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Abstract

The ‘communication through coherence’ (CTC) hypothesis proposes that selective communication among neural networks
is achieved by coherence between firing rate oscillation in a sending region and gain modulation in a receiving region.
Although this hypothesis has stimulated extensive work, it remains unclear whether the mechanism can in principle allow
reliable and selective information transfer. Here we use a simple mathematical model to investigate how accurately
coherent gain modulation can filter a population-coded target signal from task-irrelevant distracting inputs. We show that
selective communication can indeed be achieved, although the structure of oscillatory activity in the target and distracting
networks must satisfy certain previously unrecognized constraints. Firstly, the target input must be differentiated from
distractors by the amplitude, phase or frequency of its oscillatory modulation. When distracting inputs oscillate incoherently
in the same frequency band as the target, communication accuracy is severely degraded because of varying overlap
between the firing rate oscillations of distracting inputs and the gain modulation in the receiving region. Secondly, the
oscillatory modulation of the target input must be strong in order to achieve a high signal-to-noise ratio relative to
stochastic spiking of individual neurons. Thus, whilst providing a quantitative demonstration of the power of coherent
oscillatory gain modulation to flexibly control information flow, our results identify constraints imposed by the need to
avoid interference between signals, and reveal a likely organizing principle for the structure of neural oscillations in the
brain.
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Introduction

Task-dependent changes in the power and inter-region coher-

ence of oscillatory network activity are observed in many brain

regions and behavioral tasks [1–3]. A possible function of such

activity is to modulate functional connectivity among anatomically

connected regions [4–6]. This may play an important role in

cognition by allowing the structure, and hence function, of brain

networks to be dynamically reconfigured in response to different

task demands.

The ‘communication through coherence’ (CTC) hypothesis

[5,7] proposes that selective communication is achieved through

coherence between firing rate oscillation in the sending region and

oscillatory gain modulation in the receiving region. This could,

theoretically, allow a network to respond selectively to a task-

relevant ‘target’ signal while ignoring other distracting inputs.

However, the conditions under which accurate selective commu-

nication can be achieved by this mechanism remain unclear.

Intuitively, it appears likely that the accuracy with which a target

signal can be filtered from distractors will depend on how they

differ with respect to the oscillatory modulations of their firing

rates. Clearly, if target and distracting inputs have the same

modulation, coherent gain modulation cannot separate them; but

in what way and to what extent must their modulations differ in

order for the target signal to be accurately recovered? Under-

standing which structures of oscillatory activity can support

accurate selective signal transmission is an important step in

evaluating whether activity patterns observed in vivo are consistent

with their proposed functional role in routing information flow.

Despite extensive experimental [8–10] and computational work

[11–14], it remains unclear under what conditions the CTC

mechanism could allow a network to distinguish among converg-

ing population-coded signals, and how its performance depends on

the structure of their oscillatory modulations.

We recently developed a convergent pathway model to

investigate oscillatory routing of information flow [15]. In the

present study we have used a similar paradigm to address these

questions. Our results indicate that where inputs are distinguished

by the frequency, phase or amplitude of their modulations they

can be readily separated by coherent gain modulation, but that

attempting to separate inputs that oscillate incoherently in the

same frequency band results in greatly increased noise and

reduced communication accuracy. Additionally, the oscillatory

modulation of the target input must be strong to ensure a high
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signal to noise ratio relative to stochastic spiking of individual

neurons. These constraints on patterns of activity that efficiently

support flexible routing of information may be an organizing

principle for the rich structures of neural oscillations observed in

vivo.

Materials and Methods

For clarity we first describe the model with minimal use of

equations and explain the rationale behind the choices made in its

design. We then detail the equations and mathematical methods

used to generate the results.

Model overview
We modeled a convergent pathway in which multiple input

networks converged to a single receiving network. The task

required of the model was to selectively route a behaviorally

relevant signal encoded in an input network (the ‘target’ input) to

the receiving network, while ignoring simultaneously active

distracting inputs in other converging networks. While not

specifically a model of any particular region, this network design

minimally recapitulates many converging cortical and sub-cortical

pathways where selective information flow may be required. Input

selectivity was achieved by oscillatory gain modulation in the

receiving network, coherent with oscillatory modulation of the

firing rate of the target input network. To evaluate how accurately

this gain modulation could filter the target input from distractors,

the output of the receiving network was integrated over time and

decoded to produce an estimate of the stimulus encoded by the

target input.

Input networks
Each input network modeled a local population of neurons

representing a separate one-dimensional circular variable using a

firing rate population code (e.g. a cortical hypercolumn). The

average firing rates of individual neurons were given by bell-

shaped tuning curves with respect to the stimulus orientation.

Spike times in each neuron were determined by a Poisson process

whose instantaneous rate could be simultaneously modulated for

all neurons within a given network to simulate a population

oscillation. This modulation was modeled as a Von Mises function

of the phase of the oscillation, characterized by a modulation

strength and frequency. As network oscillations in vivo are

irregular in frequency and amplitude, we allowed the instanta-

neous strength and frequency to fluctuate around their mean

values. These fluctuations were modeled as low-pass filtered

Gaussian white noise. The resulting activity was consistent with in

vivo data showing irregular spiking of single units [16–18] during

sparsely synchronized oscillatory activity [19].

Receiving network
We initially considered a situation in which an external control

input synchronized activity in the target and receiving networks,

such that the oscillatory modulation m(t) of the target input firing

rate was known by the receiving network. The receiving network

must exploit this known temporal structure to generate a pattern of

gain modulation that separates target from distracting inputs, and

hence recover the spatial population code representing the target

stimulus. We later compare the performance of models with and

without such an external synchronizing input.

Physiologically, gain modulation could be achieved by local

interneuron circuitry modulating the distribution of membrane

potentials, degree of shunting inhibition [20], or synaptic noise

[21] experienced by the principal neurons of the receiving

network. Oscillatory gain modulation coherent with the target

input could then be generated by driving such interneuron

circuitry with the oscillating external control signal. Although this

arrangement could, in principle, be implemented in a biophysical

model, we required a model of the receiving network that could be

optimized to generate the temporal pattern of gain modulation

that best separated the target from distracting inputs. If the

receiving network was not optimized, the results would be

uninformative about the performance of the mechanism in general

and would only shed light on the specific implementation.

Two obstacles made optimizing a biophysical model intractable.

Firstly, we do not know a priori what waveform the optimal gain

modulation should take for a given temporal pattern of input

activity. Secondly, it remains incompletely understood how

neuronal and network parameters determine the response of

networks to temporally structured inputs. Therefore, even if we

knew what temporal pattern of activity the interneurons in the

receiving network must generate in response to a given control

signal, it would not be straightforward to design such a network

with the appropriate dynamics. Given these difficulties with

optimizing a biophysical model we instead developed an

algorithmic description of the receiving network’s operation that

could be optimized with respect to the mean squared error of the

target stimulus estimates decoded from its output.

The receiving network model consisted of two components. The

first component was a layer of projection units, which received

convergent population-coded signals from the input networks and

formed the output of the receiving network. Each unit in the

projection layer represented a population of cells innervated by

neurons with similar orientation preferences in each input network

and whose output was an analog firing rate signal. The output

Oj(t) of unit j was given by:

Oj(t)~g tð Þsj tð Þ

where sj tð Þ was the spike input received by the unit and g tð Þ was a

temporal pattern of gain modulation (see below). We allowed the

gain to take both positive and negative values (corresponding to

net excitatory and inhibitory output respectively) such that spikes

arriving during periods of negative gain contributed negatively to

Author Summary

Distributed regions of mammalian brains transiently
engage in coherent oscillations, often at specific stages
of behavioral or cognitive tasks. This activity may play a
role in controlling information flow among connected
regions, allowing the brain’s connectivity structure to be
flexibly reconfigured in response to changing task
demands. We have used a computational model to
investigate the conditions under which oscillations can
generate selective communication through a mechanism
in which the excitability of neurons in one region is
modulated coherently with a firing rate oscillation in
another region. Our results demonstrate that this mech-
anism is able to accurately and selectively control the flow
of signals encoded as spatial patterns of firing rate.
However, we found that the requirement to avoid
interference between different signals imposes previously
unrecognised constraints on the structures of oscillatory
activity that can efficiently support this mechanism. These
constraints may be an organizing principle for the
structured oscillatory activity observed in vivo.
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the integrated output. Though we do not explicitly model the

circuitry, a simple micro-circuit supporting positive and negative

net gain would be a pathway where excitation is balanced by feed

forward inhibition, with gain modulation acting on the inhibitory

neurons.

The second component of the receiving network represented the

local interneuronal circuitry, which received the oscillating top-down

control signal m(t) and converted this into a temporal pattern of gain

modulation g tð Þ, which was applied uniformly to all projection units.

In an optimized filtering network the dynamics of this circuitry must be

such that the pattern of gain modulation generated in response to a

given control input is that which best filters the target from distracting

inputs. Rather than model these dynamics directly we instead

represented them as a filtering process. Optimizing the receiving

network then became a problem of finding the filter that transformed

the firing rate modulation of the target into the gain modulation that

best separated the target from distracting inputs. This problem is

closely analogous to that of matched filtering in the engineering

literature in which a target signal of known waveform must be detected

against a background of noise.

We initially considered gain modulations that were linearly filtered

versions of the firing rate modulation of the target input. For this

model, we could rapidly optimize the frequency response of the filter

using gradient descent on training data (see Materials and Methods),

allowing us to explore the parameter space of input activity patterns.

We then verified that our key results obtained for this linear model

held when we allowed the gain modulation to be an arbitrary

function of the firing rate modulation of the target input.

Decoding
The output of the receiving network was integrated over 100 ms

to give a spatial pattern of activity. This was then decoded to

produce an estimate of the target stimulus. We therefore only

considered the information contained in the average firing rates of

the receiving network output units over the integration window.

We report the lower bound on the Fisher information given by the

reciprocal of the mean squared error of the stimulus estimates.

Locally optimal linear estimators (LOLEs) were used for decoding.

These decoders were sufficiently simple to permit optimization of

the temporal filtering with respect to the root mean squared error

of decoded stimulus estimates using gradient descent (see

Experimental Procedures). Under many noise distributions these

decoders perform close to optimally, as indicated by the minimal

difference in performance when compared with more sophisticat-

ed non-linear methods [22,23]. These decoders are, moreover,

biologically plausible as their performance corresponds to that of

de-noising by networks implementing line attractor dynamics

[24,25].

Model equations
N input networks, each consisting of 10,000 Poisson neurons,

represented independent orientation variables hn. The firing rate

of the ith neuron in input network n was given by:

Rn
i hn,tð Þ~Ri hn{hið Þmn(t)

Where Ri hn{hið Þ is a firing rate tuning curve with respect to

stimulus orientation (range 0–180u) and mn(t) is an oscillatory

firing rate modulation:

Ri h{hið Þ~R0
2

3
(1zcos 2(h{hi)ð Þ)2

Where Ri is the firing rate of the ith neuron, hi is the neurons

preferred orientation and R0 is the average firing rate across the

population.

The oscillatory modulation was a Von Mises function of the

oscillation phase Wn tð Þ:

m Wn(t)ð Þ~ ek cos(W)

I0(k)

Where k is a concentration parameter that determines how tightly

synchronized the activity is, and I0(k) is the modified Bessel

function of order 0 which normalizes the modulation such that its

average value over time is 1. A sinusoidal modulation was also

used where indicated, given by the equation:

m Wn(t)ð Þ~1zsin(W)

To model the irregularity of network oscillations we allowed the

oscillation angular frequency v tð Þ~ dW

dt
and concentration

parameter k(t) to fluctuate around their mean values v0 and k0.

These fluctuations were modeled as:

v tð Þ~v0(1zZe tð Þ) k tð Þ~k0(1zVg tð Þ),

where e(t), g tð Þ were low-pass filtered Gaussian white noise with

amplitude 1 and a cut-off frequency of
v0
2

. The variability of the

frequency and amplitude respectively were therefore determined

by Z and V , which were the standard deviation of fluctuations

divided by the mean value.

Where we report synchronization strength, we use the following

measure:

Synchronization strength~1{circular variance m Wð Þð Þ~ I1(k)

I0(k)

Where Ix(k) is the modified Bessel function of order x. This

measure is 1 if all spikes occur at the same phase and 0 if the firing

rate is equal at all phases.

The combined input spike rate I impinging on the receiving

network was the sum of activity in all input networks:

Ii tð Þ~
X

n

Rn
i hn,tð Þ

The combined spike input s was:

si tð Þ*Poisson(Ii tð Þ)

The receiving network consisted of a layer of 8 units, each of

which received spike input from neurons with similar orientation

preference in each input network. The range of orientation

preference from 0u to 180u was divided into 8 equal width bands

and neurons in each input network with orientation preference in

a given band projected to the same unit in the receiving network.

The combined input sj tð Þ to unit j in the receiving network was:

sj tð Þ~
X
i[j

si tð Þ

Where the sum was over those units i in the input networks that

projected to unit j in the receiving network.

Signaling Constraints on Neural Oscillations
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The output Oj(t) of unit j in the receiving network was:

Oj(t)~g tð Þsj tð Þ

Oj(t) was integrated over time T to produce a spatial pattern of

activity P:

Pj~

ðT

0

Oj tð Þdt

An estimate ĥh of the stimulus encoded in the target input network

was decoded from the integrated activity using a LOLE.

ĥh~
X

j

wjPjzb

where wj are the weights for each unit of the receiving network

and b is a constant.

ĥh~
X

j

wj

ðT

0

g tð Þsj tð Þdtzb

The simulations were performed in discrete time with a resolution

of 1 ms, such that the integral over time was computed as a sum

over time bins:

ĥh~
X

j

wj

X
t

gtstjzb

where stj is the spike count received by unit j in time bin t.

Optimizing the receiving network
Except where specified otherwise, the gain modulation g tð Þ was

a linearly filtered version of the modulation of the target input

m tð Þ. For this model we optimized the receiving network by using

gradient descent to find the frequency response of the filter (the

gain and phase shift as a function of frequency) which optimized

decoding accuracy with respect to the variance of the stimulus

estimates.

We used Plancherel’s theorem to express ĥh in terms of the

discrete Fourier transforms (DFTs) Gk and Sk of the gain

modulation gt and spike input st. (S� indicates complex conjugate,

N is the number of components in the Fourier transforms).

ĥh~
X

j

wj

XN{1

t~0

gtstjzb~
1

N

X
j

wj

XN{1

k~0

GkS�kjzb

As the gain modulation and spike input are both real valued, the

imaginary parts of
PN{1

k~0

GkS�kj at positive and negative frequencies

cancel and only the real parts contribute to the sum.

ĥh~
1

N

X
j

wj

XN{1

k~0

real GkS�kj

� �
zb

Also, real GkS�kj

� �
~real G(N{k)S

�
(N{k)j

� �
so the second half of

the sum is redundant:

ĥh~
1

N

X
j

wj

XN=2

k~0

ckreal GkS�kj

� �
zb

where ck~1 for k~0,N=2, ck~2 for k=0,N=2.

We expressed the Fourier transform of the gain modulation Gk

as the product of the frequency response of the filter Fk and the

Fourier transform Mk of the target inputs firing rate modulation.

The frequency response is a complex valued function of frequency

where abs(Fk) is the gain of the filter at frequency k and arg(Fk) is

the phase shift.

Gk~MkFk

We can then express the stimulus estimate as:

ĥh~
1

N

X
j

wj

XN=2

k~0

ckreal MkFkS�kj

� �
zb

ĥh~
1

N

X
j

wj

XN=2

k~0

ckabs MkS�kj

� �
(real(Fk) cos(arg(MkS�kj)){

imag(Fk) sin(arg(MkS�kj)))zb

We define Qreal
kj ~ckabs MkS�kj

� �
cos(arg(MkS�kj)) Q

imag
kj ~

{ckabs MkS�kj

� �
sin(arg(MkS�kj))

ĥh~
1

N

X
j

wj

XN=2

k~0

Qreal
kj real Fkð ÞzQ

imag
kj imag Fkð Þzb

This can be written in vector notation as:

ĥh~w Qreal f realzwQimagf imagzb

Where w is a row vector whose components are the weights of the

LOLE, Qreal and Qimag are matrices whose components are Qreal
kj

and Q
imag
kj , and f real and f imag are column vectors whose

components are respectively the real and imaginary parts of the

filter frequency response real Fkð Þ and imag Fkð Þ. To further

simplify the expression we concatenate the vectors f real and f imag

to make a single vector f containing both the real and imaginary

parts of the filter frequency response and concatenate the matrices

Qreal and Qimag to make a single matrix Q. We can now express

the decoded stimulus estimate as:

ĥh~w Qf zb

To use gradient descent to find the optimal LOLE weights and

filter frequency response we define a cost function and calculate

the gradient with respect to it. We define the cost function as the

squared error between the true stimulus value and the decoded

Signaling Constraints on Neural Oscillations
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estimate, averaged over a training set of data:

E~
1

N

X
i

(ĥhi{hi)
2~

1

N

X
i

(wQif zb{hi)
2

dE

db
~

2

N

X
i

(wQif zb{hi)~0

b~vhwtr{vwQf wtr

Where vwtr indicates the average over the training set.

E~
1

N

X
i

w(Qi{vQwtrð Þf {(hi{vhwtr))
2

dE

dW
~

2

N

X
i

w(Qi{vQwtrð Þf { hi{vhwtrð Þ(Qi{vQwtr)f )

dE

df
~

2

N

X
i

w(Qi{vQwtrð Þf { hi{vhwtrð Þw(Qi{vQwtr))

Model parameters
The following default parameter values were used except where

stated otherwise:

Average neuronal firing rate R0 = 5 Hz, Synchronization

strength = 0.5, Modulation frequency = 50 Hz, Amplitude vari-

ability parameter V = 0.1.

The frequency variability parameter Z was set to 0.1 for

narrowband oscillations and 0.3 for broadband oscillations.

Narrowband oscillations were used except those where distractors

oscillated incoherently in the same frequency band as the target.

Simulations and analysis
The following procedure was performed to establish decoding

accuracy for each set of input parameters. All simulations were

performed in MATLAB. A training set and a test set of input

activity were generated, each consisting of 5000 samples of 100 ms

each. In each set, half of the samples had target stimulus

orientation h1 and the other half h2. The separation dh~h1{h2

was chosen iteratively such that 75–80% of samples were correctly

classified from the decoded stimulus estimates. The orientation of

stimuli encoded in the distracting input networks were uniformly

randomly distributed in all samples. To reduce spectral leakage

due to finite integration times, we applied a Hann window to the

spike activity in each sample. The weight vectors for the LOLE

and the frequency response of the filter were optimized using a

two-stage gradient descent procedure. Firstly we used gradient

descent to find the filter frequency response f that minimized the

mean squared error between the output of the units comprising

the receiving network and the firing rate each unit received from

neurons in the target input network. This gradient descent stage

was initialized with all components of the filter frequency response

set to zero. We then performed gradient descent simultaneously on

the LOLE weights w and the filter frequency response f to

minimize the mean squared error of target stimulus estimates,

using the gradients calculated above. This second stage of the

gradient descent was initialized with the filter frequency response

found in the first gradient descent and with the weights of the

LOLE set to zero. We used this two stage procedure because it

converged much more rapidly than initializing the simultaneous

gradient descent for w & f with small random weights. To prevent

over-fitting we evaluated the mean squared error for the test set

and halted gradient descent when this started to rise. We evaluated

the mean and variance of the stimulus estimates for both

orientations on the test set:

vĥhiw,s2
i

n o
i~1,2

The lower bound on the Fisher information was given by:

I~
vĥh1w{vĥh2w

� �
=dh

� �2

1
2

(s2
1zs2

2)

When examining decoding accuracy for integration times up to

1,000 ms, the gradient descent took a very long time because of the

larger number of weights to be fitted. We had observed in other

simulations that the amplitude of the filter frequency response f was

consistently zero at high frequencies where there was minimal

power in the target modulation. For all simulations in this figure we

therefore set the filter frequency response to zero for frequencies

above 3 times the target modulation frequency, reducing the

number of weights that had to be fitted. We verified for a subset of

simulations that this minimally affected decoding accuracy.

We also allowed the gain modulation to be an arbitrary function of

the modulation of the target input. To do this we generated training

and test sets as described above, but instead of generating a different

modulation of the target input network for each sample, we used the

same modulation of the target input network while generating

different modulations for the distractors. Instead of optimizing the

filter parameters f that transformed the modulation of the target

input into the gain modulation, we directly fitted the gain modulation

gt using gradient descent. To do the gradient descent we rewrite the

equation for the stimulus estimate in vector form:

ĥh~
X

j

wj

X
t

gtstjzb~w Sgzb

Where w is a row vector with components wj , S is a matrix with

components stj and g is a column vector with components gt. As this

has identical form as ĥh~w Qf zb, we can use the gradient descent

procedure described above to find the gain modulation g that

minimizes the mean squared error of target stimulus estimates.

Decoding accuracy varies somewhat depending on the precise

waveform of the modulation of the target, so we repeated the

procedure 100 times using different instances of the gain modulations

of the target input, and report the mean and standard deviation of the

decoding accuracy over these different modulations.

Results

Selective communication by coherent gain modulation
Figure 1 illustrates the power of coherent gain modulation to

filter an oscillating population-coded target signal from distractors,

and hence achieve selective communication. Though four

different inputs of equal average firing rate converge on the

receiving network, the integrated output reflects only the spatial

pattern of activity in the target input, and the stimulus encoded by

this input can be accurately decoded from the output.

How does this selection occur? The effective gain for each

converging pathway is determined by the overlap between the

input’s firing rate modulation and the gain modulation in the

receiving region, averaged over the integration window. In this

case the gain modulation in the receiving region is approximately

Signaling Constraints on Neural Oscillations
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sinusoidal and in phase with the target input (2nd input network

from the top in Figure 1). The target input contributes strongly to

the integrated output because periods of high firing rate occur

concurrently with large positive gain. Because the average gain is

zero, the distractor whose units fire asynchronously, without any

population firing rate modulation (first input network), contributes

minimally to the integrated output. Likewise, for distractors

oscillating at frequencies well separated from the target (3rd and 4th

networks) the average overlap between firing rate modulation and

the gain modulation is very close to zero, and hence they also

contribute minimally to the integrated output.

Mathematically, the signal from distracting inputs is rejected

because their firing rate modulations are either zero or orthogonal

to the gain modulation in the receiving region. For accurate

selective communication to be achieved by this mechanism, there

must exist a pattern of gain modulation that is strongly driven by

the modulation of the target input but close to orthogonal to the

modulations of the distracting inputs. As we will see in the next

section, this imposes constraints on the structure of oscillatory

activity in the converging inputs.

Oscillation structure determines communication
accuracy

We evaluated the accuracy of selective communication for four

different structures of oscillatory activity in the input pathways

(Figure 2A–D). We first considered a condition in which only the

target input was oscillating while the units in the distractor

networks fired asynchronously. The gain modulation produced by

the optimized filtering network was near-sinusoidal, in phase with

the oscillation in the target input (Figure 2A). Decoding accuracy

depended strongly on the strength of oscillatory modulation of the

target input (Figure 2F). Accuracy was high for strongly modulated

input, dropping steeply as the oscillation strength decreased. We

quantified the depth of modulation of the target input firing rate

(‘synchronization’) using a metric that ranged from 0 for fully

asynchronous activity to 1 if all spikes occur at the same phase of

the modulation (see Materials and Methods, Figure 2E). Over the

range of synchronization from 0.1 to 0.9, Fisher information

increased by a factor of 95.7, with the majority of this increase

occurring in the range from weak to moderate synchronization

(Fisher information increased 26-fold when synchronization

strength increased from 0.1 to 0.5, and 3.65-fold as it increased

from 0.5 to 0.9). Weak target input modulation resulted in poor

decoding accuracy because the signal read out by the receiving

network was small relative to noise from stochastic spiking of

distracting inputs. Across a wide range Fisher information

increased with the average firing rate in the target and distractors

(Figure 2G).

We next evaluated the proposal that changes in the inter-region

coherence of oscillatory activity [5,8,10] (as distinct from changes in

Figure 1. Selective communication by coherent gain modulation. Independent orientation stimuli are represented in separate input
networks as population codes with bell-shaped firing rate tuning curves. These input networks converge to provide a combined input to the
receiving network. To selectively route the information encoded in one input network (the ‘target’ input) to the output of the receiving network, a
top-down control signal imposes an oscillatory modulation on the target network firing rate and a coherent oscillatory gain modulation in the
receiving network. The output of the receiving network is integrated over time to produce a spatial pattern of activity, which is decoded to produce
an estimate of the target stimulus.
doi:10.1371/journal.pcbi.1002760.g001
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frequency or amplitude, or changes in a consistent phase

relationship) could be used to switch on or off information

propagation through a convergent pathway. In our model, this

corresponds to distracting inputs oscillating irregularly in the same

frequency band as the target (Figure 2B). A corollary of this CTC

scheme is ‘non-communication through non-coherence’ [5] where-

by absence of a reliable phase relationship between firing rate

modulation in the sending target network and gain modulation in

the receiving region prevents information transmission.

Fisher information was greatly reduced for pathways in which

distracting inputs oscillated incoherently compared with pathways

in which distracting inputs were asynchronous (Figure 2F,G). The

relative performance in the two conditions depended on the firing

rate of the input networks. For pathways with asynchronous

distractors, information increased linearly, but with incoherently

oscillating distractors, information increased sublinearly with the

firing rate of the input networks (Figure 2G). For average firing

rates of 1 Hz per neuron, the Fisher information was 5.7 times

Figure 2. Oscillation structure determines communication accuracy. (A–D) Example firing rate modulation of the target (red) and distracting
inputs (gray) over the 100 ms integration time. Gain modulation (blue) produced by the optimized receiving network. (E) Firing rate as a function of
oscillation phase for synchronization strengths from 0.1–0.9. (F) Fisher information as a function of the synchronization strength of the target input
for stimulus estimates decoded from receiving network output integrated over 100 ms. Distractor condition indicated by color as shown in key. (G)
Comparison of Fisher information for asynchronous and incoherently oscillating distracting inputs as functions of firing rate of input networks. (H)
Separation of target and distractors in frequency. Fisher information as function of oscillation frequency of distractor networks for narrowband
(purple) and broadband (orange) sinusoidal oscillations and narrowband Von Mises oscillations (blue). Frequency of target input modulation (50 Hz)
is indicated by black arrow. (I) Amplitude spectrum of oscillatory modulations for narrowband Von Mises modulation and narrow and broadband
sinusoidal oscillations (F0 is oscillation center frequency).
doi:10.1371/journal.pcbi.1002760.g002
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higher when distractors fired asynchronously than when they

oscillated incoherently, and this ratio increased to 27.8 when the

average firing rate was 10 Hz. Increasing the synchronization of

oscillations in the input networks improved decoding accuracy

(Figure 2F), but across all oscillation strengths accuracy was much

higher for pathways with asynchronous distractors.

Two aspects of the input network activity were changed

between the asynchronous and incoherent distractors conditions;

the modulation of the distracting inputs but also the variability of

the frequency of the target input which was narrow in the

asynchronous distractors case but broad in the incoherent

distractors case. To determine which of these changes degraded

communication accuracy we evaluated a condition with broad-

band incoherent distracting inputs but narrowband modulation of

the target input (Figure S1A), and a condition with asynchronous

distractors but broadband modulation of the target input (Figure

S1B). Changing from a narrowband to a broadband modulation of

the target signal did not affect communication accuracy with

either asynchronous or incoherent distractors (Figure S1C).

Changing from asynchronous to incoherent distractors dramati-

cally reduced communication accuracy for both narrowband and

broadband modulation of the target input (Figure S1C). These

results indicate that it is the incoherently oscillating distracting

inputs that degrade communication accuracy.

The poor communication accuracy in the incoherent distractors

condition can be understood by considering the overlap between

the gain modulation in the receiving network and the firing rate

modulation of the distractors. From cycle to cycle the distracting

inputs will drift in and out of phase with the target input, and

hence with the gain modulation in the receiving region. This

causes large fluctuations in the effective gain for distracting inputs,

a source of ‘overlap’ noise quite distinct from that due to stochastic

spiking of individual neurons. Although we have measured the

accuracy of signal estimation for a given integration time, an

alternative effect of this additional source of noise is an increase in

the integration time required to reach a given decoding accuracy

when compared with asynchronous distracting inputs, i.e. a

decrease in the rate of information transmission through the

pathway.

The differential dependence of communication accuracy on

firing rate in the asynchronous and incoherent distractors

conditions can be understood by considering more closely the

two sources of noise that degrade the stimulus estimate. Noise due

to stochastic spiking of individual neurons occurs for both

asynchronous and oscillating distractors, and becomes smaller

relative to the signal as the firing rates of the input networks

increase. Overlap noise, in contrast, occurs only for oscillating

distractors and increases in proportion to the signal size with

increasing input firing rates. With incoherently oscillating dis-

tractors, this second source of noise becomes dominant as the

mean firing rate increases, and prevents a further increase in

signal-to-noise ratio.

At very low firing rates, noise in the output of the receiving

network is dominated by stochastic spiking of individual neurons.

In this regime we found decoding accuracy to be comparable for

asynchronous and incoherently oscillating distractors. In support-

ing information we evaluate the firing rate threshold above which

overlap noise dominates (Text S1 and Figure S2). Above this

threshold ‘non-communication through non-coherence’ results in

severe signal degradation compared with schemes in which

distracting inputs are asynchronous or separated from the target

in frequency or phase (see below). This threshold is proportional to

the oscillation frequency, but for physiological frequencies it is low

relative to firing rates relevant for coding in cortex.

Gain modulations generated by the receiving network in the

incoherent distractors condition were often very different in shape

from the firing rate modulation of the target (Figure 3A, 6B). This

is because the optimized frequency response of the filter that

transformed the firing rate modulation of the target input into the

gain modulation strongly emphasized the high and low frequency

components of the target modulation (Figure 3B). Because such

gain modulation may be biologically implausible, we also

evaluated the performance of a receiving network that applied a

gain modulation that oscillated around 0 with the same waveform

as the firing rate modulation of the target input (Figure 3A). This

considerably reduced decoding accuracy, resulting in ,40% lower

Fisher information than the optimized receiving network

(Figure 3C).

We next tested whether separating distracting inputs from the

target in frequency improved performance (Figure 2C,F–H).

Because the Von Mises modulations used in the rest of this study

contain harmonics which broaden the frequency band occupied

by the oscillation, we additionally considered input networks

where the firing rate modulation was a sinusoidal function of

oscillation phase (Figure 2H). As in other simulations the

frequencies of these sinusoidal modulations were allowed to

fluctuate from cycle to cycle around their means.

Decoding accuracy increased steeply as the average modulation

frequency of the distracting inputs was moved to either higher or

lower frequencies than that of the target input (Figure 2H). When

distracting inputs were well separated in frequency from the target,

decoding accuracy was comparable to that for asynchronous

distracting inputs, and Fisher information increased linearly with

input network firing rate (Figure 2G). For Von Mises modulations

accuracy was reduced when the distractors’ modulation frequency

was half that of the target (Figure 2F,H), as a result of interference

between the first harmonic of the distractors’ modulation and the

fundamental frequency of the target modulation (see spectra,

Figure 2I). We compared Fisher information as a function of

distractor frequency for narrowband oscillations, in which cycle-

to-cycle frequency fluctuations were small, and for broadband

oscillations, in which such fluctuations were large. With broad-

band oscillations the target and distractor inputs had to be more

widely separated in frequency to avoid interference (Figure 2H) as

the modulations occupied a broader frequency band (Figure 2I).

Separation in frequency works because sinusoids of different

frequency are orthogonal under the overlap integral operation that

separates target from distracting inputs. Distracting inputs that are

well separated from the target in frequency therefore only

contribute noise due to stochastic spiking and not due to

fluctuations in the overlap of their firing rate modulation with

the gain modulation.

We next explored whether separating inputs in phase allowed

the target signal to be accurately separated from distractors. Phase

coding, in which assemblies of neurons fire at different phases

relative to a global oscillation, has been reported in several neural

systems [26–30], most notably in the hippocampus where place

cells representing past, present and future locations fire at

progressively later phases with respect to the theta oscillation.

We evaluated how accurately gain modulation could separate a

target input from distractors oscillating coherently with it, evenly

separated in phase (Figure 2D). For strongly synchronized activity,

decoding was highly accurate, with better performance than for

asynchronous distractors (Figure 2F). This was because the

absolute value of the gain modulation was small except at the

phase where the target but not distracting inputs were firing

strongly, reducing noise due to stochastic spiking of distracting

inputs.
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Performance dropped rapidly as modulation strength was

decreased, such that for weakly and moderately synchronized

inputs decoding accuracy was worse than for asynchronous

distractors. Unsurprisingly, increasing the separation in phase

between the peak firing of target and distractor inputs relaxed the

degree of synchronization required to reach a given decoding

accuracy (data not shown).

Relationship between target modulation frequency,
integration time and accuracy

We examined how changing the duration over which the output

of the receiving network was integrated affected the accuracy of

selective communication. In the asynchronous distractors condi-

tion, Fisher information increased linearly with integration time as

long as the integration time was greater than approximately twice

the period of the target input modulation (Figure 4A). Below this

threshold integration time decoding accuracy dropped precipi-

tously. For efficient selective communication, the integration time

must be sufficiently long relative to the target input oscillation

period to ensure that the contribution of the target input to the

integrated output is minimally affected by the phase of the target

modulation, and to ensure that the contribution of the distracting

inputs consistently averages to zero over the integration window.

In the incoherent distractors, phase separation, and frequency

separation conditions (Figure 4B–D), decoding accuracy also

dropped dramatically when the integration time was reduced

below approximately two cycles of the target input modulation. In

the frequency separation case with target and distractors well

separated in frequency, the target but not distractor modulation

frequency determined the minimum integration time required.

This frequency dependent minimum integration time required

to achieve efficient communication has implications for how

different signals may be distributed across different frequency

bands. Low modulation frequencies require long integration times,

and hence are not suitable for encoding signals that vary on a

rapid timescale, whereas higher frequency modulations permit

shorter integration times and hence can encode signals that vary

on a shorter timescale. This suggests a possible principle

contributing to the division of labor between different frequency

bands of neural oscillations.

Bottom-up coherence
In the model considered hitherto, an external control input

imposed coherence between the firing rate modulation of the

target input network and the gain modulation in the receiving

network. An alternative approach to generating coherence would

be for the interneuronal circuitry generating the gain modulation

to entrain directly to the combined input in a ‘bottom-up’ fashion.

Specifically, if no distracting inputs oscillate in the same frequency

band as the target, a resonant interneuronal circuit with band-pass

characteristics may be able to filter the modulation of the target

signal from the combined input activity and use this to generate

the appropriate gain modulation.

To explore this possibility we considered an alternative version

of the model (Figure 5A). Rather than receiving an external

control input, the circuitry generating the gain modulation

received an input that was simply the summed spiking activity of

all input networks. As in the original model, this was linearly

filtered to produce a temporal pattern of gain modulation that was

applied to the receiving network projection neurons. As before, we

optimized the filtering such that the resulting gain modulation best

separated target from distracting inputs, and evaluated the

performance of the network by integrating the output for

100 ms and decoding the resulting spatial pattern to estimate

the target stimulus.

When distracting inputs were asynchronous (Figure 5B), or well

separated from the target in frequency (Figure 5D), the

performance of the bottom-up model was comparable with that

of the top-down model. However, when distracting inputs

oscillated in the same frequency band as the target, either

incoherently with it (Figure 5C) or at different phases (Figure 5E),

the bottom-up model was unable to selectively propagate

information about the target input. This was because, with no

reference signal to provide information about the phase of target

Figure 3. Comparison of optimized and biologically plausible gain modulations. (A) Blue trace is the gain modulation generated by the
optimized receiving network; brown trace is a gain modulation that oscillates around zero with the same waveform as the firing rate modulation of
the target. (B) Frequency response of the filter that transforms the firing rate modulation of the target input into the optimized gain modulation. (C)
Comparison of Fisher information for receiving networks using optimized and alternative gain modulations.
doi:10.1371/journal.pcbi.1002760.g003
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input modulation, there was no way for the receiving network to

differentiate between target and distracting inputs.

This bottom-up configuration removes the need for a synchronizing

input to the receiving network by effectively hard-wiring in a frequency

preference, such that it will respond only to inputs modulated at the

correct frequency. Implementing flexible communication would

however still require some control circuitry, either to manipulate the

dynamical state of the input networks such that only the target oscillates

in the pass band, or to shift the resonance of the receiving network to

read out signals encoded at different frequencies.

Arbitrary gain modulations
So far we have presented results for receiving networks which

applied a gain modulation that was a linearly filtered version of the

firing rate modulation of the target input. We asked if the

performance could be improved by allowing the gain modulation

to be an arbitrary function of the modulation of the target input.

To do this, we took a single instance of the target firing rate

modulation over the integration window and used gradient

descent to find the pattern of gain modulation that maximized

decoding accuracy for this particular target input waveform (see

Materials and Methods). Only the modulation of the target input

was frozen; distracting input modulations varied as before for each

sample in the training and test set. We repeated this for 100

individual instances of the target firing rate modulation, each of

which was different because of random variation in its frequency

and amplitude and phase.

The shape of the gain modulations found by this approach was

similar to that found by optimized linear filtering of the target

firing rate modulation (Figure 6A–D). For asynchronous distrac-

tors (Figure 6A) and those well separated from the target signal in

frequency (Figure 6C), gain modulations were close to sinusoidal

with a mean value of zero. For distracting inputs oscillating

incoherently in the same frequency band as the target, the

optimized gain modulation again strongly emphasized frequency

components above and below the central frequency of the target

firing rate modulation (Figure 6B).

Allowing the gain modulation to be an arbitrary waveform did

not qualitatively change the results. As before, the degree of

synchronization strongly affected decoding accuracy, with weak

modulation resulting in low Fisher information (Figure 6E).

Distracting inputs oscillating incoherently in the same frequency

band as the target severely compromised accuracy when

compared with asynchronous distractors (Figure 6E,G). When

Figure 4. Integration time, modulation frequency and communication accuracy. (A–D) Fisher information as a function of integration time.
Target modulation frequency is indicated by line color (see key). For incoherent distractors (A) and phase separation (D) conditions, distractor
frequency was the same as target frequency. For frequency separation condition (C), distractor frequency is indicated by line style (see key). The
duration of one period of the target input modulation is indicated by the vertical dashed lines, color coded by target modulation frequency.
doi:10.1371/journal.pcbi.1002760.g004
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distractor and target modulations were well separated in

frequency, decoding accuracy was comparable to when distractors

were asynchronous (Figure 6E,F).

Discussion

This study provides a quantitative assessment of the proposal

that selective communication can be achieved by coherence

between firing rate modulation in a sending region and gain

modulation in a receiving region [5]. Our results demonstrate that

this is a viable mechanism for gating functional connectivity,

potentially allowing robust routing of population-coded informa-

tion in convergent pathways. However, they show a strong and

previously unrecognized dependence of the accuracy of informa-

tion transmission on the structure and strength of oscillatory

activity across a set of inputs.

Figure 5. Bottom-up coherence. (A) Diagram illustrating receiving network in which gain modulation is a filtered version of the summed
combined spike input. (B–E) Comparison of Fisher information of decoded stimulus estimates for original ‘top-down’ model (solid lines) and ‘bottom-
up’ model (dashed lines).
doi:10.1371/journal.pcbi.1002760.g005
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Our findings question the proposal that incoherent oscillations

functionally decouple anatomically connected regions. While

random variation in the phase between a firing rate modulation

and a gain modulation can reduce the average gain for an input to

arbitrarily low levels, this is achieved at the cost of large

fluctuations in gain from cycle to cycle. Unless firing rates are

very low, these fluctuations are the dominant source of noise in the

recovered signal, and severely limit the fidelity with which

information encoded by the target input can be recovered. These

random fluctuations can be greatly reduced if distracting inputs

are asynchronous, or separated from the target input in frequency

or phase; these more structured arrangements for multiplexing

population codes permit selective communication with much

lower noise and higher accuracy. The fundamental reason for this

is that where inputs are distinguished by the frequency, phase or

amplitude of their oscillations, patterns of gain modulation exist

which are strongly driven by the target input but consistently

orthogonal to distracting inputs. This is not the case for distracting

inputs oscillating incoherently in the same frequency band, in

which case much greater interference occurs between the signals.

As we have only considered receiving networks that use

multiplicative linear gain modulation, we cannot completely rule

out the possibility that a network implementing a more complex

operation could more accurately separate signals oscillating

incoherently in the same frequency band. If we wish to retain

the basic mechanism of coherence between firing rate and gain

modulation, an obvious extension is to consider a class of models

in which the instantaneous input-output relationship of the

receiving network is a non-linear function of the input, and the

gain modulation acts by changing the shape of this nonlinearity.

We have explored the performance of several models in this class,

including those with threshold-linear, power law and threshold-

power law nonlinearities (data not shown). In these experiments

the gain modulation could vary both a linear input gain and the

threshold and/or exponent of the non-linearity. These extensions

to the model did not, however, result in any improvement in

performance over the linear gain modulation outlined above.

Although we cannot claim to have exhaustively explored all

possible models in this class, we think it is unlikely that any

approach based on coherence between firing rate and gain

modulations can efficiently separate signals oscillating incoherently

in the same frequency band.

Though it has not been conclusively demonstrated that

oscillations play a causal role in controlling functional connectivity,

if this hypothesis is correct, the requirement to avoid interference

between signals oscillating with different modulations is a probable

Figure 6. Filtering with arbitrary gain modulations. (A–D) Example input firing rate modulations, gain modulations generated by optimized
linear filter (blue trace), and gain modulations found to optimize decoding accuracy for specific examples of target firing rate modulation (green
traces). (E) Effect of synchronization strength on decoding accuracy for asynchronous distractors (blue), distractors oscillating incoherently in the
same frequency band as the target (red) and distractors oscillating coherently with the target but equally space in phase (yellow). (F) Effect of
distractor frequency on decoding accuracy. (G) Comparison of decoding accuracy for different distractor conditions indicated by color as above for
synchronization strength of 0.5 and average neuronal firing rate of 5 Hz.
doi:10.1371/journal.pcbi.1002760.g006
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organizing principle for the richly structured oscillatory activity

observed in the mammalian brain. Such activity spans several

orders of magnitude in frequency [31], and in several brain regions

the phase of firing is actively modulated relative to a single

coherent oscillation [26,28,29]. These data suggest that the brain

can indeed exploit phase and frequency separation to minimize

interference between oscillatory signals.

Our findings can help identify whether observed task-dependent

changes in oscillatory activity in vivo are consistent with a causal

role in controlling effective connectivity. Signals must be

differentiated by the frequency, phase or amplitude of their

modulation to be efficiently separated by coherent gain modula-

tion, so task-dependent changes in these aspects of oscillation

structure are plausible signatures of oscillatory control of effective

connectivity. Conversely, changes in coherence, i.e. the consisten-

cy of a phase relationship, alone do not efficiently support changes

in effective connectivity by this mechanism, and hence in the

absence of other changes in the structure of oscillatory activity are

more likely to be a consequence rather than a cause of changes in

signal flow. Striking bursts of transient task dependent oscillatory

activity are well documented in many brain regions including in

motor cortex during movement preparation [32,33], the basal

ganglia during cue utilization [34], and in visual cortex during

working memory [35]. These transient increases in oscillation

amplitude may reflect mechanisms for transiently and selectively

enhancing effective connectivity between those networks partici-

pating in the oscillation event. Various studies have reported

switching between distinct oscillation frequencies in a local

network [36–38], potentially reflecting participation in distinct

large scale networks utilizing different frequencies for communi-

cation. Systematic changes in the phase of neurons relative to the

hippocampal theta rhythm have been observed both within the

hippocampus [39] and in extra-hippocampal regions [28,29]. It is

unclear whether these phase shifts should be thought of as a phase

code operating in parallel to and separate from rate coding, or

whether they are a mechanism for multiplexing multiple firing rate

population codes into distinct phases as considered here, allowing

functional interactions (or plasticity, see below) between assemblies

to be controlled through changes in relative phase. A further

interesting example of phase separation was recently identified in

the projection from olfactory bulb, where activity in the spatially

overlapping projections made by mitral and tufted cells is

segregated into opposite phases of the sniff cycle, creating putative

independently accessible information channels to cortex [30].

Changes in oscillatory activity dependent on visual spatial

attention [3,16,40,41] have been proposed to underlie the selective

processing of behaviorally relevant stimuli [5,7]. Multisite electro-

corticographic (ECoG) recording in primates was recently used to

evaluate oscillatory synchronization simultaneously in two V1

regions representing separate visual stimuli and a V4 region

receiving converging input from these areas [41]. These data

provide a detailed description of attention-related changes in

gamma oscillations in a convergent pathway during stimulus

selection. They show a small (,4%) increase in oscillation

frequency of the V1 network representing the attended stimulus

over the V1 network representing the unattended stimulus,

comparable gamma amplitude in both V1 regions, and a striking

increase in gamma coherence between the attended V1 network

and V4. Whether this activity is compatible with the constraints we

have identified depends on whether a consistent phase relationship

occurs between the two V1 sites, an aspect of the activity not

directly explored in the paper. If the phase relationship between

the V1 sites is random, variability in the phase between the

unattended V1 site and V4 would act as a substantial source of

‘overlap’ noise, limiting the accuracy of selective communication.

One possibility discussed by the authors is that theta frequency

resetting of gamma oscillation phase [42] across V1 and V4,

combined with the frequency offset between the V1 networks,

creates periods in which the attended V1 site consistently leads the

unattended site. The consistent phase offset produced in such an

arrangement could be efficiently exploited for selective commu-

nication. Further analysis will be needed to establish whether such

structured activity is in fact generated across the V1 networks

during attention.

We note that gamma oscillations in V1 are particularly

amenable to experimental phase manipulation as they are readily

entrained by flickering visual stimuli [43], as expected given the

response dynamics of gamma oscillating networks in vitro [44]. A

recent study found no effect of manipulating the relative phase of

gamma frequency flicker between target and distracting stimuli on

selective attentional processing [45], although without concurrent

electrophysiological data it is unclear how effectively cortical

activity was manipulated. The combination of flicker manipula-

tions with ECoG recordings is a potentially powerful way of testing

the functional importance of attention dependent changes

observed in V1–V4 gamma coherence.

Our data indicate that the strength of oscillatory modulation of

the target signal critically determines accuracy of selective

communication and hence can serve as another important clue

in evaluating whether in vivo oscillatory phenomena play a causal

role in controlling effective connectivity. Weak oscillations result in

poor signal-to-noise ratios because the firing rate modulation read

out by the receiving network is small relative to noise from

stochastic spiking of individual neurons. This conclusion is likely to

generalize beyond CTC to other mechanisms in which the

principal carrier of information is non-zero frequency components

of the firing rate generated by oscillatory network activity [15].

Estimating the modulation depth of sparsely synchronized

oscillatory activity is technically challenging. Individual neurons

fire irregularly at rates potentially well below the oscillation

frequency, such that the spike pattern of a single neuron provides

little information about the population firing rate modulation. The

widely used measures of spike-field and spike-spike coherence do

not map directly onto modulation strength as they are confounded

by firing rate [46], which substantially impedes attempts to

evaluate modulation strength from much of the published

literature. A common approach to estimating modulation strength

is to look at the distribution of spikes relative to the phase of a

band-pass filtered local field potential (LFP) oscillation. This

method can underestimate modulation strength if the LFP signal is

corrupted by noise, for example from neurons not participating in

the oscillation, or if the analysis combines activity from periods

with and without strong oscillation. Despite these technical

difficulties reported spike phase histograms show a wide range of

modulation strengths across different oscillations, from very strong

modulations during hippocampal theta oscillations [47], and

oscillations in the olfactory system of zebrafish [27] and locusts

[48], to apparently weaker modulation in some studies of gamma

oscillations in the hippocampus [49,50] and entorhinal cortex

[49]. Our results suggest that, where oscillations are genuinely

weak, mechanisms exploiting them for selective routing of signals

would recover only a tiny fraction of the information represented

in the sending population.

Our use of a highly simplified non-biophysical model in this

work was necessary to permit model optimization and hence to

find an upper bound on how accurately coherent gain modulation

could separate target from distracting inputs. However, it raises

the question of whether a biological network or biophysical model

Signaling Constraints on Neural Oscillations

PLOS Computational Biology | www.ploscompbiol.org 13 November 2012 | Volume 8 | Issue 11 | e1002760



could achieve this performance. A biophysical implementation of

the receiving network must generate approximately multiplicative

gain modulation coherent with either a top-down control input, or

with a particular frequency component of the combined input in a

bottom-up fashion. Several biophysical mechanisms including

shunting inhibition and synaptic noise are known to produce

approximately multiplicative gain modulation in individual

neurons [20,21]. Entrainment of oscillatory or resonant local

circuitry in the receiving network is a plausible mechanism for

generating the required temporal patterning of gain modulation.

We recently demonstrated that the dynamical properties of

gamma oscillations in the CA3 region support entrainment to

periodic inputs [44], though the consequences of such entrainment

for the gain of signal transmission remain to be established. These

data suggest that entrainment phase may be controlled by varying

the natural frequency of the network relative to the input, or by

varying the relative coupling of the input to excitatory and

inhibitory populations.

We previously developed a biophysical model [15], which

exploits network resonance effects at the boundary between

asynchronous and oscillating states [51] to selectively respond to

inputs oscillating at a specific frequency. While the biophysical

model implemented a similar functionality to the ‘bottom-up’

coherence configuration considered here, there are some key

differences in the mechanism of operation that bear outlining

explicitly. In both models, information was represented in the

input networks as spatial patterns of firing rate, while the target

input was differentiated from distractors by multiplicative modu-

lation (here represented explicitly, in the biophysical model

generated by sparsely synchronized network dynamics). Both

models exploit the fact that multiplicative modulation selectively

reproduces the spatial pattern of firing rate into those higher

frequency components of the firing rate present in the modulation

[15]. However, the models differ in the way the receiving network

reads out the resulting spatial patterns of firing rate oscillation.

The biophysical model essentially converts the amplitude of input

firing rate oscillation at a given frequency into the average firing

rate of the output neurons through a process of bandpass filtering

followed by half-wave rectification. The bandpass filtering is

implemented by a combination of resonant feed forward inhibition

and synaptic filtering which ensures that the net input current

received by the output neurons is a bandpass-filtered version of the

input activity. The spike threshold then rectifies this input current

to produce an output firing rate. In the current model, readout is

by multiplicative gain modulation followed by integration over

time, exploiting the orthogonality of different frequency compo-

nents under overlap integration to separate target from distracting

signals. Thus although the previous biophysical model utilizes a

similar coding strategy to the current model and achieves similar

functionality to the ‘bottom up’ configuration, the mechanisms

underlying the filtering in the two models differ significantly.

Implementation of biophysical models that operate on the same

principle as the current model is a clear direction for future work.

Several studies working in this direction [12,14,52,53] have

demonstrated some degree of input selectivity on the basis of

modulation, particularly for phase separated inputs [52,53]. Our

understanding is that the selective communication performance

achieved by these biophysical models is substantially lower than

the current optimized model. Further work is required to establish

how efficiently and robustly biophysical networks can utilize

coherent gain modulation to extract information multiplexed into

patterns of firing rate modulation, and what network architectures

are effective in this task.

Throughout this work we have discussed gain modulation that

acts on the input-output relationship for the activity of a

population of neurons. Oscillatory activity can also modulate the

gain of synaptic plasticity [54,55], and spike timing dependent

plasticity with an oscillating post synaptic population will also

produce periodic modulation of the gain for plasticity. Periodic

modulation of the gain for plasticity coherent with the firing rate

modulation of a target input could selectively enhance plasticity for

that input just as coherent modulation of neuronal input-output

gain can permit selective response to a target input. As our results

are due to signal to noise considerations they are equally

applicable to identifying which structures of activity permit

accurate selective plasticity of a subset of inputs by oscillatory

modulation of the gain for plasticity.

In conclusion, accurate and selective communication can be

achieved by coherence between gain and firing rate modulations.

However, to achieve a high signal to noise ratio the oscillatory

modulation of the target signal must be strong, and distracting

inputs must be distinguished from the target by frequency, phase

or amplitude of oscillation. Failure to satisfy these constraints

greatly reduces the accuracy of information transmission. Where

oscillatory activity plays a causal role in modulating functional

connectivity we expect it to be organized to maximize the

accuracy of signal propagation.

Supporting Information

Figure S1 Incoherent distractors not broadband target
degrade communication accuracy. (A–B) Example firing rate

modulation of the target (red) and distracting inputs (gray) over the

100 ms integration time. (C) Fisher Information as a function of

input network firing rates. Condition indicated by color of trace as

shown in key.

(TIF)

Figure S2 Low firing rate threshold. (A) Variance of noise

in integrated output of receiving network due to an asynchronous

(solid line) or an oscillating (dotted line) distracting input as

function of the mean firing rate in the distracting inputs. (B) Ratio

of the noise variances plotted in (A); vertical line indicates firing

rate threshold at which ratio is two. (C) As for (A) but for different

integration times and modulation frequencies indicated by line

color (see key). (D) as for (B) but with population firing rate

expressed in spikes per cycle of oscillation. (E) Firing rate threshold

plotted as a function of the synchronization strength of the

oscillating distracting input for optimized and alternative ‘biolog-

ically plausible’ gain modulation (See Fig. S2).

(TIF)

Text S1 Low firing rate threshold.

(DOCX)
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