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Abstract

Stem cells may play a role in the development and maintenance of proliferative diseases of the prostate such as prostate
cancer and benign prostatic hyperplasia. Cell membrane protein markers, CD49f, CD133 and CD44, have been shown to
identify putative prostate stem cells, but a lack of consensus exists with regards to the most efficient marker(s) for stem-like
cell identification. This study aimed to determine whether previously reported markers had equal capacity to select
monolayer and spheroid colony-forming cells (CFCs), which were used as surrogate readouts of stem-like cells, and to
characterize the expression of CD49f, CD44 and CD133 by flow cytometry and immunohistochemistry. In benign prostate
cells, CD49f+, CD44+, and CD133+ cells represented 5.663.1%, 28.264.1% and 0.1060.06% of total cells. Both monolayer-
and spheroid-CFCs existed at a frequency of approximately 0.5% of total cells. CD49f+, CD44+, and CD133+ subpopulations
differed significantly in their ability to select benign CFCs. The highest recovery of CFCs was achieved by CD49f+ selection
(98%), whereas CD44+ or CD133+ selection led to poor CFC-recovery (17% and 3%, respectively). For the first time, we show
highly efficient recovery of CFCs from advanced prostate cancer by CD49f+, but not by CD44+ or CD133+ selection.
Furthermore, CD133 expression (AC133 clone) could not be detected in benign prostate cells by either immunohisto-
chemistry or flow cytometry. We conclude that CD49f, but not previously described stem cell markers CD133 and CD44, to
be optimal for selection of monolayer- and spheroid-CFCs in the benign and malignant prostate.
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Introduction

Dysfunctional prostate stem cells are thought to drive the

development and progression of proliferative diseases of the

prostate such as prostate cancer and benign prostatic hyperplasia

[1–3]. The paradigm states that specific eradication of abnormal

stem cells could lead to better treatment of these conditions [2],

and methods to deliver targeted therapies against specific

subpopulations of cells already exist [4].

Targeting abnormal stem cells however requires knowledge of

specific marker proteins expressed in the subpopulation. Previous

investigations have identified a number of putative markers of

prostate stem cells [5–7], including CD49f [5], CD44 [6], and

CD133 [7], alpha2 integrin [6], and Trop2 [5], although currently

there is no consensus on the optimal marker(s) for stem cell

identification. Similar markers (CD44, CD133 [8] and CD49f [9])

could also identify stem-like cells in prostate cancer. The current

literature also lacks evaluation of markers in advanced prostate

cancer, a condition associated with a poor prognosis [10]. It is not

known whether marker(s) of prostate stem-like cells in benign

tissue differ to those in aggressive cancer tissue.

The aims of this study were to characterize the expression of

CD49f, CD44 and CD133 in freshly-isolated cells, and compare

the efficiency of each candidate marker to identify monolayer and

spheroid colony-forming cells (CFCs). CFCs have been used as in

vitro surrogates of stem-like cells in benign [5,11,12] and malignant

prostate cells [8,9]. Both monolayer-CFCs [11,13,14] and

spheroid- CFCs [5,15] demonstrate many of the properties of

stem cells such as self-renewal, proliferation, three-dimensional

gland-formation, and multipotency [11,13,16,17]. In contrast to in

vivo tissue regeneration assays, colony-forming assays allow

enumeration of CFCs within a cell population by colony counts

[5,11,13,18]. Here, fresh prostate tissue was enzymatically

dissociated into a single cell suspension and labelled with antibody

for immunomagnetic cell separation. Subsequently, monolayer-

and spheroid-colony-formation assays were used for measurement

of CFC yields in fractionated cells. For the first time, we evaluate

putative stem cell markers in tissues obtained from patients with at
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least locally-advanced prostate cancer. Our results indicate

significant differences in the capacity of each marker to identify

CFCs; and we demonstrate that selection for CD49f+ cells has the

highest efficiency of CFC isolation in both the benign and

malignant prostate.

Results

Flow cytometric characterization of CD49f+, CD44+ and
CD133+ subpopulations in cells isolated from benign
human prostate tissue

Flow cytometry was used to determine the proportions of

benign prostate cells expressing CD49f, CD44 (clone G44-26) and

CD133 (clone AC133). Scatter gating and propidium iodide was

used to exclude debris and dead cells arising from tissue digestion

(Figure 1A). The specificities of each antibody were validated by

positive and negative controls (Figure S1). CD49f+, CD44+, and

CD133+ cells represented 5.663.1% (n = 5), 28.264.1% (n = 3)

and 0.1060.06% (n = 5) of total cells, respectively. Although

CD133+ cells could be detected, cellular proportions were not

significantly different to that of the isotype control samples (n = 3,

p = 0.74) (Figure 1B).

Monolayer and spheroid CFCs of the benign human
prostate

Prostate stem cells, in the mouse, are capable of generating both

monolayer- and spheroid-colonies in vitro [11]. To demonstrate the

colony forming ability of human prostate cells, freshly-isolated

human prostate cells were seeded, in parallel, in monolayer- and

spheroid-colony-formation assays as previously described [11,19].

Representative images for each assay are shown (Figure 2A, B).

Colony forming efficiencies (CFE, see methods) for monolayer-

and spheroid-colonies were similar between assays (0.5660.06%

(Figure 2A), and 0.6360.8% (Figure 2B), respectively). Colony-

derived cells demonstrated an epithelial morphology, and

expressed cytokeratin 5 (CK5) [20] but not smooth muscle actin

(Figure 2C). When spheroids were enzymatically dissociated and

re-seeded, spheroid-forming capacity was retained for up to 4

generations (n = 3), beyond which no further spheroid develop-

ment was observed. Time-lapse observations during prolonged

culture indicated that spheroid colonies could generate further

colony buds, suggesting formation of branching ductal structures

(Figure 2B). To determine whether monolayer- and spheroid-

colonies are derived from the same population, cells were exposed

to alternating monolayer and spheroid-colony forming conditions

(Figure 2C). This showed that cells within monolayer-colonies

could generate spheroid-colonies, and cells within spheroid-

colonies could generate monolayer-colonies (Figure 2C, n = 3).

Immunohistochemical analysis for multipotency indicated spher-

oids to express lineage markers of both basal (CK5) and luminal

cells (CK18) (Figure 2D).

Marker identification for monolayer- and spheroid CFCs
To compare the efficiency of cell surface markers in identifying

CFCs ‘CFC-recovery’ was measured for each marker (see

methods). First, a magnetic-assisted cell separation (MACS) step

was used to isolate marker positive (CD49f+, CD44+, and

CD133+), and negative (CD49f2, CD442, and CD1332) cell

populations. Technically, MACS yielded similar percentages of

positively-labelled cells to flow cytometric analysis, and resulted in

efficient recovery of control cells (PC3 for CD49f and CD44,

Caco-2 for CD133) (Figure S2). Average post-sort flow cytometric

purities of each fraction ranged between 81.4% and 95.4%

(Figures S3 and S4).

The greatest monolayer CFC-recovery was observed in the

CD49f+ fraction (97.960.3%, Figure 3A). Monolayer CFC-

recovery rates for CD44+ and CD133+ fractions were significantly

lower (13.9617.9% and 3.161.9%, respectively, Figure 3A).

Therefore, the monolayer CFC-yield following CD49f+ selection

was 7-fold and 33-fold than CD44+ or CD133+ selection,

respectively (Figure 3B). Results were similar for spheroid CFC-

recovery, demonstrating the highest spheroid CFC-recovery in the

CD49f+ fraction (98.961.1%), whereas CD44+ or CD133+ cells

recovered 5.762.1% and 0.760.6%, of total CFCs, respectively

(Figure 3C). Therefore, the spheroid CFC-yield following CD49f+
selection was 17-fold and 140–fold higher than CD44+ or

CD133+ cells, respectively, from the same number of unselected

cells. Measurement of relative CFE also showed only CD49f+
selection to significantly enrich for monolayer CFCs relative to

unsorted cells, with a 10.5-fold relative enrichment (Figure 3D).

The AC133 epitope is undetectable by
immunohistochemistry

The results described above indicated that AC133 clone-

selected CD133+ cells lacked statistically significant colony-

forming capacity (Figure 3). To further assess the protein

expression of CD133, immunohistochemistry was conducted using

frozen prostate sections and two CD133 antibody clones, AC133,

and C24B9. Antibody specificities were validated using known

positive controls (Caco-2 and HT29 cell lines) [21], which

confirmed punctuate, apically polarised expression of CD133

(Figure 4A, B), as described previously [21]. Surprisingly, no

immunohistochemical evidence of CD133 expression was found

for either clone in 100 slides of hemi-prostate sections (Figure 4C).

To further characterize the CD133+ population, we determined

its expression relative to CD49f, a marker that we found to be

most selective for CFCs. Dual-label analysis conducted by flow

cytometry showed CD133+ cells and CD49f+ cells to be

independent cell populations (n = 3) (Figure 4D).

Further characterization of CD49+ cells of the benign
human prostate

Expression of CD49f (clone GoH3) was observed in the cell

membranes of basal cells lining the prostatic acini (Figure 5A).

CD49f co-localized with CK5 (Figure 5B), and expression

polarised towards the outer surface of basal cells facing the

stroma, as previously reported [22] (Figure 5A).

CD49f expression was also found in endothelial cells, as

demonstrated by co-localization with CD31 (Figure 5C (i)–(iv)), a

pan-endothelial marker [23,24]. CD49f+/CD31+ cells were

arranged either in a luminal (Figure 5C (i),(ii)) or linear

configuration (Figure 5C (iii),(iv)), consistent with the normal

histological arrangement of endothelial cells (as assessed by a

histopathologist). Moreover, CD31+ cells were exclusive within

CD49f+ cells, accounting for 361.5% of total human prostate cells

(n = 3) (Figure 5D). CD31 expression, however, did not identify

CFCs as shown by the lack of clonogenic capacity of CD31+ cells

in contrast to CD312 cells (n = 3) (Figure 5E). 45.365.2% (n = 3)

of CD49f+ cells did not express the androgen receptor (AR) [25],

and very few were positive for prostate specific antigen (PSA), a

marker of luminal cell marker [26]. These results, in combination,

indicated that CFCs are likely to be CD49f+/CD312, basal-like

cells, with and without AR expression.

Colony-Forming Cells of the Human Prostate

PLOS ONE | www.plosone.org 2 October 2012 | Volume 7 | Issue 10 | e46979



Figure 1. Flow cytometric live-cell analysis of freshly-isolated prostate cells for the identification of CD49f+, CD133+ and CD44+
subpopulations. [A] Sequential gating is used to exclude debris by positive selection of scatter gate R1, select single cells by positive selection of
pulse width gate R2, and exclude dead cells by negative selection of propidium iodide-positive gate R3. [B] Representative dot plots of prostate cells
labelled with each antibody. Scatter profiles of prostate cells expressing CD49f, CD44 or CD133 are also shown on the right. FS = Forward scatter,
SS = Side scatter.
doi:10.1371/journal.pone.0046979.g001
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Selection of CFCs within locally advanced prostate
biopsy tissue

Eight core needle biopsy samples (clinico-pathological charac-

teristics of the five patients are shown in Table 1) were obtained

from patients with locally advanced or metastatic prostate cancer,

of which five samples survived the combination of cell isolation,

MACS, and monolayer colony formation. Tissue was digested

using collagenase to give a single cell suspension (in a manner

similar to that described for benign tissue, above) and MACS was

used to obtain positive and negative fractions using antibodies for

CD49f, CD44, and CD133. A representative colony formation

assay is shown (Figure 6A). The numbers of colonies arising from

each fraction were counted to determine the CFC-recovery

(Figure 6). CFC-recovery was highest for CD49f (90.663.7%)

compared to CD44 (18.3612.5) or CD133 (2.262.5) (Figure 6B),

similar to the data obtained from benign prostate cells.

Discussion

A direct in vitro comparison of cell surface markers, CD49f,

CD44, and CD133, showed CD49f to select CFCs with the

highest efficiency in both benign and malignant prostates. CD49f

expression also identifies the cell of origin of prostate cancer

[27,28], and the tumor-initiating subpopulation in a prostate

cancer model [9]. Our results indicate that CD49f expression

identifies CFCs within high-risk prostate cancer.

CFCs have been used as an in vitro surrogate readout of stem-

like cells in a number of adult tissues [11,13,29–31]. For the

prostate, this is supported by the equivalence of markers that

identify CFCs and tissue regenerating stem cells [5,32]. Bonafide

prostate stem cell markers remain controversial, however, as

genetic lineage tracing experiments have shown that stem cell

subpopulations could be defined by other markers [33].

Here, we demonstrate that monolayer- and spheroid-CFCs

were rare, both present at a frequency of approximately 0.5% of

total prostate cells (Figures 2A, B). CFCs underwent clonal

proliferation, generated branching ductal structures (Figure 2B)

and expressed both basal and luminal lineage markers (Fig. 2D).

CD49f is an integrin, a receptor with a high binding affinity for

collagen as used in our monolayer colony forming assays. An

interaction between CD49f and collagen was theoretically

possible, however, the lack of collagen coating of culture flasks

did not affect the overall result that CD49f optimally selected for

CFCs (Figure S5).

Our findings are consistent with previous studies that indicate

CD49f as a marker of epithelial stem cells [5,11,13,28]. A striking

finding in our study, however, was that the vast majority of CFCs

(90–98%) resided within the CD49f+ population, not only in

benign but also malignant prostate tissue. This implies that

targeting of CD49f+ cells in the malignant prostate would

eliminate the vast majority of the clonogenic cell population.

Further characterization also revealed CD49f+ cells to be

comprised of two cell types, CK5+ basal epithelial cells, and

Figure 2. Characterization of monolayer- and spheroid-CFCs. [A] (i) A representative monolayer colony formation assay on Day 12 is shown.
(ii) The frequency of monolayer-CFCs within unsorted cells was 0.4260.07% (n = 5). (iii) Cells within monolayer colonies expressed cytokeratin 5 (an
epithelial cell marker [20]), but no smooth muscle actin (a stromal cell marker). [B] (i) A representative image of prostate spheroids on day 12. (ii) The
frequency of spheroid-CFCs within unsorted cells was 0.4560.08% (n = 4). (iii) Spheroids when kept in culture developed further branching buds
(indicated by white arrowheads on day 21 and 28), suggestive of branching ductal structures. [C] To show that monolayer- and spheroid-CFCs could
represent the same population of cells, cells from monolayer-colonies were used to develop spheroid colonies (i), and cells isolated from spheroids
were used to form monolayer colonies (ii). [D] Spheroids expressed markers of both basal (CK5) and luminal (CK18) epithelial cells. CFC = colony-
forming cell, CK5 = cytokeratin 5, SMA = smooth muscle actin.
doi:10.1371/journal.pone.0046979.g002
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CD31+ endothelial cells (Figures 5C,D). The fact endothelial cells

expressed CD49f is pertinent in the context of cancer treatment, as

neovascularization is a critical hallmark of cancer [34]. Targeting

CD49f+ cells in prostate cancer could therefore simultaneously

eliminate clonogenic cells and abnormal endothelial cells associ-

ated with neovascularisation.

We found a lack of AR expression in a subpopulation of

CD49f+ cells (Figure 5F), consistent with a study that showed AR

Figure 3. Comparison of markers for selection of monolayer- and spheroid-CFCs. [A] Following MACS, total monolayer-colonies arising
from each (+)ve and (2)ve fraction were counted to determine the monolayer CFC-recovery, i.e. proportion of input CFCs which are fractionated to
the (+)ve fraction (n = 3). The CD49f+ fraction contained 97.960.3% of monolayer-CFCs, in contrast to CD44+ and CD133+ cell fractions which
contained 13.9617.9% and 3.161.9%, respectively. [B] A typical monolayer CFC-assay is shown. (+)ve and (2)ve fractions were derived from
immunomagnetic sorting of 50,000 cells, each plated onto 10 cm culture dishes. [C] Following MACS, total spheroid-colonies arising from each (+)ve
and (2)ve cell fractions were counted to determine the spheroid CFC-recovery (n = 3). The CD49f+ fraction contained 98.961.1% of spheroid CFCs, in
contrast to CD44+ and CD133+ cell fractions which contained 5.762.1% and 0.760.6%, respectively (p,0.001). [D] CD49f+ were 10.6 fold more
enriched in CFCs compared to unsorted cells, and significantly more enriched in CFCs compared to CD49f2 cells (p,0.05) (n = 6). No significant CFC
enrichment was detected upon comparison of CD44+ and CD442 cells (n = 5), or between CD133+ and CD1332 cells (n = 3), respectively. ** p,0.05,
* p.0.05.
doi:10.1371/journal.pone.0046979.g003
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expression in a subset of basal epithelial cells [25]. The lack of AR

expression is considered a feature of androgen-independence of

prostate stem cells [35]. Similar findings are reported in prostate

cancer, where stem-like cells with efficient tumor-initiation

capacity were found within a subpopulation of the AR2/PSA2

cells in CWR22 orthotopic xenografts [36]. The lack of PSA

expression as a marker is also reported in a study that showed

PSA2/lo cells, in contrast to PSA+ cells, to possess higher

tumorigenicity and sphere-colony forming capacity in androgen-

ablated mice [37].

CD133 is a well-characterized marker for hematopoietic [38]

and neural stem cells [39], although controversy exists regarding

its utility in other tissues [40]. A previous study showed selection

for CD133+ cells resulted in enrichment for monolayer-CFCs,

although several pre-selection steps were required immediately

prior to CD133+ selection, including differential centrifugation,

‘‘basal-like’’ cell selection, and rapid attachment selection [7].

Another marker, CD44, has been suggested as marker for stem-

like cells [41], although until now, direct comparisons of CFC

numbers within CD133+ or CD44+ cells, against respective

CD1332 or CD442 cells, using only a single cell sorting step,

have not been performed. We show that CD44+ and CD133+
cells were depleted in CFCs compared to their respective negative

populations, in both benign (Figure 3) and malignant prostate cells

(Figure 6). These results imply that a single therapeutic agent

targeting CD44+ or CD133+ cells in prostate cancer would not

target the majority of clonogenic cells.

Our study also demonstrates an approach to compare different

sorted subpopulations in parallel, with incorporation of validation

assays for quality control. To minimize false positive signals at flow

cytometry, we used live cell analysis in conjunction with dead cell

exclusion [42] (Figure 1A). The specificities of antibodies were

Figure 4. CD133 expression in frozen prostate tissue sections. Validation of CD133 (clones AC133 and C24B9) antibody specificity and
expression in the human prostate. [A] Punctate expression was shown on the cell surface of Caco-2 cells for clones AC133 and C24B9, as described
previously [21]. [B] Orthogonal sectioning following three-dimensional reconstruction of 150 slices (red lines marked by hollow and solid arrowheads
indicate the x-z planes shown below, or to the right of the confocal image, respectively) indicate CD133 expression only along the apical border of
the plasma cell membrane [21]. [C] Immunohistochemical expression of AC133 and C24B9 in prostate tissue. Each frozen tissue section measured
10610 mm in cross-sectional area. Following examination of 20 slides each from 5 patients, we found no cell with definitive membrane expression.
[D] Flow cytometric co-expression analysis of CD133 and CD49f. A representative flow cytometric analysis of 3 patients shows that CD133+ cells and
CD49f+ cells are mutually exclusive populations, with no significant increase in the percentage of cells within the CD49f+/CD133+ cell gate compared
to control. Scale bar = 20 mm.
doi:10.1371/journal.pone.0046979.g004
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Figure 5. Characterization of CD49+ cells in the benign prostate. A. CD49f expression was assessed in frozen sections of prostate tissue at
low (i), medium (ii) and high magnification (iii, iv) by confocal microscopy. Expression was polarised towards the outer surface of the basal cell layer as
reported previously (iii, iv) [22]. B. Co-expression of CD49f with CK5, a basal cell specific marker. C. CD49f expression was also found in endothelial
cells as demonstrated by co-expression with CD31, a pan-endothelial cell marker. Endothelial cells formed either a luminal (rows (i) & (ii)), or a linear
structure (rows (iii) & (iv)) within the stroma. Co-localization of CD31 with CD49f (indicated by yellow color) was only observed in the stromal
compartment but not in the basal layer. D. Human prostate cells labeled with CD31 and CD49f (representative of 3 samples). CD31+ cells alone
represented in 3.061.5% of human prostate cells. CD31+ cells formed a distinct subpopulation within CD49f+ cells, and all CD31+ cells were CD49f+.

Colony-Forming Cells of the Human Prostate
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confirmed using well-characterized positive and negative controls

to control for non-specific binding (Figure S1). Accuracy of MACS

was validated by cell yield and purity analysis (Figures S2, S3, S4).

Finally, we also avoided pre-selection steps to ensure that cells

were sorted purely according to the expression of a single marker.

We found CD133 to be a poor marker of CFCs using the stem

cell-selective antibody clone AC133 [38]. AC133 selected the least

number of CFCs in both benign and malignant cases (Figure 3, 6),

and AC133 expression was not observed by immunohistochem-

istry in our frozen sections. Because glycosylation of epitopes may

influence the detection of CD133 (AC133) expression [43],

immunohistochemistry was also conducted using another com-

mercially available clone C24B9 whose binding is not affected by

glycosylation; however, this also failed to detect CD133 expression

in prostate tissue sections. By flow cytometry, we found CD133+
cells alone to represent a rare population of around 0.1% within

human prostate cells (Figure 1B), similar to previous reports [7],

although this percentage was statistically no different to isotype

cells. Data for isotype controls were not shown in previous studies

of flow cytometric expression analysis of fresh prostate cells [7,43].

Variability in CD133 expression, however, is well-recognized in

other tissues [40,44], and reports of CD133 expression in the

prostate also vary widely from that of no expression [45], to

abundant expression in luminal cells [46]. Our results of

immunohistochemistry and flow cytometry support findings by

Sotomayer et al. [45], which showed AC133 epitope expression to

be either too rare to be detected or not present in the prostate.

Conclusions

We have characterized the expression of putative stem cell

markers, CD49f, CD44, and CD133, in benign and malignant

prostate cells. Functional assays demonstrate CD49f to be the most

efficient marker for identifying the colony-forming cell population

within benign prostatic hyperplasia and advanced prostate cancer

tissues.

Materials and Methods

Ethics statement
Ethical approval was given by the Joint UCL/UCLH commit-

tees on the ethics of human research. The review board approved

the use of human tissue for prostate cancer research, in

compliance with the International Committee on Harmonisation

of Good Clinical Practice (ICH GCP).

Patient consent and tissue collection
Informed written consent was given by each patient prior to

prostate tissue acquisition. Benign prostate tissue was obtained

from 27 patients undergoing holmium laser enucleation of prostate

(HoLEP), to obtain tissue pieces around 1–2 mm in diameter. All

HoLEP samples were confirmed as histologically benign by the

uropathologist. Clinical characteristics of each patient are shown

in Table S1.

Biopsy tissues from clinically locally-advanced prostate cancer

were obtained from 8 patients with PSA more than 50 ng/ml,

undergoing diagnostic transrectal ultrasound-guided prostate

biopsies. An 18-gauge biopsy needle was used to take two core

biopsies from each patient, in addition to standard diagnostic

biopsies (6–12 cores). Adjacent diagnostic biopsies were sent

separately for histopathological correlation. The average wet

weight of each biopsy was 6.561.23 mg.

Preparation of a single cell suspension of human prostate
cells

The tissue was washed, minced and digested at 37uC in PrEGM

solution (Lonza), containing 600 U/ml collagenase IV, 0.4%

bovine serum albumin and 100 U DNAse I, for up to 4 h (2 h for

biopsy tissue) and filtered through 100 mm and then 40 mm meshes

to obtain a single cell suspension. Pharmlyse (BD Biosciences) was

added to lyse red cells and remaining cells were counted using

trypan blue exclusion. The average viable cell yield from HoLEP

tissue was 4.463.76106 cells/prep (range: 0.4–14.16106 cells,

n = 27). For biopsy tissue, two cores from each patient were pooled

prior to mechanical and enzymatic digestion, yielding approxi-

mately 50,000–80000 cells per patient.

Flow cytometric analysis
The following antibodies were used for flow cytometric analysis:

CD49f (clone GoH3, BD Biosciences), CD44 (clone G44-26, BD

Biosciences), and CD133 (clone AC133, Miltenyi Biotec), and

CD31 (clone WM59, BD Biosciences). Freshly-isolated cells were

incubated with fluorochrome-labelled antibody or isotype control

E. Colony-forming cell assays conducted using CD31+ and CD312 populations conducted by sorting 50,000 cells by MACS (n = 3) showed, in all
assays, almost no colonies in the CD31+ fraction. Scale bar = mm. F. A representative flow cytometric co-expression analysis of CD49f with androgen
receptor (AR) or PSA is shown.
doi:10.1371/journal.pone.0046979.g005

Figure 6. CFC-recovery following CD49f+, CD44+, and CD133+
selection, in advanced prostate cancer. [A] A representative
monolayer colony-formation assay arising from positive and negative
fractions of putative markers is shown. Amongst the positively selected
fractions, the greatest numbers of colonies is found in the CD49+
fraction. [B] CD49f+ selection recovers the largest number of
monolayer-CFCs.
doi:10.1371/journal.pone.0046979.g006

Colony-Forming Cells of the Human Prostate
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antibody in PBS containing 1% BSA, and analysed using the

CyAnTM ADP Analyser (Beckman Coulter). Isotype control

antibodies were used to set the positive gates. Forward and side

scatter gates, and pulse width selection, were used to exclude small

debris, and aggregated cells, respectively (Figure 1A). Propidium

iodide was used for dead cell exclusion (Figure 1A) [13].

Multicolor compensation was conducted post-analysis using

median intensity values of the control population. 50,000 to

100,000 live, single cell events were recorded per analysis. Bi-

exponential scales and isodensity contour lines were used to

display dot plots [47].

Monolayer colony-formation assay
Cells were plated onto dishes pre-coated with 10 mg/ml rat-tail

collagen 1 (Sigma-Aldrich) in serum-free Prostate Epithelial Cell

Growth Medium (PrEGM) containing penicillin (10 U/ml) and

streptomycin (10 mg/ml) [19]. NIH/3T3 cells, treated with

Mitomycin C (10 mg/ml), were plated at 15000 cells per cm2 to

act as a feeder layer. A colony was defined as a cluster of more

than 32 cells at day 12 [19].

Spheroid colony-formation assay
Cells were suspended in a 1:1 mixture of PrEGM:Matrigel, and

then plated around the rims of wells of a 6 or 24 well plate [11].

PrEGM was added after allowing to each gel to solidify for

15 min. A spheroid colony was defined as a sphere-shaped three-

dimensional colony of at least 50 mm in diameter at 12 days. For

enzymatic dissociation of sphere colonies into single cells, Matrigel

scaffolds were liquefied using dispase to release the spheroid

colonies. Spheroid colonies were collected and pelleted in

centrifuge tubes and dissociated using collagenase and trypsin, as

described previously [11].

Immunohistochemistry
Frozen tissue sections were used for immunohistochemical

analysis. A cryostat was used to obtain 4–8 mm sections measuring

approximately 262 cm from frozen tissue blocks freshly cut at

cystoprostatectomy. Tissues were all confirmed retrospectively as

histologically benign. Each frozen section was fixed for 60 s in

70% ethanol, washed three times in PBS, and incubated with 5%

BSA for 45 min at RT (room temperature) to block non-specific

binding. The following unlabelled primary antibodies were

purchased; CD49f (clone GoH3, BD Biosciences), CD31 (clone

WM59, BD Biosciences), CD133 (clone AC133, Miltenyi Biotec),

CD133 (clone C24B9, Cell Signalling Technology), and used with

Alexa-Fluor-conjugated secondary antibodies (Invitrogen). Briefly,

samples were incubated overnight at 4uC with primary antibodies,

and for 60 min at RT in the dark with secondary antibody. Images

were taken using the TCS SPE2 confocal microscope (Leica

Microsystems).

Cell separation
Immunomagnetic cell separation (MACS) was conducted

following the manufacturer’s protocol (Miltenyi Biotec). Briefly,

prostate cells were labeled with flurochrome-conjugated antibod-

ies, washed, and incubated with anti-fluorochrome magnetic

nanobeads. Samples were passed through a magnetized MACS

MS column to collect the negative fraction. The column was then

demagnetized and flushed twice to collect the positive fraction. For

determination of post-MACS cell yields, 16106 cells were sorted in

triplicate and viable cell yields were measured by trypan blue

exclusion.T
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CFC-recovery and Colony-forming efficiency (CFE)
CFC-recovery was defined as: (total colonies arising from the

positive fraction)/(total colonies arising from both positive and

negative fractions) [48]. To measure CFC-recovery, 50,000

human prostate cells were immunomagnetically sorted based on

expression of one marker, and each positive and negative fraction

was seeded onto individual 10 cm dishes for monolayer colonies,

or in MatrigelH to generate spheroid colonies. Colonies were

counted on day 12.

CFE was defined as: (colonies per dish)/(cells seeded per dish).

Relative CFE, defined as (CFE of sorted cell fraction)/(CFE of

unsorted cells), was used to standardize CFE across samples.

Data analysis and statistics
Unless otherwise stated, data is presented as mean6 s.d.

Statistical analyses were performed using the Graphpad Prism

software.

Supporting Information

Figure S1 Evaluation of specificity of CD49f (GoH3), CD44

(G44-26) and CD133 (AC133) antibodies using cell lines. Dead

cells and cell doublets were excluded as described in the methods

section. Specificities of all three antibodies were confirmed as

consistent with previous studies; CD49f was highly expressed in

.90% of PC3, LNCaP and DU145 cells [49]; CD44 showed

expression in .98% of PC3 cells, ,1% of LNCaP, and in a

subpopulation of DU145 cells, as previously reported [41,49–51].

CD133 was expressed in .98% of Caco-2 and HT29 cells

[21,43,52,53].

(TIF)

Figure S2 Post-MACS cell yields of (+)ve and (2)ve fractions are

expressed as a percentage of pre-MACS input cells (n = 3). Positive

controls (PC3 for CD49f and CD44, Caco-2 for CD133) were

used to evaluate the technical success of immunomagnetic cell

separation.

(TIF)

Figure S3 Flow cytometric purity assessment of positive and

negative cell fractions following immunomagnetic separation of

freshly-isolated human prostate cells using CD49f and CD44

antibodies (n = 3 patient samples, R1, R3, and R20, see Table S1).

Gates were set using isotype controls of unsorted cells. Purities of

the CD49f+ and CD49f2 fractions were 81.466.6% and

91.166.3%, respectively. Purities of the CD44+ and CD442

fractions were 91.565.6% and 88.262.9%, respectively.

(TIF)

Figure S4 Flow cytometric purity assessment of positive and

negative cell fractions following immunomagnetic separation of a

mixture of Caco-2 and PC3 cells using CD133 (AC133) antibody

(representative images of n = 3). A. Flow cytometric analysis of

unsorted Caco-2 and PC3 cells. Almost all Caco-2 cells express

CD133 (.97%), in contrast to PC3 cells which were CD1332 by

phenotype. B. The two cell lines were mixed at a ratio of 2 PC3 : 1

Caco-2 and sorted by MACS to obtain positive and negative

fractions. Flow cytometric purities of CD133+ and CD1332

fractions post-selection were 95.463.21% and 81.765.40%,

respectively (n = 3). n = 20,000 live cells for all analyses. FS = for-

ward scatter. MACS = magnetic cell separation

(TIF)

Figure S5 A. Human prostate epithelial cells can be cultured

without collagen coating (a representative image of an epithelial

colony is shown using the same protocol described in the methods,

but without collagen pre-coating). B. CD49f is an integrin with

potential to bind collagen [54]. To determine whether collagen-

coating was responsible for the enhanced colony forming capacity

of CD49f+ cells, the colony-forming assay was repeated as

described in Figure 3, without collagen pre-coating. In the

absence of collagen coating, our results again showed the highest

colony-forming cell recovery in CD49f+ cells.

(TIF)

Table S1 Table indicating the sources of prostate tissue, patient

age, and PSA value for each benign tissue. All samples listed were

histologically confirmed to have benign histology. HoLEP = Hol-

mium laser enucleation of prostate.

(DOC)
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