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Abstract
We develop an agent-based model as a preliminary theoretical basis to guide the synthesis
of a new class of materials with dynamic properties similar to bacterial colonies. Each agent
in the model is representative of an individual bacterium capable of: the uptake of chemicals
(nutrients), which are metabolized; active movement (part viscous, part diffusive), consum-
ing metabolic energy; and cellular division, when agents have doubled in size. The agents
grow in number and self-organize into fractal structures, depending on the rules that define
the actions of the agents and the parameter values. The environment of the agents includes
chemicals responsible for their growth and is described by a diffusion-reaction equation with
Michaelis-Menten kinetics. These rules are modeled mathematically by a set of equations with
five dimensionless groups that are functions of physical parameters. Simulations are performed
for different parameter values. The resulting structures are characterized by their fractal scaling
regime, box-counting and mass-radius dimensions, and lacunarity. Each parameter influences
the overall structure in a unique way, generating a wide spectrum of structures. For certain com-
binations of parameter values, the model converges to a steady state, with a finite population
of agents that no longer divide.
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1. INTRODUCTION

The complexity of many fractal structures emerges
from the iteration of simple rules.1,2 Interest-
ingly, fractals share this feature with self-replicating
machines and cellular automata,3,4 introduced by
von Neumann, whom Benoit Mandelbrot credited
in many ways as an important influence and advi-
sor in early days.5 In such self-replicating machines,
simple rules that govern the actions of individual
mobile elements or “agents” may lead to fractal
structures, with features that are invariant under
magnification, over a wide range of scales.

Similarly, randomly moving bacteria on a Petri
dish, partially starved from nutrients, assemble into
complex organizations that are often fractal, some-
times reminiscent of DLA (diffusion limited aggre-
gation). In DLA,6 a central seed grows into an
approximately self-similar, fractal cluster when dif-
fusing agents, following a random walk through
space, hit and irreversibly attach to the growing
cluster. However, bacteria are more complicated:
they can divide (self-replicate); they absorb nutri-
ents, which allows them to grow and change their
internal state; they respond to their environment by
reacting to chemical and mechanical actions, excret-
ing chemicals themselves, to which other bacteria
may react (e.g., quorum sensing).7 Real bacteria
have complicated genetics and metabolism. They
are not simple dots, but have a size, shape and con-
tent that is species dependent. They perform ran-
dom walks, but not according to classical Brownian
motion, because they are often self-propelled (using
flagella), are able to respond to chemical gradients
(via chemotaxis), and interact with the surrounding
fluid.8

Despite these complications, models that abst-
ract the actions and reactions of bacteria in a
fashion similar to the DLA-model, using modi-
fied but still much-simplified rules compared to
those of real bacteria, have been shown to pro-
duce patterns that closely resemble bacterial
communities.9–14 Also non-biological growth and
aggregation phenomena occurring in colloidal sys-
tems, electrochemistry, dielectric breakdown, fluid
flow in porous media (viscous fingering), etc. . .
frequently produce fractal structures with surpris-
ingly universal features, despite the differences in
microscopic physics or physical chemistry.10,15–18

Nevertheless, the more complicated features of bac-
teria, including their ability to divide and act to
their environment in different ways, leads to more

complex dynamics and adaptability of a growing
bacterial community, when compared to non-living
systems.

A bacterial community, in many ways, behaves
as a synergetic, multicellular organism.19,20 It is
much more complex than the constituting microbes.
A community could be manipulated in response
to certain actions, be it genetic or environmental.
While these features are very important for biol-
ogy and biochemical engineering,21 this paper does
not seek a more sophisticated model to describe
the organization of bacterial communities. Instead,
we explore the organization of agent-based systems
that are bacteria-inspired.

The “agents” and their rules of action are based
on the simplest, still physically and chemically
meaningful representation of a complicated biolog-
ical reality, in such a way that this representation
might be applied to the design and synthesis of non-
biological elements or artificial cells. Like bacte-
ria, these artificial cells develop into organizations.
The question we raise is what organizations can be
achieved based on these simple rules, with outcomes
that depend, for each agent, on the immediate envi-
ronment of the agent (e.g., the local concentration
of nutrients), as is the case for a bacterium? Simi-
lar to bacteria, we call the organizations “colonies”,
and seek the structure of these colonies.

Our ultimate goal is to formulate nature-inspired
design rules for new classes of adaptive materials,
as part of our philosophy of nature-inspired chemi-
cal engineering (NICE). The NICE approach learns
from the architecture and dynamics of natural sys-
tems with desirable properties, such as robustness,
efficiency, scalability or adaptability, and then uses
the underlying mechanisms that lead to these prop-
erties in the design and synthesis of innovative
materials and reaction systems with properties sim-
ilar to the natural systems.22–25

2. AGENT-BASED SIMULATIONS

2.1. Overview

Bacteria moving on a Petri dish may self-organize
into fractal and other remarkable patterns, depend-
ing on the growth conditions.9,11–13 The goal of
our simulations is to study the landscape of struc-
tures emerging from individual elements or “agents”
with functions inspired by those of bacteria. Each
agent performs a random walk on a two-dimensional
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surface. While an agent moves, it takes up nutrition
from the environment, which it converts and uses
to prolong its movement or to replicate. As we will
see, this often results in fractal structures, like those
observed in bacterial communities.

The state of each agent is characterized by a sin-
gle variable: its mass, m, similar to the mass of
a bacterial cell. Depending on the value of m, an
agent can perform one of three actions. Below a cer-
tain threshold, mmin, an agent remains immotile, as
it contains insufficient mass that can be converted
into metabolic energy to propel itself through the
viscous medium. Above this minimum, but below a
maximum mass, mmax, an agent is motile and pro-
pels itself through the environment. When the mass
of an agent reaches mmax, it self-replicates, split-
ting into two equally sized, separate agents. Each
of these agents has half the mass of the original,
hence mmax = 2mmin.

The environment in which the agents carry out
these actions contains nutrition, which serves as
a fuel to the individual agents. Hence, the two-
dimensional environment is represented by a layer
in which nutrients diffuse and are taken up by the
agents. When an agent absorbs nutrients from the
layer, the concentration of nutrients in proximity
to this agent decreases. Nutrients are metabolized
and partially converted into biomass that is stored
inside the agent. As nutrients are depleted, a con-
centration gradient develops, inducing the diffusion
of nutrients from areas of high concentration to low
concentration.

2.2. Agents

In the current model, all actions of an individual
agent, i, are a function of its mass, mi, only. This
mass, mi, is determined by the amount of nutrient
that agent i absorbs and the actions it performs.
In turn, the mass of an individual agent determines
the actions it will perform. Absorption replenishes
nutrients and therefore increases mi, while move-
ment consumes energy, which decreases mi.

The size of an agent depends on its mass. As
hypothesized, the only variable characterizing each
agent is its mass. This assumption implies that
the density of an agent, ρ, is the same for all
agents, and is independent of the agent’s size. All
agents are modeled as circular, two-dimensional
disks with a mass-dependent radius R(mi). Since
ρ is constant, the surface area of each two-
dimensional agent, Si, is proportional to its mass,

mi : Si = mi/ρ = π[R(mi)]2. The size of an agent
determines its total rate of absorption of nutrients,
and its velocity, v(mi).

The mass mmin is the minimum allowed mass of
an agent in the simulation. This represents the min-
imum amount of material an agent needs to sus-
tain itself. When the mass of an agent drops to
mmin, it is still able to absorb nutrients, should they
become available by diffusion, but it is unable to
move. Agents falling into this category are referred
to as dormant, stationary or “immotile”. The
immotile agents have a radius Rmin = R(mmin) =√

mmin/(ρπ).
When an agent i has a mass mi between mmin

and 2mmin, it is able to move and is referred to
as “motile”. Each agent performs a random walk.
It moves a short distance in a straight line, then
changes direction randomly, moves another distance
in a straight line, and so on. The environment is
assumed to be viscous and Newtonian, and motion
is slow enough to apply Stokes’ law to the straight
excursions:

Fd = −4πµR(mi)v(mi), (1)

where Fd is the frictional or drag force acting on
a disk-shaped agent i, µ is the viscosity of the
medium, R(mi) is the radius of agent i, and v(mi)
is its velocity. In this study we assume every agent
to have the same, autonomous propulsion mecha-
nism, which exerts a force Fp on its surroundings.
In bacteria this might be via flagella. Newton’s third
law dictates that Fp + Fd = 0, barring external
forces acting on the agent. In this study, we assume
that the propulsion force is independent of mass,
an assumption that can be modified, depending on
the nature of the agents. Under this assumption,
the magnitude of the drag force, |Fd|, is constant.
We also assume that viscosity µ is uniform across
the surface. The differential of the work done by
the agents, moving an infinitesimal distance, ds, is
derived as follows:

dW = Fpds = |Fd|ds or
dW

dt
= |Fd|v(m). (2)

The equation of motion of an agent’s random walk
is written as follows:

d�ri

dt
= v(mi)[�i cos θ(t) +�j sin θ(t)]. (3)

Here, �ri is the position of agent i at time t, �i
and �j are unit vectors along the directions of two
orthogonal axes of the two-dimensional surface,
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θ is the angle at time t, randomly changed after
certain time intervals. The velocity of agent i
depends on its mass, mi, which, itself, depends on
time.

Finally, when the mass of an agent, mi = 2mmin,
the agent divides. As division occurs, a new agent
is added to the system, next to its parent. Due to
this condition, no agent has a mass greater than
2mmin, because it will have divided before that. The
mechanism of division is as follows:


m+

i =
1
2
m−

i

m+
N+1 =

1
2
m−

i

, m−
i ≥ 2mmin. (4)

The subscripts denote the agents. N is the total
number of agents in the system prior to division;
a new agent N + 1 is created when i divides. The
superscripts “−” and “+” denote the agents before
and after division, respectively.

The overall mass balance for each agent is thus
determined by the three actions: motion, division,
and absorption of nutrition.

Absorption of nutrient by the agents is mod-
eled by Michaelis-Menten kinetics, similar to many
bacterial cells. According to the Michaelis-Menten
mechanism, the local rate of depletion of nutrients
per unit area, rn (would be volume in three dimen-
sions), at position �r and time t, is:

rn =
rmaxCn(�r, t)

KM + Cn(�r, t)
, (5)

where rmax is the maximum reaction rate, Cn(�r, t) is
the local concentration of nutrients at position �r and
time t, and KM is the Michaelis-Menten constant.
This rate equation approximates first-order kinetics
at low nutrition levels (Cn � KM ) and zeroth-order
kinetics at high nutrition levels (Cn � KM ). Via
metabolic processes, absorbed nutrients are con-
verted into added agent mass. Let p be the stoi-
chiometric coefficient of the reaction of nutrients to
agent mass (allowing for other excreted products,
which do not affect the process), then prn is the rate
of increase of agent mass per unit area of an agent.
The total rate of absorption by agent i (change in
mass per unit time) is obtained by integrating over
the area, Si, occupied by agent i, leading to Siprn,
when the rate of absorption is assumed constant
over this area.

Therefore, when mmin < mi < 2mmin, the
change in mass of an agent over time is described

by:

dmi

dt
= prn[Cn(�r, t)]Si(mi) − 1

∆H

dWi

dt

∼= prn[Cn(�r, t)]
mi

ρ
− |Fd|vi(mi)

∆H
, (6)

where Eq. (2) was used, the area occupied by an
agent, Si = mi/ρ, and ∆H is the enthalpy change
associated to the conversion of mass to metabolic
energy.

2.3. Nutrient Layer

Locally, nutrients are consumed by the agents. This
process results in a concentration gradient in the
nutrition layer. Because nutrients diffuse from high
to low concentration, the nutrition layer is described
by the following diffusion-reaction equation for the
nutrient concentration, Cn:

∂Cn(�r, t)
∂t

= DC

(
∂2

∂x2
+

∂2

∂y2

)
Cn(�r, t)

− δ(�r)rn[Cn(�r, t)], (7)

where rn is the rate of depletion of the nutrients,
as described by Eq. (5), and δ(�r ) represents the
presence of agents at location �r : δ(�r ) = 1 if there is
an agent i with mmin ≤ mi ≤ 2mmin at �r; otherwise,
δ(�r ) = 0.

3. MODEL IMPLEMENTATION
AND ANALYSIS TOOLS

3.1. Dimensionless Formulation

To study this agent-based model in a more gen-
eral way, the equations are cast in a dimension-
less form. Thus, the dimensionless mass Xi(�r, τ),
dimensionless nutrient concentration Y (�r, τ),
dimensionless time τ , and dimensionless velocity v′
are introduced, with the following relationships to
the corresponding non-dimensionless physical vari-
ables and parameters:

mi = mmin(1 + Xi) 0 ≤ Xi < 1 (8)

Cn = CmaxY 0 ≤ Y ≤ 1 (9)

t =
Rmin

vmax
τ 0 < τ (10)

vi = v′ivmax 0 ≤ v′i. (11)
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The maximum velocity of an agent corre-
sponds to its minimum mass; from Eq. (1):
vmax = |Fd|/4πµRmin. The dimensionless Laplacian
operator is used, by normalizing the coordinates x
and y to the minimum radius of the agents, which

is the radius when the agents are immotile:

∂2

∂x2
+

∂2

∂y2
=

1
R2

min

∇2. (12)

Equation (7) for the diffusion of nutrients thus
becomes, after substituting Eq. (5):



∂Y

∂τ
= D∇2Y − B

Y

Y + A
in the presence of agent i, with 0 ≤ Xi < 1 (13a)

∂Y

∂τ
= D∇2Y in the absence of agents. (13b)

Depending on their state, each agent i is described by the following equations, where Eqs. (14a) and (14b)
are the dimensionless forms of Eqs. (4) and (6):



dXi

dτ
= C

Y

Y + A
(1 + Xi) for Xi = 0 (14a)

dXi

dτ
= C

Y

Y + A
(1 + Xi) − E

1√
1 + Xi

for 0 < Xi < 1 i = 1, . . . , N (14b)

X+
i = 0;XN+1 = 0 for X−

i = 1. (14c)

The first equation, (14a), holds for immotile agents,
which are still able to absorb nutrients (right-hand
side term), resulting in accumulation of mass, but
do not lose mass through motion, as in the last term
of Eq. (14b). Here, the dimensionless velocity was
used, which follows from Eqs. (1) and (8):

v′i =
1√

1 + Xi
, i = 1, . . . , N. (15)

In these equations, dimensionless parameters A–E
were introduced. Table 1 shows how they depend
on physical parameters.

3.2. Implementation

The nutrition layer is discretized into a grid with
unit box width a. Simulations were carried out for
different values of a to ensure that the results are
grid size independent. For the reported simulations,
a is chosen to be 10Rmin, a value that is large
enough for the approximation in Eq. (6) to hold,
and small enough for the value of Y within a grid

cell not to change appreciably. Time τ is discretized
into small time steps ∆τ .

During each time step ∆τ , coarse-grained ver-
sions of Eqs. (13) and (14) are solved. The diffu-
sion equation for the nutrients is discretized using
the Crank-Nicolson method. The trajectories of the
agents are also coarse-grained over time steps ∆τ .
An agent changes direction after a certain amount
of time that is modeled by a Poisson distribution,
such that the same direction is maintained for an
average duration of λ∆τ , where λ is the mean of
the Poisson distribution. λ = 10 for all simulations,
because λ can be neither too small nor too large for
the assumptions behind the coarse-grained approx-
imation to be valid. It was verified that changes of
λ around this average did not influence the results.

The initial conditions are set to: N = 50; Xi = 0
and |�ri| ≤ 10Rmin for i = 1, 2, . . . , N ; Y (�r, 0)= 1,
that is, nutrients are initially homogeneously, uni-
formly distributed. The boundary of the nutri-
tion layer is considered to be a rigid wall, that

Table 1 Expressions for the Parameters A, B, C, D, and E in Eqs. (13) and (14),
in Terms of Physical Variables.

Dimensionless Parameter A B C D E

Relation to physical variables
KM

Cmax

rmax Rmin

Cmax vmax

Rmin prmax

vmaxρ

Dc

Rmin vmax

|Fd|Rmin

mmin ∆H



2nd Reading

June 20, 2012 10:43 0218-348X 1250016

6 Y. Huang, I. Krumanocker & M.-O. Coppens

is: ∇Y = ∂Y/∂n = 0 at the boundary. A simulation
is ended when N ≥ 30,000 or after 300,000 time
steps ∆τ , whichever occurs first. The stopping con-
dition is chosen such that the average simulation
time is less than two days.

All simulations were performed on a computer
cluster comprised of eight nodes of dual 6-core
2.4 GHz processors with 16 Gb RAM per node. The
average time for a simulation to complete is less
than 15 minutes.

3.3. Box-Counting Dimension

The standard procedure is used to estimate the box-
counting dimension of the colony formed by the
agents.1 First, the colony is covered by a square
grid containing unit boxes of width R′ (in units of
Rmin). The number of boxes with at least one agent
is counted and is recorded as NB(R′). By chang-
ing the value of R′, the corresponding NB(R′) is
obtained. The box-counting dimension DB is esti-
mated from the absolute value of the slope of the
linear region in a plot of log10[NB(R′)] vs. log10(R′).

3.4. Mass-Radius Dimension

The mass dimension is estimated in two different
ways. The first way involves counting the number of
agents within concentric circles of radius R′ (again
in units of Rmin) around a central point. This cen-
ter is obtained by averaging the position of agents
in the vertical and horizontal directions. Then, the
number of agents within a circle of radius R′ is
counted, and recorded as NM (R′), for different val-
ues of R′. The mass-radius dimension is calculated
from the linear region in the plot of log10[NM (R′)]
vs. log10(R′).

However, because the density of the colony is
likely to be different at different radii, a coarse-
grained mass-radius method is also employed. First,
the colony is covered by a grid of small boxes. Sim-
ilar to the box-counting method, each box in the
grid has a binary value, depending on the presence
of agents in the box. The number of occupied boxes
within a circle of radius R′ is counted, and recorded
as N ′

M (R′). A plot of log10[N ′
M (R′)] vs. log10(R′) is

then used for a second estimate of the mass dimen-
sion, DM .

3.5. Lacunarity

Fractal dimension(s) give an impression of the
space-filling capability of a set, but are insufficient

to fully characterize it, just like a dimension of 2
for a Euclidean object does not tell us whether the
object is a circular disk or a rectangle. A valuable
complementary characteristic is lacunarity, which
indicates how (non-)uniform the set is. Low lacu-
narity corresponds to a uniform, homogeneous dis-
tribution of holes (Latin lacunae).1 Fractals of the
same Hausdorff dimension may differ considerably
in their lacunarity. On occasion, different estimators
for fractal dimension, such as box-counting schemes
and the mass-radius relation already suggest this,
since the mass dimension depends on the choice of
a center around which the mass is measured as a
function of the distance from the center.

A fast gliding box algorithm is used to obtain
a measure for the lacunarity of the colony of
agents.26,27 First, the colony is coarse-grained by
employing a grid of small box width, R′′ = 1 (in
units of Rmin). Unlike the box-counting method, the
number of agents within each box is now counted.

Second, the standard gliding box algorithm is
implemented to calculate the lacunarity of this
coarse-grained colony. The width of the gliding box,
R′, is varied and chosen to be an integer multi-
ple of R′′. The box is first placed at the upper
left corner of the coarse-graining grid and the num-
ber of agents within the box is counted as S′. The
box is then glided through the whole grid with dis-
placement R′′ in each step. The number of occur-
rences of a particular value of S′ is counted and
recorded as NR′(S′). This number is normalized by
the total number of gliding boxes of length R′, and
the result is denoted as QR′(S′). By choosing differ-
ent integer multiples R′ of the width of the coarse-
graining boxes, R′′, Q is obtained as a function
of S′ and R′: Q = QR′(S′) = Q(S′, R′). The first
and second moments of Q over S′ are calculated as
Z1 =

∑
S′ S′Q(S′, R′) and Z2 =

∑
S′ S′2Q(S′, R′),

respectively. Gliding box lacunarity is defined as
L(R′) ≡ Z2/Z

2
1 . The lacunarity plot is a graphical

representation of log10[L(R′)] vs. log10(R′).

4. NUMERICAL RESULTS AND
DISCUSSION

When different values of the parameters A, B, C,
D and E are substituted into Eqs. (13) and (14),
the agents self-organize into colonies with different
structures. In Sec. 4.1 the case in which A = 0.25,
B = 4, C = 0.5, D = 1 and E = 0.1 is discussed in
detail. These values are chosen as the “base case”,
because, as we will see, they generate an aggregate
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similar to DLA, with features observed in real bac-
terial colonies on a Petri dish. Then, in Sec. 4.2, we
will explore the large family of spatially structured
patterns that is formed by changing one parameter
at a time.

4.1. Base Case

4.1.1. Visual exploration of the
overall geometry

Benoit Mandelbrot had a remarkably developed
visual sense. He loved geometry and liked to first
carefully look at shapes, before studying them
numerically, using statistical and mathematical
tools. Let us do this for the base case. Nine sim-
ulations with the same parameter values (A = 0.25,
B = 4, C = 0.5, D = 1 and E = 0.1) were per-
formed. Figure 1 is a representative illustration of
the structure formed by the agents, once they have
grown to a community of 30,000. The main panel in
Fig. 1 shows the macroscopic spatial distribution of
the agents. The black points correspond to immotile
agents, with Xi = 0, and the red dots correspond
to motile or active agents, with Xi > 0.

Globally, at the macro-scale, our eyes tell us
that this colony is a self-similar fractal, reminis-
cent of DLA.6 Most active agents are close to the
rim. Zooming in to an intermediate, meso-scale, as
shown in two enlarged regions below and on the
right of the main image, the branched structure
is observed to contain numerous holes, not only
in between, but also within the branches of the
DLA-like cluster. These branches consist of clouds
of agents over a width on the order of the nutrient
grid size, a ∼ 10Rmin. Further zooming in, down to
the micro-scale, where individual agents are clearly
perceived, self-similarity vanishes. Agents are scat-
tered randomly, but much more densely near the
center of the cluster than near the active rim. The
changes in meso- and microstructure over the clus-
ter suggest multifractality.

4.1.2. Fractal dimensions

Since the colony formed by the growing agents con-
tains self-similar features, fractal dimensions are
calculated. First, by employing the box counting
method, as show in Fig. 2a, the fractal dimension
DB ≈ 1.75. The lower cutoff for the scaling regime
occurs at log10(1/R′) = −1, or R′ = 10. However,
this scale corresponds to the width, a, of the boxes
of the nutrition grid. It is obvious that this is the

smallest scale at which we could obtain meaningful
information about the structure.

Mass-radius dimensions are also calculated and
compared with the box-counting dimension. As
shown in Fig. 2b, the mass distribution along the
radial direction is non-uniform: the dotted line
shows two distinct regions that approximately fol-
low power laws. One has an exponent of 2.19, while
the other one has an exponent of 1.17. Both are
very different from the box-counting dimension.
The crossover occurs around log10 (R′) ≈ 1.2. The
inconsistency with the box-counting dimension is
due to the fact that the local densities of the agents
vary between regions that are at different distances
from the center. Therefore, the mass-radius dimen-
sion is recalculated by coarse-graining the colony.

The colony is coarse-grained below a length
scale a = 10Rmin, because this is the scale
below which nutrients are considered uniformly dis-
tributed. Also, this is the lower cutoff of the fractal
regime measured by box counting. A log–log plot of
the coarse-grained mass-radius relation is shown in
Fig. 2b. The trend is linear with a slope D′

M ≈ 1.87,
over the entire meaningful, coarse-grained range.
Further coarse-graining (20Rmin, 30Rmin) has no
effect, confirming the fractal, self-similar structure
at scales above a = 10Rmin. The box-counting
dimension of the coarse-grained object is still DB ≈
1.75, because the boxes are wider than the inner
cutoff of the fractal regime.

The difference between the coarse-grained mass
dimension, D′

M , and box-counting dimension, DB ,
is due to the slow convergence of D′

M . If simula-
tions are carried out up to much larger colony sizes,
say, 170,000, DB remains almost the same, changing
from 1.75 to 1.73, while D′

M decreases significantly,
from 1.87 to 1.79. For very large clusters, it is indeed
expected that D′

M ∼ DB . However, simulation time
increases from 1/2 hour to 48 hours when simulat-
ing clusters with 170,000 agents instead of 30,000
in the base case. As, in our further analysis, we use
the faster converging box-counting dimension, esti-
mated over a broader scaling range, we were able to
compare simulations for up to 30,000 agents without
affecting our conclusions.

4.1.3. Lacunarity

The lacunarity of a DLA cluster (Fig. 3c) is cal-
culated along with that of our colony of agents
(Fig. 3b), because the colony displays similari-
ties to DLA, including a similar fractal dimension.
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Fig. 1 Multi-scale structure of a colony formed by agents that propagate according to the “base case” scenario. Each agent
is represented by an individual dot. The large central panel shows a macroscopic view of the entire colony. The figures on the
right and bottom are enlarged regions of the colony, at two different levels of magnification, corresponding to a meso-scale
(branches of finite width and variable density) and the micro-scale (individual branches). Red points represent active, motile
agents (Xi > 0), while black points represent immotile agents (Xi = 0).

Figure 3a shows that the lacunarity curves of both
structures almost coincide, but that the lacunar-
ity of the colony is slightly larger across all scales.
This means that the agents of the colony are less
uniformly spaced, on average, than the elements in
DLA. At first, this seems to be a surprising result,
because the colony consists of scattered agents at

the micro-scale (Fig. 1), unlike DLA, in which the
individual elements are attached to one another.
An explanation for this result is that the branches
in the colony (meso-scale) are denser than the
branches in DLA. When Figs. 3b and 3c are coarse-
grained to the meso-scale (above scale a), DLA
and the colony are almost indistinguishable. The
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(a) (b)

(c)

Fig. 2 Plots to estimate the fractal dimension of the colony in Fig. 1. The left graph is the box-counting plot with slope
DB ≈ 1.75. The middle graph includes the standard mass dimension plot (· · ·), and plots to estimate the mass dimension,
D′

M , after coarse-graining with box widths of 10Rmin = a (∗∗∗), 20Rmin (◦ ◦ ◦) and 30Rmin(+++). The graph on the right
shows the resulting colony (in units of Rmin) after coarse-graining below scales 10Rmin = a.

lacunarity plot provides quantitative information
to both the similarity and the differences between
DLA and the base case.

4.1.4. Mass distribution of the
agents

The structure of the colony is a result of the active
motions and divisions of the agents. The dynamics
of the growing colony can be understood by exam-
ining the masses of the agents, because the actions
performed are determined by their masses.

As shown in Fig. 1, the active agents spread
sparsely at the tips of the growing branches. The

number of active agents is small compared to the
total population of the colony. Only 1.15± 0.05%
of the agents are active, but their role is crucial to
the growth of the colony.

Each active agent behaves differently. As shown
in Fig. 4, there is a mass distribution. The average
mass of the active agents is X ≈ 0.5 (m = 1.5mmin),
which also happens to be a peak in the distribution.
This is due to the special conditions at both ends
of the mass distribution. At X = 0 (m = mmin),
agents are no longer able to move, because their
mass, and associated metabolism, is insufficient to
generate kinetic energy. If the agents are also in the
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(a) (b)

(c)

Fig. 3 Lacunarity plot (a) and comparison of the base case colony (b) and a DLA cluster (c), consisting of 30,000 agents
each. (a) In the lacunarity plot on the left, (∗∗∗) or — represents the lacunarity of the colony, and (◦ ◦ ◦) or — represents
the lacunarity of the DLA cluster. (c) The DLA cluster on the right is drawn at the same scale as the colony in the middle
graph, (b).

region less accessible to nutrition, it is very likely
that the agents will stay immotile indefinitely. At
X = 1 (m = 2mmin), agents divide, so that the
number of agents of this mass is always 0, while an
active agent that has just grown to a mass X = 1
divides into active agents of mass X = 0, which is
one reason for the peak near X = 0+. The combi-
nation of the conditions at X = 0 and X = 1 leads
to an average mass of X = 0.5 when a dynamic
equilibrium has been reached. Scatter in the distri-
bution is due to the small number of active agents
(345 ± 14).

The peak at X = 0+ corresponds to starv-
ing agents, entering the immotile state, or agents
resulting from division. It is also possible that some
inactive agents become active again by absorbing
a minor amount of nutrition that reaches them via

diffusion. X = 0− is the highest peak, by far, and is
not shown in the figure, because it is three orders of
magnitude higher. It corresponds to inactive agents,
which contribute to the main, quasi-static structure
of the colony, because they are stationed at certain
locations.

4.2. Parametric Study

The colony discussed in the previous section is just
one example of a large family of organizations gener-
ated by the agent-based model. By changing the val-
ues of the parameters, other organizations emerge.
In order to understand the effects of each parame-
ter, one parameter is changed at a time, while the
values of the other parameters are kept the same as
in the base case.
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Fig. 4 Absolute frequencies of the dimensionless mass, X,
of the active, motile agents in the base-case simulation. Most
agents are immotile, with X = 0−.

4.2.1. Effect of kinetics (A)

A is the most influential parameter in the model,
because it is directly related to the kinetics of
absorption of nutrients by the agents. Mathemat-
ically, this parameter links the Eq. (13) for the
nutrition layer to those for the system of agents,
Eq. (14). Therefore, the structure of the colony is
strongly dependent on A = KM/Cmax, which is
the Michaelis-Menten constant made dimensionless
by division by the maximum (initial) concentra-
tion of nutrients. As A approaches 0, the absorp-
tion kinetics, which are proportional to Y/(Y +
A), can be approximated as zeroth-order (con-
stant). On the other hand, when A is large (A �
Y ), the absorption of nutrition can be approxi-
mated as first-order with reduced rate constant
(∼ Y/A).

Numerical simulations were performed for A = 0
to 4, with increments of 0.4. The structure of the
colony strongly depends on A. Figure 5a is a plot
of the box-counting dimension, and Fig. 5b shows
the ratio of active agents to non-active agents, both
as a function of A. The graphs show similarities,
namely: when A is close to 0, the slope is large and
positive; when A is high, the slope is large and neg-
ative; and when A has an intermediate value, the
slope is small and negative. It is obvious that these
three regions correspond to different types of orga-
nization, as shown in Fig. 5c.

The first region, where A → 0, represents organi-
zations with zeroth-order absorption kinetics. Local

nutrition concentration is depleted to 0 at its
maximum rate, according to Eq. (5), since it is lin-
ear in time and does not depend on its current level.
As a result, nutrition from outside of the colony
is not able to diffuse to the inside of the colony,
because it is quickly absorbed by the agents at
the perimeter. The number of active agents is thus
decreasing as A → 0, as shown in Fig. 5b. Due to
the fast depletion rate of nutrients, agents moving
in a radial direction are favored because it allows
them to grow further. This selection of a particular
direction is responsible for the thin branches shown
in the first colony in Fig. 5c, which reminds us of the
lightning-like, fractal patterns formed by the dielec-
tric breakdown model (DBM).10 As expected, the
box-counting dimension of these colonies is low, as
shown in Fig. 5a.

The other extreme, for which A � 1 ≥ Y , corre-
sponds to first-order absorption kinetics. Contrar-
ily to the high absorption rate in the zeroth-order
reaction, nutrition is not depleted as quickly. How-
ever, despite the presence of nutrients, the num-
ber of active agents does not keep increasing. This
is because agents consume their mass to generate
kinetic energy, and they shrink when the absorption
rate is so low that it does not counter-balance the
required metabolic energy. Hence, the mass of each
agent tends to its minimum (X = 0), and the agent
becomes immotile. The result is a non-fractal colony
with few branches. A typical example, for A = 4,
is shown in the rightmost panel of Fig. 5c. A box-
counting dimension slightly above 1 is obtained, but
this non-integer value is biased by the small size of
the colony.

For intermediate values of A, the agents self-
organize into colonies with a fractal structure. A
sharp maximum was obtained around the base case
(A = 0.25), for which the box-counting dimen-
sion of 1.75 is close to that of DLA. Colonies
for higher values of A, but below 4, also have
a self-similar structure of gradually decreasing
box-counting dimension. Interestingly, these orga-
nizations keep growing up to and beyond the max-
imum simulated size of 30,000 agents. For the base
case, a simulation up to 170,000 agents did not
reveal differences in the general structure of the
colony.

The presence of three regimes demonstrates how
strongly the self-organization depends on the kinet-
ics of absorption (0th order, Michaelis-Menten, 1st
order kinetics), which is governed by the value of A.
Interestingly, the transition between these “phases”



2nd Reading

June 20, 2012 10:43 0218-348X 1250016

12 Y. Huang, I. Krumanocker & M.-O. Coppens

(a) (b)

(c)

Fig. 5 Effects of A on the colony. (a) Relationship between the box-counting dimension of the colony and the parameter A.
(b) Relationship between the ratio of the number of active agents to the number of non-active agents, and the parameter A.
(c) Structures of colonies for A = 0, A = 1.6 and A = 4.

is due to the fact that the colonies reach a steady
state, consisting of a finite number of agents, below
and above critical values of A. We do not give
explicit values for these critical thresholds, as longer
simulations will need to be carried out to determine
them with sufficient precision, but Fig. 5b gives a
good qualitative indication.

The general dynamics of the agent-based sys-
tem are determined by the absorption of nutri-
tion, which allows individual agents to move and
divide, expanding the colony. However, these two
actions — motion and division — have opposite
effects on the total mass of the colony, because
absorption increases mass, while motion consumes
metabolic energy, hence decreases mass. When the
colony reaches a certain size, the effects of the two
actions cancel each other, leading to a steady state.

This happens both for 0th and 1st order kinetics,
so that the colony reaches a finite size in both situ-
ations, even though the steady-state morphology of
the system is very different. For example, the num-
ber of agents for A = 0 stops increasing when it
reaches 7200± 190. It is expected that the interme-
diate regime in Fig. 5 becomes narrower when the
simulations are carried out beyond an allowed max-
imum of 30,000 agents, because some colonies for
intermediate values of A begin to reach a steady
state. At this stage, it cannot be stated for cer-
tain whether the colony will be able to maintain
indefinite growth within a certain range of values
of A. For nutrient layers that are not infinitely
extended, the boundary conditions for the nutri-
ents (Dirichlet or Neumann) could play a role as
well.
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4.2.2. Effects of parameters related
to agent motion and the
consumption of nutrients
(B, C and E)

Parameter C is the constant pre-factor of the nutri-
ent absorption term for the agents, in Eqs. (14a)
and (14b). When C is large, agents grow rapidly,
and so does the colony. This is confirmed by the
positive, linear relationship of the number of active
agents with C in Fig. 6d. The fractal dimension
does not increase indefinitely, and seems to reach a
plateau at higher values of C, even though the struc-
tures, shown at the bottom of Fig. 6, look different.
The lacunarity (not shown here) decreases, as the
structures become more uniform at the meso-scale.
This is due to the rapid division at high values of C,
leading to dense structures similar to those formed
by the Eden process.10

Fig. 6 The effects of parameters B, C, and E to the structure of the colony. Top row: box-counting dimensions; below: ratio
of active/non-active agents as a function of each parameter. Bottom: a few representative examples.

Parameter B is the constant pre-factor of the
depletion term for the nutrition layer. The ratio
C/B = pCmax/ρ is proportional to the initial con-
centration of nutrients. For the same concentration
of nutrients, Cmax, a low value of B and a high
value of C have similar effects. This explains why
Figs. 6a–6c look like mirror images of each other,
with respect to the base case in which B = 4
and C = 0.5. For the same value of C, a lower
value of B depletes the nutrients less rapidly, so
that low-lacunar structures of high box-counting
dimension appear (see Fig. 6a, and colony for
B = 2). The fraction of active, motile agents
is inversely related to B for the same reason
(Fig. 6b).

In Eq. (14b), parameter E = |Fd|Rmin/
(∆Hmmin) determines the contribution of the mass
Xi that is expended to kinetic energy, accounting
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for metabolic conversion (enthalpy change ∆H).
Note that E = 0.1 corresponds to the base case. E
is the pre-factor of the negative term in Eq. (14b),
while C is the pre-factor of the positive term.
Therefore, it is logical that both the fraction of
active agents and the fractal box-counting dimen-
sion decrease with E. High values of E lead to a
Lichtenberg-like (DBM) pattern. At high values of
E the number of active agents tends to zero, so that
a steady-state population is reached; E is therefore
another important parameter to control the sys-
tem properties. Furthermore, Fig. 6e shows that the
fractal dimension is approximately linear in E over
the investigated range. This is a useful feature when
nature-inspired systems are designed.

(a) (b)

(c)

Fig. 7 Effect of dimensionless diffusivity of the nutrients, D, on the structure of the colony. (a) Top left: Box-counting
dimension vs. log10 (D). (b) Top right: Ratio of active/non-active agents as a function of D.

4.2.3. Effect of the diffusivity
of the nutrients (D)

Parameter D is the dimensionless diffusivity of
nutrients in the nutrition layer. It only appears in
Eq. (13). The structures obtain their characteristic
shapes mainly due to the limiting diffusion of nutri-
ents to the agents, whose actions depend entirely
on how much nutrition they are able to absorb.
Parameter D is, therefore, the main determinant
of the branching process. Note that the scale in
Fig. 7a is logarithmic. The base case corresponds
to log(D) = 0. A family of branching patterns is
formed within a quite narrow range of D. When D
is very large (D > 10, log(D) > 1), agents have easy



2nd Reading

June 20, 2012 10:43 0218-348X 1250016

Fractal Self-Organization of Bacteria-Inspired Agents 15

access to nutrition, which leads to similar effects as
a high value of parameter C, but even more pro-
nounced: the box-counting dimension saturates to
a high value, as the colony becomes close to space-
filling, and a linear relationship between the number
of active agents and D is observed (Fig. 7b). At low
values of D, the organization is DLA-like.

5. CONCLUSIONS AND
OUTLOOK

Inspired by the adaptive behavior of bacterial
colonies, we wish to design adaptive materials shar-
ing similar properties. This study serves as a the-
oretical, exploratory basis for future experiments
to develop these types of materials. Already, the
simple agent-nutrient model in this study has been
able to generate a variety of fractal and non-
fractal structures of widely different geometry. The
parametric study will be extended to include the
simultaneous variation of multiple parameters. Mul-
tifractal formalisms, a deeper study of lacunar-
ity, and a characterization of the dynamics should
provide more detailed information beyond what is
discussed in this introductory paper.

Although this agent-based system shows similar-
ities to models that have been used to describe bac-
terial colonies, it is essentially different. First, this
model could be used to design both biotic and non-
biotic systems, while the bacterial colony models
are targeted at bacterial systems, which they aim to
represent. Second, the model is based on physically
realizable assumptions in non-biological systems. It
is aimed less at being a reductionist approach for a
biological system (for which it would be overly sim-
plistic), than at offering a nature-inspired design
methodology for non-biological systems (for which
it contains as simple as possible ingredients to pro-
duce highly complex dynamics and morphologies).

The diffusion-reaction equations and the equa-
tions of motion are derived according to realis-
tic physical laws. On the contrary, many bacterial
colony models in the literature are based on
assumptions unique to bacterial colonies. Moreover,
in many of the bacterial colony models, the active
and non-active states are defined as an assump-
tion to the model to generate the desired branching
structures. In our model, the active (motile) and
non-active (immotile) states are the consequence of
a mass-energy balance. Agents can be non-active at
one moment and active at another moment, as long
as nutrition is supplied.

Another remarkable result is that many of the
systems generated from the presented model reach
a dynamic steady state with a finite, limit number of
agents. The values of the critical thresholds of the
parameters, in terms of whether a system reaches
such a dynamic steady state, should be evaluated
as a function of system size and simulation time.
The ability to control growth up to a certain size is
useful for the synthesis of real materials: as long as
the initial condition is set, the system is guaranteed
to aggregate into a structure of a certain morphol-
ogy when the steady state is reached. It would also
be interesting to explore the consequences for bio-
logical systems, e.g., tumor growth.

The agent-nutrition model discussed in this study
is simple, but easily extended to include the effects
of quorum sensing, additional transmitters and
receptors, as well as different agent dynamics or
kinetics. Some of these extensions will be consid-
ered in future work, especially when they allow us
to realize qualitatively different behavior. Even so,
we strive for the simplest nature-inspired represen-
tation that could be realistically applied to design
materials or systems with a desired, adaptive col-
lective response by means of self-replicating agents.
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APPENDIX

A.1 List of Variables

Variable Unit Description

Cn kg/m2 Concentration of nutrients

mi kg Mass of agent i

rn kg/(m2s) Depletion rate of nutrients per unit area

R(mi) m Radius of agent i

Si m2 Area of agent i

t s Time

vi m/s Velocity of agent i

v′i Dimensionless Dimensionless velocity of agent i

Wi J Amount of work done by agent i

Xi Dimensionless Dimensionless mass of agent i

Y Dimensionless Dimensionless nutrient concentration

τ Dimensionless Dimensionless time
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A.2 List of Parameters

Parameter Units Description

a m Width of the unit boxes in the nutrition grid

Cmax kg/m2 Maximum concentration of food. Since food is being depleted
by the agents, Cmax is also the initial concentration of food

DC m2/s Diffusion coefficient of nutrients

Fd N Drag force

∆H J/kg Enthalpy change in converting mass to metabolic energy

KM kg/m2 Constant in Michaelis-Menten kinetics

mmin kg Minimum mass of an agent

p Dimensionless Stoichiometric coefficient for the conversion of nutrients
to agent mass

rmax kg/(m2s) Maximum reaction rate in Michaelis-Menten kinetics

vmax m/s Maximum velocity of an agent

µ kg/(m s) Viscosity

ρ kg/m2 Density of an agent


