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The mechanism of dry granular convection within dense granular flows is mostly neglected by current

analytical heat equations describing such materials, for example, in geophysical analyses of shear gouge

layers of earthquake and landslide rupture planes. In dry granular materials, the common assumption is

that conduction by contact overtakes any other mode of heat transfer. Conversely, we discover that

transient correlated motion of heated grains can result in a convective heat flux normal to the shear

direction up to 3–4 orders magnitude larger than by contact conduction. Such a thermal efficiency, much

higher than that of water, is appealing and might be common to other microscopically structured fluids

such as granular pastes, emulsions, and living cells.
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The temperature evolutionwithin sheared granular layers
is balanced by heat production and transfer. Identifying the
dominant modes of the heat transfer is therefore critical to
temperature predictions. As typical with any classical fluid,
the two most important modes of heat transfer during
granular flow are those by conduction and convection.
Heat conduction is now well understood to rely on the
properties controlling the contact network: contact size,
anisotropy, and heterogeneity [1–4]. Various studies exam-
ined the effect of convection on the heat transfer between
the flowing granular materials and bounding walls [5]. In
such cases where the wall interacts with the flow, the heat
transfer is affected by the first layer of wall-contacting
grains that may or may not recirculate. Moreover, the
efficiency of the overall heat transfer depends on the ther-
mal properties of the wall. Here, we examine the heat
transfer that is purely intrinsic to the granular media, inde-
pendent of wall properties. Intrinsic to the flow, the heat is
carried by grains as they move. We term this process dry
granular convection. Some heat is thus simply flowing
along the mass flux. In addition to this obvious advection,
in turbulent flow of water vortices develop and induce heat
transfer normal to the mass flux [6]. Granular flows exhibit
similar turbulent-like patterns of velocity vortices [7], lead-
ing to temperature mixing normal to the mass flux [8], but
the corresponding heat flux has not been studied. Unlike
water, vortice-like motion in granular media results from
force chain buckling, leading to high fluctuations in local
strain and kinetic energies, and thereafter, as we show, to
thermal convection that increases with vertical stresses.

In this Letter, we discover that dry granular convection
does add a striking contribution to the overall heat transfer
budget in dense granular flows. The study is based on a
series of numerical experiments using thermal discrete
element method [2]; the motion and the temperature evo-
lution of the grains are simulated while they experience a
plane shear flow and a temperature gradient in the direction
transverse to the shear plane [Fig. 1(a)]. In the following,

we will first introduce the physical properties and the
associated dimensionless numbers describing the system.
The measurement of convection and conduction fluxes for
various loading and grain properties will then be presented.
Finally, we will prove that the convective flux comes
directly from the correlation between velocity and tem-
perature fluctuations; it is therefore driven by the tempera-
ture mixing due to transient vortex motions, and hindered
by the contact conduction bringing the temperature back to
thermal equilibrium.
Rational description of heated granular sheared

layers.—Practical issues such as earthquakes, landslides,
and granular lubrication involve a wide range of grain
properties and loading intensities [9]. The set of relevant
dimensionless numbers describing the physical properties
of the grains is then given by their typical diameter d, mass
m, mass density �, Young’s modulus E [Pa], bulk conduc-
tivity ks [Wm�1 K�1], and bulk heat capacity c
[J kg�1 K�1]. The loading conditions can generally be
described by a normal stress �yy and a shear rate _�. It is

then possible to detect four fundamental time scales: the

shear time t _� ¼ _��1, the inertial time ti ¼
ffiffiffiffiffiffiffiffi
m

d�yy

q
, the col-

lision time tc ¼
ffiffiffiffiffi
m
Ed

p
, and the thermal time tth ¼ mc

dks
.

Therefore, only three independent dimensionless numbers
may describe our system. Two of them have been broadly
used to express constitutive laws for granular flow: the
inertial number I ¼ ti=t _� describing the shear state, and

the stiffness number � ¼ ðtc=tiÞ2 ¼ �yy=E reflecting the

degree of deformation sustained by the grains [4,10]. We
introduce a third dimensionless number, which we term the
thermal number, defined as � ¼ tth=ti, among other pos-
sible combinations. The possible range of values these
three numbers can attain concerning various practical
problems is discussed in Table I.
Thermomechanics of grain contacts.—We consider a

model material whose grains are spherical and slightly
polydispersed (d� 20%). The grains interact by direct
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contacts which also transmit heat by conduction. The
friction coefficient � is set to 0.4 and the coefficient of
normal restitution to 0.8. The normal contact force satisfies
the Hertz model, Fn ¼ Ea3=d, with a being the contact
radius. As expressed in [4], we also include the contact

torques for twist and rolling with their respective sliding
and rolling criteria. The heat flux �ij [W] between two

contacting grains is described by the model of conductance
for perfectly smooth contacts: �ij ¼ �2ksaðTj � TiÞ. It
accounts for the constriction of the heat flux [3,11]: the
temperature Ti;j is almost homogeneous within grains apart

from the small region of typical size a alongside the
contact where the temperature gradient is localized.
Therefore, the small Hertzian contacts per particle are
thermally independent. The transient heat flux of the con-
tacting grains is approximated by the steady-state value.
This assumption is discussed in [3,12] and proves to be
reasonable even for collision-dominated flows, and even
more so in our dense flows with sustained contacts. The
thermal discrete element method involves the numerical
integration of grain motion by Newton’s law, considering
the local force and torque balances. In addition, the grain
temperatures are updated, given their local heat budget:
_Ti ¼ 1

cmi

P
j�ij, which includes the heat flux contribution

from all contacting particles, indexed by j [2].
Measuring dry granular convection.—The numerical

experiments begin with the generation of a flow by sub-
jecting a random configuration of grains to a steady shear
rate and designated normal stress [Fig. 1(a)] [13]. After
some time, the flow reaches a steady regime with no shear
localization, during which the sample height, the shear
stress, and the solid fraction � remain constant apart
from small fluctuations. The ‘‘heat’’ part of the experiment
starts when the steady regime is reached; grain tempera-
tures are initially set according to a constant gradient rT0

along y: Ti ¼ rT0yi. They are then free to evolve, but
constrained to a thermal condition where the difference
between the temperatures at the top and bottom boundaries
remains constant to ensure a constant global temperature
gradient of rT0. The heat flux densities [Wm�2] from the
contact conduction ~qcond and from the dry granular con-
vection ~qcond [Figs. 1(b) and 1(c)] are measured by

~q cond ¼ 1

�

X
c

�c ~rc; ~qconv ¼ 1

�

X
i

micTi ~vi: (1)

The first sum represents the contribution of all contacts
transferring a heat flux � along the center-to-center vector
~r. The second sum runs over all of the grains, each of which
moves with a velocity ~vi and carries heat with a value of
mcT. These two formulations thus denote a spatial average
over the entire sample volume �, and are used to measure
snapshots of the two fluxes at any time during the shear.
Figure 2 shows the individual contribution to the overall

budget of heat transfer by the dry granular convection and
through the contact conduction. The behavior is similar,
almost irrespective of the imposed inertial number: the
convection flux increases mostly linearly with the thermal
number �, approximately by qconvy � 10�2qs�, while the

conduction flux is almost constant, qcondy � 0:1qs. For ther-

mal numbers larger than about 10, the convection becomes
the dominant mode of heat transfer. Although not shown

TABLE I. Wide practical appeal is achieved by changing three
dimensionless numbers �, I, and �. Their chosen range of values
covers important phenomena [9]: (i) a 10 km deep earthquake
(�yy ¼ 108 Pa) involving a 1 mm width fault gouge, a slip

velocity from 0 to 10 ms�1, and d ¼ 100 �m grains; (ii) a
10 m thick landslide (�yy ¼ 105 Pa), with deformations local-

ized within a thin 1 cm basal shear layer, driven by a slip velocity
from 0 to 10 ms�1, and d ¼ 100 �m grains. In both cases, the
bulk density of grains is 3� 103 kg=m3, their Young’s modulus
is 1011 Pa, and their ratio c=ks of heat capacity to bulk heat
conductivity ranges from 1 to 103 SI, which describes most
solids.

� ¼ �yy

E I ¼ _�
ffiffiffiffiffiffiffiffi
m

�yyd

q
� ¼

ffiffiffiffiffiffiffiffi
m�yy

d

q
c
ks

Earthquakes 10�3 0 ! 10�1 1 ! 105

Landslides 10�6 0 ! 10�2 10�1 ! 104

Present study 10�3 10�3 ! 10�1 10�2 ! 105

FIG. 1 (color online). Two modes of heat transfer within a
sheared granular layer: contact conduction along the contact
network and dry granular convection by correlated grain motion.
(a) 5000 spheres in a three-dimensional periodic domain are
subjected to a constant shear rate _� and a constant normal stress
�yy; the top boundary is hot, and the bottom is cold, so that the

global thermal gradient along y, rT0 ¼ T1�T0

H , is constant with

time (the grains moving out of the bottom return back from the
top with a temperature rise of rT0H, and vice versa). (b) The
contact network controls the conduction heat flux density along
y, qcondy (each plotted segment connects the centers of two

contacting grains and is thickened proportionally to the normal
contact force). (c) The velocity fluctuation field controls the
convective heat flux density along y, qconvy (each plotted segment

starts from the center of a grain and is lengthened proportionally
to its velocity vector minus the laminar velocity field, _�yi,
along x).
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here, it is well known that the conduction flux depends on

the degree of grain deformation, and scales with qs�
1=3 for

Hertzian contacts [1–4]. In any case, the conduction flux has
a clear upper bound: the heat flux of a continuous solid,
qs ¼ ksrT0. In contrast, the convective flux is not subjected
to such a limitation, and actually becomes larger than qs for
� * 100. In classical liquids, the Nusselt number Nu ¼
qconvy =qcondy is often used to describe the relative importance

of the convection versus conduction. For water, the maxi-
mum values are of the order of 100 [6]. For our granular
material, this ratio is proportional to the thermal number
and can thus reach values up of 104:

Nu � 0:1

ffiffiffiffiffiffiffiffiffiffiffiffi
m�yy

d

r
c

ks
: (2)

Origin of convection.—In the current system there is no
net mass flux along y, which is why the heat convection
cannot be associated with some advection along the mean
flow velocity. Instead, as shall be demonstrated next, here
the measured convection comes directly from both the
velocity and temperature fluctuations. For that purpose,
we denote the fluctuation parts of the temperatures and
velocities from the corresponding mean field by ~T and ~v. In
the current simulations, the temperature and velocity of a
given grain can then be expressed by Ti ¼ rT0yi þ ~T and

vy;i ¼ 0þ ~vi, respectively. Therefore, the dry convective

flux qconvy in Eq. (1) can be rewritten as follows: qconvy ¼
1
�

P
N
i¼1 miciðrT0yi þ ~TiÞ~vi. The heat capacity is the same

for all grains, and the effect of the grain mass distribution
can be safely neglected since our system involves only a
minimal polydispersity. Next, if the velocity fluctuation is
statistically independent of the y position, we may further
assume that the sum ofrT0y~v would be null. The previous
equation thus becomes qconvy ¼ mcN

�
1
N

P
N
i¼1

~Ti~vi. The first

ratio is equal to �c�, � being the solid fraction of the
sample, while the sum is the expected value of the product
Ti~vi measured for the sample of N grains, Eð ~Ti~viÞ. The
expected value of the product can be developed as
Eð ~Ti~viÞ ¼ Eð ~TiÞEð~viÞ þ Covð ~Ti; ~viÞ. The first product to
the right of the equality is null since the expected value
of the fluctuations vanishes by definition. The convective
flux is then proportional to the covariance of the tempera-
ture and velocity fluctuations, Covð ~Ti; ~viÞ:

qconvy ¼ �c�Eð ~Ti~viÞ ¼ �c�Covð ~Ti; ~viÞ: (3)

Figure 2 shows that this expression exactly matches the
convective flux measurements from Eq. (1). This high-
lights the pivotal role of the correlation of temperature
and velocity fluctuations: the convective flux would attain
a non-null value only if the two fluctuations are correlated.
In other words, here the convection becomes appreciable
when grains moving up are more likely to be cooler than
the linear temperature profile, while those moving down
are more likely to be hotter than it.
Figures 3 and 4 show that such a correlation occurs

during transient events of large vortex motions, which
induce a rise in the velocity fluctuations, shortly followed

FIG. 3 (color online). Transients of dry granular convection:
(a–c) dry granular convection, conduction flux, the standard
deviation of the temperature fluctuations STDð ~TÞ, and of the
velocity fluctuations STDð~vÞ (right axis, filled curve), all as a
function of the shear deformation �, for mechanically identical
flows (I ¼ 10�2) with three different thermal numbers �.

FIG. 2 (color online). Relative contribution of the dry granular
convection and contact conduction to the heat transfer as a
function of the thermal number �, for inertial number I ¼ 3�
10�3 (r), 10�2 (m), 3� 10�2 (�), and 10�1 (j). Top panel:
Conduction (open symbols) and convection (filled symbols)
fluxes in units of qs ¼ ksrT0, which would be the conduction
flux of the material if it was a continuous solid; the lines
correspond to the convection flux obtained by Eq. (3). Bottom
panel: The ratio of heat transferred by convection to the total
budget (qtoty ¼ qconvy þ qcondy ). The points correspond to values

averaged both spatially over the whole sample [see Eqs. (1)], and
temporally over 100 snapshots taken at every increment of 0.1
shear deformation. By definition, when _� ¼ 0 (i.e. no shear)
there should be no convection, but notice that the convection
rapidly increases with � even for the very low I ¼ 3� 10�3.
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by another rise, this time in the temperature fluctuations.
This correlation results in high spikes of convection flux,
without any visible effect on the conduction flux. The
conduction acts against the dry granular convection, by
continuously bringing back the grain temperature to the
constant gradient equilibrium. However, this process takes
time. For small thermal number (� < 1), the conduction
tends to equilibrate the temperature quicker than another
vortex may remix it, thereby decorrelating the temperature
and velocity fluctuations, and decreasing the convection
flux. Conversely, for large thermal number (� > 1) the
conduction acts more slowly than the transients of vortex
mixing, which results in large spikes of convection fluxes,
scaling with �.

This Letter motivates further study of the heat transfer
problem in dense granular flows (even if dry) as is done in
turbulent flows of water: by accounting for the convection.
It was shown that dry granular convection may easily over-
come the contribution by conduction to the overall heat flux
budget, even normal to the net mass flux direction. The
magnitude of the convective heat flux, which was neglected
so far, shouldmotivate us to reanalyze the thermomechanics
of gouge granular materials sheared during earthquakes and
landslides. This mode of heat transfer could also be signifi-
cant for complex fluidswith similarmicrostructures (granu-
lar suspensions, foams, emulsions, and living cells) for
which large correlated motion has been reported. Further
research should be devoted to find appropriate means to
predict and characterize the transient nature of the vortices
in granular flows, while connecting those transients to the
mechanical properties of the grains (their shape, size, and
polydispersity) and to the loading conditions.

We thank J. Patterson, E. Veveakis, and J. Bonivin for
fruitful discussions. Financial support for this research
from the Australian Research Council through Grant
No. DP1096958 is gratefully appreciated.

*itai.einav@sydney.edu.au
[1] D. Kunii and J. Smith, AIChE J. 6, 71 (1960); G. Batchelor

and R. O’Brien, Proc. R. Soc. A 355, 313 (1977).
[2] W. Vargas and J. McCarthy, AIChE J. 47, 1052 (2001);

Chem. Eng. Sci. 57, 3119 (2002).
[3] A. Smart, P. Umbanhowar, and J. Ottino, Europhys. Lett.

79, 24002 (2007).
[4] P. Rognon, I. Einav, J. Bonivin, and T. Miller, Europhys.

Lett. 89, 58006 (2010).
[5] J. Patton, R. Sabersky, and C. Brennen, Int. J. Heat Mass

Transf. 29, 1263 (1986); B. Chaudhuri, F. Muzzio, and M.
Tomassone, Chem. Eng. Sci. 61, 6348 (2006); M.
Kwapinska, G. Saage, and E. Tsotsas, Powder Technol.
181, 331 (2008); M. L. Hunt, Annual Review of Heat
Transfer 3, 163 (1990); V. Natarajan and M. Hunt,
Experimental Heat Transfer 10, 89 (1997).

[6] B. Petukhov and A. Polyakov, Heat Transfer in Turbulent
Mixed Convection, edited by B. Launder (Hemisphere,
New York, 1988); F. Incropera, D. DeWitt, T. Bergman,
and A. Lavine, Fundamentals of Heat and Mass Transfer
(John Wiley & Sons, New York, 1996); J. Niemela, L.
Skrbek, K. Sreenivasan, and R. Donnelly, Nature
(London) 404, 837 (2000); Y. Gasteuil, W. L. Shew, M.
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