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Abstract

Background: Gut microbes influence animal health and thus, are potential targets for interventions that slow
aging. Live E coli provides the nematode worm Caenorhabditis elegans with vital micronutrients, such as folates
that cannot be synthesized by animals. However, the microbe also limits C. elegans lifespan. Understanding these
interactions may shed light on how intestinal microbes influence mammalian aging.

Results: Serendipitously, we isolated an E. coli mutant that slows C. elegans aging. We identified the disrupted
gene to be aroD, which is required to synthesize aromatic compounds in the microbe. Adding back aromatic
compounds to the media revealed that the increased C. elegans lifespan was caused by decreased availability of
para-aminobenzoic acid, a precursor to folate. Consistent with this result, inhibition of folate synthesis by
sulfamethoxazole, a sulfonamide, led to a dose-dependent increase in C. elegans lifespan. As expected, these
treatments caused a decrease in bacterial and worm folate levels, as measured by mass spectrometry of intact
folates. The folate cycle is essential for cellular biosynthesis. However, bacterial proliferation and C. elegans growth
and reproduction were unaffected under the conditions that increased lifespan.

Conclusions: In this animal:microbe system, folates are in excess of that required for biosynthesis. This study suggests
that microbial folate synthesis is a pharmacologically accessible target to slow animal aging without detrimental effects.
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Background

The microbial flora found in the gastrointestinal tract
influences human metabolism and physiology and is thus
likely to impact aging [1,2]. Changes in the microbial
flora are associated with obesity [3,4] and microbial
metabolism may influence cardiovascular disease [5]. In
the C. elegans model, the E. coli foodstuff must be alive,
but not necessarily able to divide, for the worm to
achieve maximal growth and reproduction [6-8], suggest-
ing that microbial metabolic activity is required for opti-
mal C. elegans nutrition. Dietary restriction of C. elegans
by limiting E. coli availability extends lifespan but the
mechanisms involved remain unclear [9,10]. Treating
E. coli with antibiotics that either stop proliferation or
kill the bacteria increases C. elegans lifespan [11,12] and
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it has been previously suggested the mutants in E. coli
genes that disrupt ubiquinone synthesis increase
C. elegans lifespan by blocking bacterial respiration [13].
However, slowing or stopping bacterial growth is not a
viable starting point to treat healthy microbiota. Lipopo-
lysaccharide structures on the E. coli cell surface explain
bacterial strain-specific effects on C. elegans lifespan and
interactions with the C. elegans sensory system but do
not provide a clear route to slow aging [14]. Here we
explore the C. elegans/E. coli interaction further and
identify microbial folate synthesis as a specific target to
slow animal aging pharmacologically without cost to the
microbe or animal.

Results and Discussion

A spontaneous mutation in the E. coli gene aroD
increases C. elegans lifespan

While performing lifespan experiments using RNA
interference (RNAi) by feeding, we discovered an E. coli
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HT115(DE3) RNAI strain, for the C. elegans ugt-27
gene, that causes a substantial (30 to 50%) increase in
lifespan of the long-lived daf-2 mutant of C. elegans
compared to animals maintained on the HT115(DE3)
control (Figure 1A). The strain also extends the lifespan
of wild type C. elegans, and a daf-16 mutant lacking the
FOXO transcription factor required for daf-2 mutant
longevity (Additional file 1). Surprisingly, the lifespan
increase persisted once the RNAi plasmid was lost,
implicating a spontaneous mutation of the E. coli strain
as the causative factor (Figure 1B). Consistent with this
conclusion, fresh HT115(DE3) bacteria transformed
with the ugz-27 RNAI plasmid had no effect on lifespan
(Additional file 2). Unlike previously identified E. coli
mutants that result in extended C. elegans lifespan
[13,15], this mutant E. coli strain was able to respire but
unable to grow on minimal media. This auxotrophy
allowed us to perform a plasmid complementation screen
leading to the identification of an IS1 transposon inser-
tion in the gene aroD (Figure 1C). Plasmid rescue with
aroD confirmed that mutation of this gene increased
C. elegans lifespan (Figure 1D). A deletion mutation of
aroD from the Keio strain collection also showed an
increased lifespan compared to animals fed the control
strain [16]. (Additional file 1, Figure 1E), demonstrating
that the effect was not allele- or strain-specific.

Folate synthesis is the limiting factor that causes the
aroD mutant to increase C. elegans lifespan

The aroD gene encodes the enzyme 3-dehydroquinate
dehydratase, a core component of the shikimic acid path-
way that produces chorismate, a precursor to all aromatic
compounds in the bacterial cell (Figure 2A) [17,18]. Con-
sistent with the involvement of this pathway, supplemen-
tation of the media with shikimic acid causes the lifespan
of C. elegans on aroD mutant bacteria to revert to normal
(Figure 2B). The aroD mutant can grow on the peptone-
based media used in C. elegans studies, so the media
must be able to provide either all the essential aromatic
compounds needed for growth or the relevant precur-
sors. To test whether the lifespan effect was caused by
one of these compounds being present in limiting
amounts, we added back compounds known to support
growth of aro mutants: the aromatic amino acids, the
folate precursor para-aminobenzoic acid (PABA) and the
ubiquinone precursor para-hydroxybenzoic acid (PHB)
[17]. Of these, only PABA reversed the lifespan increase
completely, suggesting that a decrease in bacterial folate
synthesis in the aroD mutant is the major cause of the
increased C. elegans lifespan (Figures 2B; Additional file
3, Figure A; Additional file 3, Figure C; Additional file 1).
PABA supplementation had no effect on C. elegans main-
tained on the control HT115(DE3) strain or on the
extended lifespan of worms on the Q-deficient ubiG
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mutant bacteria ruling out a toxic effect of PABA (Addi-
tional file 3, Figure B). An alternate pathway for ubiqui-
none synthesis using PABA instead of PHB has been
shown in Saccharomyces cerevisiae [19,20] but as PHB
has no effect on lifespan (Additional file 3, Figure C) we
think it unlikely that ubiquinone synthesis is the limiting
factor in the aroD mutant. Folates are needed in all cells
for biosynthesis. Generation of purines, pyrimidines, cer-
tain amino acids and methyl donors depends on cycling
between the various folate species: dihydrofolate (DHF),
tetrahydrofolate (THF), 10-formyl THF, 5,10-methenyl
THEF, 5,10-methylene THF and 5-methyl THF [21]. In
addition, over 100 possible folate species result from
further derivatization with up to 8 glutamate residues. To
understand the effect of the aroD mutation on bacterial
folates, we used liquid chromatography coupled to mass
spectrometry (LC-MS) to detect individual folate species
[21,22]. The most abundant folate species detected in
E. coli grown as lawns on NGM agar corresponded to
formyl THFGlus. We found that the aroD mutation in
HT115(DE3) caused a large decrease in the detectable
levels of this folate and other detectable folate species
(Figure 2C, Additional file 4), confirming the effect of the
mutation on bacterial folates. Folic acid cannot be taken
up directly by E. coli. However, adding back folic acid to
the media resulted in a partial suppression of the increase
in lifespan, probably because folic acid led to restoration
of folate synthesis in the aroD mutant bacteria (Addi-
tional file 5). It has been shown that E. coli can use a
breakdown product of folic acid to make PABA [23].

Pharmacological inhibition of E. coli folate synthesis
increases C. elegans lifespan

To test further the impact of microbial folate synthesis
on C. elegans aging, we employed sulfamethoxazole
(SMX), a sulfonamide drug that blocks folate synthesis by
competing with PABA for the enzyme dihydropteroate
synthase [24]. Addition of SMX to the media caused a
dose-dependent increase in the lifespan of worms main-
tained on E. coli OP50, the strain used in most C. elegans
studies (Figure 3A), with 2 pug/ml being the minimal dose
that gave a reproducible and statistically significant effect.
With increasing drug concentration, the relationship
between mean lifespan and log[SMX] is approximately
linear until 128 pg/ml, the concentration of SMX that
consistently produced the highest increase in mean life-
span (See Additional file 1 for the full data set). This lin-
ear relationship suggests a dose response that is
pharmacologically amenable. Addition of PABA reverses
the increase in lifespan, consistent with folate synthesis
being the relevant target of SMX (Additional file 6). To
assess the impact of SMX on bacterial folates, we mea-
sured formyl THFGlus. Starting at a concentration of
0.1 pg/ml, SMX reduced the levels of formyl THFGlu; in
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Figure 1 Identification of a spontaneous E. coli mutant that extends lifespan. A) Survival curves of rrf-3(pk1426); daf-2(m577) animals at 25°
C on the control strain (n = 201): HT115(DE3) containing the empty vector L4440 and a strain, containing the plasmid for the ugt-27 gene, that
caused a 50% increase in lifespan (n = 92, P = < 0.0001). B) Survival of rrf-3 (25°C) on the mutant strain from which the ugt-27 has been lost (n
= 68) compared with the control strain in which the 14440 empty vector has been lost (n = 62). Increase in lifespan = 49.6% (P = < 0.0001).
C) Position of the IST transposon insertion at position 1777116 on the E. coli K12 W3110 chromosome [44] (diagram based on EcoCyc.org [45]).
As the insertion is at nucleotide 717 of the aroD open reading frame, the allele is designated aroD717:1S1. D) The lifespan effect of the mutant
bacteria is rescued by the plasmid containing aroD. glp-4(bn2) animals were raised on the aroD mutant until L4 (15°C) and then transferred to
the aroD mutant + pMMB67EH vector (n = 126), aroD mutant + pMMB67EH plasmid containing aroD region (n = 85), wild type bacteria +
vector (n = 126) (25°C). E) Worms maintained on the aroD deletion mutant from the Keio collection (n = 128) show an extended lifespan
compared to wild type (n = 131). P = < 0.001.

OP50 such that at a dose of 2 pg/ml SMX it was effec-
tively below the level of detection (Figure 3B; Additional
file 4, Figure B). To determine whether SMX increased
lifespan through any direct effects on the worm and/or
any non-specific targets in E. coli, we performed lifespan
experiments with a sulfonamide-resistant strain of OP50,

which contains the multiresistance plasmid R26 encoding
a drug-insensitive allele of dihydropteroate synthase [25].
Under these conditions, SMX had no effect on C. elegans
lifespan (Figure 3C), demonstrating that SMX acts
through inhibition of bacterial folate synthesis to increase
C. elegans lifespan.
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Figure 2 Decreased folate synthesis explained the lifespan increase caused by the aroD mutant. A) Schematic of the shikimic acid and
folate synthesis pathways. Solid arrows represent single enzymatic steps. Dashed arrows represent multiple steps. PEP, phosphoenolpyruvate;
SHK; shikimic acid; PABA, para-aminobenzoic acid. B) Shikimic acid and PABA reverse the lifespan increase caused by the aroD mutation. glp-4
(bn2) animals were raised on the aroD mutant until L4 (15°C) and then transferred to the aroD mutant (n = 116), wild type control (n = 116),
aroD + SHK (n = 86), aroD + PABA (n = 76), (25°C). All supplements at 40 ug/ml. aroD + PABA vs aroD, P = < 0.0001; aroD + SHK vs aroD, P = <
0.0001. C) Levels of formylTHFGlus as detected by LC-MS are decreased in the aroD mutant compared to the wild type HT115(DE3). Data from
two biological replicates.

SMX has no effect on bacterial growth or viability

SMX is known to have antibiotic properties. However,
we found that in nematode growth media (NGM), con-
centrations of SMX that extended C. elegans lifespan
had no significant effect on E. coli growth in liquid cul-
ture (Figure 4A) or on the final size of the E. coli lawn
grown on the solid media used to culture worms (Addi-
tional file 7). These results suggest that SMX does not
extend lifespan by inhibiting E. coli proliferation as sug-
gested for other antibiotics [11]. To test whether SMX-
treated E. coli encountered by worms had a decreased
ability to proliferate, we tested E. coli lawns for cell via-
bility. In contrast to kanamycin treatment, 128 pg/ml
SMX had no effect on the colony-forming ability of
OP50 (Figure 4B). Given that the folate cycle is required
for cell growth, these results suggest that E. coli can use

metabolites from the media to overcome decreased
folate synthesis. In agreement with this model, pabA
and pabB mutants are reported to be viable and grow
normally on rich media [16,26]. Thus, there are condi-
tions that folate synthesis can be inhibited without
affecting bacterial growth and it may be that E. coli are
adapted for such conditions in the mammalian intestine.

Both the aroD mutation and SMX treatment have minor
effects on metabolism

To examine the effects of SMX on broader metabolism,
we re-analyzed the metabolite data from the LC-MS
analysis of E. coli folates. We performed a global com-
parison between the aroD mutant, the HT115(DE3) wild
type, OP50 and OP50 treated with 128 pg/ml SMX.
A total of 1,539 features were detected, including
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Figure 3 Inhibition of bacterial folate synthesis causes an
increase in C. elegans lifespan. A) Treatment of OP50 with various
concentrations of SMX increases mean C. elegans lifespan by the
indicated percentage. Control (n = 102, 191), 0.1 pg/ml SMX (n =
139, 221), 1 pg/ml (n = 154, 229), 2 pg/ml (n = 152, 210), 4 pg/ml
(n =161, 226), 8 pg/ml (n = 146, 224), 16 pg/ml (n = 176, 226), 64
pg/ml (n = 235, 238), 128 pg/ml (n = 229, 230). 256 pg/ml (n =
253). B) SMX treatment decreases levels of formylTHFGlus in E. coli
OP50 until it becomes undetectable at 2 pg/ml. * = below the level
of detection. Two biological replicates are shown. C) The lifespan
increase induced by 16 and 128 pg/ml SMX is eliminated when
worms are maintained on OP50 containing the R26 plasmid that
confers sulfonamide resistance. Control (n = 224), 16 ug/ml SMX (n
= 218), 128 pg/ml SMX (n = 215).
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Figure 4 SMX has little effect on OP50 growth, viability or
metabolome. A) in ODgy, measurements of bacterial density show
that SMX at 16 and 128 pg/ml has no effect on the log-phase
growth rate of OP50 in liquid NGM at 37°C. B) Table showing
colony forming units from bacteria scraped from lawns on agar
plates, concentration of SMX used = 128 ug/ml. C) PLS-DA score
plot showing two components that explain 58.9% (x-axis) and a
further 11.9% (y-axis) of the variance between the conditions: whole
LC-MS data from strains HT115(DE3) (labelled CWT), HT115(DE3)aroD
(CM), OP50 (OP50) and OP50 treated with 128 ug/ml of SMX (SMX).
Three replicates were performed for each condition.
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common metabolites such as ATP, NADPH and acetyl
CoA. Partial least squares discriminant analysis (PLS-
DA) of the data (see Methods) shows that both the
SMX and the aroD mutation have metabolite profiles
very similar to their respective controls, having a smaller
effect than the difference between the OP50 and HT115
control strains (Figure 4C). This analysis supports the
hypothesis that the inhibition of folate synthesis under
conditions that result in increased lifespan has only a
minor effect on whole cell metabolism.

SMX leads to a decrease in C. elegans folate levels
without adverse effects

All animals must obtain folate from their food or intest-
inal microbes so inhibition of bacterial folate synthesis
would be expected to decrease C. elegans folate levels.
5-methylTHFGlus was the most abundant folate species
we could detect in worms. SMX decreased levels of this
folate substantially but detectable levels remained
(Figure 5A, Additional file 4, Methods). To test whether
this decrease in folate levels led to a functional defi-
ciency, we examined nuc-1 mutants, which are sensitized
to methotrexate, an inhibitor of dihydrofolate reductase.
Concentrations of methotrexate that have no effect on
the wild-type animals cause nuc-I mutants to produce
sterile and uncoordinated progeny [27] (Figure 5B). How-
ever, SMX had no effect on nuc-1 mutants (Figure 5B),
demonstrating that animals maintain a functional folate
cycle. To test folate sufficiency further, we examined
developmental rate and fecundity in the presence of
SMX. We found that SMX had no effect on the time
taken for animals to reach reproductive age or their sub-
sequent brood size (Figure 5C). This result suggests that
SMX does not impact the biosynthetic capability of the
folate cycle. Further, this result confirms the drug does
not interfere with C. elegans nutrition, or cause dietary
restriction in the usual sense. However, it remains possi-
ble that life extension in C. elegans by dietary restriction
via limitation of E. coli, and inhibition of microbial folate
synthesis involve some common mechanisms.

Our data show that, via inhibition of bacterial folate
synthesis, it is possible to slow animal aging with a mini-
mal effect on bacterial growth. Such an intervention may
allow manipulation in the mammalian gut without large
disruption of the microbiota. Intriguingly, an early study
showed that administration of a sulfonamide (sulfadiazine)
extends the lifespan of rodents [28,29]. Moreover, as in
the present study, this effect was reversed by the addition
of PABA, implicating microbial folate synthesis as the tar-
get. Several species of bacteria, including E. coli, excrete
folates, suggesting that they produce more than they need
[30]. In our system, C. elegans is solely dependent on
bacterial folate, and yet we can achieve a positive effect on
lifespan without compromising healthy development,
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suggesting that the C. elegans requirement for folate is
much lower than is available to them from E. coli. Interest-
ingly, when added to high-folate rat food, the sulfonamide
succinyl sulfathiazole, inhibited bacterial folate synthesis
but had only a minor effect on rat liver folate levels [31],
raising the possiblity that we can reduce folate specifically
in the gut bacteria, without folate restricting the animal.

Conclusions

Genetic or pharmacological inhibition of E. coli folate
synthesis leads to an increase in C. elegans lifespan with-
out causing detrimental effects on either the microbe or
the animal. Whether a decrease in folate acts on a process
in the microbe or directly in the animal or both to extend
lifespan remains to be determined. However, the identifi-
cation of bacterial folate synthesis as a target suggests that
eliminating excessive microbial folate in the gut microbe
environment could be a route to slow aging.

Methods
Strains
C. elegans strains used in this study are GA303 rrf-3(pk
1426); daf-2(m577) [32], GR1307 daf-16(mgDf50) [33], N2
(wild type), NL2099 rrf-3(pk1426) [34] and SS104 gip-4
(bn2) [35].
All E. coli strains used in this study are listed in Table 1.
OP50 R26 was made in this study by mating with C600
R26 and selecting with SMX on minimal media containing
uracil. As the Keio aroD mutant was reported to be a mix-
ture of mutant and other strains [36], a colony was iso-
lated and confirmed to be mutant by PCR.

Culture conditions

NGM was prepared as described [37] using 2.5 g/1 soy
peptone (Product number P6713, Sigma-Aldrich Corp.,
Saint Louis, MO, USA) and 20 g/l high-purity agar
(Sigma, Product number 05038). High purity agar is used
because standard agar can give batch-to-batch variation in
the aroD effect on lifespan, probably due to contaminating
aromatic compounds. Plates were supplemented with the
indicated compounds. For the kanamycin treatment of
bacteria, 80 pl of 10 mM kanamycin was added after
24 hours of bacterial growth as described [11]. All com-
pounds were from Sigma-Aldrich.

Lifespan analysis

Unless indicated differently in Additional file 1, survival
analyses were performed by the following method: eggs
were prepared by bleaching adults to remove all
microbes, and then placed onto plates containing either
aroD mutant bacteria or, where relevant, SMX-treated
OP50 plates. Animals were raised at 15°C until adulthood
due to the temperature sensitivity of mutant phenotypes.
Gravid adults were used to lay eggs onto fresh aroD
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Figure 5 Effects of SMX on C. elegans folates and folate-dependent functions. A) SMX causes a dose-dependent decrease in C. elegans 5-
methyITHFGlus levels. Data shown are from three biological replicates. B) Methotrexate induces slowed development, sterility and
uncoordination in nuc-T mutant worms but 128 pg/ml SMX has no effect. Pictures were taken three days after egg-laying. C) 16 and 128 pg/ml
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Table 1 E. coli strains

Page 8 of 11

Strains Genotype/Relevant characteristics Source

OP50 OP50 ura (37]

RNAi control strain HT115(DE3) W3110 rnc14:Tn10 (DE3 PlacUV5-T7 polymerase) [46]

aroD mutant HT115(DE3) aroD717:1S1 This study
Keio collection WT BW25113 el

Keio collection aroD BW25113 aroD [16,36], This study
OP50 Su resistant OP50 R26 This study; [47]
aroD mutant/ugt-27 RNAi HT115(DE3)aroD717:1S1/1.4440(ugt-27) This study; [38]
RNAi control + vector HT115(DE3)/pMMB67EH This study
aroD mutant + vector T115(DE3)aroD717:1S1/pMMB67EH This study
mutant + aroD HT115(DE3)aroD717:1S1/pMMB67EH[aroD] This study
ubiG mutant GD1 ubiG [15]

ubiG mutant + rescue GD1 ubiG/pAHG(ubIG+) [15]

mutant or SMX-treated OP50 plates. At L3/L4 these ani-
mals were transferred to 25°C and larvae of equivalent
stage were put onto at least 5 plates of 25 worms for each
condition. Animals were transferred to fresh plates after
7 and 14 days and scored for survival every 2 or 3 days.
Lifespan data were analysed by JMP statistical software
(SAS Institute Inc., Cary, NC, USA). Where relevant, sta-
tistical significance was determined using the Log-Rank
and Wilcoxon tests of fitting to the Kaplan-Meier survi-
val model.

Characterisation of the life-extending effect of the mutant
E. coli strain

All lifespan experiments conducted in this study are sum-
marized in Additional file 1. The E. coli mutant was dis-
covered because it extended the lifespan of rrf-3(pk1426);
daf-2(m577) mutants. We then tested wild type C. elegans
(N2), rrf-3(pk1426) mutants, daf-16(mgDf50) mutants and
temperature-sensitive sterile mutants glp-4(bn2), shifted
from 15°C to 25°C at L4. The mutant bacteria extended
lifespan of all C. elegans strains. The effect at 25°C was
stronger than at 20°C. To test whether the mutant bacteria
exerted its effect during adulthood, we shifted animals on
mutant bacteria onto wild type bacteria, and vice versa,
just before the beginning of adulthood as L4 larvae. Shift-
ing from mutant bacteria to wild type bacteria caused
C. elegans to have a wild type lifespan. Shifting in the
other direction from wild type to mutant increased life-
span but took several days to have an effect, probably
because residual wild type bacteria chemically comple-
ment the mutant bacteria with secreted PABA. These
experiments imply that the effect of the bacteria on life-
span is exerted during adulthood. In all subsequent experi-
ments, animals were raised on the mutant bacteria and
then transferred to the experimental conditions at the L4
or young adult stage. Although the mutant occurred in a
strain from the Ahringer RNAI library [38], the mutation
occurred during culture in our laboratory. We have tested

the original ugt-27 strain in the Ahringer library and it
does not have the mutation.

Complementation screen to identify aroD

To identify the mutated gene we took advantage of the
inability of the mutant bacterial strain to grow on mini-
mal media plates. We partially digested the genomic
DNA of the control strain using the four-base cutter
BfuCI that leaves BamHI compatible ends and ligated
the fragments in a BamHI-digested pMMB67EH, a low
copy IncQ plasmid [39]. We transformed the ligation
mixture into the mutant strain and screened for large
colonies on minimal media plates. Untransformed dead
bacteria provided enough nutrients to support the
growth of small colonies of transformed mutant bac-
teria, allowing estimation of the numbers screened.
Colonies that were clearly larger than their neighbors
were picked, grown up and the plasmid isolated by
mini-prep. These plasmids were retested by transforma-
tion into the mutant bacteria to test for enhanced
growth on minimal media. From over 6,000 colonies,
6 independent plasmids passed this second round of
screening. Sequencing of these plasmids revealed that
one contained the gene folC, one contained folD, three
contained aroK and one contained aroD/ydiB. This lat-
ter plasmid had the largest effect on mutant growth.
The other plasmids appeared to have a positive effect
on growth of both mutant and control strains. PCR and
sequencing of the aroD region identified an IS1 transpo-
son inserted in the aroD gene in the mutant strain but
not in the control (Figure 1C). Composition of minimal
media (based on ref [40]) is as follows: 15 g/l agar, 2 g/l
D-glucose, 2.17 g/l Na,HPOy, 1.35 g/l KH,PO,, 0.5 g/l
(NH,4)>SO4, 0.01 g/l Ca(NO3),, 0.005 g/l thiamine,
0.088 g/l adenine, 0.044 g/l arginine, 0.11 g/l asparagine,
0.088 g/l cysteine, 0.11 g/l glutamatic acid, 0.088 g/I his-
tidine, 0.066 g/l isoleucine, 0.133 g/l leucine, 0.066 g/1
lysine, 0.088 g/l methionine, 0.066 g/1 phenylalanine,
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0.422 g/l serine, 0.221 g/l threonine, 0.088 g/l trypto-
phan, 0.044 g/1 tyrosine, 0.088 g/l uracil, 0.166 g/I valine.
The composition of 1% trace element solution is 5 g/l
EDTA, 0.5 g/l FeCls, 0.05 g/l ZnO, 0.01 g/l CuCl,,
0.01 g/l CoCl,.6H,0, 0.01 g/l H3BOs.

Folate analysis

E. coli extraction

Bacterial lawns that had been incubated at 25°C were
scraped from NGM agar plates with M9 solution. The
final volume of the solution multiplied by the ODgoo of
the solution diluted 1:5 gave a measure of the amount of
material. The samples were concentrated by centrifuga-
tion, washed into microcentrifuge tubes and centrifuged
again. The pellets were snap frozen in liquid nitrogen and
resuspended in a volume of cold 80% methanol: 20% folate
extraction buffer (FEB - 50 mM HEPES, 50 mM CHES,
0.5% w/v ascorbic acid, 0.2 M DTT, pH 7.85 with NaOH)
in proportion to bacterial content (0.0375 x ODgqo x origi-
nal solution volume). Samples were spiked with 2:1,000
1 mg/ml methotrexateGlug as an internal standard and
were sonicated on ice using a probe sonicator, centrifuged
for five minutes in a cooled microcentrifuge at full speed
and the supernatants were kept for analysis.

C. elegans extraction

Synchronized worms at the first day of adulthood incu-
bated at 25°C were washed from 9 cm plates with M9
and allowed to settle. The supernatant was removed and
the worms were washed with M9 and allowed to settle
again to remove any remaining bacteria. Worms were
then transferred to microcentrifuge tubes, gently centri-
fuged, the volume of pellets estimated. Worms were then
washed twice into FEB and left in a total of twice the pel-
let volume. Proteinase K was added to a final concentra-
tion of 0.5 mg/ml and animals were then shaken vigorous
at 37°C for 90 minutes. An equal volume of ice cold
methanol spiked with 1:1,000 1 mg/ml methotrexateGlug
was added, vortexed and centrifuged at 4°C as above.

HPLC-MS analysis

We used methodology based on previous literature
[21,22]. For HPLC, a C18 reversed phase column (Waters
Acquity BEH, 100 mm x 2.1 mm (Waters Corporation,
Milford, MA, USA)) was used with dimethylhexylamine as
an ion-pairing reagent as in reference [21]. The mobile
phase consisted of (A) methanol/water (5:95, v/v) with
5 mM dimethylhexylamine, pH 8, and (B) methanol with
5 mM dimethylhexylamine, at a flow rate of 0.2 mL/min.
A linear gradient from 22% B to 80% B over nine minutes
was followed by a one minute isocratic hold at 80% B. The
column was then re-equilibrated for one minute at 22% B.
The injection volume was 10 pl. The mass analysis was by
negative mode electrospray ionisation time-of-flight
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(negative ESI TOF) utilizing a Q-TOF Premier instrument
(Waters Corporation) calibrated with sodium formate and
with dynamic correction from a leucine encephalin lock-
spray. Sampling cone voltage was -35 V and capillary
voltage was -2,500 V. The following standards (from
Schircks (Schircks Laboratories, Jona, Switzerland)) were
used: 5-formylTHF (folinic acid), folic acid, 5-formylTHE-
Glus, methotrexate, methotrexateGlug. The elution times
and masses were consistent between runs and corre-
sponded to the published literature [21,22]. We fragmen-
ted the signal corresponding to 5-methyl THFGlus in the
C. elegans sample using MS-MS and it showed the
expected products. Conditions that resulted in decreased
levels of signal for 5-methyl THFGlus were accompanied
by similar changes in the levels of signal for the mass cor-
responding to 5-methylTHFGlu,. The peaks obtained by
selecting the specific mass were integrated using Mas-
sLynx software (Waters Corporation) and used as an indi-
cation of quantity. The peaks generated by known
metabolites were also integrated and the peak correspond-
ing to coenzyme A was chosen for use in normalization
because it was large and there was little variation between
samples.

Metabolomic PLS-DA

Raw LC-MS data were preprocessed with XCMS [41], a
Bioconductor package for R [42]. Sample-wise normaliza-
tion was done experimentally, by ensuring that all samples
had a similar concentration of biological material, and fea-
ture intensity was normalized with a log transform. Both
normalization and further statistical analysis, including the
PLS-DA plot, were performed with MetaboAnalyst [43].

Bacterial growth rate measurements

Liquid NGM media was aliquoted into sterile conical
flasks. SMX was added to the appropriate samples and
sterile water added to the control samples. OP50 was then
seeded from overnight culture into each flask, and initial
ODggo measured for each sample using liquid media as a
blank. The samples were then placed on a shaker set to
200 rpm at 37°C, and ODggo measured every 20 minutes
for 300 minutes or until growth had reached a plateau.

To measure bacterial growth on solid media, bacteria
were seeded, left at room temperature for 48 hours and
then transferred to 25°C for a further 24 hours. A total
of 1.5 ml of M9 buffer was then added to each plate
and, using a glass spreader, the bacterial lawn was
scraped from the plate. The M9-containing bacteria
were then pipetted into a microfuge tube. These samples
were diluted 1:5 in M9 buffer for final ODgy, measure-
ments. This measurement was multiplied by the final
volume of M9 to provide a relative measure of lawn

density.
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Development and fecundity measurements

N2 worms were cultured individually from eggs at 25°C on
the appropriate media. From the beginning of adulthood,
animals were transferred to fresh plates every 24 hours
until egg-laying stopped. The progeny from each plate was
allowed to develop for two days and then counted.

Additional material

Additional file 1: Summary of all lifespan experiments conducted in
this study. File showing individual experiments, number of animals
scored as dead, number censored and, where relevant, percent increase
in lifespan between mutant and control, and P-values from Log-Rank and
Wilcoxon tests of the Kaplan-Meier survival model.

Additional file 2: Spontaneous E. coli mutant rather than RNAi
plasmid extends C. elegans lifespan. A) A new RNAI strain containing
the ugt-27 plasmid has no effect on lifespan. Survival of rrf-3 worms (20°C)
on the control HT115(DE3) strain with the L4440 plasmid, (control, n = 61),
the original ugt-27 strain (mutant, n = 98) and a new strain consisting of
HT115(DE3) transformed with the ugt-27 plasmid (new, n = 50). Difference
between mutant and control, 29.3% (P = < 0.0001).

Additional file 3: PABA supplementation has no toxic effect. A) PABA
supplementation reverses the lifespan extension on the mutant bacteria
(aroD + PABA, n = 85, aroD, n = 124), but has no effect on the control
bacteria (control + PABA, n = 112, control, n = 84). B) Addition of PABA has
no effect on ubiG bacteria (ubiG + PABA, n = 90, ubiG, n = 76) or ubiG- +
rescue plasmid (ubiGpAHG + PABA, n = 116, ubiGpAHG, n = 118). C) PHB
supplementation had no effect of lifespan of C. elegans maintained on either
the mutant (aroD, n = 161, aroD + 25 uM PHB, n = 129, aroD + 250 upM, n =
105) or control bacteria (control, n = 173, control + 25 uM PHB, n = 121,
control + 250 uM PHB, n = 130). See Additional file 1 for a full listing of all
lifespan data in this study.

Additional file 4: Relevant traces from the HPLC/MS analysis from

E. coli. A) Traces from HT115(DE3) and HT115(DE3)aroD of m/z = -730.244
corresponding to the negative ion of formyITHFGlus. B) Traces from
formylTHFGluz show that this species becomes undetectable in OP50 with
increasing concentrations of SMX. C) Traces from C. elegans lysates
corresponding to the negative ion of 5-methylTHFGlus, with 0, 0.1 and

1 pg/ml SMX.

Additional file 5: Effect of media supplementation with folate on
C. elegans lifespan on aroD and ubiG mutants. (A) glp-4(bn2) animals
were raised on the aroD mutant until L4 (15°C) and then transferred
(25°C) to the aroD mutant (n = 100), control (n = 126), aroD + 1 x folate
(n = 101), aroD + 2 x folate (n = 149). aroD vs aroD + 1 x folate, P = <
0.0001; aroD + 1 x folate vs aroD + 2 x folate, P = 0.13 (Log Rank), P =
0.055 (Wilcoxon). (B) glp-4 worms were raised on E. coli OP50 (15°C) and
transferred (25°C) at L4 to ubiG (n = 145), ubiG + pAHG (ubiG" rescue
plasmid), GD1 + 1 x folate (n = 145), GD1+ 2 x folate (n = 146).

(C) Traces from the HPLC/MS analysis of the wild type (HT115(DE3)) and
aroD mutant (HT115(DE3)aroD) bacteria. Peaks shown are m/z = 730.25
and 54867 corresponding to formylTHFGlus and the methotrexateGlug
spiked standard respectively with increasing folic acid supplementation
(1 x folate is equal to 294 uM folic acid).

Additional file 6: PABA reverses the lifespan increase caused by

16 pg/ml and 128 pg/ml SMX. Lifespan curves showing Control (n =
102), 16 ug/ml SMX (n = 176), 128 ug/ml SMX (n = 229), 16 ug/ml SMX +
250 uM PABA (n = 160), 128 ug/ml SMX + 250 pM PABA (n = 217).

Additional file 7: Lawn density of plates treated with various
concentrations of SMX. Relative bacterial content of lawns from the
mean values from 10 plates per conditions (see Methods). Error bars are +
standard deviations. Student’s t-test values (Control vs 8 pg/ml SMX: P =
0.02, Control vs 16 pg/ml: P = 0.04, Control vs 64 ug/ml: P = 0.12, Control
vs 128 pg/ml: P = 0.04).
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Abbreviations

CHES: N-Cyclohexyl-2-aminoethanesulfonic acid; DHF: dihydrofolate; ESI TOF:
electrospray ionisation time-of-flight; FEB: folate extraction buffer; Glu:
glutamate; HEPES: 2-[4-(2-hydroxyethyl)piperazin-1-yllethanesulfonic acid;
HPLC: high pressure liquid chromatography; HPLC-MS: high pressure liquid
chromatography coupled to mass spectrometry; LC-MS: liquid
chromatography coupled to mass spectrometry; MS-MS: tandem mass
spectrometry; NGM: nematode growth medium; ODgqo: Optical density at
absorbance 600 nm; PABA: para-aminobenzoic acid; PEP:
phosphoenolpyruvate; PHB: para-hydroxybenzoic acid; PLS-DA: partial least
squares discriminant analysis; Q-TOF: quadrupole time-of-flight; RNAi: RNA
interference; SHK: shikimic acid; SMX: sulfamethoxazole; THF: tetrahydrofolate.
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