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vegetation routinely provided from satellite data are introduced and a
radiative transfer framework for developing, understanding and exploiting
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to chart a consistent route from measurements made at the top-of-the
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frameworks and make best use of both. Lastly, new remote sensing
measurements are described that are providing information on 3D canopy
structure, from lidar particularly, and canopy function from fluorescence.
These measurements, along with other Earth observation data and
model-data fusion techniques are providing new insights into canopy state
and function on global scales.
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33 responses to climate change. Key limitations of Earth observation measurements are
34 discussed, in particular how their indirect nature makes them potentially hard to interpret
35 and relate to physically-measurable quantities, as well as assumptions that are made to derive
36 information from Earth observation data. Various Earth observation measurements of
37 vegetation routinely provided from satellite data are introduced and a radiative transfer
38 framework for developing, understanding and exploiting these measurements is outlined.
39 This framework is critical in that it allow us to chart a consistent route from measurements
40 made at the top-of-the atmosphere to estimates of canopy state and function. The impacts of
41 assumptions required to solve the canopy radiative transfer problem in practical applications
42 are discussed. New developments in radiative transfer theory and modelling are introduced, in
43 particular focusing on how incorporating the vegetation structure in these models is key to
44 interpreting many Earth observation measurements. These new techniques help to unpick the
45 nature of the canopy signal from Earth observation measurements. The (key) issue of ‘effec-
46 tive’ model parameters that are often used to interpret and exploit observations is raised. These
47 simplified or approximate manifestations of measurable physical properties permit develop-
48 ment of practical, rapid models of the sort required for global applications but potentially
49 introduce inconsistency between Earth observation measurements and models of vegetation
50 productivity. Methods to overcome these limitations are discussed, such as data assimilation,
51 which is being used to provide consistent model-data frameworks and make best use of both.
52 Lastly, new remote sensing measurements are described that are providing information on 3D

Abbreviations: Al – Area of a given leaf; ALS – Air-
borne laser scanning; BRDF – Bidirectional reflec-
tance distribution function; c – Speed of light; d –
Sensor-target distance; DA – Data assimilation;
DASF – Directional area scattering factor; DEM –
Digital elevation model; DGVM – Dynamic global
vegetation model; DWEL – Dual-wavelength Echidna
laser scanner; Ei – Downwelling surface irradiance;
EO – Earth observation; ESA – European Space
Agency; ESM – Earth system model; ESS – Earth
system science; EVI – Enhanced vegetation index;
fAPAR – Fraction of absorbed photosynthetically
active radiation; Fs – Solar-induced chlorophyll fluo-
rescence; FTS – Fourier Transform Spectrometer; gl(z,
Ωl) – Angular distribution of leaf normal vectors (leaf
angle distribution); Gl(Ω), Gl(Ω0) – Leaf projection
function in directionΩ, Ω0 respectively; GLAS – Geo-
science Laser Altimeter System; GO – Geometric
optics; GOSAT – Greenhouse Gases Observing Satel-
lite; GPP – Gross primary productivity; hl(ϕl) – Azi-
muthal dependence of leaf angle, ϕl; H – Canopy total
height; H(x) – Observation operator, mapping model
state variable vector x to the EO signal; i0 – Radiation
first intercepted in the canopy by leaves; iL – Leaf
interceptance that enters the leaf interior; Ir – Upwell-
ing (reflected) radiance; I(z, Ω) – Specific energy
intensity in direction Ω at depth z in a horizontal
plane-parallel canopy; Js(z, Ω0) – Source term of radi-
ative transfer equation at depth z, in direction Ω0; κe –
Volume extinction coefficient; L(z) – Cumulative leaf
area index at depth z; LAD – Leaf angle distribution;
LAI – Leaf area index; LÃI – Effective LAI; lidar –
Light detection and ranging; LSM – Land surface

model; MCRT – Monte Carlo ray tracing; MERIS –
Medium Resolution Imaging Spectrometer; MISR –
Multiangle Imaging Spectroradiometer; MODIS –
Moderate Resolution Imaging Spectroradiometer;
Nv(z) – Number of leaves per unit volume; NASA –
National Aeronautics and Space Administration;
NDVI – Normalized difference vegetation index; NIR
– Near infrared; NPP – Net primary productivity; p –

Recollision probability; P z,Ω0 ! Ω
� �

– Volume scat-

tering phase function; PFT – Plant functional type;
PILPS – Project for Intercomparison of Land Surface
Parameterization Schemes; Q0 – Uncollided radiation
passing through the canopy to the lower boundary
layer; R – Vector of EO measurements; RADAR –
Radio detection and ranging; RAMI – Radiation
Transfer Model Intercomparison; S – Radiation
model system state vector; SALCA – Salford
Advanced Laser Canopy Analyser; SWIR – Shortwave
infrared; t – Time of flight; TANSO – Thermal and
Near infrared Sensor for carbon Observation; TLS –
Terrestrial laser scanning; z – Canopy depth; Z – Radi-
ation signal modelled by a radiation model with state
variable S;Wλ – Spectral canopy scattering coefficient;
ζ – Canopy clumping factor; λ – Wavelength; μ, μ0 –
Cosine of the view, illumination direction vectors
Ω, Ω0 with the local normal; ρ – Reflectance; τ –
Transmittance; θv,i – View, illumination zenith angles;
φv,i – View, illumination azimuth angles; ul(z) – Can-
opy leaf area density at depth z; ω – Leaf single
scattering albedo; ω̂ λ – Spectral leaf single scattering
albedo normalized by leaf interceptance; Ω(θv, φv)
and Ω0(θi, φi) – View, illumination vectors
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53 canopy structure, from lidar particularly, and canopy function from fluorescence. These
54 measurements, along with other Earth observation data and model-data fusion techniques
55 are providing new insights into canopy state and function on global scales.

I. Introduction

A. What Is Earth Observation?

56 Terrestrial vegetation is a key component of
57 the Earth’s climate system, via mediation
58 of fluxes of solar radiation, water and atmo-
59 spheric gases at the land surface, and
60 the resulting interactions with and feedback
61 to the global carbon cycle (Denman
62 et al. 2007). Terrestrial vegetation processes
63 operate across a huge range of time-scales,
64 responding at seconds to hourly and daily
65 time-scales to changes in environmental
66 conditions temperature, precipitation and
67 light, and in seasonal and much longer
68 time-scales to cycles of climate and global
69 change. Vegetation is also heterogeneous at a
70 huge range of scales (within leaf, root
71 systems) to composition of savannahs and
72 forests shaped by millennia of evolutionary,
73 climate and more recently anthropogenic
74 influences. Vegetation is of course also inti-
75 mately connected to human activity in provi-
76 sion of food, shelter, fuel and many other
77 direct and indirect ecosystem services.
78 The importance of understanding the state
79 and function of vegetation has led to develop-
80 ment of a wide range of observational and
81 modelling techniques (Liang 2004; Monteith
82 and Unsworth 2008; Jones 2014). Of these,
83 remote sensing (hereafter referred to as Earth
84 observation (EO), to distinguish it from plan-
85 etary remote sensing) has become a central
86 part of efforts to address many of these issues
87 due to the large spatiotemporal scales that can
88 be covered by satellite and airborne
89 instruments. The developments of EO have
90 seen huge advances in instrument design,
91 accuracy, consistency and the ability to han-
92 dle large (and ever-growing) datasets (Lynch
93 2008). These benefits have led to EO becom-
94 ing ubiquitous in Earth System Science. A
95 wide range of problems at global and regional
96 scales are ideally-suited to the scale and cov-
97 erage of EO. New observations and models
98 have arisen in tandem, sometimes by design,

99although more often not. This has led to many
100new developments for exploiting EO data in
101understanding and measuring the Earth Sys-
102tem (Chapin et al. 2011). This has also raised
103fundamental questions about how such
104observations can be used (Pfeifer et al. 2012).
105Here, I introduce the problem of how EO
106as used for understanding and quantifying
107terrestrial vegetation i.e. what can and
108can’t be measured via EO. A key advantage
109of remote sensing, its remoteness, is also a
110key limitation: what we actually canmeasure
111is rarely what we want to measure. To trans-
112late the former to the latter, a hierarchy of
113models has been developed. I outline some
114of the issues and approaches to modelling
115across this hierarchy: from scattering and
116absorption of radiation (EO models),
117through models that transform radiation
118into canopy properties (state, productivity,
119dynamics) and on to large-scale models of
120ecosystem processes, both of the current
121state (diagnostic, biogeochemical cycling)
122and future changes (prognostic, dynamic
123global vegetation models (DGVMs), and
124their big brothers, global climate models).
125If and when these various models interface
126with EO data, they do so in very different
127ways due to their underlying assumptions,
128structure and aims. I discuss some of the
129consequences of these variations (and
130inconsistencies) from the point of view of
131how EO can be used to understand and quan-
132tify terrestrial vegetation systems, as well
133as how models may be developed to better
134exploit EO data. Clearly, quantifying the
135state of terrestrial ecosystems and under-
136standing how they will change in the face
137of uncertain climate and anthropogenic
138drivers, requires best use of both observa-
139tions and models.

140B. What Earth Observation Can and Can’t
141Measure

142The value of an EO measurement is simply
143the answer to the question: how much
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144 information about the system being observed
145 is contained within the EO measurement of
146 that system? The EO signal is a measure of
147 scattered (reflected, transmitted) or emitted
148 radiation from a target. We measure photons
149 escaping towards a sensor, from a target,
150 either above the atmosphere in the case of a
151 satellite, or at some point lower down in the
152 case of airborne or even ground-based
153 observations. Table 11.1 describes a list of
154 properties that EO can and does provide,
155 along with an assessment of the level of
156 how ‘direct’ these measurements are in
157 some sense, from the perspective of any
158 additional ground-level measurements or
159 modelling needed to interpret the
160 measurements. Not surprisingly, as EO
161 ‘measurements’ become less direct, three
162 critical (and related) things occur:

163 • The number of assumptions underlying an EO

164 measurement becomes larger and the oppor-

165 tunity for these assumptions to become incon-

166 sistent at some level increases.

167 • The uncertainty associated with an EO mea-

168 surement becomes more difficult to quantify

169 (albeit not necessarily larger), due to the

170 increasing number of assumptions and

171 requirements for ancillary information, and

172 the way uncertainties in each may combine

173 in potentially non-linear ways.

174 • The more difficult it is likely to be to compare

175 an EO measurement against independent

176 measurements (or model-derived estimates)

177 of what ought to be the same property. This

178 is due to possible differences in underpinning

179 assumptions and ancillary information.

180

181 These issues of the limits of remote sens-
182 ing measurement are identified by Verstraete
183 et al. (1996). They define a physical model
184 relationship between an observation of emit-
185 ted radiation Z and a system described by
186 model state variables S as

Z ¼ fS ð11:1Þ

187 where the S are the smallest set of variables
188 needed to fully describe the physical state of
189 the observed system, at the scale of

190observation. It is worth repeating the first
191proposition of Verstraete et al. (1996) on
192the limitations of remote sensing, as it
193provides a useful framing for the ensuing
194discussion: “A physical interpretation of
195electromagnetic measurements Z obtained
196from remote sensing can provide reliable
197quantitative information only on the radia-
198tive state variables S that control the emis-
199sion of radiation from its source and its
200interaction with all intervening media and
201the detector” (emphasis added). We may be
202able to translate from S to other parameters
203of interest that may rely on S indirectly
204(e.g. canopy state or function), but we always
205require a mapping back to S at some point if
206we wish to make use of remote sensing.
207The last category in Table 11.1 is intended
208to indicate properties that are either not well-
209defined (i.e. do not have a clear physically-
210derived meaning), or perhaps are not directly
211measurable quantities i.e. in the formalism
212of Verstraete et al. (1996) we are not able to
213define a physically-based mappingZ ¼ f Sð Þ
214for these parameters. However, such
215properties may be used to capture some
216aspect of the canopy either for (empirical)
217correlation with some more desirable vari-
218able, or for parameterizing more complex
219models. Examples include vegetation indices
220such as the normalized difference vegetation
221index (NDVI) and variants, which have been
222widely and successfully used to provide sur-
223rogate indicators of canopy ‘greenness’
224(Pettorelli et al. 2005). They are attractive
225due to being easy to calculate and apply,
226and they may capture key aspects of vegeta-
227tion ‘well enough’. NDVI for example
228exploits the characteristic high contrast
229between red and near-infrared (NIR) spectral
230reflectance, ρ of healthy vegetation as
231NDVI ¼ ρNIRð -ρREDÞ= ρNIR þ ρREDð Þ. Such
232indices are clearly useful for capturing par-
233ticular broad vegetation patterns, either in
234themselves e.g. as indicators of vegetation
235response to climate, disturbance, insect or
236fire damage, malaria risk etc. (Pettorelli
237et al. 2005, AU12013; Pfeifer et al. 2012). Vege-
238tation indices can also be used as surrogates
239for empirically-related variables such as leaf
240area index (LAI), the (unitless) one sided
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t:1 Table 11.1. List of properties of interest to terrestrial ecosystem studies that can be derived from EO data,
categorised broadly by their requirement for additional information and assumptions beyond a direct
measurement

‘Directness’ Measurement (units) Key additional assumptionst:2

Direct Top-of-atmosphere at-sensor radiance
(W m�2 sr�1 μm�1) from reflectance (optical),
emittance (passive microwave/thermal),
backscatter (RADAR); canopy fluorescence
(arbitrary units).

Calibrated sensor response, geolocated
instantaneous field of view (IFOV)t:3

Distance from sensor to target i.e. canopy and
surface height (m) e.g. from lidar

Accurate time-of-flight of active (generated)
signal (pulse), known pulse characteristics and
position of sensor in 3D space.t:4

High Top-of-canopy (surface) radiance
(W m�2 sr�1 μm�1)

Known atmospheric path radiance (via models
and/or ancillary data)t:5

Albedo (unitless) Known incoming radiation distribution in terms
of angular and direct-to-diffuse ratio
i.e. function of atmosphere; integrable model of
surface angular reflectance distributiont:6

Surface temperature (K) Well-calibrated sensor; surface emissivityt:7

Medium Canopy structural properties: Leaf area index
(LAI, unitless); canopy cover (unitless %);
canopy gap fraction (unitless)

Model relating scattered radiation to structural
parameters, assume a degree of clumping/
Inversion must be tractable and not ill-posed.t:8

Canopy radiometric properties: fraction of
photosynthetically active radiation, fAPAR
(unitless); canopy-average biochemical
constituents (chlorophyll, water, N and dry
matter, mass per unit specific leaf area i.e. g
m�2)

Model relating radiation scattered within and
from the canopy to radiometric parameter.
Inversion must be tractable and not ill-posed.t:9

Leaf radiometric properties: biochemical
constituents (chlorophyll, water, N and dry
matter, mass per unit specific leaf area i.e. g
m�2)

Model relating radiation scattered within and
from the leaf. Often embedded into canopy-level
model.t:10

Standing biomass (kg C m�2) Empirical allometric model relating height to
biomass (via time-of-flight from lidar, or
interferometric RADAR); requires woody
biomass to total carbon ratio.t:11

Fire radiative power (FRP, W m�2 μm�1) and
energy (FRE) (J m�2)

FRP requires model relating observed
temperature to surface emissivity; FRE requires
integration of FRE over time.t:12

Burned area (ha) Model of surface bidirectional reflectance
distribution function (BRDF) allowing
prediction of reflectance and detection of
change.t:13

Low Standing biomass (kg C m�2) from scattering Model of reflectance (optical) or backscatter
(RADAR) related to biomass; assumption of
leaf to wood ratio in canopy and wood density
conversion factor;t:14

Photosynthetic rate (μmol m�2 s�1) Model relating leaf absorption or fluorescence,
to measured signalt:15

Gross primary productivity, GPP (kg C
m�2 h�1)

Incoming radiation, fAPAR, model relating
intercepted radiation to gross productivity;
ancillary information on biome type,
climate (T, P)t:16

Net primary productivity, NPP (kg C m�2 h�1) GPP, autotrophic respiration losses (measured or
modelled)t:17

Net ecosystem productivity, NEP (kg C
m�2 h�1)

NPP, heterotrophic respiration losses (measured
or modelled)t:18

(continued)
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241 leaf area per unit ground area, fraction of
242 absorbed photosynthetically active radiation
243 (fAPAR) and hence productivity (Myneni
244 et al. 1997a; Angert et al. 2005). However,
245 simplicity comes at the cost of ecological
246 meaning (i.e. direct causality) and require-
247 ment for site- or biome-specific calibration.
248 Other more general limitations of vegetation
249 indices are the lack of sensitivity with
250 increasing LAI, saturating at values of 4–5,
251 and sensitivity to background effects (soil,
252 haze etc.). Care is also needed when
253 compositing vegetation indices over time to
254 account for variations in view and sun angles
255 in the reflectance observations from which
256 the vegetation indices are derived. These
257 limitations, particularly saturation, are not
258 soluble through taking a particular calibra-
259 tion approach.
260 The difficulty of interpreting vegetation
261 indices has been seen in the debate over
262 unexpected trends in Amazonian green-up
263 observed during the severe 2005 drought
264 (Saleska et al. 2007; Samanta et al. 2010).
265 Subsequent to this, work relating carefully
266 re-processed estimates of enhanced vegeta-
267 tion index (EVI, another empirical spectral
268 index) to ground-based measures of produc-
269 tivity, water availability and other ecological
270 variables suggested that apparent discre-
271 pancies may be due to leaf flushing being
272 mistaken for changes in LAI and productiv-
273 ity (Brando et al. 2010). This debate was
274 rejoined by recent re-analysis of the satellite
275 data, including detailed consideration of

276vegetation structure and satellite-sun geome-
277try (Morton et al. 2014). This approach
278accounts for the apparent ‘observed’ green-
279up, whilst also ruling out the leaf-flushing
280hypothesis. Crucially, this re-analysis was car-
281ried out on the original satellite spectral reflec-
282tance data, rather than the spectral indices
283derived from those data from which the origi-
284nal 2005 green-up conclusions were drawn.
285This debate perhaps illustrates the diffi-
286culty of trying to explain variations in empir-
287ical spectral indices that can be functions of
288complex, often mutually compensating bio-
289physical processes. Verstraete et al. (1996)
290sum up this difficulty by noting that any
291number of empirical functions relating a
292parameter of interest Y to observations Z of
293the form Y ¼ g Zð Þ may be derived. How-
294ever, these relationships effectively assume
295that the variable of interest is the main
296controlling factor of the observations Z to
297the (near) exclusion of all other factors.
298Since the same vegetation index is often
299used to derive different g(Z) for different
300applications, the information contained in g
301(Z) must be the same, regardless of how the
302vegetation index is interpreted. This is rarely
303acknowledged in practice.
304The problem of ascribing direct meaning
305to surrogate variables makes them hard
306(or even impossible) to validate. For example
307‘greenness’ has been used to imply amount
308(Myneni et al. 1997a), productivity, health
309(degree of stress) and phenology (Pettorelli
3102013). This latter term is also ambiguous;

t:20 Table 11.1. (continued)

‘Directness’ Measurement (units) Key additional assumptionst:21

Net ecosystem exchange, NEE (kg C m�2 h�1) NEP, losses due to disturbance (fire, harvest,
predation, etc)t:19

Land cover (km�2), Land use/land use change
(LULUC, km�2)

Unique mapping of vegetation types (or biome)
and other spectrally identifiable cover types to
land cover classes; LULUC requires mapping
between biome/land cover and land use.t:20

Ambiguous/
surrogate

NDVI (and other empirical spectral indices);
‘greenness’; phenology.

Land cover or biome type; spectral; definition of
‘greenness’ – usually some arbitrary translation
of a spectral index to vegetation ‘vigour’ or
state; phenology requires definition of canopy
timing, as a function of an EO-derived variable,
typically NDVI or LAI.t:21

t:22 Key assumptions required to move from more to less direct measurements are outlined. The list is not intended to be
exhaustive, and ‘directness’ is somewhat subjective.
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311 although it implies seasonality, this can be
312 defined to encapsulate a number of differ-
313 ent, related things: bud break, leaf emer-
314 gence, onset of photosynthesis and growth,
315 start of flowering, seasonal LAI profile,
316 onset of senescence, leaf drop, growing sea-
317 son length etc. A further complication is
318 that ecological models that describe plant
319 seasonality typically use some integrated
320 estimate of time such as growing degree
321 days (number of days over a base threshold,
322 Tt multiplied by the excess temperature
323 T-Tt). Recent work by Richardson et al.
324 (2012) has shown that different model
325 representations of phenology tend to intro-
326 duce overestimates of canopy productivity
327 during spring greenup by 13 %, and during
328 autumn senescence by 8 % of total annual
329 productivity. This problem was exacerbated
330 by the tendency of individual models to
331 compensate for over-estimates during tran-
332 sition periods by under-prediction of sum-
333 mer peak productivity. As a result,
334 Richardson et al. (2012) conclude that cur-
335 rent model uncertainties preclude reliable
336 prediction of future phenological response
337 to climate change.
338 The difference between the ways ecologi-
339 cal models treat vegetation amount and state
340 and how these properties can be derived
341 from EO is a key reason for differences
342 between models and observations: both
343 representations may be internally consistent,
344 but inconsistent with each other (of course,
345 either or both may be wrong as well!). Lastly,
346 even when empirically-derived properties
347 appear to correlate well with characteristics
348 we wish to measure, we do not know how the
349 residual unexplained variance arises, or if it
350 is important. For a more detailed discussion
351 I refer to Pfeifer et al. (2012) who review a
352 range of ecologically-relevant biophysical
353 properties available from EO, as well as
354 some of the issues in moving from direct to
355 more indirect products.
356 Perhaps most importantly then, for under-
357 standing and interpreting EO-derived
358 measurements of canopy state and function,
359 we require physically-based models of radi-
360 ation interaction with the canopy. Below, I
361 provide a statement of this problem, lay out

362some of approaches to solving it, and
363describe how these approaches are used to
364exploit the EO signal for remote sensing
365studies of vegetation. Advances in comput-
366ing power have meant that highly-detailed
367modelling approaches which were previ-
368ously impractical have become increasingly
369attractive. A good example of this is how
370photo-realistic 3D modelling techniques
371developed by the computer graphics commu-
372nity for movie-making and visualisation,
373have been co-opted for modelling vegetation
374for scientific applications (Disney et al.
3752006; Widlowski et al. 2006). This in turn
376has led to improved parameter estimation
377schemes (Disney et al. 2011), allowed
378assessed of uncertainty, and provided test
379and benchmark tools for simpler modelling
380approaches (Widlowski et al. 2008, 2013).
381Rapid increases in computation speed have
382also led to changes in the way information
383can be derived from very large (GB to TBs)
384satellite datasets. This is almost always a
385balance between requirements for speed/effi-
386ciency, and accuracy or physical realism.
387Increasingly, statistical tools such as Monte
388Carlo and Bayesian methods, which had
389been too slow for these applications, can be
390employed (Sivia and Skilling 2006).
391I discuss some of these developments in
392canopy modelling in more detail below,
393before moving on to discussing recent
394developments in model-data fusion that are
395pushing the limitations of both, and the
396advent of new observations that may provide
397information more directly-related to the
398problems at hand. I embark on this descrip-
399tion with a quote that encapsulates the diffi-
400culty that can arise in trying to reconcile
401models (hypotheses) and measurements, in
402part due to the different scientific drivers and
403assumptions that underlie them; this is par-
404ticularly apposite in remote sensing, where
405the two are so intimately intertwined.

406A hypothesis is clear, desirable and positive, but is
407believed by no one but the person who created
408it. Experimental findings, on the other hand, are
409messy, inexact things which are already believed
410by everyone except the person who did the work
411(Harlow Shapley (1885–1972), Through Rugged
412Ways to the Stars, 1969).
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II. Radiative Transfer in Vegetation:
413 The Problem and Some Solutions

414 We are rarely interested in the most direct
415 EO measurement we can make i.e. in top-of-
416 atmosphere radiance resulting from photons
417 incident on the surface that are scattered in
418 some way back towards the sensor (Pfeifer
419 et al. 2012). In order to relate the above-
420 atmospheric signal to the structural (amount,
421 arrangement) and biochemical (absorbing
422 species and concentrations) properties of
423 the canopy we need a physically realistic
424 description of the radiation scattering
425 properties of the canopy. This in turn
426 requires understanding of the canopy radia-
427 tive transfer (RT) regime from the leaf level,
428 across scales to shoot and crown levels, and
429 finally to the whole canopy.

430 A. Statement of the Radiative Transfer
431 Problem

432 RT models have been used extensively
433 since the 1960s to model scattering from
434 canopies at optical wavelengths (Ross 1981;
435 Myneni et al. 1989). The models consider
436 energy balance across an elemental volume
437 in terms of the energy arriving into the vol-
438 ume (either energy incident in the propaga-
439 tion direction, or energy that is scattered
440 from other directions) and energy losses
441 from the volume (either scattering out of
442 the propagation direction, or absorption
443 losses). Across optical wavelengths (visible,
444 NIR and shortwave infrared (SWIR) regions
445 of 400–2500 nm) a scalar radiative transfer
446 equation is used. At RADAR wavelengths
447 (cm to m), a slightly different approach is
448 required, incorporating a vector of intensities
449 to allow consideration of polarization (con-
450 trolled by the sensor design). In this case
451 orthogonal polarizations are coupled so radi-
452 ative transfer equations must take this into
453 account in a vector solution. Here I focus on
454 radiative transfer in the optical domain, due
455 to the particular relevance to canopy activity.
456 A widely-applied approach to describing
457 radiation transport in vegetation has been via

458the so-called turbid medium approximation
459(Ross 1981; Myneni et al. 1989; Liang
4602004). This considers the canopy as a plane
461parallel homogeneous medium of infinitesi-
462mal, oriented scattering elements, suspended
463over a scattering (soil) background – a ‘green
464gas’. In this case, mutual shading can be
465ignored (the ‘far field’ approximation) and
466the radiance field resulting from single and
467multiple scattered photons can be described
468by considering the conservation of energy
469within a canopy layer, and specifying the
470sources of radiation external to that layer
471(boundary conditions). The result is an
472integro-differential equation describing the
473change in intensity I along a viewing direc-
474tionΩ(θv, φv) due to: (i) interactions causing
475radiation to be scattered out of the illumina-
476tion direction Ω0(θi, φi) (sink term); and
477(ii) interactions causing radiation to be
478scattered from other directions into the view-
479ing direction Ω(θv, φv) (source term), where
480θi,v and φi,v are the illumination and view
481zenith and azimuth angles respectively. This
482system is shown schematically in Fig. 11.1.
483The far-field approximation allows us to
484ignore polarization, frequency shifting inter-
485actions and emission, in which case the
486upward and downward energy fluxes within
487the canopy are described by the (1D) scalar
488radiative transfer equation. For a plane par-
489allel medium (air) embedded with a low
490density of small scattering objects the radia-
491tive transfer equation is composed of two
492terms, the (negative) extinction term with
493depth z that is determined by the path length
494through the canopy and the extinction along
495this path, and the source term due to multiple
496scattering from all directions within an ele-
497mental volume in the canopy into direction
498Ω by the objects in the volume. Thus,

μ
∂I z;Ωð Þ

∂z
¼ �κeI z;Ωð Þ þ Js z;Ω0

� �
ð11:2Þ

499where ∂I z;Ωð Þ=∂z is the steady-state radi-
500ance distribution function and μ is the cosine
501of the (illumination) direction vector Ω0 with
502the local normal i.e. the viewing zenith
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503 angle, θi used to account for path length
504 through the canopy. The extinction term is
505 given as the product of κe, the volume extinc-
506 tion coefficient, and I(z, Ω), the specific
507 energy intensity in direction Ω at depth
508 z within a horizontal plane-parallel canopy
509 of total height H (0 < z < H). The source
510 term, Js(z, Ω0), is defined as

Js z;Ω0
� �

¼
Z
4π

P z,Ω0 ! Ω
� �

I z;Ω0
� �

dΩ0

ð11:3Þ

511
where P z,Ω0 ! Ω

� �
is the volume scatter-

512 ing phase function. This defines the (angu-
513 lar) probability of a photon at depth z in the
514 canopy being scattered from the illumination
515 directionΩ0 through a solid angle dΩ0 into to
516 the viewing direction, Ω, integrated over the
517 unit viewing hemisphere. This term depends
518 on the size and orientation of scatterers
519 within the canopy (see below).

520When this description is extended to 3D,
521i.e. the canopy can vary in density in vertical
522and horizontal directions, the illumination
523and viewing vectors are functions of both
524the zenith and azimuth angles θi,v and φi,v

525i.e. Ω0(θi, φi) and Ω(θv, φv) respectively.
526A full description of radiative transfer
527should include the corresponding emission
528source term Js(z, Ω0) for wavelengths where
529this might be significant e.g. for passive
530microwave (thermal) emissions from objects
531at ~300 K (~8–20 μm). In this case each
532object within the medium may need to be
533considered as an emission source in its own
534right. However, for optical and RADAR
535wavelengths, the emission source term is
536effectively zero.
537Solving Eq. 11.2 requires defining κe in
538terms of canopy biophysical properties, and
539considering a particular viewing direction
540Ω0, for given boundary conditions. In using
541Eq. 11.2 to model canopy scattering for
542remote sensing applications, we wish to
543phrase the scattered radiation as an intrinsic

Illumination W¢ ( i, i ) Viewer W¢( v , v)

z

ρ, τ

θi

H

θv

Scattering medium

Soil layer

Fig. 11.1. Schematic illustration of radiation incident on a plane parallel homogeneous medium (solid line), at a
zenith angle θi azimuth angle ϕi from the surface normal and penetrating to a depth z (marked by dashed line).
In this example incoming radiation either passes through uncollided to the lower boundary, and back up (solid
line); is scattered once at depth z by reflectance (dotted line); or is scattered multiple times via reflectance and/or
transmittance, including the canopy lower boundary (at z ¼ �H ) before escaping in the viewing direction
(dashed line)
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544 property of the canopy, rather than as a func-
545 tion of incident intensity. This permits com-
546 parison of measurements made under
547 differing illumination intensities. At optical
548 wavelengths this fundamental intrinsic scat-
549 tering quantity wavelengths is known as the
550 Bidirectional Reflectance Distribution Func-
551 tion (BRDF) i.e.:

BRDF Ω; p;Ω0; p0; λð Þ ¼ dIr Ω; p0;F; λð Þ
dEi Ω

0
; p; λ

� �
ð11:4Þ

552 where p and p0 are the polarization of the
553 received/transmitted wave; Ei is the
554 downwelling irradiance on the surface
555 (W m�2); and Ir is the upwelling (reflected)
556 radiance (W m�2 sr�1). The BRDF of an
557 ideal diffuse (Lambertian) surface is 1/π
558 (for an unpolarized reflector) and is indepen-
559 dent of viewing and illumination angles. As
560 defined, BRDF is an infinitesimal quantity
561 (with respect to solid angle and wavelength),
562 so although it can be modelled, it is not a
563 measurable quantity in this form. In practice,
564 we consider the Bidirectional Reflectance
565 Factor (BRF) ρc(Ω, Ω0), defined as the ratio
566 of radiance leaving the surface around
567 viewing direction Ω, I(Ω) due to irradiance
568 E(Ω0), to the radiance on a flat totally reflec-
569 tive Lambertian surface under the same
570 illumination conditions i.e.

ρc Ω;Ω0
� �

¼
E Ω0
� �

BRDF Ω;Ω0
� �

E Ω0� �
1=πð Þ

¼ πBRDF Ω;Ω0
� �

ð11:5Þ

571 for an equivalent infinitesimal solid angle
572 definition. As the BRF is defined as the
573 ratio of two radiances, it is a directly mea-
574 surable quantity and allows for model
575 predictions to be compared with measure-
576 ments, albeit over instrument finite solid
577 angles (and of course wavelength intervals).
578 Detailed definitions of reflectance nomencla-
579 ture are given by Nicodemus et al. (1977)
580 and Schaepman-Strub et al. (2006).

581B. Solving the Radiative Transfer Problem
582for Explicit Canopy Structure

583To solve the radiative transfer problem for
584realistic canopies, we need to consider how
585vegetation structure can be expressed in
586terms of the equations above, using
587assumptions that permit physically realistic
588solutions. Various solutions for the radiative
589transfer equation have been developed in a
590range of subjects including astrophysics,
591particle physics and neutron transport
592(Chandrasekhar 1960). Most importantly,
593once we have a solution of Eq. 11.2, if it
594can be inverted in terms of the canopy
595parameters it contains, we can then estimate
596distributions of these parameters from EO
597measurements of ρc(Ω, Ω0) in the standard
598inverse problem sense (Twomey 1977;
599Verstraete et al. 1996; Tarantola 2005). For-
600ward and inverse approaches to canopy
601modelling have been reviewed in detail by
602Asrar (1989), Goel (1989), Goel and
603Thompson (2000) and more recently by
604Liang (2004), among others, and I provide
605a brief overview here.
606Solving the forward radiative transfer
607problem either requires empirical parameter-
608isations or physically-based approximations
609of canopy properties including leaf size,
610angle distribution and 1D or 3D arrange-
611ment. Some applications do not require a
612physically-meaningful interpretation of
613model parameters, only a reasonable predic-
614tion of ρc(Ω, Ω0). For example, many remote
615sensing applications require comparing
616observations made over time (and/or using
617wide-angle sensors). These observations are
618typically acquired at different view and/or
619illumination angles, so variations in reflec-
620tance caused by these varying view and sun
621angles (i.e. BRDF effects) must be accounted
622for, otherwise they may be interpreted as
623surface changes. A widely-used approach is
624to fit a simple empirical (or semi-empirical)
625model of BRDF to observations, and use the
626resulting (inverted) model parameters to
627interpolate (or normalize) observations to
628some fixed view and illumination configura-
629tion. The simple nature of semi-empirical
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630 BRDF models means they can be inverted
631 rapidly, making them suitable for rapid,
632 large-scale applications. Observations from
633 the NASA MODIS and MISR sensors
634 employ variants of this approach to account
635 for sensor and sun angle variations (Pinty
636 et al. 1989; Wanner et al. 1997).
637 Physically-based models of BRDF are
638 required to represent three specific processes:

639 1. Coherent superposition of scattered incident

640 radiation. This is dependent on the mean free

641 path between scattering events within the

642 canopy being of the order of the wavelength

643 of the incident radiation. Coherence is gener-

644 ally ignored for vegetation, but is important

645 for soils.

646 2. Scattering effects resulting from the arrange-

647 ment of objects on the surface, i.e. specular

648 reflectance, and reflectance variations caused

649 by geometric-optic shadowing assuming par-

650 allel rays of incident radiation.

651 3. Volume (diffuse) scattering of aggregated

652 canopy elements. This is particularly impor-

653 tant for dense vegetation and is modelled

654 using radiative transfer methods as outlined

655 above. As higher orders of photon scattering

656 are considered, the interactions become

657 increasingly random in direction, and the vol-

658 ume scattering component tends to become

659 isotropic.
660

661 To solve Eq. 11.2, approximations regard-
662 ing the leaf scattering properties are often
663 made (e.g. Myneni et al. 1989). Other
664 approaches attempt to include modifications
665 for observed features that occur due to the
666 fact that real vegetation canopies are not
667 turbid media and leaves, branches etc. have
668 finite sizes. The most obvious of these
669 features is the so-called ‘hotspot’, an
670 increase in reflectance seen when Ω and Ω0
671 are near-coincident, that arises due to
672 shadowing in the scene being at a minimum
673 (Nilson and Kuusk 1989). An example of
674 this phenomenon is shown in Fig. 11.2 As
675 an example of the importance of considering
676 canopy structure on the EO signal, Morton
677 et al. (2014) demonstrate that the apparent

678Amazon ‘greenup’ observed in 2005 can be
679explained almost entirely as a BRDF effect:
680most observations made in October in this
681location are in the hotspot i.e. the observed
682increase in reflectance is an angular effect.
683Perhaps the most difficult problem in
684solving Eq. 11.2 is that of modelling the
685source term, Js(z, Ω) as this requires keeping
686a ‘scattering history’ of each photon from
687one interaction to the next. This problem is
688essentially insoluble analytically (Knyazikhin
689et al. 1992), but numerical approximations
690can be made or computer simulation models
691can be used (see below). It is also necessary
692to define the boundary conditions in the case
693of a canopy illuminated from above. At the
694top of the canopy the incident irradiation
695can be considered as diffuse and direct
696components of solar irradiation. In addition,
697some radiation arriving at the base of the
698canopy re-radiates isotropically back up
699through the canopy effectively creating a
700source function at the lower canopy bound-
701ary. Modified forms of Eq. 11.2 have been
702widely used to model canopy reflectance for a
703range of applications. Further approximations
704and simplifications have been applied for spe-
705cific types of canopy, such as row crops or
706particular tree crown shapes. In these cases,
707simplifying approximations can be made
708regarding canopy structure, in particular the
709vertical and horizontal arrangement of
710leaves and their angular orientations (distri-
711bution functions). Various approaches are
712summarised by Goel (1988), Strahler
713(1996), Liang (2004) and Lewis (2007,
714from http://www2.geog.ucl.ac.uk/~plewis/
715CEGEG065/rtTheoryPt1v1.pdf and http://
716www2.geog.ucl.ac.uk/~plewis/CEGEG065/
717rtTheoryPt2v7-1.pdf).
718Separation of canopy fluxes into
719uncollided and collided intensities of various
720orders (Kubelka and Munk 1931; Suits
7211972; Hapke 1981) has often been employed
722in order to simplify the radiative transfer
723approach (Norman et al. 1971; Myneni
724et al. 1990; Verstraete et al. 1990). The sim-
725plest two-stream approach decomposes
726multiple scattering into total upward and
727downward diffuse fluxes. This can be
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728 elaborated in e.g. a four-stream approxima-
729 tion into fluxes resulting from reflectance
730 and transmittance interactions respectively.
731 The discrete properties of the canopy, those
732 related to the size and distribution of
733 scatterers, tend to impact only the first few
734 orders of scattering and these features tend to
735 become ‘smeared out’ by higher order mul-
736 tiple scattering interactions. Dividing the
737 radiation field into collided and uncollided
738 intensities as opposed to following a stan-
739 dard radiative transfer treatment may pre-
740 serve these features.
741 As the canopy becomes denser, mutual
742 shading of scattering elements cannot be
743 ignored. It also becomes increasingly diffi-
744 cult to justify the use of convenient values
745 for the scattering phase function i.e. the
746 assumptions that leaf normals are randomly
747 oriented and azimuthally invariant in defin-
748 ing leaf normal distribution and leaf projec-
749 tion function. This is clearly partially or
750 wholly violated for a number of canopies,

751particularly for row-oriented agricultural
752crops. Various approaches have been pro-
753posed to overcome this. However,
754Knyazikhin et al. (1998) have shown that
755accounting for the discrete nature of vegeta-
756tion within a (continuous) radiative transfer
757description leads to an apparent paradox: the
758more accurate the representation of canopy
759geometry, the less accurate the resulting
760description of radiative transfer and photo-
761synthesis in the canopy is likely to be. This
762arises because of the discrepancy between
763the assumption of a continuous homoge-
764neous scattering medium underpinning the
765radiative transfer approach, and the macro-
766scopic effects of 3D leaf and branch size and
767distribution. Knyazikhin et al. (1998) point
768out that the radiative transfer approach
769assumes that the number of foliage elements
770in an elementary volume is proportional to
771this volume (encapsulated in the leaf area
772density), but the larger leaves become are
773in relation to the volume, the less this

Fig. 11.2. Illustration of the canopy hotspot effect. The image was captured with the sun directly behind
the camera (see shadow of aircraft in the centre) and the scene is brightest at the centre, darkening radially
outwards due to shadows becoming increasingly visible (author’s own, taken over temperate rainforest canopy,
Fraser Island, Queensland, Australia)
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774 assumption holds. The impact of this depar-
775 ture therefore decreases as we look at larger
776 scales/volumes.
777 One of the most powerful approximations
778 used in radiative transfer modelling is to
779 concentrate on single scattering interactions
780 only. These are in many cases the dominant
781 component of canopy scattering (Myneni
782 and Ross 1990), particularly at visible
783 wavelengths. Considering single scattering
784 interactions within a turbid medium, the
785 radiation intensity in the incident direction
786 Ω0, at a depth z within the canopy can be
787 described using Beer’s (Beer-Bouger-
788 Lambert’s) Law (Monsi and Saeki 1953)
789 as follows

I z;Ω0
� �

¼ I 0;Ω0
� �

e
�

L zð ÞG Ω
0ð Þ

μ0

� �
ð11:6Þ

790 where I(0, Ω0) is the incident irradiance at
791 the top of the canopy; L(z) is the cumulative
792 leaf area index (LAI) in the canopy at depth
793 z (m2 m�2); G(Ω0) is the leaf projection
794 function i.e. the fraction of leaf area
795 projected in the illumination direction Ω0;
796 μ0 ¼ cos θið Þ.
797 The exponent in Eq. 11.6 is effectively the
798 extinction coefficient κe i.e. a measure of the
799 rate of attenuation of radiation in the canopy,
800 and is a function of two things: (i) the
801 amount of material along the path i.e.
802 the domain-averaged optical thickness of
803 the canopy layer LAI; and (ii) the volume
804 absorption and scattering properties of
805 the media i.e. loss due to absorption by the
806 particles (leaves) and scattering by the
807 particles away from the direction of propa-
808 gation (Fung 1994). The term L(z) is better
809 defined as ul(z), the canopy leaf area density
810 i.e. the vertical distribution of one-sided leaf
811 area per unit canopy volume (m2 of leaf area
812 per m3 of canopy volume). We will see later
813 in Section III that this exponent implicitly
814 encapsulates the fact that canopies are not
815 homogeneous but are actually clumped at
816 multiple scales from leaf to branch to
817 crown. Assuming a constant leaf area of Al,
818 and given a leaf number density of Nv(z)

819(number of leaves per unit volume, m�3),
820then

ul zð Þ ¼ Nv zð ÞAl ð11:7Þ

821The integral of ul(z) over the canopy depth,
822H, gives the LAI i.e.

LAI ¼
Zz¼H

z¼0

ul zð Þdz ð11:8Þ

823In practice, ul(z) may vary from top to bot-
824tom of a canopy, with more material perhaps
825in the upper parts than in the lower parts. As
826a result, L(z) can be modelled in various
827ways in a radiative transfer scheme, but the
828simplest is to assume it is constant with
829canopy height H i.e. ul ¼ LAI=H.
830The term G(Ω0) in Eq. 11.6 is the projec-
831tion of a unit area of foliage on a plane
832perpendicular to the illumination direction
833Ω0. By extension, Gl(Ω) is the leaf projection
834function in the viewing direction Ω, aver-
835aged over elements of all orientations and is
836a (unitless) canopy-average representation of
837the effective leaf area encountered by a pho-
838ton travelling in a direction Ω within the
839canopy. Gl(Ω) is defined as

Gl Ωð Þ ¼ 1

2π

Z
2πþ

gl Ωlð Þ Ω �Ωlj jdΩl ð11:9Þ

840where gl(z, Ωl) is the angular distribution of
841leaf normal vectors, known as the leaf angle
842distribution (LAD) and is defined so that its
843integral over the upper hemisphere is 1 i.e.

Z
2πþ

g Ωlð ÞdΩl ¼ 1 ð11:10Þ

844A wide range of choices for models of
845gl(z, Ωl) have been proposed (Ross 1981;
846Goel and Strebel 1984). A typical assump-
847tion is that leaf azimuth angles are indepen-
848dent of azimuth i.e. gl Ωlð Þ ¼ gl θlð Þhl ϕlð Þ
849where hl(ϕl) is the azimuthal dependence
850and can be specified separately as
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851

1=2πð Þ
Zϕl¼2π

ϕl¼0

hl ϕlð Þdϕl ¼ 1. If the azimuthal

852 distribution is assumed to be uniform
853 (i.e. random) then hl ϕlð Þ ¼ 1 and this allows
854 for expression of gl(z, Ωl) as a function of θl

855

only and

Zθl¼π=2

θl¼0

gl θlð Þsin θldθl ¼ 1. While

856 these assumptions make the formulation of
857 gl(θl) easier, it is known that many canopies
858 depart from them particularly in the case of
859 strongly-row oriented canopies (crops), or
860 due to environmental factors such as wind
861 and water stress (e.g. wilting) and heliotro-
862 pism. Tree crowns may also have particular
863 azimuthal arrangement due to branching
864 structure, particularly in conifers. Jones and
865 Vaughan (2010) discuss measured LADs
866 and their departures from radiative transfer
867 assumptions.
868 Caveats aside, a number of leaf angle
869 archetypes (simple analytical expression
870 representing particular LADs) have been
871 used to model LAD, covering a wide range
872 of observed canopy types (Wang et al. 2007).
873 These include:

874 • planophile – favouring horizontal leaves

875 • erectophile – favouring vertical leaves

876 • spherical – distributed as if leaves were

877 distributed parallel to the surface of a sphere

878 and so favouring vertical over horizontal, but

879 less than erectophile

880 • plagiophile – favouring leaves with angles

881 mid-way between erect and flat

882 • extremophile – favouring leaves with angles at

883 either end of the distribution
884

885 An alternative, more general approach
886 has been to use ellipsoidal leaf angle
887 distributions (Campbell 1986; Flerchinger
888 and Yu 2007). These tend to give improved
889 solutions for absorption, but at the cost of
890 more complex models. Hence large-scale
891 remote sensing and Earth system model
892 applications strongly favour the simpler

893approaches due to the requirements for
894speed.
895A more flexible alternative to specifying
896archetypes, is to use a parameterisation of
897gl(θl) which covers the same variation as
898these archetypes. Bunnik (1978) proposed
899a simple four-parameter combination of geo-
900metric functions; Goel and Strebel (1984)
901used a two-parameter Gamma function. The
902Bunnik (1978) model is shown in Eq. 11.11
903(assuming gl(θl) is independent of azimuth)

g θlð Þ ¼ 2

π
aþ bcos 2cθlð Þð Þ þ dsinθl½ � ð11:11Þ

904Examples of the behaviour of the Bunnik
905model are shown Fig. 11.3. The fixed
906archetypes of Ross (1981) agree with these
907parameterisations very closely across all
908angles. The uniform distribution (not shown
909in Fig. 11.3) i.e. randomly-distributed leaf
910normals, is often assumed for simplicity but
911is rarely seen in practice.
912The turbid medium approximation
913permits a description of canopy scattering
914as a function of a small number of structural
915parameters. Various models have been based
916on the approach outlined above originating
917from the work of Monsi and Saeki (1953).
918The major assumption underpinning Beer’s
919Law is that the number of scattering objects
920in a volume of canopy (leaves, stems etc.)
921is proportional to its volume. However,
922Knyazikhin et al. (1998) show that the can-
923opy structure may in some cases be fractal,
924resulting in non-linear relationships between
925canopy volume and the density of scattering
926elements, violating the assumptions of
927Beer’s Law. However, the basic formulation
928of Beer’s Law can be a useful tool in describ-
929ing single scattering interactions within the
930canopy (Monsi and Saeki 1953). This issue
931of non-random spatial distribution of canopy
932material (clumping) is discussed further
933below.
934A major drawback of the turbid medium
935approximation is that the size of the scatter-
936ing objects within the canopy is not consid-
937ered. By definition, the canopy is assumed to
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938 be a homogeneous medium of infinitesimal
939 scatterers (to satisfy the far-field approxima-
940 tion) with mutual shading not permitted.
941 Consequently, expressions describing the
942 reflected radiation from such a canopy do
943 not contain information regarding the size
944 of scattering objects. However, certain
945 properties of observed canopy scattering
946 are directly controlled by the size and orien-
947 tation of scattering objects (e.g. Pinty
948 et al. 1989). A canopy-level example of this
949 impact of finite leaf size is the hotspot effect.
950 At the leaf level, the penumbra effect is of
951 particular importance to photosynthesis,
952 which depends very strongly on the leaf-
953 level irradiance. The penumbra effect
954 describes the fact that irradiance at the leaf
955 is neither wholly direct nor diffuse, but
956 somewhere in between, a consequence of
957 the finite size of both the solar disk (light
958 rays are never perfectly parallel) and the
959 leaf (Cescatti and Niinemets 2004). Turbid

960medium approximations will not capture
961such features, and if the size of scattering
962objects is to be considered a different
963approach is needed to model the dimensions
964of scattering elements explicitly (Myneni
965et al. 1989).
966As we can see, solving the radiative trans-
967fer equation in a vegetation canopy is a
968complex problem. Inverting the resulting
969models must generally be performed numer-
970ically, or using look-up-tables. Additionally,
971the approximations made in order to solve
972Eq. 11.2 result in the model driving para-
973meters being relatively ‘far-removed’ from
974parameters directly representative of physi-
975cal canopy properties. This issue of so-called
976‘effective parameters’ is critical to applica-
977tions of remote sensing and is discussed fur-
978ther below. First, I look at how radiative
979transfer is considered at the leaf level. Fol-
980lowing this, a relatively new approach to
981radiative transfer modelling is outlined,

Fig. 11.3. Examples of (normalized) leaf angle distribution functions generated using the Bunnik (1978) four
parameter model with parameter value sets: (1, 1, 1, 0), (1, �1, 1, 0), (0, 0, 0, 1), (1, �1, 2, 0) and (1, 1, 2, 0)
in legend order
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982 which scales from leaf to canopy, and has
983 significant consequences for understanding
984 the links between canopy structure and
985 biochemistry.

986 C. Radiation Transfer Within the Leaf

987 Now we have a description of radiation
988 transfer in a canopy, the issue arises of radi-
989 ation interactions at the scale of leaves. This
990 problem is analogous to the canopy case:
991 radiation can penetrate the air/surface inter-
992 face depending on the surface properties
993 (waxy, smooth etc.) and can either pass
994 through air gaps within the leaf unimpeded
995 or be scattered, across cell walls into and
996 through cells, as well as at the boundaries
997 between cells and cell/air. Scattering within
998 the leaf will depend on the amount of mate-
999 rial encountered by a photon (function of
1000 leaf thickness, analogous to leaf area density
1001 at the canopy level) and the absorption
1002 properties of the materials(s), typically the

1003concentrations of absorbing pigments (chlo-
1004rophyll, carotenoids, flavonoids), water and
1005other absorbents such as lignin and cellulose.
1006It is the pigments, and their relationships to
1007leaf/canopy state and nutrient concentrations
1008(particularly leaf N), that are often of interest
1009via remote sensing (Ollinger 2011).
1010Various approaches to modelling radiative
1011transfer within the leaf have been proposed
1012and Jacquemoud and Ustin (2008) provide
1013an excellent overview. Leaf models require
1014at the very least some description of the
1015refractive index (essentially a structural
1016effect, modifying behaviour at boundaries
1017of scattering materials within the leaf such
1018as cell walls, air and water etc.), and the
1019specific absorption coefficients of absorbing
1020constituents within the leaf. Examples of
1021these properties taken from the widely-used
1022PROSPECT model of Jacquemoud et al.
1023(1996) are given in Fig. 11.4 along with a
1024modelled leaf spectrum for comparison.
1025This illustrates the very specific wavelength

Fig. 11.4. Normalized absorption coefficients used within the PROSPECT model (upper panel) and leaf
spectral reflectance modelled by PROSPECT from these absorbing constituents (lower panel)
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1026 ranges over which the absorption properties
1027 act: chlorophyll pigment dominates the
1028 visible; refractive index (leaf structure)
1029 dominates beyond this into the NIR; water
1030 and to a lesser extent dry matter (such as
1031 cellulose and lignin) dominate beyond
1032 1300 nm. In the UV region, proteins, tannins
1033 and lignin are important, but these regions
1034 are rarely used in large-scale remote sensing
1035 due to the absorption of the solar signal
1036 by the atmosphere.
1037 Leaf radiative transfer models essentially
1038 follow one of four broad schemes. The first
1039 and perhaps simplest approach considers a
1040 leaf as a semi-transparent plate with plane
1041 parallel surface, and some surface roughness
1042 (Allen et al. 1969). Scattering from the leaf
1043 is calculated as the total sum of successive
1044 orders of scattering from reflections and
1045 refractions at the plate boundaries with the
1046 air. This approach has been generalised to
1047 consider multiple plane parallel plates by
1048 decomposing the total upward and down-
1049 ward fluxes (a two-stream approach) into
1050 the separate fluxes from each plate (Allen
1051 et al. 1970). This latter approach is used in
1052 PROSPECT, perhaps the most widely-used
1053 leaf radiative transfer model for remote sens-
1054 ing applications. The model has developed
1055 over a number of iterations through inclusion
1056 of more detailed treatment of absorption
1057 coefficients in particular (Feret et al. 2008).
1058 PROSPECT has been used to explore the
1059 impact of biochemistry on leaf reflectance,
1060 to infer optical properties from remote sens-
1061 ing measurements, and been coupled to can-
1062 opy radiative transfer schemes (Jacquemoud
1063 et al. 2009).
1064 An alternative approach for modelling
1065 radiative transfer properties of leaves that
1066 do not conform to the plane parallel approx-
1067 imation, such as needles, has been to con-
1068 sider scattering from discrete particles such
1069 as spheres. The LIBERTY model of Dawson
1070 et al. (1998) follows this approach, using the
1071 formulation of Melamed (1963) for scatter-
1072 ing from suspended powders. Particle size is
1073 assumed �λ, and scattering is again a func-
1074 tion of successive internal reflections and

1075refractions, but from within spheres in this
1076case, rather than plates.
1077One of the difficulties in developing and
1078testing leaf models has been the concomitant
1079difficulty of measuring leaf optical proper-
1080ties, either in the lab or the field. Measure-
1081ment equipment has certainly improved in
1082recent years, with the development of porta-
1083ble field spectrometers and integrating
1084spheres. However, leaf measurements are
1085still challenging as they involve handling
1086and mounting leaf material without damag-
1087ing it, controlling environmental lighting
1088conditions, making reference measurements
1089etc. Thus the number of high quality leaf
1090measurements that can be used for testing
1091models, particularly for needles, or non-flat
1092leaves is rather small (see for example
1093Hosgood et al. 1995).
1094A range of more general radiative transfer
1095modelling approaches have been proposed
1096for the particular size problem of leaves.
1097One solution of this class is the development
1098of Kubelka-Munk theory to provide a 2- or
10994-stream approximation to represent the
1100upward and downward fluxes (separated
1101into diffuse and direct in the 4-stream case)
1102within a single leaf layer, or multiple layers
1103(Vargas and Niklasson 1997). This type of
1104model has the advantage of allowing analyt-
1105ical solutions in certain specific cases. An
1106alternative is to solve the radiative transfer
1107problem numerically, via Monte Carlo
1108methods (described in Sect. E in more
1109detail). Govaerts and Verstraete (1998)
1110demonstrated the use of a Monte Carlo ray
1111tracing (MCRT) model which considered the
1112internal structure of the leaf explicitly in 3D.
1113Baranoski (2006) developed a variant of
1114MCRT for bifacial leaves that calculates
1115Fresnel coefficients for all interfaces in the
1116leaf (air, adaxial and abaxial epidermis,
1117mesophyll cell walls and cytosol), and uses
1118these coefficients to weight Monte Carlo
1119samples of reflectance and transmittance;
1120scattering within a cell is approximated by
1121Beer’s Law. The main advantage of these
1122more structurally detailed approaches is
1123flexibility. The main limitation is the
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1124 requirement for information to parameterize
1125 the model, such as cell dimensions, air
1126 volumes etc. Such models can be used to
1127 explore the impact of structure at the canopy
1128 level on issues such as the relative absorption
1129 of diffuse to direct light (Alton et al. 2007;
1130 Brodersen et al. 2008), as well as at the leaf
1131 level, where surface and internal properties,
1132 such as polarization and focusing may be
1133 important (Martin et al. 1989; Combes
1134 et al. 2007).
1135 The following section describes relatively
1136 new developments in solving the canopy
1137 radiative transfer problem that have provided
1138 new parameterisations of multiple scattering
1139 that apply across scales from within-leaf
1140 to canopy. These methods have already
1141 been applied successfully to the problem of
1142 modelling leaf reflectance (Lewis and
1143 Disney 2007) and are providing new insight
1144 into the nature of radiative transfer in vege-
1145 tation more generally.

1146 D. Recollision Probability and Spectral
1147 Invariance

1148 As seen above, the key to providing an accu-
1149 rate description of canopy radiative transfer
1150 is the multiple scattering component, partic-
1151 ularly at NIR wavelengths. Development of
1152 the concept of the so-called ‘recollision
1153 probability’ probability’ p has seen signifi-
1154 cant advancement in this area. The approach

1155is summarised in Huang et al. (2007), but is
1156based on the observation that the decrease in
1157scattered energy with increasing scattering
1158interactions is well-behaved and close to
1159linear in log space, at least in canopies with
1160low to moderate LAI (Lewis and Disney
11611998). Scattered energy typically decreases
1162dramatically after 1 or 2 interactions, and
1163then proceeds to decrease more slowly with
1164increasing scattering order. This implies that,
1165once the scattering reaches the linearly
1166decreasing portion, the scattering at inter-
1167action order iþ 1 is simply p times the
1168scattering at interaction order i. Figure 11.5
1169illustrates this situation schematically.
1170From Fig. 11.5 we can see that some pro-
1171portion of the incoming radiation Q0 may
1172pass through uncollided to the lower bound-
1173ary layer. If this layer is assumed completely
1174absorbing (black soil, a reasonable approxi-
1175mation for dense understory and/or dark
1176soil), then multiple scattered radiation can
1177only originate from vegetation. The first
1178interaction with leaves is then i0 ¼ 1� Q0.
1179A fraction s of this scattered radiation exits
1180the canopy in the upward direction, and the
1181remaining proportion p interacts further with
1182leaves in the canopy. Therefore the first
1183order scattered radiation is s1 ¼ i0ω 1ð -pÞ
1184where ω is the leaf single scattering albedo.
1185Rearranging, we obtain s1=i0 ¼ ω 1ð -pÞ. The
1186probability of being further intercepted is
1187also p, so the second order scattering

0

2
0 ( 1 − )

0

0

Fig. 11.5. Schematic representation of radiation that passes through the canopy uncollided (Q0), or is first
intercepted by the canopy (i0) or escapes in the upward direction (s) to be measured. p is the probability of a
scattered photon being re-intercepted and ω is the leaf single scattering albedo (After Lewis, P. http://www2.
geog.ucl.ac.uk/~plewis/CEGEG065/rtTheoryPt1v1.pdf)
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1188 s2 ¼ ω ps1 ¼ i0ω2 p 1ð - pÞ. Following the
1189 same logic for higher orders we see that

s

i0
¼ ω 1� pð Þ þ ω2 1� pð Þpþ ω3 1� pð Þp2þ
� � � ¼ ω 1� pð Þ 1þ ω pþ ω2 p2 þ � � �½ �

ð11:12Þ

1190 The series in p and ω can be summed as

s

i0
¼ ω 1� pð Þ

1� pω
ð11:13Þ

1191 This provides for a very compact description
1192 of multiple scattering, albeit under the
1193 assumptions of total scattering and black
1194 soil. Crucially, the resulting scattering is
1195 independent of wavelength i.e. is spectrally
1196 invariant, and is a function of p only, where
1197 p is a purely structural term, encapsulating
1198 the size and arrangement of scattering
1199 elements within the canopy. Recollision the-
1200 ory has been developed over the last decade
1201 (Knyazikhin et al. 1998, 2011; Huang
1202 et al. 2007). It has been shown to work well
1203 for higher values of LAI when the understory
1204 becomes less important (Huang et al. 2007).
1205 This is also where optical EO tends to be less
1206 sensitive to variations in LAI. The recollision
1207 probability approach has now been used for a
1208 range of remote sensing applications includ-
1209 ing in a parameterised canopy model
1210 (Rautiainen and Stenberg 2005), to classify
1211 forest structural types (Schull et al. 2011),
1212 and for providing a structural framework for
1213 merging data from various sensors with dif-
1214 ferent spatial and spectral resolutions
1215 (Ganguly et al. 2008, 2012). Further, the
1216 same behaviour has been observed in atmo-
1217 spheric radiative transfer (Marshak
1218 et al. 2011).
1219 Specific insights provided from the spec-
1220 tral invariant approach include that of
1221 Smolander and Stenberg (2005) who showed
1222 that if the fundamental scattering element
1223 within a canopy is considered to be a shoot
1224 (a good approximations in conifers for
1225 example), then a shoot-level recollision
1226 probability pshoot, can be defined. In this

1227case total scattering can be expressed as a
1228nested combination of the within-shoot nee-
1229dle-level recollision probability, pneedle and
1230pshoot. This is a key insight into how different
1231scales of clumping interact. Following this,
1232Lewis and Disney (2007) used recollision
1233probability to parameterise the PROSPECT
1234leaf-level radiative transfer model. Their
1235rephrasing in terms of pleafwas able to repro-
1236duce the behaviour of PROSPECTwith very
1237high accuracy (root mean square error
1238<0.4 % across all tested conditions). Lewis
1239and Disney (2007) also showed that the same
1240form of scattering will be nested across mul-
1241tiple scales from within-leaf to shoot to can-
1242opy. A key implication of this work was the
1243observation that the structural and radiomet-
1244ric components of the canopy (represented
1245by p and the leaf absorbing constituents such
1246as pigments, cellulose, lignin, and water) are
1247fundamentally coupled. As a result Lewis
1248and Disney (2007) conclude “. . .it is simply
1249not possible to derive robust estimates of
1250both leaf biochemical concentration and
1251structural parameters such as LAI from
1252(hyperspectral) data . . . no matter how nar-
1253row the wavebands or how many wavebands
1254there are”. Increasing LAI by some factor
1255k and simultaneously decreasing the bio-
1256chemical concentration per unit leaf area by
1257the same factor (i.e. keeping the total canopy
1258concentration the same) can result in the
1259same total scattering, but for a very different
1260values of p, corresponding to very different
1261canopy structures. This implies that without
1262knowledge of either p or the leaf biochemi-
1263cal constituents, independent retrieval of
1264either from total scattering measurements is
1265not possible. An additional implication is
1266that attempts to estimate ‘total’ canopy bio-
1267chemical concentration as a coupled mea-
1268sure may contain large errors.
1269The various developments of recollision
1270probability have important implications for
1271the use of Earth observation data to infer
1272canopy biochemical properties, particularly
1273pigment concentrations. Many studies have
1274observed empirical correlations between
1275canopy biochemical concentrations and
1276observed spectral properties (reviewed by
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1277 Ollinger 2011), including observed positive
1278 correlations between leaf nitrogen content
1279 per area (canopy N) and albedo. Such work
1280 suggests a potentially important route for
1281 monitoring canopy biochemistry (and hence
1282 state) from EO. However, recent work by
1283 KAU2 nyazikhin et al. (2013) building on
1284 recollision probability theory and the obser-
1285 vation that p encapsulates scattering across
1286 scales, shows quite clearly that some of these
1287 correlations e.g. between canopy N and
1288 albedo, are in fact entirely explained by can-
1289 opy structure. As an example, Knyazikhin
1290 et al. (2012) show that observed correlations
1291 between canopy N and reflectance can be
1292 almost completely explained by canopy
1293 structure. Knyazikhin et al. (2012) also sug-
1294 gest that canopy scattering can be
1295 reformulated using recollision probability,
1296 as a combination of separate structural and
1297 spectral terms as follows:

BRFλ Ωð Þ ¼ DASF �Wλ ð11:14Þ

1298 where DASF is the (structural) Directional
1299 Area Scattering Factor and Wλ is the (spec-
1300 tral) canopy scattering coefficient. DASF is
1301 defined as:

DASF ¼ ρ Ωð Þ i0
1� p

ð11:15Þ

1302 where ρ(Ω) is the directional gap density of
1303 the canopy, along a given viewing direction
1304 Ω; i0 is the first interception by the canopy
1305 from Eq. 11.14. Wλ is defined as:

Wλ ¼ ω̂ λ
1� piL

1� ω̂ λ piL
ð11:16Þ

1306 where iL is the leaf interceptance defined as
1307 the fraction of radiation incident on the leaf
1308 that enters the leaf interior; and ω̂ λ ¼ ωλ=iL.
1309 The quantity ρ(Ω)LAI is the fraction of leaf
1310 area inside the canopy visible from outside
1311 the canopy along Ω. For dense canopies in
1312 the NIR, DASFeρ Ωð ÞLAI and is an estimate
1313 of the ratio between the leaf area that forms
1314 the canopy boundary as seen alongΩ and the

1315total (one-sided) leaf area, effectively the
1316‘texture’ of the canopy upper boundary.
1317Importantly, calculating DASF allows the
1318impact of structure to be removed from
1319observed hyperspectral reflectance, provid-
1320ing a potential route for re-analysis of empir-
1321ical relationships between biochemistry and
1322reflectance.
1323The recollision probability theory has
1324provided new ways to express scattering
1325across scales, and has found a range of
1326potential applications in accounting for
1327structural effects in EO measurements.
1328Ustin (2013) highlights the importance of
1329using a first principles radiative transfer
1330approach to accounting for the impact of
1331structure on EO estimates of biochemistry.

1332E. 3D Monte Carlo Approaches

1333The methods outlined above to solve the
1334radiative transfer problem in vegetation
1335involve a range of approximations regarding
1336structural and radiometric properties in order
1337to make the problem tractable. A sub-class of
1338methods exist which solve the radiative
1339transfer problem based on ‘brute force’
1340Monte Carlo sampling of the radiation field
1341in a 3D canopy. These methods derive from
1342developments in computer graphics, where
1343they form the basis of modern movie anima-
1344tion and special effects. The aim in these
1345applications is to simulate ‘realistic’ light
1346environments i.e. scenes that are either con-
1347vincing and/or aesthetically pleasing to the
1348human eye. For EO applications, the require-
1349ment is somewhat different i.e. physical
1350accuracy (including constraints such as
1351energy conservation for example). Monte
1352Carlo methods are computationally inten-
1353sive, which has tended to limit their applica-
1354tion. However, computing power has reached
1355a level where such limitations are no longer
1356so relevant, and these methods have some
1357key advantages for quantitative applications.
1358Niinemets and Anten (2009) discuss the
1359issues of the trade-off between accuracy
1360and efficiency in radiative transfer modelling
1361approaches.
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1362 Monte Carlo methods in remote sensing
1363 are reviewed in detail by Disney et al. (2000)
1364 and Liang (2004). These methods fall into
1365 two broad classes: radiosity (originating
1366 from thermal engineering), which requires
1367 calculating the viewed areas of each object
1368 in a scene in relation to the other objects in
1369 the scene (so-called ‘view factors’); and ray
1370 tracing (MCRT). I will briefly discuss the
1371 latter method here, as it is more practical
1372 for EO applications where view and illumi-
1373 nation configurations change arbitrarily
1374 (making radiosity less feasible). MCRT
1375 essentially involves calculating the inter-
1376 sections of photons (rays) projected into a
1377 3D scene with the objects in the scene, and
1378 determining the behaviour of these photons
1379 at each intersection. The subsequent direc-
1380 tion and energy of a scattered photon follow-
1381 ing an intersection is governed by the
1382 radiometric properties of absorption, trans-
1383 mission and reflection of the surface at the
1384 point of intersection, in addition to the geo-
1385 metric scattering properties (phase function)
1386 of the object. Objects are not limited to
1387 representation by simple polygons (facets).
1388 Volumetric objects can be used, in conjunc-
1389 tion with a description of the (volumetric)
1390 scattering properties of the materials
1391 contained within (North 1996). Diffuse sam-
1392 pling can be used to simulate diffuse light
1393 sources (Govaerts 1996; Lewis 1999). The
1394 bidirectional reflectance of a given scene
1395 (represented as a collection of 3D objects)
1396 is simulated by simply repeating the sam-
1397 pling process for every sample (pixel) in
1398 the viewing plane (Disney et al. 2000),
1399 possibly multiple times.
1400 A key advantage of MCRT models is that
1401 they can operate on structurally explicit 3D
1402 scenes, often of arbitrary complexity,
1403 allowing them to simulate EO signals with
1404 the least possible number of assumptions
1405 about structure. Some models represent
1406 3D detail in a given scene down to the level
1407 of individual needles and leaves (España
1408 et al. 1999; Lewis 1999; Govaerts and
1409 Verstraete 1998; Widlowski et al. 2006).
1410 Other approaches represent larger structural
1411 units explicitly such as tree crowns, but then

1412make assumptions regarding the scattering
1413and extinction properties within individual
1414crowns (North 1996). The issue with this
1415latter approach is determining what these
1416within-crown bulk scattering properties
1417ought to be. Other models divide 3D space
1418into voxels, and assign voxel-average scatter-
1419ing properties, such as the Discrete Aniso-
1420tropic radiative transfer (DART) model of
1421Gastellu-Etchegorry et al. (2004). This has
1422benefits in terms of speed and simplicity, but
1423again at the expense of requiring definitions
1424of bulk (volume) scattering properties. Fully
1425explicit 3D MCRT models avoid these vol-
1426ume scattering approximations, but at the
1427expense of requiring 3D input on all canopy
1428elements, as well as potentially much greater
1429computational demands (Disney et al. 2006;
1430Widlowski et al. 2013).
1431The ability to deal with 3D canopy struc-
1432ture explicitly means MCRT models are
1433ideally-suited to applications where we wish
1434to know, and have control over, 3D scene
1435properties in order to generate a modelled
1436EO signal e.g. for generating synthetic data
1437sets to test retrieval algorithms based on sim-
1438pler model approximations or when EO data
1439are not readily available. Disney et al. (2011)
1440show how 3D MCRT model simulations can
1441be used as a surrogate for observations of fire
1442impact. Other applications include simulating
1443the properties of new sensor characteristics
1444(Disney et al. 2009); understanding the
1445impact of structure on observations (España
1446et al. 1999); providing a common structural
1447framework for combining optical and micro-
1448wave scattering models (Disney et al. 2006);
1449and providing benchmark information for
1450testing simpler radiative transfer models
1451(Widlowski et al. 2007). This latter example
1452is an important one; a question that arises for
1453anyone using any radiative transfer approach
1454to an EO application is: which model is best
1455for my application, and why? The Radiation
1456Transfer Model Intercomparison exercise
1457(RAMI, http://rami-benchmark.jrc.ec.europa.
1458eu/HTML/) has sought to answer this ques-
1459tion via intercomparison of radiative transfer
1460models. Over various phases RAMI has
1461shown that detailed 3D MCRT models can
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1462 provide the most credible solution to the
1463 radiative transfer problem in well-defined,
1464 simplified cases (Widlowski et al. 2007).
1465 Scenes can be defined for which MCRT
1466 models provide exact solutions (within
1467 limitations of numerical sampling), and
1468 this allows for testing of more approximate
1469 radiative transfer models, in particular
1470 quantifying the impact of model assump-
1471 tions on resulting model accuracy. The
1472 RAMI work has led to an online bench-
1473 marking tool, allowing radiative transfer
1474 model developers to test and benchmark
1475 their models (Widlowski et al. 2008). The
1476 most recent RAMI exercise has shown how
1477 detailed 3D MCRT models can represent the
1478 effects of structure on the EO signal for
1479 very complex (realistic) 3D scenes in ways
1480 that simpler models cannot (Widlowski
1481 et al. 2013).
1482 There are three main limitations of the
1483 MCRT approach. First, they are very slow
1484 compared to the more approximate models.
1485 This is certainly a problem if speed is abso-
1486 lutely essential, e.g. for large-scale or near
1487 real-time applications. MCRT models can of
1488 course still be used to quantify the impact
1489 of assumptions made in simpler models.
1490 Secondly, they cannot be inverted either
1491 directly or using standard optimisation
1492 routines, given their requirement for explicit
1493 location and properties of a (potentially)
1494 very large number of 3D objects. However,
1495 computation speeds have increased to an
1496 extent where it is now feasible to consider
1497 using a MCRT model for look-up table-
1498 based model inversion. It may take
1499 thousands of hours of CPU time to run for-
1500 ward MCRT model simulations over a large
1501 range of canopy, view and illumination
1502 configurations to populate the pertinent
1503 look-up tables, but these need only be run
1504 once. The third and perhaps most serious
1505 limitation of 3D MCRT models is that they
1506 are only as good as the underlying 3D scene
1507 descriptions on which they are based; the
1508 models require highly-detailed, accurate 3D
1509 structural information to generate 3D model
1510 scenes. This 3D information can come from
1511 various sources, including empirical growth

1512models (e.g. España et al. 1999; Disney
1513et al. 2006), purely parametric models
1514(Widlowski et al. 2006; Disney et al. 2009),
1515and parametric models modified using field
1516measurements (Disney et al. 2011).
1517A range of models can provide 3D scene
1518information. Growth models provide an
1519accurate description of a ‘domain-average’
1520tree structure, but not a specific tree at a
1521particular time (Leersnijder 1992; Perttunen
1522et al. 1998). Parametric models allow a great
1523degree of flexibility over manipulation of
1524tree structure. Various models of this sort
1525exist, e.g. xfrog (Xfrog Inc. xfrog.com) and
1526OnyxTREE (Onyx Computing, onyxtree.
1527com) and they have been used in EO
1528applications (Disney et al. 2010, 2011).
1529However, it can be both time-consuming
1530and difficult to parameterise a model that is
1531designed to ‘look right’ for computer graphic
1532visualisation (Mêch and Prusinkiewicz
15331996), in such a way that it is a structurally
1534accurate representation of a tree for radiative
1535transfer applications (leaf and branch shape
1536and size distributions, leaf angular
1537distributions etc). An alternative approach
1538is the use of growth grammars based on
1539L-systems (Prusinkiewicz and Lindenmayer
15401990). These use simple growth rules to pro-
1541duce ‘realistic’ canopy structure and have
1542been used to drive 3D simulations, particu-
1543larly of relatively simple crop canopies
1544(Lewis 1999), but may bear little resem-
1545blance to real canopies of greater complex-
1546ity. Functional structural plant modelling
1547(FSPM) overcomes this limitation to a cer-
1548tain extent by considering fundamental rules
1549of plant function due to the genetic and organ
1550level constraints to drive structural develop-
1551ment (Godin and Sinoquet 2005). The
1552resulting 3D structure can in turn be
1553expressed via L-systems. FSPM and
1554L-systems approaches suffer from the same
1555problem that the resulting models are accu-
1556rate instances of a particular species or plant
1557type, rather than specific (observed) plants.
1558Furthermore, additional rules are needed to
1559create a general, 3D scene.
1560These limitations on 3D structure have led
1561to search for new ways to derive detailed,
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1562 accurate 3D information that can be used to
1563 drive 3D simulation models. Some of these
1564 methods are outlined below in Sect. IV.

III. Effective Parameters

1565 A. Basics: Definition of Effective
1566 Characteristics

1567 Having discussed the various approxi-
1568 mations that can be employed to help solve
1569 radiative transfer equations in leaves and
1570 canopies, a note of caution is required in
1571 regard to any biophysical parameters we
1572 derive from EO data via such methods.
1573 For real canopies the exponent in Eq. 11.6
1574 implicitly includes a structural term ζ(μ0)
1575 encapsulating the fact that real canopies are
1576 not turbid media but are clumped at multiple
1577 scales from cm to tens of m)AU3 . Leaves or
1578 needles are arranged around twigs, along
1579 branches, within crowns and within stands.
1580 Pinty et al. (2004, 2006) suggest adopting an

1581 effective LAI value LAI μ0ð Þ i.e.

gLAI μ0ð Þ ¼ LAIζ μ0ð Þ ð11:17Þ

1582 This permits a solution to the 1D limiting
1583 case of radiative transfer in a 3D canopy that
1584 is consistent with the assumptions made in
1585 Eq. 11.2. Crucially however, the values of

1586 ~LAI μ0ð Þ are not the same as LAI which are
1587 in turn, not the same as the actual LAI that
1588 would be measured on the ground (unless
1589 measured over some large, discrete canopy
1590 volume). That is, the resulting radiative
1591 transfer model parameters will be ‘effective’
1592 parameters and will not have a direct physi-
1593 cally measurable meaning. These effective
1594 parameters allow solution of the 1D radiative
1595 transfer problem by representing domain-
1596 averaged quantities that are forced to satisfy
1597 the constraints associated with a 1D repre-
1598 sentation of what is an inherently 3D system
1599 (Pinty et al. 2006).
1600 The issue of effective parameters is
1601 important because it encapsulates the prob-
1602 lem of interpreting EO measurements more

1603generally. As an example, a typical use of a
16041D radiative transfer scheme is to describe
1605the surface radiation budget in a large-scale
1606Earth System Model (ESM). Developing
1607such a model is inevitably a trade-off
1608between multiple and often competing
1609constraints including computational speed
1610and model robustness vs. providing ‘suffi-
1611ciently accurate’ radiant flux values (Pinty
1612et al. 2004). Moreover, introducing a
1613physically-realistic estimate of LAI (for
1614example) may only make things worse, as it
1615will not be consistent with the simplified
1616radiative transfer schemes and will thus
1617introduce errors. If radiative consistency is
1618the key requirement (getting the fluxes right)
1619rather than interpreting the LAI values, then
1620the effective parameters should be used
1621(Pinty et al. 2006, 2011a, b). What is true
1622of LAI is potentially true of other structural
1623and biochemical parameters in radiative
1624transfer schemes.
1625The issue of consistency between
1626EO-derived biophysical parameters, and
1627their representation in models of vegetation
1628function, biogeochemical cycling and cli-
1629mate is key to making best use of both
1630observations and models. The fusion of EO
1631data with models, particularly via data
1632assimilation (DA), is a rapidly-growing
1633field because EO data can potentially provide
1634information on land cover, plant functional
1635types (PFTs), vegetation state and dynamics,
1636land surface temperature (LST), soil mois-
1637ture etc. at the scales and frequencies
1638required by the large-scale models (Pfeifer
1639et al. 2012). However, the further an
1640EO-derived parameter is away from a funda-
1641mental EOmeasurement, the more likely it is
1642to be ‘effective’ rather than directly measur-
1643able. This in turn increases the likelihood of
1644inconsistency between EO data and large-
1645scale models that use these parameters
1646(Carrer et al. 2012a; Pfeifer et al. 2012).

1647B. Data Assimilation

1648As the spatial detail of the land surface rep-
1649resentation within ESMs increases (from
1650~103 to ~101 km AU4and finer), the assumption
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1651 of canopy homogeneity typically assumed in
1652 a simplified radiative transfer approach is
1653 violated and potentially becomes an increas-
1654 ing source of error (Knorr and Heimann
1655 2001; Pinty et al. 2006; Brut et al. 2009;
1656 Widlowski et al. 2011). Various solutions
1657 have been proposed, essentially approaching
1658 the problem from opposite directions. From
1659 the EO perspective, one approach is to
1660 ensure consistency between EO parameters
1661 and ESMs as far as possible by coupling a
1662 physically-realistic radiative transfer scheme
1663 directly to the ESM that will use it. The ESM
1664 can then actually predict an EO measure-
1665 ment, which in turn allows direct comparison
1666 with EO data. Perhaps more importantly, the
1667 model can also be used to assimilate EO data
1668 to estimate ESM model state properties (in
1669 an inverse scheme). This approach lies at the
1670 heart of data assimilation schemes with land
1671 surface models (Quaife et al. 2008; Lewis et
1672 al. 2012). For a DA scheme, the RT models
1673 are referred to as ‘observation operators’
1674 (denoted H(x)) which map the model state
1675 variable vector x to the EO signal (as a vec-
1676 tor) R for a given set of control variables i.e.
1677 R ¼ H xð Þ. The inverse problem is then to
1678 obtain an estimate of some function of x, F
1679 (x) from measurements R (Lewis et al.
1680 2012). An advantage of this approach is
1681 that it can utilise much more direct EO
1682 measurements (reflectance or even
1683 radiance) where the uncertainties in the
1684 measurements can be better-characterised.
1685 This characterisation of uncertainty (in
1686 observation and radiative transfer model
1687 schemes) is critical for data assimilation.
1688 A drawback is that more complex radiative
1689 transfer schemes tend to slow the assimila-
1690 tion process, potentially limiting them for
1691 large-scale inverse problems (at least
1692 currently). However, data assimilation
1693 approaches of this sort are being used to
1694 assimilate EO data from a range of sources,
1695 and have shown great promise in improving
1696 and constraining model estimates of C fluxes
1697 and photosynthesis (Quaife et al. 2008;
1698 Knorr et al. 2010), evapotranspiration
1699 (Olioso et al. 2005), surface energy balance
1700 (Qin et al. 2007; Pinty et al. 2011a, b)

1701and hydrology (Rodell et al. 2004; Houser
1702et al. 2012).

1703C. Scale Differences and Model
1704Intercomparisons

1705From the other direction, we can modify
1706the ESM internal radiative transfer scheme
1707to account for inconsistency with EO
1708measurements and ensure the resulting
1709ESM outputs are consistent at some broader,
1710integrated level e.g. such as total productiv-
1711ity (Brut et al. 2009; Carrer et al. 2012). An
1712example of this is improved representation of
1713canopy diffuse fluxes, which tend to increase
1714C uptake (via increased photosynthesis) with
1715increasing diffuse radiation fraction
1716(Mercado et al. 2009). Carrer et al. (2012)
1717show that introducing clumping to an ESM
1718representation of vegetation (resulting in an
1719effective LAI), even at coarse scale, can
1720improve modelled annual GPP fluxes of var-
1721ious deciduous and conifer forests by up to
172215 %. This approach accepts that the
1723resulting internal model parameters are
1724effective and not measurable in practice.
1725Lafont et al. (2012) show that this modifica-
1726tion of LAI can have a significant impact on
1727the way fluxes are apportioned within differ-
1728ent ESMs.
1729An additional complication can arise that
1730different internal LAI representations can
1731cause processes such as photosynthesis and
1732transpiration to reach different equilibria
1733(different spatial and temporal distribution
1734of fluxes) in different ESMs while still pro-
1735ducing similar net C fluxes i.e. the models
1736can arrive at the same answers for different
1737reasons. This in turn can result in differences
1738in seasonal variations (e.g. timing of peak
1739fluxes) and/or longer-term model divergence
1740that may be hard to identify (Richardson et
1741al. 2012). The effective nature of the model
1742parameters also makes model intercompari-
1743son difficult. Clearly, the consideration of
1744scale is not consistent between models.
1745Recent work by Widlowski et al. (2011)
1746has attempted to address the issue of
1747consistency of radiative transfer schemes
1748in ESMs systematically, by instigating a
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1749 radiative transfer model intercomparison
1750 exercise, RAMI4PILPS (http://rami-bench
1751 mark.jrc.ec.europa.eu/HTML/RAMI4PILPS/
1752 RAMI4PILPS. php). RAMI4PILPS builds on
1753 both the RAMI exercise and the Project for
1754 Intercomparison of Land Surface Parameter-
1755 ization Schemes (PILPS). PILPS was set up
1756 to improve understanding of model pro-
1757 cesses in coupled climate, atmospheric and
1758 ESMs mainly through intercomparison of
1759 the various model parameterisation
1760 schemes (http://www.pilps.mq.edu.au/). PILPS
1761 recognises that for large, complex models, the
1762 wide range of approximations and possible
1763 parameterisations required makes direct
1764 model-to-model comparisons very difficult
1765 and instead compares the abilities of themodels
1766 to reproducevarious observed climate and land-
1767 surface trends (Henderson-Sellers et al. 2003).
1768 RAMI4PILPS is perhapsmuch closer to RAMI
1769 than PILPS in terms of the intercomparison
1770 approach. It attempts to isolate the radiative

1771transfer schemes in participating models in
1772such as way as to examine only that part,
1773making like-for-like comparisons much more
1774feasible over specific scenarios. In this case the
1775RAMI results are used to provide a ‘known’
1776reference solution. RAMI4PILPS covers quite
1777a large range of model types, from simple land
1778surface model schemes, to very complex
1779models that describe the full range of surface
1780energy, water and C fluxes between the surface
1781and atmosphere. Figure 11.6 shows a compari-
1782son of the RAMI4PILPS models against the
1783reference solution for a range of canopy
1784complexities. This comparison demonstrates
1785that the relatively simplistic concept of canopy
1786‘structure’ (from varying 1D homogeneous, to
1787a simplified consideration of clumping) can
1788still introduce a large degree of scatter between
1789the models, as well as between the models and
1790the reference solution under different environ-
1791mental conditions and for different spectral
1792regions.
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Fig. 11.6. An illustration of differences in canopy absorption as a function of increasing structural complexity
(from left to right) for visible and NIR spectral domains. Different grey levels show varying LAI (low ¼ 0.5,
medium ¼ 1.5, high ¼ 2.5), over snow-covered (SNW) and medium-bright (MED) backgrounds, with θi ¼ 60�
or 27� respectively. The first two panels represent simple 1D radiative transfer models; the second two panels
represent the most basic level of 3D heterogeneity; the right-most column includes four reference cases
derived via a full 3D Monte Carlo Ray Tracing (MCRT) model description (Modified from Widlowski
et al. (2011 # Wiley))
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IV. New Observations of Structure
1793 and Function

1794 Lastly, I discuss newer Earth observation
1795 techniques that provide rapid and detailed
1796 information on canopy structure and func-
1797 tion. These new technologies based on lidar
1798 (light detection and ranging) and micro-
1799 wave RADAR (radio detection and rang-
1800 ing) are becoming increasingly more
1801 widely available. I show that lidar is a
1802 near-direct remote sensing measurement
1803 of canopy height and structure. There is
1804 significant promise in merging airborne
1805 lidar scanning (ALS) instruments, and ter-
1806 restrial laser scanning (TLS) instruments,
1807 as well as optical and RADAR data in
1808 order to maximise structural information.
1809 The 3D nature of the lidar signal also raises
1810 the possibility of using these data to further
1811 extend and exploit the recollision probabil-
1812 ity approach to the canopy radiative trans-
1813 fer problem.

1814I also briefly consider the prospects
1815for EO data of this sort over the next
1816decade, and how such observations might
1817be used. Having discussed new structural
1818measurements, I turn lastly to a new mea-
1819surement related to canopy function based
1820on chlorophyll fluorescence.

1821A. Structural Information from Lidar
1822and RADAR

1823Lidar systems have become increasingly
1824common over the last decade. Figure 11.7
1825illustrates this by highlighting the increase
1826in published papers with the words “lidar”
1827and “vegetation” in the title or abstract, from
18281990–2012. The advent of airborne lidar
1829scanning (ALS) instruments, terrestrial
1830laser scanning (TLS) instruments, and the
1831lifespan of the only spaceborne lidar mission
1832to date used for terrestrial applications
1833(NASA ICESAT/Glas) are marked on the
1834figure (Fig. 11.7).

Fig. 11.7. Number of publications containing the words ‘lidar’ and ‘vegetation’ in the title or abstract from 1990
to 2013 (Citation information from Thomson Reuters Web of Knowledge #). ALS and TLS are airborne and
terrestrial lidar scanning respectively
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1835 Lidar is an active remote sensing method,
1836 recording return time-of-flight of a laser
1837 pulse between instrument and target. Lidar
1838 provides a (near) direct estimate of surface
1839 (canopy) height and is in this sense a much
1840 more direct measurement than those relying
1841 on passive reflected or emitted radiation.
1842 Lidar instruments also record returned signal
1843 intensity and, in combination with height,
1844 this signal can provide unique information
1845 on the vertical distribution of canopy struc-
1846 ture when operated from above the canopy
1847 (e.g. Dubayah and Drake 2000). As
1848 discussed above, structure plays a critical
1849 role in radiative transfer in vegetation.
1850 Thus, structure must be accounted for to
1851 allow retrieval of canopy state and function
1852 from remote sensing. Lidar has proven
1853 extremely useful in addressing this issue
1854 (Lefsky et al. 2002; Armston et al. 2013a).

1855 1. Discrete-Return Lidar Systems

1856 Lidar systems broadly fall into one of
1857 two categories – discrete-return, or full-
1858 waveform (the less widely-used phase-
1859 based systems are not discussed here).
1860 Discrete return lidar essentially records the
1861 distance to the first object from which a
1862 return is recorded at the sensor, over some
1863 signal threshold, or multiple thresholds.
1864 Assuming that emitter and detector are
1865 co-located, the time-of-flight to the target is
1866 t ¼ 2d=cwhere d is the distance to the target,
1867 and c is the speed of light (and assuming that
1868 emitter and detector are co-located). For a
1869 sensor above a vegetation canopy returns
1870 may come from both the canopy and the
1871 ground, depending on canopy cover. It is
1872 then possible to determine the height of the
1873 vegetation canopy, h, through the difference
1874 in travel time between the two returns i.e.
1875 h ¼ t1ð -t2Þc=2. Discrete return lidar datasets
1876 therefore comprise ‘point clouds’, each of
1877 which has a 3D co-ordinate relating its loca-
1878 tion to the sensor. Lidar has been widely
1879 used in this way to estimate biomass via
1880 allometric relationships with canopy height
1881 (e.g. Asner et al. 2010; Asner and Mascaro
1882 2014). Lidar measurements can be used to

1883estimate biomass over dense, high biomass
1884(high LAI) tropical forests where passive
1885optical measurements saturate and are
1886thus insensitive to change and/or variation
1887(Saatchi et al. 2011). Canopy height estima-
1888tion from lidar is now included in routine
1889commercial and forestry measurements
1890(Næsset et al. 2004; Hyyppä et al. 2008).

18912. Full-Waveform Lidar Systems

1892Waveform (often referred to as ‘full-wave-
1893form’) lidar systems record a ‘binned’ and
1894digitised version of the real intensity return
1895detected by the sensor, resulting from an
1896outgoing pulse of known form (Mallet and
1897Bretar 2009). Waveform instruments record
1898the intensity of the response at a certain
1899sampling rate (this sampling and detector
1900non-linearity mean that the measurement
1901never are true full-waveform), while
1902performingminimal pulse-detection methods.
1903Waveform lidar is becoming prevalent in air-
1904borne systems, even if they are in practice
1905often used as discrete return systems with
1906much of the intermediate waveform informa-
1907tion being ignored. However, the power of
1908waveform lidar is that it has the capability to
1909record detailed information on the vertical
1910distribution of canopy structure, and hence
1911has a range of applications in remote sensing
1912of vegetation including height and biomass
1913(Dubayah et al. 2010), LAI (Tang et al. 2012)
1914and canopy gap fraction (Armston et al.
19152013a). The waveform signal can not only
1916identify where there is a surface, but also
1917what the properties of that surface are. This
1918is particularly relevant for example in
1919distinguishing woody from leaf material.
1920Figure 11.8 shows an example of a modelled
1921full-waveform lidar return over a conifer
1922canopy, and highlights the potential informa-
1923tion content of the signal.

19243. Limitations and Future Developments
1925of Lidar Systems

1926A current limitation of lidar is the lack of
1927wide area coverage due to reliance on air-
1928borne platforms. However, ALS survey costs
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1929 are coming down, and so larger and larger
1930 areas are being covered, with a number of
1931 countries now aiming to obtain total cover-
1932 age (e.g. see http://www.gim-international.
1933 com/issues/articles/id1664-Swedish_Lidar_
1934 Project.html). Obtaining this coverage is
1935 time-consuming (typically months to years)
1936 and hence can only provide a temporally
1937 fragmented ‘snapshot’ (note that this is only
1938 a limitation for very large areas; smaller
1939 regions, even 1000s of ha, where forest
1940 height and density will not vary in a few

1941weeks or even months, can be covered rap-
1942idly and even revisited). In addition, these
1943relatively large surveys are generally
1944designed for deriving digital elevation
1945models (DEMs) rather than for vegetation
1946applications. As a result the sampling is
1947often at or below 1 pt m�2 in order to reduce
1948the survey time, meaning limited sampling
1949of the canopy properties. A further difficulty
1950is differentiating between leaf and woody
1951material, particularly in larger footprint
1952instruments. It has been proposed that this

Fig. 11.8. Example of full-waveform lidar signal simulated from a 3D model of a Scots pine (Pinus sylvestris)
tree (visualised in the left panel). The signal shows height-resolved return intensity (black impulses), as well as
the normalized proportion of the signal in each height bin coming from the leaf and branch objects in the 3D
model. Leaf and branch returns can be separated explicitly in the 3D model returns
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1953 limitation could be overcome by dual wave-
1954 length systems using spectral contrast to dis-
1955 tinguish canopy components (Morsdorf et al.
1956 2009). No system of this sort has been flown
1957 as yet, although work on laboratory
1958 prototypes show great promise (Woodhouse
1959 et al. 2011). An ongoing issue in dealing
1960 with lidar systems of all types is the often
1961 proprietary (and hence generally hidden)
1962 nature of the instrument characteristics
1963 (Disney et al. 2010). This makes it hard to
1964 obtain information on key technical
1965 specifications such as the thresholds used to
1966 trigger a recorded pulse (Armston et al.
1967 2013a), or the stability of the instrument
1968 absolute response (and gain). Lidar
1969 instruments are rarely if ever calibrated to
1970 provide absolute reflectance, making it hard
1971 to make quantitative comparisons of signal
1972 returns from different backgrounds and can-
1973 opy types.
1974 In terms of spaceborne lidar for vegeta-
1975 tion applications, unfortunately none cur-
1976 rently exist due to perceived cost and
1977 technical limitations. This is despite the suc-
1978 cess of NASA’s ICESAT/Glas mission,
1979 which is remarkable given that it was not
1980 designed for vegetation applications and
1981 had some severe limitations including a
1982 large footprint (70 m), limited vertical reso-
1983 lution and relatively poor spatial sampling
1984 (hundreds of meters along tracks between
1985 footprints and kilometres between tracks
1986 horizontally). Despite this, Glas data have
1987 been widely used to derive estimates of can-
1988 opy height and structure over large areas,
1989 particularly for tall boreal and tropical
1990 forests (Harding and Carabajal 2005; Lefsky
1991 et al. 2005; Rosette et al. 2005) as well as
1992 forming the basis of the current best
1993 estimates of pan-tropical forest biomass
1994 (Saatchi et al. 2011; Baccini et al. 2012).
1995 A second ICESAT mission is due to launch
1996 in 2017 (http://icesat.gsfc.nasa.gov/icesat2/)
1997 but will have a different lidar system to
1998 that on ICESAT, and the possibilities for
1999 vegetation applications are as yet uncertain.
2000 Future prospects for space-based canopy
2001 lidar improved in July 2014, when NASA
2002 announced plans to launch the Global

2003Ecosystem Dynamics Investigation (GEDI)
2004lidar system on board the International
2005Space Station (ISS) in 2019.

20064. Terrestrial Laser Scanning (TLS)

2007Another development over the last decade
2008has been the rise of terrestrial laser scanning
2009(TLS) instruments. Typically developed for
2010commercial surveying applications, TLS
2011data have proved an interesting source of
20123D canopy structure information (Maas et
2013al. 2008). Given the importance of 3D struc-
2014ture for radiative transfer modelling, bio-
2015mass, canopy state etc., ways to rapidly and
2016accurately characterise structure are obvi-
2017ously attractive. This is particularly true as
2018traditional field-based measurement of struc-
2019ture are hard to make, particularly in remote
2020and tall forests where access may be limited.
2021Under these conditions, even measuring tree
2022height can be problematic. As a result, struc-
2023tural measurements are often limited to
2024diameter-at-breast height, stem number den-
2025sity, with perhaps some estimates of overall
2026height, height-to-crown ratio, and crown
2027extent. Tree height can be estimated
2028using hypsometers or clinometers and even
2029cheap laser ranging devices. However, for
2030these height measurements, the top of a tree
2031has to be visible from the ground. In dense
2032canopies, with tall trees or in steep terrain,
2033this can be problematic. Additional struc-
2034tural measurements are often inferred
2035from indirect techniques, such as gap frac-
2036tion and cover (and hence LAI) from
2037upward-looking hemispheric photographs.
2038TLS can potentially overcome many of
2039these limitations, allowing rapid estimation
2040of dbh, height and vertical structure and
2041potentially providing information that can
2042be used to develop 3D canopy structural
2043models quickly and accurately (Raumonen
2044et al. 2013).
2045The value of TLS measurements has seen
2046development of new instruments specifically
2047designed for vegetation applications, includ-
2048ing: the use of wavelengths that are eye-safe,
2049but also reflected strongly by vegetation (e.g.
20501064 nm); a move from discrete-return to
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2051 waveform instruments; full hemisphere
2052 scanning; multiple wavelengths. Most of
2053 these innovations have been developed in
2054 the research community, but commercial
2055 manufacturers are now recognising there
2056 may be a larger market for robust field-por-
2057 table vegetation TLS instruments. Perhaps
2058 the most exciting of these developments
2059 is that of full-waveform, hemispherical
2060 scanners, with dual wavelengths. The only
2061 currently operational instrument is the
2062 Salford Advanced Laser Canopy Analyser
2063 (SALCA), which operates at 1040 and
2064 1550 nm (Danson et al. 2014). As for ALS,
2065 dual wavelengths have the potential to allow
2066 leaf and woody material to be separated in
2067 the lidar scans (Woodhouse et al. 2011).
2068 Another new instrument is the dual-
2069 wavelength Echidna laser scanner (DWEL,
2070 Douglas et al. 2012), a development of the
2071 Echidna single wavelength instrument that
2072 has been deployed successfully for a number
2073 of canopy applications (Yao et al. 2011).
2074 Both SALCA and DWEL are prototypes
2075 and require significant time to set up and
2076 carry out full hemisphere scans. A more
2077 robust, commercial alternative is the Riegl
2078 VZ-400 scanner (http://www.riegl.com/
2079 uploads/tx_pxpriegldownloads/DataSheet_
2080 VZ-400_18-09-2013.pdf). This is a full
2081 waveform hemispherical TLS instrument,
2082 albeit with a single wavelength at 1550 nm.
2083 It is a robust, field-ready instrument that can
2084 carry out high angular resolution hemispher-
2085 ical scans in 1–2 min. It can be used in
2086 conjunction with a digital camera to provide
2087 image data aligned to the scan data to aid
2088 target identification (and even separation of
2089 canopy elements). The instrument was not
2090 designed for vegetation applications, and so
2091 use of the waveform information for this
2092 purpose is still in the early stages but is
2093 potentially very promising (Disney et al.
2094 2014). Field intercomparisons are being
2095 used to test the various strengths and
2096 weaknesses of the different instrument
2097 approaches (Armston et al. 2013b).
2098 A key obstacle of using TLS for 3D struc-
2099 ture is transforming point cloud data
2100 into some form of topologically-structured

2101description of individual trees, preferably in
2102a robust, automated way. Estimating tree
2103diameter at breast height and stem number-
2104density is fairly easy; height can be straight-
2105forward but requires points to be returned
2106from the top of the canopy, which can be
2107problematic in tall, dense canopies. Topol-
2108ogy is much harder, as it requires an associa-
2109tion between points and organs within a
2110particular tree (branches, leaves). Various
21113D tree reconstruction methods have been
2112proposed for TLS data (e.g. Gorte and
2113Pfeifer 2004). Limitations of these methods
2114have been the speed and the requirement
2115for a large number of heuristic thresholds.
2116Recent work has shown that development of
2117more robust and rapid methods is possible
2118(Raumonen et al. 2013).
2119An additional problem for any reconstruc-
2120tion method is validation, given the practical
2121difficulty of measuring 3D structure for other
2122than the simplest trees. Detailed 3D radiative
2123transfer models as described above are proving
2124one possible route for overcoming this limita-
2125tion (Disney et al. 2012). In turn, the resulting
2126tree reconstructions open the way for routine
2127development of 3D scene models for remote
2128sensing simulations. Figure 11.9 shows an
2129example of a single TLS scan collected in an
2130Australian Eucalyptus forest. The rich struc-
2131tural nature of the data is immediately appar-
2132ent. Also shown are lidar ‘hits’ from a single
2133tree extracted from the resulting point cloud,
2134and a 3D reconstruction of the same tree via
2135the method of Raumonen et al. (2013). It is
2136worth noting that other uses of TLS are in
2137estimating canopy clumping and gap fraction
2138from the ground. TLS is potentially a more
2139accurate way to estimate clumping than e.g.
2140hemiphotomethods, as the effective resolution
2141is generally higher, and few if any assumptions
2142are required to estimate gap fraction (Casella
2143et al. 2013). Reconstruction of tree volume
2144from TLS data allows rapid, accurate and
2145non-destructive estimates of above ground bio-
2146mass to be made (Calders et al. 2014). The
2147TLS measurement errors are also independent
2148of tree size, unlike biomass estimates inferred
2149indirectly from tree height or diameter
2150measurements.
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Fig. 11.9. Examples of Riegl VZ-400 terrestrial laser scanning (TLS) data from a bush site in Queensland,
Australia and 3D tree structure reconstructed from the resulting scans. Top: 360� panorama of individual
hemispheric photographs taken from a camera mounted on the TLS instrument. Centre: TLS scan, with height
mapped to color. Bottom left: TLS points from a single tree extracted from the point cloud data (color represents
height above the ground); bottom right: 3D reconstruction of the same tree (color again represents height) using
the method of Raumonen et al. (2013)
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2151 5. RADAR Systems

2152 RADAR is an alternative promising instru-
2153 ment for canopy structure and function
2154 observations (Lee and Pottier 2009). In fact,
2155 RADAR has its specific, very great,
2156 advantages over optical reflected methods
2157 of all-weather operation. Longer wavelength
2158 (tens of cm) RADAR is potentially sensitive
2159 to much higher levels of biomass due to
2160 penetration through the upper canopy and
2161 interacting only with larger trunks and
2162 branches. Unlike lidar systems, scanning
2163 imaging RADAR systems are well-advanced
2164 from an engineering perspective, allowing
2165 for the wide area coverage that is often
2166 such an advantage of remote sensing. High-
2167 resolution interferometric synthetic aperture
2168 RADAR (InSAR) instruments also hold
2169 promise for measurements of canopy height
2170 and structure (Krieger et al. 2007). However,
2171 the radiative transfer problem in the RADAR
2172 domain is less well-understood than for opti-
2173 cal wavelengths due to complications as a
2174 result of phase, polarization and coherence.
2175 As a result, exploitation of RADAR for
2176 vegetation applications has been primarily
2177 via empirical relationships between back-
2178 scatter and amount/biomass. Yet, these
2179 measurements are known to have significant
2180 shortcomings in terms of their ability to
2181 reliably predict biomass a function of
2182 backscatter. This arises in part due to
2183 gaps in understanding of the physical
2184 processes governing the observed backscat-
2185 ter (Mitchard et al. 2011; Woodhouse
2186 et al. 2012).

2187 B. Fluorescence and Canopy Function

2188 Plant physiological stress studies mainly
2189 focus on pulse-modulated chlorophyll fluo-
2190 rescence, but the light levels needed for
2191 saturated pulses are far too high such that
2192 this method is not practical for EO
2193 (Schreiber et al. 1994; Baker 2008). As a
2194 potential alternative, there has been a major
2195 interest on solar-induced chlorophyll fluores-
2196 cence (Fs). Fs results from the excitation of
2197 chlorophyll molecules within assimilating

2198leaves in the canopy and it is produced at
2199the core of Photosystems I and II, primarily
2200at photosystem II. Chlorophyll fluorescence
2201is the remaining part of intercepted light
2202energy, typically less than a few percent
2203that is not used photochemically nor
2204dissipated non-photochemically. Fluores-
2205cence occurs at longer wavelengths than the
2206excitation light wavelength (typically
2207650–800 nm for sunlight). Although
2208minor, Fs is often inversely related to photo-
2209synthesis, except when non-photochemical
2210quenching of fluorescence occurs. Under
2211stress, or in conditions where irradiance
2212exceeds that required for photosynthesis,
2213plant tissues increase heat production to dis-
2214sipate excess energy. This tends to decrease
2215Fs, at least initially. Therefore, the resulting
2216level of Fs is a balance between the radiation
2217used for photosynthesis, heat production,
2218and chlorophyll fluorescence. Steady-state
2219measurements of Fs are therefore highly
2220responsive to changes in environmental
2221conditions and can be used as a
2222near-direct indicator of plant photosynthetic
2223function (Moya et al. 2004; Guanter et al.
22242012, 2014).
2225This rapid response of Fs to changing
2226environment (temperature, light) and canopy
2227state (water, internal temperature, nutrients
2228etc.) has elicited significant interest in the
2229possibility of relating remotely sensed
2230measurements of Fs to related to canopy
2231function and stress in particular. However,
2232the induced fluorescence signal is only
22331–5 % of the total reflected solar signal in
2234the NIR, making it difficult to separate from
2235the background reflected signal (Meroni
2236et al. 2009). Malenovsky et al. (2009) review
2237some of the challenges to measuring Fs from
2238the solar reflected signal. Despite these
2239issues, there have been several attempts to
2240employ these measurements, including the
2241ESA FLEX (Fluorescence Explorer) mis-
2242sion, primarily based on using narrow, spe-
2243cific dark lines of the solar and atmospheric
2244spectrum in which irradiance is strongly
2245reduced (the so-called Fraunhofer lines).
2246Three main Fraunhofer features have been
2247exploited for Fs estimation: Hα due to
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2248 hydrogen (H) absorption (centred at
2249 656.4 nm) and two telluric oxygen (O2)
2250 absorption bands O2-B (687.0 nm) and
2251 O2-A (760.4 nm). These lead to variants of
2252 the so-called Fraunhofer Line Depth (FLD)
2253 methods, in which Fs is estimated from some
2254 form of ratio of the measured signal in a
2255 Fraunhofer band to that measured in a refer-
2256 ence band just outside the Fraunhofer band
2257 (see Meroni et al. 2009 for details of these
2258 methods). Key limitations for spaceborne
2259 applications include the requirement for
2260 very accurate spectral calibration, and the
2261 removal of atmospheric and directional
2262 effects. However, a major advantage of
2263 exploiting existing (and future) imaging
2264 spectroradiometers is that they have become
2265 relatively common and acquire spatial image
2266 data over wide areas. Guanter et al. (2007)
2267 demonstrated that Fs retrieval was possible
2268 from the MERIS sensor aboard ESA’s
2269 Envisat platform. Their approach incor-
2270 porated Fs retrieval into an atmospheric radi-
2271 ative transfer scheme so that Fs and surface
2272 reflectance were retrieved consistently from
2273 measured at-sensor radiance. This holds the
2274 promise for more systematic retrievals from
2275 newer sensors such as ESA’s Sentintel 5 pre-
2276 cursor mission, due for launch in 2015
2277 (http://esamultimedia.esa.int/docs/S5-prec_
2278 Data_Sheet.pdf).
2279 A new approach to retrieve Fs was
2280 recently developed that does not rely on the
2281 reflected solar signal, but uses estimates of
2282 changes in the depth of solar Fraunhofer
2283 lines, which tend to decrease due to
2284 in-filling by Fs (Joiner et al. 2011;
2285 Frankenberg et al. 2011a, b). These methods
2286 rely on high spectral resolution observations
2287 in the 755–775 nm range, which can resolve
2288 individual Fraunhofer lines overlapping with
2289 the Fs emission region. A key advantage of
2290 this method is that Fraunhofer line depth is
2291 unaffected by atmospheric scattering and
2292 absorption in certain narrow spectral
2293 windows. If these windows can be observed,
2294 then it is possible to estimate the in-filling
2295 due to Fs emission, which can of course only
2296 arise from vegetation. Such an approach has

2297only become feasible since the launch of the
2298Japanese Greenhouse Gases Observing
2299SATellite “IBUKI” (GOSAT), carrying the
2300Thermal and Near infrared Sensor for
2301carbon Observation (TANSO) (http://www.
2302gosat.nies.go.jp/index_e.html). The TANSO
2303Fourier Transform Spectrometer (FTS) was
2304designed for measuring column-averaged
2305atmospheric CO2 on global scales. The pos-
2306sibility for retrieving Fs was a serendipitous
2307after-thought. TANSO-FTS observations are
2308by no means ideal for Fs due to their large
2309spatial extent (tens km footprint), and lim-
2310ited spatial and temporal coverage due to the
2311instrument design. Despite these issues, the
2312first retrievals of Fs have shown large-scale
2313patterns consistent with expectations of sea-
2314sonal and regional variations in productivity
2315(Joiner et al. 2011). An example global map
2316of Fs derived from TANSO-FTS data is
2317shown in Fig. 11.10.
2318The results suggest that estimates of Fs

2319correlate strongly with independent
2320estimates of GPP (Frankenberg et al.
23212011b; Guanter et al. 2012, 2014). Critically,
2322Fs also seems to contain information which
2323is independent of standard satellite
2324reflectance-derived estimates of productivity
2325via NDVI or EVI, for example, that basically
2326measure vegetation ‘greenness’ i.e. some
2327property related to vegetation amount. In
2328addition, the Fs signal is likely to be much
2329more sensitive to canopy stress due to its
2330origins in the photosynthetic machinery.
2331This might allow exploration of large-scale
2332impacts of stressors on vegetation productiv-
2333ity. As an example of this, Lee et al. (2013)
2334used satellite fluorescence to show that
2335instantaneous midday productivity (GPP)
2336was reduced by as much as 15 % across the
2337Amazon due to severe drought conditions in
23382010. This interest in fluorescence as an
2339indicator of GPP has led to new ways to
2340exploit data from sensors primarily aimed
2341at atmospheric trace gas applications. Joiner
2342et al. (2013) have extracted fluorescence
2343from the Japanese GOME-2 instrument,
2344at higher precision and over smaller spatial
2345and temporal scales than is possible with
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2346 GOSAT. This work holds the promise of
2347 more detailed maps of fluorescence from
2348 space in the near future, which has in turn
2349 led to an increase in interest as to how to
2350 understand and exploit this signal using
2351 models.
2352 The intriguing and unique information
2353 content of Fs has led to work on modelling
2354 the signal at the leaf and canopy levels in
2355 order to understand the signal and potentially
2356 allow parameter retrievals (Miller et al.
2357 2005). Fs models rely on embedding a
2358 model of leaf-level fluorescence within a
2359 canopy reflectance model. The FLSAIL
2360 model (Rosema et al. 1991) was an extension
2361 of the SAIL canopy reflectance model
2362 (Verhoef 1984) with Fs contributions
2363 modelled through a doubling method. The
2364 model was primarily developed for describ-
2365 ing laser-induced rather than solar-induced
2366 fluorescence. Olioso et al. (1992) used a
2367 simple Beer’s Law approximation for canopy
2368 and leaf-level extinction and allowed for
2369 within-canopy gradient in chlorophyll con-
2370 tent to account for variations in leaf

2371biochemistry. The 3D DART model has
2372also been modified to provide estimates of
2373fluorescence at the canopy level (Miller et al.
23742005). FlurMODleaf is perhaps the most
2375sophisticated Fs model, based on the PROS-
2376PECT model described above (Miller et al.
23772005; Zarco-Tejada et al. 2006). This model
2378has been used in various studies to show the
2379influence of fluorescence on hyperspectral
2380reflectance data (Zarco-Tejada et al. 2006,
23812009; Middleton et al. 2008).
2382Reliable remotely-sensed observations of
2383fluorescence are still in their infancy but they
2384hold out the tantalising prospect of much
2385more direct estimates of canopy function,
2386productivity, and stress than at present,
2387from spaceborne instruments based on
2388visible and near infra-red radiation reflec-
2389tance. NASA’s forthcoming Orbiting Carbon
2390Observatory 2 (due to launch in mid-2014)
2391may be capable of retrieving Fs from solar
2392reflected signal, and there is increasing inter-
2393est in other ways to retrieve Fs and vegeta-
2394tion productivity from both spaceborne and
2395airborne hyperspectral data.

Fig. 11.10. Sun-induced steady-state fluorescence yield (Fs) estimated from GOSAT TANSO-FTS observations
composited during July 2009. Color intensity represents intensity of Fs in arbitrary units. Image from NASA
Earth Observatory, created by Robert Simmon, using data from GOSAT (http://visibleearth.nasa.gov/view.php?
id¼51121)
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V. Conclusions

2396 Various issues arise in using remote sensing
2397 in estimating vegetation structure and func-
2398 tion in a quantitative sense. The primary
2399 limitation clearly is the indirect nature of
2400 most remote sensing measurements. How-
2401 ever, there are also great capabilities that
2402 now exist for mapping, even indirectly, can-
2403 opy state and function over wide areas and
2404 with repeated sampling allowing for studies
2405 of phenology, disturbance and anthropogenic
2406 impacts. We have explored the key role that
2407 vegetation structure plays in providing a
2408 link between incoming radiation and how
2409 this radiation is subsequently scattered or
2410 absorbed within the canopy before exiting
2411 to provide the remote sensing signal. New
2412 developments in understanding and model-
2413 ling the fundamental nature of these
2414 interactions are allowing us to chart a route
2415 from measurements made at the top-of-the
2416 atmosphere to estimates of canopy state and
2417 function. These developments are allowing
2418 us to unpick the relationships between
2419 ‘effective’ canopy parameters, simplified or
2420 approximate manifestations of measurable
2421 physical parameters, and their real measur-
2422 able counterparts. Effective parameters
2423 allow us to model the radiation signal in
2424 practical, rapid models that are required to
2425 operate on global scales. The effective nature
2426 of the parameters, however, makes such
2427 models difficult to test and validate.
2428 Increases in the resolution and physical
2429 accuracy of large-scale land surface models
2430 has highlighted these discrepancies, but also
2431 calls for improvements in representations of
2432 vegetation. This is critical to reducing uncer-
2433 tainty in modelling the responses of terres-
2434 trial vegetation to changes in climate and
2435 land use, particularly via the terrestrial car-
2436 bon cycle.
2437 A range of new remote sensing
2438 measurements providing more direct infor-
2439 mation on canopy structure and function
2440 have been discussed. Terrestrial and airborne
2441 lidar systems, notably full-waveform and
2442 multispectral, are providing new information

2443on canopy structure. Observations of canopy
2444fluorescence have provided promising
2445estimates of canopy function, particularly
2446under stress. These new observations are
2447being exploited through developments in
2448detailed 3D canopy and leaf models, which
2449are making use of the continued increases in
2450computing power to reduce the requirements
2451for approximations.
2452From 2000 on there has been an unprece-
2453dented increase in high quality calibrated
2454consistent and error-quantified satellite
2455measurements of terrestrial vegetation at
2456resolutions of 250 m – 1 km, covering the
2457globe every few days. Notwithstanding
2458limitations, these observations are now central
2459to a huge range of applications. Indeed, many
2460of these observations have been identified as
2461so-called ‘essential climate variables’ (http://
2462www.wmo.int/pages/prog/gcos/index.php?
2463name¼EssentialClimateVariables).
2464However, the future is perhaps a little
2465more uncertain: current activities by major
2466space agencies include plans for continua-
2467tion of many, but not all, of the existing
2468observations of the land surface that have
2469proved so useful. Some of these new systems
2470will provide observations with reduced capa-
2471bility and/or scope than their predecessors,
2472for a variety of practical reasons. Given what
2473we have, and what is to come, we should
2474look forward to the coming decade as one
2475that will likely provide as many
2476developments in our ability to measure and
2477understand terrestrial vegetation as the last
2478decade undoubtedly had.
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