

Metadata of the chapter that will be visualized online

frameworks and make best use of both. Lastly, new remote sensing measurements are described that are providing information on 3D canopy structure, from lidar particularly, and canopy function from fluorescence. These measurements, along with other Earth observation data and model-data fusion techniques are providing new insights into canopy state and function on global scales.

Chapter 11

Remote Sensing of Vegetation: Potentials, Limitations, Developments and Applications

1 Mathias Disney* 2 Department of Geography, University College London, Geography, Gower Street, $\frac{3}{4}$ London WC1E 6BT, UK

5 NERC National Centre for Earth Observation, Dideot, UK

$^{26}_{27}$ **Summary**

 Earth observation, i.e., gaining information of Earth's physical, chemical and biological characteristics by remote sensing methods, can be used to make a range of quantitative measurements related to vegetation canopy structure and function. The capabilities of Earth observation for mapping, even indirectly, canopy state and function over wide areas and over decadal time-scales allow for studies of phenology, disturbance, anthropogenic impacts and

^{*}Author for correspondence, e-mail: mathias.disney@ucl.ac.uk

 responses to climate change. Key limitations of Earth observation measurements are discussed, in particular how their indirect nature makes them potentially hard to interpret and relate to physically-measurable quantities, as well as assumptions that are made to derive information from Earth observation data. Various Earth observation measurements of vegetation routinely provided from satellite data are introduced and a radiative transfer framework for developing, understanding and exploiting these measurements is outlined. This framework is critical in that it allow us to chart a consistent route from measurements made at the top-of-the atmosphere to estimates of canopy state and function. The impacts of assumptions required to solve the canopy radiative transfer problem in practical applications are discussed. New developments in radiative transfer theory and modelling are introduced, in particular focusing on how incorporating the vegetation structure in these models is key to interpreting many Earth observation measurements. These new techniques help to unpick the nature of the canopy signal from Earth observation measurements. The (key) issue of 'effec- tive' model parameters that are often used to interpret and exploit observations is raised. These simplified or approximate manifestations of measurable physical properties permit develop- ment of practical, rapid models of the sort required for global applications but potentially introduce inconsistency between Earth observation measurements and models of vegetation productivity. Methods to overcome these limitations are discussed, such as data assimilation, which is being used to provide consistent model-data frameworks and make best use of both. Lastly, new remote sensing measurements are described that are providing information on 3D

Abbreviations: A_1 – Area of a given leaf; ALS – Airborne laser scanning; BRDF – Bidirectional reflectance distribution function; $c - Speed$ of light; d – Sensor-target distance; DA – Data assimilation; DASF – Directional area scattering factor; DEM – Digital elevation model; DGVM – Dynamic global vegetation model; DWEL – Dual-wavelength Echidna laser scanner; E_i – Downwelling surface irradiance; EO – Earth observation; ESA – European Space Agency; ESM – Earth system model; ESS – Earth system science; EVI – Enhanced vegetation index; fAPAR – Fraction of absorbed photosynthetically active radiation; F_s – Solar-induced chlorophyll fluorescence; FTS – Fourier Transform Spectrometer; $g_1(z,$ Ω _l) – Angular distribution of leaf normal vectors (leaf angle distribution); $G_1(\Omega)$, $G_1(\Omega')$ – Leaf projection function in direction Ω , Ω' respectively; GLAS – Geoscience Laser Altimeter System; GO – Geometric optics; GOSAT – Greenhouse Gases Observing Satellite; GPP – Gross primary productivity; $h_1(\phi_1)$ – Azimuthal dependence of leaf angle, ϕ_i ; H – Canopy total height; $H(x)$ – Observation operator, mapping model state variable vector x to the EO signal; i_0 – Radiation first intercepted in the canopy by leaves; i_L – Leaf interceptance that enters the leaf interior; I_r – Upwelling (reflected) radiance; $I(z, \Omega)$ – Specific energy intensity in direction Ω at depth z in a horizontal plane-parallel canopy; $J_s(z, \Omega')$ – Source term of radiative transfer equation at depth z, in direction Ω' ; κ_e – Volume extinction coefficient; $L(z)$ – Cumulative leaf area index at depth z; LAD – Leaf angle distribution; LAI – Leaf area index; \tilde{LAI} – Effective LAI; lidar – Light detection and ranging; LSM – Land surface

model; MCRT – Monte Carlo ray tracing; MERIS – Medium Resolution Imaging Spectrometer; MISR – Multiangle Imaging Spectroradiometer; MODIS – Moderate Resolution Imaging Spectroradiometer; \mathcal{L}) – Number of leaves per unit volume; NASA – National Aeronautics and Space Administration; NDVI – Normalized difference vegetation index; NIR – Near infrared; NPP – Net primary productivity; p – Recollision probability; $P(z, \Omega' \to \Omega)$ – Volume scattering phase function; PFT – Plant functional type; PILPS – Project for Intercomparison of Land Surface Parameterization Schemes; Q_0 – Uncollided radiation passing through the canopy to the lower boundary layer; \mathbf{R} – Vector of EO measurements; RADAR – Radio detection and ranging; RAMI – Radiation Transfer Model Intercomparison; S – Radiation model system state vector; SALCA – Salford Advanced Laser Canopy Analyser; SWIR – Shortwave infrared; t – Time of flight; TANSO – Thermal and Near infrared Sensor for carbon Observation; TLS – Terrestrial laser scanning; $z -$ Canopy depth; $Z -$ Radiation signal modelled by a radiation model with state variable S ; W_{λ} – Spectral canopy scattering coefficient; ζ – Canopy clumping factor; λ – Wavelength; μ , μ' – Cosine of the view, illumination direction vectors **Ω, Ω'** with the local normal; $ρ$ – Reflectance; $τ$ – Transmittance; $\theta_{v,i}$ – View, illumination zenith angles; $\varphi_{\rm{vi}}$ – View, illumination azimuth angles; $u_{\rm{1}}(z)$ – Canopy leaf area density at depth z; ω – Leaf single scattering albedo; $\hat{\omega}_{\lambda}$ – Spectral leaf single scattering albedo normalized by leaf interceptance; $\Omega(\theta_v, \varphi_v)$ and $\Omega'(\theta_i, \varphi_i)$ – View, illumination vectors

Author's Proof

11 Remote Sensing of Vegetation 3

⁵³ canopy structure, from lidar particularly, and canopy function from fluorescence. These ⁵⁴ measurements, along with other Earth observation data and model-data fusion techniques ⁵⁵ are providing new insights into canopy state and function on global scales.

I. Introduction

A. What Is Earth Observation?

 Terrestrial vegetation is a key component of the Earth's climate system, via mediation of fluxes of solar radiation, water and atmo- spheric gases at the land surface, and the resulting interactions with and feedback 61 to the ϵ bal carbon cycle (Denman 62 et al. $200\frac{V}{V}$ Terrestrial vegetation processes operate across a huge range of time-scales, responding at seconds to hourly and daily time-scales to changes in environmental conditions temperature, precipitation and light, and \overline{m} seasonal and much longer time-scales to cycles of climate and global change. Vegetation is also heterogeneous at a huge range of scales (within leaf, root systems) to composition of savannahs and forests shaped by millennia of evolutionary, climate and more recently anthropogenic influences. Vegetation is of course also inti- mately connected to human activity in provi- sion of food, shelter, fuel and many other direct and indirect ecosystem services.

 The importance of understanding the state and function of vegetation has led to develop-80 ment of a wide range δ observational and 81 modelling techniques \Box mg [2004;](#page-40-0) Monteith and Unsworth [2008;](#page-41-0) Jones [2014\)](#page-39-0). Of these, remote sensing (hereafter referred to as Earth observation (EO), to distinguish it from plan- etary remote sensing) has become a central part of efforts to address many of these issues due to the large spatiotemporal scales that can be covered by satellite and airborne instruments. The developments of EO have seen huge advances in instrument design, accuracy, consistency and the ability to han- dle large (and ever-growing) datasets (Lynch [2008](#page-40-0)). These benefits have led to EO becom- ing ubiquitous in Earth System Science. A wide range of problems at global and regional scales are ideally-suited to the scale and cov- erage of EO. New observations and models have arisen in tandem, sometimes by design,

although more often not. This has led to many ⁹⁹ new developments for exploiting EO data in ¹⁰⁰ understanding and measuring the Earth Sys- ¹⁰¹ tem (Chapin et al. [2011\)](#page-38-0). This has also raised ¹⁰² fundamental questions about how such ¹⁰³ observations can be used (Pfeifer et al. [2012](#page-42-0)). ¹⁰⁴

Here, I introduce the problem of how EO 105 as used for understanding and quantifying ¹⁰⁶ terrestrial vegetation i.e. what can and ¹⁰⁷ can't be measured via EO. A key advantage ¹⁰⁸ of remote sensing, its remoteness, is also a ¹⁰⁹ key limitation: what we actually *can* measure 110 is rarely what we *want* to measure. To trans- 111 late the former to the latter, a hierarchy of ¹¹² models has been developed. I outline some ¹¹³ of the issues and approaches to modelling ¹¹⁴ across this hierarchy: from scattering and ¹¹⁵ absorption of radiation (EO models), ¹¹⁶ through models that transform radiation ¹¹⁷ into canopy properties (state, productivity, ¹¹⁸ dynamics) and on to large-scale models of ¹¹⁹ ecosystem processes, both of the current ¹²⁰ state (diagnostic, biogeochemical cycling) ¹²¹ and future changes (prognostic, dynamic ¹²² global vegetation models (DGVMs), and ¹²³ their big brothers, global climate models). ¹²⁴ If and when these various models interface ¹²⁵ with EO data, they do so in very different 126 ways due to their underlying assumptions, ¹²⁷ structure and aims. I discuss some of the ¹²⁸ consequences of these variations (and ¹²⁹ inconsistencies) from the point of view of ¹³⁰ how EO can be used to understand and quan- ¹³¹ tify terrestrial vegetation systems, as well ¹³² as how models may be developed to better ¹³³ exploit EO data. Clearly, quantifying the ¹³⁴ state of terrestrial ecosystems and under- ¹³⁵ standing how they will change in the face ¹³⁶ of uncertain climate and anthropogenic ¹³⁷ drivers, requires best use of both observa- ¹³⁸ tions and models. 139

B. What Earth Observation Can and Can't 140 Measure 141

The value of an EO measurement is simply ¹⁴² the answer to the question: how much ¹⁴³

 information about the system being observed is contained within the EO measurement of that system? The EO signal is a measure of scattered (reflected, transmitted) or emitted radiation from a target. We measure photons escaping towards a sensor, from a target, either above the atmosphere in the case of a satellite, or at some point lower down in the case of airborne or even ground-based observations. Table [11.1](#page-6-0) describes a list of properties that EO can and does provide, along with an assessment of the level of how 'direct' these measurements are in some sense, from the perspective of any additional ground-level measurements or modelling needed to interpret the measurements. Not surprisingly, as EO 'measurements' become less direct, three critical (and related) things occur:

 • The number of assumptions underlying an EO measurement becomes larger and the oppor- tunity for these assumptions to become incon-sistent at some level increases.

 • The uncertainty associated with an EO mea- surement becomes more difficult to quantify (albeit not necessarily larger), due to the increasing number of assumptions and requirements for ancillary information, and the way uncertainties in each may combine in potentially non-linear ways.

 • The more difficult it is likely to be to compare an EO measurement against independent measurements (or model-derived estimates) of what ought to be the same property. This is due to possible differences in underpinning assumptions and ancillary information.

180

 These issues of the limits of remote sens- ing measurement are identified by Verstraete et al. [\(1996\)](#page-43-0). They define a physical model relationship between an observation of emit-185 ted radiation Z and a system described by 186 model state variables S as

$$
Z = fS \tag{11.1}
$$

187 where the S are the smallest set of variables ¹⁸⁸ needed to fully describe the physical state of ¹⁸⁹ the observed system, at the scale of

observation. It is worth repeating the first ¹⁹⁰ proposition of Verstraete et al. [\(1996](#page-43-0)) on ¹⁹¹ the limitations of remote sensing, as it ¹⁹² provides a useful framing for the ensuing ¹⁹³ discussion: "A physical interpretation of ¹⁹⁴ electromagnetic measurements Z obtained ¹⁹⁵ from remote sensing can provide reliable ¹⁹⁶ quantitative information only on the radia- ¹⁹⁷ tive state variables S that control the emis- 198 sion of radiation from its source and its ¹⁹⁹ interaction with all intervening media and ²⁰⁰ the detector" (emphasis added). We may be 201 able to translate from S to other parameters 202 of interest that may rely on S indirectly ²⁰³ (e.g. canopy state or function), but we always ²⁰⁴ require a mapping back to S at some point if 205 we wish to make use of remote sensing. 206

The last category in Table [11.1](#page-6-0) is intended ²⁰⁷ to indicate properties that are either not well- ²⁰⁸ defined (i.e. do not have a clear physically- ²⁰⁹ derived meaning), or perhaps are not directly ²¹⁰ measurable quantities i.e. in the formalism ²¹¹ of Verstraete et al. ([1996\)](#page-43-0) we are not able to ²¹² define a physically-based mapping $\mathbf{Z} = f(\mathbf{S})$ 213 for these parameters. However, such ²¹⁴ properties may be used to capture some ²¹⁵ aspect of the canopy either for (empirical) ²¹⁶ correlation with some more desirable vari- ²¹⁷ able, or for parameterizing more complex ²¹⁸ models. Examples include vegetation indices ²¹⁹ such as the normalized difference vegetation ²²⁰ index (NDVI) and variants, which have been ²²¹ widely and successfully used to provide sur- ²²² rogate indicators of canopy 'greenness' ²²³ (Pettorelli et al. [2005](#page-42-0)). They are attractive ²²⁴ due to being easy to calculate and apply, ²²⁵ and they may capture key aspects of vegeta- ²²⁶ tion 'well enough'. NDVI for example ²²⁷ exploits the characteristic high contrast ²²⁸ between red and near-infrared (NIR) spectral ²²⁹ reflectance, ρ of healthy vegetation as 230 $NDVI = (\rho_{NIR} - \rho_{RED})/(\rho_{NIR} + \rho_{RED})$. Such 231 indices are clearly useful for capturing par- ²³² ticular broad vegetation patterns, either in ²³³ themselves e.g. as indicators of vegetation ²³⁴ response to climate, disturbance, insect or ²³⁵ fire damage, malaria risk etc. (Pettorelli ²³⁶ et al. [2005,](#page-42-0) 2013; Pfeifer et al. [2012\)](#page-42-0). Vege- 237 **[AU1](#page-44-0)** tation indices can also be used as surrogates ²³⁸ for empirically-related variables such as leaf ²³⁹ area index (LAI), the (unitless) one sided ²⁴⁰

Author's Proof

11 Remote Sensing of Vegetation 5

t.1 Table 11.1. List of properties of interest to terrestrial ecosystem studies that can be derived from EO data, categorised broadly by their requirement for additional information and assumptions beyond a direct measurement

(continued)

t:20 Table 11.1. (continued)

t:22 Key assumptions required to move from more to less direct measurements are outlined. The list is not intended to be exhaustive, and 'directness' is somewhat subjective.

 leaf area per unit ground area, fraction of absorbed photosynthetically active radiation 243 ($f_A \rightarrow R$) and hence productivity (Myneni 244 et $\frac{1}{2}$ 997a; Angert et al. [2005\)](#page-37-0). However, simplicity comes at the cost of ecological 246 meaning (i.e. direct causality) and require-247 ment for site- or biome-specific calibration. Other more general limitations of vegetation indices are the lack of sensitivity with increasing LAI, saturating at values of 4–5, and sensitivity to background effects (soil, haze etc.). Care is also needed when compositing vegetation indices over time to account for variations in view and sun angles in the reflectance observations from which the vegetation indices are derived. These limitations, particularly saturation, are not soluble through taking a particular calibra-tion approach.

 The difficulty of interpreting vegetation indices has been seen in the debate over unexpected trends in Amazonian green-up observed during the severe 2005 drought (Saleska et al. [2007;](#page-42-0) Samanta et al. [2010](#page-42-0)). Subsequent to this, work relating carefully re-processed estimates of enhanced vegeta- tion index (EVI, another empirical spectral index) to ground-based measures of produc- tivity, water availability and other ecological variables suggested that apparent discre- pancies may be due to leaf flushing being mistaken for changes in LAI and productiv- ity (Brando et al. [2010\)](#page-37-0). This debate was rejoined by recent re-analysis of the satellite data, including detailed consideration of vegetation structure and satellite-sun geome- ²⁷⁶ try (Morton et al. [2014](#page-41-0)). This approach ²⁷⁷ accounts for the apparent 'observed' green- ²⁷⁸ up, whilst also ruling out the leaf-flushing ²⁷⁹ hypothesis. Crucially, this re-analysis was car- ²⁸⁰ ried out on the original satellite spectral reflec- ²⁸¹ tance data, rather than the spectral indices ²⁸² derived from those data from which the origi- ²⁸³ nal 2005 green-up conclusions were drawn. ²⁸⁴

This debate perhaps illustrates the diffi- ²⁸⁵ culty of trying to explain variations in empir- ²⁸⁶ ical spectral indices that can be functions of ²⁸⁷ complex, often mutually compensating bio- ²⁸⁸ physical processes. Verstraete et al. ([1996\)](#page-43-0) ²⁸⁹ sum up this difficulty by noting that any ²⁹⁰ number of empirical functions relating a ²⁹¹ parameter of interest Y to observations Z of 292 the form $Y = g(Z)$ may be derived. How- 293 ever, these relationships effectively assume ²⁹⁴ that the variable of interest is the main ²⁹⁵ controlling factor of the observations Z to ²⁹⁶ the (near) exclusion of all other factors. ²⁹⁷ Since the same vegetation index is often ²⁹⁸ used to derive different $g(Z)$ for different 299 applications, the information contained in g ³⁰⁰ (Z) must be the same, regardless of how the ³⁰¹ vegetation index is interpreted. This is rarely ³⁰² acknowledged in practice. 303

The problem of ascribing direct meaning ³⁰⁴ to surrogate variables makes them hard ³⁰⁵ (or even impossible) to validate. For example ³⁰⁶ 'greenness' has been used to imply amount ³⁰⁷ (Myneni et al. [1997a](#page-41-0)), product \sqrt{n} , health 308 (degree of stress) and phenology \leftarrow ettorelli 309 [2013\)](#page-42-0). This latter term is also ambiguous; ³¹⁰

11 Remote Sensing of Vegetation **7** and 7 and 7

 although it implies seasonality, this can be defined to encapsulate a number of differ- ent, related things: bud break, leaf emer- gence, onset of photosynthesis and growth, start of flowering, seasonal LAI profile, onset of senescence, leaf drop, growing sea- son length etc. A further complication is that ecological models that describe plant seasonality typically use some integrated estimate of time such as growing degree days (number of days over a base threshold, T_t multiplied by the excess temperature $T-T_t$). Recent work by Richardson et al. ([2012](#page-42-0)) has shown that different model representations of phenology tend to intro- duce overestimates of canopy productivity during spring greenup by 13 %, and during autumn senescence by 8 % of total annual productivity. This problem was exacerbated by the tendency of individual models to compensate for over-estimates during tran- sition periods by under-prediction of sum- mer peak productivity. As a result, Richardson et al. [\(2012](#page-42-0)) conclude that cur- rent model uncertainties preclude reliable prediction of future phenological response to climate change.

 The difference between the ways ecologi- cal models treat vegetation amount and state and how these properties can be derived from EO is a key reason for differences between models and observations: both representations may be internally consistent, but inconsistent with each other (of course, either or both may be wrong as well!). Lastly, even when empirically-derived properties appear to correlate well with characteristics we wish to measure, we do not know how the residual unexplained variance arises, or if it 350 is important. For a more details discussion 351 I refer to Pfeifer et al. (2012) (2012) (2012) who review a range of ecologically-relevant biophysical properties available from EO, as well as some of the issues in moving from direct to more indirect products.

 Perhaps most importantly then, for under- standing and interpreting EO-derived measurements of canopy state and function, we require physically-based models of radi- ation interaction with the canopy. Below, I provide a statement of this problem, lay out

some of approaches to solving it, and ³⁶² describe how these approaches are used to ³⁶³ exploit the EO signal for remote sensing ³⁶⁴ studies of vegetation. Advances in comput- ³⁶⁵ ing power have meant that highly-detailed ³⁶⁶ modelling approaches which were previ- ³⁶⁷ ously impractical have become increasingly ³⁶⁸ attractive. A good example of this is how ³⁶⁹ photo-realistic 3D modelling techniques ³⁷⁰ developed by the computer graphics commu- ³⁷¹ nity for movie-making and visualisation, ³⁷² have been co-opted for modelling vegetation ³⁷³ for scientific applications (Disney et al. ³⁷⁴ [2006;](#page-38-0) Widlowski et al. [2006](#page-43-0)). This in turn ³⁷⁵ has led to improved parameter estimation ³⁷⁶ schemes (Disney et al. [2011\)](#page-38-0), allowed ³⁷⁷ assessed of uncertainty, and provided test ³⁷⁸ and benchmark tools for simpler modelling ³⁷⁹ approaches (Widlowski et al. [2008,](#page-43-0) [2013](#page-43-0)). ³⁸⁰ Rapid increases in computation speed have ³⁸¹ also led to changes in the way information ³⁸² can be derived from very large (GB to TBs) ³⁸³ satellite datasets. This is almost always a ³⁸⁴ balance between requirements for speed/effi- ³⁸⁵ ciency, and accuracy or physical realism. ³⁸⁶ Increasingly, statistical tools such as Monte ³⁸⁷ Carlo and Bayesian methods, which had ³⁸⁸ been too slow for these applications, can be ³⁸⁹ employed (Sivia and Skilling [2006](#page-43-0)). 390

I discuss some of these developments in ³⁹¹ canopy modelling in more detail below, ³⁹² before moving on to discussing recent ³⁹³ developments in model-data fusion that are ³⁹⁴ pushing the limitations of both, and the ³⁹⁵ advent of new observations that may provide ³⁹⁶ information more directly-related to the ³⁹⁷ problems at hand. I embark on this descrip- ³⁹⁸ tion with a quote that encapsulates the diffi- ³⁹⁹ culty that can arise in trying to reconcile ⁴⁰⁰ models (hypotheses) and measurements, in ⁴⁰¹ part due to the different scientific drivers and ⁴⁰² assumptions that underlie them; this is par- ⁴⁰³ ticularly apposite in remote sensing, where ⁴⁰⁴ the two are so intimately intertwined. 405

A hypothesis is clear, desirable and positive, but is 406 believed by no one but the person who created 407 it. Experimental findings, on the other hand, are 408 messy, inexact things which are already believed 409 by everyone except the person who did the work 410 (Harlow Shapley (1885–1972), Through Rugged 411 Ways to the Stars, 1969). 412

II. Radiative Transfer in Vegetation: ⁴¹³ The Problem and Some Solutions

 We are rarely interested in the most direct EO measurement we can make i.e. in top-of- atmosphere radiance resulting from photons incident on the surface that are scattered in some way back towards the sensor (Pfeifer et al. [2012\)](#page-42-0). In order to relate the above- atmospheric signal to the structural (amount, arrangement) and biochemical (absorbing species and concentrations) properties of the canopy we need a physically realistic description of the radiation scattering properties of the canopy. This in turn requires understanding of the canopy radia- tive transfer (RT) regime from the leaf level, across scales to shoot and crown levels, and finally to the whole canopy.

⁴³⁰ A. Statement of the Radiative Transfer ⁴³¹ Problem

 RT models have been used extensively since the 1960s to model scattering from canopies at optical wavelengths (Ross [1981;](#page-42-0) Myneni et al. [1989\)](#page-41-0). The models consider energy balance across an elemental volume in terms of the energy arriving into the vol- ume (either energy incident in the propaga- tion direction, or energy that is scattered from other directions) and energy losses from the volume (either scattering out of the propagation direction, or absorption losses). Across optical wavelengths (visible, NIR and shortwave infrared (SWIR) regions of 400–2500 nm) a scalar radiative transfer equation is used. At RADAR wavelengths (cm to m), a slightly different approach is required, incorporating a vector of intensities to allow consideration of polarization (con- trolled by the sensor design). In this case orthogonal polarizations are coupled so radi- ative transfer equations must take this into account in a vector solution. Here I focus on radiative transfer in the optical domain, due to the particular relevance to canopy activity. A widely-applied approach to describing radiation transport in vegetation has been via

the so-called turbid medium approximation ⁴⁵⁸ (Ross [1981;](#page-42-0) Myneni et al. [1989;](#page-41-0) Liang ⁴⁵⁹ [2004\)](#page-40-0). This considers the canopy as a plane ⁴⁶⁰ parallel homogeneous medium of infinitesi- ⁴⁶¹ mal, oriented scattering elements, suspended ⁴⁶² over a scattering (soil) background – a 'green ⁴⁶³ gas'. In this case, mutual shading can be ⁴⁶⁴ ignored (the 'far field' approximation) and ⁴⁶⁵ the radiance field resulting from single and ⁴⁶⁶ multiple scattered photons can be described ⁴⁶⁷ by considering the conservation of energy ⁴⁶⁸ within a canopy layer, and specifying the ⁴⁶⁹ sources of radiation external to that layer ⁴⁷⁰ (boundary conditions). The result is an ⁴⁷¹ integro-differential equation describing the ⁴⁷² change in intensity I along a viewing direc- ⁴⁷³ tion $\Omega(\theta_{v}, \varphi_{v})$ due to: (i) interactions causing 474 radiation to be scattered out of the illumina- ⁴⁷⁵ tion direction $\Omega'(\theta_i, \varphi_i)$ (sink term); and 476 (ii) interactions causing radiation to be ⁴⁷⁷ scattered from other directions into the view- ⁴⁷⁸ ing direction $\Omega(\theta_{v}, \varphi_{v})$ (source term), where 479 $\theta_{i,v}$ and $\varphi_{i,v}$ are the illumination and view 480 zenith and azimuth angles respectively. This ⁴⁸¹ system is shown schematically in Fig. [11.1](#page-10-0). ⁴⁸²

The far-field approximation allows us to ⁴⁸³ ignore polarization, frequency shifting inter- ⁴⁸⁴ actions and emission, in which case the ⁴⁸⁵ upward and downward energy fluxes within ⁴⁸⁶ the canopy are described by the (1D) scalar ⁴⁸⁷ radiative transfer equation. For a plane par- ⁴⁸⁸ allel medium (air) embedded with a low ⁴⁸⁹ density of small scattering objects the radia- ⁴⁹⁰ tive transfer equation is composed of two ⁴⁹¹ terms, the (negative) extinction term with ⁴⁹² depth z that is determined by the path length ⁴⁹³ through the canopy and the extinction along ⁴⁹⁴ this path, and the source term due to multiple ⁴⁹⁵ scattering from all directions within an ele- ⁴⁹⁶ mental volume in the canopy into direction ⁴⁹⁷ Ω by the objects in the volume. Thus, 498

$$
\mu \frac{\partial I(z, \Omega)}{\partial z} = -\kappa_{\rm e} I(z, \Omega) + J_{\rm s}(z, \Omega') \qquad (11.2)
$$

where $\partial I(z,\Omega)/\partial z$ is the steady-state radi- 499 ance distribution function and μ is the cosine 500 of the (illumination) direction vector Ω' with 501 the local normal i.e. the viewing zenith ⁵⁰²

11 Remote Sensing of Vegetation and 11 Remote Sensing of Vegetation

Fig. 11.1. Schematic illustration of radiation incident on a plane parallel homogeneous medium (solid line), at a zenith angle θ_i azimuth angle ϕ_i from the surface normal and penetrating to a depth z (marked by *dashed line*). In this example incoming radiation either passes through uncollided to the lower boundary, and back up (solid line); is scattered once at depth z by reflectance (dotted line); or is scattered multiple times via reflectance and/or transmittance, including the canopy lower boundary (at $z = -H$) before escaping in the viewing direction (dashed line)

503 angle, θ_i used to account for path length ⁵⁰⁴ through the canopy. The extinction term is 505 given as the product of κ_e , the volume extinc-506 tion coefficient, and $I(z, \Omega)$, the specific 507 energy intensity in direction Ω at depth ⁵⁰⁸ z within a horizontal plane-parallel canopy 509 of total height H ($0 < z < H$). The source 510 term, $J_s(z, \mathbf{\Omega}')$, is defined as

$$
J_s(z, \Omega') = \int_{4\pi} P(z, \Omega' \to \Omega) I(z, \Omega') d\Omega'
$$
\n(11.3)

 $_{511}$ where $P(z, \mathbf{\Omega}' \to \mathbf{\Omega})$ is the volume scatter- ing phase function. This defines the (angu- lar) probability of a photon at depth z in the canopy being scattered from the illumination 515 direction Ω' through a solid angle $d\Omega'$ into to the viewing direction, Ω, integrated over the unit viewing hemisphere. This term depends on the size and orientation of scatterers within the canopy (see below).

When this description is extended to 3D, ⁵²⁰ i.e. the canopy can vary in density in vertical ⁵²¹ and horizontal directions, the illumination ⁵²² and viewing vectors are functions of both ⁵²³ the zenith and azimuth angles $\theta_{i,v}$ and $\varphi_{i,v}$ 524 i.e. $\Omega'(\theta_i, \varphi_i)$ and $\Omega(\theta_v, \varphi_v)$ respectively. 525

A full description of radiative transfer ⁵²⁶ should include the corresponding emission ⁵²⁷ source term $J_s(z, \Omega')$ for wavelengths where 528 this might be significant e.g. for passive ⁵²⁹ microwave (thermal) emissions from objects ⁵³⁰ at \sim 300 K (\sim 8–20 µm). In this case each 531 object within the medium may need to be ⁵³² considered as an emission source in its own ⁵³³ right. However, for optical and RADAR ⁵³⁴ wavelengths, the emission source term is ⁵³⁵ effectively zero. 536

Solving Eq. [11.2](#page-9-0) requires defining κ_e in 537 terms of canopy biophysical properties, and ⁵³⁸ considering a particular viewing direction ⁵³⁹ Ω' , for given boundary conditions. In using 540 Eq. [11.2](#page-9-0) to model canopy scattering for ⁵⁴¹ remote sensing applications, we wish to ⁵⁴² phrase the scattered radiation as an intrinsic ⁵⁴³

 property of the canopy, rather than as a func- tion of incident intensity. This permits com- parison of measurements made under differing illumination intensities. At optical wavelengths this fundamental intrinsic scat- tering quantity wavelengths is known as the Bidirectional Reflectance Distribution Func-tion (BRDF) i.e.:

$$
BRDF(\Omega, p, \Omega', p'; \lambda) = \frac{dI_r(\Omega, p', F; \lambda)}{dE_i(\Omega', p; \lambda)}
$$
\n(11.4)

552 where p and p' are the polarization of the 553 received/transmitted wave; E_i is the downwelling irradiance on the surface 555 (W m⁻²); and I_r is the upwelling (reflected) 556 radiance (W m^{-2} sr⁻¹). The BRDF of an 557 ideal diffuse (Lambertian) surface is $1/\pi$ (for an unpolarized reflector) and is indepen- dent of viewing and illumination angles. As defined, BRDF is an infinitesimal quantity (with respect to solid angle and wavelength), so although it can be modelled, it is not a measurable quantity in this form. In practice, we consider the Bidirectional Reflectance 565 Factor (BRF) $\rho_c(\Omega, \Omega')$, defined as the ratio of radiance leaving the surface around 567 viewing direction Ω , $I(\Omega)$ due to irradiance $E(\mathbf{\Omega}')$, to the radiance on a flat totally reflec- tive Lambertian surface under the same illumination conditions i.e.

$$
\rho_{\rm c}(\Omega, \Omega') = \frac{E(\Omega') \text{BRDF}(\Omega, \Omega')}{E(\Omega')(1/\pi)}
$$

= $\pi \text{BRDF}(\Omega, \Omega')$ (11.5)

 for an equivalent infinitesimal solid angle definition. As the BRF is defined as the ratio of two radiances, it is a directly mea- surable quantity and allows for model predictions to be compared with measure- ments, albeit over instrument finite solid angles (and of course wavelength intervals). Detailed definitions of reflectance nomencla- ture are given by Nicodemus et al. [\(1977\)](#page-41-0) and Schaepman-Strub et al. ([2006](#page-42-0)).

B. Solving the Radiative Transfer Problem 581 for Explicit Canopy Structure 582

To solve the radiative transfer problem for ⁵⁸³ realistic canopies, we need to consider how ⁵⁸⁴ vegetation structure can be expressed in ⁵⁸⁵ terms of the equations above, using ⁵⁸⁶ assumptions that permit physically realistic ⁵⁸⁷ solutions. Various solutions for the radiative ⁵⁸⁸ transfer equation have been developed in a ⁵⁸⁹ range of subjects including astrophysics, ⁵⁹⁰ particle physics and neutron transport ⁵⁹¹ (Chandrasekhar [1960\)](#page-38-0). Most importantly, ⁵⁹² once we have a solution of Eq. [11.2,](#page-9-0) if it ⁵⁹³ can be inverted in terms of the canopy ⁵⁹⁴ parameters it contains, we can then estimate ⁵⁹⁵ distributions of these parameters from EO ⁵⁹⁶ measurements of $\rho_{\rm c}(\Omega,\Omega')$ in the standard 597 inverse problem sense (Twomey [1977](#page-43-0); ⁵⁹⁸ Verstraete et al. [1996;](#page-43-0) Tarantola [2005\)](#page-43-0). For- ⁵⁹⁹ ward and inverse approaches to canopy ⁶⁰⁰ modelling have been reviewed in detail by ⁶⁰¹ Asrar ([1989\)](#page-37-0), Goel (1989), Goel and ⁶⁰² Thompson [\(2000](#page-39-0)) and more recently by ⁶⁰³ Liang ([2004\)](#page-40-0), among others, and I provide ⁶⁰⁴ a brief overview here. 605

Solving the forward radiative transfer ⁶⁰⁶ problem either requires empirical parameter- ⁶⁰⁷ isations or physically-based approximations ⁶⁰⁸ of canopy properties including leaf size, ⁶⁰⁹ angle distribution and 1D or 3D arrange- ⁶¹⁰ ment. Some applications do not require a ⁶¹¹ physically-meaningful interpretation of ⁶¹² model parameters, only a reasonable predic- ⁶¹³ tion of $\rho_c(\Omega, \Omega')$. For example, many remote 614 sensing applications require comparing ⁶¹⁵ observations made over time (and/or using ⁶¹⁶ wide-angle sensors). These observations are ⁶¹⁷ typically acquired at different view and/or ⁶¹⁸ illumination angles, so variations in reflec- ⁶¹⁹ tance caused by these varying view and sun ⁶²⁰ angles (i.e. BRDF effects) must be accounted ⁶²¹ for, otherwise they may be interpreted as ⁶²² surface changes. A widely-used approach is ⁶²³ to fit a simple empirical (or semi-empirical) ⁶²⁴ model of BRDF to observations, and use the ⁶²⁵ resulting (inverted) model parameters to ⁶²⁶ interpolate (or normalize) observations to ⁶²⁷ sq_mfixed view and illumination configura- 628 ti The simple nature of semi-empirical 629

Author's Proof

Author's Proof

11 Remote Sensing of Vegetation 11 November 2014 11

 BRDF models means they can be inverted rapidly, making them suitable for rapid, large-scale applications. Observations from the NASA MODIS and MISR sensors employ variants of this approach to account for sensor and sun angle variations (Pinty et al. [1989;](#page-42-0) Wanner et al. [1997\)](#page-43-0).

⁶³⁷ Physically-based models of BRDF are ⁶³⁸ required to represent three specific processes:

 1. Coherent superposition of scattered incident radiation. This is dependent on the mean free path between scattering events within the canopy being of the order of the wavelength of the incident radiation. Coherence is gener- ally ignored for vegetation, but is important for soils.

 2. Scattering effects resulting from the arrange- ment of objects on the surface, i.e. specular reflectance, and reflectance variations caused by geometric-optic shadowing assuming par-allel rays of incident radiation.

 3. Volume (diffuse) scattering of aggregated canopy elements. This is particularly impor- tant for dense vegetation and is modelled using radiative transfer methods as outlined above. As higher orders of photon scattering are considered, the interactions become increasingly random in direction, and the vol- ume scattering component tends to become isotropic.

660

 To solve Eq. [11.2](#page-9-0), approximations regard- ing the leaf scattering properties are often made (e.g. Myneni et al. [1989\)](#page-41-0). Other approaches attempt to include modifications for observed features that occur due to the fact that real vegetation canopies are not turbid media and leaves, branches etc. have finite sizes. The most obvious of these features is the so-called 'hotspot', an 670 increase in reflectance seen when Ω and Ω' are near-coincident, that arises due to shadowing in the scene being at a minimum (Nilson and Kuusk [1989](#page-41-0)). An example of this phenomenon is shown in Fig. [11.2](#page-13-0) As an example of the importance of considering canopy structure on the EO signal, Morton et al. [\(2014\)](#page-41-0) demonstrate that the apparent Amazon 'greenup' observed in 2005 can be ⁶⁷⁸ explained almost entirely as a BRDF effect: ⁶⁷⁹ most observations made in October in this ⁶⁸⁰ location are in the hotspot i.e. the observed ⁶⁸¹ increase in reflectance is an angular effect. ⁶⁸²

Perhaps the most difficult problem in ⁶⁸³ solving Eq. [11.2](#page-9-0) is that of modelling the ⁶⁸⁴ source term, $J_s(z, \Omega)$ as this requires keeping 685 a 'scattering history' of each photon from ⁶⁸⁶ one interaction to the next. This problem is ⁶⁸⁷ essentially insoluble analytically (Knyazikhin ⁶⁸⁸ et al. [1992\)](#page-40-0), but numerical approximations ⁶⁸⁹ can be made or computer simulation models ⁶⁹⁰ can be used (see below). It is also necessary ⁶⁹¹ to define the boundary conditions in the case ⁶⁹² of a canopy illuminated from above. At the ⁶⁹³ top of the canopy the incident irradiation ⁶⁹⁴ can be considered as diffuse and direct ⁶⁹⁵ components of solar irradiation. In addition, ⁶⁹⁶ some radiation arriving at the base of the ⁶⁹⁷ canopy re-radiates isotropically back up ⁶⁹⁸ through the canopy effectively creating a ⁶⁹⁹ source function at the lower canopy bound- ⁷⁰⁰ ary. Modified forms of Eq. [11.2](#page-9-0) have been ⁷⁰¹ widely used to model canopy reflectance for a ⁷⁰² range of applications. Further approximations ⁷⁰³ and simplifications have been applied for spe- ⁷⁰⁴ cific types of canopy, such as row crops or ⁷⁰⁵ particular tree crown shapes. In these cases, ⁷⁰⁶ simplifying approximations can be made ⁷⁰⁷ regarding canopy structure, in particular the ⁷⁰⁸ vertical and horizontal arrangement of ⁷⁰⁹ leaves and their angular orientations (distri- ⁷¹⁰ bution functions). Various approaches are ⁷¹¹ summarised by Goel [\(1988\)](#page-39-0), Strahler 712 ([1996](#page-43-0)), Liang [\(2004\)](#page-40-0) and Lewis (2007, ⁷¹³ from [http://www2.geog.ucl.ac.uk/~plewis/](http://www2.geog.ucl.ac.uk/~plewis/CEGEG065/rtTheoryPt1v1.pdf) ⁷¹⁴ [CEGEG065/rtTheoryPt1v1.pdf](http://www2.geog.ucl.ac.uk/~plewis/CEGEG065/rtTheoryPt1v1.pdf) and [http://](http://www2.geog.ucl.ac.uk/~plewis/CEGEG065/rtTheoryPt2v7-1.pdf) ⁷¹⁵ [www2.geog.ucl.ac.uk/~plewis/CEGEG065/](http://www2.geog.ucl.ac.uk/~plewis/CEGEG065/rtTheoryPt2v7-1.pdf) ⁷¹⁶ $rtTheoryPt2v7-1.pdf$). 717

Separation of canopy fluxes into ⁷¹⁸ uncollided and collided intensities of various ⁷¹⁹ orders (Kubelka and Munk 1931; Suits ⁷²⁰ 1972; Hapke 1981) has often been employed ⁷²¹ in order to simplify the radiative transfer ⁷²² approach (Norman et al. [1971;](#page-41-0) Myneni ⁷²³ et al. [1990;](#page-41-0) Verstraete et al. 1990). The sim- ⁷²⁴ plest two-stream approach decomposes ⁷²⁵ multiple scattering into \mapsto upward and 726 downward diffuse fluxe \Box This can be 727

Fig. 11.2. Illustration of the canopy hotspot effect. The image was captured with the sun directly behind the camera (see shadow of aircraft in the centre) and the scene is brightest at the centre, darkening radially outwards due to shadows becoming increasingly visible (author's own, taken over temperate rainforest canopy, Fraser Island, Queensland, Australia)

 elaborated in e.g. a four-stream approxima- tion into fluxes resulting from reflectance and transmittance interactions respectively. The discrete properties of the canopy, those related to the size and distribution of scatterers, tend to impact only the first few orders of scattering and these features tend to become 'smeared out' by higher order mul- tiple scattering interactions. Dividing the radiation field into collided and uncollided intensities as opposed to following a stan- dard radiative transfer treatment may pre-serve these features.

 As the canopy becomes denser, mutual shading of scattering elements cannot be ignored. It also becomes increasingly diffi- cult to justify the use of convenient values for the scattering phase function i.e. the assumptions that leaf normals are randomly oriented and azimuthally invariant in defin- ing leaf normal distribution and leaf projec- tion function. This is clearly partially or wholly violated for a number of canopies,

particularly for row-oriented agricultural ⁷⁵¹ crops. Various approaches have been pro- ⁷⁵² posed to overcome this. However, ⁷⁵³ Knyazikhin et al. [\(1998](#page-40-0)) have shown that ⁷⁵⁴ accounting for the discrete nature of vegeta- ⁷⁵⁵ tion within a (continuous) radiative transfer ⁷⁵⁶ description leads to an apparent paradox: the ⁷⁵⁷ more accurate the representation of canopy ⁷⁵⁸ geometry, the less accurate the resulting ⁷⁵⁹ description of radiative transfer and photo- ⁷⁶⁰ synthesis in the canopy is likely to be. This ⁷⁶¹ arises because of the discrepancy between ⁷⁶² the assumption of a continuous homoge- ⁷⁶³ neous scattering medium underpinning the ⁷⁶⁴ radiative transfer approach, and the macro- ⁷⁶⁵ scopic effects of 3D leaf and branch size and ⁷⁶⁶ distribution. Knyazikhin et al. [\(1998](#page-40-0)) point ⁷⁶⁷ out that the radiative transfer approach ⁷⁶⁸ assumes that the number of foliage elements ⁷⁶⁹ in an elementary volume is proportional to ⁷⁷⁰ this volume (encapsulated in the leaf area ⁷⁷¹ density), but the larger leaves become are ⁷⁷² in relation to the volume, the less this ⁷⁷³

11 Remote Sensing of Vegetation 13

⁷⁷⁴ assumption holds. The impact of this depar-⁷⁷⁵ ture therefore decreases as we look at larger ⁷⁷⁶ scales/volumes.

777 One of the most powerful approximations used in radiative transfer modelling is to concentrate on single scattering interactions only. These are in many cases the dominant component of canopy scattering (Myneni and Ross [1990\)](#page-41-0), particularly at visible wavelengths. Considering single scattering interactions within a turbid medium, the radiation intensity in the incident direction Ω' , at a depth z within the canopy can be described using Beer's (Beer-Bouger- Lambert's) Law (Monsi and Saeki [1953\)](#page-41-0) as follows

$$
I(z, \Omega') = I(0, \Omega') e^{-\left(\frac{L(z)G(\Omega')}{\mu'}\right)} \qquad (11.6)
$$

790 where $I(0, \Omega')$ is the incident irradiance at 791 the top of the canopy; $L(z)$ is the cumulative ⁷⁹² leaf area index (LAI) in the canopy at depth 793 z (m² m⁻²); $G(\Omega')$ is the leaf projection ⁷⁹⁴ function i.e. the fraction of leaf area 795 projected in the illumination direction Ω' ; 796 $\mu' = \cos(\theta_i)$.
797 The expone

The exponent in Eq. 11.6 is effectively the 798 extinction coefficient κ_e i.e. a measure of the rate of attenuation of radiation in the canopy, and is a function of two things: (i) the amount of material along the path i.e. the domain-averaged optical thickness of the canopy layer LAI; and (ii) the volume absorption and scattering properties of the media i.e. loss due to absorption by the particles (leaves) and scattering by the particles away from the direction of propa-808 gation (Fung [1994](#page-38-0)). The term $L(z)$ is better 809 defined as $u_1(z)$, the canopy leaf area density i.e. the vertical distribution of one-sided leaf 811 area per unit canopy volume $(m^2 \text{ of leaf area})$ 812 per m³ of canopy volume). We will see later in Section [III](#page-24-0) that this exponent implicitly encapsulates the fact that canopies are not homogeneous but are actually clumped at multiple scales from leaf to branch to 817 crown. Assuming a constant leaf area of A_l , 818 and given a leaf number density of $N_v(z)$

(number of leaves per unit volume, m^{-3}), 819 then 820

$$
u_1(z) = N_v(z)A_1 \t\t(11.7)
$$

The integral of $u_1(z)$ over the canopy depth, 821 H , gives the LAI i.e. 822

$$
LAI = \int_{z=0}^{z=H} u \sqrt{\frac{z}{\sqrt{z}}}
$$
 (11.8)

In practice, $u_1(z)$ may vary from top to bot- 823 tom of a canopy, with more material perhaps ⁸²⁴ in the upper parts than in the lower parts. As ⁸²⁵ a result, $L(z)$ can be modelled in various 826 ways in a radiative transfer scheme, but the ⁸²⁷ simplest is to assume it is constant with ⁸²⁸ canopy height H i.e. $u_1 = L A I/H$. 829

The term $G(\Omega')$ in Eq. 11.6 is the projec- 830 tion of a unit area of foliage on a plane ⁸³¹ perpendicular to the illumination direction ⁸³² Ω' . By extension, $G_{\rm l}(\Omega)$ is the leaf projection 833 function in the viewing direction Ω , aver- 834 aged over elements of all orientations and is ⁸³⁵ a (unitless) canopy-average representation of ⁸³⁶ the effective leaf area encountered by a pho- ⁸³⁷ ton travelling in a direction Ω within the 838 canopy. $G_1(\Omega)$ is defined as 839

$$
G_{\rm I}(\Omega) = \frac{1}{2\pi} \int_{2\pi+} g_{\rm I}(\Omega_{\rm I}) |\Omega \cdot \Omega_{\rm I}| d\Omega_{\rm I}
$$
 (11.9)

where $g_1(z, \Omega)$ is the angular distribution of 840 leaf normal vectors, known as the leaf angle ⁸⁴¹ distribution (LAD) and is defined so that its ⁸⁴² integral over the upper hemisphere is 1 i.e. ⁸⁴³

$$
\int_{2\pi+} g(\Omega_{\mathbf{l}}) d\Omega_{\mathbf{l}} = 1 \tag{11.10}
$$

A wide range of choices for models of ⁸⁴⁴ $g_1(z, \Omega_1)$ have been proposed (Ross [1981](#page-42-0); 845) Goel and Strebel [1984](#page-39-0)). A typical assump- ⁸⁴⁶ tion is that leaf azimuth angles are indepen- ⁸⁴⁷ dent of azimuth i.e. $g_1(\Omega_1) = g_1(\theta_1)h_1(\phi_1)$ 848 where $h_1(\phi_1)$ is the azimuthal dependence 849 and can be specified separately as θ and can be specified separately as ⁸⁵⁰

851

855

$$
(1/2\pi) \int_{\phi_1=0}^{\phi_1=2\pi} h_1(\phi_1) d\phi_1 = 1.
$$
 If the azimuthal

⁸⁵² distribution is assumed to be uniform 853 (i.e. random) then $h_1(\phi_1) = 1$ and this allows 854 for expression of $g_1(z, \Omega)$ as a function of θ_1 $\theta_1 = \pi/2$

only and

$$
\int_{\theta_1=0}^{\infty} g_1(\theta_1) \sin \theta_1 d\theta_1 = 1.
$$
 While

 these assumptions make the formulation of $g_1(\theta_1)$ easier, it is known that many canopies depart from them particularly in the case of strongly-row oriented canopies (crops), or due to environmental factors such as wind and water stress (e.g. wilting) and heliotro- pism. Tree crowns may also have particular azimuthal arrangement due to branching structure, particularly in conifers. Jones and Vaughan [\(2010\)](#page-39-0) discuss measured LADs and their departures from radiative transfer assumptions.

 Caveats aside, a number of leaf angle archetypes (simple analytical expression representing particular LADs) have been used to model LAD, covering a wide range of observed canopy types (Wang et al. [2007](#page-43-0)). These include:

⁸⁷⁴ • planophile – favouring horizontal leaves

⁸⁷⁵ • erectophile – favouring vertical leaves

 • spherical – distributed as if leaves were distributed parallel to the surface of a sphere and so favouring vertical over horizontal, but less than erectophile

- ⁸⁸⁰ plagiophile favouring leaves with angles ⁸⁸¹ mid-way between erect and flat
- ⁸⁸² extremophile favouring leaves with angles at ⁸⁸³ either end of the distribution
- 884

 An alternative, more general approach has been to use ellipsoidal leaf angle distributions (Campbell [1986;](#page-37-0) Flerchinger and Yu [2007](#page-38-0)). These tend to give improved solutions for absorption, but at the cost of more complex models. Hence large-scale remote sensing and Earth system model applications strongly favour the simpler approaches due to the requirements for ⁸⁹³ speed. 894

A more flexible alternative to specifying ⁸⁹⁵ archetypes, is to use a parameterisation of ⁸⁹⁶ $g_1(\theta_1)$ which covers the same variation as 897 these archetypes. Bunnik [\(1978](#page-37-0)) proposed ⁸⁹⁸ a simple four-parameter combination of geo- ⁸⁹⁹ metric functions; Goel and Strebel ([1984\)](#page-39-0) ⁹⁰⁰ used a two-parameter Gamma function. The ⁹⁰¹ Bunnik [\(1978](#page-37-0)) model is shown in Eq. 11.11 ⁹⁰² (assuming $g_1(\theta_1)$ is independent of azimuth) 903

$$
g(\theta_1) = \frac{2}{\pi} [(a + b\cos(2c\theta_1)) + d\sin\theta_1] \quad (11.11)
$$

Examples of the behaviour of the Bunnik ⁹⁰⁴ model are shown Fig. [11.3.](#page-16-0) The fixed ⁹⁰⁵ archetypes of Ross ([1981](#page-42-0)) agree with these ⁹⁰⁶ parameterisations very closely across all ⁹⁰⁷ angles. The uniform distribution (not shown ⁹⁰⁸ in Fig. [11.3\)](#page-16-0) i.e. randomly-distributed leaf ⁹⁰⁹ normals, is often assumed for simplicity but ⁹¹⁰ is rarely seen in practice. 911

The turbid medium approximation ⁹¹² permits a description of canopy scattering ⁹¹³ as a function of a small number of structural ⁹¹⁴ parameters. Various models have been based ⁹¹⁵ on the approach outlined above originating ⁹¹⁶ from the work of Monsi and Saeki [\(1953](#page-41-0)). ⁹¹⁷ The major assumption underpinning Beer's ⁹¹⁸ Law is that the number of scattering objects ⁹¹⁹ in a volume of canopy (leaves, stems etc.) ⁹²⁰ is proportional to its volume. However, ⁹²¹ Knyazikhin et al. [\(1998\)](#page-40-0) show that the can- ⁹²² opy structure may in some cases be fractal, ⁹²³ resulting in non-linear relationships between ⁹²⁴ canopy volume and the density of scattering ⁹²⁵ elements, violating the assumptions of ⁹²⁶ Beer's Law. However, the basic formulation ⁹²⁷ of Beer's Law can be a useful tool in describ- ⁹²⁸ ing single scattering interactions within the ⁹²⁹ canopy (Monsi and Saeki [1953](#page-41-0)). This issue ⁹³⁰ of non-random spatial distribution of canopy ⁹³¹ material (clumping) is discussed further ⁹³² below. 933

A major drawback of the turbid medium ⁹³⁴ approximation is that the size of the scatter- ⁹³⁵ ing objects within the canopy is not consid- ⁹³⁶ ered. By definition, the canopy is assumed to 937

11 Remote Sensing of Vegetation 15

Fig. 11.3. Examples of (normalized) leaf angle distribution functions generated using the Bunnik ([1978\)](#page-37-0) four parameter model with parameter value sets: $(1, 1, 1, 0)$, $(1, -1, 1, 0)$, $(0, 0, 0, 1)$, $(1, -1, 2, 0)$ and $(1, 1, 2, 0)$ in legend order

 be a homogeneous medium of infinitesimal scatterers (to satisfy the far-field approxima- tion) with mutual shading not permitted. Consequently, expressions describing the reflected radiation from such a canopy do not contain information regarding the size of scattering objects. However, certain properties of observed canopy scattering are directly controlled by the size and orien- tation of scattering objects (e.g. Pinty et al. [1989](#page-42-0)). A canopy-level example of this impact of finite leaf size is the hotspot effect. At the leaf level, the penumbra effect is of particular importance to photosynthesis, which depends very strongly on the leaf- level irradiance. The penumbra effect describes the fact that irradiance at the leaf is neither wholly direct nor diffuse, but somewhere in between, a consequence of the finite size of both the solar disk (light rays are never perfectly parallel) and the leaf (Cescatti and Niinemets [2004\)](#page-38-0). Turbid medium approximations will not capture ⁹⁶⁰ such features, and if the size of scattering 961 objects is to be considered a different ⁹⁶² approach is needed to model the dimensions ⁹⁶³ of scattering elements explicitly (Myneni ⁹⁶⁴ et al. [1989\)](#page-41-0). ⁹⁶⁵

As we can see, solving the radiative trans- ⁹⁶⁶ fer equation in a vegetation canopy is a ⁹⁶⁷ complex problem. Inverting the resulting ⁹⁶⁸ models must generally be performed numer- ⁹⁶⁹ ically, or using look-up-tables. Additionally, ⁹⁷⁰ the approximations made in order to solve ⁹⁷¹ Eq. [11.2](#page-9-0) result in the model driving para- ⁹⁷² meters being relatively 'far-removed' from ⁹⁷³ parameters directly representative of physi- ⁹⁷⁴ cal canopy properties. This issue of so-called ⁹⁷⁵ 'effective parameters' is critical to applica- ⁹⁷⁶ tions of remote sensing and is discussed fur- ⁹⁷⁷ ther below. First, I look at how radiative ⁹⁷⁸ transfer is considered at the leaf level. Fol- ⁹⁷⁹ lowing this, a relatively new approach to ⁹⁸⁰ radiative transfer modelling is outlined, ⁹⁸¹

Fig. 11.4. Normalized absorption coefficients used within the PROSPECT model (upper panel) and leaf spectral reflectance modelled by PROSPECT from these absorbing constituents (lower panel)

 which scales from leaf to canopy, and has significant consequences for understanding the links between canopy structure and biochemistry.

⁹⁸⁶ C. Radiation Transfer Within the Leaf

 Now we have a description of radiation transfer in a canopy, the issue arises of radi- ation interactions at the scale of leaves. This problem is analogous to the canopy case: 991 radiation can penetrate the air/surface inter-992 face depending on the surface propertie (waxy, smooth etc.) and can either pass through air gaps within the leaf unimpeded or be scattered, across cell walls into and through cells, as well as at the boundaries between cells and cell/air. Scattering within the leaf will depend on the amount of mate- rial encountered by a photon (function of leaf thickness, analogous to leaf area density at the canopy level) and the absorption properties of the materials(s), typically the concentrations of absorbing pigments (chlo- ¹⁰⁰³ rophyll, carotenoids, flavonoids), water and ¹⁰⁰⁴ other absorbents such as lignin and cellulose. ¹⁰⁰⁵ It is the pigments, and their relationships to ¹⁰⁰⁶ leaf/canopy state and nutrient concentrations ¹⁰⁰⁷ (particularly leaf N), that are often of interest ¹⁰⁰⁸ via remote sensing (Ollinger [2011](#page-41-0)). 1009

Various approaches to modelling radiative ¹⁰¹⁰ transfer within the leaf have been proposed ¹⁰¹¹ and Jacquemoud and Ustin [\(2008](#page-39-0)) provide ¹⁰¹² an excellent overview. Leaf models require ¹⁰¹³ at the very least some description of the ¹⁰¹⁴ refractive index (essentially a structural 1015 effect, modifying behaviour at boundaries ¹⁰¹⁶ of scattering materials within the leaf such ¹⁰¹⁷ as cell walls, air and water etc.), and the ¹⁰¹⁸ specific absorption coefficients of absorbing 1019 constituents within the leaf. Examples of ¹⁰²⁰ these properties taken from the widely-used ¹⁰²¹ PROSPECT model of Jacquemoud et al. ¹⁰²² ([1996](#page-39-0)) are given in Fig. 11.4 along with a ¹⁰²³ modelled leaf spectrum for comparison. ¹⁰²⁴ This illustrates the very specific wavelength ¹⁰²⁵

Author's Proof

11 Remote Sensing of Vegetation 17 November 2016 17

 ranges over which the absorption properties act: chlorophyll pigment dominates the visible; refractive index (leaf structure) dominates beyond this into the NIR; water and to a lesser extent dry matter (such as cellulose and lignin) dominate beyond 1300 nm. In the UV region, proteins, tannins and lignin are important, but these regions are rarely used in large-scale remote sensing due to the absorption of the solar signal by the atmosphere.

 Leaf radiative transfer models essentially follow one of four broad schemes. The first and perhaps simplest approach considers a leaf as a semi-transparent plate with plane parallel surface, and some surface roughness (Allen et al. [1969](#page-37-0)). Scattering from the leaf is calculated as the total sum of successive orders of scattering from reflections and refractions at the plate boundaries with the air. This approach has been generalised to consider multiple plane parallel plates by decomposing the total upward and down- ward fluxes (a two-stream approach) into the separate fluxes from each plate (Allen et al. [1970](#page-37-0)). This latter approach is used in PROSPECT, perhaps the most widely-used leaf radiative transfer model for remote sens- ing applications. The model has developed over a number of iterations through inclusion of more detailed treatment of absorption coefficients in particular (Feret et al. [2008](#page-38-0)). PROSPECT has been used to explore the impact of biochemistry on leaf reflectance, to infer optical properties from remote sens- ing measurements, and been coupled to can- opy radiative transfer schemes (Jacquemoud et al. [2009\)](#page-39-0).

 An alternative approach for modelling radiative transfer properties of leaves that do not conform to the plane parallel approx- imation, such as needles, has been to con- sider scattering from discrete particles such as spheres. The LIBERTY model of Dawson et al. ([1998\)](#page-38-0) follows this approach, using the formulation of Melamed ([1963](#page-40-0)) for scatter- ing from suspended powders. Particle size is 1073 assumed $\gg \lambda$, and scattering is again a func-tion of successive internal reflections and

refractions, but from within spheres in this ¹⁰⁷⁵ case, rather than plates. 1076

One of the difficulties in developing and ¹⁰⁷⁷ testing leaf models has been the concomitant ¹⁰⁷⁸ difficulty of measuring leaf optical proper- ¹⁰⁷⁹ ties, either in the lab or the field. Measure- ¹⁰⁸⁰ ment equipment has certainly improved in ¹⁰⁸¹ recent years, with the development of porta- ¹⁰⁸² ble field spectrometers and integrating ¹⁰⁸³ spheres. However, leaf measurements are ¹⁰⁸⁴ still challenging as they involve handling ¹⁰⁸⁵ and mounting leaf material without damag- ¹⁰⁸⁶ ing it, controlling environmental lighting ¹⁰⁸⁷ conditions, making reference measurements ¹⁰⁸⁸ etc. Thus the number of high quality leaf ¹⁰⁸⁹ measurements that can be used for testing ¹⁰⁹⁰ models, particularly for needles, or non-flat ¹⁰⁹¹ leaves is rather small (see for example ¹⁰⁹² Hosgood et al. [1995](#page-39-0)). 1093

A range of more general radiative transfer ¹⁰⁹⁴ modelling approaches have been proposed ¹⁰⁹⁵ for the particular size problem of leaves. ¹⁰⁹⁶ One solution of this class is the development ¹⁰⁹⁷ of Kubelka-Munk theory to provide a 2- or ¹⁰⁹⁸ 4-stream approximation to represent the ¹⁰⁹⁹ upward and downward fluxes (separated ¹¹⁰⁰ into diffuse and direct in the 4-stream case) ¹¹⁰¹ within a single leaf layer, or multiple layers 1102 (Vargas and Niklasson [1997](#page-43-0)). This type of ¹¹⁰³ model has the advantage of allowing analyt- ¹¹⁰⁴ ical solutions in certain specific cases. An ¹¹⁰⁵ alternative is to solve the radiative transfer ¹¹⁰⁶ problem numerically, via Monte Carlo ¹¹⁰⁷ methods (described in Sect. [E](#page-21-0) in more ¹¹⁰⁸ detail). Govaerts and Verstraete ([1998\)](#page-39-0) ¹¹⁰⁹ demonstrated the use of a Monte Carlo ray ¹¹¹⁰ tracing (MCRT) model which considered the ¹¹¹¹ internal structure of the leaf explicitly in 3D. ¹¹¹² Baranoski ([2006\)](#page-37-0) developed a variant of ¹¹¹³ MCRT for bifacial leaves that calculates ¹¹¹⁴ Fresnel coefficients for all interfaces in the ¹¹¹⁵ leaf (air, adaxial and abaxial epidermis, ¹¹¹⁶ mesophyll cell walls and cytosol), and uses ¹¹¹⁷ these coefficients to weight Monte Carlo ¹¹¹⁸ samples of reflectance and transmittance; ¹¹¹⁹ scattering within a cell is approximated by 1120 Beer's Law. The main advantage of these ¹¹²¹ more structurally detailed approaches is ¹¹²² flexibility. The main limitation is the ¹¹²³

18 Mathias Disney

Fig. 11.5. Schematic representation of radiation that passes through the canopy uncollided (Q_0) , or is first intercepted by the canopy (i_0) or escapes in the upward direction (s) to be measured. p is the probability of a scattered photon being re-intercepted and ω is the leaf single scattering albedo (After Lewis, P. [http://www2.](http://www2.geog.ucl.ac.uk/~plewis/CEGEG065/rtTheoryPt1v1.pdf) [geog.ucl.ac.uk/~plewis/CEGEG065/rtTheoryPt1v1.pdf\)](http://www2.geog.ucl.ac.uk/~plewis/CEGEG065/rtTheoryPt1v1.pdf)

 requirement for information to parameterize the model, such as cell dimensions, air volumes etc. Such models can be used to explore the impact of structure at the canopy level on issues such as the relative absorption of diffuse to direct light (Alton et al. [2007;](#page-37-0) Brodersen et al. [2008](#page-37-0)), as well as at the leaf level, where surface and internal properties, such as polarization and focusing may be important (Martin et al. [1989;](#page-40-0) Combes et al. [2007\)](#page-38-0).

 The following section describes relatively new developments in solving the canopy radiative transfer problem that have provided new parameterisations of multiple scattering that apply across scales from within-leaf to canopy. These methods have already been applied successfully to the problem of modelling leaf reflectance (Lewis and Disney [2007](#page-40-0)) and are providing new insight into the nature of radiative transfer in vege-tation more generally.

¹¹⁴⁶ D. Recollision Probability and Spectral ¹¹⁴⁷ Invariance

 As seen above, the key to providing an accu- rate description of canopy radiative transfer is the multiple scattering component, partic- ularly at NIR wavelengths. Development of the concept of the so-called 'recollision 1153 probability' probability' p has seen signifi-cant advancement in this area. The approach

is summarised in Huang et al. ([2007](#page-39-0)), but is ¹¹⁵⁵ based on the observation that the decrease in ¹¹⁵⁶ scattered energy with increasing scattering ¹¹⁵⁷ interactions is well-behaved and close to ¹¹⁵⁸ linear in log space, at least in canopies with ¹¹⁵⁹ low to moderate LAI (Lewis and Disney ¹¹⁶⁰ [1998\)](#page-40-0). Scattered energy typically decreases ¹¹⁶¹ dramatically after 1 or 2 interactions, and ¹¹⁶² then proceeds to decrease more slowly with ¹¹⁶³ increasing scattering order. This implies that, ¹¹⁶⁴ once the scattering reaches the linearly ¹¹⁶⁵ decreasing portion, the scattering at inter- ¹¹⁶⁶ action order $i + 1$ is simply p times the 1167 scattering at interaction order *i*. Figure 11.5 1168 illustrates this situation schematically. 1169

From Fig. 11.5 we can see that some pro- ¹¹⁷⁰ portion of the incoming radiation Q_0 may 1171 pass through uncollided to the lower bound- ¹¹⁷² ary layer. If this layer is assumed completely ¹¹⁷³ absorbing (black soil, a reasonable approxi- ¹¹⁷⁴ mation for dense understory and/or dark ¹¹⁷⁵ soil), then multiple scattered radiation can ¹¹⁷⁶ only originate from vegetation. The first ¹¹⁷⁷ interaction with leaves is then $i_0 = 1 - Q_0$. 1178 A fraction s of this scattered radiation exits ¹¹⁷⁹ the canopy in the upward direction, and the ¹¹⁸⁰ remaining proportion p interacts further with 1181 leaves in the canopy. Therefore the first ¹¹⁸² order scattered radiation is $s_1 = i_0\omega(1-p)$ 1183 where ω is the leaf single scattering albedo. 1184 Rearranging, we obtain $s_1/i_0 = \omega(1-p)$. The 1185 probability of being further intercepted is ¹¹⁸⁶ also p , so the second order scattering 1187

11 Remote Sensing of Vegetation 19 November 2016 19 November 2016

1188 $s_2 = \omega p s_1 = i_0 \omega^2 p(1-p)$. Following the ¹¹⁸⁹ same logic for higher orders we see that

$$
\frac{s}{i_0} = \omega(1-p) + \omega^2(1-p)p + \omega^3(1-p)p^2 + \cdots = \omega(1-p)[1+\omega p + \omega^2 p^2 + \cdots]
$$
\n(11.12)

1190 The series in p and ω can be summed as

$$
\frac{s}{i_0} = \frac{\omega(1-p)}{1-p\omega} \tag{11.13}
$$

 This provides for a very compact description of multiple scattering, albeit under the assumptions of total scattering and black soil. Crucially, the resulting scattering is independent of wavelength i.e. is spectrally 1196 invariant, and is a function of p only, where 1197 p is a purely structural term, encapsulating the size and arrangement of scattering elements within the canopy. Recollision the- ory has been developed over the last decade 1201 (Knyazikhin et al. [1998](#page-40-0), [2011;](#page-40-0) \bigoplus lang 1202 et al. 2007). It has been shown to work well for higher values of LAI when the understory becomes less important (Huang et al. [2007](#page-39-0)). This is also where optical EO tends to be less sensitive to variations in LAI. The recollision probability approach has now been used for a range of remote sensing applications includ- ing in a parameterised canopy model (Rautiainen and Stenberg [2005](#page-42-0)), to classify forest structural types (Schull et al. [2011](#page-42-0)), and for providing a structural framework for merging data from various sensors with dif- ferent spatial and spectral resolutions (Ganguly et al. [2008](#page-38-0), [2012](#page-39-0)). Further, the same behaviour has been observed in atmo- spheric radiative transfer (Marshak et al. [2011\)](#page-40-0).

 Specific insights provided from the spec- tral invariant approach include that of Smolander and Stenberg ([2005](#page-43-0)) who showed that if the fundamental scattering element within a canopy is considered to be a shoot (a good approximations in conifers for example), then a shoot-level recollision 1226 probability p_{shoot} , can be defined. In this

case total scattering can be expressed as a ¹²²⁷ nested combination of the within-shoot nee- ¹²²⁸ dle-level recollision probability, p_{needed} and 1229 p_{shoot} . This is a key insight into how different 1230 scales of clumping interact. Following this, ¹²³¹ Lewis and Disney ([2007\)](#page-40-0) used recollision ¹²³² probability to parameterise the PROSPECT ¹²³³ leaf-level radiative transfer model. Their ¹²³⁴ rephrasing in terms of p_{leaf} was able to repro- 1235 duce the behaviour of PROSPECT with very ¹²³⁶ high accuracy (root mean square error ¹²³⁷ <0.4 % across all tested conditions). Lewis ¹²³⁸ and Disney [\(2007\)](#page-40-0) also showed that the same ¹²³⁹ form of scattering will be nested across mul- ¹²⁴⁰ tiple scales from within-leaf to shoot to can- ¹²⁴¹ opy. A key implication of this work was the ¹²⁴² observation that the structural and radiomet- ¹²⁴³ ric components of the canopy (represented ¹²⁴⁴ by p and the leaf absorbing constituents such 1245 as pigments, cellulose, lignin, and water) are ¹²⁴⁶ fundamentally coupled. As a result Lewis ¹²⁴⁷ and Disney ([2007\)](#page-40-0) conclude "...it is simply ¹²⁴⁸ not possible to derive robust estimates of ¹²⁴⁹ both leaf biochemical concentration and ¹²⁵⁰ structural parameters such as LAI from ¹²⁵¹ (hyperspectral) data ... no matter how nar- ¹²⁵² row the wavebands or how many wavebands ¹²⁵³ there are". Increasing LAI by some factor ¹²⁵⁴ k and simultaneously decreasing the bio- 1255 chemical concentration per unit leaf area by ¹²⁵⁶ the same factor (i.e. keeping the total canopy ¹²⁵⁷ concentration the same) can result in the ¹²⁵⁸ same total scattering, but for a very different 1259 values of p , corresponding to very different 1260 canopy structures. This implies that without ¹²⁶¹ knowledge of either p or the leaf biochemi- 1262 cal constituents, independent retrieval of ¹²⁶³ either from total scattering measurements is ¹²⁶⁴ not possible. An additional implication is ¹²⁶⁵ that attempts to estimate 'total' canopy bio- ¹²⁶⁶ chemical concentration as a coupled mea- ¹²⁶⁷ sure may contain large errors. 1268

The various developments of recollision ¹²⁶⁹ probability have important implications for ¹²⁷⁰ the use of Earth observation data to infer ¹²⁷¹ canopy biochemical properties, particularly ¹²⁷² pigment concentrations. Many studies have ¹²⁷³ observed empirical correlations between ¹²⁷⁴ canopy biochemical concentrations and ¹²⁷⁵ observed spectral properties (reviewed by ¹²⁷⁶

 Ollinger [2011](#page-41-0)), including observed positive correlations between leaf nitrogen content per area (canopy N) and albedo. Such work suggests a potentially important route for monitoring canopy biochemistry (and hence state) from EO. However, recent work by [AU2](#page-44-0) ¹²⁸³ Knyazikhin et al. ([2013\)](#page-40-0) building on recollision probability theory and the obser-1285 vation that p encapsulates scattering across scales, shows quite clearly that some of these correlations e.g. between canopy N and albedo, are in fact entirely explained by can- opy structure. As an example, Knyazikhin 1290 et al. (2012) show that observed correlations 1291 between canopy N and reflectance Ω h be almost completely explained by canopy structure. Knyazikhin et al. (2012) also sug- gest that canopy scattering can be reformulated using recollision probability, as a combination of separate structural and spectral terms as follows:

$$
BRF_{\lambda}(\Omega) = DASF \cdot W_{\lambda} \tag{11.14}
$$

 where DASF is the (structural) Directional 1299 Area Scattering Factor and W_{λ} is the (spec- tral) canopy scattering coefficient. DASF is defined as:

$$
DASF = \rho(\Omega) \frac{i_0}{1 - p} \tag{11.15}
$$

1302 where $\rho(\Omega)$ is the directional gap density of ¹³⁰³ the canopy, along a given viewing direction 1304 Ω ; i_0 is the first interception by the canopy 1305 from Eq. 11.14. W_{λ} is defined as:

$$
W_{\lambda} = \hat{\omega}_{\lambda} \frac{1 - p i_{\text{L}}}{1 - \hat{\omega}_{\lambda} p i_{\text{L}}}
$$
 (11.16)

1306 where i_{L} is the leaf interceptance defined as ¹³⁰⁷ the fraction of radiation incident on the leaf 1308 that enters the leaf interior; and $\hat{\omega}_{\lambda} = \omega_{\lambda}/i_{\text{L}}$. 1309 The quantity $\rho(\Omega) LAI$ is the fraction of leaf ¹³¹⁰ area inside the canopy visible from outside 1311 the canopy alor₁₂. For dense canopies in 1312 the NIR, $DASF\sqrt{\rho_s}$ Δ) LAI and is an estimate ¹³¹³ of the ratio between the leaf area that forms 1314 the canopy boundary as seen along Ω and the

total (one-sided) leaf area, effectively the ¹³¹⁵ 'texture' of the canopy upper boundary. ¹³¹⁶ Importantly, calculating DASF allows the ¹³¹⁷ impact of structure to be removed from ¹³¹⁸ observed hyperspectral reflectance, provid- ¹³¹⁹ ing a potential route for re-analysis of empir- ¹³²⁰ ical relationships between biochemistry and ¹³²¹ reflectance. 1322

The recollision probability theory has ¹³²³ provided new ways to express scattering ¹³²⁴ across scales, and has found a range of ¹³²⁵ potential applications in accounting for ¹³²⁶ structural effects in EO measurements. ¹³²⁷ Ustin ([2013\)](#page-43-0) highlights the importance of ¹³²⁸ using a first principles radiative transfer ¹³²⁹ approach to accounting for the impact of ¹³³⁰ structure on EO estimates of biochemistry. 1331

E. 3D Monte Carlo Approaches 1332

The methods outlined above to solve the ¹³³³ radiative transfer problem in vegetation ¹³³⁴ involve a range of approximations regarding ¹³³⁵ structural and radiometric properties in order ¹³³⁶ to make the problem tractable. A sub-class of ¹³³⁷ methods exist which solve the radiative ¹³³⁸ transfer problem based on 'brute force' ¹³³⁹ Monte Carlo sampling of the radiation field ¹³⁴⁰ in a 3D canopy. These methods derive from ¹³⁴¹ developments in computer graphics, where ¹³⁴² they form the basis of modern movie anima- ¹³⁴³ tion and special effects. The aim in these ¹³⁴⁴ applications is to simulate 'realistic' light ¹³⁴⁵ environments i.e. scenes that are either con- ¹³⁴⁶ vincing and/or aesthetically pleasing to the ¹³⁴⁷ human eye. For EO applications, the require- ¹³⁴⁸ ment is somewhat different i.e. physical ¹³⁴⁹ accuracy (including constraints such as ¹³⁵⁰ energy conservation for example). Monte ¹³⁵¹ Carlo methods are computationally inten- ¹³⁵² sive, which has tended to limit their applica- ¹³⁵³ tion. However, computing power has reached ¹³⁵⁴ a level where such limitations are no longer ¹³⁵⁵ so relevant, and these methods have some ¹³⁵⁶ key advantages for quantitative applications. ¹³⁵⁷ Niinemets and Anten ([2009](#page-41-0)) discuss the ¹³⁵⁸ issues of the trade-off between accuracy ¹³⁵⁹ and efficiency in radiative transfer modelling ¹³⁶⁰ approaches. 1361

 Monte Carlo methods in remote sensing are reviewed in detail by Disney et al. [\(2000\)](#page-38-0) and Liang [\(2004](#page-40-0)). These methods fall into two broad classes: radiosity (originating from thermal engineering), which requires calculating the viewed areas of each object in a scene in relation to the other objects in the scene (so-called 'view factors'); and ray tracing (MCRT). I will briefly discuss the latter method here, as it is more practical for EO applications where view and illumi- nation configurations change arbitrarily (making radiosity less feasible). MCRT essentially involves calculating the inter- sections of photons (rays) projected into a 3D scene with the objects in the scene, and determining the behaviour of these photons at each intersection. The subsequent direc- tion and energy of a scattered photon follow- ing an intersection is governed by the radiometric properties of absorption, trans- mission and reflection of the surface at the point of intersection, in addition to the geo- metric scattering properties (phase function) of the object. Objects are not limited to representation by simple polygons (facets). Volumetric objects can be used, in conjunc- tion with a description of the (volumetric) scattering properties of the materials contained within (North [1996\)](#page-41-0). Diffuse sam- pling can be used to simulate diffuse light sources (Govaerts 1996; Lewis [1999](#page-40-0)). The bidirectional reflectance of a given scene (represented as a collection of 3D objects) is simulated by simply repeating the sam- pling process for every sample (pixel) in the viewing plane (Disney et al. [2000](#page-38-0)), possibly multiple times.

 A key advantage of MCRT models is that they can operate on structurally explicit 3D scenes, often of arbitrary complexity, allowing them to simulate EO signals with the least possible number of assumptions about structure. Some models represent 3D detail in a given scene down to the level 1407 of individual needles and leaves (España et al. [1999;](#page-38-0) Lewis [1999](#page-40-0); Govaerts and Verstraete [1998](#page-39-0); Widlowski et al. [2006](#page-43-0)). Other approaches represent larger structural units explicitly such as tree crowns, but then

make assumptions regarding the scattering ¹⁴¹² and extinction properties within individual ¹⁴¹³ crowns (North [1996](#page-41-0)). The issue with this ¹⁴¹⁴ latter approach is determining what these ¹⁴¹⁵ within-crown bulk scattering properties ¹⁴¹⁶ ought to be. Other models divide 3D space ¹⁴¹⁷ into voxels, and assign voxel-average scatter- ¹⁴¹⁸ ing properties, such as the Discrete Aniso- ¹⁴¹⁹ tropic radiative transfer (DART) model of ¹⁴²⁰ Gastellu-Etchegorry et al. ([2004](#page-39-0)). This has ¹⁴²¹ benefits in terms of speed and simplicity, but ¹⁴²² again at the expense of requiring definitions ¹⁴²³ of bulk (volume) scattering properties. Fully ¹⁴²⁴ explicit 3D MCRT models avoid these vol- ¹⁴²⁵ ume scattering approximations, but at the ¹⁴²⁶ expense of requiring 3D input on all canopy ¹⁴²⁷ elements, as well as potentially much greater ¹⁴²⁸ computational demands (Disney et al. [2006](#page-38-0); ¹⁴²⁹ Widlowski et al. [2013](#page-43-0)).

The ability to deal with 3D canopy struc- ¹⁴³¹ ture explicitly means MCRT models are ¹⁴³² ideally-suited to applications where we wish ¹⁴³³ to know, and have control over, 3D scene ¹⁴³⁴ properties in order to generate a modelled ¹⁴³⁵ EO signal e.g. for generating synthetic data ¹⁴³⁶ sets to test retrieval algorithms based on sim- ¹⁴³⁷ pler model approximations or when EO data ¹⁴³⁸ are not readily available. Disney et al. [\(2011\)](#page-38-0) ¹⁴³⁹ show how 3D MCRT model simulations can ¹⁴⁴⁰ be used as a surrogate for observations of fire ¹⁴⁴¹ impact. Other applications include simulating ¹⁴⁴² the properties of new sensor characteristics ¹⁴⁴³ (Disney et al. [2009](#page-38-0)); understanding the ¹⁴⁴⁴ impact of structure on observations (España 1445) et al. [1999\)](#page-38-0); providing a common structural ¹⁴⁴⁶ framework for combining optical and micro- ¹⁴⁴⁷ wave scattering models (Disney et al. [2006\)](#page-38-0); ¹⁴⁴⁸ and providing benchmark information for ¹⁴⁴⁹ testing simpler radiative transfer models ¹⁴⁵⁰ (Widlowski et al. [2007\)](#page-43-0). This latter example ¹⁴⁵¹ is an important one; a question that arises for ¹⁴⁵² anyone using any radiative transfer approach ¹⁴⁵³ to an EO application is: which model is best ¹⁴⁵⁴ for my application, and why? The Radiation ¹⁴⁵⁵ Transfer Model Intercomparison exercise ¹⁴⁵⁶ (RAMI, [http://rami-benchmark.jrc.ec.europa.](http://rami-benchmark.jrc.ec.europa.eu/HTML/) ¹⁴⁵⁷ [eu/HTML/\)](http://rami-benchmark.jrc.ec.europa.eu/HTML/) has sought to answer this ques- ¹⁴⁵⁸ tion via intercomparison of radiative transfer ¹⁴⁵⁹ models. Over various phases RAMI has ¹⁴⁶⁰ shown that detailed 3D MCRT models can ¹⁴⁶¹

 provide the most credible solution to the radiative transfer problem in well-defined, simplified cases (Widlowski et al. [2007](#page-43-0)). Scenes can be defined for which MCRT models provide exact solutions (within limitations of numerical sampling), and this allows for testing of more approximate radiative transfer models, in particular quantifying the impact of model assump- tions on resulting model accuracy. The RAMI work has led to an online bench- marking tool, allowing radiative transfer model developers to test and benchmark their models (Widlowski et al. [2008](#page-43-0)). The most recent RAMI exercise has shown how detailed 3D MCRT models can represent the effects of structure on the EO signal for very complex (realistic) 3D scenes in ways that simpler models cannot (Widlowski

 et al. [2013\)](#page-43-0). There are three main limitations of the MCRT approach. First, they are very slow compared to the more approximate models. This is certainly a problem if speed is abso- lutely essential, e.g. for large-scale or near real-time applications. MCRT models can of course still be used to quantify the impact of assumptions made in simpler models. Secondly, they cannot be inverted either directly or using standard optimisation routines, given their requirement for explicit location and properties of a (potentially) very large number of 3D objects. However, computation speeds have increased to an extent where it is now feasible to consider using a MCRT model for look-up table- based model inversion. It may take thousands of hours of CPU time to run for- ward MCRT model simulations over a large range of canopy, view and illumination configurations to populate the pertinent look-up tables, but these need only be run once. The third and perhaps most serious limitation of 3D MCRT models is that they are only as good as the underlying 3D scene descriptions on which they are based; the models require highly-detailed, accurate 3D structural information to generate 3D model scenes. This 3D information can come from various sources, including empirical growth

models (e.g. España et al. [1999](#page-38-0); Disney 1512 et al. [2006](#page-38-0)), purely parametric models ¹⁵¹³ (Widlowski et al. [2006](#page-43-0); Disney et al. [2009](#page-38-0)), ¹⁵¹⁴ and parametric models modified using field ¹⁵¹⁵ measurements (Disney et al. [2011](#page-38-0)). 1516

A range of models can provide 3D scene ¹⁵¹⁷ information. Growth models provide an ¹⁵¹⁸ accurate description of a 'domain-average' ¹⁵¹⁹ tree structure, but not a specific tree at a ¹⁵²⁰ particular time (Leersnijder [1992](#page-40-0); Perttunen ¹⁵²¹ et al. [1998\)](#page-41-0). Parametric models allow a great ¹⁵²² degree of flexibility over manipulation of ¹⁵²³ tree structure. Various models of this sort ¹⁵²⁴ exist, e.g. xfrog (Xfrog Inc. xfrog.com) and ¹⁵²⁵ OnyxTREE (Onyx Computing, onyxtree. ¹⁵²⁶ com) and they have been used in EO ¹⁵²⁷ applications (Disney et al. [2010](#page-38-0), [2011](#page-38-0)). ¹⁵²⁸ However, it can be both time-consuming ¹⁵²⁹ and difficult to parameterise a model that is ¹⁵³⁰ designed to 'look right' for computer graphic ¹⁵³¹ visualisation (Mêch and Prusinkiewicz 1532 [1996\)](#page-40-0), in such a way that it is a structurally ¹⁵³³ accurate representation of a tree for radiative ¹⁵³⁴ transfer applications (leaf and branch shape ¹⁵³⁵ and size distributions, leaf angular ¹⁵³⁶ distributions etc). An alternative approach 1537 is the use of growth grammars based on ¹⁵³⁸ L-systems (Prusinkiewicz and Lindenmayer ¹⁵³⁹ [1990\)](#page-42-0). These use simple growth rules to pro- ¹⁵⁴⁰ duce 'realistic' canopy structure and have ¹⁵⁴¹ been used to drive 3D simulations, particu- ¹⁵⁴² larly of relatively simple crop canopies ¹⁵⁴³ (Lewis [1999\)](#page-40-0), but may bear little resem- ¹⁵⁴⁴ blance to real canopies of greater complex- ¹⁵⁴⁵ ity. Functional structural plant modelling ¹⁵⁴⁶ (FSPM) overcomes this limitation to a cer- ¹⁵⁴⁷ tain extent by considering fundamental rules ¹⁵⁴⁸ of plant function due to the genetic and organ ¹⁵⁴⁹ level constraints to drive structural develop- ¹⁵⁵⁰ ment (Godin and Sinoquet [2005\)](#page-39-0). The ¹⁵⁵¹ resulting 3D structure can in turn be ¹⁵⁵² expressed via L-systems. FSPM and ¹⁵⁵³ L-systems approaches suffer from the same ¹⁵⁵⁴ problem that the resulting models are accu- ¹⁵⁵⁵ rate instances of a particular species or plant ¹⁵⁵⁶ type, rather than specific (observed) plants. ¹⁵⁵⁷ Furthermore, additional rules are needed to ¹⁵⁵⁸ create a general, 3D scene. ¹⁵⁵⁹

These limitations on 3D structure have led 1560 to search for new ways to derive detailed, ¹⁵⁶¹

Author's Proof

¹⁵⁶² accurate 3D information that can be used to ¹⁵⁶³ drive 3D simulation models. Some of these ¹⁵⁶⁴ methods are outlined below in Sect. [IV.](#page-27-0)

III. Effective Parameters

1565 A. Basics: Definition of Effective 1566 Characteristics

 Having discussed the various approxi- mations that can be employed to help solve radiative transfer equations in leaves and canopies, a note of caution is required in regard to any biophysical parameters we derive from EO data via such methods.

 For real canopies the exponent in Eq. [11.6](#page-14-0) 1574 implicitly includes a structural term $\zeta(\mu')$ encapsulating the fact that real canopies are not turbid media but are clumped at multiple [AU3](#page-44-0) 1577 scales from cm to tens of m. Leaves or needles are arranged around twigs, along branches, within crowns and within stands. Pinty et al. [\(2004](#page-42-0), [2006](#page-42-0)) suggest adopting an 1581 effective LAI value LAI (μ') i.e.

 $\widetilde{LAI}(u') = LAI\zeta(u')$ (11.17)

 This permits a solution to the 1D limiting case of radiative transfer in a 3D canopy that is consistent with the assumptions made in Eq. [11.2.](#page-9-0) Crucially however, the values of 1586 LAI (μ') are not the same as LAI which are in turn, not the same as the actual LAI that would be measured on the ground (unless measured over some large, discrete canopy volume). That is, the resulting radiative transfer model parameters will be 'effective' parameters and will not have a direct physi- cally measurable meaning. These effective parameters allow solution of the 1D radiative transfer problem by representing domain- averaged quantities that are forced to satisfy the constraints associated with a 1D repre- sentation of what is an inherently 3D system (Pinty et al. [2006\)](#page-42-0).

¹⁶⁰⁰ The issue of effective parameters is ¹⁶⁰¹ important because it encapsulates the prob-¹⁶⁰² lem of interpreting EO measurements more

generally. As an example, a typical use of a ¹⁶⁰³ 1D radiative transfer scheme is to describe ¹⁶⁰⁴ the surface radiation budget \Box large-scale 1605 Earth System Model (ESN₁₇. Developing 1606 such a model is inevitably a trade-off ¹⁶⁰⁷ between multiple and often competing ¹⁶⁰⁸ constraints including computational speed ¹⁶⁰⁹ and model robustness vs. providing 'suffi- ¹⁶¹⁰ ciently accurate' radiant flux values (Pinty ¹⁶¹¹ et al. [2004\)](#page-42-0). Moreover, introducing a ¹⁶¹² physically-realistic estimate of LAI (for ¹⁶¹³ example) may only make things worse, as it ¹⁶¹⁴ will not be consistent with the simplified ¹⁶¹⁵ radiative transfer schemes and will thus ¹⁶¹⁶ introduce errors. If radiative consistency is ¹⁶¹⁷ the key requirement (getting the fluxes right) ¹⁶¹⁸ rather than interpreting the LAI values, then ¹⁶¹⁹ the effective parameters should be used ¹⁶²⁰ (Pinty et al. [2006,](#page-42-0) [2011a,](#page-42-0) [b](#page-42-0)). What is true ¹⁶²¹ of LAI is potentially true of other structural ¹⁶²² and biochemical parameters in radiative ¹⁶²³ transfer schemes. 1624

The issue of consistency between ¹⁶²⁵ EO-derived biophysical parameters, and ¹⁶²⁶ their representation in models of vegetation ¹⁶²⁷ function, biogeochemical cycling and cli- ¹⁶²⁸ mate is key to making best use of both ¹⁶²⁹ observations and models. The fusion of EO ¹⁶³⁰ data with models, particularly via data ¹⁶³¹ assimilation (DA), is a rapidly-growing ¹⁶³² field because EO data can potentially provide ¹⁶³³ information on land cover, plant functional ¹⁶³⁴ types (PFTs), vegetation state and dynamics, ¹⁶³⁵ land surface temperature (LST), soil mois- ¹⁶³⁶ ture etc. at the scales and frequencies ¹⁶³⁷ required by the large-scale models (Pfeifer ¹⁶³⁸ et al. [2012](#page-42-0)). However, the further an ¹⁶³⁹ EO-derived parameter is away from a funda- ¹⁶⁴⁰ mental EO measurement, the more likely it is 1641 to be 'effective' rather than directly measur- ¹⁶⁴² able. This in turn increases the likelihood of ¹⁶⁴³ inconsistency between EO data and large- ¹⁶⁴⁴ scale models that use these parameters ¹⁶⁴⁵ (Carrer et al. 2012a; Pfeifer et al. [2012](#page-42-0)). ¹⁶⁴⁶

B. Data Assimilation 1647

As the spatial detail of the land surface rep- ¹⁶⁴⁸ resentation within ESMs increases (from ¹⁶⁴⁹ $\sim 10^3$ to $\sim 10^1$ km and finer), the assumption 1650 $\overline{A\cup 4}$

 of canopy homogeneity typically assumed in a simplified radiative transfer approach is violated and potentially becomes an increas- ing source of error (Knorr and Heimann 2001; Pinty et al. [2006;](#page-42-0) Brut et al. [2009;](#page-37-0) Widlowski et al. [2011\)](#page-43-0). Various solutions have been proposed, essentially approaching the problem from opposite directions. From the EO perspective, one approach is to ensure consistency between EO parameters and ESMs as far as possible by coupling a physically-realistic radiative transfer scheme directly to the ESM that will use it. The ESM can then actually predict an EO measure- ment, which in turn allows direct comparison with EO data. Perhaps more importantly, the model can also be used to assimilate EO data to estimate ESM model state properties (in an inverse scheme). This approach lies at the heart of data assimilation schemes with land surface models (Quaife et al. [2008](#page-42-0); Lewis et al. [2012](#page-40-0)). For a DA scheme, the RT models are referred to as 'observation operators' 1674 (denoted $H(x)$) which map the model state 1675 variable vector x to the EO signal (as a vec-1676 tor) \vec{R} for a given set of control variables i.e. $\mathbf{R} = H(\mathbf{x})$. The inverse problem is then to 1678 obtain an estimate of some function of x, \overline{F} (x) from measurements **R** (Lewis et al. [2012\)](#page-40-0). An advantage of this approach is that it can utilise much more direct EO measurements (reflectance or even radiance) where the uncertainties in the measurements can be better-characterised. This characterisation of uncertainty (in 1686 observation *and* radiative transfer model schemes) is critical for data assimilation. A drawback is that more complex radiative transfer schemes tend to slow the assimila- tion process, potentially limiting them for large-scale inverse problems (at least currently). However, data assimilation approaches of this sort are being used to assimilate EO data from a range of sources, and have shown great promise in improving and constraining model estimates of C fluxes and photosynthesis (Quaife et al. [2008;](#page-42-0) Knorr et al. [2010\)](#page-39-0), evapotranspiration (Olioso et al. [2005\)](#page-41-0), surface energy balance (Qin et al. [2007;](#page-42-0) Pinty et al. [2011a](#page-42-0), [b\)](#page-42-0)

and hydrology (Rodell et al. 2004; Houser ¹⁷⁰¹ et al. [2012\)](#page-39-0). ¹⁷⁰²

From the other direction, we can modify ¹⁷⁰⁵ the ESM internal radiative transfer scheme ¹⁷⁰⁶ to account for inconsistency with EO ¹⁷⁰⁷ measurements and ensure the resulting ¹⁷⁰⁸ ESM outputs are consistent at some broader, ¹⁷⁰⁹ integrated level e.g. such as total productiv- ¹⁷¹⁰ ity (Brut et al. [2009](#page-37-0); Carrer et al. [2012\)](#page-37-0). An ¹⁷¹¹ example of this is improved representation of ¹⁷¹² canopy diffuse fluxes, which tend to increase ¹⁷¹³ C uptake (via increased photosynthesis) with ¹⁷¹⁴ increasing diffuse radiation fraction ¹⁷¹⁵ (Mercado et al. [2009\)](#page-40-0). Carrer et al. ([2012\)](#page-37-0) ¹⁷¹⁶ show that introducing clumping to an ESM ¹⁷¹⁷ representation of vegetation (resulting in an ¹⁷¹⁸ effective LAI), even at coarse scale, can ¹⁷¹⁹ improve modelled annual GPP fluxes of var- ¹⁷²⁰ ious deciduous and conifer forests by up to ¹⁷²¹ $15-\%$. This approach accepts that the 1722 resulting internal model parameters are ¹⁷²³ effective and not measurable in practice. ¹⁷²⁴ Lafont et al. ([2012\)](#page-40-0) show that this modifica- ¹⁷²⁵ tion of LAI can have a significant impact on ¹⁷²⁶ the way fluxes are apportioned within differ- ¹⁷²⁷ ent ESMs. ¹⁷²⁸

An additional complication can arise that ¹⁷²⁹ different internal LAI representations can ¹⁷³⁰ cause processes such as photosynthesis and ¹⁷³¹ transpiration to reach different equilibria ¹⁷³² (different spatial and temporal distribution ¹⁷³³ of fluxes) in different ESMs while still pro- ¹⁷³⁴ ducing similar net C fluxes i.e. the models ¹⁷³⁵ can arrive at the same answers for different ¹⁷³⁶ reasons. This in turn can result in differences ¹⁷³⁷ in seasonal variations (e.g. timing of peak ¹⁷³⁸ fluxes) and/or longer-term model divergence 1739 that may be hard to identify (Richardson et ¹⁷⁴⁰ al. [2012](#page-42-0)). The effective nature of the model ¹⁷⁴¹ parameters also makes model intercompari- ¹⁷⁴² son difficult. Clearly, the consideration of ¹⁷⁴³ scale is not consistent between models. 1744

Recent work by Widlowski et al. ([2011\)](#page-43-0) ¹⁷⁴⁵ has attempted to address the issue of ¹⁷⁴⁶ consistency of radiative transfer schemes ¹⁷⁴⁷ in ESMs systematically, by instigating a ¹⁷⁴⁸

Author's Proof

Fig. 11.6. An illustration of differences in canopy absorption as a function of increasing structural complexity (from left to right) for visible and NIR spectral domains. Different grey levels show varying LAI (low $= 0.5$, medium = 1.5, high = 2.5), over snow-covered (SNW) and medium-bright (MED) backgrounds, with $\theta_i = 60^\circ$ or 27 respectively. The first two panels represent simple 1D radiative transfer models; the second two panels represent the most basic level of 3D heterogeneity; the right-most column includes four reference cases derived via a full 3D Monte Carlo Ray Tracing (MCRT) model description (Modified from Widlowski et al. $(2011 \circledcirc$ $(2011 \circledcirc$ Wiley))

 radiative transfer model intercomparison exercise, RAMI4PILPS [\(http://rami-bench](http://rami-benchmark.jrc.ec.europa.eu/HTML/RAMI4PILPS/RAMI4PILPS.php) [mark.jrc.ec.europa.eu/HTML/RAMI4PILPS/](http://rami-benchmark.jrc.ec.europa.eu/HTML/RAMI4PILPS/RAMI4PILPS.php) [RAMI4PILPS. php](http://rami-benchmark.jrc.ec.europa.eu/HTML/RAMI4PILPS/RAMI4PILPS.php)). RAMI4PILPS builds on both the RAMI exercise and the Project for Intercomparison of Land Surface Parameter- ization Schemes (PILPS). PILPS was set up to improve understanding of model pro- cesses in coupled climate, atmospheric and ESMs mainly through intercomparison of the various model parameterisation schemes [\(http://www.pilps.mq.edu.au/](http://www.pilps.mq.edu.au/)). PILPS recognises that for large, complex models, the wide range of approximations and possible parameterisations required makes direct model-to-model comparisons very difficult and instead compares the abilities of the models to reproduce various observed climate and land- surface trends (Henderson-Sellers et al. [2003](#page-39-0)). RAMI4PILPS is perhaps much closer to RAMI than PILPS in terms of the intercomparison approach. It attempts to isolate the radiative

transfer schemes in participating models in ¹⁷⁷¹ such as way as to examine only that part, ¹⁷⁷² making like-for-like comparisons much more ¹⁷⁷³ feasible over specific scenarios. In this case the ¹⁷⁷⁴ RAMI results are used to provide a 'known' ¹⁷⁷⁵ reference solution. RAMI4PILPS covers quite ¹⁷⁷⁶ a large range of model types, from simple land ¹⁷⁷⁷ surface model schemes, to very complex ¹⁷⁷⁸ models that describe the full range of surface ¹⁷⁷⁹ energy, water and C fluxes between the surface ¹⁷⁸⁰ and atmosphere. Figure 11.6 shows a compari- ¹⁷⁸¹ son of the RAMI4PILPS models against the ¹⁷⁸² reference solution for a range of canopy ¹⁷⁸³ complexities. This comparison demonstrates ¹⁷⁸⁴ that the relatively simplistic concept of canopy ¹⁷⁸⁵ 'structure' (from varying 1D homogeneous, to ¹⁷⁸⁶ a simplified consideration of clumping) can ¹⁷⁸⁷ still introduce a large degree of scatter between ¹⁷⁸⁸ the models, as well as between the models and ¹⁷⁸⁹ the reference solution under different environ- ¹⁷⁹⁰ mental conditions and for different spectral ¹⁷⁹¹ regions. 1792

IV. New Observations of Structure ¹⁷⁹³ and Function

 Lastly, I discuss newer Earth observation techniques that provide rapid and detailed information on canopy structure and func- tion. These new technologies based on lidar (light detection and ranging) and micro- wave RADAR (radio detection and rang-1800 ing) are becoming increasingly more widely available. I show that lidar is a near-direct remote sensing measurement of canopy height and structure. There is significant promise in merging airborne lidar scanning (ALS) instruments, and ter- restrial laser scanning (TLS) instruments, as well as optical and RADAR data in order to maximise structural information. The 3D nature of the lidar signal also raises the possibility of using these data to further extend and exploit the recollision probabil- ity approach to the canopy radiative trans-fer problem.

I also briefly consider the prospects ¹⁸¹⁴ for EO data of this sort over the next ¹⁸¹⁵ decade, and how such observations might ¹⁸¹⁶ be used. Having discussed new structural ¹⁸¹⁷ measurements, I turn lastly to a new mea- ¹⁸¹⁸ surement related to canopy function based ¹⁸¹⁹ on chlorophyll fluorescence. 1820

A. Structural Information from Lidar 1821 and RADAR 1822

Lidar systems have become increasingly ¹⁸²³ common over the last decade. Figure 11.7 ¹⁸²⁴ illustrates this by highlighting the increase ¹⁸²⁵ in published papers with the words "lidar" ¹⁸²⁶ and "vegetation" in the title or abstract, from ¹⁸²⁷ 1990–2012. The advent of airborne lidar ¹⁸²⁸ scanning (ALS) instruments, terrestrial ¹⁸²⁹ laser scanning (TLS) instruments, and the ¹⁸³⁰ lifespan of the only spaceborne lidar mission ¹⁸³¹ to date used for terrestrial applications ¹⁸³² (NASA ICESAT/Glas) are marked on the ¹⁸³³ figure (Fig. 11.7). ¹⁸³⁴

Fig. 11.7. Number of publications containing the words 'lidar' and 'vegetation' in the title or abstract from 1990 to 2013 (Citation information from Thomson Reuters Web of Knowledge \circled{c}). ALS and TLS are airborne and terrestrial lidar scanning respectively

 Lidar is an active remote sensing method, recording return time-of-flight of a laser pulse between instrument and target. Lidar provides a (near) direct estimate of surface (canopy) height and is in this sense a much more direct measurement than those relying on passive reflected or emitted radiation. Lidar instruments also record returned signal intensity and, in combination with height, this signal can provide unique information on the vertical distribution of canopy struc- ture when operated from above the canopy (e.g. Dubayah and Drake [2000](#page-38-0)). As discussed above, structure plays a critical role in radiative transfer in vegetation. Thus, structure must be accounted for to allow retrieval of canopy state and function from remote sensing. Lidar has proven extremely useful in addressing this issue (Lefsky et al. [2002;](#page-40-0) Armston et al. [2013a\)](#page-37-0).

¹⁸⁵⁵ 1. Discrete-Return Lidar Systems

 Lidar systems broadly fall into one of two categories – discrete-return, or full- waveform (the less widely-used phase- based systems are not discussed here). Discrete return lidar essentially records the distance to the first object from which a return is recorded at the sensor, over some signal threshold, or multiple thresholds. Assuming that emitter and detector are co-located, the time-of-flight to the target is $t = 2d/c$ where d is the distance to the target, and c is the speed of light (and assuming that emitter and detector are co-located). For a sensor above a vegetation canopy returns may come from both the canopy and the ground, depending on canopy cover. It is then possible to determine the height of the 1873 vegetation canopy, h , through the difference in travel time between the two returns i.e. $h = (t_1-t_2)c/2$. Discrete return lidar datasets therefore comprise 'point clouds', each of which has a 3D co-ordinate relating its loca- tion to the sensor. Lidar has been widely used in this way to estimate biomass via allometric relationships with canopy height (e.g. Asner et al. [2010](#page-37-0); Asner and Mascaro [2014\)](#page-37-0). Lidar measurements can be used to

estimate biomass over dense, high biomass ¹⁸⁸³ (high LAI) tropical forests where passive ¹⁸⁸⁴ optical measurements saturate and are ¹⁸⁸⁵ thus insensitive to change and/or variation ¹⁸⁸⁶ (Saatchi et al. [2011](#page-42-0)). Canopy height estima- ¹⁸⁸⁷ tion from lidar is now included in routine ¹⁸⁸⁸ commercial and forestry measurements ¹⁸⁸⁹ (Næsset et al. [2004;](#page-41-0) Hyyppä et al. [2008\)](#page-39-0). 1890

2. Full-Waveform Lidar Systems 1891

Waveform (often referred to as 'full-wave- ¹⁸⁹² form') lidar systems record a 'binned' and ¹⁸⁹³ digitised version of the real intensity return ¹⁸⁹⁴ detected by the sensor, resulting from an ¹⁸⁹⁵ outgoing pulse of known form (Mallet and ¹⁸⁹⁶ Bretar [2009\)](#page-40-0). Waveform instruments record ¹⁸⁹⁷ the intensity of the response at a certain ¹⁸⁹⁸ sampling rate (this sampling and detector ¹⁸⁹⁹ non-linearity mean that the measurement ¹⁹⁰⁰ never are true *full*-waveform), while 1901 performing minimal pulse-detection methods. ¹⁹⁰² Waveform lidar is becoming prevalent in air- ¹⁹⁰³ borne systems, even if they are in practice ¹⁹⁰⁴ often used as discrete return systems with ¹⁹⁰⁵ much of the intermediate waveform informa- ¹⁹⁰⁶ tion being ignored. However, the power of ¹⁹⁰⁷ waveform lidar is that it has the capability to ¹⁹⁰⁸ record detailed information on the vertical ¹⁹⁰⁹ distribution of canopy structure, and hence ¹⁹¹⁰ has a range of applications in remote sensing 1911 of vegetation including height and biomass ¹⁹¹² (Dubayah et al. 2010), LAI (Tang et al. [2012\)](#page-43-0) ¹⁹¹³ and canopy gap fraction (Armston et al. ¹⁹¹⁴ [2013a\)](#page-37-0). The waveform signal can not only ¹⁹¹⁵ identify where there is a surface, but also ¹⁹¹⁶ what the properties of that surface are. This ¹⁹¹⁷ is particularly relevant for example in ¹⁹¹⁸ distinguishing woody from leaf material. ¹⁹¹⁹ Figure [11.8](#page-29-0) shows an example of a modelled 1920 full-waveform lidar return over a conifer ¹⁹²¹ canopy, and highlights the potential informa- ¹⁹²² tion content of the signal. 1923

3. Limitations and Future Developments 1924 of Lidar Systems 1925

A current limitation of lidar is the lack of ¹⁹²⁶ wide area coverage due to reliance on air- ¹⁹²⁷ borne platforms. However, ALS survey costs ¹⁹²⁸

Fig. 11.8. Example of full-waveform lidar signal simulated from a 3D model of a Scots pine (Pinus sylvestris) tree (visualised in the *left panel*). The signal shows height-resolved return intensity (*black* impulses), as well as the normalized proportion of the signal in each height bin coming from the leaf and branch objects in the 3D model. Leaf and branch returns can be separated explicitly in the 3D model returns

1929 are coming down, and so larger and larger areas are being covered, with a number of countries now aiming to obtain total cover- age (e.g. see [http://www.gim-international.](http://www.gim-international.com/issues/articles/id1664-Swedish_Lidar_Project.html) [com/issues/articles/id1664-Swedish_Lidar_](http://www.gim-international.com/issues/articles/id1664-Swedish_Lidar_Project.html) [Project.html](http://www.gim-international.com/issues/articles/id1664-Swedish_Lidar_Project.html)). Obtaining this coverage is time-consuming (typically months to years) and hence can only provide a temporally fragmented 'snapshot' (note that this is only a limitation for very large areas; smaller regions, even 1000s of ha, where forest height and density will not vary in a few

weeks or even months, can be covered rap- ¹⁹⁴¹ idly and even revisited). In addition, these ¹⁹⁴² relatively large surveys are generally ¹⁹⁴³ designed for deriving digital elevation ¹⁹⁴⁴ models (DEMs) rather than for vegetation ¹⁹⁴⁵ applications. As a result the sampling is ¹⁹⁴⁶ often at or below 1 pt m^{-2} in order to reduce 1947 the survey time, meaning limited sampling ¹⁹⁴⁸ of the canopy properties. A further difficulty ¹⁹⁴⁹ is differentiating between leaf and woody ¹⁹⁵⁰ material, particularly in larger footprint ¹⁹⁵¹ instruments. It has been proposed that this ¹⁹⁵²

Author's Proof

 limitation could be overcome by dual wave- length systems using spectral contrast to dis- tinguish canopy components (Morsdorf et al. [2009\)](#page-41-0). No system of this sort has been flown as yet, although work on laboratory prototypes show great promise (Woodhouse et al. [2011](#page-43-0)). An ongoing issue in dealing with lidar systems of all types is the often proprietary (and hence generally hidden) nature of the instrument characteristics (Disney et al. [2010](#page-38-0)). This makes it hard to obtain information on key technical specifications such as the thresholds used to trigger a recorded pulse (Armston et al. [2013a\)](#page-37-0), or the stability of the instrument absolute response (and gain). Lidar instruments are rarely if ever calibrated to provide absolute reflectance, making it hard to make quantitative comparisons of signal returns from different backgrounds and can-opy types.

 In terms of spaceborne lidar for vegeta- tion applications, unfortunately none cur- rently exist due to perceived cost and technical limitations. This is despite the suc- cess of NASA's ICESAT/Glas mission, which is remarkable given that it was not designed for vegetation applications and had some severe limitations including a large footprint (70 m), limited vertical reso- lution and relatively poor spatial sampling (hundreds of meters along tracks between footprints and kilometres between tracks horizontally). Despite this, Glas data have been widely used to derive estimates of can- opy height and structure over large areas, particularly for tall boreal and tropical forests (Harding and Carabajal [2005;](#page-39-0) Lefsky et al. [2005](#page-40-0); Rosette et al. [2005\)](#page-42-0) as well as forming the basis of the current best estimates of pan-tropical forest biomass (Saatchi et al. [2011;](#page-42-0) Baccini et al. [2012](#page-37-0)). A second ICESAT mission is due to launch in 2017 ([http://icesat.gsfc.nasa.gov/icesat2/\)](http://icesat.gsfc.nasa.gov/icesat2/) but will have a different lidar system to that on ICESAT, and the possibilities for vegetation applications are as yet uncertain. Future prospects for space-based canopy lidar improved in July 2014, when NASA announced plans to launch the Global

Ecosystem Dynamics Investigation (GEDI) ²⁰⁰³ lidar system on board the International ²⁰⁰⁴ Space Station (ISS) in 2019. 2005

4. Terrestrial Laser Scanning (TLS) 2006

Another development over the last decade ²⁰⁰⁷ has been the rise of terrestrial laser scanning ²⁰⁰⁸ (TLS) instruments. Typically developed for ²⁰⁰⁹ commercial surveying applications, TLS ²⁰¹⁰ data have proved an interesting source of ²⁰¹¹ 3D canopy structure information (Maas et ²⁰¹² al. [2008](#page-40-0)). Given the importance of 3D struc- ²⁰¹³ ture for radiative transfer modelling, bio- ²⁰¹⁴ mass, canopy state etc., ways to rapidly and ²⁰¹⁵ accurately characterise structure are obvi- ²⁰¹⁶ ously attractive. This is particularly true as ²⁰¹⁷ traditional field-based measurement of struc- ²⁰¹⁸ ture are hard to make, particularly in remote ²⁰¹⁹ and tall forests where access may be limited. ²⁰²⁰ Under these conditions, even measuring tree ²⁰²¹ height can be problematic. As a result, struc- ²⁰²² tural measurements are often limited to ²⁰²³ diameter-at-breast height, stem number den- ²⁰²⁴ sity, with perhaps some estimates of overall ²⁰²⁵ height, height-to-crown ratio, and crown ²⁰²⁶ extent. Tree height can be estimated ²⁰²⁷ using hypsometers or clinometers and even ²⁰²⁸ cheap laser ranging devices. However, for ²⁰²⁹ these height measurements, the top of a tree ²⁰³⁰ has to be visible from the ground. In dense ²⁰³¹ canopies, with tall trees or in steep terrain, ²⁰³² this can be problematic. Additional struc- ²⁰³³ tural measurements are often inferred ²⁰³⁴ from indirect techniques, such as gap frac- ²⁰³⁵ tion and cover (and hence LAI) from ²⁰³⁶ upward-looking hemispheric photographs. ²⁰³⁷ TLS can potentially overcome many of ²⁰³⁸ these limitations, allowing rapid estimation ²⁰³⁹ of dbh, height and vertical structure and ²⁰⁴⁰ potentially providing information that can ²⁰⁴¹ be used to develop 3D canopy structural ²⁰⁴² models quickly and accurately (Raumonen ²⁰⁴³ et al. [2013\)](#page-42-0). ²⁰⁴⁴

The value of TLS measurements has seen ²⁰⁴⁵ development of new instruments specifically ²⁰⁴⁶ designed for vegetation applications, includ- ²⁰⁴⁷ ing: the use of wavelengths that are eye-safe, ²⁰⁴⁸ but also reflected strongly by vegetation (e.g. ²⁰⁴⁹ 1064 nm); a move from discrete-return to ²⁰⁵⁰

 waveform instruments; full hemisphere scanning; multiple wavelengths. Most of these innovations have been developed in the research community, but commercial manufacturers are now recognising there may be a larger market for robust field-por- table vegetation TLS instruments. Perhaps the most exciting of these developments is that of full-waveform, hemispherical scanners, with dual wavelengths. The only currently operational instrument is the Salford Advanced Laser Canopy Analyser (SALCA), which operates at 1040 and 1550 nm (Danson et al. [2014\)](#page-38-0). As for ALS, dual wavelengths have the potential to allow leaf and woody material to be separated in the lidar scans (Woodhouse et al. [2011](#page-43-0)). Another new instrument is the dual- wavelength Echidna laser scanner (DWEL, Douglas et al. [2012](#page-38-0)), a development of the Echidna single wavelength instrument that has been deployed successfully for a number of canopy applications (Yao et al. [2011](#page-43-0)). Both SALCA and DWEL are prototypes and require significant time to set up and carry out full hemisphere scans. A more robust, commercial alternative is the Riegl VZ-400 scanner [\(http://www.riegl.com/](http://www.riegl.com/uploads/tx_pxpriegldownloads/DataSheet_VZ-400_18-09-2013.pdf) [uploads/tx_pxpriegldownloads/DataSheet_](http://www.riegl.com/uploads/tx_pxpriegldownloads/DataSheet_VZ-400_18-09-2013.pdf) [VZ-400_18-09-2013.pdf\)](http://www.riegl.com/uploads/tx_pxpriegldownloads/DataSheet_VZ-400_18-09-2013.pdf). This is a full waveform hemispherical TLS instrument, albeit with a single wavelength at 1550 nm. It is a robust, field-ready instrument that can carry out high angular resolution hemispher- ical scans in 1–2 min. It can be used in conjunction with a digital camera to provide image data aligned to the scan data to aid target identification (and even separation of canopy elements). The instrument was not designed for vegetation applications, and so use of the waveform information for this purpose is still in the early stages but is potentially very promising (Disney et al. 2014). Field intercomparisons are being used to test the various strengths and weaknesses of the different instrument approaches (Armston et al. [2013b\)](#page-37-0).

²⁰⁹⁸ A key obstacle of using TLS for 3D struc-²⁰⁹⁹ ture is transforming point cloud data ²¹⁰⁰ into some form of topologically-structured

description of individual trees, preferably in ²¹⁰¹ a robust, automated way. Estimating tree ²¹⁰² diameter at breast height and stem number- ²¹⁰³ density is fairly easy; height can be straight- ²¹⁰⁴ forward but requires points to be returned ²¹⁰⁵ from the top of the canopy, which can be ²¹⁰⁶ problematic in tall, dense canopies. Topol- ²¹⁰⁷ ogy is much harder, as it requires an associa- ²¹⁰⁸ tion between points and organs within a ²¹⁰⁹ particular tree (branches, leaves). Various ²¹¹⁰ 3D tree reconstruction methods have been ²¹¹¹ proposed for TLS data (e.g. Gorte and ²¹¹² Pfeifer [2004](#page-39-0)). Limitations of these methods ²¹¹³ have been the speed and the requirement ²¹¹⁴ for a large number of heuristic thresholds. ²¹¹⁵ Recent work has shown that development of ²¹¹⁶ more robust and rapid methods is possible ²¹¹⁷ (Raumonen et al. [2013\)](#page-42-0). ²¹¹⁸

An additional problem for any reconstruc- ²¹¹⁹ tion method is validation, given the practical ²¹²⁰ difficulty of measuring 3D structure for other ²¹²¹ than the simplest trees. Detailed 3D radiative ²¹²² transfer models as described above are proving ²¹²³ one possible route for overcoming this limita- ²¹²⁴ tion (Disney et al. [2012\)](#page-38-0). In turn, the resulting ²¹²⁵ tree reconstructions open the way for routine ²¹²⁶ development of 3D scene models for remote ²¹²⁷ sensing simulations. Figure [11.9](#page-32-0) shows an ²¹²⁸ example of a single TLS scan collected in an ²¹²⁹ Australian Eucalyptus forest. The rich struc- ²¹³⁰ tural nature of the data is immediately appar- ²¹³¹ ent. Also shown are lidar 'hits' from a single ²¹³² tree extracted from the resulting point cloud, ²¹³³ and a 3D reconstruction of the same tree via ²¹³⁴ the method of Raumonen et al. [\(2013\)](#page-42-0). It is ²¹³⁵ worth noting that other uses of TLS are in ²¹³⁶ estimating canopy clumping and gap fraction ²¹³⁷ from the ground. TLS is potentially a more ²¹³⁸ accurate way to estimate clumping than e.g. ²¹³⁹ hemiphoto methods, as the effective resolution ²¹⁴⁰ is generally higher, and few if any assumptions ²¹⁴¹ are required to estimate gap fraction (Casella ²¹⁴² et al. [2013\)](#page-37-0). Reconstruction of tree volume ²¹⁴³ from TLS data allows rapid, accurate and ²¹⁴⁴ non-destructive estimates of above ground bio- ²¹⁴⁵ mass to be made (Calders et al. [2014](#page-37-0)). The ²¹⁴⁶ TLS measurement errors are also independent ²¹⁴⁷ of tree size, unlike biomass estimates inferred ²¹⁴⁸ indirectly from tree height or diameter ²¹⁴⁹ measurements. ²¹⁵⁰

Fig. 11.9. Examples of Riegl VZ-400 terrestrial laser scanning (TLS) data from a bush site in Queensland, Australia and 3D tree structure reconstructed from the resulting scans. Top: 360° panorama of individual hemispheric photographs taken from a camera mounted on the TLS instrument. Centre: TLS scan, with height mapped to color. Bottom left: TLS points from a single tree extracted from the point cloud data (color represents height above the ground); bottom right: 3D reconstruction of the same tree (color again represents height) using the method of Raumonen et al. ([2013\)](#page-42-0)

2151 5. RADAR Systems

 RADAR is an alternative promising instru- ment for canopy structure and function observations (Lee and Pottier 2009). In fact, 2155 RADAR has i ts specific, very great, advantages over optical reflected methods of all-weather operation. Longer wavelength (tens of cm) RADAR is potentially sensitive to much higher levels of biomass due to penetration through the upper canopy and interacting only with larger trunks and branches. Unlike lidar systems, scanning imaging RADAR systems are well-advanced from an engineering perspective, allowing for the wide area coverage that is often such an advantage of remote sensing. High- resolution interferometric synthetic aperture RADAR (InSAR) instruments also hold promise for measurements of canopy height and structure (Krieger et al. [2007](#page-40-0)). However, the radiative transfer problem in the RADAR domain is less well-understood than for opti- cal wavelengths due to complications as a result of phase, polarization and coherence. As a result, exploitation of RADAR for vegetation applications has been primarily via empirical relationships between back- scatter and amount/biomass. Yet, these measurements are known to have significant shortcomings in terms of their ability to reliably predict biomass a function of backscatter. This arises in part due to gaps in understanding of the physical processes governing the observed backscat- ter (Mitchard et al. [2011](#page-41-0); Woodhouse et al. [2012\)](#page-43-0).

²¹⁸⁷ B. Fluorescence and Canopy Function

 Plant physiological stress studies mainly focus on pulse-modulated chlorophyll fluo- rescence, but the light levels needed for saturated pulses are far too high such that this method is not practical for EO (Schreiber et al. 1994; Baker 2008). As a potential alternative, there has been a major 2195 interest on solar-induced chlorophyll fluores-2196 cence (F_s) . F_s results from the excitation of chlorophyll molecules within assimilating

leaves in the canopy and it is produced at ²¹⁹⁸ the core of Photosystems I and II, primarily ²¹⁹⁹ at photosystem II. Chlorophyll fluorescence ²²⁰⁰ is the remaining part of intercepted light ²²⁰¹ energy, typically less than a few percent ²²⁰² that is not used photochemically nor ²²⁰³ dissipated non-photochemically. Fluores- ²²⁰⁴ cence occurs at longer wavelengths than the ²²⁰⁵ excitation light wavelength (typically ²²⁰⁶ 650–800 nm for sunlight). Although ²²⁰⁷ minor, F_s is often inversely related to photo- 2208 synthesis, except when non-photochemical ²²⁰⁹ quenching of fluorescence occurs. Under ²²¹⁰ stress, or in conditions where irradiance ²²¹¹ exceeds that required for photosynthesis, ²²¹² plant tissues increase heat production to dis- ²²¹³ sipate excess energy. This tends to decrease ²²¹⁴ F_s , at least initially. Therefore, the resulting 2215 level of F_s is a balance between the radiation 2216 used for photosynthesis, heat production, ²²¹⁷ and chlorophyll fluorescence. Steady-state ²²¹⁸ measurements of F_s are therefore highly 2219 responsive to changes in environmental ²²²⁰ conditions and can be used as a ²²²¹ near-direct indicator of plant photosynthetic ²²²² function (Moya et al. [2004](#page-41-0); Guanter et al. ²²²³ [2012,](#page-39-0) [2014\)](#page-39-0). ²²²⁴

This rapid response of F_s to changing 2225 environment (temperature, light) and canopy ²²²⁶ state (water, internal temperature, nutrients ²²²⁷ etc.) has elicited significant interest in the ²²²⁸ possibility of relating remotely sensed ²²²⁹ measurements of F_s to related to canopy 2230 function and stress in particular. However, ²²³¹ the induced fluorescence signal is only ²²³² 1–5 % of the total reflected solar signal in ²²³³ the NIR, making it difficult to separate from ²²³⁴ the background reflected signal (Meroni ²²³⁵ et al. 2009). Malenovsky et al. [\(2009\)](#page-40-0) review ²²³⁶ some of the challenges \mathfrak{t}_9 measuring F_s from 2237 the solar reflected signal. Despite these ²²³⁸ issues, there have been several attempts to ²²³⁹ employ these measurements, including the ²²⁴⁰ ESA FLEX (Fluorescence Explorer) mis- ²²⁴¹ sion, primarily based on using narrow, spe- ²²⁴² cific dark lines of the solar and atmospheric ²²⁴³ spectrum in which irradiance is strongly ²²⁴⁴ reduced (the so-called Fraunhofer lines). ²²⁴⁵ Three main Fraunhofer features have been ²²⁴⁶ exploited for F_s estimation: H α due to 2247

 hydrogen (H) absorption (centred at 2249 656.4 nm) and two telluric oxygen (O_2) absorption bands O2-B (687.0 nm) and O2-A (760.4 nm). These lead to variants of the so-called Fraunhofer Line Depth (FLD) 2253 methods, in which F_s is estimated from some form of ratio of the measured signal in a Fraunhofer band to that measured in a refer- ence band just outside the Fraunhofer band (see Meroni et al. 2009 for details of these methods). Key limitations for spaceborne applications include the requirement for very accurate spectral calibration, and the removal of atmospheric and directional effects. However, a major advantage of exploiting existing (and future) imaging spectroradiometers is that they have become relatively common and acquire spatial image data over wide areas. Guanter et al. [\(2007\)](#page-39-0) 2267 demonstrated that F_s retrieval was possible from the MERIS sensor aboard ESA's Envisat platform. Their approach incor-2270 porated F_s retrieval into an atmospheric radi-2271 ative transfer scheme so that F_s and surface reflectance were retrieved consistently from measured at-sensor radiance. This holds the promise for more systematic retrievals from newer sensors such as ESA's Sentintel 5 pre- cursor mission, due for launch in 2015 ([http://esamultimedia.esa.int/docs/S5-prec_](http://esamultimedia.esa.int/docs/S5-prec_Data_Sheet.pdf) [Data_Sheet.pdf\)](http://esamultimedia.esa.int/docs/S5-prec_Data_Sheet.pdf).

2279 A new approach to retrieve F_s was recently developed that does not rely on the reflected solar signal, but uses estimates of changes in the depth of solar Fraunhofer lines, which tend to decrease due to 2284 in-filling by F_s (Joiner et al. [2011;](#page-39-0) Frankenberg et al. [2011a](#page-38-0), [b](#page-38-0)). These methods rely on high spectral resolution observations in the 755–775 nm range, which can resolve individual Fraunhofer lines overlapping with 2289 the F_s emission region. A key advantage of this method is that Fraunhofer line depth is unaffected by atmospheric scattering and absorption in certain narrow spectral windows. If these windows can be observed, then it is possible to estimate the in-filling 2295 due to F_s emission, which can of course only arise from vegetation. Such an approach has

only become feasible since the launch of the ²²⁹⁷ Japanese Greenhouse Gases Observing ²²⁹⁸ SATellite "IBUKI" (GOSAT), carrying the ²²⁹⁹ Thermal and Near infrared Sensor for ²³⁰⁰ carbon Observation (TANSO) ([http://www.](http://www.gosat.nies.go.jp/index_e.html) ²³⁰¹ [gosat.nies.go.jp/index_e.html](http://www.gosat.nies.go.jp/index_e.html)). The TANSO ²³⁰² Fourier Transform Spectrometer (FTS) was ²³⁰³ designed for measuring column-averaged ²³⁰⁴ atmospheric $CO₂$ on global scales. The pos- 2305 sibility for retrieving F_s was a serendipitous 2306 after-thought. TANSO-FTS observations are ²³⁰⁷ by no means ideal for F_s due to their large 2308 spatial extent (tens km footprint), and lim- ²³⁰⁹ ited spatial and temporal coverage due to the ²³¹⁰ instrument design. Despite these issues, the ²³¹¹ first retrievals of F_s have shown large-scale 2312 patterns consistent with expectations of sea- ²³¹³ sonal and regional variations in productivity ²³¹⁴ (Joiner et al. [2011](#page-39-0)). An example global map ²³¹⁵ of F_s derived from TANSO-FTS data is 2316 shown in Fig. [11.10.](#page-35-0) 2317

The results suggest that estimates of F_s 2318 correlate strongly with independent ²³¹⁹ estimates of GPP (Frankenberg et al. 2320) [2011b](#page-38-0); Guanter et al. [2012](#page-39-0), [2014](#page-39-0)). Critically, ²³²¹ F_s also seems to contain information which 2322 is independent of standard satellite ²³²³ reflectance-derived estimates of productivity ²³²⁴ via NDVI or EVI, for example, that basically ²³²⁵ measure vegetation 'greenness' i.e. some ²³²⁶ property related to vegetation amount. In ²³²⁷ addition, the F_s signal is likely to be much 2328 more sensitive to canopy stress due to its ²³²⁹ origins in the photosynthetic machinery. ²³³⁰ This might allow exploration of large-scale ²³³¹ impacts of stressors on vegetation productiv- ²³³² ity. As an example of this, Lee et al. ([2013\)](#page-40-0) ²³³³ used satellite fluorescence to show that ²³³⁴ instantaneous midday productivity (GPP) ²³³⁵ was reduced by as much as 15 % across the ²³³⁶ Amazon due to severe drought conditions in ²³³⁷ 2010. This interest in fluorescence as an ²³³⁸ indicator of GPP has led to new ways to ²³³⁹ exploit data from sensors primarily aimed ²³⁴⁰ at atmospheric trace gas applications. Joiner ²³⁴¹ et al. [\(2013](#page-39-0)) have extracted fluorescence ²³⁴² from the Japanese GOME-2 instrument, ²³⁴³ at higher precision and over smaller spatial ²³⁴⁴ and temporal scales than is possible with ²³⁴⁵

Fig. 11.10. Sun-induced steady-state fluorescence yield (F_s) estimated from GOSAT TANSO-FTS observations composited during July 2009. Color intensity represents intensity of F_s in arbitrary units. Image from NASA Earth Observatory, created by Robert Simmon, using data from GOSAT ([http://visibleearth.nasa.gov/view.php?](http://visibleearth.nasa.gov/view.php?id=51121) $id = 51121$ $id = 51121$ $id = 51121$

 GOSAT. This work holds the promise of more detailed maps of fluorescence from space in the near future, which has in turn led to an increase in interest as to how to understand and exploit this signal using ²³⁵¹ models.

 The intriguing and unique information 2353 content of F_s has led to work on modelling the signal at the leaf and canopy levels in order to understand the signal and potentially allow parameter retrievals (Miller et al. [2005\)](#page-40-0). F_s models rely on embedding a model of leaf-level fluorescence within a canopy reflectance model. The FLSAIL model (Rosema et al. [1991](#page-42-0)) was an extension of the SAIL canopy reflectance model 2362 (Verhoef [1984](#page-43-0)) with F_s contributions modelled through a doubling method. The model was primarily developed for describ- ing laser-induced rather than solar-induced fluorescence. Olioso et al. [\(1992](#page-41-0)) used a simple Beer's Law approximation for canopy and leaf-level extinction and allowed for within-canopy gradient in chlorophyll con-tent to account for variations in leaf biochemistry. The 3D DART model has ²³⁷¹ also been modified to provide estimates of ²³⁷² fluorescence at the canopy level (Miller et al. ²³⁷³ [2005\)](#page-40-0). FlurMODleaf is perhaps the most ²³⁷⁴ sophisticated F_s model, based on the PROS- 2375 PECT model described above (Miller et al. ²³⁷⁶ [2005;](#page-40-0) Zarco-Tejada et al. [2006](#page-43-0)). This model ²³⁷⁷ has been used in various studies to show the ²³⁷⁸ influence of fluorescence on hyperspectral ²³⁷⁹ reflectance data (Zarco-Tejada et al. [2006,](#page-43-0) ²³⁸⁰ [2009;](#page-43-0) Middleton et al. [2008](#page-40-0)). ²³⁸¹

Reliable remotely-sensed observations of ²³⁸² fluorescence are still in their infancy but they ²³⁸³ hold out the tantalising prospect of much ²³⁸⁴ more direct estimates of canopy function, ²³⁸⁵ productivity, and stress than at present, ²³⁸⁶ from spaceborne instruments based on ²³⁸⁷ visible and near infra-red radiation reflec- 2388 tan¹ NASA's forthcoming Orbiting Carbon 2389 Observatory 2 (due to launch in mid-2014) 2390 may be capable of retrieving F_s from solar 2391 reflected signal, and there is increasing inter- ²³⁹² est in other ways to retrieve F_s and vegeta- 2393 tion productivity from both spaceborne and ²³⁹⁴ airborne hyperspectral data. ²³⁹⁵

V. Conclusions

 Various issues arise in using remote sensing in estimating vegetation structure and func- tion in a quantitative sense. The primary limitation clearly is the indirect nature of most remote sensing measurements. How- ever, there are also great capabilities that now exist for mapping, even indirectly, can- opy state and function over wide areas and with repeated sampling allowing for studies of phenology, disturbance and anthropogenic impacts. We have explored the key role that vegetation structure plays in providing a link between incoming radiation and how this radiation is subsequently scattered or absorbed within the canopy before exiting to provide the remote sensing signal. New developments in understanding and model- ling the fundamental nature of these interactions are allowing us to chart a route from measurements made at the top-of-the atmosphere to estimates of canopy state and function. These developments are allowing us to unpick the relationships between 'effective' canopy parameters, simplified or approximate manifestations of measurable physical parameters, and their real measur- able counterparts. Effective parameters allow us to model the radiation signal in practical, rapid models that are required to operate on global scales. The effective nature of the parameters, however, makes such models difficult to test and validate. Increases in the resolution and physical accuracy of large-scale land surface models has highlighted these discrepancies, but also calls for improvements in representations of vegetation. This is critical to reducing uncer- tainty in modelling the responses of terres- trial vegetation to changes in climate and land use, particularly via the terrestrial car-bon cycle.

 A range of new remote sensing measurements providing more direct infor- mation on canopy structure and function have been discussed. Terrestrial and airborne lidar systems, notably full-waveform and multispectral, are providing new information

on canopy structure. Observations of canopy ²⁴⁴³ fluorescence have provided promising ²⁴⁴⁴ estimates of canopy function, particularly ²⁴⁴⁵ under stress. These new observations are ²⁴⁴⁶ being exploited through developments in ²⁴⁴⁷ detailed 3D canopy and leaf models, which ²⁴⁴⁸ are making use of the continued increases in ²⁴⁴⁹ computing power to reduce the requirements ²⁴⁵⁰ for approximations. ²⁴⁵¹

From 2000 on there has been an unprece- ²⁴⁵² dented increase in high quality calibrated ²⁴⁵³ consistent and error-quantified satellite ²⁴⁵⁴ measurements of terrestrial vegetation at ²⁴⁵⁵ resolutions of 250 m – 1 km, covering the 2456 globe every few days. Notwithstanding ²⁴⁵⁷ limitations, these observations are now central ²⁴⁵⁸ to a huge range of applications. Indeed, many ²⁴⁵⁹ of these observations have been identified as ²⁴⁶⁰ so-called 'essential climate variables' ([http://](http://www.wmo.int/pages/prog/gcos/index.php?name=EssentialClimateVariables) ²⁴⁶¹ [www.wmo.int/pages/prog/gcos/index.php?](http://www.wmo.int/pages/prog/gcos/index.php?name=EssentialClimateVariables) ²⁴⁶² [name](http://www.wmo.int/pages/prog/gcos/index.php?name=EssentialClimateVariables)=[EssentialClimateVariables\)](http://www.wmo.int/pages/prog/gcos/index.php?name=EssentialClimateVariables). 2463

However, the future is perhaps a little ²⁴⁶⁴ more uncertain: current activities by major ²⁴⁶⁵ space agencies include plans for continua- ²⁴⁶⁶ tion of many, but not all, of the existing ²⁴⁶⁷ observations of the land surface that have ²⁴⁶⁸ proved so useful. Some of these new systems ²⁴⁶⁹ will provide observations with reduced capa- 2470 bility and/or scope than their predecessors, ²⁴⁷¹ for a variety of practical reasons. Given what ²⁴⁷² we have, and what is to come, we should ²⁴⁷³ look forward to the coming decade as one ²⁴⁷⁴ that will likely provide as many ²⁴⁷⁵ developments in our ability to measure and ²⁴⁷⁶ understand terrestrial vegetation as the last ²⁴⁷⁷ decade undoubtedly had. 2478

Acknowledgments 2479

I acknowledge the support of UCL Geogra- ²⁴⁸⁰ phy and the NERC National Centre for Earth ²⁴⁸¹ Observation (NCEO), as well as the Univer- ²⁴⁸² sity of Queensland for hosting me during ²⁴⁸³ some of this work. I also acknowledge vari- ²⁴⁸⁴ ous colleagues for the numerous and varied ²⁴⁸⁵ discussions over the last few years, that have ²⁴⁸⁶ led to thoughts and collaborations on issues ²⁴⁸⁷

 discussed here, including (inter alia): P Lewis, J Gomez-Dans, MJ Disney, M Barnsley, T Quaife, M DeKauwe, S Hancock, M Williams, S Quegan C Schaaf, A Strahler, Y Knyazkhin, B Pinty, JL Widlowski, J Armston and K Calders among many others. I am grateful to Prof. Vince Gutschick and the Mathematical Biosciences Institute of Ohio State Univer- sity, for the invitation to the MBI Workshop on Modelling Plant Development which provided initial impetus for this work.

²⁵⁰⁰ References

- [AU5](#page-44-0) 2501 Allen WA, Gausman HW, Richardson AJ, Thomas JR 2502 (1969) Interaction of isotropic light with a compact 2503 plant leaf. J Opt Soc Am 59:1376–1379
	- 2504 Allen WA, Gausman HW, Richardson AJ (1970) Mean 2505 effective optical constants of cotton leaves. J Opt 2506 Soc Am 60:542–547
	- 2507 Alton PB, North PRJ, Los SO (2007) The impact of 2508 diffuse sunlight on canopy light-use efficiency, gross 2509 photosynthetic product and net ecosystem exchange
	- 2510 in three forest biomes. Glob Chang Biol 13:776–787 2511 Angert A, Biraud S, Henning CC, Bauermann W,
	- 2512 Pinzon J, Tucker CJ, Fung I (2005) Drier summers
	- 2513 cancel out the $CO₂$ uptake enhancement induced by
	- 2514 warmer springs. Proc Natl Acad Sci U S A 2515 102:10823–10827
	- 2516 Armston J, Disney MI, Lewis P, Scarth P, Phinn S, 2517 Lucas R, Bunting P, Goodwin N (2013a) Direct 2518 retrieval of canopy gap probability using airborne 2519 waveform lidar. Remote Sens Environ 134:24–38
	- 2520 Armston J, Newnham G, Strahler AH, Schaaf C, 2521 Danson M, Gaulton R, Zhang Z, ..., Wu S (2013b) 2522 Intercomparison of terrestrial laser scanning
	- 2523 instruments for assessing forested ecosystems: a 2524 Brisbane field experiment, B11G-0443, In: Proc.
	-
	- 2525 AGU San Francisco, Dec. 2013 [http://128.197.168.](http://128.197.168.195/wp-content/uploads/2013/11/Armston_Brisbane.pdf) 2526 [195/wp-content/uploads/2013/11/Armston_Brisbane.](http://128.197.168.195/wp-content/uploads/2013/11/Armston_Brisbane.pdf)
	- 2527 [pdf](http://128.197.168.195/wp-content/uploads/2013/11/Armston_Brisbane.pdf)
	- 2528 Asner GP, Mascaro J (2014) Mapping tropical forest 2529 carbon: Calibrating plot estimates to a simple 2530 LiDAR metric. Remote Sens Environ 140:614–624 2531 Asner GP, Powell GV, Mascaro J, Knapp DE, Clark JK,
	- 2532 Jacobson J, Kennedy-Bowdoin T, ..., Hughes RF 2533 (2010) High resolution forest carbon stocks and 2534 emissions in the Amazon. Proc Natl Acad Sci USA 2535 107:16738–16742
- 36 Mathias Disney
	- Asrar G (ed) (1989) Theory and Applications of Opti- 2536 cal Remote Sensing. Wiley, New York 2537
	- Baccini A, Goetz SJ, Walker WS, Laporte NT, Sun M, 2538 Sulla-Menashe D, Hackler J, ..., Houghton RA 2539 (2012) Estimated carbon dioxide emissions from 2540 tropical deforestation improved by carbon-density 2541 maps. Nat Clim Change 2:182–185 2542
	- Baranoski GVG (2006) Modeling the interaction of 2543 infrared radiation (750 to 2500 nm) with bifacial 2544 and unifacial plant leaves. Remote Sens Environ 2545 100:335–347 2546
	- Best MJ, Pryor M, Clark DB, Rooney GG, Essery 2547 RLH, Ménard CB, Edwards JM, ..., Harding RJ 2548 (2011) The Joint UK Land Environment Simulator 2549 (JULES), model description – Part 1: Energy and 2550 water fluxes. Geosci Model Dev 4:677–699 2551
	- Brando P, Goetz S, Baccini A, Nepstad DC, Beck PSA, 2552 Chiristman MC (2010) Seasonal and interannual 2553 variability of climate and vegetation indices across 2554 the Amazon. Proc Natl Acad Sci U S A 2555 107:14685–14690 2556
	- Brodersen CR, Voglemann TC, Williams WE, Gorton 2557 H (2008) A new paradigm in leaf-level photosynthe- 2558 sis: direct and diffuse lights are not equal. Plant Cell 2559 Environ 31:159–164 2560
	- Bunnik NJJ (1978) The multispectral reflectance 2561 of shortwave radiation of agricultural crops in rela- 2562 tion with their morphological and optical properties. 2563 PhD Thesis, In Mededelingen Landbouwhoge- 2564 school, Wageningen University, Wageningen 2565
	- Brut A, Rüdiger C, Lafont S, Roujean J-L, Calvet J-C, 2566 [AU6](#page-44-0) Jarlan L, Gibelin A-L, ..., Ceschis E (2009) 2567 Modelling LAI at a regional scale with ISBA-A- 2568 gs: comparison with satellite-derived LAI over 2569 southwestern France. Biogeosciences 6:1389–1404 2570
	- Calders K, Newnham G, Burt A, Murphy S, 2571 Raumonen P, Herold M, Culvenor D, ..., Kaasalainen 2572 M (2014) Non-destructive estimates of above-ground 2573 biomass using terrestrial laser scanning. Methods 2574 Ecol Evol, in press. doi: [10.1111/2041-210X.12301](http://dx.doi.org/10.1111/2041-210X.12301) 2575
	- Campbell GS (1986) Extinction coefficient for radia- 2576 tion in plant canopies calculated using an ellipsoidal 2577 inclination angle distribution. Agric For Meteorol 2578 36:317–321 2579
	- Carrer D, Roujean JL, Lafont S, Boone A, Calvet, JC 2580 (2012) A vegetation radiative transfer scheme in 2581 ISBA-A-gs interactive vegetation model. In: 2582 Proceedings of IGARSS2012. Munich, Germany, 2583 22–27 July 2012, pp 1151–1154 2584
	- Casella E, Disney MI, McKay H (2013) tLiDAR 2585 methodologies can overcome limitations in 2586 estimating forest canopy LAI from conventional 2587 hemispherical photograph analyses. In: Proceedings 2588

11 Remote Sensing of Vegetation 37 37

 of Functional Structural Plant Modelling 2013 2590 (FSPM2013), Saariselkä, Finland, 9–14 June, 2013 2591 Cescatti A, Niinemets \ddot{U} (2004) Leaf to landscape. In: Smith WK, Vogelmann TC, Critchley C (eds) Eco- logical Studies: Photosynthetic Adaptation, vol 178. Springer, New York, pp 42–85

2595 Chandrasekhar S (1960) Radiative Transfer. Dover, 2596 New York

- 2597 Chapin FS III, Chapin MC, Matson PA, Vitousek P 2598 (2011) Principles of Terrestrial Ecosystem Ecology, 2599 2nd edn. Springer, New York
- 2600 Combes D, Bousquet L, Jacquemoud S, Sinoquet H, 2601 Varlet-Grancher C, Moya I (2007) A new spectrogo-2602 niophotometer to measure leaf spectral and direc-2603 tional optical properties. Remote Sens Environ 2604 109:107–117
- 2605 Danson FM, Gaulton R, Armitage RP, Disney MI, 2606 Gunawan O, Lewis PE, Pearson G, Ramirez AF
- 2607 (2014) Developing a dual-wavelength full-wave-2608 form terrestrial laser scanner to characterise forest
- 2609 canopy structure. Agric For Meteorol 198–199:7–14
- 2610 Dawson TP, Curran PJ, Plummer SE (1998)
- 2611 LIBERTY modeling the effects of leaf biochemi-2612 cal concentration on reflectance spectra. Remote 2613 Sens Environ 65:50–60
- 2614 Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox
- 2615 PM, Dickinson RE, Hauglustaine D, ..., Zhang X
- 2616 (2007) Couplings between changes in the climate
- 2617 system and biogeochemistry. In: Solomon S, Qin D, 2618 Manning M, Chen Z, Marquis M, Averyt KB,
- 2619 Tignor M, Miller HL (eds) Climate Change 2007:
- 2620 The Physical Science Basis. Contribution of
- 2621 Working Group I to the Fourth Assessment Report
- 2622 of the Intergovernmental Panel on Climate 2623 Change. Cambridge University Press, Cambridge, 2624 pp 499–587
- 2625 Dickinson RE (1983) Land surface processes and cli-2626 mate—surface albedos and energy balance. Adv 2627 Geophys 25:305–353
- 2628 Disney MI, Lewis P, North P (2000) Monte Carlo ray 2629 tracing in optical canopy reflectance modelling. 2630 Remote Sens Rev 18:163–197
- 2631 Disney MI, Lewis P, Quaife T, Nichol, C (2005) A
- 2632 spectral invariant approach to modeling canopy
- 2633 and leaf scattering. In: Proceedings of the 9th Inter-2634 national Symposium on Physical Measurements and
- 2635 Signatures in Remote Sensing (ISPMSRS), 17–-
- 2636 19 October 2005, Beijing, China, Part 1: 318–320
- 2637 Disney MI, Lewis P, Saich P (2006) 3D modelling 2638 of forest canopy structure for remote sensing 2639 simulations in the optical and microwave domains. 2640 Remote Sens Environ 100:114–132
- 2641 Disney MI, Lewis P, Bouvet M, Prieto-Blanco A, 2642 Hancock S (2009) Quantifying surface reflectivity

for spaceborne lidar via two independent methods. 2643 IEEE Trans Geosci Remote Sens 47:3262–3271 2644

- Disney MI, Kalogirou V, Lewis PE, Prieto-Blanco A, 2645 Hancock S, Pfeifer M (2010) Simulating the impact 2646 of discrete-return lidar system and survey 2647 characteristics over 2 young conifer and broadleaf 2648 forests. Remote Sens Environ 114:1546–1560 2649
- Disney MI, Lewis P, Gomez-Dans J, Roy D, 2650 Wooster M, Lajas D (2011) 3D radiative transfer 2651 modelling of fire impacts on a two-layer savanna 2652 system. Remote Sens Environ 115:1866–1881 2653
- Disney MI, Lewis P, Raumonen P (2012) Testing a new 2654 vegetation structure retrieval algorithm from terres- 2655 trial lidar scanner data using 3D models. In: 2656 Proceedings of Silvilaser 2012, Vancouver, BC, 2657 Canada, 16–19 September 2012 2658
- Douglas ES, Strahler AH, Martel J, Cook T, Mendillo 2659 C , Marshall R, Chakrabarti S, ..., Lovell J (2012) 2660 DWEL: a dual-wavelength Echidna lidar for 2661 ground-based forest scanning. In: Proceedings of 2662 IGARSS2012, 22–27 July 2012, Munich, Germany, 2663 pp 4998–5001 2664
- Dubayah RO, Drake JB (2000) Lidar remote sensing 2665 for forestry. J For 98:44–46 2666
- España M, Baret F, Aries F, Andrieu B, Chelle M 2667 (1999) Radiative transfer sensitivity to the accuracy 2668 of canopy structure description. The case of a maize 2669 canopy. Agronomie 19:241–254 2670
- Feret JB, François C, Asner GP, Gitelson AA, 2671 Martin RE, Bidel LPR, Ustin SL, le Maire G, 2672 Jacquemoud S (2008) PROSPECT-4 and 5: 2673 advances in the leaf optical properties model 2674 separating photosynthetic pigments. Remote Sens 2675 Environ 112:3030–3043 2676
- Flerchinger GN, Yu Q (2007) Simplified expressions 2677 for radiation scattering in canopies with ellipsoidal 2678 leaf angle distributions. Agric For Meteorol 2679 144:230–235 2680
- Frankenberg C, Butz A, Toon GC (2011a) 2681 Disentangling chlorophyll fluorescence from atmo- 2682 spheric scattering effects in O2A-band spectra of 2683 reflected sun-light. Geophys Res Lett 38, L03801 2684
- Frankenberg C, Fisher JB, Worden J, Badgley G, 2685 Saatchi SS, Lee J-E, Toon GC, ..., Yokota T 2686 (2011b) New global observations of the terrestrial 2687 carbon cycle from GOSAT: Patterns of plant fluo- 2688 rescence with gross primary productivity. Geophys 2689 Res Lett 38:L17706 2690
- Fung AK (1994) Microwave Scattering and Emission 2691 Models and Their Applications. Artech House, 2692 Norwood 2693
- Ganguly S, Schull MA, Samanta A, Shabanov NV, 2694 Milesi C, Nemani R, Knyazikhin YV, Myneni RB 2695 (2008) Generating vegetation leaf area index earth 2696

-
- 2697 system data records from multiple sensors. Part 1: 2698 Theory. Remote Sens Environ 112:4333–4343 2699 Ganguly S, Nemani R, Zhong G, Hashimoto H, 2700 Milesi C, Michaelis M, Wang W, ..., Myneni RB 2701 (2012) Generating global leaf area index from 2702 Landsat: algorithm formulation and demonstration. 2703 Remote Sens Environ 122:185–202 2704 Gastellu-Etchegorry JP, Martin E, Gascon F (2004) 2705 Dart: a 3D model for simulating satellite images 2706 and studying surface radiation budget. Int J Remote 2707 Sens 25:73–96 2708 Godin C, Sinoquet H (2005) Functional–structural 2709 plant modelling. New Phytol 166:705–708 2710 Goel NS (1988) Models of vegetation canopy reflec-2711 tance and their use in the estimation of biophysical 2712 parameters from reflectance data. Remote Sens Rev 2713 4:1–222 2714 Goel NS, Strebel DE (1984) Simple beta distribution 2715 representation of leaf orientation in vegetation 2716 canopies. Agron J 75:800–802 2717 Goel NS, Thompson RL (2000) A snapshot of canopy 2718 reflectance models, and a universal model for the 2719 radiation regime. Remote Sens Rev 18:197–225 2720 Gorte B, Pfeifer N (2004) Structuring laser-scanned 2721 trees using 3D mathematical morphology. Int Arch 2722 Photogramm Remote Sens XXXV:929–933 2723 Govaerts Y, Verstraete MM (1998) Raytran: a Monte 2724 Carlo ray-tracing model to compute light scattering 2725 in three-dimensional heterogeneous media. IEEE 2726 Trans Geosci Remote Sens 36:493–505 2727 Grace J, Nichol C, Disney MI, Lewis P, Quaife T, 2728 Bowyer P (2007) Can we measure photosynthesis 2729 from space? Glob Chang Biol 13:1484–1497 2730 Guanter L, Alonso L, Gomez-Chova L, Amoros-2731 Lopez J, Moreno J (2007) Estimation of solar-2732 induced vegetation fluorescence from space 2733 measurements. Geophys Res Lett 34:L08401 2734 Guanter L, Frankenberg C, Dudhia A, Lewis PE, 2735 Gomez-Dans J, Kuze A, Suto H, Grainger RG 2736 (2012) Retrieval and global assessment of terrestrial 2737 chlorophyll fluorescence from GOSAT space 2738 measurements. Remote Sens Environ 121:236–257 2739 Guanter L, Zhang Y, Jung M, Joiner J, Voigt M, Berry 2740 JA, Frankenberg C, ..., Griffis TJ (2014) Global and 2741 time-resolved monitoring of crop photosynthesis 2742 with chlorophyll fluorescence. Proc Natl Acad Sci 2743 USA 111:E1327–E1333 2744 Harding DJ, Carabajal CC (2005) ICESat waveform 2745 measurements of within-footprint topographic relief 2746 and vegetation vertical structure. Geophys Res Lett 2747 32, L21S10 2748 Henderson-Sellers A, Irannejad P, McGuffie K, Pitman 2749 A (2003) Predicting land-surface climates: better 2750 skill or moving targets? Geophys Res Lett 30:1777
- Hosgood B, Jacquemoud S, Andreoli G, Verdebout J, 2751 Pedrini G, Schmuck G (1995) LOPEX: Leaf optical 2752 properties experiment 93. Technical Report EUR 2753 16095 EN, Joint Research Center, European Com- 2754 mission, Institute for Remote Sensing Applications 2755
	- Houser P, De Lannoy G, Walker JP (2012) Hydrologic 2756 [AU7](#page-44-0) data assimilation. In: Tiefenbacher JP (ed) 2757 Approaches to Managing Disaster – Assessing 2758 Hazards, Emergencies and Disaster Impacts. 2759 InTech, Rijeka, 162 p 2760
	- Huang D, Knyazikhin Y, Dickinson R, Rautiainen M, 2761 Stenberg P, Disney MI, Lewis P, ..., Myneni RB 2762 (2007) Canopy spectral invariants for remote sens- 2763 ing and model applications. Remote Sens Environ 2764 106:106–122 2765
	- Hyyppä J, Hyyppä H, Leckie D, Gougeonm F, Yu X, 2766 Maltamo M (2008) Review of methods of 2767 small-footprint airborne laser scanning for 2768 extracting forest inventory data in boreal forests. 2769 Int J Remote Sens 29:1339–1366 2770
	- Jacquemoud S, Ustin S (2008) Modelling leaf optical 2771 properties. Photobiological Sciences Online (Smith 2772 KC , ed.) American Society for Photobiology, [http://](http://www.photobiology.info/) 2773 www.photobiology.info/ 2774

Jacquemoud S, Ustin SL, Verdebout J, Schmuck G, 2775 Andreoli G, Hosgood B (1996) Estimating leaf bio- 2776 chemistry using the PROSPECT leaf optical 2777 properties model. Remote Sens Environ 56:194–202 2778

- Jacquemoud S, Verhoef W, Baret F, Bacour C, Zarco- 2779 Tejada PJ, Asner GP, Francois C, Ustin SL (2009) 2780 PROSPECT + SAIL Models: a review of use for 2781 vegetation characterization. Remote Sens Environ 2782 113:56–66 2783
- Joiner J, Yoshida Y, Vasilkov AP, Yoshida Y, Corp LA, 2784 Middleton EM (2011) First observations of global 2785 and seasonal terrestrial chlorophyll fluorescence 2786 from space. Biogeosciences 8:637–651 2787
- Joiner J, Guanter L, Lindstrot R, Voigt M, Vasilkov AP, 2788 Middleton EM, Huemmerich KF, ..., Franenberg C 2789 (2013) Global monitoring of terrestrial chlorophyll 2790 fluorescence from moderate spectral resolution 2791 near-infrared satellite measurements: methodology, 2792 simulations and application to GOME-2. Atmos 2793 Meas Tech Discuss 6:3883–3930 2794
- Jones HG (2014) Plants and Microclimate: A Quanti- 2795 tative Approach to Environmental Plant Physiology, 2796 3rd edn. CUP, Cambridge 2797
- Jones HG, Vaughan RA (2010) Remote Sensing of 2798 Vegetation: Principles, Techniques and Applications. 2799 OUP, Oxford 2800
- Knorr W, Kaminski T, Scholze M, Gobron N, Pinty B, 2801 Giering R, Mathieu P-P (2010) Carbon cycle data 2802 assimilation with a generic phenology model. 2803 J Geophys Res 115, doi[:10.1029/2009JG001119](http://dx.doi.org/10.1029/2009JG001119) 2804

11 Remote Sensing of Vegetation 39

2805 Knyazikhin YV, Marshak AL, Myneni RB (1992) 2806 Interaction of photons in a canopy of finite dimen-2807 sional leaves. Remote Sens Environ 39:61–74

 Knyazikhin YV, Kranigk J, Myneni RB, Panfyorov O, Gravenhorst G (1998) Influence of small-scale structure on radiative transfer and photosynthesis in vegetation canopies. J Geophys Res 103:6133–6144

- 2813 Knyazikhin YV, Schull MA, Liang X, Myneni RB, 2814 Samanta A (2011) Canopy spectral invariants. Part
- 2815 1: A new concept in remote sensing of vegetation. J
- 2816 Quant Spectrosc Radiat Transf 112:727–735
- 2817 Knyazikhin YV, Schull MA, Stenberg P, Mõttus M, 2818 Rautiainen M, Yang Y, Marshak A, ..., Myneni 2819 RB (2013) Hyperspectral remote sensing of 2820 foliar nitrogen content. Proc Natl Acad Sci USA 2821 110: E185–E192
- 2822 Krieger G, Moreira A, Fiedler H, Hajnsek I, Werner M,
- 2823 Younis M, Zink M (2007) TanDEM-X: A satellite 2824 formation for high-resolution SAR interferometry.

2825 IEEE Trans Geosci Remote Sens 45:3317–3341

- 2826 Lafont S, Zhao Y, Calvet J-C, Peylin P, Ciais P,
- 2827 Maignan F, Weiss M (2012) Modelling LAI, surface
- 2828 water and carbon fluxes at high-resolution over 2829 France: comparison of ISBA-A-gs and ORCHIDEE.
- 2830 Biogeosciences 9:439–456
- 2831 Lee J-E, Franksnberg C, van der Tol C, Berry JA, 2832 Guanter L, Boyce CK, Fisher JB, ..., Saatchi, S 2833 (2013) Forest productivity and water stress 2834 across Amazonia: observations from GOSAT chlo-2835 rophyll fluorescence. Proc Royal Soc B 2836 280:1471–2954
- 2837 Leersnijder RP (1992) PINOGRAM: A Pine Growth 2838 Area Model. WAU dissertation 1499, Wageningen 2839 Agricultural University, The Netherlands
- 2840 Lefsky MA, Cohen WB, Parker GG, Harding DJ 2841 (2002) Lidar remote sensing for ecosystem studies. 2842 Biogeosciences 52:19–30
- 2843 Lefsky MA, Harding DJ, Keller M, Cohen WB,
- 2844 Carabajal CC, Espirito-Santo FDB, Hunter MO, de 2845 Oliveira R Jr (2005) Estimates of forest canopy 2846 height and aboveground biomass using ICESat.
- 2847 Geophys Res Lett 32:L22S02
- 2848 Lewis P (1999) Three-dimensional plant modelling for 2849 remote sensing simulation studies using the Botani-
- 2850 cal Plant Modelling System (BPMS). Agron Agric 2851 Environ 19:185–210
- 2852 Lewis P, Disney MI (1998) The botanical plant 2853 modeling system (BPMS): a case study of multiple 2854 scattering in a barley canopy. In: Proceedings of 2855 IGARSS'98, Seattle, USA.
- 2856 Lewis P, Disney MI (2007) Spectral invariants and 2857 scattering across multiple scales from within-leaf 2858 to canopy. Remote Sens Environ 109:196–206
- Lewis P, Gómez-Dans J, Kaminski T, Settle J, Quaife T, 2859 Gobron N, Styles J, Berger M (2012) An Earth 2860 Observation Land Data Assimilation System 2861 (EO-LDAS). Remote Sens Environ 120:219–235 2862
- Liang S (2004) Quantitative Remote Sensing of Land 2863 Surfaces. Wiley, New York 2864
- Lynch C (2008) Big data: How do your data grow? 2865 Nature 455:28–29 2866
- Maas HG, Bientert A, Scheller S, Keane E (2008) 2867 Automatic forest inventory parameter determined 2868 from terrestrial laser scanner data. Int J Remote 2869 Sens 29:1579–1593 2870
- Malenovsky Z, Mishra KB, Zemek F, Rascher U, 2871 Nedbal L (2009) Scientific and technical challenges 2872 in remote sensing of plant canopy reflectance and 2873 fluorescence. J Exp Bot 60:2987–3004 2874
- Mallet C, Bretar F (2009) Full-waveform topographic 2875 lidar: state-of-the-art. ISPRS J Photogramm Remote 2876 Sens 64:1–16 2877
- Marshak A, Knyazikhin YV, Chiu JC, Wiscombe WJ 2878 (2011) Spectrally invariant approximation 2879 within atmospheric radiative transfer. J Atmos Sci 2880 68:3094–3111 2881
- Martin G, Josserand SA, Bornman JF, Vogelmann TC 2882 (1989) Epidermal focussing and the light microen- 2883 vironment within leaves of Medicago sativa. Physiol 2884 Plant 76:485–492 2885
- Meador I, Weaver WR (1980) Two-stream 2886 approximations to radiative transfer in planetary 2887 atmospheres: a unified description of existing 2888 methods and new improvements. J Atmos Sci 2889 37:630–643 2890
- Mêch R, Prusinkiewicz P (1996) Visual models of 2891 plants interacting with their environment. 2892 Proceedings of SIGGRAPH 96. New Orleans, 2893 Louisiana, August 4–9 1996. In computer graphics 2894 proceedings, annual conference series, ACM 2895 SIGGRAPH, pp 397–410 2896
- Melamed NT (1963) Optical properties of powders. 2897 Part I. Optical absorption coefficients and the 2898 absolute value of the diffuse reflectance. Part 2899 II. Properties of luminescent powders. J Appl Phys 2900 34:560–570 2901
- Mercado LM, Bellouin NM, Sitch S, Boucher O, 2902 Huntingford C, Wild M, Cox PM (2009) Impact 2903 of changes in diffuse radiation on the global land 2904 carbon sink. Nature 458:1014–1018 2905
- Middleton E, Corp LA, Campbell PKE (2008) 2906 Comparison of measurements and FluorMOD 2907 simulations for solar-induced chlorophyll fluores- 2908 cence and reflectance of a corn crop under nitrogen 2909 treatments. Int J Remote Sens 29:5193–5213 2910
- Miller J, Berger M, Goulas Y, Jacquemoud S, Louis J, 2911 Mohammed G, Moise N, ..., Zarco-Tejada P (2005) 2912
- 2913 Development of a vegetation fluorescence canopy 2914 model, ESTEC Contract No. 16365/02/NL/FF Final 2915 Report
- 2916 Mitchard ETA, Saatchi SS, Woodhouse IR, Feldpausch
- 2917 TR, Lewis SL, Sonké B, Rowland C, Meir P (2011) 2918 Measuring biomass changes due to woody 2919 encroachment and deforestation/degradation in a 2920 forest-savanna boundary region of central Africa
- 2921 using multi-temporal L-band radar backscatter. 2922 Remote Sens Environ 115:2861–2873
- 2923 Monsi M, Saeki T (1953) Über den Lichtfaktor in den
- 2924 Pflanzengesellscahften und seine Bedeutung für die 2925 Stoffproduktion. Jpn J Bot 14:22–52
- 2926 Monteith JL, Unsworth MH (2008) Principles of Envi-2927 ronmental Physics, 3rd edn. Academic, Burlington
- 2928 Morsdorf F, Nichol C, Malthus T, Woodhouse IH
- 2929 (2009) Assessing forest structural and physiological
- 2930 information content of multi-spectral LiDAR 2931 waveforms by radiative transfer modelling. Remote
- 2932 Sens Environ 113:2152–2163
- 2933 Morton DC, Nagol J, Carbajal C, Rosette J, Palace M,
- 2934 Cook BD, Vermote EF, ..., North PRJ (2014)
- 2935 Amazon forests maintain consistent canopy struc-2936 ture and greenness during the dry season. Nature 2937 506:221–224
- 2938 Moya I, Camenen L, Evain S, Goulas Y, Cerovic ZG,
- 2939 Latouche L, Flexas J (2004) A new instrument for
- 2940 passive remote sensing: 1. Measurement of sunlight-
- 2941 induced chlorophyll fluorescence. Remote Sens 2942 Environ 91:186–197
- 2943 Myneni RB, Ross J (eds) (1990) Photon-vegetation 2944 Interactions: Applications in Optical Remote Sens-2945 ing and Plant Ecology. Springer, Heidelberg
- 2946 Myneni RB, Williams DL (1994) On the relationship 2947 between fAPAR and NDVI. Remote Sens Environ 2948 49:200–211
- 2949 Myneni RB, Ross J, Asrar G (1989) A review of the 2950 theory of photon transport in leaf canopies. Agric
- 2951 For Meteorol 45:1–153 2952 Myneni RB, Asrar G, Gerstl SAW (1990) Radiative 2953 transfer in three-dimensional leaf canopies. Transp
- 2954 Theor Stat Phys 19:205–250 2955 Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani
- 2956 RR (1997a) Increased plant growth in the northern
- 2957 high latitudes from 1981 to 1991. Nature 386:698–702
- 2958 Myneni RB, Nemani RR, Running SW (1997b) Esti-2959 mation of global leaf area index and absorbed par 2960 using radiative transfer models. IEEE Trans Geosci
- 2961 Remote Sens 35:1380–1393
- 2962 Myneni RB, Hofmann S, Knyazikhin Y, Privette JL, 2963 Glassy J, Tian J, Song X, ..., Running SW (2002)
- 2964 Global products of vegetation leaf area and fraction
- 2965 absorbed PAR from year one of MODIS data.
- 2966 Remote Sens Environ 83:214–231
- Myneni RB, Yang W, Nemani R., Huete AR, 2967 Dickinson RE, Kynazikhin Y, Didan K, ..., 2968 Salomonson V (2007) Large seasonal swings in 2969 leaf area of Amazon rainforests. Proc Natl Acad 2970 Sci USA 104:4820–4823 2971
- Næsset E, Gobakken T, Holmgren[,] J, Hyyppä[,] H, 2972 Hyyppä' J, Maltamo' M, Nilsson M, ..., Söderman 2973 U (2004) Laser scanning of forests: the Nordic 2974 experience. Scand J For Res 19:482-499 2975
- Nagai S, Saigusa N, Muraoka H, Nasahara KN (2010) 2976 What makes the satellite-based EVI-GPP relation- 2977 ship unclear in a deciduous broad-leaved forest? 2978 Ecol Res 25:359–365 2979
- Nicodemus FE, Richmond JC, Hsia JJ, Ginsberg IW, 2980 Limperis T (1977) Geometrical considerations and 2981 nomenclature for reflectance. NBS Monograph 2982 160, National Bureau of Standards, U.S. Department 2983 of Commerce, Washington, DC 2984
- Niinemets Ü, Anten NPR (2009) Packing the photo- 2985 synthetic machinery: from leaf to canopy. In: 2986 Laisk A, Nedbal L, Govindjee (eds) Photosynthesis 2987 in Silico: Understanding Complexity from 2988 Molecules to Ecosystems. Springer, Dordrecht, pp 2989 363–399 2990
- Nilson T, Kuusk A (1989) A reflectance model for the 2991 homogenous plant canopy and its inversion. Remote 2992 Sens Environ 27:157–167 2993
- Norman JM, Miller EE, Tanner CB (1971) Light 2994 intensity and sunfleck size distribution in plant 2995 communities. Agron J 63:743–748 2996
- North PRJ (1996) Three-dimensional forest light inter- 2997 action model using a Monte Carlo method. IEEE 2998 Trans Geosci Remote Sens 34:946–956 2999
- Olioso A, Me´thy M, Lacaze B (1992) Simulation of 3000 canopy fluorescence as a function of canopy struc- 3001 ture and leaf fluorescence. Remote Sens Environ 3002 41:239–247 3003
- Olioso A, Inoue Y, Ortega-Farias S, Demarty J, 3004 Wigneron JP, Braud I (2005) Future directions for 3005 advanced evapotranspiration modeling: Assimilation 3006 of remote sensing data into crop simulation models 3007 and SVAT models. Irrig Drain Syst 19:377–412 3008
- Ollinger SV (2011) Sources of variability in canopy 3009 reflectance and the convergent properties of plants. 3010 New Phytol 189:375–394 3011
- Ollinger SV, Richardson AD, Martin ME, Hollinger DY, 3012 Frolking SE, Reich PB, Plourde LC, ..., Schmid HP 3013 (2008) Canopy nitrogen, carbon assimilation, and 3014 albedo in temperate and boreal forests: Functional 3015 relations and potential climate feedbacks. Proc Natl 3016 Acad Sci USA 105:19336-19341 3017
- Perttunen J, Sievänen R, Nikinmaa E (1998) 3018 LIGNUM: a model combining the structure and 3019 the functioning of trees. Ecol Model 108:189–198 3020

 Pettorelli N (2013) The Normalized Difference Vegeta- tion Index. OUP, Oxford. ISBN 978-0-19-969316-0 Pettorelli N, Vik JO, Mysterud A, Gailllard J-M, Tucker CJ, Stenseth NC (2005) Using the satellite- derived NDVI to assess ecological responses to environmental change. Trend Ecol Evol 20:503–510 Pfeifer M, Disney MI, Quaife T, Marchant R (2012) Terrestrial ecosystems from space: a review of earth observation products or macroecology applications. Glob Ecol Biogeogr 21:603–624

- 3031 Pinty B, Verstraete MM, Dickinson RE (1989) 3032 A physical model for predicting bidirectional 3033 reflectances over bare soil. Remote Sens Environ 3034 27:273–288
- 3035 Pinty B, Gobron N, Widlowski J-L, Lavergne T, 3036 Verstraete MM (2004) Synergy between 1-D and 3037 3-D radiation transfer models to retrieve vegetation 3038 canopy properties from remote sensing data. J 3039 Geophys Res 109: D21205
- 3040 Pinty B, Lavergne T, Dickinson R, Widlowski J-L, 3041 Gobron N, Verstraete MM (2006) Simplifying the 3042 interaction of land surfaces with radiation for relat-3043 ing remote sensing products to climate models. J 3044 Geophys Res 111: D02116
- 3045 Pinty B, Andredakis I, Clerici M, Kaminski T, 3046 Taberner M, Verstraete MM, Gobron N, ..., 3047 Widlowski JL (2011a) Exploiting the MODIS 3048 albedos with the Two-stream Inversion Package 3049 (JRC-TIP). 1. Effective leaf area index, vegetation, 3050 and soil properties. J Geophys Res 116:D09105
- 3051 Pinty B, Andredakis I, Clerici M, Kaminski T, 3052 Taberner M, Verstraete MM, Gobron N, ..., 3053 Widlowski JL (2011b) Exploiting the MODIS 3054 albedos with the Two-stream Inversion Package 3055 (JRC-TIP): 2. Fractions of transmitted and absorbed 3056 fluxes in the vegetation and soil layers. J Geophys 3057 Res 116:D09106
- 3058 Prusinkiewicz P, Lindenmayer A (1990) The Algorith-3059 mic Beauty of Plants. Springer, New York
- 3060 Qin J, Liang S, Liu R, Zhang H, Hu B (2007) A weak-3061 constraint-based data assimilation scheme for 3062 estimating surface turbulent fluxes. IEEE Geosci 3063 Remote Sens Lett 4:649–653
- 3064 Quaife T, Lewis P, De Kauwe M, Williams M, 3065 Law BE, Disney MI (2008) Assimilating canopy 3066 reflectance data into an ecosystem model with an 3067 Ensemble Kalman Filter. Remote Sens Environ 3068 112:1347–1364
- 3069 Raumonen P, Kaasalainen M, Åkerblom M, 3070 Kaasalainen S, Kaartinen H, Vastaranta M, 3071 Holopainen M, ..., Lewis P (2013) Comprehensive
- 3072 quantitative tree models from terrestrial laser scan-
- 3073 ner data. Remote Sens 5:491–520
- Rautiainen M, Stenberg P (2005) Application of pho- 3074 ton recollision probability in coniferous canopy 3075 reflectance model. Remote Sens Environ 96:98–107 3076
- Richardson AD, Anderson RS, Arain MA, Barr AG, 3077 Bohrer G, Chen G, Chen JM, ..., Xue Y (2012) 3078 Terrestrial biosphere models need better representa- 3079 tion of vegetation phenology: results from the North 3080 American Carbon Program Site Synthesis. Glob 3081 Chang Biol 18:566–584 3082
- Rosema A, Verhoef W, Schroote J, Snel JFH 3083 (1991) Simulating fluorescence light-canopy inter- 3084 action in support of laser-induced fluorescence 3085 measurements. Remote Sens Environ 37:117-130 3086
- Rosette JAB, North PRJ, Suarez JC (2005) Vegetation 3087 height estimates for a mixed temperate forest using 3088 satellite laser altimetry. Int J Remote Sens 3089 29:1475–1493 3090
- Ross JK (1981) The Radiation Regime and The Archi- 3091 tecture of Plant Stands. Dr. W. Junk Publ, The Hague 3092
- Ross JK, Marshak AL (1989) The influence of leaf 3093 orientation and the specular component of leaf 3094 reflectance on the canopy bidirectional reflectance. 3095 Remote Sens Environ 27:251-260 3096
- Saatchi SS, Harris N, Brown S, Lefsky M, Mitchard E, 3097 Salas W, Zutta B, ..., Morel A (2011) Benchmark 3098 map of forest carbon stocks in tropical regions 3099 across three continents. Proc Natl Acad Sci USA, 3100 108:9899–9904 3101
- Saleska SR, Didan K, Huete AR, da Rocha HR (2007) 3102 Amazon forests green-up during 2005 drought. Sci- 3103 ence 318:612 3104
- Samanta A, Ganguly S, Hashimoto H, Devadiga S, 3105 Vermote E, Knyazikhin Y, Nemani RR, Myneni, 3106 RB (2010) Amazon forests did not green-up during 3107 the 2005 drought. Geophys Res Lett 37: L05401 3108
- Schaepman-Strub G, Schaepman ME, Painter TH, 3109 Dangel S, Martonchik JV (2006) Reflectance 3110 quantities in optical remote sensing – definitions 3111 and case studies. Remote Sens Environ 103:27–42 3112
- Schull MA, Knayzikhin YV, Xu L, Samanta A, 3113 Carmona PL, Lepine L, Jenkins JP, ..., Myneni 3114 RB (2011) Canopy spectral invariants, Part 2: Appli- 3115 cation to classification of forest types from 3116 hyperspectral data. J Quant Spectrosc Radiat Transf 3117 112:736–750 3118
- Sellers PJ (1985) Canopy reflectance, photosynthesis 3119 and transpiration. Int J Remote Sens 6:1335-1372 3120
- Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, 3121 Cramer W, Kaplan JO, ..., Venevsky S (2003) 3122 Evaluation of ecosystem dynamics, plant geography 3123 and terrestrial carbon cycling in the LPJ dynamic 3124 global vegetation model. Glob Chang Biol 3125 9:161–185 3126

 Sivia D, Skilling J (2006) Data Analysis: A Bayesian Tutorial, 2nd edn. Oxford University Press, Oxford Smolander S, Stenberg P (2005) Simple parameter- izations of the radiation budget of uniform broadleaved and coniferous canopies. Remote Sens Environ 94:355–363

- 3133 Solomon SD, Qin M, Manning M, Chen M, Marquis
- 3134 MB, Averyt M, Tignor M, Miller HL (eds) (2007)
- 3135 Contribution of Working Group I to the Fourth
- 3136 Assessment Report of the Intergovernmental Panel 3137 on Climate Change, 2007
- 3138 Strahler AH (1996) Vegetation canopy reflectance 3139 modeling: recent developments and remote sensing 3140 perspectives. Remote Sens Rev 15:179–194
- 3141 Tang H, Dubayah R, Swatantran A, Hofton M, 3142 Sheldon S, Clark D, Blair B (2012) Retrieval of 3143 vertical LAI profiles over tropical rain forests 3144 using waveform lidar at La Selva, Costa Rica. 3145 Remote Sens Environ 124:242–250
- 3146 Tarantola A (2005) Inverse Problem Theory and 3147 Methods for Model Parameter Estimation, Society
- 3148 for the Industrial and Applied Mathematics (SIAM),
- 3149 Philadelphia, PA 3150 Twomey S (1977) Introduction to the Mathematics 3151 of Inversion in Remote Sensing and Indirect 3152 Measurements. Elsevier, Amsterdam
- 3153 Ustin S (2013) Remote sensing of canopy chemistry.
- 3154 Proc Natl Acad Sci USA 110: 804–805
- 3155 Vargas I, Niklasson GA (1997) Applicability 3156 conditions of the Kubelka-Munk theory. Appl Opt 3157 36:5580–5586
- 3158 Verhoef W (1984) Light-scattering by leaf layers with 3159 application to canopy reflectance modeling – the 3160 SAIL model. Remote Sens Environ 16:125–141
- 3161 Verstraete MM, Pinty B, Myneni RB (1996) Potential 3162 and limitations for information extraction from
- 3163 remote sensing. Remote Sens Environ 58:201–214
- 3164 Wang WM, Li ZL, Su HB (2007) Comparison of leaf
- 3165 angle distribution functions: effects on extinction 3166 coefficient and fraction of sunlit foliage. Agric For
- 3167 Meteorol 143:106–122
- 3168 Wanner W, Strahler AH, Hu B, Lewis P, Muller JP,
- 3169 Li X, Barker-Schaaf CL, Barnsley MJ (1997) Global
- 3170 retrieval of bidirectional reflectance and albedo over 3171 land from EOS MODIS and MISR data: theory and
- 3172 algorithm. J Geophys Res 102:17143–17161
- 3173 Widlowski JL, Lavergne T, Pinty B, Verstraete MM,
- 3174 Gobron N (2006) Rayspread: A virtual laboratory for
- 3175 rapid BRF simulations over 3-D plant canopies. In:
- 3176 Frank G (ed) Computational Methods in Transport,
- 3177 Lecture Notes in Computational Science and Engi-
- 3178 neering Series, 48. Springer, Berlin, pp 211–231
- Widlowski JL, Taberner M, Pinty B, Bruniquel-Pinel V, 3179 Disney MI, Fernandes R, Gastellu-Etchegorry 3180 JP, ..., Xie D (2007) The third Radiation transfer 3181 Model Intercomparison (RAMI) exercise: Documen- 3182 ting progress in canopy reflectance modelling, 3183 J Geophys Res 112: D09111 3184
- Widlowski JL, Robustelli M, Disney MI, Gastellu- 3185 Etchegorry JP, Lavergne T, Lewis P, North PRJ, ..., 3186 Verstraete MM (2008) The RAMI On-line Model 3187 Checker (ROMC): A web-based benchmarking facil- 3188 ity for canopy reflectance models. Remote Sens Envi- 3189 ron 112:1144–1150 3190
- Widlowski JL, Pinty B, Clerici M, Dai Y., De 3191 Kauwe M, de Ridder K, Kallel A, ..., Yuan H 3192 (2011) RAMI4PILPS: An intercomparison of 3193 formulations for the partitioning of solar radiation 3194 in land surface models. J Geophys Res 116: 3195 G02019, 25 3196
- Widlowski JL, Pinty B, Lopatka M, Aztberger C, 3197 Buzica D, Chelle M, Disney MI, ..., Xie D (2013) 3198 The fourth Radiation transfer Model Intercompari- 3199 son (RAMI-IV): Proficiency testing of canopy 3200 reflectance models with ISO-13528, J Geophys Res 3201 118:1–22 3202
- Woodhouse IH, Nichol C, Sinclair P, Jack J, 3203 Morsdorf F, Malthus TJ, Patenaude G (2011) A 3204 multispectral canopy LiDAR demonstrator project. 3205 IEEE Geosci Remote Sens Lett 8:839–843 3206
- Woodhouse IH, Mitchard ETA, Brolly M, Maniatis D, 3207 Ryan CM (2012) Radar backscatter is not a 'direct 3208 measure' of forest biomass. Nat Clim Change 3209 2:556–557 3210
- Wulder M, White J, Nelson R, Næsset E, Ørka H, 3211 Coops N, Hilker T, ..., Gobakken T (2012) Lidar 3212 sampling for large-area forest characterization: A 3213 review. Remote Sens Environ 121:196–209 3214
- Yao T, Yang X, Zhao F, Wang Z, Zhang Q, Jupp D, 3215 Lovell J, ..., Strahler A (2011) Measuring forest 3216 structure and biomass in New England forest stands 3217 using Echidna ground-based lidar. Remote Sens 3218 Environ 115:1144–1150 3219
- Zarco-Tejada P, Miller JR, Pedros R, Verhoef W, 3220 Berger M (2006) FluorMODgui V3.0: a graphic 3221 user interface for the spectral simulation of leaf 3222 and canopy chlorophyll fluorescence. Comput 3223 Geosci 32:577–591 3224
- Zarco-Tejada PJ, Bernia JAJ, Suárez L, Sepulcre- 3225 Cantó G, Morales F, Miller JR (2009) Imaging chlo- 3226 rophyll fluorescence with an airborne narrow-band 3227 multispectral camera for vegetation stress detection. 3228 Remote Sens Environ 113:1262–1275 3229

Author Queries

Chapter No.: 11 0002576192

╲

