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Introduction
Despite mixed response from the public and scientific

communities on climate change, recent reports [1,2]

reiterated the grim links among persistent anthropogenic

CO2 emission, rise in global temperature and the

increased occurrence of extreme seasonal weather.

Together with concerns about energy supply and energy

efficiency, artificial photosynthesis process has been

emerging as one of the most promising solutions. Artificial

photosynthesis is capable of not just generating alterna-

tive source of energy but also reducing and/or recycling

waste products such as CO2. Furthermore, with

120 000 TW worth of practically free solar radiation

received by the earth each year, development of artificial

photosynthesis systems (APS) using CO2 as feedstock

makes an excellent economical affordable and environ-

mentally friendly source of renewable energy.

Photosynthetic reactions, natural or artificial, can be

broken down to three primary processes: light-harvest-

ing, charge generation and separation, and catalytic

reactions [3] (Figure 1). The net efficiency of the

system can be determined by the sum and synergy

of these processes, in term of both thermodynamics and

kinetics. Because of the limited details of natural

photosynthesis steps were known in the early days,

artificial photosynthesis studies focused only to explore

single material capable of performing all three pro-

cesses (Figure 1a), which has been proved to be extre-

mely difficult. Very recently, however, a great deal of

the natural and artificial photosynthesis studies stimu-

lated the research interest in multiple excitations in-

cluding physical contact cascade (Figure 1b) or artificial

Z-scheme (Figure 1c).
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Table 1 contains a short list of possible reduction and

oxidation reactions in CO2 photoconversion in aqueous

solution at neutral condition (pH 7, 1 atm, 25 8C). In

addition to the listed thermodynamic consideration, there

are also considerable kinetic challenges to the conversion

of CO2 to the complex products. Typically, synergistic

multiple proton–electron transfer steps (with individual

activation energies) must be met. This is where the

challenge lies. It has been shown that the water oxidation

process is extremely slow in a heterogeneous system

when compared to proton reduction [4,5��]. One can

imagine that both the multi-electron reduction and

four-hole oxidation processes during CO2 photoconver-

sion are kinetically very challenging caused by fast intrin-

sic charge recombination [4,5��].

Caused by the limited available space, this short review

will only address CO2 photoreduction in a heterogeneous

system. It should be noted that there are substantial

studies on homogeneous CO2 photoreduction system

such as [7]. Interested audience are referred to [7,8,9]

for a more in-depth and comprehensive review.

Single inorganic photocatalyst
Oxides

TiO2, one of the most investigated photocatalysts in

artificial photosynthesis, has been known from the

ancient times as white pigments. It is inexpensive, safe

and fairly stable. Since the early 1920s TiO2 (rutile) has

also been widely known in electronic industry as a

capacitor because of its robustness and ease of mass

preparation [10]. When organic decomposition by the

use of photocatalysis was reported in late 1930s, TiO2

was one of the most active photocatalyst [11]. In 1970s,

Fujishima et al. [12,13] reported both photoelectrochem-

ical water splitting and CO2 photoreduction by TiO2.

Since then, the research on artificial photosynthesis

boomed, with typical focus on TiO2.

Stimulated by the recent breakthroughs in photo-

catalytic water splitting, research on CO2 photore-

duction is developing fairly quickly. Like

photocatalytic water splitting, heterogeneous photo-

catalytic conversion of CO2 was first demonstrated

using large band gap semiconductor materials

(TiO2, SrTiO3, ZnO, or SiC) under strong UV light

[13]. Even today, UV-sensitive materials like TiO2

[14] and niobate perovskites [15] are popular start-

ing points. To date we note only two materials

were reported capable of conducting complete CO2

photoreduction coupled with water oxidation: ZrO2
www.sciencedirect.com
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Various strategy of artificial photosynthesis systems: (a) single excitation system comprising of a wide bandgap photocatalyst, (b) multiple excitation

system comprising narrow bandgap photocatalyst pair connected with physical contact (junctions) and (c) multiple excitation system connected

through electron (redox) mediator, imitating the ‘‘Z-scheme’’ in natural photosynthesis system.
(H2: 19.5 mmol h�1, O2: 10.8 mmol h�1, CO: 2.5 mmol h�1)

[16]and BaLa4Ti4O15 (H2: 10 mmol h�1, O2 7 mmol h�1, CO

4.3 mmol h�1, HCOOH 0.3 mmol h�1)[17�], both with

massive bandgap between 4 and 5 eV.

Wide-bandgap photocatalysts are not ideal and enhance-

ment has to be made to utilise the wider solar spectrum.

One of the popular routes towards visible-responsive

materials is by top-down bandgap engineering approach,

for example by introducing various dopants to the starting

wide bandgap material. A popular example is the nitrida-

tion of ZnGe2O4 (4.4 eV) [18] to ZnGe2O4�xNx (�2.7 eV)

[19]. Other methods were also reported, such as the
Table 1

List of electronic and redox potential requirement of selected

reactions related to artificial photosynthesis. Potentials are

converted to SHE reference, pH 7 [6].

Reactions E8

2H2O ! O2 + 4H+ + 4e� +0.81 V

2H+ + 2e� ! H2 �0.42 V

CO2 + 2H+ + 2e� ! HCOOH �0.61 V

CO2 + 2H+ + 2e� ! CO + H2O �0.53 V

CO2! 4H+ + 4e� ! HCHO + H2O �0.48 V

CO2! 6H+ + 6e� ! CH3OH + H2O �0.38 V

CO2! 8H+ + 8e� ! CH4 + 2H2O �0.24 V

CO2 + e� ! CO2
�� �1.90 V

www.sciencedirect.com 
formation of layered perovskite BaLa4Ti4O15 (3.9 eV)

from the basic titanates [17�], introducing hydrogen sur-

face disorder on TiO2 surface [20] and stabilisation of

meta-stable cubic phase of TiO2 [21]. Although the

bandgap values were lower than unmodified materials,

UV excitation (ca. 250 nm) is still typically required. Most

of these strategies however, are still heavily focused on

water splitting and very little on CO2 photoreduction.

Inherently lower bandgap materials are advantageous

because they are excitable using visible light. The major

drawback however, they are usually not stable in operat-

ing (aqueous) condition. Cuprous oxide for example, is a

good CO2 photoreduction catalyst but suffers greatly from

photocorrosion. Recent publications [22,23] suggest that

it may be possible to devise corrosion protection strategy

by depositing metal oxide overlayers to protect the main

photocatalyst from degradation. Although not perfect,

reasonably high photocurrent can be retained for over

30 times longer than bare electrode, increasing the feasi-

bility of using such low bandgap material in real con-

ditions.

Nonetheless, it should be noted that the above-men-

tioned publication (except the extremely wide bandgap

BaLa4Ti4O15 and ZrO2) only reported photocatalytic CO2

reduction products without information on the water
Current Opinion in Chemical Engineering 2013, 2:200–206
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photooxidation products. Very recently, we have found a

relatively narrow bandgap photocatalyst, KTaO3

(Eg � 3.5 eV), which can simultaneously reduce CO2 to

CO and oxidise water to O2, which is clearly desirable.

[Simultaneous photocatalytic reduction of CO2 and water

oxidation on potassium tantalate, in revision [24].]

Other photocatalysts

Carbon based nanoparticles, for example graphene, gra-

phene oxide and graphitic-carbon nitride have stolen the

limelight from metal-oxide photocatalysts during recent

years [25]. Functionalised carbon nanoparticles have been

shown active for H2 generation and CO2 photoreduction

under visible light, yielding primarily formic acid with a

quantum yield of ca. 0.3% [26]. Graphitic-C3N4 is another

promising material because it shows unexpected catalytic

activity (not photocatalytic) for a variety of reactions, such

as for the activation of benzene, trimerization reactions,

and also the activation of carbon dioxide [27]. Further

visible light sensitisation are available via oxygen doping

[28]. It has also been reported active for hydrogen and

oxygen production (note: two separate half-reactions)

under visible light [29], although no report so far on

CO2 reduction.

A peculiarly conductive material, graphene is reported

useful to mediate charge separation on many semicon-

ducting light absorbers, like TiO2 nanotubes [30], carbon

nitride [31], cuprous oxide [32]. Unlike graphene, par-

tially reduced graphene oxide has semiconducting prop-

erties, and thus is plausible to be used as visible light

responsive photocatalyst. Hsu et al. recently reported CO2

photoreduction to methanol over graphene oxide with

yield of approx. 0.17 mmol g�1 h�1[33]. A sufficiently

active, visible-light responsive non-metal photocatalyst

could potentially lead to an economically viable solution

for solar fuels generation.

More recent reports on the use of graphene or graphene

oxide to promote charge separation were also reported in a

junction and Z-scheme configuration, which is addressed

below.

Electron donors

In order to simplify the study on CO2 photoconversion,

electron donor is widely employed to facilitate charge

separation. These sacrificial donors are typically organic

substances that can be oxidised quickly enough by the

photogenerated holes in the photocatalyst, such that it

reduces the propensity of charge recombination, that is

more photogenerated electrons can be present long

enough to react with CO2. The use of such sacrificial

electron donors however is not an ideal solution, because

evidently the most popular ones like methanol or trietha-

nolamine are valuable chemicals with high energy

density. Recently, researchers from Cardiff University

have put forward a very interesting proposal of using a
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tertiary amine as an electron donor that could itself be

recycled by hydrogenation [34��]. Because hydrogen is

usually present as a major by-product during photocata-

lytic CO2 reduction reaction in aqueous conditions, the

use of recyclable tertiary amine electron donor avoid

unnecessary consumption of precious hydrocarbons. It

should be noted that no quantitative measurement of

CO2 photoreduction were conducted.

Researchers from Argonne National Lab found that

glyoxal – a recombination product of two formyl radicals

– holds significant role in mimicking the multistep,

photosynthetic fixation of atmospheric carbon in nature

(Figure 2) [35]. The proposed ‘‘glyoxal cycle’’ is a more

plausible and facile multiple proton reduction route from

CO2 to CH4 (or other intermediates) compared to the

commonly accepted two-electron scheme (Eq. (1)):

CO2�!
þ2e�

þ2Hþ
HCO2H �!þ2e�

þ2Hþ�H2O
H2CCO �!þ2e�

þ2Hþ
CH3OH �!þ2e�

þ2Hþ�H2O
CH4

(1)

Junctions and Z-scheme

The discovery of Photosystem-II crystal structure in 2004

[36] is probably the pinnacle of dedicated research on

natural photosynthesis. It elucidates that the high turn-

over of natural photosynthesis is caused by the multiple-

stage (cascade) excitation with electrons shuttled through

electron transport chain mechanism [37]. This finding

gives rise to the parallel material design strategy in

artificial photosynthesis, including tandem cells (where

two-photon excitation is applied), multi-junctions invol-

ving combination of two or more materials (Figure 1b),

and artificial Z-scheme (Figure 1c).

These multiple-excitation schemes have also been

adopted for use in artificial photosynthesis system to

harness visible light by pairing two or more photocatalysts

with lower bandgap. Most notably, the pairing of N-

doped Ta2O5 with [Ru-dcbpy] molecular catalyst yields

a noble 1.9% quantum yield of formic acid at 405 nm [38�]
and enzyme modified TiO2 [39].

A group from Chiba University had an interesting idea of

constructing a reverse fuel cell based on polymeric

(Nafion) electrodes, supplying CO2 gas on Zn/Cu/Ga

reduction catalyst and either H2 or water on Pt/C oxi-

dation catalyst [40]. Around 5 mmol g�1 h�1 of methanol

and trace amounts of CO were detected when CO2 and

H2O feedstock was used. Another interesting idea of

using iridium catalyst to reversibly convert CO2 and H2

to formate or formic acid by adjusting the solution pH

[41].

Aqueous FeCl2–FeCl3 electron mediator system has

been demonstrated for various combination of water
www.sciencedirect.com
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Figure 2

CO2 CO 2

CH3
CH4CH3

HCO2

+eCB
−

+eCB
−

+eCB - OH-
−

+eCB

H

H H

H
H

H HH

H

HOHOH OH

O
O

O O

O

O

−
+eCB + H+

+hVB

+ 2H+, - H2O 

+ H++ RH

+ RH + RH

−

+

+ hVB

- CO

- CO

+

+ hVB
+

−−

H O

Current Opinion in Chemical Engineering

Glyoxal cycle. RH represents generic molecular or radical donor of H atoms.

Adapted from with permission from [35] J Phys Chem C. 2012;116:9450–60. Copyright (2012) American Chemical Society.
reduction and oxidation photocatalysts [42]. However,

solid-state Z-scheme concept is more interesting,

because it eliminates (i) the need for inefficient charge

transfer between solid photocatalysts and electron

mediator ions in the aforementioned Z-Scheme and

(ii) other problems like possible degradation of electron

mediators like the [Fe(CN)6]3�/4�. This idea has been

first proven by a group in Osaka using CdS–Au–TiO2

three-component nanojunction system that successfully

reduce methyl viologen and oxidise ethanol [43].

Graphene oxide has also been reported very recently to

perform as solid state electron mediator between BiVO4

and TiO2 for water splitting without sacrificial reagents

[44,45�]. It is also reported that manipulation of particu-

late physical contact in solution by controlling the

solution pH could also result in similar Z-scheme struc-

ture without the use of electron mediator [46]. These

concepts were again only proved in water splitting. Our

preliminary results over a novel visible driven junction

Cu2O–RuOx shed some light on the idea, which shows

CO2 can be much more efficiently converted to CO by the

junction structure compared with single photocatalyst.

[Enhanced CO2 photoreduction to fuel by a visible-light
www.sciencedirect.com 
driven inorganic heterojunction, in revision [47�].] Never-

theless there is very limited study on CO2 photoreduction

using a solid junction structure.

Improvement to photocatalytic performance
Co-catalyst

The most common way to boost photocatalytic perform-

ance is by depositing co-catalysts. More often than not,

bare photocatalysts could not display high catalytic

activity on its own because their surfaces are not suitable

for the specific catalytic reactions expected. Noble metals

are more commonly used as co-catalyst. For H2 pro-

duction for example, most commonly used co-catalyst

during water electrolysis is Pt because very slight or

almost no overpotential is required to reduce protons

to H2. Researchers from Missouri [48,49] found that

reducing the size and high dispersion of nanoparticles,

achieved by spraying Pt via aerosol chemical vapour

deposition (ACVD) on TiO2 nanorods, significantly

improves TiO2 performance for CO2 photoreduction in

aqueous solution, with H2 and methane as the main

product. This not only relates to the increased Pt surface

area, but also the quantised energy level in nano Pt

pushes the work function upwards.
Current Opinion in Chemical Engineering 2013, 2:200–206
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Copper is also one of the popular choices of co-catalyst for

CO2 reduction [50]. However most of the products are

CO at lower potentials (more positive than �1.2 V vs.

NHE)[51]. An important work by Danish researchers

highlighted this is probably because CO binds only

weakly to copper surfaces, preventing the stabilisation

and protonation of adsorbed CO to form adsorbed CHO, a

key step for hydrocarbon formation [52].

Another interesting approach is by exploiting surface

plasmon resonance phenomenon which was heavily

reported in visible driven organic decomposition, how-

ever the detailed mechanism is not clear [53]. Because

noble metals like Pt or Au are required for co-catalyst

anyway, by simply tuning the size and selecting appro-

priate photocatalyst-metal pairing could boost the catalyst

performance in visible light [53,54]. Another new one is

the use of metal–organic hybrid iridium dehydrate pincer

complex for (electro-)catalytic reduction of CO2 to for-

mate [55].

To date, noble metal co-catalysts are always required to

achieve decent photocatalytic activity. Search for a new,

non-noble metal cocatalyst is economically sensible.

Since cobalt phosphate (CoPi) was first reported in

2008 as a water oxidation co-catalyst [56], its popularity

has been rising in the recent years. CoPi is easily formed

from earth-abundant metal ions (cobalt and phosphates)

in aqueous solution. It is proven active as water oxi-

dation catalyst in neutral pH and significantly lower the

overpotential normally required for water oxidation

reaction. Recent works using transient absorption spec-

troscopy highlights that CoPi-induced performance im-

provement may be related to its role to increase

photogenerated hole lifetime by at least 3 orders of

magnitude [57].

Molybdenum and tungsten sulphides [58,59] have also

been reported recently as potential non-noble metal co-

catalyst for water reduction to H2. By itself it could not

work as a photocatalyst, but when paired with CdS, the

pair clearly shows characteristics of a water reduction

catalyst. Considering the price factor, sulphides co-

catalyst provides more performance per unit cost com-

pared to Pt-based co-catalyst. The improved perform-

ance has been linked to intimate structural similarity to

CdS, facilitating quick electron transfer. Other sul-

phides like MoS also found active when paired with

NaTaO3 [60]. On the other hand, there are some con-

cerns about the stability and safety issue about the

sulphide co-catalysts.

Geometrical consideration

One of the ways of improving photocatalyst perform-

ance is by applying nanostructured morphology. This

provides both increased available surface for catalytic

reaction and improved light absorption by acting as a
Current Opinion in Chemical Engineering 2013, 2:200–206 
non-reflective surface or light traps. There are two

things that we can learn from the already established

solar cell technology, improved surface area from nano-

tube arrays [61] and light sensitisation by means of dye

absorption [62]. Nanotubes with large porosity can

benefit the photoconversion efficiency from two

aspects. First, the large surface areas ensure the stronger

light absorption and simultaneously a much shorter path

towards wall surface than the hole diffusion length.

Second, a larger inner space of nanotube is important

to accelerate the ion migration in the tube and overcome

the kinetic bottleneck [63]. Significant improvements in

photoelectrochemical performance have also been

reported when highly porous branched TiO2 was used

[64]. These branches not only increase the effective

surface area, but also improve light absorption. The

other example is ZnO rods. Recent findings show sig-

nificant photocurrent improvement by ZnO grown on

grooved substrate compared to planar nanotube arrays,

linked to improved light trapping performance. The

novel grooved Si design doubles light absorption as

back-reflecting mirror, improving the photoelectro-

chemical efficiency by a factor of 5 [65�].

Concluding remarks
Despite significant progress in the recent years, photo-

catalytic solar fuel generation from CO2 is still far behind

its counterpart water splitting. Furthermore one com-

monly reported problem is the diversity of reaction pro-

ducts, ranging from CO, CH4, methanol, formate/formic

acid which are multi-electron process thus kinetically

very challenging. It is also increasingly difficult to switch

the reaction preference to favour carbonaceous product

rather than highly competitive H2 generation. The crux of

the problem is lack of appropriate co-catalyst, like the

widely used Pt for H2 evolution catalyst.

Achieving the stoichiometric chemistry is another chal-

lenge. Stoichiometric water splitting is feasible proved in

which protons and water can be reduced and oxidised

spontaneously. However, the ideal coupling of CO2

reduction and water oxidation seems difficult, as H2

evolution is more favourable than CO2 reduction when

O2 molecules are evolved. The exact mechanisms of CO2

photoreduction are not known and still hotly debated,

which further limit the development of the CO2 photo-

reduction. Therefore, significant efforts should be made

to understand the underlying mechanism in the future

apart from the efficient photocatalyst development and

cocatalyst exploration.
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