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Phase-dependent effects in bichromatic high-order harmonic generation
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We address high-order harmonic generation with linearly polarized bichromatic fields, concentrating on a
modulation in the harmonic yield as a function of the relative phase between the two field components, and on
an offset phase shift of this modulation for neighboring cutoff harmonics. These effects have been recently
observed in experiments where the relative phase between the two driving fields was controlled. Using the
three-step model and the fully numerical solution of the time-dependent @ebes equation, we discuss the
phase-dependent modulation and show that the offset phase is inherent to a particular set of semiclassical
trajectories for the returning electron. These trajectories are identified using classical arguments and isolated by
means of the saddle-point method, which allows a detailed investigation of their interference. Thus, by adding
a second driving field whose amplitude lies within an adequate parameter range, one is able to single out a set
of trajectories according to its behavior with respect to the relative phase. This effect is already present at the
the single-atom-response level.

PACS numbgs): 42.50.Hz, 32.80.Rm, 32.80.QKk, 42.65.Ky

[. INTRODUCTION ing to specific trajectories, for instance their different sensi-
tivity to propagation and phase matching.

The emission spectrum of a gaseous sample exposed to a For a similar reason, i.e., the possibility of coherent con-
strong laser field covers a long frequency range with hartrol of XUV emission, high-order harmonic generation with
monics of roughly the same intensities, the so-called “pla-bichromatic fields has attracted a lot of attention in the past
teau,” followed by an abrupt decrease in the harmonic yieldfew years, both theoreticallj11,12,15—-18 and experimen-
the so-called “cutoff’ [1]. A very intuitive and successful tally [19—-21]. In fact, by changing the shape of the bichro-
description of these features is given by the so-called “threematic field, one can in principle manipulate the electron mo-
step model”[2-5]: an electron leaves the atom through tun-tion in the continuum, suppressing or enhancing particular
neling or multiphoton ionization, propagates in the con-groups of harmonics. Already for the simplest case, namely a
tinuum and, depending on its emission time, may be driverinearly polarized laser field, one can strongly influence the
back by the field and recombine with its parent ion, such thaf, 5 monic spectra by varying the field amplitudes, and, in the

harmonic rat?"’g'o\?v.ltjhp t‘iht.he g);tremihultra\tn?f(mV) re- gsoase of commensurate frequencies, the relative plalse-
gime 15 emitted. Within this picture, the culoft Corresponas, oo, 1he driving fields. In previous publications, we have

to the_ maximum Kinetic energy Of. the_ electron upon remmshown that the introduction of a second driving field may
and is given, for monochromatic fields, bQ .= |eol

N . result in several maximal- and minimal-energy trajectories
+3.11U,, where|go| and U, are the ionization potential gy tray

and the ponderomotive energy, respectively. This model def-Or _the_ returning electron, which correspond to cutoffs in the
mission spectr@l1,17, such that the plateau presents a

scribes existing experiments in some respect even quantit&- . . . .
tively and has also been successfully tested against oth&puch more cqmplex structure in the bichromatic than in the
theoretical methods, such as the fully numerical solution offnochromatic case. _ .
the time-dependent Schdinger equatioi6], with strikingly Several parameters detgrmlne the prominence of a cut.off
similar spectral and temporal profiles, for monochromaticin the spectrum: the total field strength at the electron emis-
[7-10], bichromatic[11,17, and short-pulsed laser fields sion timet,, the excursion time of the electron in the con-
[13]. One of the strongest experimental evidences that thénuum, and the interference between different semiclassical
physical picture of semiclassical electron trajectories is cortrajectories. The first parameter is of extreme importance,
rect has been provided recently in Rgf4]. Therein, the since the electron leaves the atom with a probability related
trajectories in question have been isolated using effects r¢e the quasistatic ionization rafe2], exd —C/|E(ty)|]. A
lated to the propagation of the harmonic radiation in thevery effective way to control the field strengti(ty)| is
gaseous medium. These experiments have also shown thaianging the relative phase between the laser field compo-
one can in principle manipulate the harmonic spectra by exnents of different frequencies. For instance[1d] we pro-
ploiting particular characteristics of harmonics correspondvide an example for which the harmonic yield decreases con-
siderably for a chosen interval of the relative phase where
this parameter was particularly weak. Also the interference
*On leave from the Faculty of Science and Mathematics, Departbetween the semiclassical trajectories depends very strongly
ment of Physics, University of Sarajevo, Zmaja od Bosne 35, 7100@n the relative phase. In principle, slight changespimay
Sarajevo, Bosnia and Herzegovina. radically alter this interference pattern, so that variations of
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orders of magnitude in the harmonic yield are observed, foeach driving wave. Since all the ensuing motion takes place
isolated groups of harmoni¢42]. along the polarization axis, the problem can be treated one
Experimentally, this phase control has been achieved redimensionally. At the initial time, the electron leaves the
cently for high-order harmonic generation in helium and ar-atom with zero velocity, propagates in the continuum under
gon, using a linearly polarized—2w field of comparable the influence of the laser field only, and returns to the site of
intensities[21]. The intensity of the low-frequency field was its release at a later timig, such thatx(t;)=0. During the
kept fixed, whereas the high-frequency field and the relativgprocess, canonical momentum is conserved. Therefore, the
phase¢ were varied. The wavelength of the low-frequency kinetic energy of the electron upon return is given by
field was approximatelh =800 nm and intensities of the
order of 16° W/cn? have been used. In this experiment, the
harmonic yield as a function of the relative phasewith all
other parameters kept constant, exhibits the following main
features:(i) The intensity of the cutoff harmonics is modu- With A(t) being the vector potential, related to the external
lated. A shift of 27 in the relative phase between theand  field by E(t)=—dA(t)/dt. This yields a harmonic energy
2w fields corresponds to two periods of the modulation of
each harmonic(ii) The modulation itself shows an offset Q=|eol + Exin(t1,to) ©)
phase shift as the harmonic order is varied: if the modulation L . .
of the nth harmonic presents a maximum as a functiorbof by the recombination to the ground state. Following this

for a certain phaseb,, then this maximum will be slightly ?lmptle plcéutrhe, th? kw;etu; ener%gki“(to’tl.)’t tgei em'fs'of‘ |
shifted, i.e., it will be atp+ 8¢ for the (n+1)th harmonic. "€ o, and € return imé, can be associated 1o a classica

These effects are present within a relatively broad range Ot(ajectory fqr the returning el'e.ctron. The CUt.Off frequencie;
intensity ratios!,, /I, [21]. The theoretical modeling of are determined by the condition that the kinetic energy is
these experiments reproduces these findings reasonably We(?f(tremal upon return, namelyl By (ts, to)/dt; = 0. Th.e. .
however, without providing a physical explanation for eithere'jms.s'.On and return 't|mes are ponnected by the revisiting
the modulation or its phase shift. [21], as a first approxi- cond_ltlon. We use th|_s mod_el_e|ther for a single electron,
mation, the cutoff energy was taken as the monochromati?farylng the emission timé, within a cycle T =2/« of the
value Qa=eo|+3.17U, and the ponderomotive energy ow-frequency driving field and calculatingEn(ty,to),
was related to the low-frequency field only, such tgtwas which is sub_sequently plotted_as a function of the emission

_ 2 and return times, or we consider an ensemble of electrons
chosen adJ,,=1 /40"

In this paper we give a simple explanation of these effect ?tose emission t|m|e Its V?r'etd rantzl(:n:ly frt.om O:[I:]oln th'sd.t.
based on the analysis of classical trajectories, within th atter case, we select electrons that satisfy the condition

three-step model and single-atom-response framework. | (t2) =0 within a particular set of harmonic energies, given
particular, we isolate the relevant semiclassical trajectorie y Eg.(3), and we look at glecf[ron counts as functions of t.he
using the saddle-point method, computing the harmonid€lative phasep. The contribution of each single electron is

spectra as the interference between these trajectories. Besid’ég'ghEd with the quasistatic ionization rq@2,23
the experimental facts, the conclusions drawn from the clas-

sical and semiclassical computations are checked against the r~=——="_
results from a fully numerical solution of the time-dependent |E(to)]

Schralinger equation for a one-dimensional model atom ) )
with a single bound state, whose energy corresponds to the The first and the sec_:ond procedures have been used in
argon ionization potential. We use atomic units throughout! 11,12 and[24], respectively.

The paper is outlined as follows: in Sec. Il we present our

theoretical methods, namely the classical or “simple-man”  B. Strong-field approximation and saddle-point method

model (Sec. Il A, the saddle-point methotBec. 11B), and The classical model discussed in Sec. Il A provides useful

the tlme-dependent_Scm‘mger equatiortSec. 11 Q. In Sec.  jnformation concerning the cutoff law and the emission and

Il we present and discuss our results and in Sec. IV we statgayyrm times for the electron. However, it does not account

our conclusions. for the quantum interference between two or more possible

trajectories for the returning electron, which lead to well-

Il. THEORY structured harmonic spectf25-27. For this purpose, we

use a closely related quantum-mechanical approach: the

strong-field approximatioiSFA) theory of high-order har-

In order to determine the emission and return times anghonic generatio3,5,18.
the kinetic energy of the returning electron, we take the nu- \ithin the SFA, thenth harmonic strength is defined as
merical solution of the classical equations of motion of anthe Fourier component of the time-dependent difal&,19

electron in the field
. (Tdt inot [ [ 2T 812
Dn——lfO ?e Jo dr(?) F(ps;t,7)

where ¢ denotes the relative phase dafgl the amplitude of Xexd —iS(ps;t, 7)1,

1
Exin(t1,to) = E[A(tl)_A(tO)]za 2

25/2| 80| 3/2

J2Megl—1 _25/2|80|3/2
[2e

N 3Ey)]

A. Classical model

E(t)=6,[Eg sin(ot) + Egpsin(20t+ )], (1)
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F(ps:t,7) = (olX|ps— A(t) ) ps— A(t— 7) | XE(t— 7)| b)), time-dependent  dipole  acceleration x(t)=(y(t)]
(B —dV(x)/dx+E(t)|#(t)) [29].

where r=t—t, is the excursion time of the electron in the
continuum, |¢q) is the atomic ground state, angg Ill. RESULTS
= [{_ dt’A(t")/ris the stationary momentum, for which the

icl ical acti A. Upper and lower cutoff branches
guasiclassical acton

For a monochromatic field, the maximumBg;,(t4,t,) is

t ] at the well-known value 3.17,, and the semiclassical tra-

€0 (6) jectories originating the cutoff obey &2 periodicity. For

bichromatic fields, however, this property is maintained only

satisfies the conditioN ,S(p;t,7) =0. The harmonic yield is if the higher frgquency i‘?‘ andd multiple of the Iowgr fre-
proportional ton|D,|2. The double integral in Eq(5) can quency. This is clear, since, for these types of field§,

be solved using the saddle-point meth&PM), with the +T/2)=+A(t). On the other hand, if the ratio between the
result[25,26 higher and the lower frequency is even, this symmetry is

broken. Since the kinetic energy of the electron depends on
A(t) according to Eq(2), this results in a splitting of the
D>, 75 ¥4 deld?S)] YR exdi(nwts—S9)], (7). cutoff energy into an upper and a lower branch named, re-
s spectively,Q}, and(},. This feature can be seen in detail as

where det¢?S,) denotes the determinant of thex2 matrix function of the field strength ratiBio,/Egi= 7, for ¢=0, in

formed by the second derivatives of the action with respeci'?l previous pubhcatlod_le]. These branches _behave in strik-
to t, andt at p=p,. For hydrogenlike atoms the product of ingly different ways with respect to the relative phaseThe

the dipole matrix elemerf, can be approximated bynfs energy of the upper cutoff branch practically doeg not vary
) Y23, The sum in Esq.(7) extends over all relevant with this parameter, whereas the lower branch is strongly

. . : s phase dependent. These features are present for intensity ra-
saddle points which satisfy the conditiofs] tios smaller than or of the order ¢, ,=1,,/1,=0.2. For
1 higher intensity ratios there is a much more complicated pat-
=[ps—Al(t)12=—|eq, tern for the cutoff energies as functions of the phase. For
2 instance, the case of equally strong driving waves has been
n L discussed in11,12.
Trn 2 Trn 2_ An example is shown in Fig. 1, wheBEg;,(t4,tg) is plot-
o [P~ AT = 5[ps—Alto) "=no. ® ted as a function of the emission and return times, for 0
_ _ o <¢=<0.27 and »=0.32. This corresponds to an intensity
We will shoyv in Seg. III. that a good approximation fbx, ratio | »,,_,,=1,,/1,=0.1. Each pointy,t;,Eyin(te.t1)) in
can be obtained taking into account only four complex soluthe curves shown fulfills the revisiting conditiot{t;) =0,

1
sipit)- | dt'[z[p—A(t'n%

tions for pairs (,to). thus characterizing a trajectory for the returning electron.
Given an emission timg, on the curve in the lower part of
C. Time-dependent Schradlinger equation the figure, the return timé; in the corresponding curve in

As our point of reference, we take the one—dimensionafhe upper part of th? figure is det_ermine_d by the_ intersection
time-dependent Schdinger équation(TDSE) [6] for a of the latter curve with a perpendicular line starting from the
single electron subject to a binding potential and a bichro—IOW.er curve atty. The return energy can be re_ad frqm the
matic field(1). A one-dimensiona{1D) model is not so de- ordinate of the graph. The qual energy maxima give th'e
manding as a full three-dimensional computation and stillf:umffs' and each of _these maximal-energy trajectories Sp.“ts
describes results for linearly polarized fields adequately i@ tWo. corresponding to a shorter and a longer excursion

gualitative termg28]. In the velocity gauge, this equation time for the electron in the continugm. Thys, fqr a given
reads Eyin(t1,to), there may be many possible trajectories for the

returning electron. Quantum mechanically, the probability
p? amplitudes related to the electron following each of these
7+V(X)—pA(t)}|ilf(t)>- (9)  trajectories interfere. The cutoff branch€s, and Q, are

marked with thick solid arrows. For this field-strength ratio,

The quadratic term if\(t) was removed by a unitary trans- the energy of the upper cutoff branch is at rougfly,

4
il v(0)=

formation. The binding potential was chosen =3.8J;,, whereas(), varies from 2.6, to 2.3, for the
phase interval in question. In the figure and in the results that
V(x)=—1.1exg—x3/1.21), (100  follow, the kinetic energy is displayed in units of the pon-

deromotive energy calculated for théhole field, given by
such that the model atom has a single field-free bound statdp==qUpn, = E5y/4w?+ E§/16w? which clearly varies
with energys,=—0.58 a.u. According to the experimental with the intensity ratio. The ponderomotive energy consid-
conditions the lower frequency of the driving field is taken asered in[21], U, = E§1/4w2, is slightly smaller in this case.
w=0.057 a.u. The power spectra are computed from th&oughly, the corresponding emission and return times for the
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FIG. 2. Complex solutiong, andt, of the SPM equation{3)

FIG. 1. Classical emission and return times for an electron in &or a hydrogenlike atomic potential wifz,|=0.58 a.u., the same
bichromatic field given by Eq1) as functions of its kinetic energy laser field parameters as in Fig. 1, and the relative pkas8. Four
upon return,E,(t;,tg), for various relative phases<0¢4=<0.27. solutions (denoted byS;, S,, S;, and S,) are obtained for the
The vertical axes in the upper and lower parts correspond, respebarmonic order 2&n=<280. On each curve the beginniiig0), the
tively, to the emission and return times, given yyandt,. The cutoff point (50 or 69, and the end80) are denoted with the
field strengths are chosen such tBap/Ey,=0.32, the kinetic en-  corresponding value at.
ergy is given in units of the ponderomotive energy, and the emis-

sion and return times in units of the period of the Iow-frequencyand S,) the imaginary parts increase in absolute value. If
field, T=2#/w. The cutoff energies are marked with arrows con- 4. 9 y P )

necting both parts of the figure. The thick solid arrows correspondd€S€ imaginary parts are negative, Eq). gives low emis-
to the upper and lower cutoff branches and the remaining cutoffion rates, and, consequently, the position of the cutoff. Oth-
energies are indicated by dashed arrows. The influence of the bin@rwise, they lead to an exponential increase in the harmonic
ing potential was neglected. yield. More precisely, in the application of E¢r) beyond

the denoted cutoff points, one of the solutidsandsS, (S;

lower and upper branches are given by, respectively ; ;
(ty .tor) = (0.85T,1.4T) and (ty,.te,)~(0.35T,0.9T). Their and S,) should be discarded as unphysical. Therefore, for

. - - . . . )
precise values depend on the relative phasdor the pa- n>65 only one trajectory contributes to the harmonic spec

- . . ) .
rameters considered, the remaining cutoffs, marked witﬁra' For 56=n=E5 three trajectories contribute, while for

; . <50 all trajectories contribute to the harmonic yield.
dashed arrows, do not play an important role in the present
problem, either for being too near the ionization threshold or
due to very long excursion times for the electron, which
results in a pronounced wave packet spreading. The importance of each set of trajectories in the harmonic
A more detailed description of the process above can bepectra can be inferred from the quantum-mechanical com-
obtained using the complex time formalisi®5,26. SPM  putation. The lower branch is considerably more prominent
equations(8), for |go|#0, have only complex solutiorts, in the spectra, whereas the most energetic cutoff appears
andt,=t. These solutions, for€t,=<T and O<t;—ty<T, only as a small shoulder. Thus, the “cutoff’ seen experi-
are presented in Fig. 2. On the left-hand side we present th@entally corresponds to the strongly phase-dependent set of
imaginary part oft, (scaled to the optical cycld) as a trajectories. Figures 3 and 4 present some of these spectra,
function of the real part ofy, and, similarly, on the right- for field strength€£,,=0.1 a.u. and;,=0.032 a.u., which
hand side we present solutions figr The numbers on the are within the experimental parameter range. For these pa-
curves correspond to the harmonic oraefor which solu-  rameters and € ¢=<0.2, the upper and lower branches of
tions were found, for the same intensity ratio as in the pre{} . correspond to the harmonic frequencieés=63w and
vious figure andey;=0.1 a.u. Itis evident that the solutions 43.1w<();<47.4w, respectively. Both cutoff branches are
S; and 'S, correspond to the lower cutoff branch, while the indicated in the figure.
solutionsS; andS, correspond to the upper one. The cutoffs  Figures 3a) and 3b) present results obtained solving the
appear for values af which correspond to the closest points TDSE (see Sec. Il Cand the SFA(see Sec. II B respec-
of the curvesS; andS, (or S; andS,). The physical mean- tively. Apart from a very good agreement between both re-
ing of the imaginary parts of timek, andt; is connected sults for lower and upper cutoff branches, one observes an
with the probability that the process in question occurs. Thisnergy displacement for the lower branch @sis varied,
follows from Eg. (7) because, for one particular trajectory, whereas the energy of the upper cutoff branch remains prac-
the logarithm of the harmonic yield is proportional to tically inaltered. These results are in perfect agreement with
Im[nwt; —S(ps,t;,7)]. Beyond the points denoted by  the predictions of Sec. Il A obtained using the classical
=50 for the solutionss; andS, (and also byn=65 for S; model.

B. Harmonic spectra
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SFA (b) |
0=0.1% (b) 1

SPM
*---% SFA

log,, Harmonic Yield (arb. units)

log,, Harmonic Yield (arb. units)

G---0¢=0.1%
PR ¢=0.2ﬂ3
-16 .
~18 . . . ®
0 20 40 60 80 7
Harmonic Order n " a0 40 50 60 70 80

o . . Harmonic Order n
FIG. 3. Harmonic yields as functions of the harmonic order

calculated using the TDSHpart ()] and the strong-field approxi-
mation[part (b)], for the same bichromatic field as in the previous _12

¢=0.2x (c) 1
figures, withEy;=0.1 a.u. and relative phase<Q)<0.27. The SPM
numbers on the upper edge of péaj give the corresponding ki- 1 % % SFA

netic energyE,in(t1,to) in units of the ponderomotive enerdy, .
The upper and lower cutoff branches are indicated by thick arrows
in part(a). For the phase$ =0, ¢=0.17, and¢= 0.2, the cutoff
), is indicated by a solid, dashed, and dotted arrow, respectively.

In Fig. 4 we compare the SFA results to the spectra ob-
tained using the saddle-point method. The SPM results ar
obtained taking only four relevant complex solutions for the
timesty, andt; in Eq. (7) (see Fig. 2 The results agree
qualitatively with the TDSE and SFA results for-30. This
shows that the main contribution to the harmonic y|eld_ near -17.s 20 50 o0 70 30
both cutoff branches comes from the four complex trajecto- Harmonic Order n
ries which have been explicitly discussed in Sec. Il A. o _ )

A more detailed investigation of the field streng(to)| FIG. 4. _ He_lrmonlc yields calculated Wlth the sadd_le-pplnt
at the emission time explains part of the features observed ifiethod (solid lines compared to the strong-field approximation
Figs. 3 and 4. Figure (8 displays this parameter for the _(ste_lrs r_;onnected_ by da_she_d linésr the same bichromatic field and
lower and upper branches, for intensity ratigs, ,=0.1 'o"ization potential as in Fig. 3, fde) ¢=0, (b) ¢=0.1m, and(c)
and 0.2. We show only the behavior fosG<, since the ¢~ -2 @s functions of the harmonic ordar
semiclassical trajectories obey a periodmofvith respect to  erably larger field at the emission time, such that its promi-
the phase, due to the symmetrig(t,¢+ 7)=—E(t nence in the spectrum is justified. This prominence decreases
—T/2,¢). This property is discussed in detail [12,30. for the phase interval where both fields are comparable. An-
From the figure it is clear that for a wide phase interval,other important parameter is the excursion time of the elec-
namely for O< ¢<0.8, the lower branch presents a consid- tron in the continuum: the shorter the excursion time, the less

log,, Harmonic Yield (arb. units)
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FIG. 5. Field strengthE(t,)| at the emission timgpart(a)] and ¢/1t

excursion times=t;—t, [part(b)], for the upper and lower cutoff
branches, for intensity ratios,,_,=0.1 (filled symbolg, and FIG. 6. Harmonic yield from the TDSE computation for neigh-
l20-=0-2 (open symbols as functions of the relative phase  boring cutoff harmonics compared to the quasistatic ionization rate,
The triangles connected by dotted lines and the circles connected ks functions of the relative phage for a driving field as in Fig. 3.
solid lines correspond to the lower cutd®; and the upper cutoff  Parts(a) and (b) refer to the cutoff branche®, and ),, respec-
Q,, respectively. tively. Part(a) displays the harmonicQ = 63w, () =64w, and )

= 65w, whose energies are slightly larger tHa|a|+3.8Up, while

important wave packet spreading. For both cutoff branched?@t (P) shows the harmonic€) =52w, (2=53w, and ) =54w,
P P X g. For both cutoff branc es%?\nth energies aroundiso|+3Up (slightly beyond the cutoff(),).

these times are comparable and vary with the relative pha e thick lnes in the figure gve the formula
¢. For phases smaller_thadnzOAw, the excursion time for — 252, |¥/3|E(t,) |, related to the quasistatic rdee Eq(4)], for
the lower branch is slightly shorter than that of the upper, _ _

" , : to=toy [Part(a] andty=tq [part(b)].
branch. For the remaining phases, this pattern is reversed.
This can be seen in Fig(B), for the same intensity ratios as
in the previous part of the figure. Thus, this does not appe
to play a significant role in this case.

arpined by a single cutoff trajectory whose energy is almost
independent of the relative phage Thus, other mechanisms
that may influence the harmonic yield and produce a modu-
lation, such as pronounced interference effects or significant
variations in the harmonic intensities due to a shift in the

For both lower and upper cutoff branches, the TDSE com<utoff energy, do not play a significant role.
putation yields a modulation for the harmonic intensities as On the other hand, for the lower cutoff branch the TDSE
functions of the relative phaseé, which is periodic inm.  computation clearly shows a phase shift of the modulation
This 7 periodicity is due to the symmetry B(t) mentioned for neighboring harmonics, which qualitatively corresponds
in Sec. Il B. to the feature reported if21]. This phase shift is shown in

In order to study the offset phase shift, we investigate thid=ig. 6(b), where the harmonic intensity is plotted as a func-
modulation for consecutive harmonics near and slightly betion of the relative phase, for harmonics slightly beydnd
yond the lower and upper cutoff branches. Figui@ 6hows  namely at|eo|+3U,. It is strongly related to the variation
this variation for harmonics neaf), obtained from the of the cutoff energy with¢. As a particular harmonic ap-
guantum-mechanical computation, compared with the quasproaches or gets further in energy frdd, there is either an
static rate folE(tg,). The obvious coincidence between themincrease or a decrease in the harmonic yield. For a given
indicates that for the upper branch the harmonic yield is dephase, this intensity variation depends on the harmonic or-
termined by the quasistatic ionization rate, i.e., by the probder, since different harmonics are unequally distant from the
ability per unit time that the “first step” takes place. This is lower cutoff branch. Thus, neighboring harmonics present
related to the fact that these harmonics are mainly detersimilar intensities for slightly different phases. For energies

C. Modulation and its phase shift
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—2.50 Up

lower than or roughly at};, there is also a pronounced 250U
-——9 o

interference structure superposed to the global behavior,
which sometimes disguises this phase shift. This is not sur-
prising since, in this energy regiofy, splits into two sets of
trajectories for the returning electron which are temporally
and energetically very close. For energies of the order of
leol +3U,, these interference effects are practically absent.
Figure Gb) also shows that the modulation observed does
not follow the quasistatic ionization rate, given by the thick
line in the figure. In fact, the modulation observed is a con-
sequence of other physical mechanisms in addition to the
tunneling process at the emission time, namely the energy
variation of the lower cutoff branch and the interference be-
tween trajectories belonging to the lower and upper
branches. As already discussed, the phase dependefie of
is responsible for the phase shift of the modulation. Another
example of its influence on the harmonic yield is a pro-
nounced intensity drop seen in Figib which occurs for
¢=0.257. For this phase, the energy difference between the o/2m
group of harmonics chosen and the cutfff is most pro-

nounced. i o . Q, and(}, as functions of the relative phagecalculated from the
The offset phase shift is also present within the SImple'classical model. In parta) the quasistatic ionization rate given by

man model, as described in Sec. Il A for an electron engq (4) and in part(b) a field-independent ionization rate was used.
semble with randomly distributed start tImE§Q)$T This The calculation was performed with an ensemble of1®’ elec-
confirms the classical origin of this effect since, due to thetrons and randomly distributed start timgsand phasesp. The
strong phase dependence Qf, as ¢ is varied different kinetic energy at the return timg was identified with the photon
amounts of electrons come frofyy and(),. Since electrons energy. The same field parameters as in Fig. 6 were used.

with slightly different E,,(t1,tg) are unequally distant in

energy from the lower branch, the corresponding electromyhase-dependent modulation becomes considerably more
counts are also expected to be phase shifted with respect {mpjicated.

each other. Figure 7 shows these counts as functions of the The interference between the lower and upper cutoff
relative phasg fo_r different electron kinetic energies, whichyanches plays only a secondary role in this modulation be-
include contributions for one or both cutoff branches, de'ing however, present for phases in the intervalnG5p
pendlng on the phase_ln question. A more detallc_ed behaviaL ;- for which E(ty) and E(ty,) are comparable and the
of 0, with the phase will be discussed below. In Fig@jive  gycyrsion timer,=t,,—to, is shorter than that of the lower
take into account the ionization rate given by E&),  pranch. Some information concerning these interferences can
Wherea§ in Fig. {b) we consider a constant ionization rate. pe optained using the saddle-point method. In Fig. 9 we
The main difference between them is that, in Figa)/one  hresent the spectra resulting from isolated pairs of trajecto-
of the two sets of peaks observed in Figh)7is strongly  ries compared to the results obtained taking into account all
suppressed. Thuf(to)| influences the modulation, but not ¢or relevant trajectories. Figure(@ displays these results
its phase shift, only selecting the trajectories for wh|_ch thesor $=0, clearly showing that the lower cutoff branch is
field strengths at the electron start times are particularlyymost entirely determined by the trajector&sandsS,. For
strong. ¢»=0.97 [Fig. Ab)], on the other hand, one clearly sees an

The precise behavior df); and Q) with respect to the  jnierference pattern in the harmonics of the lower cutoff
phase as calculated with the simple-man model is shown i anch originated by the trajectori€s and S,.

Fig. 8 for several intensity ratios. Each point in the figure
corresponds to an extremal kinetic energy for the returning
electron. Figure &) confirms that the cutoff energié€s, are
very weakly influenced by the phase. The most important We investigate high-order harmonic generation with
feature observed in the figure is the displacemengfto-  bichromaticw—2w fields, giving a physical interpretation
wards higher energies for an increasing intensity of the highfor the phase shift of the modulation observed experimen-
frequency wave. This effect has been discussed in a previoually for neighboring cutoff harmonid1]. Using the three-
paper[12]. On the other hand, for the cutof}, Fig. 8b)  step model and the fully numerical solution of the time-
shows a strong energy variation asis changed. An inter- dependent Schdinger equation, we show that this feature is
esting feature is the energy minimum mentioned above adetermined by the phase dependence of a set of semiclassical
0.257 for intensity ratios of the order of or smaller than trajectories for the returning electron. With the introduction
l,,/1,=0.2. For stronger & fields, the cutoff(}, splits into  of the high-frequency driving wave, the cutoff for the mono-
two, such that the interpretation of the results concerning thehromatic case splits into two branches, which exhibit differ-

Harmonic Yield (arb. units)

FIG. 7. Harmonic yields for various harmonic energies between

IV. CONCLUSIONS
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FIG. 8. Cutoff energy as a function of the phasédor the upper
[part(a)] and lower part (b)] cutoff branches, given in terms of the
ponderomotive energy, . The solid squares, open circles, crosses,
and diamonds correspond to the intensity ratigs_,=0.1,
lyp-0=0.2,1,,_,=0.3, andl,,_,=0.4, respectively. For inten-
sity ratios larger than 0.2, there is a splitting of the lower cutbff

log,, Harmonic Yield (arb. units)

80

Harmonic Order n

ent behavior with respect to the relative phase between the

two driving fields. While the cutoff energy of the upper FIG. 9. Harmonic yields calculated using the SPM equati{@hs
branch does not vary considerably with the phase, the cutofind (8) for a hydrogenlike atomic potential withso|=0.58 a.u.,
energy of the lower branch is strongly sensitive to this paand the same laser field parameters as in the previous figures, con-
rameter, giving rise to the phase shift of the modulation sidering isolated pairs of semiclassical trajectories. Raytand(b)
Thus, using a two-color field, one can separate and identify §0rrespond to the relative phasgs-0 and$=0.9, respectively.

set of semiclassical trajectories already for a single atomT_he soll_d I|ne_s yield _the contribution of the four relevant semlclas-
whereas for a monochromatic field, this is only possible usSical trajectories, \{vhlle the Iong-dashed_and short-dashed lines cor-
ing propagation effects of the harmonic radiation in the gasf€SPond to the pairS, ; andS; 4, respectively.

eous samplé¢l4].

Using the saddle-point method, we are also able to makenergies higher tha@ .= | €| +3.11,, but that the lower
precise statements on how the interference between variogsitoff branch is more prominent in the spectra sheds some
trajectories influence the harmonic spectra, and reproduce thight into several apparently conflicting theoretical and ex-
full quantum-mechanical results obtained with the TDSE forperimental findings for high-order harmonic generation in
the harmonics close to the upper and lower cutoff branchebichromatic fields. In a large number of theoretical investi-
with astonishing precision. We show that in the high platealgations, an extension of the plateau towards higher energies
and cutoff regions, the harmonic intensities are well de-is observed, fofrw—2w [11,12,1 and w—3w [17] fields,
scribed by four interfering semiclassical trajectories for thewhereas other theoretical and experimental studies yield a
returning electron. In particular, a single trajectory is responshorter[18,19,21 plateau in comparison to the monochro-
sible for the upper cutoff branch, whereas the lower branch isnatic cutoff energy(),.. Our results suggest that these
the result of the interference of three different trajectories. studies refer either to the upper or to the lower cutoff branch,

Another noteworthy feature is the difference of orders ofso that no contradiction exists. In particular, a double plateau
magnitude between the harmonic yields of the upper anavas observed if18] for a bichromatic driving field of fre-
lower branches. This is a direct consequence of a strong&uenciesw and 2w, and the result found for the cutoff en-
field at the electron emission time for the cutdd, and ergy is in very good agreement wifh, .
therefore an interesting example of how groups of harmonics We also propose an explanation for the phase modulation
can be enhanced or suppressed by manipuldfifi)|. Fur-  observed in the harmonic yield for upper and lower cutoff
thermore, the fact that the upper cutoff branch extends tbranches. For the upper branch, this modulation is entirely

063415-8
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determined by the quasistatic tunneling rate, whereas for thgal is roughly|e,|=0.9 a.u., which corresponds to approxi-
lower branch, it appears to be the combination of three maifnately () = 15w, with the frequency of the laser used being
physical mechanisms, namely the field strendty)| at  »=0.057 a.u. In this frequency region, the atomic internal
the emission time of the electron in the continuum, the enstructure strongly influences the harmonic spectra, such that
ergy variation of the cutoff energf), with the relative phase the application or interpretation of the results in terms of the
¢, and the interference between the upper and lower cutoffhree-step model is questionaljliEd,32.
branches, which plays a role when the fields at the emission
time |E(to;)| and|E(tq,)| are comparable for both branches.
Finally, we would like to comment on the cutoff mea-
sured in[21] for helium, whose energy was taken near the Discussions with W. Becker, R. Kopold, M. D9 E.
15th harmonic of the low-frequency field. This strong reduc-Cormier, and M. Lewenstein are gratefully acknowledged.
tion in the cutoff energy was related to poor phase-matchind. B. Milosevic is supported by the Alexander von Hum-
conditions[31]. For this gas, however, the ionization poten- boldt Foundation.
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