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a b s t r a c t

Objective: An electroencephalogram-based (EEG-based) brain–computer-interface (BCI) provides a new
communication channel between the human brain and a computer. Amongst the various available
techniques, artificial neural networks (ANNs) are well established in BCI research and have numerous
successful applications. However, one of the drawbacks of conventional ANNs is the lack of an explicit
input optimization mechanism. In addition, results of ANN learning are usually not easily interpretable.
In this paper, we have applied an ANN-based method, the genetic neural mathematic method (GNMM),
to two EEG channel selection and classification problems, aiming to address the issues above.
Methods and materials: Pre-processing steps include: least-square (LS) approximation to determine the
overall signal increase/decrease rate; locally weighted polynomial regression (Loess) and fast Fourier
transform (FFT) to smooth the signals to determine the signal strength and variations. The GNMM method
consists of three successive steps: (1) a genetic algorithm-based (GA-based) input selection process; (2)
multi-layer perceptron-based (MLP-based) modelling; and (3) rule extraction based upon successful
training. The fitness function used in the GA is the training error when an MLP is trained for a limited
number of epochs. By averaging the appearance of a particular channel in the winning chromosome over
several runs, we were able to minimize the error due to randomness and to obtain an energy distribution
around the scalp. In the second step, a threshold was used to select a subset of channels to be fed into an
MLP, which performed modelling with a large number of iterations, thus fine-tuning the input/output
relationship. Upon successful training, neurons in the input layer are divided into four sub-spaces to
produce if-then rules (step 3).

Two datasets were used as case studies to perform three classifications. The first data were electrocor-
ticography (ECoG) recordings that have been used in the BCI competition III. The data belonged to two
categories, imagined movements of either a finger or the tongue. The data were recorded using an 8 × 8
ECoG platinum electrode grid at a sampling rate of 1000 Hz for a total of 378 trials. The second dataset
consisted of a 32-channel, 256 Hz EEG recording of 960 trials where participants had to execute a left-
or right-hand button-press in response to left- or right-pointing arrow stimuli. The data were used to
classify correct/incorrect responses and left/right hand movements.
Results: For the first dataset, 100 samples were reserved for testing, and those remaining were for training
and validation with a ratio of 90%:10% using K-fold cross-validation. Using the top 10 channels selected
by GNMM, we achieved a classification accuracy of 0.80 ± 0.04 for the testing dataset, which compares
favourably with results reported in the literature. For the second case, we performed multi-time-windows
pre-processing over a single trial. By selecting 6 channels out of 32, we were able to achieve a classification
accuracy of about 0.86 for the response correctness classification and 0.82 for the actual responding

hand classification, respectively. Furthermore, 139 regression rules were identified after training was
completed.
Conclusions: We demonstrate
which not only reduces the di
the classifier. An important ste
this paper, we also highlight th
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. Introduction

An electroencephalogram-based (EEG-based) brain–computer-
nterface (BCI) provides a new communication channel between
he human brain and a computer. Patients who suffer from severe

otor impairments (e.g., late stage of amyotrophic lateral sclerosis
ALS), severe cerebral palsy, head trauma and spinal injuries) may
se such a BCI system as an alternative form of communication
ased on mental activity [1]. Most BCIs which are designed for use
y humans are based on extracranial EEG. Compared with invasive
ethods such as electrocorticography (ECoG), this presents a great

dvantage in that it does not expose the patient to the risks of brain
urgery. On the other hand, however, invasive EEG signals contain
ess noise.

Artificial neural networks (ANNs) as a pattern recognition
PR) technique are well established in BCI research and have
umerous successful applications [2–5]. In fact, Lotte et al. [6],
resenting an exhaustive review of the algorithms which are
lready being used for EEG-based BCI, conclude that ANNs are
he classifiers which are most frequently used in BCI research.
or example, Shuter et al. [2] proposed an ANN-based system
o process EEG data in order to monitor the depth of aware-
ess under anaesthesia. They analysed the awareness states of
atients undergoing clinical anaesthesia based on the variations in
heir EEG signals using a three-layer back propagation (BP) net-
ork. The network accurately mapped the frequency spectrum

nto the corresponding awareness states for different patients and
ifferent amounts of anaesthetics. In a recently published study,
ingh et al. [5] investigated EEG data using a combination of com-
on spatial patterns (CSP) and multi-layer perceptrons (MLPs) to

chieve feature extraction and classification. Event-related syn-
hronization/desynchronization (ERS/ERD) maps were also used
o investigate the spectral properties of the data. As a result, they
chieved an accuracy of 97% using the training data and 86% in the
ase of the test data. Robert et al. [3] have reviewed more than
ne hundred EEG-based ANN applications, and divided them into

prediction’ and ‘classification’ applications. A prediction applica-
ion aims to predict the side of hand movements based on EEG
ecordings prior to voluntary right or left hand movements. While
n some studies correct prediction rates were low to medium (from
1% to 83%), accuracies as high as 85–90% were achieved in some
ther cases. In the classification category, ANN-based systems were
rained to classify movement intention of the left and right index
nger or the foot using EEG autoregressive model parameters. A
orrect recognition rate of 80% was achieved in some applications.
hus overall, ANN-based BCI systems appear to be a very promising
pproach.

However, depending on the application, one of the drawbacks
f conventional ANNs is that there is no explicit input optimization
echanism. Typically, all available signals or features are typically

ed into the network to accomplish the PR task(s). The conse-
uences of this are, as discussed in Yang et al. [7]:

. Irrelevant signals or features may add extra noise, hence reduc-
ing the accuracy of the model.

. Understanding complex models may be more difficult than
understanding simple models that give comparable results.

. As input dimensionality increases, the computational complex-
ity and memory requirements of the model increase.

This input optimization problem becomes particularly relevant
hen the ANN input consists of multi-channel EEG signals, which
an be very noisy and contaminated by various motion artefacts
roduced at certain electrodes. Both data acquisition and data pro-
essing could be made more efficient if only a relevant subset of
ossible electrode locations could be selected in advance.
Medicine 55 (2012) 117–126

The problem of selecting a minimum subset of channels falls
into a broader field of feature selection (FS). In general, FS can be
classified into two categories: filter methods and wrapper methods.
Indeed, researchers have investigated both approaches to optimize
EEG channels [8–11]. For example, Tian et al. [8] proposed a filter
approach using mutual information (MI) maximization, where EEG
channels were ranked according to the MI between the selected
channel and a class label. Channel selection results were then eval-
uated using classifiers such as a kernel density estimator. They
found that the selected EEG channels exhibited high consistency
with the expected cortical areas for these mental tasks. Lal et al. [9]
introduced a support vector FS method based on recursive feature
elimination (RFE) for the problem of EEG data classification. They
compared Fisher criterion, zero-norm optimization, and recursive
feature elimination methods, and concluded that the number of
channels used can be reduced significantly without increasing the
classification error. A more recent study by Wei et al. [10] used
genetic algorithms (GAs) to select a subset of channels. The selec-
tion was then analysed using CSP; Fisher discriminant analysis was
used as a classifier to evaluate selection accuracy. They confirmed
that classification accuracy can be improved using the optimal
channel subsets.

In BCI systems that comprise both channel selectors and clas-
sifiers, wrapper-type FS techniques present advantages in that
they optimize the channel subsets to be used by the final classi-
fier. From this point of view, optimization techniques such as GAs
have great potential in BCI research. Indeed, a GA as a stochastic
method outperforms many deterministic optimization techniques
in high-dimensional space, especially when the underlying physi-
cal relationships are not fully understood [12]. However, although
being the most widely used classifier and having many desirable
characteristics such as adaptivity and noise-tolerance, to the best
of our knowledge, little research has been undertaken to combine
ANNs with a wrapper method such as the GA to perform chan-
nel selection. This is probably due to the fact that EEG signals are
usually sampled at a high frequency, and thus training ANNs with
such large numbers of inputs is not feasible; this problem will be
addressed in the current study.

In this paper, we present an MLP-based channel selection
method for EEG signal classification. MLPs are used both as the final
classifier and the fitness function for GAs to select the optimal chan-
nel subset. Instead of using full-length or partially filtered signals as
inputs to the BCI system, we applied a preprocessing method that
only extracts a small number of parameters from each channel. This
is to ensure fast off-line data analysis, and to simplify on-line data
acquisition. We demonstrate the effectiveness of channel reduction
by investigating if-then regression rules extracted from success-
fully trained MLPs. Furthermore, we applied our methods to two
case study datasets.

2. Methods

2.1. Preprocessing

Since a major difficulty in the processing of EEG data comes from
the usually very large size of the dataset due to the high sampling
frequency, preprocessing becomes important. In the present study,
we focus on the preprocessing on a single-channel basis and do
not consider methods that work on multiple channels such as com-
mon spatial patterns (CSP). Another popular preprocessing method
is frequency filtering, where raw EEG signals are filtered using a

desired frequency band. However, the problem with this is that the
resulting signals may still be too large to be used to train ANNs
in a repetitive manner. To significantly reduce the signal size, we
consider both the time and the frequency domains.
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In the time domain, it is anticipated that under external visual
timulus/experimental tasks, different brain areas will respond
ifferently. Accordingly, signals from different EEG channels will
ave different overall trends (i.e., generally increasing vs gener-
lly decreasing), which will enable us to apply a least square (LS)
pproximation on a single trial basis. In fact, partial least square
PLS) has been used as a regression method to extract spatiotem-
oral patterns from EEG signals [13,14]. The LS technique used in
he current work is the linear LS approximation of the EEG signal
ver a specific time period. We let x(t,b) be the EEG signal measure-
ents on channel b at time t. A linear LS approximation for EEG

ignals on this particular channel for a single trial could then be
ormed thus:

= mt + n (1)

lso, the derivative of Eq. (1) gave:

dx

dt
= m (2)

hich was the slope of the linear LS approximation. This value m
as indicative of the changes in the signal for each channel during
specific time slot.

To verify that different channels do indeed have different over-
ll trends during a specific time window, we averaged the slope
alue for different channels of case 1 data (64 channels in total, see
ection 3 regarding the experimental datasets). The histogram of
hese 64 mean values is shown in Fig. 1(a), along with a Gaussian
istribution of zero mean and sample variance calculated from the
ata. The figure clearly shows that the overall trend of the signal
lope for different channels is not random. The Wilcoxon signed
ank test [15] was applied to verify the statistical significance of
he observation, which resulted in a p-value < 1.33 × 10−5.

An example of LS preprocessing is shown in Fig. 1(b), where we
ave an EEG signal recorded on channel Cz for the first epoch of data
ase 2 event No. 1 and its LS approximations during the whole trial
eriod (OVR) and different time slots (INT1 to INT7). By performing
S, the data size was greatly reduced while significant information
i.e., signal changing rate and direction over a specific time window)
till remained.

In the frequency domain, a commonly used approach, and the
ne adopted here, is to apply bandpass-filters to obtain the desired
requency. Before the signals are transferred to the frequency
omain, we first applied locally weighted polynomial regression
Loess) [16,17]. Loess is effectively a low-pass filter that passes
ow frequency components and reduces the amplitudes of high
requency ones. This was achieved by fitting a low-degree polyno-

ial to a fixed-width subset of data using weighted least squares.
he procedure was repeated for every single data point to pro-
uce nonparametric estimates presenting a smoothing effect. In
eneral, smoothers such as Loess have the advantage that filtered
ata points can be computed rapidly in comparison to fast Fourier
ransform-based (FFT-based) filters [18]. However, in the present
tudy, Loess smoothed signals were subsequently transferred to the
requency domain using FFT to achieve further data size reduction.

An example of the smoothing effect and FFT is shown in Fig. 1(c)
nd (d), where Loess was implemented in Matlab using a 2nd
egree polynomial and a span of 0.1 (i.e., 10% of all data points).
o achieve further data reduction, we extracted the mean and
tandard deviation (STD) of signals in the frequency domain for fre-
uencies between 0.1 and 80 Hz, which covers the mu (8–13 Hz),
eta (14–30 Hz), and 80 Hz rhythms [10,19,20]. These two statis-
ical parameters were indicative of the strength and variations of

ow frequency signals for each channel. From Fig. 1(d) it is evi-
ent that signal amplitudes were greatly reduced above ∼20 Hz.
owever, because of their psychological importance, signals in this

ange were included in the scope of the analysis.
Medicine 55 (2012) 117–126 119

2.2. The genetic neural mathematic method

Our genetic neural mathematic method (GNMM) has been pre-
viously presented [7,21] in the context of optimizing input variables
for ANNs and the extraction of regression rules upon successful
training. In terms of EEG channel selection and classification, our
approach here consisted of three steps (see Fig. 2(a)): (1) GA-based
EEG channel selection, (2) MLP-based pattern classification and
finally (3) mathematical programming-based rule extraction. Let
us now consider each in turn.

2.2.1. Channel selection
We assumed that there were two datasets X = {x(1,1),. . ., x(a,b)}

and Y = {y1,. . ., ya}, where X contained the EEG measurements, Y
was the corresponding classification target, a was the number of
trials recorded in the experiments and b denoted EEG channels.
The channel selection process can be summarized as follows:

1. An initial population of chromosomes of size Np was randomly
generated. A chromosome consisted of b genes, each represent-
ing an input channel. The encoding of a gene was binary, meaning
that a particular variable was considered as an input variable
(represented by ‘1’) or not (represented by ‘0’). The assessment
of the fitness of a chromosome was the mean squared error (MSE)
when a three-layer MLP was being trained with the input vari-
able subset Xi and output target Y for a certain number of epochs
Ne using the Levenberg–Marquardt (LM) algorithm.

2. The GA input determination process was then realized by alter-
ing Np, Ne, generation size Ng, crossover probability pc and
mutation probability pm. As a result, the input channels which
occurred most frequently throughout all the populations could
therefore be identified. The final subset formed by these chan-
nels Xf was the subset that produces the minimal classification
error within a given number of epochs.

The interactions between the GA and the MLPs are illustrated in
Fig. 2(b) and (c). It should be noted that, in order to minimize any
randomness associated with the MLPs and to accelerate training,
we employed a weight initialization method. It is common practice
to initialize MLP weights and thresholds with small random values.
However, this method was ineffective here because of the lack of
prior information about the mapping function between the input
and the output data samples [22]. There are several approaches
[23–25] to estimate optimal values for the initial weights so that
the number of training iterations is reduced. GNMM utilized the
independent component analysis-based (ICA-based) weight initial-
ization algorithm proposed by Yam et al. [24]. The algorithm was
able to initialize the hidden layer weights that extract the salient
feature components from the input data. The initial output layer
weights were evaluated in such a way that the output neurons were
kept inside the active region. Furthermore, when they were being
used to evaluate a chromosome, the MLPs were designed to train
several times and return the mean results.

In common with many other optimization techniques, GA
stopping criteria include convergence and a set of pre-defined
parameters such as Np, Ne. However, as the GA relies on random
number generators for creating the population, for selection, for
crossover, and for mutation, a different random number seed will
usually produce different results. Therefore, we ran the GAs sev-
eral times until a reasonable solution was found. The following
parameters were used to differentiate one GA run from another:

Np, Ne, Ng, pc, and pm. Within a single GA run, we also monitored
implementation time and any improvement of fitness values over
successive generations to determine whether or not to terminate
the GA before it reached the final generation. Here, a reasonable
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olution was one in which the difference between channels (group
f channels) occurring in the winning chromosome was significant.

GNMM’s GA process followed what is known as simple GA (SGA)
26,27], apart from two modifications. One was that GNMM also
ncorporates an adaptive mutation rate. The algorithm for updat-
ng the mutation rate is depicted in Fig. 3. In summary, when the
opulation had higher fitness (i.e., lower MSE), the mutation rate
as reduced to encourage exploitation of what has been found.
onversely, when a lower fitness value prevailed, we increased the
utation rate to try to force further exploration. The other modi-

cation was the introduction of an elite group into GAs [28]. The
lite group was a collection of chromosomes that performed best
nd were made exempt from crossover and mutation and auto-
atically retained in the next generation. Introducing this elite

roup into GAs strengthened the ability to search, which could be
escribed as exploitative with respect to high yielding regions and
xplorative with respect to other regions.

.2.2. Pattern classification and rule extraction
Taking Xf and Y as inputs and targets respectively, an MLP was

sed to perform the pattern classification task. As in the previous
tep, training was performed using a LM algorithm. However, the
im of using an MLP in the current step was to minimize the classi-
cation error and thus the number of epochs (iterations) was large,
hereas in the previous step MLPs were used as the fitness function
eeding a relatively small number of epochs.
In this step, GNMM also utilized a K-fold cross-validation tech-
ique to define the training and validation data. Each time, a small
andomly selected portion of Xf and Y (e.g., 10% × a) was set aside
or validation before any training in order to avoid over-fitting [29],
and frequency (d) domain. Original signals are in red, whereas the locally weighted
uency noise is filtered. (For interpretation of the references to colour in this figure

and the rest were used for the training. As a consequence of cross-
validation, the MLP did not necessarily reach its final epoch Ne.

Apart from channel selection and pattern classification, GNMM
also consisted of a rule extraction process. The activation function
for all hidden layers was the hyperbolic tangent function, tanh(x):

f (x) = 1 − e−2x

1 + e−2x
= 2

1 + e−2x
− 1 (3)

and a linear function was used in the output layer. The following
equation was used to approximate tanh(x):

g(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 x ≥ �

ˇ1x + ˇ2x2 0 ≤ x ≤ �

ˇ1x − ˇ2x2 −� ≤ x ≤ 0

−1 x ≤ −�

(4)

in which ˇ1 = 1.002, ˇ2 = − 0.2510, � = 1.9961. Eq. (4) divided the
input domain into four sub-domains. Therefore, once the train-
ing was complete, rules associated with the trained MLP could be
derived.

For further details of GNMM in addition to the general descrip-
tion above the reader is referred to Yang et al. [7,21].

3. Experimental datasets
For evaluation we applied the GNMM method to two sets of
experimental data. This section briefly outlines the experimental
setup and preprocessing results.
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Fig. 2. The GNMM method and interaction between GA and MLP. GNMM consists of three steps (a): GA channel selection (b), MLP training (c), and rule extraction. MLPs are
used both in the channel selection and final classification stages.

Fig. 3. Adaptive mutation rate. Mutation rate will increase/decrease if the current
generation’s mean fitness is lower/higher than that of the previous generation.
3.1. Case 1 – two-class motor imagery

The intracranial ECoG recording was explicitly selected to vali-
date the technique developed as it was expected to contain higher
quality brain signals with low values of impedances. The dataset1

(denoted case 1), which was used in the BCI competition III [9,30],
comprised a large number of labelled trials which made it advan-
tageous for the evaluation of the performance measures for the
technique.

During the experiment, a subject had to perform imagined
movements of either the little finger or the tongue (Fig. 4(a)). The
ECoG signal was picked up during these trials using an 8 × 8 ECoG
platinum electrode grid which was placed on the contralateral
(right) motor cortex (Fig. 4(b)). The grid was assumed to cover
the right motor cortex completely, but due to its size (approx.
8 cm × 8 cm) it also partly covered surrounding cortical areas. All

recordings were performed with a sampling rate of 1000 Hz. Each
trial consisted of either an imagined tongue or an imagined fin-
ger movement and was recorded for 3 s duration. To avoid visually

1 BCI Competition III, dataset I, http://www.bbci.de/competition/iii/desc I.html,
accessed 9th August 2011.

http://www.bbci.de/competition/iii/desc_I.html
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Fig. 4. Experimental setup. Case 1 is a two-class motor imagery experiment, where the subject had to imagine finger or tongue movement according to visual cues (a). An
8 case 2
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rect response samples, which increased the percentage of incorrect
samples to ∼40% and the total samples to 1341. (The effect of adding
× 8 ECoG electrode grid was placed on the contralateral (right) motor cortex (b);
743 ms (c), where EEG signals were collected from 32 channels (d).

voked potentials being reflected by the data, the recording inter-
als started 0.5 s after the visual cue had ended.

The whole data-set consisted of 278 trials for training and 100
rials for testing respectively. Within each trial, there were 3000
ata points per channel (i.e., electrode) and a total of 64 channels
vailable. A linear LS approximation was performed on these data
n a single trial basis, as well as Loess smoothing and FFT trans-
ormation. As a result, the dimension was reduced to 278 × 192
nd 100 × 192 for the training and testing sets respectively. Tar-
et values of 1 and −1 were used for imaginary finger and tongue
ovement (each class constituting 50% of the whole set).

.2. Case 2 – response priming paradigm

In a 2-alternative speeded choice reaction time (RT) task, par-
icipants had to execute a left-hand or right-hand button-press in
esponse to briefly presented arrow stimuli pointing to the left or
ight. Each arrow target was preceded by an arrow prime, which
ould point either in the same or in the opposite direction as the
arget. These primes were visually ‘masked’ and therefore easy
o ignore (see e.g., Schlaghecken and Eimer [31], for a detailed
escription of the masked prime procedure). Furthermore, target
rrows were flanked by response irrelevant (to-be-ignored) dis-
ractor stimuli associated with either the same response as the

arget or the opposite response, which added a certain level of diffi-
ulty to response selection and execution (Eriksen flanker task, e.g.,
riksen and Eriksen [32]). However, for the purpose of the present
tudy, prime- and flanker-related categories were ignored, and the
is a 2-alternative speeded choice reaction time (RT) task with each trial lasting for

categories to-be-identified were (a) left vs right hand response,
and (b) correct vs incorrect response. The experimental structure
is shown in Fig. 4(c). The interval from one prime onset to the next
was fixed at 1743 ms and the whole experiment consisted of 96
randomized trials per block and 10 blocks per participant. EEG sig-
nals were measured using the BioSemi2 ActiveTwo 32-channel EEG
system. The electrode arrangement is shown in Fig. 4(d). The EEG
was sampled at a frequency of 256 Hz.

In order to trace the development of response-related EEG sig-
nals over time, the trial period was divided into 7 intervals spanning
250 ms each (INT1-INT7, e.g., in Fig. 1(b)). Additionally, analysis
was conducted on one overarching time window spanning the
whole length of a trial (OVR). Consequently, 8 sets of features are
extracted from each EEG channel for each trial. As with the case
1 data, three features are extracted within a single time window:
slope for LS approximation, and mean and STD of Loess smoothed
signal in the frequency domain. A particular challenge with case
2 is that the number of incorrect responses accounted for only a
small fraction of the whole dataset (127/960). This problem, often
called biased/unbalanced class distribution, is not unusual in the
field of PR [33,34]. To address this issue, a small amount of random
noise (<5% of mean value) was added to three duplicates of incor-
random noise will be discussed in Section 5.) Two training sets were

2 http://www.biosemi.com/products.htm, accessed 9th August 2011.

http://www.biosemi.com/products.htm
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Fig. 5. Appearance percentage (AP) for case 1 (a), case 2A (b), and case 2B (c). In (a), dots are electrodes and the face colour transparency indicates AP – more solid colour
means higher value, top 10 ranked channels are marked with ‘+’; red circles mark the motor cortex as identified by the electric stimulation method. The green parallelogram
corresponds to the epileptic focus. (b) and (c) show AP distribution around the scalp for case 2 feature subset OVR, INT1-INT7, where in (b) the training targets are the actual
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hen formed using different training targets: case 2A contained all
341 samples with training targets being the actual responding
and (left, 733 samples vs right, 608 samples); case 2B had the
ame number of samples but training targets were the correctness
f response (correct, 833 samples vs incorrect, 508 samples).

. Results

GNMM was implemented in Matlab R2011a, using the Global
ptimization Toolbox and Neural Network Toolbox, and the the
astICA toolbox3 [35].

.1. Channel selection

GA researchers often report statistics, such as the best fitness
ound in a run and the generation at which the individual with that
est fitness was discovered, averaged over many different runs of
he GA on the same problem [36]. In GNMM, the averaging was
xtended to not only calculate different runs, but also different gen-
rations within the same run. A channel’s appearance percentage
AP) was defined as the mean appearance of a specific channel in
he winning chromosome (minimizing the RMSE) of each popula-
ion over all GA runs. Thus, this percentage depicted the chance for
channel to be selected by the GAs in the solution that produced

he most successful classification results. Investigating AP distribu-

ion yielded not only the importance of individual channel in the
nal pattern classification, but also the energy distribution across
he scalp.

3 Laboratory of Computer and Information Science, the Helsinki University of
echnology, http://www.cis.hut.fi/projects/ica/fastica/, accessed 9th August 2011.
chances of a particular channel being selected by the GAs for final classification. ‘+’
nces to colour in this figure legend, the reader is referred to the web version of this

Six iterations of the GA were performed for case 1. The resulting
AP is shown in Fig. 5(a) with the highest being channel number 22
(95%) and the lowest channel number 13 (14%). It can be seen that,
instead of obtaining a single best fit solution as in conventional GAs,
AP allowed us to rank available channels according to the proba-
bility that they appear in the winning chromosome. Also shown in
Fig. 5(a) is the motor cortex of the patient as identified by the elec-
tric stimulation method and the epileptic focus. It can be seen that
the top 10 channels, which appeared in more than 80% of all the
generations, correspond well with the results from the electros-
timulation diagnosis. Hence these were specifically selected as the
input data for the final classification. The other 54 channels were
removed from further analysis.

The GAs were configured to run four times to explore different
combinations of input channels for each of those 8 feature sets of
case 2. The AP of each channel for different feature subsets of case
2A and 2B are illustrated in Fig. 5(b) and (c) (figure generated using
the EEGLAB [37]). Overall, the AP distributions are quite different
for different time windows. Furthermore, by examining the top 6
highest ranked channels (marked with ‘+’ in Fig. 5(b) and (c)), we
can see that in most cases these channels form two clusters that
are not close to each other. This is most likely a consequence of the
complexity of the way EEG signals are generated. In addition, in
agreement with the phenomenon that is to be classified (manual
motor response), the channels located near the hand-area of the
left and right motor cortices (Cz, C3 and C4) were the most likely
to be selected in case 2A, where the actual responding hand was
the classification target; whereas occipital (Oz, O1/O2) and fronto-

polar (Fp1/2) channels are the most highly ranked in case 2B, where
response correctness was the classification target. In order to make
comparisons, the first 6 top-ranking channels (∼20%) from each
feature subsets are selected for the final classification tasks.

http://www.cis.hut.fi/projects/ica/fastica/
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Fig. 6. Classification and rule extraction results for case 2. (a) MLPs were run 5 times
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TD; (b) histogram of number of regression rules extracted from case 2A OVR. There
xist two rules fired for more than 60 data samples.

.2. Classification and rule extraction

For case 1 data, the subset of only 10 channels was fed into a
hree-layer MLP and trained using the LM algorithm to perform the
nal classification. The number of neurons in the hidden layer was

ncreased to 10 to maximize the classification rate. As mentioned
reviously, K-fold cross validation was introduced to improve the
eneralization. The training was performed 10 times, and the mean
lassification results are shown in Table 1. In comparison, Lal et al.
9] have performed analysis on the same data, using RFE for channel
election and support vector machines (SVMs) for pattern classifi-
ation. They achieved a classification rate of 0.732 ± 0.080 using 10
est channels and 50 repetitions. The channels selected using their
ethod were different from the ones selected here. However, it

an be seen that our results (for the testing subset, i.e., 0.80 ± 0.04)
ompare favourably with those obtained using RFE and SVM (t-test
-value = 0.0115).

Also shown in Table 1 are training results using all available 64
hannels using the same number of hidden neurons and configura-
ions (training algorithm, cross validation and so on). It can be seen
hat although similar results for the training subset were obtained,
sing the 10 best channels we achieved a significant increase for
he validation and test subsets, and hence the overall classifica-
ion accuracy. This implies that the model using fewer channels
as a better generalization, due to the fact that noisy and irrelevant
hannels were removed from the model.

By feeding the channels selected into MLPs and training with
he LM algorithm, we were able to compare the classification accu-

acy between different time windows and training targets for case
. Fig. 6(a) shows the mean and STD of classification accuracy
chieved by running the classifier 5 times. It can be seen that the
ighest accuracy for the actual responding hand classification (case
Medicine 55 (2012) 117–126

2A) was achieved by time windows OVR (∼82%); while for cor-
rectness classification (case 2B) it is INT3 with a slightly higher
rate of ∼86%. In general, correctness classifications were easier to
achieve than hand classifications: All time windows except INT7
achieved a mean rate of >70%, whereas for the hand classifica-
tion only OVR and INT3 achieved accuracy of the same level. It
should be noted that RT (time from trial onset to the depres-
sion of a response button beyond a certain threshold) in this task
was approximately 500–550 ms. Therefore, the high classification
accuracy in INT3 in both cases reflects the fact that the most dis-
tinguishable EEG signals were collected directly after response
execution. In addition, better response correctness classification
was achieved in the 500–1000 ms time-windows (INT3 and INT4),
that is, after an incorrect response had been executed. In line
with recent neurophysiological studies [38], this indicates that the
most distinguishing feature of response errors lay in the cognitive
post-error processes, not in preceding ‘erroneous’ cognitive pro-
cesses. Furthermore, classification accuracy gradually decreases as
time elapses after response execution, as distinguishable patterns
decrease over time.

Rule extraction was not discussed for case 1, as in that case
the data were obtained from a single subject with specific chan-
nel locations; while in case 2 channel locations have been widely
studied and rules can be tested and extended to a wider range
of participants. Taking the MLP trained using case 2A OVR (i.e.,
hand classification, overall time window) for instance, a total of
139 regression rules were extracted from dataset. The histogram
of rules extracted from OVR can be seen in Fig. 6(b). Considering
that there are 6 channels and 8 hidden neurons, which in theory
produces 65,536 (48) possible rules, the actual rules implemented
are only a small proportion of this number. From this point of view,
the data have been narrowed down to the important rules rather
than being spread over the rule space.

5. Discussion

5.1. GA parameters

Over the years researchers have been trying to understand the
mechanics of GA parameter interactions by using various tech-
niques [39]. However, it still remains an open question as to
whether there exists an optimal set of parameters for GAs in gen-
eral [40]. The interactions among GA parameters do nevertheless
follow the generic rules [39,41,42]:

1. GAs with both crossover and mutation operators perform bet-
ter than GAs based only on crossover or mutation for simple
problems.

2. Large mutation steps can be good in the early generations, help-
ing the exploration of the search space, and small mutation steps
might be needed in the later generations to help fine-tune the
suboptimal chromosomes.

GNMM incorporates these techniques in its structure, such as
the adaptive mutation rate as detailed in Fig. 3 and including both
selection and mutation operators as in Fig. 2(b).

For parameter values, generally speaking, large population sizes
are used to allow thorough exploration of complicated fitness sur-
faces. Crossover is then the operator of choice to exploit promising
regions of fitness space by combining information from promising
solutions. Mutation in the less critical genes may result in further

exploitation of the current region. Schaffer, Caruana et al. [43] have
reported results on optimum parameter settings for SGA. Their
approach used the five cost functions in the De Jong’s test func-
tion suite [28,44]. They found that the best performance resulted
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Table 1
Classification results for case 1 data. The model using only 10 channels outperforms the same model using all 64 channels.
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0.8
0.7

f
p
e
2
c

p
t
g
a
e
a

5

r
t
w
b
M

c
i
f
v
e
m
t
(
a
(
e
R
t
w
a

e
i
c
b
n

F
v

10 best-ranking channels 0.88 ± 0.05
All 64 channels 0.88 ± 0.07

or the following parameter settings: Np = 20–30, pc = 0.75–0.95,
m = 0.005–0.01. Parameter settings for GNMM followed this range
xcept that we increased Np to 64 for case 1 and 32 for case 2A and
B respectively. In addition, Ng was set to 100 and 50 for case 1 and
ase 2 respectively.

It should be noted, however, that selecting the optimal GA
arameters is very difficult due to the many possible combina-
ions in the algorithm. In addition, a GA relies on random number
enerators to create the selection of the population, crossover
nd mutation. A different random number seed produces differ-
nt results. This is also the reason why AP is introduced to perform
n ‘averaging’ effect.

.2. MLP generalization

Generalization refers to the ability of a model to categorize cor-
ectly new examples that differ from those used for training [45]. In
erms of GNMM, however, because of the randomness associated
ith MLP/ICA and the fact that training/validation samples may not

e representative of the whole data, it is unavoidable that different
LP training sessions produce different results.
To achieve better generalization, we split the data from both

ase studies into three subsets: the first is the testing subset which
s used to evaluate classifier performance, the remainder is then
urther split into training and validation subsets using K-fold cross-
alidation as described in Section 2.2. Pattern classification and rule
xtraction. In addition, during MLP training the validation perfor-
ance was used as the stopping criteria. We have already seen

hat for case 1 a classification accuracy of 0.80 ± 0.04 was achieved
Table 1). In the case of the 10 MLP runs that produced this result,
mean receiver operating characteristic (ROC) curve with box plot

figure generated using the ROCR [46]) can be seen in Fig. 7. It is
vident that although K-fold cross-validation was being used, the
OC curves varied for different runs. This was especially true when
he true/false positive ratio is high. In Fig. 7 it can be seen that even
ith successful training results, generalization ability still needed
lot of attention when the classifier is being designed.

The problem of biased/unbalanced class distribution was
ncountered in case 2. It is already known that in ANN training,

f some classes have much fewer samples compared with the other
lasses, the ANN may respond wrongly for the minority classes
ecause the overwhelming samples in the majority classes domi-
ate the adjustment procedure in training. Various techniques exist
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0 ± 0.07 0.80 ± 0.04 0.86 ± 0.04
2 ± 0.03 0.67 ± 0.05 0.83 ± 0.06

for handling this problem [33,34,47]. The approach used in the cur-
rent study was simply duplicating the under-represented class and
adding random noise. By doing this, we increased the proportion
of the minority class (i.e., incorrect response), enhanced the MLP
tolerance for handling incorrect response data. This consequently
improved GNMM’s generalization.

6. Conclusions

In the current paper, we applied the GNMM method to the
EEG channel selection and classification problem. Pre-processing
steps include: LS approximation to determine the overall signal
increase/decrease rate; Loess and FFT to smooth the signals to
determine the signal strength and variations. The GNMM method
consists of three steps: The first step is to use GAs to optimize input
channels so that such channel combinations produce a minimum
error, with the fitness function being an MLP for a certain number
of epochs. In the second step, EEG channels previously identified
are fed into an MLP in order to realize the final pattern classifi-
cation. During the last stage, regression rules are extracted from
trained MLPs so that training results can be easily understood and
implemented in other applications, e.g., mobile devices.

As a result, we have presented two case studies and three sets
of training data/targets using our data driven technique. The key
conclusions that can be drawn are as follows:

1. By applying a GA to optimize channel combinations, the rele-
vance of each channel for a specific task can be evaluated. This is
particularly significant in the face of inter-individual differences
in functional brain anatomy, which pose a challenge for any EEG-
based BCI application, but are particularly relevant in the case of
neurological patients suffering from cerebral dysfunctions.

2. Generally, using selected channel subset(s) resulted in a
higher classification rate compared to using all the available
channels. This is probably because the channels containing irrel-
evant/noisy data have been removed. More importantly, using a
selected subset improves the generalization ability of the model
(see also Lal et al. [9]).

3. Using a channel selection technique makes the classifier is easy
to understand. In particular, GNMM reduces the number of possi-
ble regression rules exponentially if the number of input neurons
is reduced.

4. The use of preprocessing has greatly reduced the size of the
dataset and improved the effectiveness of GNMM. In the context
of the present case studies, it seems that it is appropriate to use a
combination of different time windows to achieve a high classifi-
cation rate for correct and incorrect actual movement. However,
establishing the precise number and temporal extent of these
time windows for optimal results requires further investigation.

5. In terms of both the topography of the selected channels and the
time-course of classification accuracy, the results correspond to
the neurophysiology of the processes under investigation, indi-
cating that the present method might be usefully applied not
only as a BCI tool, but could also be beneficially applied to basic
neuroscientific research as well.
The selection of appropriate channels for EEG pattern classifi-
cation has been one of the biggest problems for this kind of large
datasets. By applying GNMM in two case studies, it is evident that
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A based channel selection provides a potential solution to this
roblem. However, the computational demands of the GA are very
igh, currently confining it to offline analysis only. Future research
ill focus on ways in which improvements can be made to the

echniques so that it will be able to quickly and accurately perform
hannel selection.
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