying anomalou
diffusion @41–43#, or operating at the edge of chaos@44,45#.
Central to the theory is the postulate that a power-law fo
as given by Eq.~6! should replace the classic exponent
Boltzmann factore2be. The conceptual framework of statis
tical mechanics is preserved if the expression for entrop
also altered,

Sq5
1

q21 S 12(
i

r i
qD , ~13!

wherer i is the probability of a microstatei of the system.
Indeed, the Tsallis probability distribution maximizes t
Tsallis entropy~13!, just like the Boltzmann-Gibbs probabi
ity maximizes the Shannon-Gibbs entropy in classical sta
tical mechanics. The striking feature of the new entropy is
nonextensivity. IfA andB are two independent systems, th

Sq~A1B!5Sq~A!1Sq~B!1~12q!Sq~A!Sq~B!. ~14!

All features of the ordinary, extensive thermostatistics
recovered in the limitq→1.

It is important to point out that although the relevant va
ables in the present study fit remarkably well in the cont
of Tsallis statistics, and although the PDF of pressure m
mizes its associated Tsallis entropy, there is no reaso
expect fluidized beds to be nonextensive in the strict sens
anomalous in any other way. The observed statistics w
explained under the explicit assumption that there areno
spatial or temporal correlations between individual bubb
in the fluidized bed, as required by the central limit theore
This assumption is accurate in the bubbling regime of flu
zation, for large enough beds, and away from reactor w
so as to limit correlations induced by finite-size effects. Pa
ing bubbles sometimes create local paths of low voidage
influence the movement of nearby bubbles, thus induc
04130
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some space-time correlations. Fluidized beds are also kn
to have episodes of~pseudo!periodicity, but all these effects
are minimal and do not characterize the hydrodynamics.
therefore appropriate to consider that bubbles follow e
other in a stochastic manner, a conclusion that is suppo
by various statistical tests on the distribution of interbub
time intervals@49#.

The Tsallis form of the distribution of pressure fluctu
tions arises purely through the polydispersity of the bub
population. The assumed distribution of bubble sizes is
result of an agglomeration process, in which individu
bubbles grow by coalescence of smaller ones. Judging by
ubiquity of aggregation phenomena in the physical wor
spanning from aerosol science to polymers, astrophysics,
even to the dynamics of human populations, the mechan
outlined here may be a very prolific way of producing t
Tsallis distributions in systems that are neither far from eq
librium nor possess long-range interactions, nor are sub
to anomalous diffusion. This intriguing fact and the growin
number of experimental observations@50# of the Tsallis sta-
tistics call for a careful review of the principles, applicabili
range, and nomenclature of nonextensive thermodynam
@46#.

V. CONCLUDING REMARKS

We have shown that pressure fluctuations in bubbling
idized beds are very well fitted by a probability density fun
tion with power-law tails, typically used in the context of th
Tsallis statistics. Although these experimental observati
are reminiscent of intermittency in fully developed singl
phase turbulence, we must point out that turbulence isnot a
likely explanation for the observed behavior of fluidize
beds. In the bubbling regime, the gas-particle mixture
much too dense and viscous for multiphase turbulence
develop~it most certainly plays a role at much higher g
flow rates!. Also, the magnitude of pressure fluctuations an
lyzed here~typically up to 20 kPa! rules out the possibility
that they are produced by air turbulence within individu
bubbles.

The proposed representation is particularly accurate
large-size fluidized beds, which make it readily applicable
industrial equipment. By separating the different contrib
tions to the pressure signal, it was shown that the remark
statistics are contained in the localized pressure signal of
sequence of bubbles passing close to the detector. The s
of the PDF is explained through the folding of a Gauss
distribution ~corresponding to a set of bubbles of the sa
size! onto a gamma distribution of variable 1/R, whereR is
the bubble radius. The proposed bubble size distribution
seen as the result of an agglomeration process.

Fluidized beds appear as a prototype of a larger clas
systems which may display Tsallis-like statistics in the r
evant variables, without being intrinsically nonextensive.
terestingly, the fact that the Tsallis expression of entropy
the analog of the Shannon-Gibbs entropy for systems wi
Tsallis PDF makes its formalism useful for the informatio
theoretic description~characterization, validation! and moni-
toring of multiphase flow regimes, understanding, nevert
less, that the observed phenomena share no fundam
relationship with nonextensive thermodynamics.
5-6
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