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Abstract

Background: Variations in the pattern of molecular associations are observed during disease development. The
comprehensive analysis of molecular association patterns and their changes in relation to different physiological conditions
can yield insight into the biological basis of disease-specific phenotype variation.

Methodology: Here, we introduce a formal statistical method for the differential analysis of molecular associations via
network representation. We illustrate our approach with extensive data on lipoprotein subclasses measured by NMR
spectroscopy in 4,406 individuals with normal fasting glucose, and 531 subjects with impaired fasting glucose (prediabetes).
We estimate the pair-wise association between measures using shrinkage estimates of partial correlations and build the
differential network based on this measure of association. We explore the topological properties of the inferred network to
gain insight into important metabolic differences between individuals with normal fasting glucose and prediabetes.

Conclusions/Significance: Differential networks provide new insights characterizing differences in biological states. Based
on conventional statistical methods, few differences in concentration levels of lipoprotein subclasses were found between
individuals with normal fasting glucose and individuals with prediabetes. By performing the differential analysis of
networks, several characteristic changes in lipoprotein metabolism known to be related to diabetic dyslipidemias were
identified. The results demonstrate the applicability of the new approach to identify key molecular changes inaccessible to
standard approaches.
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Introduction

With advances in the theory of complex networks [1] and its

application to describe architectural features of molecular systems

[2], network-based approaches have been increasingly used to

capture underlying properties of biological systems. An appealing

feature of this approach is the ability to create a visual

simplification of the observed pattern of molecular associations.

Network theory is also of interest to identify variations between

different physiological states as well as biological systems. In the

transition from health towards disease, variations in molecular

associations are involved [3]; correspondingly, different physio-

logical conditions may manifest as different patterns of observed

correlations [4]. Hence comprehensive assessment of molecular

associations can yield disease-specific signatures providing a

complementary tool to unravel the biological basis of phenotype

variation in the process of disease development, such as the

pathogenesis of type 2 diabetes mellitus (T2DM) [5].

Several studies based on gene expression data have already

explored this idea for a variety of purposes. Examples include the

use of association networks to identify species-specific network

connections [6], gene expression associations to detect body weight-

related genes [7] or the assessment of changes in association patterns

in patients with chronic fatigue syndrome [8]. Recently a more

formal statistical methodology for differential analysis of gene

associations was presented [9] where all the statistical tests were
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based on a set of scores that measure the strength of the genetic

associations in two different networks.

In this study, we introduce a novel statistical approach for the

differential analysis of molecular associations. We demonstrate the

potential of the method to reveal molecular differences related to

physiological states using the example of changes in lipoprotein

metabolism in prediabetes. Specifically, we explore how metabolic

associations differ between individuals with normal fasting glucose

(NFG) and individuals with impaired fasting glucose (IFG), so-

called prediabetes, a state that represents enhanced risk for

developing T2DM [10]. We use extensive data on lipoprotein

subclasses, enabling the assessment of changes in lipoprotein

metabolism, which are known to be strongly connected to the risk

and development of T2DM [11]. We base our method on partial

correlation coefficients quantifying the underlying interdependen-

cies between lipoprotein measures. Using these measures of

association we construct the differential networks and explore

their features based on the networks’ topological properties. To

assess the potential of the differential networks to reveal key

differences related to different physiological conditions, we

compare our results with existing knowledge of metabolic

disorders related to the development of T2DM.

The results illustrate the advantage of using the differential

network approach to explore differences between physiological

groups. Initial inspection based on standard statistical methods

showed relatively few significant differences in concentration levels

of lipoprotein subclasses between subjects with normal fasting

glucose and those with impaired fasting glucose (prediabetes). By

performing the differential analysis of networks, we were able to

identify various changes in lipoprotein metabolism between the

two groups. Many of the lipoprotein variations highlighted by the

differential network analysis are known to be related to diabetic

dyslipidemias. The results indicate the suitability of our method to

investigate subtle molecular variation indicative of (patho)physio-

logical status. Approaches such as those presented here are

expected to be important in detecting and monitoring molecular

disturbances such as those predisposing for diabetes or coronary

heart disease.

Results

The performance of our approach to detect important

molecular differences between physiological conditions is tested

in the context of lipoprotein metabolism. Due to a predominance

of males in the IFG group, we base our biological interpretation on

the male data; the differential network for the female data is shown

in the supplementary material. The initial inspection of the data

using Mann-Whitney test showed no significant differences in

concentration levels of the M = 60 lipoprotein subclass compo-

nents between individual with normal fasting glucose and impaired

fasting glucose at the Bonferroni corrected threshold pv0:01=M.

When the significance the threshold is not corrected for multiple

testing, pv0:01, eleven measures, extremely large VLDL

(phospholipids), very large VLDL (phospholipids and particle

concentration), large LDL (phospholipids and particle concentra-

tion), medium LDL (cholesterol, phospholipids and particle

concentration), small LDL (cholesterol and particle concentration)

and Apolipoprotein B show significant differences in concentration

levels between the two groups (NFG vs. IFG). The results for males

are shown in Table S1.

The few significant differences in lipoprotein concentrations

between the two groups may reflect a generally healthy status of

the young population studied. Nevertheless, the prediabetic state

represents increased risk for the development of T2DM and it has

been suggested that lipid abnormalities are associated with the

progression of T2DM [10]. Despite there being only a few

significant variations in the concentration levels of lipoprotein

subclass components between the two groups, we hypothesize that

the lipoprotein subclass dependencies could be affected and assess

this by building association networks.

Individual Networks
We construct the individual networks to examine the specific

pattern of associations exhibited under each condition (NFG and

IFG). The aim is to explore variations in the observed pattern of

associations between the two groups as well as to define some

topological features of the networks. The construction of the

individual networks is based on a binary representation of the

underlying partial correlations (significant and non-significant

partial correlation) and therefore the correlation strength is not

represented.

The individual networks for NFG and IFG are presented in

Figure 1. Using partial correlation and shrinkage methods for the

network construction, the number of connections is decreased

compared to full or standard partial correlation statistics. This

implies a reduction in the network complexity and a correspond-

ingly more parsimonious biological interpretation. To better

illustrate this achievement, in supplementary material we show

correlation maps where the pair-wise associations have been

quantified using three measures of correlation: Pearson’s full

correlation (Figure S1), standard partial correlation (Figure S2)

and shrinkage partial correlation (Figure S3). The individual

networks obtained using these three measures of association are

presented in Figures S4, S5, S6. The results show the advantage of

using partial correlations in combination with shrinkage methods

instead of other correlation measures, especially when the

variables under study are highly interrelated, such as lipoprotein

subclasses.

The connectivity, k, for each of the nodes can be used to define

quantitative differences between the two individual networks. The

global properties of the NFG and IFG networks are presented in

Table 1. In terms of the total number of connections, both

individual networks represent similar information (134 and 126

connections for NFG and IFG, respectively). A large number of

these links are in common between the two individual networks.

For the IFG network, 83% of the connections overlap with

connections in the NFG network. Six VLDL-related measures are

isolated in both individual networks. Despite the large similarities

between the two individual networks, some differences in the

pattern of association between measures can be identified in

Figure 1. Overall, LDL-related measures show a tendency to

reduce their associations (light-blue nodes in Figure 1) from the

NFG to the IFG state whereas measures in large to very large

HDL show a relative increase in their associations in the IFG

condition (cluster of very large HDL, left in Figure 1). In relation

to VLDL-measures, a more heterogeneous pattern of changes in

pair-wise association is observed. Several measures in medium

VLDL (top and central-right in Figure 1) increased their number

of associations in the IFG condition whereas very small VLDL

(central in Figure 1) and free cholesterol in medium VLDL present

a large reduction in their pair-wise associations from the NFG to

the IFG state. Overall, the differences between the two networks

represent a reduction in pair-wise association for IFG network.

The reduced metabolic connectivity could indicate that the inverse

correlation between small VLDL and large HDL subclasses is less

tightly regulated in the prediabetic state.

Other measures that can be used to quantitatively define the

network’s features are the degree distributions, and the network

Differential Network to Explore Biological States
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centrality. The degree distributions of the individual networks are

shown in Figure 2. It appears that both individual networks are

similar to scale-free networks. This class of networks is character-

ized by a power-law distribution [1] where the probability of a

node having k links is P(k),k2c. An important property of scale-

free networks is the existence of a relatively small number of highly

correlated nodes, so-called hubs [2]. Triglycerides in small HDL

and particle concentration of small HDL represent the main hubs

for both individual networks (central in Figure 1). These highly

connected nodes are expected to be the central components of the

networks which can reflect important points of the network

organization [12]. This central property can be quantified by

computing betweenness centrality in relation to the degree

connectivity (Figure 2). For both individual networks, triglycerides

in small HDL show the highest betweeness centrality. Small HDL

particle concentration also has increased betweenness centrality in

the IFG network, suggesting the central role of these measures in

lipoproteins metabolism in prediabetes state. This is an interesting

new finding since it has recently been noted that large and small

HDL particles also behave differently in their effects on gene

expression [13].

The clustering coefficient is another measure used to describe

the organization of complex networks. It has been suggested that

high value of this measure can be an indicative of the modular

organization of the network [14]. The mean clustering values for

the NFG network and IFG network are 0.26 and 0.29,

respectively. For both individual networks, metabolites involved

in the same clusters (Figures 1) are mainly components belonging

to the same lipoprotein subclass. This tendency to form clusters

among metabolites participating in the same metabolic pathways is

in line with previous studies on metabolic networks [15].

Based on the theory of complex networks, the organization of

metabolic systems has been described as large sets of densely

interconnected modules that combine into larger and less

interconnected units, with both degree of clustering and degree

distribution following power laws [16]. Thus, exploring the

network’s topological properties certain features of metabolic

systems can be determined. However, individual networks do not

enable clear identification of key differences in associations

between the two groups. To address this we proceed by

constructing differential networks.

Differential Network
The differential networks can be used to discover important

differences between the NFG and the IFG states. Each of the

Figure 1. The individual networks inferred from male data. Each of the connections indicates significant pair-wise association between two
lipoprotein measures using the Bonferroni corrected threshold pv0:01=z, where z~M(M{1)=2 is the total number of possible interactions and
M = 60 is the total number of metabolites. The NFG network indicates the pattern of pair-wise association for the normal fasting glucose group. The
IFG network reflects the pattern of association for the impaired fasting glucose group. The node size is proportional to the degree of connectivity
(number of connections). Lipoprotein abbreviations are listed in Table S1.
doi:10.1371/journal.pone.0024702.g001

Table 1. Global properties of the individual networks.

Normal fasting
glucose

Impaired fasting
glucose

Connected nodes 54 54

Isolated nodes 6 6

Total number of edges 134 126

Networks density 0.075 0.071

Average degree 4.41 4.20

Slope of degree distribution 20.12 20.14

Clustering coefficient 0.26 0.29

doi:10.1371/journal.pone.0024702.t001

Differential Network to Explore Biological States
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connections in the differential network indicates a significant

change in the partial correlation between two lipoprotein measures

across the two physiological conditions (see Methods).

The differential network inferred from the male data is

presented in Figure 3. One is immediately struck by its sparse

nature compared to the individual networks. A set of 22 connected

variables are observed, organized in 16 pair-wise interactions. The

remaining 38 metabolites show no differential connections. The

differential network indicates that the differential connections

occur through either a significant increase or decrease in the pair-

wise partial correlation between the lipoprotein measures, or a

significant alteration in the partial correlations sign (changes

described with respect to NFG state). For instance, the largest

cluster in the differential network (upper most in Figure 3)

indicates that large and very large HDL (phospholipids and

triglycerides, respectively) are differentially connected to very small

VLDL through an increase in their pair-wise associations (red

edges). In the same way, this connected component reflects the

decrease in partial correlation between measures of small VLDL

(phospholipids and free cholesterol) and phospholipids in very

small VLDL (blue edges). We can also observe an interesting

change in pair-wise association between medium VLDL (choles-

terol esters) and two measures of very small VLDL. The central

connections in the largest cluster reflect the shift from positive to

negative partial correlation between medium VLDL and phos-

pholipids in very small VLDL as well as the change from negative

to positive pair-wise association between medium VLDL and

particle concentration in VLDL. These variations points to a

change in the underlying regulation of the system.

As with the individual networks, topological properties can be

used to characterize the differential networks. Three VLDL-

related measures present the highest connectivity scores. These

highly connected lipoprotein measures are the central components

of the main cluster in the differential network (Figure 3). The first

of these measures, very small VLDL (phospholipids) is differen-

tially connected to large HDL (phospholipids), small VLDL (free

cholesterol), small VLDL (phospholipids) and very small VLDL

(particle concentration). The second measure, medium VLDL

(cholesterol esters) is connected to medium VLDL (particle

concentration) and very small VLDL (particle concentration).

Figure 2. Topological properties of the individual networks. The degree distribution shows the probability that a node i has k connections in
the network. For both individual networks the degree distribution is well approximated by a power-law. The betweenness indicates how central a
node is in the network. For both individual networks, the nodes with higher degree connectivity are also the most central nodes. Lipoprotein
abbreviations are listed in Table S1.
doi:10.1371/journal.pone.0024702.g002
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The last measure, very small VLDL (particle concentration) is

connected to very large HDL (triglycerides) and very small VLDL

(triglycerides). The differential network indicates that a change in

association has occurred throughout the size range of lipoprotein

subclasses, except the smallest HDL. For instance, both extremely

large and small VLDL particles decrease their partial correlation

with medium LDL cholesterol (cholesterol ester), possibly

reflecting decreased regulation and increased heterogeneity of

the lipoprotein cascade, as observed for the individual networks.

The most prominent cluster in the differential network reflects

differential changes in the correlation pattern between very small

to medium VLDL subclasses with large and very large HDL

subclasses. For instance, an increase is seen in partial correlation of

phospholipids in very small VLDL with phospholipids in large

HDL. Phospholipids are key metabolites in shaping HDL [17]. In

addition, we find that large VLDL and very large HDL change in

partial correlation (right most cluster), and that cluster also

involves LDL subclasses. While high levels of large VLDL particles

are known to cause increased risk for diabetes [18,19], the role of

small VLDL is less recognized. The finding of decreased metabolic

regulation between small VLDL and large HDL emphasizes the

continuous nature of the lipoprotein cascade from VLDL. In

addition, the lack of differential associations for composite

measures such as apolipoprotein B and A-1 illustrates the benefit

of analysing the metabolic data on the lipoproteins subclass levels.

Overall, our results show that lipoprotein association patterns are

Figure 3. The differential network inferred from males with normal fasting glucose (NFG) and impaired fasting glucose (IFG). Each of
the connections indicates a significant change in partial correlation between two lipoprotein measures across the physiological conditions. Edge
colours represent how the partial correlation has changed across the two groups. Lipoprotein abbreviations are listed in Table S1.
doi:10.1371/journal.pone.0024702.g003

Differential Network to Explore Biological States
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significantly different from NFG even in the prediabetic state. The

observed differences, with less metabolic regulation, reflect the

gradual disease progression towards diabetes, associated with

increased insulin resistance for prediabetics and interconnected

changes in lipoprotein metabolism.

Discussion

Due to the lack of symptoms during early stages of the disease, a

large number of individuals suffering from T2DM are undiag-

nosed [20]. The identification of metabolic disorders at an early

stage is essential for risk assessment, diagnosis and effective

treatment of T2DM. The results from the differential network

analysis are consistent with existing knowledge on the develop-

ment of T2DM. Studies based on lipoprotein profiles have resulted

in the recognition of a complex pattern of change in size and

particle concentration within the major lipoprotein classes in

patients with diabetes [19,21]. These disorders are related to

increased levels of medium and large VLDL and small LDL and

reduction in size of HDL. It has been suggested that elevated

glucose can lead to an increase in the levels of triglycerides in liver,

resulting in the shift from small VLDL particles to enlarged VLDL

[22]. These variations in size range in lipoprotein subclasses,

which relate to diabetic dyslipidemias are captured by the

differential network. The pronounced presence of VLDL-related

measures in the differential connections reflects the early variations

in the lipoprotein metabolism at prediabetic state.

Molecular profiles are complex and information-rich, requiring

effective tools to analyse, visualize and compare the underlying

biological processes. A formal statistical approach for the

differential analysis of associations via network representation

has been presented with a demonstration of its biological

application to assess changes in molecular associations between

different physiological conditions. The potential of the differential

network approach has been illustrated in the context of lipoprotein

metabolism by identifying differences between individuals with

normal fasting glucose and individuals with impaired fasting

glucose (prediabetes), which are at increased risk of developing

T2DM. By the construction of the differential networks we have

demonstrated that alterations in the lipoproteins metabolism occur

early in the progression towards disease onset, preceding the

clinical diagnosis. Studies using network topological properties can

be used as a complementary analytical technique for shedding

light on the etiology of differences between different physiological

states. In addition, the method proposed in this paper can easily be

applied to the analysis of other molecular profiling techniques such

as transcriptomics and proteomics. The approach introduced here

can provide insight into the biological basis of phenotypic variation

and aid the generation of new hypotheses about molecular control

and regulation in the context of systems biology.

Materials and Methods

Study population
Subjects are participants from the Northern Finland Birth

Cohort consisting of children due to be born in the provinces of

Oulu and Lapland in 1966. The methods and aims of this birth

cohort study have been published previously [23]. Blood samples

were drawn after overnight fasting when individuals were 31 years

old. Serum samples for blood glucose analysis were stored at +4uC
until analyses later the same day were performed by glucose

dehydrogenase (Granutest 250, Diagnostica Merck), and at

280uC until lipoprotein subclass, particle and lipid concentration

analyses for the present study were performed. Non-fasting,

diabetic and pregnant individuals were excluded from the study.

Informed consent from all study subjects was obtained and the

study was approved by the Ethical Committee of the Northern

Ostrobothnia Hospital District.

The data set is classified into two groups according to the

categorical criteria of the American Diabetes Society for

prediabetes classification [24]. The normal fasting glucose (NFG)

group represents individuals with fasting glucose levels lower than

5.6 mmol/L. The impaired fasting glucose (IFG) group includes

individuals with fasting glucose levels from 5.6 mmol/L to

6.9 mmol/L. Subjects with fasting glucose levels greater than

6.9 mmol/L, clinically considered as having T2DM, or missing

data on lipoprotein subclass profile and/or glucose measures were

excluded which left 4,937 subjects for the analysis. The sample size

for each group is NNFG = 4,406 (2,021 males and 2,385 females)

and NIFG = 531 (390 males and 141 females). Due to the well-

known sex-specific difference in lipoprotein profiles we perform

the analysis separately for men and women [25]. We focus on the

male data to illustrate the biological rationale of the differential

network approach; the analysis of females is given in supplemen-

tary material (see figure S7). The clinical characteristics of the

study participants are presented in Table S2.

NMR spectroscopy and lipoprotein subclass profiles
Lipoprotein subclass, particle and lipid concentrations were

measured by 1H NMR spectroscopy. The data were acquired

from native serum samples at 37.0uC using a high-throughput

NMR platform (Bruker AVANCE III spectrometer) operating at

500 MHz [26,13]. A standard NOESY-presat pulse sequence was

used with mixing time of 10 ms and irradiation field of 25 Hz to

suppress the water peak. The spectra were recorded with 80 k data

points using 8 transients acquired with an automatically calibrated

90u pulse. The acquisition time was 2.7 s and the relaxation delay

3.0 s. The spectral data were processed and phase corrected in an

automated fashion [26]. Quantification of particle concentrations

and various lipid components in 14 lipoprotein subclasses were

obtained using a computationally more efficient modification of

the regression approach presented in Vehtari et al [27]. The

subclasses have been calibrated and cross-validated via high-

performance liquid chromatography and are as follows: chylomi-

crons and extremely large VLDL particles (with particle diameters

from approximately 75 nm upwards), five different VLDL

subclasses: very large VLDL (average particle diameter of

64.0 nm), large VLDL (53.6 nm), medium VLDL (44.5 nm),

small VLDL (36.8 nm), and very small VLDL (31.3 nm), IDL

(28.6 nm), three LDL subclasses: large LDL (25.5 nm), medium

LDL (23.0 nm), and small LDL (18.7), and four HDL subclasses:

very large HDL (14.3 nm), large HDL (12.1 nm), medium HDL

(10.9 nm), and small HDL (8.7 nm).

Apolipoprotein B and apolipoprotein A-1 were calculated using

an extended Friedewald algorithm based on triglycerides, total

cholesterol and HDL cholesterol measures quantified from the

spectral data [28]. Abbreviations of all lipoproteins measures are

listed in Table S1.

Statistical Analysis
To explore differences in metabolite concentrations between the

two defined groups (NFG and IFG) we perform a non-parametric

two-sample Mann-Whitney test. We determine significant differ-

ences in the concentrations by setting a conservative Bonferroni

corrected threshold, pv0:01=M, where M = 60 denotes the total

number of measures.

The pattern of associations for each group is investigated by

construction of individual networks. For this analysis, partial

Differential Network to Explore Biological States
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correlation is considered as a measure of the underlying

interdependencies between variables. Partial correlation represents

the correlation between two variables conditioning on the

remaining variables [29]. In this way, we can determine to what

extent metabolite correlations are direct and do not originate via

intermediate variables. To overcome the potential problem of

over-fitting, we employ a linear shrinkage estimator [30] to

calculate the covariance matrix and hence the partial correlations

between lipoprotein measures. This method is based on the

combination of the sample covariance matrix U and the shrinkage

target matrix T to obtain a regularized estimate of the covariance

matrix U*, as follows:

U�~lTz(1{l)U

where l is the shrinkage intensity. The optimal shrinkage intensity

is estimated analytically using of the theorem of Ledoit and Wolf

[31]. Here, we use the shrinkage target T that provides diagonal

unit variance and off-diagonal estimates which shrink to zero. In

this way, partial correlations remaining significantly different from

zero are indicators of strong dependence between the variables.

We define the edges in the individual networks by computing

the p-value for the two-sided test with the null hypothesis:

‘The partial correlation is equal to zero’ versus the alternative

hypothesis: ‘The partial correlation is not equal to zero’ [30]. The

individual networks are built by drawing the edges between those

pairs of measures whose partial correlation exceeds the chosen

criteria for edge inclusion using a conservative Bonferroni

corrected threshold, pv0:01=z, where z~M(M{1)=2 represents

the total number of possible metabolite pairs.

We test the potential of association networks to reveal key

differences between the two groups by performing a differential

analysis of molecular associations. In this analysis we test the null

hypothesis: ‘The partial correlations of two variables in the two

groups are the same’ versus the alternative hypothesis: ‘The partial

correlations of two measures in the two groups are different’ by

performing a two-sample permutation test. Given NNFG samples

from the first state, and NIFG samples from the second state, all the

samples are pooled together in one set and their labels are

permuted. At each iteration of the permutation test two new

datasets are obtained, NFGi
* and IFGi

* of size NNFG and NIFG,

respectively. For each of the new datasets we compute the partial

correlation matrix, r�NFG and r�IFG , following the same approach

described above for the estimation of the covariance matrix and

hence the computation of the partial correlation matrix. Finally,

we calculate the absolute difference between the partial correla-

tions among the new groups, r�NFG{r�IFG

�
�

�
�. We repeat this

procedure 100,000 times.

In order to find those metabolite associations that significantly

differ between the two physiological conditions we compute the

absolute difference between the partial correlations among the two

original groups, robs
NFG{robs

IFG

�
�

�
�. The p-values that indicate which

associations differ significantly between the two groups are

obtained by:

p~prob( r�NFG{r�IFG

�
�

�
�w robs

NFG{robs
IFG

�
�

�
�)

estimated using the distribution from the permutations. To define

which edges are included in the differential networks we set a cut-

off on the two-tailed p-value. For the same sample size, the power

to estimate correlations is lower than that to estimate a change in a

single variable. Therefore, we choose to set the cut-off for the

inference of the differential network based on the uncorrected

threshold, pv0:01. An edge in the differential network is included

if the partial correlations between two given metabolites are

significantly different across the two groups. The association

network inferred under this set-up is referred to as the differential

network.

To quantitatively describe and explore features of both

individual and differential networks, we examine the following

topological properties [32]:

N The degree, ki, is the network measure that indicates the

number of connections that a node i has with the other nodes

in the network.

N The degree distribution P(k) represents the probability that a

node i has k links. P(k) can be calculated by computing the total

number of nodes with degree k = 1, 2,… and dividing by the

total number of nodes N.

N The betweenness centrality, bi, is the measure that indicates

how central a node v is in the network and can be calculated

by:

b(v)~
s(v)

s

where s denotes the total number of pairs of nodes and s(v)

denotes the number of shortest paths that pass through v.

N The clustering coefficient, ci, indicates to what extent the

neighbors of a selected node i are connected to each other and

can be obtained for each node i by:

ci~
2Ki

ki(ki{1)

where Ki denotes the links observed among the neighbors of

node i and ki represents its degree. For ki,2, ci, is defined to be

zero.

Computation of the partial correlation matrix was performed

using the R package GeneNet. The individual and differential

networks were built and visualized using the R package igraph. All

analyses were carried out using R version 2.10.0.

Supporting Information

Figure S1 Correlation maps using Pearson’s correlation
as measure of pair-wise association between the lipo-
protein components. The colour key gives the R value for the

correlation between the lipoproteins subclass components calcu-

lated for males with normal fasting glucose (NFG) and males with

impaired fasting glucose (IFG). Lipoprotein abbreviations are

listed in Table S1.

(EPS)

Figure S2 Correlation maps using standard partial
correlation as measure of pair-wise association between
the lipoprotein components. The colour key gives the R value

for the correlation between the lipoproteins subclass components

calculated for males with normal fasting glucose (NFG) and males

with impaired fasting glucose (IFG). Lipoprotein abbreviations are

listed in Table S1.

(EPS)

Figure S3 Correlation maps using shrinkage partial
correlation as measure of pair-wise association between
the lipoprotein components. The colour key gives the R value

for the correlation between the lipoproteins subclass components
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calculated for males with normal fasting glucose (NFG) and males

with impaired fasting glucose (IFG). Lipoprotein abbreviations are

listed in Table S1.

(EPS)

Figure S4 The individual networks obtained using
Pearson’s correlation as measure of pair-wise associa-
tion between the lipoprotein components. Each of the

connections indicates significant pair-wise association between two

lipoprotein measures using the Bonferroni corrected threshold,

pv0:01=z, where z~M(M{1)=2 is the total number of possible

interactions and M = 60 is the total number of metabolites. The

NFG network indicates the pattern of pair-wise associations for the

normal fasting glucose group. The IFG network reflects the

pattern of association between for the impaired fasting glucose

group. Lipoprotein abbreviations are listed in Table S1.

(EPS)

Figure S5 The individual networks obtained using
standard partial correlation as measure of pair-wise
association between the lipoprotein components. Each of

the connections indicates significant pair-wise association between

two lipoprotein measures using the Bonferroni corrected threshold,

pv0:01=z, where z~M(M{1)=2 is the total number of possible

interactions and M = 60 is the total number of metabolites. The

NFG network indicates the pattern of pair-wise associations for the

normal fasting glucose male group. The IFG network reflects the

pattern of association between for the impaired fasting glucose

group. Lipoprotein abbreviations are listed in Table S1.

(EPS)

Figure S6 The individual networks obtained using
shrinkage partial correlation as measure of pair-wise
association between the lipoprotein components. Each of

the connections indicates significant pair-wise association between

two lipoprotein measures using the Bonferroni corrected threshold,

pv0:01=z, where z~M(M{1)=2 is the total number of possible

interactions and M = 60 is the total number of metabolites. The

NFG network indicates the pattern of pair-wise associations for the

normal fasting glucose group. The IFG network reflects the pattern

of association between for the impaired fasting glucose group.

Lipoprotein abbreviations are listed in Table S1.

(EPS)

Figure S7 The differential network inferred from
females with normal fasting glucose (NFG) and im-
paired fasting glucose (IFG). Each of the connections

indicates a significant change in partial correlation between two

lipoprotein measures across the physiological conditions. Edge

colours represent how the partial correlation between two

measures has changed across the two groups. Lipoprotein

abbreviations are listed in Table S1.

(EPS)

Table S1 Lipoprotein subclass measures and their
mean concentrations for normal (NFG) and impaired
fasting glucose (IFG).
(DOC)

Table S2 Clinical characteristics of the NFBC1966 study
participants.
(DOC)
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