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Abstract 
 

Long term monitoring has revealed that butterfly populations vary dramatically 

between years, among sites and across species. This PhD investigates the importance 

of biotic and abiotic resources in determining butterfly abundance at multiple scales, 

using long term data from intensive studies on the Glanville fritillary and from the 

extensive UK Butterfly Monitoring Scheme. 

The most important resource at local scales is the ‘suitability’ of the larval hostplant: 

only plants within a certain temperature range are likely to be utilised for oviposition. 

Laying eggs on warmer plants maximises the probability of successful larval 

development within restricted seasonal temperature constraints. Analysis of Glanville 

fritillary population time-series reveals that populations are more abundant in those 

habitat types providing suitable microclimates for larval development, and in years 

following warm spring temperatures (i.e. during oviposition). These factors were also 

important when comparing abundance across sites, as were patch area and isolation. 

This landscape-scale analysis also revealed a significant negative interaction between 

habitat quality and temperature, suggesting that microsites for oviposition are less 

restricted in warm than cool years.  

Across regional scales (southeast England), the availability of both host and nectar 

plants are important in determining butterfly abundance, both across and within 

species. However, hostplant availability is a stronger predictor of abundance than 

nectar, and is most pronounced on sites with a northerly aspect. Trait analysis revealed 

that species with restricted diets, low mobility and habitat specialism are most 

sensitive to variation in foodplant availability. 

Taken together, the results suggest that many UK butterfly species are limited at small 

scales by the availability of hostplants in warm microclimates, but at large scales by 

dispersal limitation and climatic tolerance. Site management can therefore increase 

the abundance of key species of conservation concern by creating thermally diverse 

habitats and maximising the biomass of their hostplants. 

 

 

 

 



5 

 

Table of Contents 

 
Declaration .................................................................................................................................... 2 

Acknowledgements ....................................................................................................................... 3 

Abstract ......................................................................................................................................... 4 

Table of Contents .......................................................................................................................... 5 

List of Tables ................................................................................................................................. 7 

List of Figures ................................................................................................................................ 8 

Introduction ................................................................................................................................ 10 

Insects and butterflies as study organisms ............................................................................. 12 

The advent of landscape ecology ............................................................................................ 19 

Thesis outline .......................................................................................................................... 25 

Chapter 1) The Effects of Temperature, Microclimate and Habitat Quality on Abundance of the 

Glanville fritillary on the Isle of Wight. ....................................................................................... 28 

Abstract ................................................................................................................................... 28 

Introduction ............................................................................................................................ 29 

Methods .................................................................................................................................. 35 

Statistical Analysis ................................................................................................................... 39 

Results ..................................................................................................................................... 41 

Discussion................................................................................................................................ 48 

Recommendations for Site Management ............................................................................... 54 

Conclusions ............................................................................................................................. 56 

Chapter 2) The Effects of Area, Isolation, Habitat Quality and Temperature on the Abundance 

of the Glanville fritillary along the South Coast of the Isle of Wight. ......................................... 57 

Abstract ................................................................................................................................... 57 

Introduction ............................................................................................................................ 58 

Methods .................................................................................................................................. 62 

Statistical Analysis ................................................................................................................... 66 

Results ..................................................................................................................................... 68 

Discussion................................................................................................................................ 71 

Recommendations for Site Management ............................................................................... 76 

Conclusions ............................................................................................................................. 79 

 



6 

 

 

Chapter 3) Defining the Principle Determinants of Butterfly Abundance on Chalk Grassland 

across Southeast England. .......................................................................................................... 80 

Abstract ................................................................................................................................... 80 

Introduction ............................................................................................................................ 81 

Methods .................................................................................................................................. 87 

Statistical Analysis ................................................................................................................... 93 

Results ..................................................................................................................................... 94 

Discussion.............................................................................................................................. 103 

Recommendations for Site Management ............................................................................. 111 

Conclusions ........................................................................................................................... 112 

General Discussion .................................................................................................................... 114 

Summary of key findings ....................................................................................................... 114 

Study limitations ................................................................................................................... 116 

Conclusions ........................................................................................................................... 117 

References ................................................................................................................................ 119 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



7 

 

List of Tables 
 

Table 1.1. Characteristics of plots surveyed at Binnel Point 1997 – 2010………………………………..36 

Table 1.2. Definitions of successional stages contained within a typical succession from bare 

ground to scrub and habitat preference scores associated with each stage……………………………38 

Table 2.1. A list of study sites, mean number of patches per year and their location on the 

south coast of the Isle of Wight………………………………………………………………………………………………63  

Table 2.2. The results of a multiple regression (GLM) of Glanville fritillary web numbers against 

habitat quality, temperature, isolation and area (with quasipoisson errors)…………………………..69 

Table 2.3. The results of a linear mixed model of Glanville fritillary web numbers against 

habitat quality, temperature, isolation and area (with poisson errors and observation level 

random effect)………………………………………………...........................................................................69  

Table 2.4. Results of separate interactions between temperature and other parameters using 

GLMs with quasipoisson errors……………………………………………………………………………………………….70  

Table 2.5. Results of separate interactions between temperature and other parameters using 

GLMEs, with poisson errors and observation level random effects…………………………………………70 

Table 3.1. Description of diet breadth, life history and site traits……………………………………………91 

Table 3.2. A list of species included within the analysis, and the number of sites on which they 

occurred. Species listed in alphabetical order…………………………………………………………………………93 

Table 3.3. Results of species-specific linear regressions between the logarithmic geometric 

mean of density for each of the 30 butterfly species recorded across 54 UKBMS sites during 

2006 – 2010, against abundance of associated hostplants for the same sites recorded during 

2008 – 2009, in alphabetical order………………………………………………………………………………………….96 

Table 3.4. Results of species-specific linear regressions between the logarithmic geometric 

mean of density for each of the 30 butterfly species recorded across 54 UKBMS sites during 

2006 – 2010, against abundance of associated nectar plants for the same sites recorded during 

2008 – 2009, in alphabetical order………………………………………………………………………………………….98 

Table 3.5. Original estimate, adjusted estimate with hostplants removed from associated 

nectar sources, the difference between the two and % of nectar records that are hostplants 

obtained from Dennis (2010).Numbers in brackets are number of nectar feeding records, 

species listed in alphabetical order……………………………………………………………………………………….100 

Table 3.6. Results of separate linear mixed models between the logarithmic geometric mean of 

density for all 30 butterfly species recorded across 54 UKBMS sites during 2006 – 2010, against 

site and species traits as an i) interaction with host plants and ii)interaction with nectar…….101 

 



8 

 

List of Figures 
 

Figure 1.1. Map Showing 10km squares with records for the Glanville Fritillary Melitaea cinxia 

and Ribwort Plantain (Plantago lanceolata) in Great Britain and Ireland……………………………….32 

Figure 1.2. Distribution of Plantago lanceolata, larval foodplant of Melitaea cinxia, in five 

successional stages of grassland and in five classes of mean plant leaf size, and density of larval 

webs of Melitaea cinxia in the same samples measured for Plantago lanceolata…………………..33 

Figure 1.3. A map of study plots surveyed at Binnel Point, on the south coast of the Isle of 

Wight……………………………………………………………………………………………………………………………………..36 

Figure 1.4. A boxplot illustrating the differences between ambient air temperature recorded by 

Tiny tag temperature loggers and temperature of a ribwort plantain leaf used for oviposition 

by the Glanville fritillary recorded using a laser thermometer by following gravid females…….41  

Figure 1.5. A comparison of temperatures between habitat successional stages 1 – 5 and 

ambient air temperature over three days in May 1998, recorded by Tiny tag temperature 

loggers……………………………………………………………………………………………………………………………………42 

Figure 1.6. Binnel Point larval web counts 1997 – 2010, summed across plots 1-5, combined 

with IWNHAS larval web counts 1983 – 1996…………………………………………………………………………43  

Figure 1.7. The relationship between web numbers (logex) recorded in each plot and matching 

estimates of habitat quality from 1997 – 2010 at Binnel Point with least squares regression 

line………………………………………………………………………………………………………………………………………….44 

Figure 1.8. The relationship between web numbers summed across plots (logex) and June 

mean maximum temperature (degrees Celsius) from 1997 – 2010 at Binnel Point with least 

squares regression line……………………………………………………………………………………………………………45 

Figure 1.9. Distribution of Plantago lanceolata, larval foodplant of Melitaea cinxia, in five 

successional stages of grassland and in five classes of mean plant leaf size in 2011 and density 

of larval webs of Melitaea cinxia in the same samples measured for Plantago lanceolata……..47 

Figure 1.10. June mean maximum temperatures from 1997 – 2010 at St Catherine’s Point 

lighthouse, Isle of Wight with least squares regression line…………………………………………………….52 

Fig 2.1. A map of study sites on the Isle of Wight……………………………………………………………………63 

Figure 2.2. A scatterplot showing the relationship between Glanville fritillary numbers (logex) 

and habitat quality, temperature, area (logex) and isolation (logex)………………………………………..68 

 

 

 



9 

 

Fig 3.1. A map of the 54 UKBMS study sites included in this study, numbered from west to 

east…………………………………………………………………………………………………………………………………………88 

Figure 3.2. A scatterplot of the relationship between the logarithm of host and nectar plants 

obtained from 1495 plant species–quadrat combinations recorded across 54 UKBMS sites 

during 2008 – 2009…………………………………………………………………………………………………………………95 

Figure 3.3. A scatterplot of the logarithmic geometric mean of density for each of the 30 

butterfly species recorded across 54 UKBMS sites during 2006 – 2010, against abundance of 

associated hostplants for the same sites recorded during 2008 – 2009………………………………….97 

Figure 3.4. A scatterplot of the logarithmic geometric mean of density for each of the 30 

butterfly species recorded across 54 UKBMS sites during 2006 – 2010, against abundance of 

associated nectar plants for the same sites recorded during 2008 – 2009………………………………99 

Figure 3.5. Estimates for the ten butterfly species affected by the removal of hostplants from 

nectar abundance. Original estimate with hostplants included (solid lines), adjusted estimate 

without hostplants (dashed lines), species listed in alphabetical order…………………………………100 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



10 

 

Introduction 
 

Why abundance varies between species and populations is a fundamental question in ecology 

(Krebs 1978; Andrewartha & Birch 1984). For any species, the abundance or density (defined 

as numbers per area) of a population is determined by variation in the four main population 

parameters of natality, mortality, immigration and emigration (Begon et al. 1986), but the 

mechanisms which underpin such changes remain poorly understood (Storch & Gaston 2004; 

McGill et al. 2007). Therefore, explaining why a species has a particular abundance is the 

‘embarrassing and obvious question that ecology cannot yet answer’ (McGill 2006).  

Certainly, the abundance and distribution of a species is a reflection and response to 

environmental conditions (Brown 1995), and population growth can be restricted by both 

abiotic factors, for example, climate and temperature, as well as biotic interactions with other 

species through competition or predation and limitations in resources (Newton 1998). 

However, understanding the importance of the separate factors which determine abundance 

(and particularly specific resources) is not straightforward (Hanski 1994a; Bartoń & Zalewski 

2007), as many environmental components are inter-related (May 1975; Gaston et al. 2000). 

Furthermore, the significance of a specific factor may also depend on the scale at which the 

species or population is studied (Hengeveld & Haeck 1982; Blackburn & Gaston 1996; 

Smallwood & Schonewald 1996). 

Resources encompass any component of the environment that can be utilised by a species and 

can vary in both quality and quantity (Lincoln 1982), although food availability is often 

considered the primary resource (Odum 1963). Within terrestrial ecosystems, several broad 

scale studies on mammals and birds have demonstrated that populations limited by food 

availability increase abundance with increases in edible biomass (Lack 1954; Carbone & 

Gittleman 2002) or habitat productivity (McLoughlin et al. 2000; Pettorelli et al. 2009). 

However, the strength of relationship between the amount of resources, abundance and 

population growth rates also varies with temperature (Savage et al. 2004; Melis et al. 2006), 

and is further complicated by different species requiring different resources or allocation (Ford 

1990; Gregory & Gaston 2000). The amount of resource used per individual will therefore 

directly determine the number of individuals that can be supported by a particular site 

(Carbone & Gittleman 2002; Brown et al. 2004), and so the importance of resources may also 

vary depending on species traits (Brown & Maurer 1987). For example, differences in body size 
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and metabolic demands determine how food energy is converted into biomass, and hence 

population size (Peters 1983; Siemann et al. 1996; Brown et al. 2004; White et al. 2007).   

Resources are also of paramount importance to insects, with food availability explaining both 

species richness (Murdoch et al. 1972; Kelly & Southwood 1999; Fleishman et al. 2005; 

Novotny et al. 2006; Dapporto & Dennis 2008) and structuring of populations (Strong et al. 

1984; Potts et al. 2003). However, the importance of resources in determining insect 

abundance remains equivocal (Thomas et al. 2011). At local (site level) scales, resource 

abundance has been shown to correlate with insect abundance from a strong positive 

relationship (Dempster 1971; Marques et al. 2000) to a weak or inverse relationship (Thomas 

1983b; Kelly & Debinski 1998). At landscape (multisite) scales, resources have also shown to 

range from extremely important (Dennis et al. 2003; Yamamoto et al. 2007), to insignificant 

(Hanski & Meyke 2005; Rabasa et al. 2008), and at large (regional) scales the evidence is both 

limited and mixed, with single studies suggesting positive (Gutierrez & Menendez 1995) and 

negative (Kuussaari et al. 2000) relationships between the amount of resource and abundance. 

Indeed, Gaston and Lawton (1988) demonstrate that widespread insect species are generally 

more abundant than rarer species, and this is often regarded as one of the few most 

persuasive patterns in ecology (Lawton 1999). However, other studies have demonstrated a 

negative density distribution relationships in insects (Paivinen et al. 2005), although the 

strength of this relationship could also vary on size of the region studied (Cowley et al. 2001a). 

Fundamentally, it is axiomatic that food availability can potentially limit population growth 

through competition for limited resources or by constraining reproductive ability (Blackburn & 

Gaston 1999; Brown et al. 2004). However, different taxa and species vary considerably in 

their environmental associations and so respond differently to fluctuations in resource 

availability, often posing unique conservation problems (Thomas 1995c). Given that habitat 

degradation, fragmentation and climate change continue to pose serious threats to 

biodiversity (Millennium Ecosystem Assessment 2005; Lawton et al. 2010), it is essential to 

clarify the determinants of population abundance at all scales, as only then can we attempt to 

mitigate the increasing pressures on the landscape from a cumulative human population 

(Rands et al. 2010).  
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Insects and butterflies as study organisms 

Insects are one of the most successful and numerous groups on the planet, comprising  > 50% 

of all known animals and plants (Groombridge 1992), with estimates of between four million 

(May 2000) and ten million extant species  (Gaston 1992; Godfray et al. 1999; Mora et al. 

2011). They are an essential component to the functioning of most terrestrial ecosystems 

(Odum 1963; New 2009) and understanding their requirements, movements, interactions 

(with their own and other species), has significant consequences for conservation, agriculture, 

forestry, diseases, ecosystem services and ultimately humanity (Biesmeijer et al. 2006; Haslett 

2008; Potts et al. 2010). However, understanding insect biodiversity patterns is complicated 

compared with vertebrates, because adults and larvae have fundamentally different resource 

requirements (Williams 1960; Murdoch et al. 1972; Hardy et al. 2007). 

All insect populations fluctuate in response to environmental changes over time (Varley et al. 

1974; Wolda 1988), and the responses of individuals to environmental conditions will also 

determine whether populations of successive generations will remain relatively constant, 

increase or decline towards extinction (Southwood 2003). With extinction rates in insects 

exceeding those of plants, birds and mammals (Thomas et al. 2004; Dunn 2005) clarifying the 

importance of the various factors which determine species abundance remains a fundamental 

requirement for developing a successful conservation strategy (Jones 2011; Fox 2012).  

Like most ectothermic insects, butterflies are extremely sensitive to changes in temperature 

and restricted by both climatic restraints (Thomas 1995c; Bryant et al. 2002; Davies et al. 2006) 

and limitations in resources (Dennis 2010). The high degree of specialisation required to 

successfully utilise both differing temperature gradients and resources within the smallest 

habitats means that many butterflies are short lived thermophilous species, often showing 

rapid and clear responses to changes in the environment making them ideal indicators to 

gauge the health of habitats and ecosystems (Erhardt & Thomas 1991; Oostermeijer & van 

Swaay 1998; Thomas et al. 2004). Indeed, they have long attracted population biologists as 

convenient model organisms (Ford 1945; Ehrlich 1983), and are one of the few insect groups 

for which annual abundance monitoring is possible (Roy et al. 2007).  

Within the U.K., butterflies are monitored as part of the Butterfly Monitoring Scheme. This 

scheme was initiated in 1976 across 34 sites whereby observers walk a set route (transect) 

once a week, under favourable weather conditions throughout the main butterfly flight period 

(April – September), recording all butterfly species encountered within a 5 metre box (Asher et 

al. 2001). The aim of the scheme was to provide a standardised annual measure of the 
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changing status of butterfly species, and an index of abundance is calculated for each species 

from each site, simply by summing the mean weekly counts, and the trends can then be 

analysed across sites and years (Pollard & Yates 1993). By 2004, the number of transect sites 

had risen to 134, although several hundred transects were being walked outside of this 

scheme as part of the Butterfly Conservation Transect project (Fox et al. 2006). In spring 2006, 

these two schemes merged to incorporate data from all of the transect routes, and the UK 

Butterfly Monitoring Scheme (UKBMS) was established. This long term monitoring of butterfly 

populations has shown that populations fluctuate both regularly and dramatically (Botham et 

al. 2009). However, researchers have been more proficient at describing the changes in 

distribution and abundance than in understanding the mechanisms behind the underlying 

causes of change (Thomas et al. 2011). 

This is probably because the mechanics driving butterfly population fluctuations are complex 

and interacting, for example, climate and weather  (Pollard 1988; Roy et al. 2001; Dennis & 

Sparks 2007), resources (Dempster & Pollard 1981; Hardy et al. 2007; Dennis 2010), quality of 

habitat (Thomas & Morris 1994; Clarke et al. 1997; Dennis & Eales 1997; Thomas et al. 2001; 

Fleishman et al. 2002), geometry (area and isolation) of habitat patches (Hanski et al. 1995; 

Hanski 1998b) and enemies including predators, parasitoids and pathogens (Lei et al. 1997; 

Laine 2004; Harvey et al. 2005; van Nouhuys & Hanski 2005). All of these factors can influence 

the birth, death, immigration and emigration rates, and therefore a species chance of survival 

and breeding could be said to theoretically depend on the whole environment. However, in 

reality just one or two factors usually turn out to be important enough to account for most of 

the variability in population abundance (Thomas et al. 2011), and both resource availability 

and temperature are considered two of the most important factors which influence the 

distribution and abundance of nearly all species (Odum 1963; Krebs 1978; Begon et al. 1986). 

More specifically, increases in temperature have been observed to increase population size 

(Pollard 1988; Pollard & Moss 1995), larval growth (Porter 1982), advance emergence dates 

(Roy & Sparks 2000; Sparks et al. 2006), induce range shifts (Hill et al. 2002; Hellmann et al. 

2008; Chen et al. 2011), as well as increase flight activity (Howe et al. 2007; Wikstrom et al. 

2009) and movement (Sparks et al. 2005; Sparks et al. 2007), although a more recent study has 

also shown an inverse relationship with temperature (Isaac et al. 2011b).  

However, butterfly populations are also frequently observed to be restricted by limitations in 

resources (Dennis 2010). Within butterfly biology, several authors divide resources into 

consumables and utilities (Shreeve et al. 2004; Dennis et al. 2006b; Hardy & Dennis 2007); 
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consumables are resources which can be eaten or absorbed by both adults and larvae, for 

example hostplants, oxygen, water, minerals, salts, nectar, pollen and sap, whereas utilities 

describe conditions for existence and persistence, for example thermoregulation,  pupation  

and mate location sites (Dennis et al. 2003). For clarification, throughout this thesis I use the 

word ‘resources’ to mean consumable resources, more specifically foodplants (i.e. host and 

nectar plants), unless otherwise stated.  

British butterflies are also often sub-divided into two main groups depending on their degree 

of resource specialisation (Asher et al. 2001; Dennis 2010). Species which are limited in 

resource use are described as specialists, whereas species which have more catholic tastes are 

described as generalists (or non–specialists). In reality, this classification represents a 

continuum of ecological strategies and encompasses a variety of traits: specialist species tend 

to feed on just one species of hostplant (i.e. they are monophagous), be restricted to particular 

habitat types, have limited mobility, patchy distributions and discrete populations (Fox et al. 

2006; Dennis 2010), with the opposite traits being exhibited by generalists. For this reason, the 

term ‘colonial’ or species with ‘closed’ populations (Pollard & Yates 1993) is nearly 

synonymous with ‘specialist’ as defined by Asher et al (2001). Likewise, generalist butterfly 

species are also described as ‘wider countryside species’ (Asher et al. 2001), or as having ‘open 

populations’.  

Certainly, the more resources that a species can utilise then the greater potential there is for 

survival across a multitude of environmental conditions and sites (McNaughton & Wolf 1970; 

Brown & Maurer 1987). Climate and resources are only two (albeit important) of many 

limitations acting upon a species which defines its potential living space or ‘niche’ (Hutchinson 

1957). The ‘fundamental’ niche is the potential living space which a species could occupy given 

a lack of any limitations. Therefore, in theory, any area which has sufficient resources coupled 

with a suitable climate could allow indefinite persistence of a particular butterfly species. 

However, the area that a species can actually occupy is typically a fraction of the potential 

niche. Further limitations from utilities (e.g. nectar or roost sites), competition or parasitoids 

and a combination of these factors will result in further reductions in the space that can be 

actually occupied, until all limitations are considered and the definitive species distribution is 

reflected by its ‘realised’ niche. For example, the ability to use additional or supplementary 

hostplants will generally broaden the niche as different species of plants will differ in 

distribution (within as well as between sites), and occur in different environmental conditions 

(e.g. soil types). Understanding niche breadth can help to explain where species occur, and 



15 

 

how common they are, with narrower niche species normally being more restricted in habitats 

or distribution (Oliver et al. 2009). 

It has long been appreciated that widely distributed species are generally found to be more 

locally abundant than species with a more restricted distribution (Darwin 1859), although this 

has only been quantified relatively recently (Hanski 1982; Brown 1984). However, among 

butterflies in northern Europe this ‘interspecific abundance occupancy relationship’ is weak 

and sometimes negative, although this can also depend on the scale of study (Cowley et al. 

2001a; Paivinen et al. 2005). This is probably because species with small distributions are 

generally habitat specialists and tend also to exhibit low mobility (compared to generalists) 

(Asher et al. 2001). However, many of these life history traits are not mutually exclusive 

(Ockinger et al. 2010; Betzholtz & Franzen 2011; Sekar 2011; Stevens et al. 2012), and so it is 

often difficult to explain the mechanism which underpins patterns of both distribution and 

abundance (Paivinen et al. 2005; Kearney & Porter 2009). Furthermore, the distinction 

between specialists and generalists is not straightforward (see above) and lacks consistency, 

further complicating the understanding of the link between resources and abundance. For 

example, some species may be both nectar (the adult resource) and hostplant (the larval 

resource) specialists (Tudor et al. 2004; Hardy et al. 2007), while others are larval host plant 

specialists but nectar generalists (Dennis 2010), and so uncertainty remains as to their 

classification (i.e. species’ degree of specialisation may be measured on more than one axis). 

Moreover, there is still a lack of data on adult nectar preferences, for example, within the U.K. 

29 butterfly species (half the total) have less than fifty records for adult feeding  (Dennis et al. 

2008b).   

So generally, rarer species tend to be highly sedentary in an extremely localised habitat and 

are therefore unlikely to have any interactions with the nearest colony. Individuals living within 

these highly isolated populations with little interactivity are often described as ‘closed’ 

(Warren et al. 2001), and face several problems. At low density females may have reduced 

lifetime fecundity because it takes longer to mate or might fail to mate (Gilpin & Soule 1986; 

Lande 1987). Breeding within small populations is also likely to reduce genetic fitness and 

increase the likelihood of inbreeding depression due to the Allee effect (Allee 1949; Saccheri et 

al. 1998), thus many small populations may have to rely on the ‘rescue effect’ in order to 

persist (Brown & Kodricbrown 1977). However, there is the possibility that population 

structure will vary depending on the scale of the study (Harrison 1994) and furthermore, there 

are increasing numbers of sporadic records of individuals of what are perceived as highly 

sedentary species being recorded miles away from the nearest known colony (Fox et al. 2006), 
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so again, the definition of ‘open’ and ‘closed’ are somewhat arbitrary. Fundamentally, the 

ability of a species to adapt to current environmental conditions will determine its population 

structure (Thomas & Kunin 1999). Some species may exist within discrete colonies dotted 

across the landscape, bounded by restraints of a particular temperature or habitat, other 

species may be much more widespread and therefore the distinction between colonies is 

much more diffuse (Hanski 1998b).  

Consequently, a species realised niche will depend on the climate, and the quality of both the 

habitat and the resources it contains. Understanding the importance of separate resources is 

not straightforward, as like many insects, butterflies go through definitive life cycle stages in 

order to develop; egg; larvae; pupa and finally adult. The requirements for each stage of the 

life cycle may be reliant on totally different temperature or resource needs than the previous 

stage, for example, most larvae feed on plant tissues but adults often feed on nectar. 

Therefore, due to the variation in life history stages, evidence remains mixed as to the 

significance of different types of resources in determining butterfly population abundance.  

Adult butterflies are the most conspicuous stage of the life cycle and are therefore the easiest 

to study (Ehrlich et al. 1975). Floral nectar is by far the most common food source (Boggs 

1987), and although its quality depends on flower age, time of day, weather and activities of 

previous nectar feeders (Gottsberger et al. 1990), many studies suggest that nectar 

contributes to longevity and reproductive success (Boggs & Ross 1993; Boggs & Freeman 2005; 

Erhardt & Mevi-Schutz 2009). Several studies have also demonstrated a positive relationship 

between adult abundance and amount of nectar (Clausen et al. 2001; Summerville & Crist 

2001; Bergman et al. 2008; Kubo et al. 2009), and in the Åland islands patches which contained 

a lot of nectar sources had reduced emigration rates for Melitaea cinxia  (Kuussaari et al. 1996; 

Moilanen & Hanski 1998).  

However, more significantly, nectar failed to predict occupancy and abundance within these 

same habitat patches (Hanski 1998b) and no scientific study has yet to show nectar as a key 

driver in population change (Thomas et al. 2011). Furthermore, many authors also suggest that 

nutrients acquired during larval development are believed to be primary determinant of 

longevity and fecundity in butterflies (Labine 1968; Boggs 1987; Baylis & Pierce 1991; Hughes 

2000), potentially reducing the importance of nectar as a determinant of abundance. 

As no external feeding occurs while inside the egg, or during pupation, then the only remaining 

possibility for biotic resources to act as a limiting factor are during the larval stage. The 

availability of the host foodplant is certainly very important (Leon-Cortes et al. 2003; Dennis et 
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al. 2004), and is often considered a more effective predictor of abundance than nectar 

(Auckland et al. 2004; Eichel & Fartmann 2008), principally because a species cannot persist 

without the host plant being present to facilitate successful reproduction.  

In a pioneering study, Dempster (1971) showed that abundance of the cinnabar moth was 

determined by the biomass of a foodplant to the extent that predictions on future population 

size were relatively accurate (Lakhani & Dempster 1981). However, more recent studies show 

that while the amount of host plant is closely linked to the abundance of several butterfly 

species (Munguira et al. 1997; Haddad & Baum 1999; Luoto et al. 2001; Matter & Roland 2002; 

Krauss et al. 2004b; Betzholtz et al. 2006; Nowicki et al. 2007), this relationship is often weaker 

than predicted (Kelly & Debinski 1998), with many other studies on single species showing no 

significant relationship (Kuussaari et al. 2000; Kuussaari et al. 2004; Hanski & Meyke 2005; 

Fred et al. 2006; Rabasa et al. 2008; Stasek et al. 2008), or even an inverse one (Thomas 1984; 

Thomas et al. 1986).  

Additionally, in a recent meta-analysis using British butterflies Thomas et al (2011) 

demonstrated that for over 20 species recorded on the UK Butterfly Monitoring Scheme 

(UKBMS), host plant abundance was not significantly related to butterfly abundance at local 

scales. Thus, the simple presence of a suitable host plant rarely provides sufficient conditions 

for survival (New 1995; Dennis et al. 2003), and the critical factor is not the overall amount or 

abundance of host plant, but the number of plants growing in suitable locations for egg laying 

and larval development (Dennis 2010; Thomas & Lewington 2010).  

This is because the larval stages of butterflies have considerably more exacting ecological 

habitat requirements, and so they can be described as occupying a narrower realised niche 

than adults (Thomas 1995b; Roy & Thomas 2003). While adult butterflies can fly between 

flowers searching for nectar, or seeking shelter during inclement weather, most larvae are 

restricted to spending the majority of their lifetime within a few square metres of habitat, 

predominantly feeding on the oviposition foodplant or a close neighbour. This lack of mobility 

will reduce the ability to control for variations in temperature, weather, or lack of resources, 

and so the constraints faced by larvae (compared to adults) are more acute. Certainly, any 

larvae which fail to locate a suitable plant on which to feed will starve, and so the selection of 

oviposition site is of considerable importance (Doak et al. 2006; Bonebrake et al. 2010).  

Many female butterflies will therefore restrict oviposition to a host plant growing within a 

suitably warm microclimate (Thomas 1983a; Weiss et al. 1988), of a particular size or shape 

(Bourn & Thomas 1992; Gripenberg & Roslin 2005), or select hostplants based on chemical 
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composition for use as larval defence (van Nouhuys & Hanski 1999; Goverde et al. 2008; 

Talsma et al. 2008).  Therefore, butterflies may only use a subset of the host plants available to 

them (Thomas et al. 2001), with rarer species in particular only using a fraction of the available 

larval resource (Dennis & Shreeve 1991). Hence the distribution of a particular growth form of 

the plant may be considerably more important than its total abundance. However, the 

strength of relationship between a species and its foodplants may also vary depending on 

other factors, for example, life history traits (Boggs & Ross 1993; Garcia-Barros 2000; Mattila 

et al. 2009; Poyry et al. 2009a), niche breadth (Thomas 1995c; Hughes 2000; Roy & Thomas 

2003; Komonen et al. 2004; Summerville et al. 2006; Anthes et al. 2008; Friberg et al. 2008; 

Mattila et al. 2009; Oliver et al. 2009) or local site characteristics (Hanski et al. 1995; Moilanen 

& Hanski 1998; Kuussaari et al. 2000; Holt et al. 2004; Dennis & Sparks 2005; Dennis et al. 

2006b; Grundel & Pavlovic 2007; Pettis & Braman 2007; Rabasa et al. 2008; Rundlof et al. 

2008; Sjodin et al. 2008; Poyry et al. 2009b; Lindell & Maurer 2010). 

The relationship between butterflies and their host plants is therefore not straightforward 

(Quinn et al. 1998). Certainly, at a highly localised level, the presence of a butterfly species at a 

particular site may depend on a wide range of factors including amount of heat, light and 

shelter, weather, abundance of food plants, the profusion and quality of flowers for adult 

feeding, and the abundance of predators and parasitoids and prevalence of diseases (Dennis 

2010). Consequently, local populations are undoubtedly influenced due to vegetation and 

floristic differences between sites, and abundance is often found to be highest on sites which 

have both an ample supply of nectar and a high density of host plants (Fred et al. 2006; 

Bergman et al. 2008; Stasek et al. 2008). 

Therefore, while the limits of species distributions of butterflies is likely to be determined by 

climatic constraints (Heath et al. 1984; Gaston 2003), their abundance is likely to be influenced 

by local resource levels (Gutierrez & Menendez 1995). The concept of resources limiting 

abundance is not new, with Milne (1957, 1962) suggesting that because of the variability of 

nature, only competition for resources acts in a sufficiently consistent density dependent way 

to provide a limit to the size of populations. Pollard and Yates (1993) also suggest that a 

resource limit or ‘ceiling’ (Dempster 1983) is likely to produce the synchrony observed across 

both species and sites, as no other factor is likely to limit population growth in such a 

consistent way. Since resources are both spatially or temporally limited, density dependent 

processes can regulate populations across all sites and habitats (Dennis & Taper 1994; Nowicki 

et al. 2009), because each site has a ‘carrying capacity’ which allows it to support a population 

of a certain size but no larger (Sawchik et al. 2002). At or near carrying capacity, resource 
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limitation affects population growth rate through intraspecific competition (Thomas et al. 

1997). Thus, the frequently observed dramatic population increases are probably because the 

previous year’s numbers were low relative to the carrying capacity of the site, and when 

populations are low there remains large areas of unexploited food plants providing potential 

for population growth (Dempster & Pollard 1981). Although density dependence is not easy to 

detect over short periods, long term datasets suggests that it is widespread in Lepidoptera 

(Hanski & Woiwod 1991). 

Indeed, this ‘resource limitation hypotheses’ can potentially explain the fluctuations observed 

within the UKBMS dataset, as monitoring has shown that the patterns of fluctuations can be 

very similar from site to site, and the variation in abundance remains very similar from year to 

year (Pollard 1991; Botham et al. 2009). The high degree of synchrony between populations 

over a large area for many years would certainly suggest the same factor operating on all 

populations, and many studies have alluded to weather as the most important factor in 

determining abundance (Pollard et al. 1995; Sutcliffe et al. 1996; Roy et al. 2001; Hanski & 

Meyke 2005; Guiney et al. 2010), possibly because weather (particularly rainfall, sunshine or 

temperature) could influence resource availability which in turn limits population growth 

(Dennis & Sparks 2006). Nonetheless, it is also plausible that fluctuations in both abundance of 

the food plant and the insect host could be responding to the same environmental factor with 

no causal relationship between the two (Dempster & Pollard 1981). Therefore, a key 

unanswered question remains whether the relationship between resources and population 

abundance is universal, or instead contingent on the spatial scale, timeframe and species 

under investigation.  

The advent of landscape ecology 

It has been recognised for a long time that currently occupied areas may become vacant 

tomorrow and reoccupied next week or next year (Andrewartha & Birch 1954), and the advent 

of both the Theory of Island Biogeography (MacArthur & Wilson 1967), examining the 

importance of spatial configuration of real islands, and metapopulation theory (Levins 1970), 

which uses habitat islands within terrestrial fragmented landscapes, both re-orientated 

research away from conserving species within single reserves  to the importance of conserving 

interacting populations across entire landscapes.  Indeed, these concepts remain influential in 

modern nature conservation policy, which often emphasise the importance of size and 

structural connectivity of landscapes (Boitani et al. 2007; Hodgson et al. 2009). 
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Metapopulation theory was founded on a pioneering study in 1967 which used real islands to 

suggest that both area and isolation were the most important characteristics for determining 

occupancy (MacArthur & Wilson 1967). The underlying principle was that the larger the 

distance between islands, the fewer individuals will move between them resulting in lower 

occupancy rates. Shortly after this, Levin’s (1970) conceived the concept of the 

metapopulation, originally devised as a mathematical term describing a population of 

populations. This term was later used to neatly describe a network of terrestrial habitat 

patches which persisted as a population through a continual balance of colonisations and 

extinctions of local populations (Hanski 1994b; Hastings & Harrison 1994). More specifically, 

the term metapopulation became synonymous with the long term study of the Glanville 

fritillary butterfly in the Åland Islands (Hanski 1999b) which supported the importance of area 

and isolation in determining patch occupancy (Hanski et al. 1994; Hanski et al. 1995; Hanski 

1998b).  

The main tenet of metapopulation studies is that areas with aggregations of resources may 

lead to a clustering of individuals within certain habitat ‘patches’ (Southwood 1977), with 

unfavourable areas between patches containing very few resources described as a ‘matrix’ 

(Hanski 1999b), which remains predominantly unoccupied (Moilanen & Hanski 1998). As 

inhabited habitat patches become distinct from the surrounding matrix, or as isolation 

between colonies increases, populations form distinct units in which abundance varies 

depending on patch characteristics and associated biotic and abiotic factors (Hanski 1994a). It 

is this degree of separation (or connectivity) which defines populations, ranging from multi-

partite populations which contain overlapping interacting groups with indistinct boundaries to 

patchy populations with no interactions (Hanski 1999a). However, when suitable patches 

become separated by relatively short distances (e.g. close enough to allow re-colonisation) 

they may still be connected by regular transfer of individuals – hence the whole 

metapopulation persists – but only as a network of vacant and occupied habitat patches. Each 

habitat patch can thus be described as a source, in equilibrium, pseudosink or sink depending 

on the number of emigrants it provides or the average number of immigrants it receives 

(Hanski et al. 1995).  

On the assumption that most patches in a network are occupied, Levins (1970) suggested a 

minimum of some 15 – 20 well connected patches are required for long term persistence, a 

concept which was also supported by Thomas and Hanski (1997). Although, some authors 

suggested that the Levins or ‘classic’ population structure was deemed unrealistic within real 

landscapes (Harrison & Taylor 1997), it is believed to be a reasonable description of the 
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population structure of many butterflies, including  approximately half of resident Finnish 

(Hanski et al. 1995) and British butterfly species (Hanski & Thomas 1994). Many of these 

butterflies are ‘specialist’ species and so they tend to be monophagous with limited dispersal 

capabilities, hence they are often restricted to rarer habitats and exhibit patchy distributions. 

Consequently, specialists also tend to include the rarer, most rapidly declining species, and 

priority is often given to their conservation (Fox et al. 2011). 

Therefore, metapopulation theory had important consequences for butterfly conservation in 

Europe, with research suggesting that the priority for land managers should be preserving 

large, interconnected habitats (regardless of the quality of the habitat within them), thereby 

distracting from the more important (but less interesting) problem of habitat management 

(Thomas et al. 2001). The debate then became polarised as to which factors were more 

important at explaining the dramatic disappearance of butterflies across modern landscapes, 

with advocates of metapopulation theory explaining extinction as a result of too few, small 

and isolated populations to allow continued persistence (Hanski 1994b, 1998b), and those 

suggesting that local extinctions are caused by temporary or more permanent change in 

habitat quality (Harrison 1994; Thomas 1994). However, concrete explanations of the 

determinants of abundance and persistence remained elusive. Both camps moved only slightly 

towards middle ground, with habitat quality advocates suggesting that as most landscapes 

change as ‘shifting mosaics’ over long periods of time (Boorman & Likens 1979), and that as 

changing habitat quality inevitably contributes to population turnover, metapopulation 

persistence is possible but more likely in successional habitats (Harrison 1994).  

Metapopulation advocates also incorporated a habitat quality factor into their research. The 

importance of habitat, specifically host plant abundance, was evaluated by Kuussaari (2000) 

who compared host plant density with Glanville fritillary density on the Åland Islands, but like 

many previous autecological studies found no relationship. However, resources could certainly 

influence adult movements, with high host plant abundance shown to increase immigration, 

and low numbers increasing emigration (Brommer & Fred 1999; Hanski & Singer 2001; Kuefler 

& Haddad 2006).  

Given that the amount of host plants within a habitat patch did not explain variation in 

population abundance (Hanski & Meyke 2005), metapopulation studies continued to focus on 

the importance of isolation and size of habitat patches.  

Principally, research demonstrated that the more isolated a site, the more likely it is to be 

unoccupied (Hanski et al. 1994; Hill et al. 1996; Dennis 1998; Wilson et al. 2002; Betzholtz et 
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al. 2006; Bauerfeind et al. 2009), support smaller populations (Aviron et al. 2007; Lenda & 

Skórka 2010; Rosin et al. 2011) have lower persistence times (Hanski 1998b; Thomas et al. 

2001) and the individuals within them possessing lower genetic fitness (Ehrlich 1983; Saccheri 

et al. 1998; Haag et al. 2005; Austin et al. 2011) resulting in increased extinction risk (Haikola 

2003). More isolated patches are therefore likely to receive fewer immigrants, because 

increasing isolation may result in patches being beyond the dispersal capabilities of individuals 

(Mennechez et al. 2003; Junker & Schmitt 2009; Leidner & Haddad 2011). Furthermore, larger 

patches are more likely to be occupied (Thomas et al. 1992; Hanski et al. 1995; Bauerfeind et 

al. 2009), support more individuals than smaller ones (Luoto et al. 2001; Krauss et al. 2004b; 

Lenda & Skórka 2010; Rosin et al. 2011) and produce a larger number of emigrants, and 

receive more immigrants (Hill et al. 1996; Kuussaari et al. 1996; Wahlberg et al. 2002), and so 

extinction risk is considerably lower (Thomas 2000; Hanski & Ovaskainen 2002; Ovaskainen et 

al. 2002; Drechsler et al. 2003).  

However, there is a caveat with the isolation effect, in that several studies suggest that many 

species are moving greater distances than originally suspected (Asher et al. 2001; Baguette 

2003) and other studies have shown no or very weak relationships between population size 

and isolation (Krauss et al. 2003b; Krauss et al. 2005), with individuals from isolated patches 

showing no genetic differentiation from non-isolated individuals (Krauss et al. 2004a). 

Additionally, as patch size increases, it is likely to encompass more heterogeneous habitat and 

variations in topography, and less likely to be uniform in resource type, quality and quantity 

(Dennis 2010). Therefore, larger patches may also contain a disproportionate increase in 

matrix habitats, and this probably explains why several studies have shown that abundance 

does not increase proportionally with area (Steffan-Dewenter & Tscharntke 2000; Rabasa et al. 

2008). Furthermore, area has also been found to be a poor predictor for a wide variety of 

species on both occupancy (Prugh et al. 2008), and explaining extinction rates (Pellet et al. 

2007), so it is highly likely that the importance of area depends on the way that habitat 

patches are defined or delimited (Pautasso & Gaston 2006).   

Fundamentally, metapopulation theory suggests that species persistence is a function of patch 

number and spatial arrangement of patches, and their size and isolation (Hanski et al. 1994; 

Hanski 1998a). The probability of extinction for individual patches is related to small patch size, 

demographic stochasticity, emigration exceeding immigration, asynchrony in emergence of 

sexes, and inbreeding depression (Hanski et al. 1995; Haikola 2003). Although increased 

habitat heterogeneity had been shown to result in decreased population variability (Hanski & 

Woiwod 1991), one of the main criticisms of metapopulations was that they were mainly 
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habitat homogeneous, and within most metapopulation studies habitat quality had always 

been subsumed by patch area (Nieminen et al. 2004). However, patch area makes no 

reference to the composition and structure of resources which comprise habitat patches or 

resource connectivity, although large increases in patch size (by orders of magnitude) revealed 

that resource quantity can partly offset reductions in resource quality (Dennis 2010). 

Metapopulations are also frequently considered to be too simplistic because doubts remain as 

to what is defined as a colony, patch, and matrix, and the distinction between an area 

containing resources and one without is becoming more and more blurred (Dennis & Hardy 

2007).  Indeed, our understanding as to what is considered to be an important resource has 

broadened, and the more resources which are taken into account in defining habits in butterfly 

biology, for example, roost, thermoregulation, and hibernation sites (as well as hostplants), 

then the greater the number of resources that will be found within the matrix (Dennis et al. 

2006b). The importance of the matrix habitat is therefore frequently understated, despite 

Ovaskainen (2004) observing that individual butterflies often spend more than fifty per cent of 

their time within it, and that it also affects survival, maintenance and reproduction within 

metapopulations as well as direction, distance and speed of movements (Dennis 2010). 

Additionally, the real-world distinction between ‘patches’ and ‘matrix’ is often unclear, and the 

boundaries between them change over time, so defining patch boundaries is problematic 

(Meeting & McCullough 1996; Thomas & Kunin 1999).  

Hence, several authors have questioned the usefulness of metapopulations in conserving 

species within real landscapes (Baguette 2004), as inevitably real systems rarely match their 

purely theoretical definitions (Harrison & Taylor 1997). For example, a key assumption in 

metapopulations is that the individual habitat patches should have asynchronous population 

dynamics so that simultaneous extinctions are unlikely (Sutcliffe et al. 1996; Mousson et al. 

1999). However, shorter distances between colonies, correlated environmental conditions and 

increasing dispersal can all greatly enhance population synchrony (Sutcliffe et al. 1997), 

particularly on marginal populations experiencing climatic constraints (Powney et al. 2010). 

Furthermore, any strong tendency for species to persist at sites weakens the validity of much 

of classical metapopulation theory (Levins 1969) and fundamentally, modelling is only reliable 

if considerable information exists on habitat quality and distribution, population sizes, 

dynamics and dispersal behaviour (Sutherland 1998).  

Despite this, metapopulations have greatly enhanced our understanding of how patch 

geometry influences rates of colonisation, extinction, immigration and emigration, and 
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highlighted the importance of landscape characteristics in conserving species existing within 

fragmented landscapes (Jones 2011). However, area and isolation appear to have little role in 

determining whether species within occupied patches occur at high or low abundance (Hanski 

1999b), and so an unanswered question remains to what extent do resources affect 

abundance over both landscape and regional scales. 

There have been relatively few studies examining the importance of resources on butterfly 

abundance at regional scales. Certainly, the distribution of the hostplant can determine a 

butterflies range at larger scales (Brandle et al. 2002), but understanding the relationship 

between resources and abundance is more complex, probably because of the difficulty in 

measuring resource availability over large areas (Gaston et al. 2004; Paivinen et al. 2005). 

Despite this, the amount of hostplant (edible biomass) has shown to have a positive 

relationship with abundance for 23 of 39 butterfly species inhabiting small islands (areas of 

0.15, 0.76, 1.45, 0.56, and 0.15km2) in Japan (Yamamoto et al. 2007) and at the regional scale 

(170km2) abundance of the larval food plants family was also related to butterfly abundance in 

northern Spain (Gutierrez & Menendez 1995). Similarly, Cowley et al (2001b) collected data on 

the density and distribution of adult butterflies and all associated host plants within a 35km2 

area in the U.K. (North Wales), and found that butterfly species whose hostplants occur at high 

density also tend to be locally abundant.   

However, Hughes (2000) found no relationship between hostplant and lycaenid abundance 

across seventeen (50 x 50m) sites in Colorado, America, and on a much larger scale Kuussaari 

(2000) found no relationship between host plant and Glanville fritillary abundance in the Åland 

Islands (an area of 3500km2), although this result is perhaps unsurprising over such a large 

area given that the condition of the hostplant is often considered to be more important than 

its abundance (Thomas et al. 2011).  

Therefore, at localised scales (within sites), both the strength and direction of the relationship 

between resources and butterfly abundance can depend on species traits and site 

characteristics (Isaac et al. 2012). At the landscape scale, the persistence and abundance of 

interacting populations can also depend on the geometric properties of habitat patches as well 

as the resources they contain (Hanski 1999b; Dennis 2010). However, at broader scales there 

remains the potential to answer how resources determine both intra and interspecific 

abundance across entire regions (Gaston 1992), especially with the scarcity of previous 

research. Furthermore, given the severity of butterfly declines across Europe from habitat 

degradation (van Swaay et al. 2010; Thomas et al. 2011), fragmentation (Hanski 2011a; 
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Ockinger et al. 2012) and climate change (Morecroft et al. 2011; Wilson & Maclean 2011) all 

three approaches could be useful in suggesting ways to increase butterfly abundance, from 

site specific management recommendations (depending on species and location), through to 

understanding the importance of habitat management, size, and connectivity of populations 

within fragmented landscapes, and finally understanding the broad scale patterns from which 

general recommendations could be incorporated within regional conservation policy or 

biodiversity action plans. 

Thesis outline 

In this thesis, I address the issues and complexities of determining species abundance at local 

(Chapter 1), landscape (Chapter 2) and regional (Chapter 3) scales. Fundamentally, I have taken 

a ‘bottom up’ approach to explaining butterfly abundance, rather than top – down (predators 

and parasitoids). This is because for the majority of butterfly species, resource availability is 

the major factor which limits population growth and determines mean population size (Pollard 

& Yates 1993; Dennis 2010; Thomas et al. 2011). The frequent synchrony observed in disparate 

butterfly populations would suggest that interactions with local predators and parasitoids are 

relatively insignificant (Rausher 1981; Pollard & Yates 1993), to the extent that predation was 

not even considered as a factor within a review of drivers of population change (Thomas et al. 

2011). The importance of parasitoids also remains equivocal, despite evidence from a limited 

number of species; Melitaea cinxia (Lei et al. 1997), Euphydiyas aurinia (Porter 1981) and 

Celastrina argiolus (Revels 2006). However, while parasitism may be a potentially 

synchronising mechanism (Nicholson & Bailey 1935; Hassell et al. 1991), it is not an important 

mechanism in explaining variation in host abundance, with more recent studies on the same 

species contradicting the findings of earlier studies e.g Melitaea cinxia (Hanski & Meyke 2005). 

Therefore, in Chapter 1 I assess the importance of temperature and variation in microhabitats 

as determinants of abundance. In Chapter 2, I compare habitat quality with landscape 

parameters and test whether the strength of each parameter varies with temperature. In 

Chapter 3, I explore the determinants of inter and intra specific abundance at a regional scale, 

examining the importance of species traits and site characteristics. 

Chapter 1 

I use the Glanville fritillary as a study organism as it is a specialist butterfly species at the 

northern margin of its range within the U.K., and therefore highly likely to be sensitive to 

changes in the environment. Additionally, its population levels are easy to monitor as the 
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larvae are relatively conspicuous within ‘webs’. Indeed, I have been monitoring population 

levels of this species since 1996, originally under the guidance of Jeremy Thomas, and found 

the dramatic population fluctuations so intriguing that I continued to monitor it annually to the 

present day. Furthermore, it has been intensively studied in previous research on which much 

evidence for butterfly conservation has been derived.  

In this chapter, I explore the key factors which determine oviposition preferences at localised 

scales, and assess whether small scale variation in habitat and temperature can be correlated 

with changes in population abundance between years and experimental plots on a small 

(<1km2), isolated site. I also suggest implications for site management given that many 

butterfly species inhabit unnatural early successional habitats at northern latitudes. 

Chapter 2 

In this chapter I again use population data from the Glanville fritillary, derived from 8 sites 

(containing 70 habitat patches) along the south coast of the Isle of Wight, thereby 

encompassing spatial variation of approximately 30km. 

I use a measure of the amount of suitable habitat within patches (habitat quality) as a 

surrogate of suitable resource availability, and also incorporate the geometric properties of 

habitat patches (metapopulation parameters of area and isolation) and ambient air 

temperature to assess the most important determinants of abundance at the landscape scale. I 

also examine the importance of temperature variation as an interactive effect with the other 

parameters. 

The results suggest that all of these parameters are important, and I discuss the significance of 

each with relevance to conserving species within fragmented habitats. 

Chapter 3 

Finally, in this chapter I use UKBMS population data for 30 butterfly species from 54 sites 

across southeast England, combined with population specific estimates of resource availability 

(host and nectar plant abundance) to test a suite of hypotheses about the variation in 

population abundance both between and within species at a regional scale. I also examine 

species traits and site characteristics to explain species’ sensitivity to changes in resource 

abundance.  
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Taken together, this research aims to show that despite contradictory results as to the 

importance of resources within many previous studies, general patterns do emerge at a 

broader scale which could be used to manage butterfly populations within sites. I also reassess 

conservation priorities while accounting for differences in species, sites and scales. 
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Chapter 1) The Effects of Temperature, Microclimate and Habitat 

Quality on Abundance of the Glanville fritillary on the Isle of 

Wight. 

Abstract 

Clarifying the mechanisms which underpin species distributions and abundance remains a key 

question in ecology, and both climate and resources have been implicated in many studies as 

constraining factors at a range of temporal and spatial scales. 

The number of Glanville fritillary larval ‘webs’ was monitored on five adjacent habitat plots on 

a small, isolated site on the south coast of the Isle of Wight from 1997 - 2010. Ground 

temperatures beneath the various habitat successional stages were measured and compared, 

and the relationship between butterfly distribution and hostplant and habitat temperatures 

was examined. Temporal variation in abundance was correlated with habitat quality 

(calculated from the distribution of successional stages in each plot), plot aspect and ambient 

air temperature. Larval hostplant and habitat preferences were also compared from 1980 and 

2011 to assess any changes over the 30 year period. 

Comparisons of ground temperatures beneath habitats showed that earlier successional stages 

were considerably warmer than later successional stages, and the distribution of Glanville 

fritillary larval ‘webs’ within plots was restricted to these warmer habitats and the hostplants 

within them. I also demonstrated that hostplants selected for oviposition by gravid females 

(whilst not directly compared against plants not laid on) were considerably warmer than 

ambient temperature. 

The most important factor in predicting abundance was habitat quality, more specifically the 

availability of hostplants in short turf which provides favourable microclimatic conditions for 

oviposition. However, annual variation in web abundance was also related to ambient 

temperature, although the importance of plot aspect remained inconclusive. A comparison of 

the spatial distribution of webs in 1980 and 2011 showed changes in oviposition preference 

towards larger hostplant size but no difference in habitat (successional stage).   

The amount of suitable habitat and ambient temperature during the flight period both 

determine larval abundance. Furthermore, recent rises in spring temperatures have increased 

the carrying capacity of this site probably because previously unsuitable (cooler) areas have 

become warm enough to allow oviposition - thereby causing dramatic increases in Glanville 

fritillary abundance. 
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The importance of habitat quality reinforces the concept that sites should be managed to 

create thermally diverse environments, as many butterflies within the U.K are restricted to 

warmer microclimates due to temperature constraints. Furthermore, sites with varied 

topography and managed for habitat heterogeneity are more likely to support viable insect 

populations as climate warming increases.  

Introduction 

The abundance and distribution of a species is a reflection and response to environmental 

conditions (Brown 1984). All species populations fluctuate in response to environmental 

changes over time (Andrewartha & Birch 1954), and the direction and scale of the response 

can be influenced by many factors, for example, climate, resources, predators and diseases 

and often the complex interactions between them (Begon et al. 1986). Clarifying the 

importance of the various factors that determine species distributions and abundance is a key 

question in ecology (Whittaker 1975; MacArthur 1984), as although there are general patterns, 

the mechanistic explanations do not yet appear to be definitive (Storch & Gaston 2004; McGill 

2006; Mattila et al. 2011). However, there are key drivers of these processes, and temperature 

and resource availability influence both the distribution and abundance of nearly all species 

(May 1975; Krebs 1978). 

Butterflies, like most insects, are highly responsive to changes in the environment 

(Oostermeijer & van Swaay 1998; Thomas 2005), but are particularly sensitive to changes in 

temperature (WallisDeVries & Van Swaay 2006). Indeed, it is of such importance that an 

increase in temperature has been observed to increase range and distribution (Crozier 2004; 

Wilson et al. 2005), population size (Pollard 1988; Pollard & Moss 1995) advance emergence 

dates (Roy & Sparks 2000; Sparks et al. 2006) as well as increase flight activity (Howe et al. 

2007; Wikstrom et al. 2009) and movement (Sparks et al. 2005; Sparks et al. 2007), but see 

Isaac et al (2011b) for a counter-example. However, the magnitude of response to changes in 

temperature is likely to depend on geographic location (Thomas 1993), site characteristics 

(Sutherland & Hill 1995; Cozzi et al. 2008) as well as species life history traits (Heikkinen et al. 

2009; Diamond et al. 2011).   

Butterflies are frequently constrained by climatic limitations at a range of spatial scales (Heath 

et al. 1984; Dennis & Shreeve 1991; Bryant et al. 2002). Geographical location, in particular 

latitude, is important as regional butterfly distribution is limited by climatic tolerances of 

species (Gutierrez & Menendez 1995; Dennis et al. 2008a), mainly because the time available 

in which to complete the life cycle is a primary constraint (Andrewartha & Birch 1954). 
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Butterfly species richness therefore declines from the equator to the poles, and because 

temperature is a key driver in determining distribution, northern Europe is the range limit for 

many butterfly species (Dennis 1977). However, site altitude, slope and aspect, will all 

influence the local thermal microclimate and thereby influence distribution patterns over 

smaller scales (Thomas et al. 1998; Storch et al. 2003).  

Within sites, small variation in vegetation structure and topography creates thermal gradients 

across the landscape, forming microclimates where patches of ground become considerably 

hotter or cooler than the ambient temperature (Rosenberg 1974). This is particularly 

important to butterflies, as the temperature of a hostplant within a microclimate is often 

crucial to optimise larval development (Renwick & Chew 1994; Doak et al. 2006). Therefore, 

within species, individuals can control for variations in temperature by choosing to oviposit on 

hostplants on different aspects or within vegetation of different heights (Dennis 2010). For 

example, temperatures are often considerably higher on south facing slopes (Bennie et al. 

2008), and so aspect can have an important influence on whether a particular hostplant is 

utilised for oviposition (Weiss et al. 1988). Certainly, within the U.K., many species are 

restricted to warmer south facing slopes to counteract the reduction in time available to 

complete the life cycle (Bryant et al. 1997; Burke et al. 2005). However, in warmer latitudes, 

oviposition sites can vary depending on altitude. For example, in Spain, Aporia crataegi lays 

eggs on cooler north facing slopes at low elevations, but only on warm south facing slopes at 

higher altitudes (Merrill et al. 2008).  

Similarly, the structure and height of vegetation will also determine ground temperature 

(Waterhouse 1950), and  is a principle determinant of oviposition locations (Thomas & 

Lewington 2010). At warmer latitudes species may utilise different habitats depending on 

altitude. For example, in Spain, Parnassius apollo chooses relatively warmer microclimates at 

higher elevations to counteract a decrease in temperature (Ashton et al. 2009). However, 

many butterflies at the northern edge of their range survive by inhabiting earlier (hotter) 

successional stages of habitats opposed to their conspecifics living within the (warmer) centres 

of their range (Thomas 1993; Thomas et al. 1999). This could explain why, at cooler latitudes as 

in the U.K., butterflies may only utilise a fraction of hostplants available to them (Quinn et al. 

1998), probably because many are not within a suitable temperature which is required for 

completion of the life cycle (Oliver et al. 2009). 
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Therefore, many species of butterfly at higher latitudes lay their eggs within suitably warm 

areas to expedite larval emergence and development (Labine 1968; Fleishman et al. 1997; 

Bonebrake et al. 2010), and so the local distribution of populations is frequently restricted by 

microclimates within habitats (Thomas 1995c). Indeed, in a recent meta-analysis Thomas et al 

(2011) demonstrated that the relationship between the availability of habitat which provides a 

suitable temperature for larval development and butterfly density was significant for 97% of 

species studied. This has important ramifications for conservation management, particularly in 

the cool climate of the UK, where many butterflies reach the northern limit of their 

distribution (Dennis 1977). Hence, research on habitat requirements at greater spatial and 

ecological detail remains a priority for conservation (Kearney & Porter 2009). 

Furthermore, with recent increases in global temperatures as a result of climate change, 

several studies have identified notable shifts occurring in butterfly phenology (Roy & Sparks 

2000; Dell et al. 2005; van Strien et al. 2008) and distribution (Hill et al. 2002; Franco et al. 

2006; Hickling et al. 2006; Chen et al. 2011). However, temperature driven changes in habitat 

associations remain largely ignored (Davies et al. 2006; Turlure et al. 2010), yet understanding 

such changes is essential for adaptive conservation management (Sutherland 1998; Roy & 

Thomas 2003).  

In this study, the Glanville fritillary Melitaea cinxia is used to test the role of both temperature 

and habitat quality on distribution and abundance. It is an excellent model as;  

i. The Glanville fritillary is a univoltine, monophagous species and thus it is a simple 

system to study. Its U.K. distribution is restricted to early-successional habitat on 

south-facing slopes on the Isle of Wight, yet the hostplant (Ribwort plantain, Plantago 

lanceolata) is widespread (Figure 1.1), implying a strong role for temperature and 

microclimate as limiting factors. As a specialist species with highly limited distribution 

and narrow niche breadth it is also predicted to be extremely sensitive to changes in 

temperature (Diamond et al. 2011). Furthermore, its autecology and metapopulation 

biology is understood (Hanski 1999b; Thomas et al. 2001). 

ii.  The larvae form conspicuous webs, making it possible to conduct accurate population 

counts within just a couple of weeks each year (Thomas & Simcox 1982).  
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Figure 1.1 Map Showing 10km squares with records for the Glanville Fritillary Melitaea cinxia and Ribwort 

Plantain Plantago lanceolata in Great Britain and Ireland. The information used here was sourced through the 

NBN Gateway website and included the following resources. Butterfly and plant distributions for Great Britain 

for the period 1690-2009 were from Butterfly Conservation, the Biological Records Centre and the Botanical 

Society of the British Isles. Accessed 20/10/2011. The data providers and NBN Trust bear no responsibility for 

the further analysis or interpretation of this material, data and/or information. 

 

 

 

 

 

 

 

 

 

Research on the Glanville fritillary within the U.K., has demonstrated that females are highly 

selective and choose to oviposit only on the smallest plants which are located in one of the 

earliest successional stages (Figure 1.2). Thomas et al (2001) used this oviposition preference 

to estimate habitat quality across 72 patches, finding that patch quality was highly correlated 

with both occupancy (presence – absence in patches) and population abundance (the density 

of larval webs per plantain on occupied sites). See Chapter 2 for an exploration of apparent 

differences in results from Finnish and UK populations. 

 

 

 

 

 

10km squares with records for Plantago 

lanceolata (Ribwort Plantain) in Great 

Britain and Ireland. 

10km squares with records for 

Melitaea cinxia (Glanville Fritillary) 

in Great Britain and Ireland. 

 

http://data.nbn.org.uk/datasetInfo/taxonDataset.jsp?dsKey=GA000794
http://data.nbn.org.uk/datasetInfo/taxonDataset.jsp?dsKey=GA000794
http://data.nbn.org.uk/organisation/organisation.jsp?orgKey=3
http://data.nbn.org.uk/organisation/organisation.jsp?orgKey=3
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Figure 1.2 (reproduced from Thomas et al. 2001). a) Distribution of Plantago lanceolata, larval foodplant of 

Melitaea cinxia, in five successional stages of grassland and in five classes of mean plant leaf size. b) Density of 

larval webs of Melitaea cinxia in the same samples measured for Plantago lanceolata  (n = 368 larval webs). 

Habitat preference is given by the difference in relative bar height between a) and b). Adult females prefer to 

oviposit in successional stages 2 and 3 and on leaf sizes 1 and 2. 

 

 

 

Thomas et al (2001) concluded that habitat quality played a crucial role in the distribution and 

abundance of the Glanville fritillary, although this study was based on field data for two years 

(1996 -7) and did not account for the variation in habitat quality among years. Such variation is 

likely to be important because of the early successional nature of the preferred habitat, and a 

key variable in explaining inter-annual variations in abundance is likely to be temperature 

(Pollard 1988; Roy et al. 2001). The increase in summer temperatures during this decade could 

also instigate ecological changes and influence both distribution and abundance. Indeed, 

Thomas  et al (2011) demonstrated that long term climate change or successional changes that 

effect microclimate can change the carrying capacity of a site by two orders of magnitude for 

non-migratory species.  

In this chapter, I describe the distribution of larval ‘webs’ within plots and model Glanville 

fritillary larval abundance over 14 years as a function of temperature, habitat quality and 

aspect among five adjacent plots of occupied habitat on the Isle of Wight.  

I record the temperature of hostplants utilised for oviposition and demonstrate that the 

temperature of microclimates at the ground surface vary depending on the height of 

vegetation above it. I use also site characteristics measured in the field to assess the 

importance of both habitat and aspect, and I use data obtained from the nearest 

meteorological weather station to test the importance of air temperature on oviposition 
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locations and temporal abundance. I also compare larval hostplant and habitat preferences 

which were recorded in 1980 (Thomas et al. 2001) to preferences recorded during field surveys 

in 2011. 

In particular I test the following hypotheses; 

H1: Temperature is predicted to be a principle determinant in suitability of oviposition 

locations.  

i. I predict that hostplant (Plantago lanceolata) choice or ‘suitability’ is explained by 

variation in temperature, in that hotter plantains will be utilised more frequently for 

oviposition than cooler plantains.  

ii. I also predict that the ground temperature or ‘microclimate’ of earlier successional 

stages will be considerably warmer than later ones. Therefore, hostplants distributed 

within hotter microclimates will be used for oviposition more frequently than those 

situated within cooler successional stages and thus I attempt to explain the larval 

habitat preferences described in Thomas et al (2001). 

H2: Plot characteristics, as in habitat (spatial extent of suitable microclimates) and aspect, as 

well as annual variations in ambient temperature will also be important determinants of 

abundance. I also assess the significance of each predictor. 

i. I predict that incidence of Glanville fritillary larval webs should be higher in plots 

containing higher percentages of earlier (warmer) successional habitat and lower in 

plots containing higher percentages of later (cooler) successional habitat. 

ii. I also expect plots with south facing aspects to contain higher numbers of webs than 

plots which are flat or have more northerly aspects.  

iii. I predict that butterfly abundance (recorded as number of larval ‘webs’) will be higher 

in warmer years than cooler ones, as hostplants (located in cooler microclimates) will 

become ‘suitable’ for oviposition with increases in ambient temperature.  

iv. I assess the relative importance of these parameters and predict that habitat quality 

will be the strongest determinant of abundance, followed by fluctuations in annual 

temperature and finally aspect. 
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H3: I compare larval preferences in hostplant size and habitat associations in 1980 and 2011.  

i. I test whether larval preferences in both hostplant size and habitat successional stage 

were different in 1980 and 2011.  

 

Methods 

Study species 

The Glanville fritillary is a univoltine species in the U.K., with a typical flight period lasting from 

May to July. Eggs are laid in clusters on the underside of a Ribwort plantain leaf, with most 

oviposition occurring in June. During summer the larvae live and feed gregariously and spin a 

silken web around the plantain leaves. They enter diapause within the web during early 

autumn, and emerge the following spring, when they again feed communally and spin a 

conspicuous web around plantains before pupating in April. 

Study Site 

Binnel Point is approximately 2.5km east of the southern tip of the Isle of Wight, just south of 

the village of St Lawrence. It supports a relatively small population of Glanville fritillaries and is 

isolated from the next nearest population (St Catherine’s Point) by over 2km. The site contains 

a mix of predominantly semi-permanent grassland on the cliff edges flanked on the northern 

edge by impenetrable scrub. The area used for breeding and oviposition by Glanville fritillaries 

remains extremely small with the cliff top grassland habitat covering an area of approximately 

200m x 20m, with a total study area of 0.4 hectares (see Figure 1.3).  
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Figure 1.3. A map of study plots surveyed at Binnel Point, on the south coast of the Isle of Wight. 

 

© Crown Copyright/database right 2012. An Ordnance Survey/EDINA supplied service. 

In order to test the importance of variation in habitat and aspect on larval web numbers, the 

study area was divided into adjacent plots. A previous mark-recapture study had 

demonstrated that female Glanville fritillaries could roam the entire site (unpublished data) 

and so isolation was not considered a limiting factor in determining web abundance. The plots 

were therefore defined on the basis of clear differences in habitat and topography (Table 1.1 & 

1.2), which a priori were expected to explain some variation in butterfly abundance, and 

allowed plots to be easily identifiable on repeated surveys.  

Table 1.1: Characteristics of plots surveyed at Binnel Point 1997 – 2010. 

Plot Number Aspect Area (m2) 

1 South 1175 

2 None (flat) 122 

3 North 1375 

4 South 62 

5 South 45 
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Larval Survey 

Glanville fritillary larval webs were recorded by walking briskly along a series of imaginary lines 

5 metres apart across each plot until the entire area had been surveyed. They were recorded 

within a 2.5 metre imaginary box, perpendicular to the observer in the way that most adult 

butterflies are recorded (Pollard & Yates 1993; Botham et al. 2009).  

Between 1997 and 2010, I counted the number of webs (annually) in each plot during late 

March (when the webs are most conspicuous), following methodology which has been shown 

to be both accurate and robust (Thomas & Simcox 1982). Survey data was also incorporated 

from counts conducted by the Isle of Wight Natural History and Archaeological Society 

(IWNHAS), using the same methodology on the same site from 1983 to 1996 (although not 

stratified by plot, nor accompanied by habitat quality estimates). These data are included for a 

long term context but not included in statistical models.  

Environmental variables 

Local Temperature Data 

A hand held laser thermometer was used to record hostplant temperatures that were utilised 

for oviposition [H1:i]. Temperatures were acquired by following 60 gravid females during 6th – 

25th June 2010 and recorded whilst oviposition was occurring. A note was made of time of 

oviposition, and this time was then matched to ambient temperature of a Tiny tag data logger 

which was set to record ambient air temperature every five minutes during the same day. If 

times did not exactly match then differences of two minutes or less were rounded down to the 

nearest five minute recording, and three minutes and above were rounded up to the next 

recording. Air temperatures varied very little between five minute intervals. 

Tiny tag data loggers were also placed just below the ground surface of each habitat category 

(see Table 1.2 for definitions) and in shade to record ambient air temperature, and were set to 

record temperature every 10 minutes from 15th to 17th May 1998. This was to assess ground 

temperature differences between the various successional stages [H1:ii]. 
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Habitat Quality 

At each survey, plots were scored by the percentage cover in five categories (successional 

stages from bare ground to long grass) based on the amount of bare ground and mean turf 

height (Table 1.2). These data were converted into estimates of habitat quality by multiplying 

the area in each category by the habitat preference score for that category. Habitat preference 

scores are the relative probabilities of occurrence within each habitat type, summed to 1. We 

used scores derived from Thomas et al (2001), who compared the distributions of 368 larval 

webs and hostplants among five habitat categories, each representing a different successional 

stage (Figure 1.2).  

Table 1.2: Definitions of successional stages contained within a typical succession from bare ground 

to scrub and habitat preference scores associated with each stage (after Thomas et al. 2001). 

Habitat category 

(successional stage) 

% Bare 

Ground 

Mean Turf Height 

(cm) 

Habitat preference scores 

(after Thomas et al. 2001) 

 

  

1 >90 <5cm 8%   

2 90 - >0 5 < 15cm  54%   

3 0 15 < 20cm 35%   

4 0 20 - 25cm 3%   

5 0 >25cm  0%   

 

Plot – year combinations with a high proportion of habitat category 2 would therefore have 

the highest measured habitat quality. Plots with 100% cover of habitat 2 would score 54 on the 

habitat quality scale. These estimates of quality were used to assess the strength of 

relationship between amount of suitable habitat and butterfly abundance [H2:i]. 

Aspect 

Aspect was assessed for each of the five plots by recording its orientation as ‘south’, ‘north’ or 

‘none’ (flat) to evaluate the importance of variations in plot orientation on butterfly 

abundance [H2:ii]. Plot aspects did not change throughout the study period. 

Regional Annual Temperature Data 

Weather data were obtained from the nearest Meteorological Office station, which was just 

over 2km from Binnel Point (St Catherine’s Point Lighthouse SZ497753). The June mean 
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maximum temperature was used in the analysis (i.e. the mean of the daily maxima; a measure 

of the warmth of June days), as June coincides with the peak adult emergence and egg laying 

period. This data was used to assess the relationship between temporal variation in ambient 

air temperature and butterfly abundance [H2:iii].  

Larval preferences 

Thomas et al (2001) assessed larval preferences in 1980 within 246 random 1m2 quadrats 

containing 368 webs on 3800 plantains across six occupied sites. Each plantain was classified 

as growing in one of five successional stages (Table 1.2), and the mean leaf size was measured 

and assigned to one of five classes (S1: < 120mm2; S2: 120-500mm2; S3: 501-1800mm2; S4: 

1801-3910mm2; S5: > 3910mm2). The density of Glanville fritillary larval webs was recorded in 

the same samples, and the successional stage and plantain leaf size they used was also 

measured. 

I repeated this methodology across five (different) occupied sites during March 2011, assessing 

larval preferences within 700 random 25cm2 quadrats containing 991 plantains and 145 larval 

webs.  

Larval preferences were compared between years to assess any changes in hostplant sizes and 

habitat associations [H3:i]. 

Statistical Analysis 

The aim of this study was to assess the importance of temperature in determining both larval 

abundance and larval hostplant and habitat preferences of the Glanville fritillary butterfly.  

H1: Temperature is predicted to be a principle determinant in suitability of oviposition 

locations.  

I used a paired t-test to compare temperatures between hostplants chosen for oviposition and 

matching ambient air temperature [H1:i]. Temperature estimates from the data loggers were 

approximately normally distributed. To describe microclimate preferences, I examined the 

temperature differences between successional stages of habitats to explain habitat 

preferences described in Thomas et al (2001) [H1:ii].  
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H2: Assessing the importance of habitat quality, temperature and aspect as determinants of 

abundance. 

The data used in this analysis was derived from 14 years of surveys on 5 habitat plots. The 

sample size is therefore 14 x 5 = 70 web counts: one for each year- plot combination, each of 

which has a matching estimate of habitat quality. There is only one air temperature value per 

year. Prior to analysis, the plots were coded values according to aspects; plots with southerly 

aspect were attributed a score of 1, plots with northerly or no aspect scored zero. All tests of 

this hypothesis used generalised linear models (GLMs) with quasipoisson errors (since the 

abundance estimates were over-dispersed), with the number of webs as the response variable. 

Since the data comprised of actual counts, this approach is more appropriate than using 

normal errors on log-transformed counts (O’Hara & Kotze 2010). 

Initially, butterfly abundance (number of larval webs) was regressed against plot area. The 

model results showed that area was significant (b=0.86, se=0.25, t=3.49, p<0.001). However, 

because the estimate was close to (and not significantly different from) 1, this suggested that a 

doubling of area would equate to an approximate doubling of larval web numbers. Therefore, 

area was included as an offset in subsequent models. Glanville fritillary abundance (number of 

webs) was then modelled as a function of habitat successional stage [H2:i] and aspect [H2:ii] 

(from the same year) and June temperatures (of the previous year, when those eggs were 

laid)[H2:iii], using separate, single predictor models.  

Next, abundance was modelled against all parameters from the previous step, in a multi-

predictor GLM, to assess which parameter was most important in determining abundance 

[H2:iv]. Plot identity was included as a categorical ‘nuisance variable’ (to control for variation 

among plots that cannot be attributed to our hypotheses). Significance was assessed by 

removing terms and comparing the goodness-of-fit of nested models using Chi-squared, with 

α=0.05. I estimated the effect size for each predictor variable as the fitted difference in web 

numbers over the observed range of variation of that predictor. All models were fitted in R (R 

Development Core Team 2010).  

H3: Comparison of larval preferences in hostplant size and habitat associations in 1980 and 

2011.  

Preferences are defined as the relative probability of a larval web occurring within a particular 

habitat successional stage and on a particular sized plantain. I therefore constructed a 

statistical model to compare the distribution of probabilities between the years. I first 
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converted web density (per plantain) from the Thomas et al (2001) data back into counts of 

webs and plantains. I then fitted a set of generalised linear models to the combined set of 50 

pairs of counts (5 plantain size class, 5 habitat category, 2 years), with quasibinomial errors (as 

the data were overdispersed). First, I fitted the saturated model, containing the main effects 

(plantain, habitat and year) and all interaction terms, as recommended by Crawley (2007), 

pages 552-3. I then simplified this model by removing terms sequentially, starting with the 

three-way interactions then removing two-way interactions. At each step I compared the fit of 

each set of models using a Chi-squared test.  This process continued until all remaining terms 

were significant at α=0.05. Significant two-way interactions between year and either habitat 

category or plantain size would indicate a change in preferences (in one or both dimensions) 

from 1980 - 2011 [H3:i].  

Results 

The Importance of Temperature in Determining Oviposition Locations [H1] 

Hostplant temperatures 

Mean temperature of hostplants during oviposition was 27.70 degrees Celsius (S.D = 3.47, 

Figure 1.4). Although not directly compared with hostplants on which oviposition did not 

occur, simultaneous ambient air temperature was just 19.79 degrees (S.D = 1.64). The 

difference is highly significant: t (59) = 20.754, p = <0.001. 

Figure 1.4. A boxplot illustrating the differences between ambient air temperature recorded by Tiny tag 

temperature loggers (left) and temperature of a ribwort plantain leaf used for oviposition by the Glanville 

fritillary (right) recorded using a laser thermometer by following gravid females (n=60). Temperatures were 

recorded in degrees Celsius on seven dates from 6th – 25th June 2010. Boxplot shows median (thick line), upper 

and lower quartiles (box), and minimum and maximum values.  
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The temperature of plants on which females were observed to oviposit was therefore on 

average 8 degrees hotter than ambient air temperatures. Thus, Glanville fritillary females show 

a clear preference for hostplants which are significantly hotter than ambient temperatures 

[H1:i]. 

Habitat microclimate temperatures 

The temperature beneath the various successional stages of habitats (see Table 1.2 for 

definitions) was recorded by five Tiny tag temperature loggers placed beneath the soil surface, 

with another recording ambient air temperatures from 15th to 17th May 1998 (Figure 1.5). 

Figure 1.5. A comparison of temperatures between habitat successional stages 1 – 5 (see Table 1.2), 

and ambient air temperature over three days in May 1998, recorded by Tiny tag temperature 

loggers. 

 

Figure 1.5. Legend 
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There is a clear decrease in ground temperature between the earliest successional stage (1) 

and the last (5) of approximately two degrees per stage around the warmest time of day – 

midday. The preferred habitat categories (2 and 3, see Table 1.2) are eight and ten degrees 

warmer than ambient air temperature, i.e. approximately the same as the difference between 

ambient temperature and oviposition sites (Figure 1.4). 

Population Time Series 

Given the importance of temperature in determining larval distribution within habitats (see 

above), the spatial extent of suitably warm habitat or microclimates, plot aspect and annual 

variation in ambient temperatures could also be important predictors of abundance.  

Annual monitoring has shown a high degree of variation between years and although the 

number of webs recorded has been steadily increasing since 1997, since 2008 the population 

has increased dramatically. The inclusion of IWNHAS data illustrates that up until early 1990’s 

the population was declining (Figure 1.6). 

Figure 1.6. Binnel Point larval web counts 1997 – 2010, summed across plots 1-5, combined with 

IWNHAS larval web counts 1983 – 1996.  
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The Importance of Site Characteristics in Determining Abundance [H2:i] 

Since 1997, plot area, habitat quality (percentage of various successional stage habitats within 

each plot) and aspect were recorded annually for each of the five plots within the site. 

To test the importance of the spatial extent of successional stages (variations in microclimate), 

butterfly abundance was regressed against habitat quality. The results showed that there is a 

strong, statistically significant, positive relationship between butterfly abundance and habitat 

quality (b=0.19, se=0.035, t=5.38, p<0.001). This implies that across plots, each point increase 

on the habitat quality scale is associated with an increase in web abundance of 19% (Figure 

1.7) [H2:i]. Across the observed range of variation (0 - 25.65), this corresponds to a 31 fold 

increase in fitted abundance from the lowest to highest quality habitat. 

Figure 1.7. The relationship between web numbers recorded in each plot (logex) and matching 

estimate of habitat quality from 1997 – 2010 at Binnel Point with least squares regression line (not 

the GLM used in hypothesis testing). 
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Aspect also appears to be an important predictor of abundance, with model results also 

suggesting a strong, statistically significant, positive relationship between butterfly abundance 

and plots with southerly aspect (b=1.80, se=0.488, t=3.68, p<0.001). However, due to the small 

variation between plots and years (e.g. low statistical power as aspect does not change over 

time, and the sample size is small - 3 plots are south facing, 1 is flat and 1 north facing), there 

remains a degree of uncertainty about the importance of aspect on abundance [H2:ii]. This is 

explored in further detail below.  

The Importance of Ambient Temperature in Determining Abundance [H2:iii] 

Model results suggest there is a strong, statistically significant, positive relationship between 

butterfly abundance and temperature (b=1.04, se=0.263, t=3.96, p<0.001). This implies that 

across plots, an increase of 1 degree of temperature will increase abundance by 104% (Figure 

1.8) [H2:iii]. 

Figure 1.8. The relationship between web numbers summed across plots (logex) and June mean 

maximum temperature (degrees Celsius) from 1997 – 2010 at Binnel Point with least squares 

regression line (not the GLM used in hypothesis testing). 

  

Ambient air temperature therefore appears to be an extremely important predictor of 

abundance, probably because it influences both hostplant suitability and microclimate choice 

at more localised scales.  
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Assessing the Importance of Parameters in Determining Abundance [H2:iv] 

All parameters were included in a multiple regression (area was offset and quasipoisson 

errors) along with plot identity (as a fixed effect) which would determine which was the most 

significant parameter in determining abundance [H2:iii]. 

Progressive simplification of the model, and comparing goodness-of-fit using Chi-squared 

showed there was no change in deviance or degrees of freedom when aspect was omitted 

from the model. This occurs because patch identity is also included in the model. More 

importantly this suggests that the evidence that aspect is an important predictor of abundance 

is inconclusive. 

However, there is a strong and significant role for both temperature and habitat quality. Web 

counts were significantly higher following relatively warm June weather (b=0.935, se=0.166, 

t=5.63, p<0.001) and when large areas of high quality habitat were available (b=0.103, se=0.04, 

t =2.819, p<0.05). A Chi-squared test also showed that both temperature and habitat quality 

are independent effects, with no significant relationship between the two parameters 

(p=0.25). 

To compare the effect sizes of each parameter, I estimated the difference in fitted abundance 

across the range of observations for both temperature and habitat quality. For temperature, 

the parameter estimate means that each degree of warmth is associated with an increase in 

web counts by a factor of e0.935 = 2.5. Thus, across the range of temperatures observed (2.2 

degrees C), the fitted difference in abundance varies by e(0.935 x 2.2) = 7.83 fold from the coldest 

to warmest years. Each point increase (percentage) on the habitat quality scale is associated 

with an increase of webs by e0.103 = 11%, and across the range of qualities (0 - 25.65) the fitted 

difference in abundance varies by e(0.103 x 25.65) = 14.04 fold from the poorest to highest quality 

habitats.  

Therefore, despite the estimate for temperature being considerably higher than habitat 

quality, the fitted differences in abundance would suggest that habitat quality is almost twice 

as important as temperature in determining butterfly abundance.   

Comparison of larval preferences between 1980 – 2011 [H3:i] 

Thomas et al (2001) described the Glanville fritillary larval preferences (hostplant size and 

habitat successional stage) in 1980 (see Figure 1.2). Using similar methodology (700 random 

25cm2 quadrats containing 991 plantains and 145 larval webs), I describe hostplant and habitat 
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preferences across five occupied sites (although different to those sampled in 1980) in March 

2011 (see Figure 1.9). 

Figure 1.9 (see Figure 1.2 for direct comparison of Thomas et al (2001) preferences)  
a) Distribution of Plantago lanceolata, larval foodplant of Melitaea cinxia, in five successional stages of 
grassland and in five classes of mean plant leaf size in 2011. Therefore, almost 400 plantains occur in Plantago 
size class 3, successional stage 2. b) Density of larval webs of Melitaea cinxia in the same samples measured for 
Plantago lanceolata  (n = 145 larval webs). 
Habitat preference is given by the difference in relative bar height between a) and b). Adult females prefer to 
oviposit in successional stage 2 and on leaf size 4. 

 

a)  Plantago lanceolata                                                            b) Melitaea cinxia 

 

Therefore, most plantains are distributed within successional stages 1 and 2, but adults prefer 

to oviposit on larger hostplants (which are also in successional stage 2). The largest bar reflects 

the fact that there are very few plantains occurring of size group 4 within habitat stage two, 

yet they are highly likely to be used for oviposition. 

A Chi-squared test comparing the distributions between 1980 and 2011 showed that the 

habitat-year interaction is not significant (p=0.097), but the plantain-year interaction was 

significant (p<0.001), indicating that preferences have not changed for habitat successional 

stage, but larvae are now feeding on significantly larger hostplants compared to 1980.  

There is a considerable difference in mean maximum June temperatures (of the previous year) 

between when the preferences were described in 1980 (15.3 degrees) and 2011 (18.3 

degrees). Given our knowledge about temperature differences between the habitat succession 

stages (approximately two degrees per stage - Figure 1.5), it could have been expected that 

larval webs would have shifted into a cooler successional stages (3 or 4) to counteract the 

recent increase in temperatures. However, while there is no evidence to support this, there is 
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clear shift towards utilising larger plantains possibly because larger plants tend to occur within 

marginally longer turf and are therefore slightly cooler. 

Discussion 

The aim of this study was to determine how significant the parameters of temperature, habitat 

quality and aspect were in explaining distribution and abundance of the Glanville fritillary, on 

an isolated site over time on the south coast of the Isle of Wight.  

The results showed that oviposition was restricted to warmer hostplants and habitats, and 

both habitat quality (percentage of warmer successional stages present within each plot) and 

ambient air temperature were highly significant in determining butterfly abundance. 

Comparison of larval preferences showed a tendency to use larger hostplants, but no change 

in habitat successional stage. Taken together, these results reveal the fundamental importance 

of temperature in determining both the Glanville fritillary niche and carrying capacity of sites. 

The Importance of Temperature in Determining Oviposition Locations 

Selection of Hostplants [H1:i] 

Female Glanville fritillaries show a clear preference for hostplants which are considerably 

warmer (on average 8 degrees) than the ambient air temperature (Figure 1.4 and results from 

t test). This is because the temperature of a hostplant is crucial to optimise larval development 

(Renwick & Chew 1994; Doak et al. 2006). Therefore, as the Glanville fritillary is at the northern 

edge of its distribution within the U.K., females will invest considerable effort in finding 

suitably warm locations for oviposition which will expedite larval growth and maximise 

chances of successful development (Thomas 1991; Merrill et al. 2008).  

Selection of Habitat Successional Stage [H2:ii] 

Temperatures recorded by the Tiny tag data loggers (Figure 1.5), demonstrate the differences 

in ground temperatures between successional stages (depending on the height of vegetation 

and the amount of bare ground) within soft cliff habitat on the south coast of the Isle of Wight. 

It has long been realised that temperatures vary  among nearby habitats (Odum 1963), but it is 

the subtle differences in temperature within vegetation that creates various microclimates 

(Suggitt et al. 2011), which are of paramount importance to the survival of ectotherms with 

limited mobility such as butterfly larvae (Thomas 1995c; Turlure et al. 2010).  
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Although it is not possible to directly compare between hostplant temperatures (Figure 1.4) 

and microclimate temperatures (Figure 1.5), because of differences in dates between 

temperature recordings, it seems likely that temperature is a key factor in determining 

oviposition locations. I have demonstrated that Glanville fritillaries, on average, choose 

hostplants that are considerably warmer than ambient temperatures (Figure 1.4). It would 

therefore follow that most oviposition locations (and larval webs) would occur within warmer 

locations within sites - and this neatly matches the larval habitat preferences described by 

Thomas et al (2001) – see Figure 1.2.  

Warmer microclimates are therefore favoured by gravid females because within earlier 

successional habitats hostplants are likely to be much warmer than ambient air temperature, 

and thus more likely to be utilised for oviposition (see selection of hostplants). Although a 

comparison of temperatures beneath successional stages (Figure 1.5) shows that the earliest 

stage (1) is the warmest, this stage is predominantly bare ground interspersed with very short 

turf. The clear preference for  habitat successional stage 2 can be explained in that it is 

sufficiently warm to allow efficient thermoregulation (see below), yet it is the first successional 

stage which provides a sward structure capable of supporting a larval web complete with inner 

chambers, and more importantly a hibernaculum which is essential for overwintering survival. 

Furthermore, temperature demarcation above habitat stage 2 is so acute, that hostplants are 

unlikely to be of a suitably warm temperature (and thus utilised), unless they are within 

locations which are warm for reasons other than habitat structure, for example, because they 

are sheltered due to topography or on south facing slopes. Therefore, larval numbers remain 

quite low in the earliest (warmest) successional stage (although larvae often feed on plantains 

in this habitat), and this is because the limited amount of very short grass is not capable of 

supporting web structures which are essential for thermoregulation.  

The Importance of Microclimatic Temperature in Larval Thermoregulation 

Within the U.K., many species of butterfly lay their eggs on or close to the ground (Thomas & 

Lewington 2010). A suitable temperature is crucial for larval development and completion of 

the life cycle (Thomas 1991), and it is the efficiency of larval thermoregulation which is often 

the primary mechanism that underpins survival (Bryant et al. 1997).  

The Glanville fritillaries preference for warmer hostplants and earlier successional stages can 

also be explained by examining the larval ecology, and particularly the reliance on effective 

thermoregulation. Glanville fritillary larvae are gregarious, which is much more effective at 
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raising body temperature than basking individually (Porter 1982; Bryant et al. 2000). As the air 

temperature reaches 13 degrees Celsius, the larvae can actively increase their body 

temperature by up to a further 20 degrees by basking within a group (Thomas & Lewington 

2010). At a critical 33 – 34 degrees the larvae become active and start feeding on the 

surrounding plantains (Thomas & Lewington 2010). By leaving a basking group and 

commencing solitary feeding, the body temperature starts to decrease and continues to drop 

while feeding. The caterpillar therefore feeds in short bouts and then resumes basking. This 

post-feeding basking is believed to be important in maximising the efficiency of a gut enzyme, 

which can digest plantains most effectively at 34 degrees centigrade (J. Thomas pers comm). 

Thus, microclimatic temperature is crucial for the metabolism and development of Glanville 

fritillary larvae. 

Eggs are laid on hostplants within the warmest habitats to maximise thermoregulation and 

metabolic efficiency, thus expediting development time (Bryant et al. 2002). Furthermore, in 

this particular species, fast larval development may also be important to minimise the risk of 

attack from host specific parasitoids, as synchronicity between parasitoid and host is much 

greater during cooler years, when larvae are unable to utilise the warmer temperatures to 

develop at a faster rate (van Nouhuys & Lei 2004).  

The Importance of Site Characteristics in Determining Abundance 

Habitat Quality [H2:i] 

The amount of suitable habitat or spatial extent of warmer thermal microclimates (habitat 

quality) is an important determinant of butterfly abundance [H2:i], with estimates ranging 

from 10% (within the multiple regression) to 19% (within a single predictor model). Thus 

abundance increases from 14 to 31 fold from the worst habitats to the best (or 10% – 19% 

with each point increase on the habitat quality scale).  

Plots with greater spatial extent of warmer successional stages (both within and between 

years) are thus more likely to contain higher numbers of larval webs. Given the importance of 

temperature on the distribution of the Glanville fritillary (see above), this result is not 

surprising. For conservation, habitat quality can be controlled by management - unlike both 

aspect or ambient temperatures (Thomas et al. 2011). Therefore, based on the results of this 

study, increasing the amount of earlier successional habitats within plots would increase 

abundance of the Glanville fritillary butterfly. Furthermore, the abundance of many butterfly 

species within the U.K are likely to increase with the availability of early successional habitats, 
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given that they are often  restricted to warmer microclimates within habitats (Thomas 1993). 

Hence, the lack of management within sites can often explain the demise of many 

thermophilous butterfly species (Thomas 1991), and the initiation of appropriate management 

within sites can also explain the dramatic recovery of others (Thomas 1983a, 1995b; Thomas et 

al. 2011).  

Aspect [H2:ii] 

The temperature of south facing sites is often considerably warmer than sites with more 

northerly aspects (Bennie et al. 2008), and this can be an important factor in determining 

oviposition locations (Weiss et al. 1988). Indeed, within the U.K., Warren (1993) demonstrated 

distinct aspect preferences for British butterflies, with most preferring south and south-west 

facing slopes because they are warmer.  

The results from this study are inconclusive, in that within single predictor models aspect 

seems to be extremely significant in determining butterfly abundance (b=1.80, se=0.488, 

t=3.68, p<0.001), yet within the multiple regression containing all parameters its explanatory 

power is considerably weaker, probably because it becomes confounded with plot identity.   

Therefore, aspect is probably important in determining butterfly abundance, but within this 

study the results remain inconclusive. However, aspect has been shown to be an important 

influence on butterfly distribution in several other studies (Davies et al. 2006; Turlure et al. 

2010), and so it remains plausible that plots with warmer aspects support higher abundances 

of the Glanville fritillary. 

The Importance of Ambient Temperature in Determining Abundance [H2:iii] 

Temperature is often considered a principle constraint on the distribution and abundance of 

all species (Krebs 1978), and more specifically, the selection of oviposition sites used by 

butterflies is often temperature related (Dennis 1993; Thomas 1993; Ashton et al. 2009).   

Several studies have shown that in general butterfly abundance is related to temperature 

(Pollard 1988; Kwon et al. 2010; WallisDeVries et al. 2011). Results from this study suggest that 

variation in Glanville fritillary abundance is highly correlated with mean maximum June 

temperature, and this concurs with the results of Roy et al (2001) who showed positive 

relationships between population growth rates and ambient temperature for most U.K. 

butterflies (out of 31 species studied), but that the most important period of the year varied 

according to species. Hence, this study also supports the findings of Diamond et al (2011) who 
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suggest that species with both narrower ranges and dietary niche breadth are likely to be most 

sensitive to temperature changes. 

The strength of temperature as a predictor of abundance can be explained by two 

mechanisms; First, adult activity is highest during June, and most oviposition occurs during this 

month. Oviposition sites are often determined by temperature (Thomas 1995b) and female 

Glanville fritillaries have a preference for hostplants in warmer locations (see selection of 

hostplants). Therefore, hostplants that are located within microclimates which, in a year of 

normal temperature are too cool, can be utilised for oviposition during warmer years. Thus an 

increase in temperature is likely to increase spatial distribution using hostplants within cooler 

aspects (Davies et al. 2006) and slopes (Weiss et al. 1988). Secondly, many species at the 

northern edge of their range are often restricted to areas with unusually warm microclimates 

(Thomas 1993), thus, in warmer years, it may be possible to use hostplants situated within 

later successional stages, for example in longer turf.  

Both these mechanisms can also explain why species at northern limits of their range often 

experience dramatic population fluctuations, as cooler locations can be utilised for oviposition 

in warmer years resulting in a population boom before temperatures return to normal 

(Thomas et al. 1994). However, there has recently been a dramatic increase in Glanville 

fritillary abundance (Figure 1.6). This can be attributed to a period of increased warming 

(Figure 1.10), although factors such as density dependence (Hanski et al. 1996; Nowicki et al. 

2009) and resource depletion (Dennis 2010) would suggest this rate of increase is unlikely to 

continue.  

Figure 1.10. June mean maximum temperatures from 1997 – 2010 at St Catherine’s Point 

lighthouse, Isle of Wight, with least squares regression line. 

 



53 

 

Assessing the Importance of Parameters in Determining Abundance [H2:iv] 

Both temperature and habitat quality were highly significant in determining abundance of the 

Glanville fritillary butterfly. Furthermore, estimates from the model initially suggested that 

temperature was the most important parameter, but fitted difference abundance values 

(accounting for variation in range of habitat qualities and temperatures) would suggest that 

habitat quality is actually almost twice as important as ambient air temperature. 

This is probably because the key factors determining oviposition are the presence and 

suitability of the hostplant, the vegetation structure and the microclimate (Fartmann 2006). 

Assuming that the distribution of hostplants is relatively constant across habitats (as Thomas 

et al (2001) suggests), then individual females can select suitably warm hostplants by adjusting 

habitat preferences despite variations in ambient air temperature. Temperature demarcation 

between habitat successional stages is so acute, that even a two degree difference in ambient 

air temperature between years would not influence oviposition locations compared to an 

increase of turf height of only a few centimetres. Indeed, the importance of habitat quality has 

possibly been understated in this study, in that it does not reflect the abundance of suitable 

hostplants within microclimates, as this will vary depending on site and weather conditions 

(Dobkin et al. 1987). Nor does it account for the size of the butterfly population in the previous 

year which may also have reduced the number of hostplants  (Dempster & Pollard 1981). 

Furthermore, variations in site conditions, for example aspect or management, are also likely 

to be extremely important in whether successional stage is an appropriate measure of habitat 

quality. Therefore, in an extreme example, a north facing grazed area will have a high value for 

habitat quality yet is highly unlikely to contain any larval webs because of temperature 

constraints. 

Fundamentally, both air temperature and habitat quality are thermal measurements across 

different scales; habitat quality as defined by Thomas et al (2001) and used in this study 

equates to a measure of variation in ground temperature or ‘microclimate’, whereas air 

temperature is measured at a greater (less precise) scale. Hence, habitat quality is more 

significant than air temperature because it operates at a much more localised scale, where it 

exerts a strong influence on both the distribution and abundance of small species like insects, 

especially those which inhabit cooler latitudes where temperature constraints are more acute. 

However, ambient air temperature remains an important predictor of abundance, and it is no 

coincidence that a majority of British butterfly species, including the Glanville fritillary, 

increase after warm summers (Pollard 1988; Roy et al. 2001).  
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Comparison of larval preferences between 1980 – 2011 [H3:i] 

Comparing larval preferences between the years 1980 and 2011 showed significant changes in 

hostplant size but not in habitat successional stage. Given the differences in mean maximum 

June temperatures (of the previous year) between when the preferences were described in 

1980 (15.3 degrees) and 2011 (18.3 degrees) it would have been expected to have observed a 

shift in habitat preferences, for example, from shorter to longer turf to compensate for higher 

temperatures.  

It is possible that the significant shift in hostplant size preferences could be a subtle effect of 

climate warming, in that the soil and vegetation around larger plants is cooler than around 

smaller plantains which could facilitate more effective thermoregulation. Alternatively, the 

preferences for smaller plantains observed during 1980 may be because of a drought effect, 

and so the larger (older) plants were avoided because they were less palatable than fresh 

young growth. However, although the aim was to compare preferences between years, the 

preferences were actually described from different sites, with no consideration given to 

variations in site characteristics (e.g. aspect or management) or hostplant densities, all of 

which could affect oviposition preferences. Therefore, although there appears to be a 

significant increase in size of hostplant preference between the years, this could be for site 

differences which have not been accounted for, for example grazing or soil type, and in reality 

preferences could therefore vary depending on variation in spatial landscape characteristics 

rather than temporal differences. Nonetheless, the lack of any significant in habitat 

preferences between years gives us confidence in the derived estimates of habitat quality that 

we used for modelling abundance. 

Recommendations for Site Management 

Results from this study suggest that the amount of suitable habitat within an area (habitat 

quality) is of paramount importance in determining both the distribution and abundance of 

the Glanville fritillary butterfly.  

Although the most important sites for this butterfly occur within soft cliff habitats where 

management is not an option, it also often occurs in fields adjacent to core colonies where, 

with the introduction of light grazing, abundance of this species could be increased 

dramatically. The clear larval preference for early successional stages means that creating a 

mosaic of (mainly short) turf heights interspersed with longer areas of vegetation which 

provide shelter and structure for hibernacula should provide suitable areas for oviposition. 
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Indeed, several downland areas (e.g. Compton and Brook Down) which are close to core sites 

and owned and grazed by the National Trust have recently been colonised by Glanville 

fritillaries, probably due to recent rises in June temperatures facilitating range expansion into 

these marginally cooler locations. Furthermore, many landowners keep livestock in areas 

adjacent to several Glanville fritillary colonies, although butterfly populations within such sites 

tend to be ephemeral due to fluctuations in grazing intensity, with overgrazed sites removing 

longer grasses which are essential for supporting hibernacula. Although it would appear 

straightforward to reduce grazing intensity to the benefit of butterflies, there remain financial 

incentives for landowners to maximise numbers of livestock, especially as production levels 

are predicted to increase in order to provide food for a growing population (Border 2012). 

However, there are two important caveats to the management recommendations of 

increasing the availability of shorter turf habitats; First, it should be remembered that the 

Glanville fritillary is probably the most thermophilous butterfly species in the U.K., and thus 

while maximising the spatial extent of warm microclimates would benefit this particular 

species, it could be at the detriment of others. This question remains an important priority for 

future research, as while the Glanville fritillary is within a group of one sixth of butterfly 

species which could benefit from the availability of early successional habitats (Thomas 1993), 

this also implies that five sixths may not, and so the trade-off between maintaining species 

diversity  and increasing (general) butterfly abundance remains complex.  

Secondly, and more importantly, summer temperatures are predicted to continue to increase 

(IPCC 2007), and so while there is currently no upper temperature threshold for oviposition, at 

some point larval preferences may shift into slightly cooler microclimates to counteract the 

increasing temperatures. Indeed, this reinforces the concept that research at greater spatial 

and ecological detail remains a priority to understand the impact of climate change (Kearney & 

Porter 2009). Nonetheless, the creation (and maintenance) of thermally diverse habitats is of 

paramount importance in conserving many butterfly species, especially those at the northern 

edge of their range within the U.K. where temperature constraints are more acute (Thomas et 

al. 2011). Certainly, the relatively high losses observed in insects populations compared to 

other species groups are often due to inappropriate or lack of management thereby reducing 

the spatial extent of early successional or suitably warm habitats (Thomas & Morris 1994; 

Thomas 1995c; Thomas et al. 2004).  

Creating a mosaic of vegetation within sites therefore remains a priority in butterfly 

conservation, as oviposition sites are often determined by temperature (Shreeve 1986; Dennis 
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2010; Turlure et al. 2010). Variation in turf heights will provide a degree of flexibility which can 

counteract ambient temperature fluctuations (Roy & Thomas 2003) and  furthermore, patches 

of longer turf will provide shelter which can be important during periods of inclement weather 

(Dennis & Sparks 2006) and provide oviposition locations for less thermally restricted species 

thus maximising butterfly diversity within sites (New 2009). 

Conclusions 

The Glanville fritillary is at the northern edge of its range within the U.K., where temperature is 

a principle constraint. Most eggs and larvae occur in the (earlier) warmer successional stages, 

although a caveat is that vegetation must be present with a sward height that is capable of 

supporting larval web structures. 

The Glanville fritillary is extremely sensitive to fluctuations in both the amount of suitably 

warm habitat within plots and ambient air temperature, and therefore both habitat quality 

and temperature are highly significant predictors of population abundance. 

To maximise abundance within sites, management creating a range of thermally diverse 

habitats is recommended. Areas which contain more heterogeneous habitats will also allow a 

degree of flexibility in choice of oviposition locations, in that variations in turf height can 

counteract year-to-year fluctuations in ambient temperatures. This could be particularly 

important for conserving insect populations if temperatures continue to increase due to 

climate warming. 
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Chapter 2) The Effects of Area, Isolation, Habitat Quality and 

Temperature on the Abundance of the Glanville fritillary along 

the South Coast of the Isle of Wight. 

Abstract 

In the last chapter I examined the importance of quality of suitable habitat and temperature in 

determining abundance of the Glanville fritillary butterfly on a single, isolated site over time. 

Both factors were significant, although the parameter of habitat quality was considerably more 

important than ambient temperature, increasing abundance 14 to 31 fold from the worst 

habitats to the best. 

However, most species rarely exist within discrete populations in total isolation from their 

neighbours. The movement of individuals from one population to another through immigration 

or emigration can potentially influence the abundance of a population, although the quality of 

the habitat and its size are also likely to be important.  

These landscape parameters inevitably operate over wider spatial scales than within a single, 

localised population, so in this chapter the number of Glanville fritillary larval ‘webs’ was 

monitored from 1996 – 2010 across 70 habitat patches along the entire south coast of the Isle 

of Wight, thereby encompassing an area which supports over 95% of its population within the 

U.K.. Web abundance was correlated with habitat quality (calculated from the distribution of 

successional stages in each patch), patch area, isolation (from the nearest occupied patch) and 

ambient air temperature. The significance of each parameter was examined, and the 

interaction between the three landscape parameters and temperature was also assessed to 

test whether the strength of relationship varied between cooler and warmer years. 

The most significant factor in predicting abundance was area, with web abundance increasing 

17 - 26 fold from the smallest patches to the largest. Habitat quality was also highly significant, 

with the best quality habitats supporting 9 – 17 fold increases in abundance compared to the 

poorest habitats. There was a significant negative relationship between isolation and 

abundance, with a decrease of 4 - 5 fold from the patches with the nearest occupied 

neighbours to the most isolated, and temperature was also a significant determinant of 

Glanville fritillary abundance, with web numbers increasing 1.88 to 3.5 fold from the coldest to 

the warmest years. Only habitat quality had a significant (negative) interaction with 

temperature, thus, as temperature increases habitat quality becomes a weaker predictor of 

abundance. 
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Understanding the importance of area, isolation and habitat quality is paramount to the 

development to an effective conservation strategy within an increasingly fragmented 

landscape. By examining these results I suggest how to maximise abundance within sites, and 

assess conservation priorities in the likelihood of increasing land fragmentation and rising 

temperatures.  

Introduction 

Organisms are not distributed randomly, nor evenly spaced across the surface of the planet 

(Krebs 1978). Differences in climate, geology, topography and land management will all 

influence the structure and composition of the surface vegetation creating different biotopes 

and habitats (Odum 1963). Within habitats, individuals go to areas where the rewards are 

highest (Sutherland 1996), and so locations with favourable local climates or aggregations of 

resources may lead to clustering of individuals facilitating the formation of discrete spatial 

populations with varying population densities (Begon et al. 1986). The advent of both the 

Theory of Island Biogeography (MacArthur & Wilson 1967), examining the importance of 

spatial configuration of real islands, and metapopulation theory (Levins 1970), which uses 

habitat islands within terrestrial fragmented landscapes, have both re-orientated research 

away from conserving species within single reserves  to the importance of conserving 

interacting populations across entire landscapes.   

Within terrestrial ecosystems, butterflies, having high fecundity rates and varying dispersal 

capabilities, have been essential to understanding the importance of the size and spatial 

arrangement of habitat patches within fragmented habitats (Brown & Ehrlich 1980; Hanski 

1991; Ehrlich & Hanski 2004). Several studies have demonstrated that populations occupying 

larger, less isolated sites have longer persistence times (Thomas et al. 1992; Hanski 1998b; 

Wilson et al. 2002), because despite discrete populations becoming extinct, they are often re-

colonised and so the whole population can persist as a balance between extinctions and 

colonisations of separate populations (Hanski 1994b). The geometric properties of habitat 

patches within fragmented landscapes and in particular the importance of both area and 

isolation have formed the basis of metapopulation theory (Hanski 1998b), which has recently 

steered landscape ecology and is frequently cited for use in conservation policy, especially in 

attempting to maximise biodiversity within remaining habitat fragments (Ross et al. 2008; 

Johst et al. 2011; Jones 2011; Leidner & Haddad 2011).  
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However, explaining the mechanisms behind changes in population density across landscapes 

are much more complex than comprehending the factors which determine occupancy (Hanski 

1999b). This is probably because species abundance can be determined by a multitude of 

factors, principally the distribution of resources (Dennis 2010), but also the habitat quality 

(Thomas et al. 2011) as well as area and isolation (Hanski 1998b) of habitat patches. 

The importance of habitat quality, in particular, has proved divisive. Research on the Glanville 

fritillary in the Åland Islands has suggested it is relatively unimportant (Moilanen & Hanski 

1998), where average population size is related to the area of habitat, although weather, more 

specifically precipitation, is also important (Hanski & Meyke 2005). However, studies in the 

U.K. have shown that habitat quality is significantly more important than both area or isolation 

in explaining abundance of the Glanville fritillary (Thomas et al. 2001), although results were 

based on surveys conducted only over two years. Similar contradictions have been 

demonstrated in other studies, with the importance of habitat quality ranging from extremely 

important (Clarke et al. 1997; Dennis & Eales 1997; Luoto et al. 2001; Fleishman et al. 2002; 

Poyry et al. 2009b) to insignificant (Rabasa et al. 2008; Bauerfeind et al. 2009; Matter et al. 

2009). One explanation for these inconclusive results is that the definition of habitat quality 

used within different studies is inconsistent (Mortelliti et al. 2010).   

Indeed, the contrasting importance of habitat quality observed from studies on the Glanville 

fritillary in the Åland Islands and the U.K. is probably because the definitions of habitat quality 

used in both studies differ so considerably. Moilanen and Hanski (1998) defined habitat quality 

by using modified patch area and isolation to create a value of extinction risk, and combined 

this with a habitat heterogeneity factor derived from vegetation classes obtained from 

Geographical Information Systems (G.I.S). Hence the value of habitat quality was the degree to 

which different habitats affected both immigration and emigration rates between patches, 

thereby affecting extinction risk. By contrast, Thomas et al (2001) used a precise description of 

the species larval preferences to estimate habitat quality (see Chapter 1). Furthermore, 

although the proponents of metapopulation ecology (principally the importance of area and 

isolation) and habitat quality (amount of suitable habitat within sites) acknowledge the 

cogency of other landscape parameters (Thomas 1991; Hanski & Ovaskainen 2000), studies of 

metapopulation dynamics have often ignored habitat quality, and vice versa. Indeed, the 

simplification (or the disregarding) of the importance of habitat quality within metapopulation 

studies is probably because patch geometric properties are mathematically less complex to 

measure and incorporate within statistical models (Mortelliti et al. 2010), although the length 

of time (e.g. field seasons) required to measure variation in habitats is an additional problem 



60 

 

(Thomas et al. 2001). However, it is imperative to clarify the importance of habitat quality 

within real landscapes, as both the metapopulation and habitat quality viewpoints suggest 

different solutions to the problems of species decline within modern landscapes (Harrison & 

Taylor 1997). Metapopulation theory advocates the importance of conserving species within 

networks of habitat patches, each patch being within dispersal range which allows persistence 

of the whole population despite some patches being intermittently vacant (Thomas & Jones 

1993; Hanski & Thomas 1994; Thomas 1995a; Meeting & McCullough 1996). The alternative 

(habitat quality) view would suggest that it is considerably more important to manage sites 

correctly, regardless of the number or proximity of other patches (Clarke et al. 1997; Thomas 

et al. 2001; Fleishman et al. 2002).  

There have also been disparities in the importance of other landscape factors in determining 

population size. Many studies have shown that larger areas support more individuals (than 

neighbouring smaller areas) (Luoto et al. 2001; Krauss et al. 2004b; Lenda & Skórka 2010; 

Rosin et al. 2011), probably because they contain more resources (for both larvae and adults) 

within them (Dennis 2010). This is also evident from studies on the Glanville fritillary on the 

Åland Islands (Nieminen et al. 2004), from which considerable evidence for the importance of 

maintaining larger areas to conserve populations within fragmented landscapes has been 

derived.  

However, several other studies have shown that abundance increases less than proportionally 

with area (Steffan-Dewenter & Tscharntke 2000; Rabasa et al. 2008). Thomas et al (2001) 

found no relationship between population density (i.e. abundance/area) in the Glanville 

fritillary in the U.K., in line with several other studies (Matter et al. 2003; Poyry et al. 2009b). 

Therefore, the relationship between area and numbers is not straightforward, possibly 

because of differences in the way that habitat patches have been defined and delimited 

(Pautasso & Gaston 2006). 

Additionally, while the evidence for reduced occupancy with increased isolation is well 

established (Thomas et al. 1992; Hanski 1999b), the effect of isolation on abundance is less 

clear. Several studies have shown that population numbers are lower on more isolated sites 

(Aviron et al. 2007; Lenda & Skórka 2010; Rosin et al. 2011) possibly because the probability of 

local extinction increases with isolation (Thomas & Jones 1993), and the chances of re-

colonisation declines with distance from nearest occupied patch (Baguette et al. 2000). 

Increasing isolation may also lead to inbreeding depression (Saccheri et al. 1998) or reduced 

genetic fitness (Hanski & Saccheri 2006), also resulting in increased extinction risk (Haikola 
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2003). However, other studies have shown very weak (Krauss et al. 2005) or no relationship 

between isolation and population size (Krauss et al. 2003b), with individuals from isolated 

patches showing no genetic differentiation from non-isolated individuals (Krauss et al. 2004a).  

It is vital to clarify the importance of these three parameters, particularly as habitat 

destruction poses the single greatest threat to the long term survival of species (Barbault & 

Sastrapradja 1995; Rands et al. 2010). Indeed, the majority of insect losses are seen as a direct 

result of biotope destruction and habitat loss (Thomas 1995b; May 2007). Most remaining 

natural communities are now significantly more fragmented than they once were (Thomas et 

al. 2004), and current rates of human population growth suggest that this trend will continue 

unabated (Reid & Miller 1989). Within the U.K., 80% of the land surface is under agriculture (of 

which 21% is arable) compared to 0.8% which are designated nature reserves (Barr 1993), and 

so very little of the U.K. is covered in semi-natural habitats (Lawton et al. 2010). Additionally, 

specific conservation measures are frequently recommended on the basis of the strength of 

metapopulation parameters in research on specific species (Drechsler et al. 2003; Fred & 

Brommer 2003; Bauerfeind et al. 2009; Guiney et al. 2010; Rosin et al. 2011), despite the fact 

the importance of each parameter could vary between species, sites (subject to landscape 

characteristics) or over time depending on climatic conditions. Given the importance of 

temperature is determining of the attractiveness of individual microsites to egg laying females, 

we might expect a positive relationship between annual temperature and the  proportion of 

any given patch that is suitable for oviposition (i.e. a positive interaction between temperature 

and area in determining abundance). Additionally, habitat quality could become a less 

significant predictor with increases in temperature, as oviposition locations are not restricted 

to such thermally constrained microclimates, and so the suitability of patches of low and 

intermediate quality is likely to be higher (i.e. a negative interaction between temperature and 

habitat quality in determining abundance). 

Therefore, in this study, I examine the importance of area, isolation and habitat quality and 

their interactions with temperature on the abundance of the Glanville fritillary across 70 

habitat patches along the south coast of the Isle of Wight from 1996 to 2010. In particular I 

test the following hypotheses;  

1) I determine which of the parameters of air temperature, habitat quality, area or 

isolation are most important in determining abundance of Glanville fritillary larval 

webs across 803 observations (patch – year combinations) over time, along the south 
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coast of the Isle of Wight. I predict that air temperature, habitat quality, and area will 

be positive, and patch isolation negatively related to abundance.  

2) The importance of habitat quality, area and isolation is predicted to vary with annual 

temperature. These effects are expected to be expressed as i) a positive interaction 

between patch area and annual temperature and ii) a negative interaction between 

patch habitat quality and temperature. Isolation is not expected to have any significant 

interaction with temperature. 

 

Methods 

To summarise, I monitored the number of Glanville fritillary larval ‘webs’ and compiled site 

characteristics (area, isolation and habitat quality) from 803 observations (patch – year 

combinations) across the south coast of the Isle of Wight from 1996 to 2010, following 

protocols described in the previous chapter. Temperature data was acquired from the 

Meteorological Station at St Catherine’s Point to provide a matching annual estimate for 

ambient air temperature for each year.  

All parameters (area, isolation, habitat quality and ambient air temperature) were initially 

modelled against butterfly abundance within both multiple regression and mixed effect 

models (with random effects) to determine the significance of each parameter and to assess 

which factor was most important. Secondly, variability in ambient temperature is predicted to 

influence the importance of landscape factors and so the interactive relationship between 

area, isolation and habitat quality and matching annual ambient temperatures were also 

evaluated within separate multiple regression and mixed effect models.   

Study Species 

The Glanville fritillary is a univoltine species in the U.K., with a typical flight period lasting from 

May to July. Eggs are laid in clusters on the underside of a Ribwort plantain leaf, with most 

oviposition occurring in June. During summer the larvae live and feed gregariously and spin a 

silken web around the plantain leaves. They enter diapause within the web during early 

autumn, and emerge the following spring, when they again feed communally and spin a 

conspicuous web around plantains before pupating in April. 
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Study Sites 

A survey of Glanville fritillary larval webs in 1979 (Simcox & Thomas 1979) repeated in 1996 

(Thomas et al. 2001) established that over 95% of the British population of Glanville fritillaries 

occurred on 8 sites along the south coast of the Isle of Wight (see Figure 2.1 and Table 2.1), 

between Compton Bay in the west, and Red Cliff at the south-eastern end of the Island (Asher 

et al. 2001).  

Figure 2.1. A map of study sites on the Isle of Wight. 

 

 

Table 2.1. A list of study sites, mean number of patches per year and their location on the south 

coast of the Isle of Wight. Sites listed from west to east.  

Site Mean Number of Patches per Year Easting Northing 

Compton 9.1 371 848 

Brook  4.9 387 831 

Chilton  8.9 410 821 

Grange  3.8 421 817 

Shepherds Chine 11.5 447 798 

St. Catherine’s Point 5.6 499 753 

Binnel Point 5 525 758 

Red Cliff 4.7 620 854 
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Four of these sites (Brook, Chilton, Grange and Shepherds) are centred on chines or riverine 

valleys, where small land slippages and erosion produce patches of bare ground which create 

ideal breeding habitat for Glanville fritillaries. However, other sites (Compton and Red Cliff) are 

comprised of more dynamic and larger landslips, which often create and remove suitable 

habitat patches between years. Finally, two sites (St Catherine’s Point and Binnel Point) 

contained large areas of semi-permanent grassland. 

Sites were defined as any area which contained Glanville fritillary populations in both 1979 

(Simcox & Thomas 1979) and 1996 (Thomas et al. 2001), and were separated in space from 

other sites by areas in which larval webs did not usually occur (non-breeding habitat). The 

dramatic fluctuations of the Glanville fritillary  population at Binnel Point (see Chapter 1), 

meant that in occasional population ‘boom’ years very small numbers of larval webs occurred 

within this non-breeding habitat, but this occurred infrequently enough (≤ 2 years out of 15) to 

identify ‘sites’ as areas where breeding is normally restricted and continuous throughout the 

study period. The exception is the most isolated site, Red Cliff, which is included as a site 

throughout this study (as it contains suitable habitat) despite the Glanville fritillary population 

going extinct there in 2000, and only being recolonized in 2006.  

Patch Delimitation 

To facilitate accurate monitoring, each site had been sub-divided into habitat patches during 

previous surveys (Simcox & Thomas 1979; Thomas et al. 2001). Boundaries between patches 

were defined in terms of discontinuities in geomorphology, aspect and habitat, such that 

individual patches were more-or-less homogenous in these features (Simcox & Thomas 1979). 

However, the number of patches deemed to be in existence varied each year due to the 

dynamic nature of the habitat, as regular landslips can both create and destroy patches as well 

as making some unsafe to survey.  

Furthermore, due to recent increases in spring temperatures (see Figure 1.10, Chapter 1), 

many unoccupied patches in previous surveys (i.e. too cool in aspect or areas containing high 

percentages of habitats with longer turf heights), are increasingly occupied (also see Davies et 

al. 2005). Therefore, the distance between occupied patches has decreased, and so within this 

survey, a high percentage of occupied patches are adjacent. This patch definition is 

comparable with Hanski’s et al (1994) study, but at odds with Thomas et al (2001), who used 

75 metres isolation distance as the criterion for recognising a patch (i.e. many occupied 

patches recognised here would have been considered the same patch by Thomas et al).   
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Glanville fritillary larval ‘web’ survey 

Since 1996, every patch (area of potentially suitable habitat) was surveyed for the presence of 

Glanville fritillary larval webs by walking briskly along a series of imaginary lines 5 metres apart 

until the entire area had been surveyed (as in Chapter 1). Webs were recorded within an area 

of approximately 2.5 metres square, estimated by eye, perpendicular to the observer in the 

way that most adult butterflies are recorded (Pollard & Yates 1993; Botham et al. 2009).  

Glanville fritillary abundance was calculated by counting the total number of larval ‘webs’ 

observed within each habitat patch during March, because this is when the webs are largest 

and most conspicuous (Simcox & Thomas 1979). It is not possible to conduct accurate 

population surveys during the summer (when the eggs are laid) due to detectability issues as 

early larval instars create small, inconspicuous webs (e.g. Hanski et al (1995) estimated 

detectability of larval webs at 35% during the summer in Åland).  

Landscape variables 

Area 

Each patch was mapped and its area measured during 1996 and 1997. Throughout subsequent 

annual surveys, area was re-measured for patches whose dimensions had clearly changed due 

to cliff falls or land slippages. In 2010, patch areas were re-measured using a G.P.S. The 

perimeter of each habitat patch was walked with a G.P.S. and the route recorded. This route 

was then downloaded into ArcGIS as a shapefile, producing a patch outline. The area was 

calculated for each patch (in metres squared) by tracing over the outline using the measuring 

tool within the ArcGIS toolbox.  Patch area ranged from 45m2 (the smallest) to 2500m2 (the 

biggest) with a mean patch size of 3340m2 and median of 1800m2. 
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Isolation  

Isolation was calculated as the distance to the nearest occupied patch (following Hanski 1998b; 

Thomas et al. 2001) by measuring the distance from nearest edge to edge in metres, using the 

measuring tool within the ArcGIS toolbox. Isolation distances therefore vary annually 

depending on number of patches occupied within any particular year. Pairs of patches (as 

defined in Patch Delimitation above) where the edges abutted were considered to be isolated 

by 1 metre. Isolation ranged from 1m to 10000m with a mean of 489.3m separating occupied 

patches (and median of 1m). 

Habitat Quality 

Habitat quality was defined and estimated from Thomas et al (2001) – see Chapter 1 (Table 

1.2), based on the percentage cover of each of five successional stages. The time taken to 

estimate the amount of each successional stage within each patch depended on its size, 

ranging from several minutes for smaller patches (<100m2) to up to 30 minutes for larger 

patches. Percentage cover was estimated during March, but prior to the larval survey so that 

habitat quality scores remained uninfluenced by the number of larval webs recorded within 

each patch. Patch habitat quality ranged from a score of 0 (for the lowest quality habitats) to 

48 (for the best) with a mean quality score of 10.48 and median of 9.05. 

Regional Temperature Data 

Weather data were obtained from the Meteorological Office station at St Catherine’s Point 

Lighthouse (SZ497753). The June mean maximum temperature was used in the analysis (i.e. 

the mean of the daily maxima; a measure of the warmth of June days), as June coincides with 

the peak adult emergence and egg laying period. This data was used to assess the relationship 

between temporal variation in ambient air temperature and larval web abundance, and to test 

interactions with other parameters. Air temperature ranged from 16.2 degrees (1998 and 

2002) to 18.4 degrees (2006), with a median of 17.3 degrees. 

Statistical Analysis 

The data comprise 803 estimates (patch-year combinations) of larval web abundance on 70 

patches at 8 sites over 15 years. Habitat quality, area and isolation all vary among patch - year 

combinations, although the inter-annual variation in all three variables is small. Ambient 

temperature varies among years only. 
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The aim of this study was to determine Glanville fritillary abundance (number of larval webs) 

as a function of annual variations in temperature (mean maximum June temperature from the 

previous year - i.e. the temperature at the time the eggs were laid), area, isolation and habitat 

quality and assess which factor was most important. Additionally, variation in annual 

temperature was tested as an interaction with the other parameters, by using both multiple 

regression and mixed effect models. Prior to the analysis, both the parameters of area and 

isolation were transformed by natural logarithm.  

Initially, abundance was modelled as a linear function of temperature, area, isolation and 

habitat quality using General Linear Model (GLM) with quasipoisson errors as the data were 

overdispersed. Significance for each parameter was assessed using an F-test (α=0.05) to 

compare pairs of nested models (with and without the parameter of interest). Secondly, as the 

data comprises repeated measures across 803 patch – year combinations (with temperature a 

constant between patches and sites), all parameters were included in a Generalised Linear 

Mixed Effects (GLME) model with patch, site and year as random effects to allow for a lack of 

independence among individual abundance estimates (Cowlishaw et al. 2009; Isaac et al. 

2011b), and to control for variation among patches not accounted for by the landscape 

parameters. Patch identity is nested within site, and year is crossed with the other random 

effects. The models also included a random effect at the observation level (repeat measures 

on the same patch), to control for the fact that abundance data were overdispersed (Roy et al. 

2012). Poisson errors were used in the mixed effect model as the data comprised of actual 

counts of larval webs, rather than using normal errors on log-transformed counts (O’Hara & 

Kotze 2010). Significance for each parameter was also assessed using p values (α=0.05) from 

Wald Z tests, as recommended by Bolker et al (2009). These models assessed the importance 

of each parameter in determining butterfly abundance [H1]. All models were fit in R, with 

GLMEs employing the lme4 package (Bates & Maechler 2010; R Development Core Team 

2010).  

Secondly, to the models above I added an interaction between temperature and each of the 

other three fixed effects (area, isolation, quality) as single, separate predictors, to ascertain 

whether the strength of the relationship of the three landscape factors varied depending on 

air temperature [H2]. As in the previous chapter, I estimated the effect sizes as the range of 

fitted abundances over the range of observed variation in the parameter of interest. 
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Therefore, I ran a total of eight models: a GLM and a GLME model, both including 

temperature, area, isolation and habitat quality as explanatory variables [H1]. A further three 

GLMs (one for each landscape parameter – area, isolation and habitat quality) and three 

GLMEs models were fitted to explore interaction effects between landscape parameters and 

temperature [H2]. 

Results 

The results show that there are statistically significant, strong positive relationships between 

number of Glanville fritillary larval webs and habitat quality, ambient temperature and area. 

There is also a statistically strong negative relationship between web numbers and isolation 

(Figure 2.2 and Tables 2.2 & 2.3). 

Figure 2.2. A scatterplot showing the relationship between Glanville fritillary numbers (logex) and 

habitat quality, temperature (mean maximum June temperature at the time the eggs were laid), 

area (logex) and isolation (logex). 
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Table 2.2. The results of a multiple regression (GLM) of Glanville fritillary web numbers against 

habitat quality, temperature, isolation and area (with quasipoisson errors). Dispersion parameter = 

57.1. 

 
Estimate Std. Error t value P value 

Intercept -5.917 1.686 -3.508 <0.001 

Habitat Quality 0.046 0.006 7.267 <0.001 

Temperature 0.288 0.095 3.033 <0.001 

log(Isolation) -0.152 0.032 -4.773 <0.001 

log(Area) 0.453 0.055 8.202 <0.001 

 

Table 2.3. The results of a linear mixed model of Glanville fritillary web numbers against habitat 

quality, temperature, isolation and area (with poisson errors and observation-level random effect).  

 Estimate Std. Error z value P value 

Intercept -13.453 4.918 -2.735 0.006 

Habitat Quality 0.060 0.012 5.156 <0.001 

Temperature 0.574 0.274 2.099 0.036 

log(Isolation) -0.174 0.041 -4.220 <0.001 

log(Area) 0.513 0.180 2.842 0.004 

 

Web abundance was higher in areas of better quality habitats in both the GLM (Table 2.2) and 

GLME (Table 2.3). This suggests that for the Glanville fritillary on the ‘average’ site, an increase 

of 1 on the habitat quality scale is associated with an increase of 4.7% (e0.046 = 1.047) in the 

GLM or 6.2% (e0.06 = 1.062) in the GLME, corresponding to a 9 - 18 fold difference in fitted in 

abundance between the highest and lowest quality habitat (observed range 0-48).  

An increase in ambient air temperature also increases web abundance within both the GLM 

and GLME. Thus, across the range of temperatures (2.2 degrees) web counts increase by a 

factor of e0.288*2.2 = 1.88 (in the GLM) or e0.574*2.2 = 3.5 (in GLME) fold fitted difference in 

abundance from the coldest to the warmest years.  

Area also shows a strong, positive relationship within the GLM and the GLME. Thus, an 

increase of 1 on the ln(area) scale corresponds to an increase in abundance, on the ‘average’ 

site, of between e0.45 = 57% (GLM)  and e0.51 = 67% (GLME), or  45% - 51% for a doubling of 

area. From the smallest patch (45 m2) to the largest (25000 m2), this corresponds to an 

increase of over 17-26 fold increase in web abundance. 
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Isolation has a strong negative influence on abundance within the GLM and GLME. An increase 

of 1 on the ln(isolation) scale corresponds to an change in abundance on the ‘average’ site of 

between e-0.15 = -14% (GLM)  and e-0.17 = -16% (GLME), or  15% - 17% decrease for a doubling of 

isolation. From the most isolated patch (10000 m) to the least isolated (1 m), this corresponds 

to a 4-5 fold difference in web abundance.  

The results from the GLME also suggest that the largest component of variation is patch within 

site (50% of the total), site contributes 16% and year just 9%, with the remainder attributable 

to observation-level variance. Therefore, the inter-annual variation (modelled in Chapter 1) is 

the smallest proportion of the variance total, and by substantially increasing the number of 

sites, and particularly patches within sites, this multisite study can explain a considerably 

higher proportion of the variation in abundance of the Glanville fritillary. 

Interactions with Temperature 

Although area and isolation showed no significant interactions with temperature, habitat 

quality did show a significant negative interaction both within the GLMs (Table 2.4) and GLMEs 

(Table 2.5). 

Table 2.4. Results of separate interactions models between temperature and other parameters 

using GLMs, with quassipoisson errors.  

  Estimate Std. Error t value P value Dispersion 

Temperature: Habitat Quality -0.054 0.013 -4.106 <0.001 70.5 

Temperature: log(Isolation) 0.003 0.056 0.055 0.956 85.4 

Temperature: log(Area) -0.002 0.092 -0.018 0.986 70.5 

 

Table 2.5. Results of separate interactions between temperature and other parameters using 

GLMEs, with poisson errors and observation-level random effects. 

  Estimate Std. Error z value P value 

Temperature: Habitat Quality -0.076 0.014 -5.304 <0.001 

Temperature: log(Isolation) 0.033 0.041 0.810 0.418 

Temperature: log(Area) 0.052 0.061 0.846 0.397 
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The abundance – habitat quality relationship is approximately 9% shallower during warmer 

years (cooler years: b=1.105 (GLM) and b = 1.44 (GLME), warmer years: b=1.00 (GLM) and b = 

1.292 (GLME)). Therefore, habitat quality is a weaker predictor of abundance in warm years 

than cold ones.  

The results from the GLME also suggest that the largest component of variation in abundance 

(from the temperature – habitat quality interaction model) is patch within site (51% of the 

total), then observation (21%), site (20%) and finally year (8%). 

Discussion 

The aim of this study was to determine which of the landscape characteristics of habitat 

quality, area and isolation as well as air temperature were the most important in determining 

abundance of Glanville fritillary larval webs across eight sites along the south coast of the Isle 

of Wight, and to assess any interactions between temperature and the other parameters.  

The Glanville fritillary has previously been intensively studied in both the Åland Islands and the 

U.K.. Both studies have suggested contrasting results as to the importance of these landscape 

parameters. However, this study uses a much longer time series (15 years) than previous 

studies. The results show that area is the most important parameter in determining 

abundance, then habitat quality, isolation and finally temperature.  

Due to the parameter of regional air temperature operating at higher hierarchical scales than 

the more localised factors of area and habitat quality, it was predicted that these landscape 

parameters would show an interactive effect with temperature. In particular, because 

temperature determines oviposition locations (Chapter 1), we predicted that the slope of area 

would be closer to one in warmer years, as hostplants within cooler areas of the patch could 

be utilised. We also suggested that habitat quality would be a weaker predictor in warmer 

years, as oviposition would not be primarily restricted to the earliest (warmest) successional 

stages. However, the results showed that only habitat quality had a significant (negative) 

interaction (i.e. quality is less important in warm years).  

Area 

Area is the most significant parameter in determining abundance within this study. Glanville 

fritillary larval web abundance increase 17-26 fold from the smallest patches to the largest, 

with a doubling of area equating to an increase of 45% - 51%. Thus, if the conservation aim 



72 

 

were to double the number of individuals within a habitat patch, then this could theoretically 

be achieved by extending patch size by four times its original size. 

The results from this study show that there is a strong positive relationship between 

abundance and area (0.45<b<-0.51). Previous research has often shown a positive area – 

abundance relationship for many species (Simberloff 1976; Hanski & Gyllenberg 1997; Matter 

et al. 2002), but within butterfly studies the strength of this relationship can probably be 

explained by the importance of larval host plants, and in particular their ‘suitability’ (Dennis 

2010). The abundance of many butterfly species increases with larger amounts of larval host 

plant at local scales (Munguira et al. 1997; Luoto et al. 2001; Matter & Roland 2002; Auckland 

et al. 2004; Krauss et al. 2004b; Eichel & Fartmann 2008) hence bigger patches (containing a 

relatively even distribution of hostplants) will support larger populations. However, because 

several butterfly species select hostplants on the basis of temperature (Thomas 1983a; Ashton 

et al. 2009; Thomas et al. 2011), then encompassing a larger area is likely to contain more 

heterogeneous habitat and thus some host plants are likely to be in locations that are 

unsuitably cool to utilise (Chapter 1). As a result, abundance increases less than proportionally 

with area (b < 1), except in areas where temperatures are relatively spatially constant e.g. 

within homogeneous habitat or on south facing slopes. The strength of the area – abundance 

relationship is therefore likely to depend on local site characteristics or the species studied, 

also explaining why specialist species may be more sensitive to increases in area (Krauss et al. 

2003a) and more vulnerable to extinction within smaller patches than generalists (Krauss et al. 

2003b). 

In this study, we suggest that the strength of the area - abundance relationship is because 

many of the habitat patches are on south facing soft cliff early successional habitats which 

(more importantly) are areas where the temperature is suitably warm, and so the majority of 

host plants within these patches are suitable for oviposition (see Chapter 1). We would not 

expect such a strong relationship if the sites encompassed more topographically 

heterogeneous areas, as variations in thermal gradients would reduce the likelihood of 

oviposition within cooler areas, thus producing a shallower area – abundance slope. 

There was no significant interaction between temperature and area. If such a relationship does 

exist, we might have failed to detect it primarily because many of the habitat patches are 

south facing, early successional habitats, and so temperature is unlikely to be restrictive factor 

in determining suitability of host plants.  

 



73 

 

Habitat Quality 

Results from this study suggest that habitat quality is also important, with the best quality 

habitats supporting 9 – 17 fold increases in population abundance compared to the poorest 

habitats. Therefore, abundance of the Glanville fritillary is considerably higher in patches 

which contain larger amounts of earlier (warmer) successional stages. This is because the 

temperature of the hostplant is of paramount importance in determining oviposition locations 

(Weiss et al. 1988; Renwick & Chew 1994), and so female Glanville fritillaries actively seek out 

warmer habitats and microclimates in which to lay their eggs (see Chapter 1).  

The spatial extent of warmer microclimates is important because they facilitate the effective 

thermoregulation and development of larvae (Bryant et al. 2002; Burke et al. 2005; Ashton et 

al. 2009), particularly in more northerly latitudes where temperature constraints are more 

acute (Thomas 1993). Indeed, the importance of habitat quality may actually have been 

understated in this study, as it only describes the availability of successional stages within a 

patch and does not account for variations in aspect which could reduce temperature 

sufficiently to discourage oviposition (Weiss et al. 1988). Therefore, patches could have a high 

habitat score, yet be of a northerly aspect and so unlikely to contain larval webs. Aspect, 

combined with extinction on the most isolated site (Red Cliff), can explain why several patches 

have high habitat quality scores but no larval webs (Figure 2.2). 

Habitat quality has often been omitted or ignored in many studies, possibly because it can be 

difficult to define or describe objectively (Mortelliti et al. 2010). However, there is increasing 

evidence that habitat quality (availability of suitable microclimates) is of paramount 

importance in determining abundance (Turlure et al. 2010; Choutt et al. 2011; Smee et al. 

2011). Indeed, the fact that the abundance of so many species can be correlated to spatial 

extent of suitable larval habitat (Thomas et al. 2011), would suggest that increasing habitat 

quality remains a priority for conserving remaining populations within fragmented habitats. 

Certainly, the decline of many butterfly species can be attributed to a lack of management 

within sites, thus reducing the availability of earlier, warmer successional stages on which 

many larvae depend for effective development (Thomas 1991, 1995c). Despite this, the 

conservation policy for fragmented landscapes often focuses on the structural connectivity of 

landscapes (Boitani et al. 2007; Hodgson et al. 2009), often overlooking the detrimental effect 

of habitat degradation within sites (Thomas et al. 2001).  
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The results also showed a significant negative interaction between temperature and habitat 

quality. Therefore, habitat quality becomes a weaker predictor of abundance (the abundance – 

habitat quality relationship is approximately 9% shallower) during warmer years.  

This supports evidence from previous studies that species may shift oviposition locations 

within habitats depending on ambient temperature (Roy & Thomas 2003). Furthermore, it also 

suggests that Glanville fritillaries choose oviposition sites in marginally longer turf to 

counteract increasing temperatures, but the strength of the relationship is shallow enough not 

to observe a noticeable shift in habitat preferences (Chapter 1), probably because temperature 

declines with increases in turf height are so acute. 

This has conservation implications for many species which are thermally limited, in that as 

temperatures are predicted to increase (IPCC 2007), the management recommendations 

prescribed several decades ago (when summers were cooler) to increase specific species 

abundance within sites may not need to be so thermally restrictive (e.g. Thomas 1983a). 

However, it would be premature to advocate a universal relaxation of grazing regimes on the 

basis of this evidence, and creating habitat mosaics within sites remains the current priority. 

Heterogeneous habitats are more likely to allow species to compensate for extremes in 

temperature for both oviposition and nectaring locations, and also more likely to provide 

shelter during inclement weather (Dennis 2010). Therefore, because of the significance of 

temperature to invertebrate distribution and abundance, it should be of paramount 

consideration in any long term management strategy, although research at greater spatial and 

ecological detail remains a priority to determine the likely implications of climate change 

(Kearney & Porter 2009). 

Isolation 

Glanville fritillary larval web abundance decrease 4 -5 fold from the patches with the nearest 

occupied neighbours to the most isolated patches, with a doubling of isolation distance 

equating to a decrease of 15% - 17%. Thus, if the conservation aim were to double the number 

of individuals within a habitat patch, then this could theoretically be achieved by reducing 

isolation by six times its proximity to an occupied patch.  

Although the evidence for increased isolation of habitat patches resulting in decreased 

occupancy is well established (Dennis 1998; Hanski 1998b; Betzholtz et al. 2006; Lenda & 

Skórka 2010), the effect of isolation on abundance remains equivocal. Several studies have 

shown isolation to have a negative effect on abundance (WallisDeVries & Ens 2010; Rosin et al. 
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2011), although other studies have shown that isolation has no effect (Krauss et al. 2004b; 

Krauss et al. 2005). 

In this study, we suggest that the observed (negative) isolation - abundance relationship could 

be partly explained because many of the habitat patches are approximal, with over half of the 

patches having edges that abutted other occupied patches. Additionally, the importance of 

isolation may have been amplified by the extinction at Red Cliff, in that all patch-year 

combinations within this site between 2000 – 2005 had high isolation (10,000m), and 

contained no larval webs, such that the abundance and isolation data are not wholly 

independent. Certainly, the strength of isolation as a parameter will vary depending on patch 

definition and delimitation (Bowler & Benton 2005), and describing isolation as distance to 

nearest occupied patch (as opposed to nearest patch) could compromise the independence of 

isolation from abundance. However, a measure of distance to nearest patch (whether 

occupied or unoccupied) is normally only used when the aim is to predict occupancy (Moilanen 

& Nieminen 2002), and more importantly, both previous studies on the Glanville fritillary have 

concurred that higher numbers occur in the least isolated patches, regardless of whether 

distance to nearest patch or occupied patch measurements were used (Hanski et al. 1994; 

Thomas et al. 2001). Therefore, the results from this study are consistent with research on 

several other butterflies (WallisDeVries & Ens 2010; Rosin et al. 2011), as well as previous 

intensive studies of the Glanville fritillary in both the U.K. and the Åland Islands.   

 Temperature 

Temperature is also a significant determinant of Glanville fritillary abundance, with web 

numbers increasing 1.88 to 3.5 fold from the coldest to the warmest years. 

The importance of air temperature can be explained by examining the adult preference for 

ovipositing on hostplants in the warmest locations (Chapter 1). An increase in ambient 

temperature is likely to improve the suitability of hostplants growing in cooler areas, for 

example in longer turf or cooler aspects. However, the importance of temperature is weaker 

than expected for several reasons; first, air temperature is recorded at St Catherine’s 

Lighthouse which is located up to 13 kilometres away from several of the sites, thus it may not 

be an accurate reflection of air temperature at these more distant locations. Second, a 

difference of 2.2 degrees is unlikely to cause a major shift in habitat preferences (see 

temperature beneath habitat stages Fig 1.5, Chapter 1), and so females could select hostplants 
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of a suitable temperature by adjusting habitat preferences by a couple of centimetres (within 

the same successional stage) – as the effect of turf height is more acute than air temperature.  

Furthermore, this study does not account for variation in hostplant abundance (Gutierrez & 

Thomas 2000; Krauss et al. 2004b; Bauerfeind et al. 2009), local site characteristics or density 

dependence (Dempster & Pollard 1981; Dobkin et al. 1987; Dennis 2010), all of which will 

determine the size of the population on a patch at a particular time. The degree of synchrony 

in population abundance between patches and sites is therefore likely to vary considerably. 

Certainly, numbers are significantly higher in warmer years, but inter-annual variance in web 

numbers (the only variation that can be attributed to temperature) only accounts for a small 

amount of variation in abundance (9%), the majority of which can be explained by variation in 

patch characteristics (50%).  

Recommendations for Site Management  

Habitat destruction is undoubtedly the greatest threat to invertebrates worldwide and habitat 

fragmentation is highly detrimental to remaining invertebrate populations (Haslett 2008).  

The results from this study demonstrate that to maximise abundance for the Glanville fritillary 

butterfly, sites should be as large as possible, be managed to create microclimates warm 

enough to allow successful development of larvae, and to a lesser extent be within proximity 

of other occupied sites. Fundamentally, the evidence from this study supports the 

conservation principle of “MORE, BIGGER, BETTER AND JOINED” as advocated by Lawton et al 

(2010).  

Therefore, the recommendations from this study are not purely specific to conserving the 

Glanville fritillary, but are often seen as a conservation panacea to minimise invertebrate 

losses and maximise abundance within all fragmented landscapes. However, within the U.K 

and particularly in southeast England, most reserves are already established within a 

predominantly agricultural landscape, and so advising to increase site area or reduce site 

isolation is of limited value. Nonetheless, it remains desirable to encompass as large an area as 

possible, as larger sites, incorporating topographically diverse areas, are likely to provide a 

greater spatial extent of both consumable and ancillary resources which are likely to support 

larger populations (Hodgson et al. 2009; Dennis 2010). In this study, the parameter of area was 

the most important factor in determining abundance. The strength of this relationship can 

partly be explained by the high degree of homogeneity of patches, in that most are south 

facing and so temperature constraints are less likely to influence hostplant suitability, so a 
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relatively high proportion of the patch will be suitable for oviposition. Conversely, larger areas 

containing various slopes and aspects are likely to exhibit a shallower area – abundance slope, 

but the benefit will be that species can use resources in various locations depending on 

temperature or weather, thus the likelihood of population stability and persistence times are 

increased (Holt et al. 2004; Oliver et al. 2010). Indeed, species which can utilise all consumable 

resources within a patch may exhibit boom and bust population cycles due to resource 

depletion (Dempster & Pollard 1981).  

As well as being spatially heterogeneous, it is also important for sites to contain thermally 

diverse environments within habitats, or more specifically variations in microclimates (Dobkin 

et al. 1987). In this study, there is a strong relationship between habitat quality (particularly 

availability of the earlier successional stages) and Glanville fritillary abundance. However, 

many species within the U.K are restricted to early successional stages, and the demise of 

many species can be correlated to the decline of management within sites which prevents 

succession from reducing ground temperatures sufficiently to discourage oviposition (Thomas 

1991). Despite the evidence that the importance of habitat quality varies considerably 

between studies, there has recently been increasing substantiation for its inclusion within 

landscape studies (Turlure et al. 2010; Choutt et al. 2011), particularly as different organisms 

exploit and perceive their environment at different spatial scales. As invertebrates are so 

small, they often exist within very small localised populations occupying areas less than two 

hectares in size (Thomas 2005), so evidently variation in habitat should also be measured at 

this scale. Despite this, most studies do not include fine scale habitat information (Suggitt et al. 

2011), and therefore research at greater spatial and ecological detail remains a priority 

(Kearney & Porter 2009).  

The small size of most invertebrates can also inhibit movement between habitats. Hence, even 

small distances across ‘non-habitat’ (for example between 1 metre and 1 kilometre) can act as 

significant barriers and be prohibitive to dispersal (Thomas 1991). The results from this study 

would also suggest, with certain caveats (see above), that habitat patches in close proximity to 

other occupied patches are more likely to support higher abundances, although the strength of 

this relationship is also likely to depend on how habitat patches are defined and delimited 

(Bowler & Benton 2005). Certainly, the evidence for longer persistence times within less 

isolated sites is unequivocal (Thomas & Harrison 1992; Thomas et al. 1992; Hanski et al. 1995; 

Thomas et al. 2001; Johst et al. 2002; Wilson et al. 2002; Baguette et al. 2003). Thus, ideally 

sites should be within a species dispersal distance for several reasons. First, a degree of genetic 

variability from immigrants will reduce the likelihood of inbreeding depression and increase 
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‘fitness’ (Hanski 2011b; Severns et al. 2011), and secondly, if a population does become extinct 

then close proximity to other occupied patches will increase the probability of re-colonisation 

(Vandewoestijne et al. 2004; Leidner & Haddad 2011). However, there is a caveat to this advice 

in that the importance of isolation as a determinant of abundance is considerably less than 

either area or habitat quality, and so priority should be given to these first. Additionally, it is 

possible that isolation is less significant within larger sites as intra-patch movements may 

reduce the need for inter – patch movements, and this question remains an important priority 

for future research.   

Climate change is also a serious threat to many species, but is particularly relevant to 

invertebrate conservation due to their sensitivity to changes in temperature (Thomas et al. 

2006; Heikkinen et al. 2009; Wilson & Maclean 2011). Although current estimates to the 

amount of warming vary, for example depending on emissions, most researchers now agree 

that global temperatures will continue to increase and therefore needs to be considered in 

future conservation policy (Morecroft et al. 2011).  

Temperature increases are predicted to induce range shifts (Hill et al. 2002; Hellmann et al. 

2008; Chen et al. 2011), and alter habitat associations (Davies et al. 2006; Ashton et al. 2009; 

Oliver et al. 2009), but a key question remains whether species will be able to keep track of 

changes within an increasingly fragmented landscape (Hill et al. 2001; Warren et al. 2001; 

Franco et al. 2006). Therefore, increasing landscape connectivity has been perceived as the 

best solution to ameliorate the impact of climate change (Crooks & Sanjayan 2006; Heller & 

Zavaleta 2009). However, given that isolation is often a weaker predictor of abundance 

compared to area and habitat quality (as in this study), the effectiveness of focussing purely on 

connectivity as a remedy to climate change remains debateable (Hodgson et al. 2009). Indeed, 

this illustrates the need to evaluate the processes which allow population persistence at both 

small and large scales, as over-generalisations could lead to both costly and inappropriate 

conservation measures.  

Certainly, the results from this study would advocate increasing the size of protected areas, 

and maintaining and in some cases increasing heterogeneity within (well managed) habitats as 

a priority. This would not only mitigate the effects of climate change, but is also likely to 

increase abundance, as well as enhancing population stability and persistence within 

fragmented landscapes.  
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Conclusions 

Comprehending the various factors that determines species abundance within fragmented 

habitats remains a priority for conservation.  

In this study, the landscape parameters of area, isolation and habitat quality and ambient air 

temperature were correlated against abundance of Glanville fritillary larval webs within 803 

habitat – patch observations along the south coast of the Isle of Wight, thereby encompassing 

95% of its British distribution. The interaction between these landscape parameters and 

temperature was also assessed.  

The results suggested that area was the most important parameter, followed by habitat 

quality, then isolation and finally temperature. Only habitat quality had a significant 

interaction with temperature, which suggested that as temperature increased habitat quality 

became a weaker predictor of abundance. This was probably because as temperature 

increases oviposition locations are not restricted to such thermally restrictive successional 

stages. 

To maximise abundance within fragmented habitats we suggest the priority is for sites to be as 

large as possible, and to be managed to create heterogeneous, thermally diverse habitats. Not 

only is this likely to increase abundance, but also encourage population stability and 

persistence, and may also ameliorate the impact of climate warming.  
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Chapter 3) Defining the Principle Determinants of Butterfly 

Abundance on Chalk Grassland across Southeast England.  

Abstract 

Why abundance varies between species and populations is a fundamental question in ecology. 

Food availability has been shown to limit population density for many terrestrial species, but 

the evidence for insects remains mixed. This is probably due to differing stages of the life cycle 

requiring different food resources, with most insect larvae feeding on plant tissues and adults 

feeding on nectar. This is further complicated by adults restricting oviposition to a subset of 

foodplants within a ‘suitable condition’. 

In this chapter, I examine the importance of the principle food resource for both larvae (host 

foodplants) and adults (nectar plants), by comparing mean adult butterfly abundance with 

percentage cover of host and nectar plants across 54 grassland sites in southeast England. 

There was a significant positive relationship between butterfly abundance and both host and 

nectar plant abundance. However, host plant abundance was more important than nectar in 

determining population density. 

The strength of relationship between butterfly and plant abundance also depends on other 

factors, including species’ life history traits and variations in site conditions. For host plants, the 

relationship with abundance was stronger for species that use fewer host and nectar plants 

(narrower dietary niche breadth), were habitat specialists and species with low mobility. The 

hostplant-abundance relationship is also steeper on sites with cooler aspects. However, there 

were no significant interactive relationships between butterfly abundance and nectar plants.  

By further understanding the relationship between butterflies and their associated plants we 

can propose management advice to maximise butterfly abundance within sites. These results 

show that the abundance of virtually all butterfly species could be increased through 

management for their hostplants. On this evidence, we suggest the priority should be 

managing sites to attain a maximum number of host plants (preferably within suitably warm 

conditions), although areas of longer turf will also provide nectar sources (which are important 

for several species), and compensate for extremes in temperature fluctuations that determine 

oviposition locations. 
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Introduction 

Within any species distribution, the abundance or density (defined as numbers per area) of a 

population is determined by variation in the four main population parameters of natality, 

mortality, immigration and emigration (Odum 1963). No population increases without limits, 

with growth primarily restricted by temperature, limitations in resources and interactions with 

other species through competition or predation (May 1975). Understanding the mechanisms 

which determine population density is a fundamental question in ecology (Krebs 1978), and 

can facilitate why  some populations of particular species are smaller or larger than others. 

Abundance varies in response to environmental constraints over time (Southern 1970), or 

across space (Hengeveld & Haeck 1982) depending on both species traits (Brown 1995) and 

site characteristics (Sutherland 1998). However, while changes in density have been well 

described, the mechanisms which restrict population growth have been less well understood 

(Hanski 1994a). The pioneering work of Andrewartha and Birch (1954) suggested that the 

numbers of animals within a population were limited by i) a shortage of material resources 

(e.g. food) ii) inaccessibility of these resources relative to the animals dispersal and iii) shortage 

of time when population growth is positive. More recently, both metapopulation theory and 

autecological research have developed these concepts also providing evidence as to the 

importance of area, isolation (Hanski 1998b), and habitat quality (Thomas et al. 2001) of 

occupied patches within species distributions, and the relative importance of these landscape 

characteristics has dominated current research in insect population ecology (New 2009; Poyry 

et al. 2009b; Hodgson et al. 2011). However, as nutritional resources are essential for species 

persistence (Begon et al. 1986), proponents of metabolic theory suggest that a species 

metabolic rate will determine the efficiency at which food can be converted into energy 

(Peters 1983), and so food availability could underlie limitations in population growth by 

constraining reproductive ability or through competition for limited resources (Blackburn & 

Gaston 1999; Brown et al. 2004). It is therefore important to clarify all the determinants of 

population density, as only then can we suggest management advice to maximise species 

abundance within sites. 

Within terrestrial ecosystems, food availability has been shown to be important in determining 

density of carnivores (Carbone & Gittleman 2002) and birds (Lack 1954), yet the evidence for 

insects remains mixed (Thomas et al. 2011).  This could be because unlike most species, many 

insects go through definitive life cycle stages in order to develop; egg; larvae; pupa and finally 

adult. The requirements for each stage of the life cycle may therefore be reliant on different 
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nutritional needs than the previous stage, for example, most insect larvae feed on plant tissues 

but adults often feed on nectar (Ehrlich & Raven 1964). Butterflies, like most insects, require 

the presence of the hostplant on which to oviposit and is an essential food for larval growth 

and survival (Frohawk 1934). Nectar can also form a vital part in the life history of butterflies 

(Vane-Wright & Ackery 1984; Hardy et al. 2007; Erhardt & Mevi-Schutz 2009) as adult feeding 

can contribute to longevity and reproductive success (Boggs & Ross 1993; Boggs & Freeman 

2005; Erhardt & Mevi-Schutz 2009), although its quality depends on flower age, time of day, 

weather and activities of competing nectar feeders (Gottsberger et al. 1990). Therefore, due to 

the variation in foodplant use throughout the life cycle, the importance of both larval and 

adult food resources in determining insect population density remains inconclusive (Dennis 

2010).  

Consequently, while several studies have demonstrated a positive relationship between adult 

abundance and amount of nectar available at local scales (Clausen et al. 2001; Summerville & 

Crist 2001; Bergman et al. 2008; Kubo et al. 2009), other studies have concluded that the 

importance of nectar as a determinant of population density is minimal (Thomas et al. 2011). 

Similarly, several studies have also shown that higher densities of butterflies are found in areas 

containing larger amounts of larval host plants (Munguira et al. 1997; Haddad & Baum 1999; 

Luoto et al. 2001; Matter & Roland 2002; Auckland et al. 2004; Krauss et al. 2004b; Betzholtz 

et al. 2006; Nowicki et al. 2007; Eichel & Fartmann 2008), but this relationship is often weaker 

than predicted (Kelly & Debinski 1998) with many other studies showing no significant 

relationship (Kuussaari et al. 2000; Kuussaari et al. 2004; Hanski & Meyke 2005; Fred et al. 

2006; Rabasa et al. 2008; Stasek et al. 2008), or even an inverse one (Thomas 1984; Thomas et 

al. 1986). Furthermore, in a recent meta-analysis using British butterflies Thomas et al (2011) 

demonstrated that for over 20 species recorded on the UK Butterfly Monitoring Scheme 

(UKBMS), host plant abundance was not significantly related to butterfly abundance at local 

scales (i.e. butterflies do not tend to be more abundant on sites with more hostplants). 

However, at a regional scale (North Wales) Cowley et al (2001b) collected data on the density 

and distribution of adult butterflies and all associated host plants to assess whether 

abundance of butterflies and host plants was correlated. The results demonstrated that 

butterfly species whose hostplants occur at high density also tend to be locally abundant. 

However, some species only occupied a small proportion of the host plant range (see Quinn et 

al. 1998) and some pairs of species which shared the same hostplant also had contrasting 

distributions (Gutierrez et al. 2001). 
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The variation in importance of resources both between and within species can also be 

influenced by local site characteristics (Hanski et al. 1995; Moilanen & Hanski 1998; Kuussaari 

et al. 2000; Holt et al. 2004; Dennis & Sparks 2005; Dennis et al. 2006b; Grundel & Pavlovic 

2007; Pettis & Braman 2007; Rabasa et al. 2008; Rundlof et al. 2008; Sjodin et al. 2008; Poyry 

et al. 2009b; Lindell & Maurer 2010). For many butterfly species the critical factor is not the 

total amount of hostplant, but the availability of plants growing in ‘suitable condition’ (Thomas 

1991; Dennis 2010). For example, females of many butterfly species restrict oviposition to host 

plants growing within a suitably warm microclimate to expedite growth (Thomas 1983a; 

Ravenscroft 1994; Fartmann 2006) or within narrow limits of light and shade (Pollard 1979; 

Shreeve 1986; Warren 1987) or of a particular size or shape (Bourn & Thomas 1992; 

Gripenberg & Roslin 2005), high in nitrogen (Dennis 1984; Pullin 1987) or containing chemicals 

which can be utilised as a larval defence (van Nouhuys & Hanski 1999; Goverde et al. 2008; 

Talsma et al. 2008).  Discrepancies in the strength of relationship between host plant 

abundance and butterfly density may therefore depend on, for example, how much of a site 

has southerly aspect, or managed by grazing thereby reducing the turf height and increasing 

the temperature of the hostplant increasing likelihood of oviposition (Thomas & Lewington 

2010). Thus, both abiotic and biotic factors could increase the percentage of plants within 

‘suitable condition’ within a site, producing very different results at local scales, yet these 

effects could be ameliorated over larger scales incorporating many sites. 

Additionally, certain species are likely to be more or less sensitive in changes in foodplant 

abundance due to phylogenetic factors. Differences in life history traits (Boggs & Ross 1993; 

Garcia-Barros 2000; Mattila et al. 2009; Poyry et al. 2009a) and niche breadth (Thomas 1995c; 

Hughes 2000; Roy & Thomas 2003; Komonen et al. 2004; Summerville et al. 2006; Anthes et al. 

2008; Friberg et al. 2008; Mattila et al. 2009; Oliver et al. 2009) may influence how many plant 

species a butterfly can utilise, or its effectiveness at locating suitable foodplants. Species which 

have increased ‘choice’ in foodplants, for example by having higher mobility, or feeding on 

more than one hostplant (polyphagous species) in theory could have higher abundances as the 

environmental constraints they face are less restrictive. However, while species distributional 

extent may be linked to an ability to utilise a wider range of resources (Brown 1984), it is less 

clear why species with broad resource requirement should occur at higher densities (Hanski et 

al. 1993).  

There is considerable evidence implicating weather and climate (Pollard & Moss 1995; Sutcliffe 

et al. 1996; Roy et al. 2001; Hanski & Meyke 2005; Wikstrom et al. 2009; Guiney et al. 2010), 

landscape factors of area, isolation and habitat quality (Hanski 1998b; Moilanen & Hanski 
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1998; Thomas et al. 2001), and to a lesser extent predators, parasitoids and pathogens  (Lei et 

al. 1997; Laine 2004; Harvey et al. 2005; van Nouhuys & Hanski 2005) as determinants of 

butterfly density within species, and some evidence to suggest that life history factors 

distinguish rare and common species (Cowley et al. 2001a; Paivinen et al. 2005). Food 

availability (hostplants and nectar) vary along both axes: each species has a different 

preference and each site contains a different plant community. Therefore, to understand more 

deeply the role of food availability on butterfly populations, we should explore how the 

variation in abundance co-varies with food availability across sites and across species 

simultaneously. 

Recently, Isaac et al (2012) tested 23 predictor variables including traits of species, sites and 

populations. The most important predictors of abundance were climate, position in range, 

larval diet breadth and population structure, although surprisingly most correlations were in 

the opposite direction to that predicted, perhaps reflecting bias in the way sites are selected 

on the UKBMS. In Finland Paivinen et al (2005) found that both adult habitat breadth and 

larval diet breadth were negatively related to butterfly density, whereas in the U.K. Cowley et 

al (2001a) showed that mobility was a key trait in influencing density, with more widely 

distributed species having lower abundances, but niche breadth (larval host plant specificity 

and larval feeding specificity – the parts of plants eaten and larval association with ants) was 

not important. Several studies have also shown that species which are restricted to few 

hostplants are more sensitive to climatic temperature change (Diamond et al. 2011), or that 

nectar specialists tend to be rarer than nectar generalists (Tudor et al. 2004), or that species 

with lower mobility are less able to colonise areas containing apparently suitable foodplants 

within fragmented landscapes (Gutierrez & Thomas 2000; Cowley et al. 2001a; Komonen et al. 

2004; Betzholtz & Franzen 2011). An unanswered question is whether these species traits 

determine the degree to which food resources limit abundance. 

To date, no study has examined the relationship between butterfly population density and 

foodplant abundance both among and within species. Understanding both axes of variation, 

and the causes thereof, could allow land managers to target species which are most likely to 

respond positively towards (foodplant) management.  

In this paper, we determine whether adult butterfly abundance within grassland communities 

is significantly related to abundance of host plants and nectar plants. We also test species 

‘sensitivity’ to host and nectar plants as the strength of relationship between food and adult 

butterfly abundance. We also assess whether the correlation between butterfly abundance 
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and food availability is mediated by life history, niche and site traits. In particular, we include 

traits significant in previous multi-species studies; mobility (Cowley et al. 2001a; Komonen et 

al. 2004) and also include other life history (habitat specificity, population structure and larval 

duration), and niche traits (larval and adult dietary breadth). We also include some site 

characteristics (aspect and turf height) in an attempt to validate whether the relationship 

between butterfly and hostplant is stronger when a higher percentage of host plants are more 

likely to be in ‘suitable condition’. By further understanding the determinants of population 

density, we also aim to suggest management advice to maximise butterfly abundance within 

sites. 

In particular I test the following hypotheses; 

H1) Is adult butterfly population density correlated to the amount of food resources? 

Furthermore, which food resource is most limiting - larval or adult?  

The total amount of foodplant is predicted to be positively correlated with adult butterfly 

population density. However, as hostplants are essential for larval development, whereas 

nectar probably prolongs adult lifespan but has little impact on fecundity, it is predicted that 

hostplants will have greater explanatory power in adult butterfly density than nectar plants.  

H2) Particular species, or species groups, are more sensitive to changes in host and nectar 

plant abundance depending on life history or niche traits. 

i) Niche Breadth: The ability to utilise one or only a few species of host or nectar 

plant could enhance sensitivity to changes in food abundance. Species which have 

the ability to utilise a wide variety of foodplants are predicted to be less sensitive 

to variations in food abundance, as increased foodplant choice could act as a 

buffer against scarcity of preferred foodplants. 

ii) Mobility: How does species dispersal ability influence sensitivity to foodplants? 

Species with lower mobility cannot migrate to areas with higher-quality food 

resources, and are therefore predicted to be more sensitive to how much 

foodplant is available locally. In contrast, wider ranging species can sample a range 

of patches before choosing where to oviposit, and are therefore predicted to be 

less sensitive to foodplant abundance (i.e. show a shallower relationship with food 

availability across sites).  
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iii) Larval duration: Is there a time constraint on the larval resource? Larvae that 

undergo rapid development must consume all the resources for growth in a short 

period of time, which could potentially exhaust the edible biomass of their 

hostplant. Thus, rapidly developing larvae risk starvation unless their hostplant is 

locally abundant. By contrast, larvae of species whose development is spread over 

longer time periods exert a lower herbivore load on their hostplant, and are 

therefore predicted to be less sensitive to variation in hostplant abundance.  

 

H3) Populations which exist on sites with more northerly aspect or little or no grazing are 

predicted to be more sensitive to changes in foodplant abundance. 

Temperature is a primary factor in determining the suitability or ‘quality’ of foodplants, 

therefore populations inhabiting cooler microclimates are predicted to be more sensitive to 

changes in foodplant abundance. 

To examine the effect of temperature we assess the importance of; 

i) Aspect: Temperature of the microclimate in which the foodplant is located is 

important in determining suitability for oviposition (and probably nectaring). 

Species which occur on more southerly sites are therefore predicted to be less 

sensitive to changes to foodplant abundance. This is because more of the 

foodplant on south facing slopes is considerably warmer (e.g. temperature is less 

restrictive in oviposition choice) and thus within suitable condition. Species on 

more northerly (cooler) slopes are predicted to be more sensitive to foodplant 

amounts as only a fraction of foodplant will be within suitable condition depending 

on ambient daytime temperatures.  

ii) Turf height: Site management can potentially increase food plant suitability by 

reducing the turf height and increasing foodplant temperatures by controlling the 

amount of grazing. Species inhabiting sites with shorter turf are therefore 

predicted to be less sensitive to changes in foodplant abundance due to a higher 

percentage of plants being within suitable temperatures, and species on sites with 

longer turf more sensitive as a lower percentage of foodplant will be within 

suitable condition.  
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Methods 

To summarise, I sampled foodplant abundance and compiled site characteristics from 54 U.K. 

Butterfly Monitoring Scheme (UKBMS) grassland study sites across southeast England during 

2008 – 2009. This was then correlated with mean population density for 30 butterfly species 

recorded on the same study sites during 2006 – 2010 by UKBMS transect walker volunteers. 

Life history and niche traits were also acquired from other studies (references below) to assess 

interactive effects with foodplant abundance. 

Selection of study sites 

Within the U.K., calcareous grassland is one of the most important habitats for butterflies 

supporting approximately 50 % of British butterfly species (Dennis 1977), most of which breed 

predominantly within this habitat (Thomas & Lewington 2010). However, grassland is a 

plagioclimax community and needs to be continually managed to prevent natural succession 

into scrub and woodland (Odum 1963). Many species of butterflies and other wildlife are 

therefore reliant on livestock grazing, mowing, burning or scrub removal for their survival 

(Sutherland & Hill 1995). Currently, over half of threatened Lepidoptera in Europe occur on 

grassland habitats (van Swaay 2002). 

Within the U.K., many of these sites are protected areas, and several of the butterfly 

populations have been monitored as part of the UKBMS for several decades (Botham et al. 

2009). The majority of these grassland sites are in southeast England, and 54 UKBMS sites 

were selected on the basis that they contained > 50% grassland and had been regularly 

monitored (Figure 3.1).    
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Figure 3.1. A map of the 54 UKBMS study sites included in this study, numbered from west to east. 
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Estimates of vegetation abundance and resource availability 

Vegetation surveys were conducted on 54 UKBMS sites between May to September 2008 – 

2009. For each site, the transect route had been subdivided into a number of sections on 

establishment (depending on transect length) to distinguish between habitat types and to 

facilitate recording. Each of the sections were walked with a regular transect walker and 

mapped with a GPS. The vegetation was surveyed in four x 1m2 quadrats per section in order 

to obtain a representative sample of the vegetation along each transect route. To create 

random points for quadrat locations at a particular site, the transect route (comprised of 

separate sections) was initially downloaded into ArcMap as a shapefile. Using the buffer tool, a 

5 metre area was then created each side of the section route. This distance was chosen 

because transect walkers record butterflies within a 5 metre ‘box’ perpendicular to the 

observer, therefore in most instances 2.5 metres either side of them. However, many of the 

section routes walked were often on gravelled paths or sheep trails, and so by doubling the 

width of the route ‘buffer’ this increased the likelihood of avoiding the heavily trampled areas 

which were unlikely to represent the vegetation at that site. Therefore, the vegetation was 

sampled from the area immediately around the transect route, rather than the entire study 

site, as the latter is difficult to define objectively. Similarly, the buffer was not extended to 

more than 5 metres in order to prevent quadrat locations occurring in areas not within the 

site, for example, many semi-natural grassland transects border farmland which is not only 

likely to be private but contain few plant species relevant to butterfly abundance within a 

reserve.  

By using Hawth’s tools (Beyer 2004) random points were created within this buffered area – 

and these points were then uploaded back to the GPS to give locations for each 1m2 

vegetation quadrat.  

Using the GPS, points for random quadrats were located, and each quadrat was assigned a 

unique identification number. Before placing a quadrat, fundamental site and section details 

were recorded (site name, site BMS number, section number and date).  

The vast majority of 1m2 plots (frame quadrats) contained high percentages of relatively short 

grassland, and I therefore employed a methodology that has been widely used in national 

vegetation surveys of these habitats (e.g. Carey et al. 2008). The basic vegetation structure was 

recorded as a percentage layer (grass, herb and woody), and visual estimates were made of 

the percentage cover of each species of higher plant. Additionally, the percentage cover of the 
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seven principle grass species that are used for oviposition by grassland butterflies was also 

recorded: Holcus lanatus, Festuca rubra, Festuca ovina, Brachypodium sylvaticum, 

Brachypodium pinnatum, Dactylis glomerata, and Elytrigia repens. Cover was recorded as the 

‘area of ground occupied by a perpendicular projection on to it of the foliage and stems of 

individuals of a particular species’ (Shimwell 1972). The summed percentage covers of 

individual species nearly always exceeded 100% because of the layering and overlapping of 

species.  

To calculate foodplant abundance associated with each butterfly species at each site, we 

summed the percentage cover of the relevant plant species at each site. Relevant plant species 

were defined as those recorded as larval host plants and nectar sources, using preferences 

obtained from Dennis (2010). Host plants were listed for each butterfly species as both ‘main’ 

and ‘secondary’, the latter which also included foodplants consumed in captivity. We therefore 

used ‘main’ hostplants to calculate hostplant abundance, although the very similar estimates 

of hostplant availability were derived by also including ‘secondary’ sources (not shown). There 

was no distinction for use of nectar plants, and so all nectar plants on which a species had 

been observed feeding were included in the first nectar analysis. However, within the 30 

species of butterflies included in the analyses, ten species also use their associated hostplant 

as a nectar sources. Therefore, to ensure nectar was tested as an independent effect, we 

generated a second estimate of nectar availability that ignored the contribution of nectar 

sources that were also recorded as hostplants.  

To estimate the amount of food available at each site (plant cover), a total of 1624 quadrats 

were surveyed from 406 transect sections across 54 sites (four quadrats per section). This gave 

a total of 16,720 separate estimates of plant abundance across all quadrats, corresponding to 

2934 plant – site abundance combinations. A total of 165 different plant species were 

recorded, with a mean number of 54.3 species per site.  

Site Characteristics 

Turf height was recorded for each quadrat as a direct measurement from the ground to the 

base of the crown of the vegetation as described in Shimwell (1972). The mean turf height for 

each site was calculated by excluding all quadrats containing less than 75% grass or over 50cm 

high, because most grassland butterflies only utilise vegetation below this height (Nature 

Conservancy 1986) and so only variation below this threshold is biologically interesting. Aspect 

was assessed for any quadrat where the ground surface inclined in a constant direction, and its 
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orientation was recorded to the nearest five degrees. A site level figure for aspect was 

produced by aggregating the section means.  

Life history and niche traits 

For each species, diet breadth estimates (number of main larval host plants utilised) were 

obtained from Dennis (2010), and degree of nectar specialism characterised as the number of 

species of nectar plants utilised by adults were obtained from Hardy et al (2007). Habitat 

specialism is a categorical variable, distinguishing wider countryside species, migrants and 

specialists restricted to specific habitats (Botham et al. 2009). Mobility scores were derived 

from Dennis et al (2005) who ranked species mobility on a scale from 1 – 9, from low to high 

dispersal capabilities. Population structure values were extracted from Warren et al (2001) and 

based on a seven point score with the most sedentary species having lower scores and the 

most dispersive species scoring highly. Larval duration periods were calculated from life history 

tables (Frohawk 1934),  ignoring any period of inactivity caused by dormancy throughout the 

winter months (i.e. average number of days feeding on host plant during  March – October). 

Thus larval duration is the amount of time (in days) which is spent as an actively feeding 

caterpillar. See Table 3.1 for a description of diet breadth, life history and site traits included in 

this study. 

Table 3.1. Description of diet breadth, life history and site traits.  

 

 

 

 

Trait Measure Definition Source

Diet breadth

Larval niche breadth Number of larval Core Host Plants (CHP)
Records of only main host plants including prominent 

regional ones
Dennis (2010)

Adult niche breadth Degree of adult nectar specialism (RanS)
Monte Carlo estimated number of nectar sources (from 

mean number of nectar sources per 100 records)
Hardy et al  (2007)

Life history traits

Habitat specialist Degree of adult habitat specialism
Habitat preferences as wider countryside species and 

migrants or specialists restricted to specific habitats
Botham et al  (2009)

Mobility Degree of dispersal capabilities Dispersal capabilities (1-9, low to high) Dennis et al  (2005)

Population structure Measurement of colony structure Defined as 'open' or 'closed' population (1-7, open to closed) Warren et al  (2001)

Larval duration
Duration of larval stage calculated from life 

history tables

Average number of days spent feeding on hostplant during 

March - October
Frowhawk (1934)

Site Traits

Turf Height  Mean turf height (cm)
Mean turf height measured from ground level to crown of 

vegetation
This study

Aspect Aspect (to nearest five degrees) A measure of ground orientation This study
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Estimates of butterfly abundance 

I used data from the Butterfly Monitoring Scheme (UKBMS) to provide estimates of butterfly 

abundance.  

The Butterfly Monitoring Scheme was initiated in 1976 whereby observers walk a set route 

(transect) once a week, under favourable weather conditions throughout the main butterfly 

flight period (April – September), recording all butterfly species encountered within a 5 metre 

box (Asher et al. 2001). Although the primary aim of the UKBMS is to provide information at 

regional and national levels on changes in species status (Botham et al. 2009), more recently 

this data has been used to assess the determinants of species abundance (Isaac et al. 2012), 

and to demonstrate variances in species sensitivity to factors such as temperature and niche 

breadth (Diamond et al. 2011).  

The UKBMS is well described (Pollard 1977), robust (Gross et al. 2007), and butterfly 

abundance has shown to correlate with population estimates obtained by mark – release – 

recapture for a wide range of species (Thomas 2005). Although the accuracy of transects can 

depend both on species and time of day (Harker & Shreeve 2008) due to bias in detectability 

(Dennis et al. 2006a; Pellet et al. 2012), the UKBMS data provide a good reflection of relative 

abundance for most species and of large scale trends in abundance (Isaac et al. 2011a). 

I used the annual site index (based on the sum of weekly counts) from the UKBMS dataset as a 

measure of the abundance of a species at a particular site. For populations surveyed every 

week from April to September, the site index is equal to the total number of adult butterflies 

recorded. Of the ~60 species of butterflies recorded regularly in the British Isles, 46 species 

were recorded by UKBMS volunteers transect walkers across the 54 study sites.  Of these, 4 

wide-ranging species were excluded from the analysis because their host foodplant was not 

recorded within any of the study sites (Anthocharis cardamines, Pieris brassicae, Pieris napi 

and Pieris rapae), such that our models have no power to predict their abundance. We also 

excluded 12 species that occurred on 7 sites or fewer (Euphydryas aurinia, Hamearis lucina, 

Boloria euphrosyne, Boloria selene, Limenitis camilla, Melitaea cinxia, Apatura iris, Satyrium w-

album, Neozephyrus quercus, Thecla betulae, Plebejus argus, and Leptidea sinapsis). Therefore, 

a total of 30 species were included within the analysis (see Table 3.2).  

The geometric mean of abundance from 2006 – 2010 was calculated for each of these 30 

species across 54 sites, producing a total of 1250 individual measures of abundance. The total 
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number of butterfly species recorded on each site varied between a minimum of 3, and a 

maximum of 34 species, with a mean of 27.6 butterfly species per site. 

 

Table 3.2. A list of species included within the analysis, and the number of sites on which they 

occurred. Species listed in alphabetical order. 

 

Species No of Sites Species No of Sites 

Aglais urticae 49 Lycaena phlaeas 51 

Aphantopus hyperantus 50 Maniola jurtina 53 

Argynnis aglaja 34 Melanargia galathea 52 

Argynnis paphia 21 Ochlodes sylvanus 51 

Aricia agestis 53 Pararge aegeria 50 

Callophrys rubi 44 Polygonia c-album 53 

Celastrina argiolus 49 Polyommatus bellargus 26 

Coenonympha pamphilus 50 Polyommatus coridon 41 

Colias croceus 39 Polyommatus icarus 54 

Cupido minimus 24 Pyrgus malvae 38 

Erynnis tages 42 Pyronia tithonus 52 

Gonepteryx rhamni 50 Thymelicus lineola 12 

Hesperia comma 18 Thymelicus sylvestris 32 

Inachis io 50 Vanessa atalanta 50 

Lasiommata megera 12 Vanessa cardui 50 

 

Statistical Analysis 

The data used in the analyses were derived from the geometric mean population density for 

30 species of butterfly (from 2006 – 2010) and the availability of host and nectar plants (from 

2008 – 2009) sampled across the same 54 grassland sites in southeast England. Prior to the 

analysis, most of the predictors were transformed in order to improve normality. Natural 

logarithm transformations were performed on both measures of niche (diet) breadth (number 

of core host and nectar plants), mobility, population structure and larval duration. Aspect was 

cosine transformed so sites with southerly aspect had scores approaching 1, northerly aspects 

scored -1 and east and west-facing aspects zero.  

The aim was to explain the variation in butterfly abundance by correlating population density 

(log of (abundance / transect length)) - against foodplant abundance to determine the 

significance of this relationship, and to assess which was more important - host or nectar 

plants (H1).  To also assess the importance of three groups of predictors; niche, life history and 



94 

 

site level traits, and their interactive effect with plant abundance to evaluate which species 

show the strongest and weakest relationships to changes in foodplant abundance (H2 and H3). 

Initially, the independence of the two key explanatory variables (host and nectar plants) was 

tested by Pearson’s product moment correlation to explore the relationship between the two 

types of foodplants. Secondly, the relationship between mean butterfly density and food 

availability (H1) was modelled across all species using both linear regression and mixed effects 

models, with separate models for hostplant and nectar abundance (nectar models were 

repeated with the exclusion of nectar sources that are also hostplants). Mixed effect models 

included Site and Species identity as crossed random effects (Cowlishaw et al. 2009; Isaac et al. 

2011b) to allow for a lack of independence in abundance estimates (site and species effects). 

Next, I ran separate linear regressions for each species (60 models in total) in order to explore 

the variation in species-specific responses to hostplant and nectar abundance.  

Butterfly population density was then modelled as a function of six species traits and two site 

characteristics (turf height and aspect) as separate interactions with hostplant and nectar 

abundance (i.e. a total of 16 models; 6 species and 2 site traits and 8 models each for nectar 

and hostplants) to ascertain the strength of these variables in predicting butterfly population 

density (H2 and H3 – see Table 3.1).  All models included site and species as random effects, as 

above. 

Significance of fixed effects in mixed models was assessed using the Wald t-test, as 

recommended by Bolker et al. (2009). All models were fit in R, with GLMEs employing the lme4 

package (Bates & Maechler 2010; R Development Core Team 2010). 

Results 

1. Testing the relationship between host and nectar plants. 

The relationship between host and nectar plants was tested using Pearson’s product moment 

correlation. There was a significant positive relationship between the two key variables (r = 

0.324, t = 13.247, p < 0.001, see Figure 3.2). However, the R squared value of 0.105 is weak 

enough that the explanatory power of both host and nectar plants can be considered to be 

independent effects. 
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Figure 3.2. A scatterplot of the relationship between the logarithm of host and nectar plants 

obtained from 1495 plant species – quadrat combinations recorded across 54 UKBMS sites during 

2008 – 2009. 

 

Abundance of host plants is therefore correlated with the abundance of nectar plants, but the 

relationship is weak enough to validate the independence of both host and nectar plants as 

predictors of butterfly population density. 

 

2. Butterfly population density and hostplant availability 

There is a strong, statistically significant, positive relationship between butterfly population 

density and abundance of their associated hostplants both in the linear regression across all 

species (b=0.441, se=0.0449, t=9.82, p<0.001), and linear mixed effect model (b=0.333, 

se=0.0389, t=8.56, p<0.001). The slope of the mixed model is less steep than for linear 

regression, but is more precisely estimated. These models imply that, for the ‘average’ species 

on an ‘average’ site, an increase of 1 log unit of hostplant abundance is associated with an 

increase of 0.33-0.44 log units in butterfly population density, i.e. a doubling of hostplant 

availability leads to an increase in butterfly abundance of 33 - 44%. 
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Table 3.3. Results of species-specific linear regressions between the logarithmic geometric mean of 

density for each of the 30 butterfly species recorded across 54 UKBMS sites during 2006 – 2010, 

against abundance of associated hostplants for the same sites recorded during 2008 – 2009, in 

alphabetical order. 

  Estimate Std. Error t value Pr(>|t|) Rsq 

Aglais urticae 0.337 0.148 2.267 0.028 0.099 

Aphantopus hyperantus 0.385 0.281 1.372 0.176 0.038 

Argynnis aglaja 0.387 0.244 1.582 0.124 0.073 

Argynnis paphia 1.048 0.738 1.420 0.172 0.096 

Aricia agestis 0.960 0.177 5.425 <0.001 0.366 

Callophrys rubi 0.433 0.190 2.284 0.027 0.111 

Celastrina argiolus 0.318 0.167 1.901 0.063 0.071 

Coenonympha pamphilus 0.485 0.188 2.579 0.013 0.122 

Colias croceus 0.102 0.226 0.454 0.653 0.006 

Cupido minimus 2.333 0.667 3.498 0.002 0.357 

Erynnis tages 0.373 0.230 1.620 0.113 0.062 

Gonepteryx rhamni 0.723 0.294 2.459 0.018 0.112 

Hesperia comma -0.030 0.324 -0.092 0.928 0.001 

Inachis io 0.023 0.133 0.173 0.863 0.001 

Lasiommata megera -1.391 0.808 -1.720 0.116 0.228 

Lycaena phlaeas 0.785 0.544 1.443 0.155 0.041 

Maniola jurtina 0.014 0.123 0.114 0.910 0.000 

Melanargia galathea 0.180 0.171 1.054 0.297 0.022 

Ochlodes sylvanus 0.024 0.208 0.115 0.909 0.000 

Pararge aegeria -0.053 0.242 -0.219 0.828 0.001 

Polygonia c-album -0.040 0.164 -0.242 0.810 0.001 

Polyommatus bellargus 1.259 0.344 3.660 0.001 0.358 

Polyommatus coridon 0.790 0.361 2.187 0.035 0.109 

Polyommatus icarus 0.529 0.135 3.931 <0.001 0.229 

Pyrgus malvae 0.422 0.201 2.103 0.043 0.109 

Pyronia tithonus -0.245 0.163 -1.507 0.138 0.043 

Thymelicus lineola 0.275 0.168 1.633 0.134 0.210 

Thymelicus sylvestris 0.392 0.262 1.494 0.146 0.069 

Vanessa atalanta 0.171 0.170 1.005 0.320 0.021 

Vanessa cardui -0.057 0.299 -0.192 0.848 0.001 

 

For the species-specific models, the median of the estimate suggests that doubling the amount 

of hostplants would increase butterfly population density by 44% (Table 3.3). The estimate 

ranges from -1.391 to 2.333, and R squared scores range from 0.3% to a maximum of 37%. 

Most of the relationships between hostplants and butterfly abundance are positive (Figure 

3.3). 
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Of the 30 species, only six have a negative correlation (none of which are significant), with the 

remaining 24 species all showing a positive relationship (ten of which are significant). Even 

after accounting for the fact that a large number of tests have been conducted, this suggests 

that the abundance for many butterfly species is affected by the availability of hostplants. For 

the three species showing strongest relationships, hostplant abundance explains around 35% 

of the variation in adult butterfly density across sites (Aricia agestis, Polyommatus icarus and 

Polyommatus bellargus). 

Figure 3.3. A scatterplot of the logarithmic geometric mean of density for each of the 30 butterfly 

species recorded across 54 UKBMS sites during 2006 – 2010, against abundance of associated 

hostplants for the same sites recorded during 2008 – 2009. 

 

2. Butterfly population density and nectar plant availability 

As with hostplants, there is a strong, statistically significant, positive relationship between 

butterfly population density and nectar abundance in both the linear regression (b=0.435, 

se=0.0503, t=8.65, p<0.001) and linear mixed effect model (b=0.284, se=0.0532, t=5.34, 

p<0.001). For the ‘average’ species on an ‘average’ site, an increase of 1 log unit of hostplant 

abundance is associated with an increase of 0.28 - 0.43 log units in butterfly population 

density, i.e. a doubling of nectar plant availability leads to an increase in butterfly abundance 

of 28 - 43%. Thus, the magnitude of the effect size is very similar to that for hostplants (see 

above). Very similar results were returned after the contribution of nectar sources that are 
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also hostplants was removed: the results for the linear regression were almost identical 

(b=0.443, se=0.0450, t=9.85, p<0.001) but the mixed model returned a much shallower and 

less significant relationship (b=0.180, se=0.0490, t=3.66, p<0.001). 

Table 3.4. Results of species-specific linear regressions between the logarithmic geometric mean of 

density for each of the 30 butterfly species recorded across 54 UKBMS sites during 2006 – 2010, 

against abundance of associated nectar plants for the same sites recorded during 2008 – 2009, in 

alphabetical order. 

  Estimate Std. Error t value Pr(>|t|) Rsq 

Aglais urticae 0.000 0.191 -0.002 0.999 0.000 

Aphantopus hyperantus 0.026 0.415 0.062 0.951 0.000 

Argynnis aglaja 0.182 0.291 0.624 0.537 0.012 

Argynnis paphia 0.430 0.412 1.044 0.310 0.054 

Aricia agestis 0.146 0.282 0.516 0.608 0.005 

Callophrys rubi 0.391 0.216 1.808 0.078 0.072 

Celastrina argiolus -0.024 0.189 -0.127 0.899 0.000 

Coenonympha pamphilus -0.096 0.440 -0.217 0.829 0.001 

Colias croceus 0.256 0.235 1.089 0.283 0.031 

Cupido minimus 0.479 0.430 1.114 0.277 0.053 

Erynnis tages 0.441 0.211 2.089 0.043 0.098 

Gonepteryx rhamni 0.006 0.419 0.015 0.988 0.000 

Hesperia comma 0.169 0.488 0.346 0.734 0.007 

Inachis io 0.300 0.151 1.987 0.053 0.076 

Lasiommata megera 1.008 0.528 1.908 0.086 0.267 

Lycaena phlaeas 0.152 0.197 0.771 0.444 0.012 

Maniola jurtina 0.143 0.186 0.771 0.444 0.012 

Melanargia galathea 0.426 0.298 1.431 0.159 0.039 

Ochlodes sylvanus 0.137 0.347 0.396 0.694 0.003 

Pararge aegeria 0.164 0.246 0.666 0.508 0.009 

Polygonia c-album 0.553 0.186 2.971 0.005 0.148 

Polyommatus bellargus 1.780 0.796 2.235 0.035 0.172 

Polyommatus coridon 0.480 0.616 0.779 0.440 0.015 

Polyommatus icarus 0.420 0.154 2.733 0.009 0.126 

Pyrgus malvae 0.151 0.204 0.744 0.462 0.015 

Pyronia tithonus 0.483 0.180 2.691 0.010 0.127 

Thymelicus lineola -0.076 0.297 -0.257 0.802 0.007 

Thymelicus sylvestris 0.784 0.428 1.830 0.077 0.100 

Vanessa atalanta 0.300 0.159 1.890 0.065 0.069 

Vanessa cardui -0.125 0.231 -0.539 0.593 0.006 

 

The species-specific models show that the effect of hostplants range from -1.125 to 1.78 and R 

squared scores range from <0.001% to a maximum of 27% (Table 3.4). Most of the 

relationships between hostplants and butterfly abundance are positive (Figure 3.4). 
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Of the 30 species, only five have a negative correlation (none of which are significant), with the 

remaining 24 species all showing a positive relationship (five of which are significant). This 

suggests that nectar availability may be important to several species, and for the three species 

showing strongest relationships (Pyronia tithonus, Polyommatus icarus and Polygonia c-album) 

nectar plant abundance explains around 13% of the variation in adult butterfly density across 

sites.  

Figure 3.4. A scatterplot of the logarithmic geometric mean of density for each of the 30 butterfly 

species recorded across 54 UKBMS sites during 2006 – 2010, against abundance of associated 

nectar plants for the same sites recorded during 2008 – 2009. 

 

 

 

Ten butterfly species also use their associated hostplant as a nectar source. Therefore, to 

ensure nectar was tested as an independent effect, the hostplants used by these ten species 

were removed from their list of associated nectar sources and the models re-run (Figure 3.5 & 

Table 3.5). 
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Figure 3.5. Estimates for the ten butterfly species affected by the removal of hostplants from nectar 

abundance. Original estimate with hostplants included (solid lines), adjusted estimate without 

hostplants (dashed lines), species listed in alphabetical order. 

 

Only one species has a higher estimate without hostplants (Erynnis tages), one species changes 

from a positive to negative estimate (Colias croceus), and Polyommatus bellargus shows a 

considerable reduction in significance. See Table 3.5 for importance of hostplants as nectar 

sources. 

Table 3.5. Original estimate, adjusted estimate with hostplants removed from associated nectar 

sources, the difference between the two and % of nectar records that are hostplants obtained from 

Dennis (2010). Numbers in brackets are number of nectar feeding records, species listed in 

alphabetical order. 

 

 

Species Original Estimate Estimate without hostplants Difference % Nectar records that are hostplants

Callophrys rubi 0.391 0.113 0.278 6.4 (46)

Celastrina argiolus -0.024 -0.044 0.020 22.1 (269)

Colias croceus 0.256 -0.152 0.408 12.7 (82)

Cupido minimus 0.479 0.390 0.089 40 (15)

Erynnis tages 0.441 0.487 -0.045 21.2 (33)

Polyommatus bellargus 1.780 0.466 1.314 8.7 (25)

Polyommatus coridon 0.480 0.259 0.221 6.9 (33)

Polyommatus icarus 0.420 0.174 0.246 27.3 (344)

Pyrgus malvae 0.151 0.077 0.074 12.1 (33)

Vanessa cardui -0.125 -0.385 0.260 14.9 (484)
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3. Effect of species traits and site characteristics 

Particular species, or species groups, are more sensitive to changes in host and nectar plant 

abundance depending on life history, niche traits or site characteristics (H2 and H3) – see Table 

3.6. 

Table 3.6. Results of separate linear mixed models between the logarithmic geometric mean of 

density for all 30 butterfly species recorded across 54 UKBMS sites during 2006 – 2010, against site 

and species traits as an i) interaction with host plants and ii)interaction with nectar. The results in 

the table are therefore obtained from 16 separate models (8 for both nectar and host plants) and 

the results of the main effect have been omitted. 

 

i. Life History Traits 

Larval niche breadth (Number of core host plants) 

There is a weak but significant negative interaction effect between larval niche breadth and 

abundance (b=-0.068, se=0.025, t=-2.715, p<0.01), so species which utilise fewer hostplants 

(monophagous) tend to be more sensitive to changes in hostplant abundance than species 

which can utilise a wider number of hostplants - which is as predicted. The butterfly – 

hostplant relationship is almost twice as steep for species which use a single hostplant 

(b=0.577) compared to species which use four or more hostplants (b=0.373). There is no 

significant interaction with nectar plants. 

Independent variable Estimate Std. Error t value p value Estimate Std. Error t value p value

Diet breadth

Larval niche breadth -0.068 0.025 -2.715 0.007 -0.022 0.029 -0.766 0.444

Adult niche breadth -0.010 0.003 -3.053 0.002 -0.003 0.004 -0.733 0.463

Life history traits

Habitat specialist 0.475 0.155 3.073 0.004 0.248 0.154 1.608 0.258

Mobility -0.336 0.073 -4.574 <0.001 -0.179 0.092 -1.945 0.052

Population structure -0.047 0.049 -0.959 0.337 -0.055 0.061 -0.915 0.360

Larval duration 0.045 0.069 0.652 0.514 0.107 0.089 1.206 0.228

Site traits

Turf height 0.032 0.039 0.808 0.419 -0.066 0.050 -1.317 0.188

Aspect -0.164 0.069 -2.395 0.017 -0.082 0.077 -1.066 0.286

i) Interaction with host plants ii) Interaction with nectar plants
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Adult niche breadth 

There is no significant interaction between adult niche breadth and nectar abundance. 

However, interestingly, there is a weak significant negative interaction with hostplants (b=-

0.01, se=0.003, t=-3.053, p<0.005), so species which utilise fewer species of nectar plant are 

likely to be more sensitive to changes in host plant abundance.  

Habitat Specialist 

There is a strong, significant positive interaction between degree of habitat specialism and 

hostplant abundance (b=0.475, se=0.155, t=3.073, p<0.005). Species which are restricted to 

more specialist habitats are therefore considerably more sensitive to changes in hostplant 

abundance – which is as predicted. Indeed, the butterfly – hostplant relationship becomes 

weakly negative for wider countryside species (b=-0.005). There is no significant interaction 

with nectar plants. 

Mobility 

There is also a strong significant negative interaction between mobility and hostplant 

abundance (b=-0.336, se=0.073, t=4.574, p<0.001), and species which are less dispersive are 

more than twice as sensitive to changes in the amount of hostplant. For sedentary species, the 

butterfly – hostplant relationship is 1.15, yet only 0.48 for more dispersive species. There is 

also a negative interaction with nectar plants, but this relationship is not significant.  

Population structure 

There are no significant interaction effects between population structure and either host or 

nectar plants. 

Larval duration 

There are no significant interaction effects between larval duration and either host or nectar 

plants. 
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ii. Site Characteristics 

Turf height 

There are no significant interactions between turf height and either host or nectar plants. 

Aspect 

There is a significant negative interaction between aspect and host plant abundance (b=-0.164, 

se=0.069, t=-2.395, p<0.05), suggesting that butterfly populations on sites with cooler aspects 

are more than twice as sensitive to changes in host plant abundance, as predicted. For north-

facing sites (aspect=-1), the butterfly-hostplant relationship approaches 0.57 and a mere 0.25 

for south facing slopes (aspect=+1). The direction of the interaction is the same with amount of 

nectar plants, but the result is not significant. 

 

Discussion 

Research at this regional scale allows us to understand the broader implications of the 

importance of consumables resources both within and between butterfly populations. 

Additionally, including both species life traits and site characteristics within this study allows us 

to assess which species or sites may respond more positively to conservation management. 

The results showed that both the abundance of hostplant and nectar were significantly related 

to the size of butterfly populations across sites. The amount of hostplant was generally a 

stronger predictor than nectar, but several species were correlated more strongly with nectar 

than hostplants. Furthermore, species which possessed ‘specialist’ traits of narrower dietary 

niche breadth, habitat specialism and lower mobility were more sensitive to changes in the 

amount of resource, as were individuals which occupied cooler sites. 

This suggests that generally, land managers should give more priority to managing for host, 

rather than nectar plants to maximise butterfly abundance within sites. It also suggests that in 

general, specialist species should show the strongest response to increases in resources, which 

could be of benefit to conservation as they are often the rarest, most rapidly declining species.  
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The relationship between host and nectar plants  

There is a significant positive correlation between host and nectar plants, although the 

explanatory power of relationship is low (R squared = 0.11). The fact that there is a weak 

correlation is expected, as many of the sites surveyed in this study are high quality well 

managed habitats with high floristic diversity. Therefore, quadrats comprising a large number 

of plant species are likely to contain high numbers of both host and nectar plants. However, 

the correlation between these two key variables is weak enough not to undermine their 

independence as separate predictors of butterfly population density. 

The importance of host and nectar plants in determining abundance 

The fact that food plant abundance is significantly related to butterfly density suggests a 

similarity to other species groups, for example, mammals (Carbone & Gittleman 2002) and 

birds (Lack 1954) in that the amount of food available within sites is indeed a limiting resource. 

Both hostplants and nectar are highly significant, although the regression coefficient and 

variance explained by host plants is considerably higher than nectar plants. This result is 

expected, given that hostplants are essential for larval survival, while nectar can prolong adult 

longevity increasing the chances of mate location and egg laying duration (Boggs 1987; Jervis & 

Boggs 2005; Morris et al. 2008), however, it has little impact on fecundity. 

The positive relationship between adult butterfly abundance and host plants is in accordance 

with earlier research conducted on British butterflies within North Wales (Cowley et al. 

2001b). Within the species specific models, although only 10 species show significant 

relationships with hostplants, a total of 24 species show a positive relationship suggesting a 

general underlying trend. It is also noteworthy that two of the most significantly positive 

species (Gonepteryx rhamni and Cupido minimus) have shown strong dependence on host 

plants in previous studies (Gutierrez & Thomas 2000; Krauss et al. 2004b). The most sensitive 

species (to their hostplants) are not restricted to a single family, although interestingly six out 

of the ten most significant species are lycaenids. This can probably be explained by two of the 

key hostplants used by these species (Helianthemum nummularium and Hippocrepis comosa) 

being restricted to regions where the mean July isotherm exceeds 20 degrees centigrade 

(Pigott et al. 1992), and furthermore, the limit to the distribution of Hippocrepis comosa is 

associated with high summer temperatures essential for its reproduction (Hennenberg & 

Bruelheide 2003). Therefore, it may be that the local density and distribution of resources is 

generating the same pattern in the consumer (Hanski et al. 1993; Gaston 1994). Additionally, 
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this may be because many lycaenids are also reliant on ants for their survival (Thomas & 

Lewington 2010), and so the presence of the associated hostplant within chalk grassland may 

also coincide with high ant abundances, particularly of the genus Lasius and Myrmica. Thus 

lycaenid butterfly abundance is more likely to reflect hostplant abundance, although the fact 

that there are also positive relationships for species whose larvae feed on nettles (Aglais 

urticae), shrubs (Gonepteryx rhamni) and grasses (Coenonympha pamphilus) suggests a more 

general phenomenon. 

 

Therefore, despite many species having extremely precise ecological requirements (e.g. 

Thomas et al. 2001) our results suggest that the quantity of host foodplant (as well as quality) 

is an important determinant of butterfly abundance for species with widely differing 

requirements, and across a large number of sites. Principally, this suggests that for 

conservation it is important to maximise hostplant abundance within sites, and furthermore, 

this evidence is based on a large sample size along two axis of variation – both between and 

within species. The sites included within this study are of varying quality, and so there is a large 

range in values for both butterfly population density and hostplant abundance. Indeed, it is 

possible that these results contrast with more local studies because the majority of those 

studies only examined a small range of variation in hostplant availability. However, it is also 

possible that the strength of relationship may be because many of the sites within this study 

were composed mainly of high quality well managed habitats (several of which are reserves 

managed specifically for butterflies), and therefore a high percentage of hostplants are likely 

to be in suitable condition. Certainly, other studies in poorer quality habitats, for example 

farmland (Smart et al. 2000) have shown no correlation of butterfly abundance with amount of 

host plant. However, an underlying assumption of most previous macroecological studies (and 

this one) is that hostplant cover equates to availability, with little or no consideration given to 

the suitability of the hostplant. Therefore, an unanswered question remains the importance of 

habitat quality (as demonstrated in Chapters 1 and 2) across broader scales. Although some 

indication of the importance of the quality of habitat is suggested in this study by examining 

site conditions (e.g. aspect and turf height), other habitat quality parameters (e.g. 

microclimate) should be incorporated in future studies to further understand the robustness of 

the relationship between butterfly and hostplant abundance.  

 



106 

 

It is certainly interesting to note that many of the species showing a negative or weak 

correlation with hostplants feed on grasses (e.g Maniola jurtina and Pyronia tithonus). Most of 

these grass feeding butterflies occupy mid-successional habitats and occur in wider 

countryside habitats that are rarely the target of conservation management within reserves 

(Thomas & Lewington 2010). Thus, grassland plant species will occur within some of the tightly 

grazed well managed chalk grassland (but will be too short to utilise) as well as within darker 

scrubby areas or rides (the majority of which will be too long and dark to utilise). This would 

also explain why some of the chalk speciality species show some of the strongest positive 

relationships, in that many of the study sites are managed for their benefit, for example 

Cupido minimus, Aricia agestis, Polyommatus bellargus, Pyrgus malvae and Polyommatus 

coridon.  

 

Although less important than hostplants, the abundance of nectar sources is also significantly 

related to the size of butterfly populations across sites. However, within species specific 

models, only 5 species show a significant relationship with nectar plants; Erynnis tages, 

Polyommatus bellargus, Pyronia tithonus, Polyommatus icarus and Polygonia c-album, 

although 26 species show a positive relationship suggesting a more general underlying pattern. 

However, after removing hostplants from associated nectar sources this number drops to just 

three significant species Erynnis tages, Pyronia tithonus and Polygonia c-album.  Therefore, for 

the other two significant species, we cannot rule out the possibility that the correlation with 

nectar is an artefact of high hostplant abundance. For example, Polyommatus bellargus uses 

Hippocrepis comosa (the core hostplant) as a nectar source, but it is not an important one 

forming only 8% of feeding records (Table 3.5). Once this hostplant is excluded as an 

associated nectar source, Polyommatus bellargus drops from 4th most significant species to 

17th. However, the possibility remains that given the small number of feeding records (25 

records – see Table 3.5), the importance of Hippocrepis comosa as a nectar source may have 

been understated. This is plausible, but unlikely, because in reality the number of nectar 

sources will tend to increase with number of nectar feeding records (Tudor et al. 2004), rather 

than a dramatic increase in usage of a particular species which is likely to be encountered 

regularly while searching for oviposition and mate locations. 

So, with hostplants removed, it appears that the amount of nectar available within sites for 

Erynnis tages, Pyronia tithonus and Polygonia c-album is important. This is interesting, 

especially as the latter two species also show two of the weakest relationships with hostplants.  
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The reason that species are expected to show stronger relationships with hostplants (than 

nectar) is primarily because within most sites, virgin females are normally discovered and 

mated within hours of emergence, laying some eggs late on the first day, but the majority on 

the second, and to a lesser extent third day of life (Cushman et al. 1994; Wahlberg 1995). 

Therefore, adult survival – which is probably prolonged by nectar – may be of limited benefit 

as reproduction and subsequent egglaying has usually been accomplished within the first few 

days of life. Furthermore, many authors also suggest that nutrients acquired during larval 

development are believed to be the primary determinant of longevity and fecundity in 

butterflies, as opposed to nectar (Labine 1968; Boggs 1987; Baylis & Pierce 1991; Hughes 

2000). Despite this, it is apparent from this study that nectar can be of importance to some 

species, and concurs with the evidence suggesting that butterfly abundance is often found to 

be highest on sites which have both an ample supply of nectar and a high density of host 

plants (Fred et al. 2006; Bergman et al. 2008; Stasek et al. 2008). Furthermore, it remains 

plausible that as in hostplants, in this study nectar plant cover equates to availability, with little 

or no consideration given to its suitability. Therefore, grazing animals could reduce nectar 

availability while not reducing its percentage cover, and so the importance of nectar within 

sites which contain livestock (of which this study included many), may be underestimated. 

 

Life history and niche traits 

Of the nine traits included within the model, five show significant interactions with host plants 

and none show any significant interactions with nectar plants. The strength of these 

interactions again suggests that hostplants are more important predictors of population 

density than nectar plants. Although some of these traits are intercorrelated, the patterns that 

emerge give some insights into the ecological mechanisms linking resource availability with 

population abundance. 

Larval niche breadth 

There is a weak negative interaction between larval niche breadth and host plant abundance, 

which implies that species which can utilise several different species of host plant are less 

sensitive to changes in host plant abundance. This is as expected, as the more hostplants (or 

any resource) that a species can utilise then the greater potential there is for survival across a 

multitude of environmental conditions and sites (Brown 1984; Dennis 2010). However, more 

pertinently, this suggests that monophagous species are more sensitive to changes in 
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hostplant abundance. Therefore, it follows that by increasing abundance of an associated 

hostplant through management, it should be possible to increase population density of certain 

target species. This is important, given that the most rapidly declining species are often 

monophagous e.g many lycaenids and several nymphalids (Fox et al. 2011), and furthermore it 

should be easier to manage for one particular hostplant than a suite of plant species required 

by polyphagous species. Indeed, it may actually be considerably more difficult to manage sites 

for polyphagous species, given that their interaction with hostplants is weaker.  

Adult niche breadth 

There is no significant interaction between adult niche breadth and nectar plants. However, 

interestingly, there is a significant but weak negative interactive effect between adult niche 

breadth and host plants. This suggests that species which feed on a broad range of nectar 

plants are less sensitive to changes in host plants, or more specifically that species which are 

more restricted in host plant choice are more likely to be specialist adult feeders as well. 

Similar conclusions have been demonstrated for woodland butterflies by Tudor et al  (2004), 

which showed that specialism in flower use was also related to larval host range and biotope 

occupancy. Furthermore, many woodland nectar specialists were species of conservation 

concern, and results from this study would suggest that this is applicable to chalk grassland 

butterfly species as well. However, unlike Tudor, the evidence from this study would not 

advocate that management of chalk grassland sites should give as much emphasis to nectar 

sources as hostplants. 

Habitat specialism 

There is a strong, positive significant interactive relationship between habitat specialism and 

hostplants suggesting that more widely distributed species are less sensitive to changes in 

hostplants. Thus species restricted to more specialist habitats (e.g. chalk grassland) are more 

sensitive to changes in foodplants (within those sites) than species which can survive in more 

heterogeneous habitats. There are two possible reasons for this, first, the associated 

hostplants for these specialist species may also be restricted to these rarer habitats, and so it 

remains possible that the local density of resources can also dictate the population density of 

the consumer (Hanski et al. 1993). Secondly, the trait of habitat specialism may also be closely 

linked to other life history traits (Kearney & Porter 2009; Ockinger et al. 2010), for example, 

narrower dietary niche breadth or lower mobility, hence species grouped as habitat specialists 

may be sensitive to changes in hostplants because they possess multiple (or additional more 

important specialist traits) rather than solely because of their habitat preferences. However, 
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habitat specialism has such a strong interactive relationship with host plants that it is likely 

that it is a trait of paramount importance.  

Mobility 

Mobility is important for survival, as dispersal will determine the probability whether 

individuals will have the ability to move and locate individual plants or habitats. A species 

mobility is primarily driven by resource distributions, in particular, the resource aggregation, 

frequency and abundance (Dennis et al. 2003). There is a strong interaction with host plants 

suggesting that species with higher mobility are less sensitive to changes in host plant 

abundance. These results concur with previous studies (Cowley et al. 2001b; Komonen et al. 

2004) and are expected – mobility can enhance a species potential to colonise new habitats 

and discover new host plants.  Again, species with limited mobility may also possess other 

specialist traits (Betzholtz & Franzen 2011; Sekar 2011; Stevens et al. 2012), although the 

interaction with hostplants is strong enough to suggest that mobility as an independent trait is 

of paramount importance.  

Population structure 

There are no significant interactions between population structure and host and nectar plants, 

which is surprising as a result similar to mobility traits could have been expected. However, the 

definitions of population structure and mobility differ in that population structure is linked 

specifically to metapopulation structure definitions. Therefore, it remains possible that the 

weakness of interaction effects may be due to uncertainty as to the accuracy and 

contradictions of species assignment to ‘open’ or ‘closed’ populations, and the divisions 

therein, compared to the measurement of flight distances recorded by mobility. Although 

many British species are perceived to exist within classic metapopulations (Hanski & Thomas 

1994), metapopulation structure can vary among landscapes (Singer & Thomas 1996), regions 

(Thomas & Harrison 1992) and fundamentally in reality metapopulation structures are not 

easily categorised (Harrison & Taylor 1997). Furthermore, many mark recapture studies have 

now shown that many species which were originally perceived to be sedentary are dispersing 

much further than previously thought (Baguette 2003), and so perhaps the boundaries 

between ‘open’ and ‘closed’ remain inconclusive. The advent of field based estimates of 

dispersal using genetic markers would help resolve this issue. 
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Larval duration 

There was a weak positive interaction with both hostplants and nectar plants. However, 

neither of these results was significant, and so it is unlikely that the rate of resource 

consumption is an important factor in the relationship between butterfly population density 

and foodplant abundance. 

Site Characteristics 

Turf height 

Turf height can be an important factor in determining the ground temperature which in turn 

can influence oviposition locations (Nature Conservancy 1986; Roy & Thomas 2003). Turf 

height shows a weak positive relationship as an interaction with host plants, and a weak 

negative interaction with nectar plants although neither result is significant. The general effect 

of turf height is probably weaker than predicted because of the nature of sampling sites using 

random quadrats; the turf height of a tightly grazed meadow would increase dramatically if 

one of the quadrats were located within scattered gorse bushes or nettle patches, and 

conversely, the turf height of scrubby areas could be reduced dramatically by randomly 

locating nettles or grassy clearings.  

Aspect 

Aspect is an important factor determining ground temperature (Bennie et al. 2008), which can 

be important for oviposition (Thomas & Lewington 2010). Aspect has a strong negative 

interaction with host plants. This suggests that populations inhabiting sites with cooler aspects 

(e.g. not a southerly) are considerably more sensitive to variation in hostplant abundance. This 

is predicted, as temperature is a key driver of whether a hostplant is within suitable condition 

(Thomas 1983a; Renwick & Chew 1994), and so more hostplants can be utilised within hotter 

aspects, thus changes in hostplant abundance are of less importance than to those species 

inhabiting cooler aspects. There is a similar, but insignificant effect with nectar plants but the 

underlying cause of the relationship is almost certainly the same - as species may restrict 

feeding to nectar plants of a certain temperature (Weiss et al. 1988; Comba et al. 1999), then 

nectar plant abundance will be less important to species inhabiting warmer sites. 
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Recommendations for Site Management 

At local scales, intensive field studies of single species on a limited number of sites has shown 

that the strength of correlation between abundance of butterflies and their associated 

foodplants can vary tremendously (Thomas et al. 2011). We do not dispute the results from 

these studies, but suggest that the relationship between butterflies and food plants will vary 

depending on the species studied, their associated life history traits and often the 

environmental conditions of the site on which they were studied.  

Based on the results from this study, we suggest that in general, management for specific 

hostplants can increase butterfly population abundance. More specifically, species which are 

monophagous, are restricted to more specialist habitats and have lower mobility are more 

sensitive to changes in hostplant abundance, and therefore increasing the amount of hostplant 

within sites should increase their population density. Many of the species which possess these 

life history traits are some of the rarest and rapidly declining species, for example the ten year 

population trend for Polyommatus coridon and Aricia agestis show declines of 26% and 38% 

respectively (Fox et al. 2011). However, their sensitivity towards changes in hostplant 

abundance would suggest that by targeting increasing abundance of their associated hostplant 

within sites through management, for example by planting ‘plugs’ of hostplants, could increase 

population levels. Additionally, on the evidence from this study, species which are 

polyphagous and are more mobile – wider countryside species – are more difficult to manage 

for as regards hostplant abundance. However, these species tend to be commoner, and so 

their conservation priority is not as high.  

Furthermore, within sites, hostplant suitability can depend on temperature, and so we 

recommend focussing on areas where favourable aspects may ensure that a higher percentage 

of plants are likely to be within ‘suitable condition’. Within the U.K., Warren (1993) 

demonstrated distinct aspect preferences for British butterflies, with most preferring south 

and south-west facing slopes because they are warmer. However, this does not mean to 

abandon management in areas deemed unsuitable, for even parts of sites which are less 

intensively grazed or with northern facing aspects can be valuable as refuges during poor 

weather (Dennis 2010), and can also contain nectar sources which are of importance to a 

number of species.  

Due to the variation in sensitivity to the amount of hostplant both between and within species 

and across sites, it is challenging to produce a conservation panacea which could benefit all 

species. However, the current recommended management for most grassland sites would be 
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to create a mosaic of turf heights with small patches of scrub inter-dispersed between the 

grassland. There are several reasons why managing sites in this way remains important for 

conservation; a mixture of turf height creates suitable oviposition and nectaring locations for a 

broad range of species, so this is likely to maximise both species richness and population 

density within sites (Fred et al. 2006; Bergman et al. 2008; Stasek et al. 2008). Second, longer 

turf and scrubby areas will also provide shelter during inclement weather and furthermore, a 

more heterogeneous turf height, particularly on the hottest slopes, may compensate for 

extremes in temperature fluctuations which determine oviposition locations, especially with 

climate warming predicted to increase (IPCC 2007). However, it is also important to realise that 

some species which are more sensitive to changes in hostplant abundance can be targeted by 

increasing hostplant abundance within a site, and this knowledge could be especially beneficial 

in conserving some of the most rapidly declining butterfly species. 

Conclusions 

This is the first large scale study, to our knowledge, which has correlated abundance for 

hundreds of butterfly populations against percentage cover of foodplants on a large number of 

sites. We can now be confident that consumable resources are a limitation on population size, 

both within and between species. This study has also clarified the relative importance of 

differing food plants in explaining butterfly abundance at regional scales, which can also be 

influenced by species traits and site characteristics. On the basis of these results, we can now 

recommend broad scale conservation measures to increase butterfly abundance, as well as 

suggesting on which species and sites may respond most positively to management.  

We conclude that both the amount of host and nectar plants are important determinants of 

butterfly population density. However, we also suggest that in this study hostplants are 

considerably more important than nectar plants, with a higher number of significant species, 

and higher R squared values than nectar plants. Nonetheless, nectar does appear to be 

important, and with hostplants removed from associated nectar sources it still explains 

considerable variation in abundance for several species.  

We therefore suggest that despite many species having precise oviposition requirements, and 

restrict host plant choice to a subset of plants in ‘suitable condition,’ larger amounts of 

hostplants do support larger populations. However, the significance of this relationship may in 

part be because our choice of study sites contains many high quality habitats including 

reserves managed specifically for chalk specialist butterflies.   
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Several life history and niche traits show interactive effects with host plants, but not with 

nectar plants, again suggesting host plants are more important in determining abundance. 

Both broader dietary and habitat requirements and higher mobility allow species a greater 

flexibility for survival across environmental conditions and sites, reducing their sensitivity to 

changes in foodplant abundance. Therefore, the results from this study suggest that it is now 

possible to make informed decisions regarding management for specific butterflies, as 

sensitivity towards changes in host and nectar plant abundance is likely to be predictable 

based on species traits. This could have important ramifications for conservation, as many of 

the most sensitive species are also some of the rarest, and so are highly likely to respond 

positively to increases in hostplant abundance. However, it is also highly likely that 

temperature is a key factor in determining ‘suitable condition’ of hostplants, as species which 

inhabit sites of predominantly southerly aspect are significantly less sensitive to changes in 

hostplant abundance. 

Generally therefore, we suggest that land managers should place considerably more emphasis 

on managing sites for butterfly host plants than for their associated nectar sources. We also 

advise that achieving a suitable condition of hostplants is a priority, although maximising 

spatial extent across different aspects will be beneficial as variations in location and 

microclimate of plants are likely to buffer against climatic fluctuations which influence 

oviposition choice. However, nectar plants should not be entirely ignored, as many studies 

suggest that abundance is higher on sites which have an ample supply of nectar and a high 

density of host plants, and evidence from this study would suggest that nectar is important for 

several species. 
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General Discussion 
 

This thesis addressed several gaps in our knowledge regarding the importance of resources 

and other abiotic factors in determining butterfly abundance at multiple scales. In particular, 

using data collected on the Glanville fritillary on the Isle of Wight and population abundance 

data extracted from the UKBMS, I assessed the factors which; i) determine abundance of a 

single species at a local scale over time ii) determine abundance of a single species throughout 

space at the landscape scale and iii) explored the determinants of inter and intra specific 

abundance at a regional scale. I also a reassessed conservation priorities while accounting for 

differences in species, sites and the likelihood of continued climate warming.  

Summary of key findings 

In Chapter 1, I attempted to explain the observed distribution of Glanville fritillary larvae 

described by Thomas et al (2001) which show a clear preference for earlier successional stages 

and smaller hostplants, and explained the mechanisms behind fluctuations in population levels 

over a 14 year timescale, on a small (<1km2), isolated site. 

I demonstrated that hostplants selected for oviposition by female Glanville fritillaries were 

considerably warmer than ambient air temperature. I also established that ground 

temperatures beneath successional stages of grassland decreased with increasing turf height. 

Taken together, this suggested that temperature was of primary importance in determining 

oviposition locations, hence providing a mechanism to explain the preference for earlier 

successional stages as shown by Thomas et al (2001). Furthermore, this was reinforced by 

demonstrating that abundance was significantly higher both in plots which contained higher 

percentages of early successional habitats, and following years when the temperature during 

the flight period (June) was warmer.  

In Chapter 2, I assessed which factors were most important in determining abundance of a 

single species throughout space at the landscape scale. I used a measure of habitat quality as a 

surrogate of suitable resource availability, and included the metapopulation factors of area 

and isolation as well as ambient air temperature as predictors of abundance. I also tested 

temperature as an interactive effect against the other parameters.  

The results showed that all predictors were significant, but area was most important, followed 

by habitat quality, isolation and temperature. Thus, two of the parameters important at local 

scales are also important at the landscape scale, although the inclusion of many more sites has 
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reduced the importance of temperature, probably because inter-annual variation only 

accounts for a small amount of variation in abundance (9%), the majority of which is 

attributable to variation among patches (50%). This suggests that metapopulation factors do 

have key role in determining species abundance at the landscape scale (Hanski 1998b), but 

that habitat quality is also an essential component which should not be overlooked (Thomas et 

al. 2001). Only habitat quality showed a significant negative interaction with temperature, 

suggesting that in warmer years the precise definition of ‘suitable’ habitat became weaker, 

probably because thermal constraints on oviposition locations are not as acute. 

Both of these chapters highlight the importance of the ‘condition’ (in this case microclimate) of 

the hostplant, although the geometric properties of habitat patches are also important.  

The Glanville fritillary is therefore among the 16% of British butterfly species that inhabit 

unnatural early successional stages in the U.K. because they are warmer, and laying eggs on 

warmer plants maximises the probability of successful larval development within restricted 

seasonal temperature constraints (Thomas 1993).  

In Chapter 3 I used UKBMS population data for 30 butterfly species from 54 sites across 

southeast England, combined with site specific estimates of resource availability (host and 

nectar plant abundance) to explain the variation in population abundance both between and 

within species at a regional scale. I also examined species traits and site characteristics to 

explain species’ sensitivity to changes in host and nectar plant abundance.  

The results showed that both the abundance of hostplant and nectar were significantly related 

to the size of butterfly populations across sites. The amount of hostplant was generally a 

stronger predictor than nectar, but several species’ abundance was correlated more strongly 

with nectar than hostplants. In addition, species which possessed ‘specialist’ traits of narrower 

dietary niche breadth, habitat specialism and lower mobility were more sensitive to changes in 

the amount of resource, as were populations on cooler sites. 

This suggests that generally, land managers should give more priority to managing for 

hostplants of key butterfly species, over providing nectar. It also suggests that specialist 

species should respond well to managed increases in their resource base, which could be of 

benefit to conservation as they are often the rarest, most rapidly declining species (Fox et al. 

2011).  
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Taken together, the results of this thesis show that specialised butterfly species are probably 

limited at small scales by the availability of hostplants in suitable condition, but at large scales 

by dispersal limitation and thermal tolerance. They also demonstrate how sensitive butterflies 

can be to changes to both the amount of suitable habitat and temperature, as well as 

landscape characteristics, and emphasise how important management is to maximise butterfly 

population abundance.  

Therefore, my results are broadly congruent with the ‘resource limitation hypothesis’ in that 

finite amounts of resources can restrict population growth over time and throughout space. 

Clarifying the importance of resources at multiple scales can therefore further our 

understanding as to why butterfly populations fluctuate both within and across sites, thereby 

facilitating a more effective conservation strategy.  

Study limitations 

While the research presented in this thesis advances our knowledge of the importance of 

resources in determining abundance, it has several limitations.  

The determinants of abundance are often complex and interacting (McGill 2006). In this study, 

I focussed primarily on the importance of consumable resources (host and nectar plants), also 

suggesting that their ‘condition’ was often as important as their abundance. However, no 

consideration was given to the importance of utility resources, for example thermoregulation,  

pupation  and mate location sites (Dennis et al. 2003), nor the many other factors which could 

affect a species abundance, including predators, parasitoids and pathogens (Lei et al. 1997; 

Laine 2004; Harvey et al. 2005; van Nouhuys & Hanski 2005), or weather (apart from 

temperature), all of which can undoubtedly influence butterfly population abundance at 

multiple scales. 

For the Glanville fritillary research I considered each larval web to constitute a population unit 

of one, and did not account for variation in numbers of larvae within each web. Theoretically, 

therefore, it is possible that smaller numbers of webs could produce more individuals than a 

slightly larger number of webs, although previous research by Simcox and Thomas (Simcox & 

Thomas 1979) did suggest that numbers of larvae within webs were relatively consistent. 

Furthermore, I did not account for bias in web counts between habitats, in that webs could 

have been more conspicuous within earlier successional stages. However, when possible, 

counts were conducted early in the morning when dew was still present, or after light rain 

which increased web visibility due to water droplets covering the silk, in order to minimise this 
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error. Additionally, many of the sites containing more heterogeneous terrain were surveyed 

twice, both at the start and end of the survey period to ensure that late emerging individuals 

were accounted for.   

I also made no consideration of recording bias within the UKBMS dataset, so I assumed that 

each species had as much chance of being recorded as another, despite research suggesting 

that wing colour determines detectability (Dennis et al. 2006a). I also did not account for 

variation in transect walker ability at butterfly identification, eyesight or walking speed, all of 

which could affect both the number and species of butterflies recorded within a set transect 

route. However, generally, the UKBMS method for monitoring butterflies is well described, 

extensively tested and scientifically sound (Pollard 1977; Pollard & Yates 1993; Gross et al. 

2007; Isaac et al. 2011a). In other words, the error in abundances estimated by the UKBMS is 

small in comparison with the total variation in abundance that exists. 

Finally, research on the significance of resources at multiple scales has both benefits and 

limitations in scope for conservation. For example, results from broader scale studies can 

highlight general patterns between resources and butterfly populations, but it is difficult to 

assess the importance of resource condition (e.g. is the hostplant in a suitable microhabitat?). 

Likewise, the results from more local studies could highlight the importance of resource 

condition on a specific species at a particular site, yet this specific knowledge could be of 

limited value in advocating general management regimes for increasing abundance of multiple 

species across regions. Finally, the factors which determine abundance at all spatial scales are 

complex and interacting, and resources are just one (albeit important) component. Therefore, 

conservation measures based purely on resource availability are unlikely to be definitive, and I 

have tried to be explicit in the limitations of conservation recommendations advocated on the 

evidence from these studies. 

Conclusions 

Understanding abundance is essential for assessing the potential impact of environmental 

change and is crucial for conservation (McGill 2006).  

The importance of resources within landscape and macroecological studies has been 

overlooked in the literature, probably because of the difficulty in measuring resource 

availability over large areas (Gaston et al. 2004; Paivinen et al. 2005). Results from my Chapter 

3, in which I used hostplant abundance as a surrogate for resource availability, demonstrate 

that resources are equally important in determining abundance over large scales (including 
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across species) as over small scales. While this would appear unsurprising (Dennis 2010), this 

suggests that priority should be given to increase resource abundance within sites, although 

particular attention should be given to their ‘condition’. The importance of resource condition 

varies between species (niche breadth) and site characteristics, and so the creation or 

maintenance of heterogeneous habitats throughout the landscape would increase the 

likelihood of providing resources in suitable condition for many species.  

In addition, much of the autecological research conducted on (mostly ‘specialist’) butterflies at 

local scales during the 1980’s highlighted the importance of temperature of local 

microclimates in determining population abundance, because of the constriction of the larval 

niche (Thomas 1983b, a; Thomas et al. 1986). In this study, the importance of temperature is 

evident at all scales; it influences the suitability of the host foodplant at local scales and 

thereby restricts oviposition to earlier successional stages, and the availability of warmer 

habitats also determines abundance at the landscape scale. At regional scales, species which 

inhabit cooler sites are also likely to be more sensitive to changes in resource availability. 

Therefore, the importance of managing habitats to create thermally diverse environments 

cannot be understated, particularly in more northerly altitudes where temperature constraints 

are more acute.   

Disregard for both the importance of resource condition and temperature can also potentially 

explain why during a period of rising global temperatures (IPCC 2007), insects have declined at 

faster rates than homeothermic species (Thomas & Morris 1994). The inappropriate or lack of 

management within sites is certainly a contributory factor (Warren et al. 2001; Haslett 2008), 

and has reduced the availability of sufficiently warm habitats (and particularly warm 

microclimates within them) which are necessary for provide suitable resources which facilitate 

successful larval development (Thomas 1995c). Current losses suggest that the natural world is 

experiencing the sixth major extinction event in its history (Thomas et al. 2004), and we ignore 

these declines at our peril.  
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