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Abstract

In the cortex, neural activity is noisy, irregular and asynchronous – a consequence

of dynamically balancing excitatory and inhibitory input to neurons. Despite

this noisy balancing, the brain is capable of performing a vast array of incredibly

difficult computations. This is mysterious, because noise and irregularity are

usually associated with poor performance.

We ask, how can the cortex compute in a noisy background? The observation

of orientation tuning in the visual cortex suggests that structured connectivity is

important. We propose a unifying model of cortical connectivity in which weak

structured connectivity is embedded in strong random background connectivity.

This connectivity can simultaneously produce orientation tuning and irregular,

asynchronous dynamics. We find that structure can boost computational per-

formance, by amplifying orientation tuning.

We then ask; why is cortical activity noisy? Surprisingly, we find that bal-

anced network noise can also improve computational performance, by increasing

the computational operating range of the cortex. The mechanism is simple; noise

allows very large signals to become available for computation, despite the small

operating range of individual neurons. However, this improvement comes at a

price; for small signals, balanced network noise degrades performance. This ex-

emplifies a performance-stability trade-off. As a corollary, we find that the con-

trast invariance of orientation tuned cells in the visual cortex is a consequence of

this computational stability.

Finally, we ask; does noise co-variability impair computation? It is known that

correlated variability can degrade the computational performance of a network,

especially if many neurons are strongly co-variant. We find that correlations in

balanced networks are weak, but not weak enough to be ignored in computation

because they affect decoding.

Together, these results constitute an important link between neural compu-

tation and dynamics, opening the door to a reconciliation between conflicting

theories of randomness and structure.
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Chapter 1

Introduction

A professor cycling to work, and a cave man wandering through a forest have much in

common; their survival depends on their ability to process the images around them. A

speeding taxi or an encroaching pack of wolves must be detected so that appropriate

evasive manoeuvres can be rapidly deployed.

Our natural ability at these tasks belies their awesome difficulty. We cannot yet

build, or even imagine how to build computers capable of matching human computa-

tional power. This problem is compounded by the observation that neural activity in

the cortex is noisy, irregular and asynchronous – a consequence of an ongoing balance of

excitatory and inhibitory neural input. This is mysterious because noise and irregularity

are usually associated with poor performance, not with astounding ability.

Our goal is to resolve this problem - to understand behaviour, in the form of com-

putation, in terms of nervous system activity as characterised by balanced network

dynamics.

1.1 Computation in balanced networks: why do we care?

In the last century, the theory of computation emerged as one of most important frame-

works for describing animal behaviour and brain activity. Computations transform ugly

incoming signals into desirable output. Efficient computation of sensory signals is im-

portant, lest we get devoured by wolves on the way to work. Indeed, there is mounting

evidence that humans are capable of computing close to the theoretical optimum, sug-

gesting that much of the cortex has actually evolved to compute optimally.
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Large, interconnected networks of neurons provide the substrate for this behaviour.

In recent years, balanced network theory has emerged as the standard model of cortical

network dynamics. According to this theory, neurons in the cortex receive strong exci-

tatory and inhibitory synaptic input which must balance to avoid pathological cortical

states. However, the balancing is not exact, so neural input and output is noisy. This

dynamic explains a broad spectrum of neural network activity and cortical phenomena,

such as the irregular asynchronous spike trains observed in the cortex.

If we can understand computation in balanced networks, we will have achieved our

goal of establishing a link between the extremes of behaviour on one hand and cellular

activity on the other. Our task is difficult because the mathematical language used

to describe optimal computation is very different from the language used to describe

balanced network dynamics. Also, both theories impose different constraints on cortical

input-output transformations. Most neural computation studies simply ignore balanced

network dynamics. In this work, we go to great lengths to ensure that computation and

balanced network dynamics are mutually consistent.

There is more to neural function than computation, and there is more to neural

networks than dynamic balance. Indeed, both of these frameworks completely fail to

describe a significant fraction of nervous system function and dynamics. For example, in

some parts of the peripheral nervous system, neural activity is highly regular and tem-

porally stereotypical, inconsistent with the irregularity predicted in balanced network

theory. The peripheral nervous system is largely involved in information transmission

from the sensory organs, and control of muscles. The language of communication theory

and control theory are more appropriate for describing these functions.

1.2 The random versus structure debate

There is currently a major debate underway in theoretical neuroscience between pro-

ponents of two conflicting theories of balanced network computation. Traditionalists

maintain that the brain is an exquisitely structured organ, precisely wired to perform

carefully constructed computations. The opposing view holds that the brain is pre-

dominantly random, with random connections between neurons, performing random

computations.

We propose a resolution to this conflict using a combination of weak structured

13



connectivity embedded in strong background. This connectivity has been used before

to successfully explain memory in balanced networks. Using this model, we address

some long-standing questions in theoretical neuroscience. First of all, we ask, can weak

structured connectivity embedded in strong random background connectivity improve

computational performance? If not, then perhaps structured connectivity is the same

size as background connectivity. We also ask, why is the cortex noisy? Is it an evolu-

tionary mistake or does cortical noise have some role in computation. Finally, we ask,

how correlated is cortical noise, and do these correlations effect computation?

1.3 Our approach

All of these questions are important, so a huge body of experimental and theoretical

knowledge already exists. In chapter 2, we review the most important literature, with a

particular emphasis on the visual cortex, which has received most attention historically.

In chapter 3, we demonstrate that our balanced network model can produce orienta-

tion tuned, irregular, asynchronous spiking activity, just like the activity of simple cells

in the visual cortex. We find that this orientation tuning is contrast invariant, because

synaptic background noise effectively linearises single neuron dynamics.

In chapter 4, we derive mathematical expressions that relate firing rates and spike

train correlations to network connectivity and input. This analysis is difficult because

a neural network is an extremely complex dynamical system. However, using methods

from statistical physics and dynamical systems theory we can understand how these

are related. In particular, we find that the contribution of structured connectivity to

correlations is about the same size as the contribution of background connectivity to

correlations. We also find that correlations are very weak, in agreement with recent

correlation measurements in the visual cortex.

Finally, in chapter 5, we return to our original computation questions. We study

orientation selectivity, in which the orientation of an edge must be detected. This is

an important computational building block for important survival-dependent compu-

tations such as object recognition. We quantify the ability of a balanced network to

perform orientation selectivity by calculating linear Fisher information. When infor-

mation is high, computational performance can be good, and when information is low,

computational performance is poor.
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Our most surprising result is that the noise produced in dynamic balancing can

improve computational performance. It achieves this by maintaining the network in

a highly informative state for a wide range of image contrasts. Furthermore, we find

that the contribution of background connectivity does not preclude structured connec-

tivity from contributing. In fact, structured connectivity can improve computational

performance substantially. Finally, we find that although correlations are weak, their

contribution to orientation selectivity cannot be ignored.

These results, though important, do not represent our primary contribution. Rather,

the equations from which we have derived these results represent our primary result.

These equations provide a well-defined mathematical relationship between computa-

tional performance, balanced network connectivity, network input, firing rates and spike

train correlations. They provide insight into the origin of correlations, the origin of in-

formation and the precise relationship between these quantities. Furthermore, they

provide a platform for future investigation into computation in balanced networks.

15
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Chapter 2

Literature Review

2.1 Introduction

One of the central goals of neuroscience is to understand how animal behaviour emerges

from nervous system activity (Dayan and Abbott, 2001). The field of computational

neuroscience is largely dedicated to solving this problem (Sejnowski et al., 1988; Schwartz,

1990). In this section, we will review some of the most important results in this subject.

We begin by reviewing the dynamics of balanced networks. Experimental recordings

indicate that most of the neural activity observed in the cortex is the result of a dynamic

balance of excitatory and inhibitory input to neurons (Shu and Hasenstaub, 2003; Haider

et al., 2006). This balancing is noisy so cortical activity is highly irregular (van Vreeswijk

and Sompolinsky, 1996; van Vreeswijk and Sompolinsky, 1998). One problem with this

is that cortical activity can also have structure, such as orientation tuning, in which

cortical activity is tuned to the orientation of edge-like visual stimuli (Hubel and Wiesel,

1962). We will review the theories that attempt to resolve this problem.

Another problem is that many theories of neural computation are inconsistent with

balanced network dynamics. One reason for this is that the irregularity produced by

balanced networks appears to harm computation. However, this irregularity is not

necessarily harmful (Destexhe and Contreras, 2006). Indeed, it may be the source

of the brain’s vast computational power. We will review computational theories that

attempt to discover the computational role of balanced network dynamics, spike train

irregularity and co-variability.
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2.2 Balanced networks

Balanced network theory provides an explanation for a huge array of observed cortical

phenomena, from the irregular asynchronous activity that occurs during awake beha-

viour to the up-down activity that occurs during sleep and anaesthesia (Lerchner and

Latham, 2011). In recent years, this theory has emerged as the standard model of cor-

tical network dynamics. In this section we review the principles of balanced network

theory and the experiments that led to its development.

2.2.1 Irregular, asynchronous spike trains in the cortex

Spiking activity in the cortex is highly irregular, both within the spike trains of in-

dividual neurons and across neurons in a population (Burns and Webb, 1976; Softky

and Koch, 1993; Bair et al., 1994). This irregularity can be characterized by counting

the number of spikes emitted by a neuron during a fixed time window. Such spike

counts have a broad range of values, across trials, with a distribution consistent with

a truncated Gaussian (Gershon et al., 1998). Spike train irregularity can be quantified

by calculating the Fano factor, given by the ratio of the spike count variance to the

average spike count. Typically, the Fano factor is about 1 in the cortex (Softky and

Koch, 1993), indicating a high degree of irregularity (Fig. 2.1).

Another measure of spike train irregularity is the coefficient of variation C
v

of inter-

spike intervals (Softky and Koch, 1993). The coefficient of variation is the ratio of

the inter-spike interval standard deviation to the inter-spike interval mean. Typically,

C
v

⇠ 1�1.5 in the cortex (Shadlen and Newsome, 1998), again indicating a high degree

of irregularity. Inter-spike intervals have a distribution consistent with a log-normal

distribution (Gershon et al., 1998) (Fig. 2.1).

This irregular cortical activity suggests that spike trains in the brain result from some

stochastic point process, such as a Poisson process with a brief refractory period (Bair

et al., 1994). In other words, neurons seem to spike randomly with some temporally

fluctuating firing rate. However, we must be careful to distinguish between noise, which

is truly random and irregular fluctuations, which seem random but may carry some

useful signal.
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Figure 2.1: Irregular spike trains
The spike train of a cortical neuron recorded from an awake monkey is highly irreg-
ular. This irregularity is evident from the raster plot (A) of responses to repeated
presentations of an identical random dot stimulus. Large fluctuations in the PSTH are
predominantly stimulus dependent. However, a magnification of a relatively stationary
response region (the shaded region) illustrates that spike train irregularity occurs even
without stimulus related fluctuations (B). This irregularity is quantified by measuring
inter-spike intervals (C) and spike counts (D). Reproduced from (Shadlen and News-
ome, 1998). Permission to reproduce this figure has been granted by The Journal of
Neuroscience

Spike train irregularity is not the only signature of cortical irregularity. Membrane

potentials are also highly variable (Destexhe et al., 2003; Rudolph et al., 2005). For

example, membrane potential recordings from the parietal cortex of an anaesthetised

cat are approximately Gaussian distributed (Rudolph et al., 2005). This intracellular

irregularity is an important factor in explaining the origin of spike train irregularity.

Spike trains are also asynchronous, as well as being irregular. The degree of syn-

chronisation of neuron pairs can be quantified by measuring Pearson’s correlation coef-

ficient - a measure of the co-variability of a neuron pair. A correlation coefficient close
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to 1 indicates that a pair of neurons are highly synchronised whereas a correlation

coefficient close to zero indicates that neurons are asynchronous.

Correlations are notoriously difficult to measure, especially when they are small.

However, carefully controlled recordings of neuron spike train pairs have recently been

obtained from V1 of awake monkeys (Ecker et al., 2010). While the monkeys viewed ori-

entated gratings, correlations were 0.005±0.004 (mean ± standard deviation), with av-

erages calculated across neuron pairs. Correlations were also recorded while the monkeys

viewed natural images. In that case correlations were 0.001± 0.005. In another experi-

ment, correlations from somatosensory and auditory cortices of urethane-anaesthetized

rats were recorded during up-state activity (Renart et al., 2010). The median correlation

was 0.0053 with an interquartile range of 0.0024 to 0.0094. These results indicate that

spike trains are typically asynchronous in the cortex across animals and brain regions.

There have been some reports of strong spike train correlations in the cortex (Cohen

and Kohn, 2011). Strong input fluctuations may be responsible for producing this large

temporal co-variability (Hertz, 2010), and when inputs are stationary, cortical activity

rapidly returns to an asynchronous spiking state.

The irregular, asynchronous spiking activity observed in cortical neurons stands in

stark contrast to the highly regular spiking activity of neurons in peripheral regions of

the nervous system, such as neurons in the glomerulus of the olfactory bulb (Laurent

et al., 1996; Wehr and Laurent, 1996; MacLeod et al., 1998), or neurons in the cochlear

nuclei of the auditory pathway (Joris et al., 1994; Joris et al., 1998). These neurons

produce spikes at regular intervals, in response to specific preferred stimuli. Throughout

this thesis, we focus on networks of cortical neurons.

2.2.2 Where is the irregularity coming from?

There are many possible sources of irregularity in the cortex (Faisal et al., 2008). The

most obvious source is intrinsic neuron noise. This noise causes neurons to have different

spike-train responses to identical stimuli across trials.

Intrinsic neuron noise can be categorised as either synaptic or electrical. Synaptic

noise effects the transmission of spikes between neurons (Fatt and Katz, 1950), whereas

electrical noise harms spike generation and propagation within a neuron. The largest

source of electrical noise is the stochastic opening and closing of ion channels (White
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and Rubinstein, 2000; Hodgkin and Huxley, 1952), with small neurons affected most

(Faisal et al., 2005).

Surprisingly, intrinsic neural noise is not the source of cortical irregularity. This can

be demonstrated by recording the responses of a cortical neurons to Gaussian input for

a series of trials. If the same input is used for each trial, the neural response is almost

identical (Mainen and Sejnowski, 1995). Therefore intrinsic noise does not harm spike

propagation substantially.

The predominant source of irregularity in the cortex is fluctuating synaptic input.

This fluctuating synaptic input is known as synaptic background noise, though, confus-

ingly, it is not pure noise. Rather, it is the result of thousands of presynaptic inputs

providing fluctuating input at the same time, or within the same membrane time con-

stant (Fellous et al., 2003). Nonetheless, we will refer to this irregularity as noise, for

historical consistency. The predominance of synaptic background noise can be measured

by comparing cortical neuron responses to injected input in-vivo where synaptic input

is intact and in-vitro where synaptic input is impaired. Spike train irregularity is much

greater in-vivo, suggesting that synaptic input is the origin of most irregularity (Holt

and Douglas, 1996; Rudolph et al., 2005).

2.2.3 The synaptic background noise problem

It is surprisingly difficult to build a network model in which spiking is irregular. For

example, in the Hopfield network - the first network model of memory, the activity of

the model neurons is regular (Hopfield, 1982), as are many other models of cortical

activity and function.

This problem can be understood using the following toy network model in which the

input to a neuron h is given by:

h =

KX

j

w
j

x
j

, (2.1)

where K is the number of synapses connecting to the neuron, w
j

is the strength of the

jth synapse and x
j

is the spiking state of the jth presynaptic neuron. In this toy model,

x
j

= 1 if the presynaptic neuron is spiking, and x
j

= 0 if the presynaptic neuron is

silent.

In the cortex, neurons typically receive between 5, 000 and 10, 000 synaptic inputs
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(Braitenber and Schuz, 1991; Binzegger et al., 2004), with each neuron receiving about

5 inputs from the same presynaptic neuron (Markram et al., 1997). Therefore, K is

effectively between 1, 000 and 2, 000 (London et al., 2010), and consequently, we expect

the mean synaptic input to be large:

hhi ⇠ O (K) , (2.2)

where brackets h. . .i denote an average over time. Here, we have estimated the size of

the mean synaptic input in terms of the number of synapses K. We say that the mean

synaptic input is order K, or that it scales with the number of synapses. This notation

is often used in statistical physics, when studying a complex system. It allows us to

make qualitative statements about a system, without having to specify all the system

details, such as the values of the synaptic strengths.

We can estimate the size of synaptic fluctuations by calculating the standard devi-

ation of the synaptic input. In a completely asynchronous (uncorrelated) network, the

synaptic input variance is a sum of K terms, just as the mean input is a sum of K

terms:

var (h) '
KX

j

w2
j

�2
j

⇠ O (K) , (2.3)

where �2
j

is the spike-train variance of the jth neuron. Therefore, the synaptic input

standard deviation is:

s.d. (h) =
p
var (h) ⇠ O�

p
K
�
. (2.4)

This is the synaptic background noise problem - synaptic drive fluctuations are much

smaller than the mean synaptic input, in a generic network model such as the model

we have just discussed (Shadlen and Newsome, 1994; Softky, 1995). Specifically, the

synaptic input standard deviation is
p
K times smaller than the mean synaptic input

(Softky and Koch, 1992). This is inconsistent with intracellular recordings, which show

that synaptic drive fluctuations are large (Rudolph et al., 2005). Also, this generic model

will not produce irregular, asynchronous spike trains because synaptic background noise

is the predominant source of irregularity in the cortex.

There are three categories of solution to this problem, following (Abbott, 2008). The

first solution is to reduce the effective size of K. This can be achieved if K is treated as
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the number of synapses on a dendrite, rather than the number of synapses on a neuron

(Poirazi et al., 2003). Single neurons then behave as a 2-layer neural network, with

synaptic inputs constituting the first layer and dendritic inputs constituting the second

layer, with each layer providing a relatively small number of outputs. The effective size

of K can also be reduced if a network uses sparse coding. In sparse coding, only a

small number of neurons are active at any given time, so only a few synapses are active

(Barlow, 1961; Barrett, 2007; Greene et al., 2009). Sparse coding also has interesting

computational properties (Barlow, 2001). However, when neurons are active, sparse

coding cannot explain why synaptic drive fluctuations are large.

Another solution is to assume that spike trains are synchronised. In that case,

the synaptic input variance becomes a sum of K2 terms. Consequently, the standard

deviation of the synaptic input is order K so fluctuations are about the same size as the

mean synaptic input. However, this solution is inconsistent with cortical activity which

is not synchronous as we have discussed (Ecker et al., 2010; Renart et al., 2010). This

solution may be used in the early sensory pathways, where incoming sensory signals can

be highly correlated (Joris et al., 1994; Laurent et al., 1996; Wehr and Laurent, 1996;

MacLeod et al., 1998; Joris et al., 1998).

The third solution is to reduce the size of the total mean input down to the size

of the synaptic drive fluctuations, or smaller. This occurs naturally in networks that

are randomly connected with an average connection strength of zero. According to

the central limit theorem, the sum of K, zero mean, uncorrelated random variables

is order
p
K. Therefore, the mean input to a neuron in an asynchronous, randomly

connected network will be order
p
K, the same order as the synaptic drive fluctuations.

A problem with this solution is that it violates Dale’s law, in that network connectivity

allows neurons to be both excitatory and inhibitory simultaneously (Dale, 1935).

Randomly connected networks can be forced to obey Dale’s law if all excitatory

neurons are required to have positive connection strengths and all inhibitory neurons

are required to have negative connection strengths. If there are K
E

excitatory synapses

of strength wE and K
I

inhibitory synapses of strength �wI , where wE and wI are large,

positive constants, then we can write the total mean input as:

hhi =
K

EX

j2E
wE⌫

j

�
K

IX

j2I
wI⌫

j

, (2.5)
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where ⌫
j

⌘ hx
j

i is the trial averaged firing rate of the jth neuron. Here we have used E

to denote the set of excitatory presynaptic neurons and I to denote the set of inhibitory

presynaptic neurons.

If wE and wI are chosen so that the background excitatory and inhibitory input to

each neuron cancel, then hhi ⇠ O�pK
�
. This can be accomplished by fine-tuning net-

work connectivity to ensure that excitation and inhibition cancel (Vogels and Abbott,

2009; Rajan and Abbott, 2006). This is called detailed balance. A problem with this ap-

proach is that small perturbations to synaptic strengths can disrupt network balancing,

causing spike trains to become regular. We will discuss a solution to this fine-tuning

problem in the next section.

2.2.4 The standard model of cortical activity

The most successful solution of the synaptic background noise problem was proposed by

Carl van Vreeswijk and Haim Sompolinsky in a pair of seminal papers (van Vreeswijk

and Sompolinsky, 1998; van Vreeswijk and Sompolinsky, 1996). They proposed that a

dynamic balance of excitatory and inhibitory synaptic input is responsible for synaptic

background noise (van Vreeswijk and Sompolinsky, 1998; van Vreeswijk and Sompolin-

sky, 1996; Brunel, 2000; Lerchner et al., 2004; Latham et al., 2000). This theory and its

extensions has come to be regarded as the standard model of cortical activity (Lerchner

and Latham, 2011).

Using mean field theory, van Vreeswijk and Sompolinsky demonstrated that a sparse,

randomly connected network of excitatory and inhibitory neurons, can dynamically

balance, producing a total synaptic input of about the same size as background synaptic

noise. This dynamic balance is similar to detailed balance, except that fine tuning of

network connectivity is not required. Instead, balancing is the result of neuron dynamics

producing excitatory and inhibitory firing rates for which excitatory and inhibitory

synaptic drive to all neurons cancel.

This can be understood by rewriting the mean synaptic input to the toy model

that we discussed in the previous section (Eqn. 2.5) in terms of the mean excitatory

population firing rate ⌫E and the mean inhibitory population firing rate ⌫I :

hhi = K
�
wEpE⌫E � wIpI⌫I

�
+O�

p
K
�
, (2.6)
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where

⌫E ⌘
K

EX

j2E
⌫
j

/K
E

⌫I ⌘
K

IX

j2I
⌫
j

/K
I

.

(2.7)

Here, pE = KE/K is the proportion of excitatory synapses and pI = KI/K is the

proportion of inhibitory synapses received by a neuron.

If the excitatory and inhibitory population firing rates evolve so that excitatory and

inhibitory synaptic inputs cancel as follows;

wEpE⌫E � wIpI⌫I ⇠ O
⇣
1/
p
K
⌘
, (2.8)

then the network is balanced and the total synaptic input and the synaptic background

noise are about the same size.

Using methods from statistical physics, van Vreeswijk and Sompolinsky analysed

network dynamics in the large network limit and found that dynamic balancing naturally

occurs in networks of sparse, randomly connected excitatory and inhibitory neurons, as

long as the synaptic weights obey some generous balance conditions (van Vreeswijk and

Sompolinsky, 1998; van Vreeswijk and Sompolinsky, 1996). These conditions are often

characterised as a requirement that inhibition dominates excitation. This solves the

synaptic background noise problem. Changes to network parameters, such as synaptic

weights and neuron time-scales do not effect network dynamics adversely. We will

discuss the precise balance further in chapter 3.

A surprising consequence of dynamic balance is that excitatory and inhibitory neural

populations track the activity of an input population linearly, despite the highly non-

linear dynamics of the neurons in the network. This happens because dynamic balance

effectively linearises the population dynamics of the network. This population tracking

is very fast - much faster than the responses of individual neurons in the network,

suggesting a possible functional role for balanced network dynamics.

The network model studied by van Vreeswijk and Sompolinsky consists of very simple

binary point neurons, in which the neural states change at time intervals consistent with

a Poisson distribution. Despite this, the balanced network results that they derive have

important implications for networks of realistic neurons and real neurons. This is a
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consequence of the fact that the spiking activity of a neuron in a balanced network is

predominantly determined by network dynamics rather than neural dynamics. Indeed,

van Vreeswijk and Sompolinsky took advantage of this fact in their choice of neuron

model. Networks of simple, less realistic neuron models are analytically tractable to a

greater extent than networks of more realistic neurons, such as integrate and fire models

(Knight, 1972). Nonetheless, it is important to investigate the balanced state in more

realistic models.

Irregular asynchronous spiking states that result from dynamically balancing syn-

aptic input have been observed in simulations of current based integrate and fire neurons

(Amit and Brunel, 1997b; Amit and Brunel, 1997a; Latham et al., 2000; Brunel, 2000).

More recently, networks that consist of conductance based integrate and fire models

have been simulated in the balanced state, or the high conductance state as it is known

in such models (Latham et al., 2000; Lerchner et al., 2004; Lerchner et al., 2006; Hertz,

2010; Lerchner and Latham, 2011; Kumar et al., 2008). This high conductance state

is characterised by large membrane potential fluctuations and a depolarised membrane

potential (Destexhe et al., 2003).

A series of experiments have tested the predictions of balanced network theory. In-

vitro intracellular recordings of ferret prefrontal and occipital cortex have revealed that

excitatory and inhibitory conductances do balance (Shu and Hasenstaub, 2003). This

balancing coincides with times in which spiking activity is irregular and asynchronous.

However, there are many problems with in-vitro neural network experiments. In par-

ticular, many synaptic connections are broken in-vitro and it is not clear what effect

this might have on the dynamics of the network. More recently, in-vivo intracellular

recordings of ferret neocortex have been performed (Haider et al., 2006). During these

recordings, ferrets were anaesthetised using ketamine–xylazine. Cortical activity under

this anaesthetic fluctuates between up and down states, similar to activity fluctuations

during sleep. During up-state activity, cortical spiking is irregular. Intracellular record-

ings during these up states demonstrate that excitatory and inhibitory conductances

balance (Fig. 2.2).
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Figure 2.2: Excitatory-Inhibitory balance
Excitatory and inhibitory conductances are proportional to each other, indicating that
the cortex operates in a balanced state. This proportionality is demonstrated for eight
different neurons in a population (labelled 1 to 8). The conductances to all neurons are
clustered around a conductance level that corresponds to equal excitation and inhibition
(dashed line, labelled G (e) = G (i)). Recordings are obtained during an up-state,
starting at a low conductance level and continue for 500ms. Adapted from (Haider
et al., 2006). Permission to reproduce this figure has been granted by The Journal of
Neuroscience

A number of experimental studies have reported cortical activity that seems incon-

sistent with balanced network theory, such as non-Gaussian synaptic input fluctuations

(Okun and Lampl, 2008; DeWeese and Zador, 2006). However, recent work by Lerchner

and Latham has shown that these observations are actually consistent with the theory

of balanced networks. These results, along with a growing body of evidence from exper-

iments and realistic network simulations (Destexhe et al., 2003) indicate that balanced

network theory is a plausible theory of cortical network activity.
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2.3 Orientation tuning

There is more to cortical activity than irregular, asynchronous spiking - it is known

that the firing rates of spike trains in many cortical areas are tuned to specific features

of sensory stimuli. In this feature tuning, the firing rate of a neuron is largest when a

specific feature occurs in a stimulus. The firing rate decreases as that feature changes

from the preferred feature value. For example, the firing rate of a place cell in the

hippocampus of an animal is tuned to a specific location in the animals environment

(O’Keefe and Dostrovsky, 1971). The firing rate of the place cell increases as the animal

moves towards that location, and decreases as it moves away. The most famous example

of feature tuning is in the visual cortex, where many neurons are tuned to the orientation

of an edge in a visual stimulus (Hubel and Wiesel, 1962).

Firing rates of cortical neurons can also increase monotonically with changes to cer-

tain stimulus features. Again, the most famous example of this phenomenum occurs in

the visual cortex, where the response of orientation tuned neurons increases monoton-

ically as the contrast of a visual stimulus increases (Sclar and Freeman, 1982).

Since the discovery of orientation tuning, the visual cortex has become a veritable

playground for experimentalists and theorists attempting to discover regularity in cor-

tical activity (Olshausen and Field, 2005). In this section, we will discuss the key

observations and the theories that attempt to explain visual cortex activity. The hope

is that if we can understand the mechanisms and functions of this cortical region, the

knowledge will transfer to the entire cortex.

2.3.1 Orientation tuning and contrast invariance

Hubel and Weisel discovered that neurons in layer 4 of the cat visual cortex are tuned

to edges in visual stimuli (Hubel and Wiesel, 1959). They referred to these orientation

tuned cells as simple cells. Specifically, these cells respond to gabor filter type stimuli,

which consist of a bright line, flanked by dark lines on each side. These cells also respond

to gabor filters of the opposite polarity, with dark lines, flanked by bright lines. Each

simple cell has a preference for an edge at a particular orientation - firing vigorously

when that orientation is presented, and responding less to edges at different orientations

(Fig. 2.3). Edges that are perpendicular to the preferred orientation elicit the weakest

response.
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Orientation tuning has been observed in many animals, such as monkeys (Blasdel

and Fitzpatrick, 1984) and ferrets (Chapman and Stryker, 1993). Typically, simple cells

are found in layer 4 and layer 6 of the visual cortex, though some orientation tuned cells

can be found in other cortical layers (Hubel and Wiesel, 1962; Kelly and Van Essen,

1974; Gilbert, 1977; Shatz and Stryker, 1978; Ferster and Miller, 2000). Neurons in

layer 2/3 also respond to oriented edges. However, their response properties are slightly

different in that the response is independent of the edge’s polarity. These cells are called

complex cells (Hubel and Wiesel, 1962).

Orientation tuned cells also respond monotonically to the contrast of a visual stimu-

lus (Sclar and Freeman, 1982; Sompolinsky and Shapley, 1997), as we mentioned earlier.

As the image contrast increases, the firing rate increases almost linearly. This is called

contrast invariance because the shape of the overall neural response and population

response is approximately invariant to contrast changes (Fig. 2.3). Contrast invariance

is often characterised by measuring tuning curve widths at different contrasts (Sclar and

Freeman, 1982; Skottun et al., 1987). If the entire tuning curve is contrast invariant,

the tuning curve widths will also be necessarily invariant to contrast.









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



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Figure 2.3: Orientation tuning and contrast invariance
Simple cells in the cat visual cortex are orientation tuned (left) and contrast invariant
(right). The spiking response of this cell is largest for stimuli containing a grating
orientated at 0

o. The response becomes smaller as the stimulus orientation changes
from the preferred orientation. Stimuli at low contrast (blue), medium contrast (green)
and large contrast (red) are presented during this recording. When responses to all
contrast are normalised (right), we can see that this cell is contrast invariant. From
(Anderson et al., 2000). Reprinted with permission from AAAS.
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2.3.2 Where does orientation tuning come from?

The anatomical and physiological origin of orientation tuning and contrast invariance

have been the subject of intense investigation since their discovery (Ferster and Miller,

2000). From the outset, we know that network connectivity must play a central role in

generating tuned responses, because an edge is a spatially extended feature and con-

nectivity is the only mechanism that can integrate information across space. Therefore,

feed forward connectivity or recurrent connectivity, or a combination of both are the

obvious candidate sources of orientation tuning.

It is extremely difficult to measure connectivity directly (Reid and Alonso, 1995).

However, the broad pattern of connectivity to simple cells is partially known (Ferster

and Miller, 2000). Simple cells in layer 4 receive excitatory and inhibitory synaptic input

from other cells within layer 4 and excitatory synaptic input from cells in the lateral

geniculate nucleus (LGN). The LGN in turn receives input directly from the optic tract.

LGN neurons are not tuned to orientation, but respond to on-off visual stimuli, which

consist of a bright circle surrounded by a dark ring. LGN cells also respond to off-on

stimuli, which are the polar opposite of on-off stimuli.

The feedforward model was the first model of orientation tuning (Hubel and Wiesel,

1962). In this model, connectivity from LGN neurons to layer 4 neurons produces orient-

ation tuned responses, by integrating on-off cells along a straight line. The orientation

of this line is the preferred orientation of the V1 cell receiving the feedforward input.

Neurons in V1 only spike if synaptic input is sufficiently large because neurons are non-

linear, and behave as threshold units in this model. Therefore, if a simple cell receives

input from an edge with an orientation different to its preferred orientation, that cell

will have a lower firing rate, because the synaptic input will be lower.

There is plenty of experimental evidence to support the feedforward model. Most

compelling is the observation that the pattern of connectivity from the LGN to layer 4 in

the cat resembles the connectivity pattern predicted by the feedforward model (Tanaka,

1983; Reid and Alonso, 1995). Another prediction is that synaptic input to layer 4 from

the LGN is tuned to orientation. This has also been verified (Ferster et al., 1996; Chung

and Ferster, 1998).

However, there are a number of problems with the feedforward model. The most

serious difficulty is that it is not contrast invariant. As the contrast of a visual stimulus

30



increases, the width of tuning curves in the model also increases. This is called the

iceberg effect, and is a consequence of the non-linear threshold behaviour of neurons.

There is no single choice of spiking threshold that can produce realistic tuning curves for

all contrast levels in this model (Ferster and Miller, 2000). Along with this fundamental

theoretical problem, there is growing experimental evidence that the feedforward model

is insufficient. In particular, an analysis of simple cell membrane potential changes

elicited by visual stimuli has revealed that most membrane potential changes are not

caused by LGN input (Ferster et al., 1996; Chung and Ferster, 1998). Clearly, this is a

serious problem, because in the feedforward model, all visual stimulus related changes

are caused by LGN input.

One solution to the iceberg effect is to combine inhibitory LGN input with excitatory

LGN input in such a way that the total feed-forward input is close to threshold for all

contrasts (Carandini and Heeger, 1994). However, synapses from LGN to layer 4 are

excitatory, not inhibitory (Ferster and Lindstrom, 1983; Martin and Whitteridge, 1984).

An alternative source of inhibitory input can be found in layer 4 itself. The Push-Pull

model builds upon this idea, suggesting that layer 4 cells that are not contrast invariant

themselves can provide the inhibitory input necessary to produce contrast invariant

orientation tuning (Ferster and Miller, 2000).

A problem with all of these models is that they are inherently feedforward. Recurrent

excitation is completely ignored and recurrent inhibition plays a minor modulatory role,

if anything. Furthermore, these models are dynamically impoverished in their disregard

for the contribution of recurrent connectivity.

In the ring model of orientation tuning, recurrent connectivity is the predominant

source of orientation tuning (Ben-Yishai et al., 1995; Somers et al., 1995; Hansel and

Sompolinsky, 1996). In this model, synaptic input from the LGN is weakly tuned to ori-

entation. Recurrent connectivity sharpens input, by amplifying the response of neurons

to their preferred orientations and suppressing the response to other orientations. The

recurrent connectivity that performs this sharpening is Mexican-Hat shaped, meaning

that cells with similar preferred orientations are more strongly connected than neurons

with dissimilar preferred orientation.

Contrast invariance is a consequence of this mechanism - the same input features

are sharpened by recurrent connectivity for all inputs, producing a similarly shaped
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tuning curve at all contrast levels. However, if synaptic input to some neurons is sub-

threshold, contrast invariance is disrupted (Sompolinsky and White, 2005). Apart from

this theoretical problem, the ring model is broadly consistent with anatomy and observed

tuning curves (Ferster, 1986; Douglas and Martin, 1991; Nelson et al., 1994).

2.3.3 Augmenting the standard model with structured connectivity

A serious problem with most orientation tuning models is that they produce regular

spike trains. This is inconsistent with observed visual cortex spike trains, which are

highly irregular and asynchronous (Ecker et al., 2010), as we discussed in section 2.2.

This is a major failure, because it means these models cannot explain the bulk of simple

cell activity.

Another problem with most orientation tuning models, such as the ring model and

feed-forward models is that their tuning curves are typically homogeneous. This may

not seem to be a serious problem, because most experimental evidence seems to suggest

that tuning curves have a stereotypical shape (Ringach et al., 2002; Olshausen and Field,

2005). However, this belies a more complicated reality, in which tuning curves can have

a bewildering array of possible shapes (Fregnac and Imbert, 1984; Maldonado, 1997;

Ferster and Miller, 2000). Such tuning curves are often not reported in the literature,

because they are difficult to interpret (Olshausen and Field, 2005). The reality is that

in many animals, such as monkeys and ferrets, most cells in layer 4 do not have strong

orientation tuning (Chapman and Stryker, 1993; Blasdel and Fitzpatrick, 1984), leading

to estimates by some that we only understand between 10� 20% of V1 (Olshausen and

Field, 2005).

To solve these problems, the theories that explain orientation tuning must some-

how be reconciled with balanced network theory. This is not an easy task, because

the connectivity underlying each phenomenon is very different. Balanced networks re-

quire random sparse background connectivity (van Vreeswijk and Sompolinsky, 1996;

van Vreeswijk and Sompolinsky, 1998) and orientation tuning requires structured recur-

rent connectivity and structured feed-forward connectivity (Ferster and Miller, 2000;

Sompolinsky and White, 2005).

Recently, a model has been developed that may solve these problems using a com-

bination of random connectivity and structured connectivity (Lerchner et al., 2006; van
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Vreeswijk and Sompolinsky, 2005). In this model, connectivity is sparse and random,

as in balanced networks. However, the probability that a pair of neurons connect to

each other depends on the preferred orientation of those neurons - neurons that have

similar preferred orientations are more likely to connect to each other than neurons

which have dis-similar preferred orientations. Although neurons connect randomly, the

connectivity has some structure. The structured connectivity is similar to the Mexican

Hat connectivity used in ring attractor models. The Mexican Hat description refers to

the probability of a connection rather than the strength of a connection. All connections

between the same neuron type are the same strength. Neurons in this model produce

irregular spike trains and they are orientation tuned.

The background connectivity that produces irregular spike trains plays an active role

in amplifying tuned input (Murphy and Miller, 2009). Balanced networks contain a hid-

den feedforward connectivity structure, which can be revealed by decomposing network

connectivity along orthogonal directions in the dynamical space of the network. With

appropriate structured connections, this hidden feedforward connectivity can amplify

weakly tuned input. This balanced amplification can produce sharp orientation tuned

responses.

This is a major theoretical breakthrough. It explains how neurons can produce

irregular spike trains and have orientation tuning. Furthermore, it can also explain

why orientation tuning is contrast invariant. Excitatory and inhibitory synaptic input

is orientation tuned and balanced, so any non-linear changes induced by contrast are

quickly counter-balanced by inhibition, producing linear, contrast invariant orientation

tuning.

Unfortunately, the success of this balanced model comes at a price. Structured

inhibitory input must balance structured excitatory input to produce irregular spiking.

Learning this structure may be difficult, because synaptic weight changes must comply

with these conditions. Changes to excitatory structure must be matched by changes to

inhibitory structure.

Another potential problem is that population tuning curves are homogeneous in this

model. This homogeneity is a consequence of the additional balance conditions, which

guarantee that all tuning curves have similar, stereotypical shapes. This is consistent

with the traditional view that orientation tuning is homogeneous, but is inconsistent
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with the more recent realisation that population responses to different orientations can

be quite diverse (Olshausen and Field, 2005).

There is a possibility that these problems may be resolved using an alternative form

of structured connectivity. Recently, it has been shown that weak structured connectiv-

ity embedded in strong background connectivity can be used to store memories and

generate realistic spiking activity (Roudi and Latham, 2007). However, because struc-

tured connectivity is weak, its form is less constrained. In the next chapter (Chapter 3),

we will investigate orientation tuning in networks with this type of connectivity, where

structured connectivity is much weaker than background random connectivity, rather

than being the same size.

2.4 Computation

Computation is one of the primary functions of the brain (Dayan and Abbott, 2001).

Computations transform sensory information from a complicated format into a useful

format. For example, while going for a walk in a forest, we are performing object

recognition - analysing complicated scenes of trees and leaves and detecting shadowy

objects lurking in the dark, such as a hungry pack of wolves on the hunt for food. Our

survival depends on our ability to compute.

Originally, single neurons were considered to be the fundamental units of compu-

tation. Neurons are extraordinarily complex cells, capable of supporting many simple

transformations. However, they are fundamentally constrained by noise, and they can

only transmit discrete all-or-nothing signals, in the form of action potentials (Hodgkin

and Huxley, 1952).

During the last 20 years there has been a paradigm shift in how we think about

neural activity and computation (Douglas and Martin, 1991). It is now widely believed

that neural computation is mediated primarily by neural networks (Hertz et al., 1991).

Neural network computations can be much more robust than single neuron computa-

tions. Also, the discrete nature of neural signals can be mitigated with a network of

neurons operating in concert.

The computational capacity of neural networks is not known, mostly because a

neural network is an extremely complicated dynamical system. Bridging the gap between

complex computation and neural network dynamics promises to be one of the major
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scientific challenges of the 21st century. Nonetheless, there has been much progress re-

cently using methods from dynamical systems theory (Amit et al., 1985; Latham et al.,

2000), stochastic calculus (Boerlin and Denève, 2011), information theory (Shannon,

1948) and control theory (Sutton and Barto, 1998; Todorov and Jordan, 2002). We

review some of that progress in this section.

2.4.1 Orientation selectivity

Orientation selectivity is a simple computation in which the orientation of an edge

in an image is computed. Naturally occurring images contain many orientated bars

(Olshausen and Field, 1996; Bell and Sejnowski, 1997). Detecting the orientation of

these bars is a critical building block for more sophisticated computations, such as object

recognition. Orientation selectivity, like orientation tuning has become an important toy

computation studied by experimentalists and theorists, who hope that general principles

of computation may be discovered if we can understand this simple computation (Ferster

and Miller, 2000).

The orientation of a bar is encoded in the activity of a network of recurrently con-

nected neurons receiving visual input. This is called population coding (Pouget et al.,

2000). Population codes are essential for computations such as orientation selectivity,

where the stimulus is spatially extended. The standard model of population coding is

given by (Zemel et al., 1998):

r
i

= f
i

(✓) + ⌘
i

(2.9)

where r
i

is the firing rate of the ith neuron in the population, ✓ represents a stimulus

feature such as the orientation of a bar and ⌘
i

is population noise (Zemel et al., 1998).

The function f
i

represents the tuning curve of the ith neuron. This is typically a

Gaussian function or a sigmoid-like non-linearity, depending on the type of population

code. Usually, the noise is Gaussian, or Poisson.

This network model is a dramatically simplified version of the spiking models we have

already discussed. The relationship between those spiking models and this population

coding model is complicated. The tuning curves f
i

and the noise statistics are related

to network connectivity and neural dynamics in a convoluted, unspecified way. This

may seem problematic, but this simplification has led to significant advances in our

understanding of computation in neural populations, both in experiments that can be
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easily fitted to this model (Paninski, 2004), and in theory, where analysis is tractable

(Abbott and Dayan, 1999).

The computational performance of a population can be quantified by calculating

the variance of an unbiased optimal orientation decoder. An unbiased decoder is a

decoder that can decode a parameter correctly on average. An optimal decoder produces

estimates of parameter ✓ with the smallest possible variance. This variance is called the

Cramér–Rao bound. If the optimal variance is large, then computational performance

is low, because there is large uncertainty about orientation ✓. If the variance is very

small then computational performance is high. Therefore, the inverse variance of an

unbiased optimal decoder provides a good measure of the computational performance

of a network. It is called the Fisher Information, and can be written as follows:

F (✓) =

ˆ
(@

✓

log p (r|✓))2 p (r|✓) dr (2.10)

where we have written r = (r1, r2, . . . ri, . . . , rN ) to denote the entire population re-

sponse, with r
i

representing the firing rate of the ith neuron, given by equation 2.9.

Population codes with sharply peaked tuning curves have high Fisher Information

(Paradiso, 1988; Seung and Sompolinsky, 1993). Therefore, we can conclude that ori-

entation tuning is not simply phenomenological, but rather, it is functionally useful.

Orientation tuned neurons are also highly irregular. Unsurprisingly, population

codes that have large noise levels have low Fisher Information indicating that cortical

irregularity can harm orientation selectivity (Paradiso, 1988; Seung and Sompolinsky,

1993). The presence of cortical irregularity seems to be inconsistent with one of the

our most compelling theories for neural computation - that the brain performs compu-

tations optimally (Barlow, 1961). This mystery is confounded by the fact that cortical

irregularity is not caused by intrinsic neural noise. Synaptic drive fluctuations are the

predominant cause of spike train irregularity so it should be possible to eliminate most

irregularity.

Fisher Information provides a theoretical bound on computational performance.

However, it is important that a realistic network can implement a decoder that achieves

this performance level in practice. A maximum-likelihood decoder or ML decoder is an

example of a decoder that can be implemented in a realistic network. This decoding

explicitly accounts for the noisy probabilistic nature of population coding by estimating
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the orientation ✓, which maximises the probability of producing observed population

activity:

✓
ML

= max

✓

p (r|✓) . (2.11)

It turns out that it is actually possible for a large recurrently connected network to

extract almost all the information available by performing ML decoding (Deneve et al.,

2001). Indeed, the maximum likelihood decoder is asymptotically efficient (Amari and

Nagaoka, 2000). Therefore, Fisher Information can be regarded as a good measure of

computational performance.

There are other coding schemes that the brain might use, such as temporal coding,

in which the precise timing of spikes is important. However, intrinsic neural noise

is a serious problem for temporal coding. Rate based population codes can actually

remove this noise by integrating activity across the population (Deneve et al., 2001).

This is particularly important, because if noise increases in each layer of a network,

noise will eventually dominate. A consequence of noise removal is that computations

in populations can be much more accurate than single neuron computations (Paradiso,

1988). This noise removal becomes more effective in large networks, as long as the noise

is not strongly correlated across neurons (Zohary et al., 1994). We will discuss the role

of correlations in population coding in the next section.

Apart from noise removal and improved computational performance, population

codes are useful because they can support complicated non-linear computations (Poggio,

1990). Population codes provide a basis set, which can be used to build computations

such as object recognition (Poggio and Edelman, 1990) and object transformations

(Salinas and Abbott, 1995; Pouget and Sejnowski, 1997). Population codes are also

particularly robust to damage. If some neurons in the population die, or if synaptic

connections fail, a population code will not be adversely effected, because the code does

not rely on any single neuron. They can also be used for transmitting information

robustly through time, or in other words, for storing memories (Hopfield, 1982).

2.4.2 The role of correlations in computation

Correlated variability can play an important, sometimes negative role in computation

(Averbeck et al., 2006). For example, in a population code, if each neuron is completely

correlated with every other neuron, it is not possible to remove noise by integrating the
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population activity, just as it is impossible to remove noise from a single neuron. In this

way, correlations can destroy the computational performance of a network.

Nonetheless, we can not simply dismiss correlations as universally harmful. Indeed,

correlations may actually improve computational performance, depending on the struc-

ture of the correlations and the structure of the tuning curves in the population code

(Averbeck et al., 2006; Ecker et al., 2010). Therefore, it is difficult to make definitive

statements about the role of correlations in computation, if any.

Apart from being difficult to interpret, correlations are extremely difficulty to meas-

ure (Ecker et al., 2010). Movement of the electrodes that record correlations can pro-

duce artificial correlations. Also, failure to adequately isolate individual cells in multi

electrode recordings can produce artificial correlations. Anaesthetics that produce os-

cillatory activity, and internal changes in the dynamical state of the animal also cause

problems for correlation measurements.

Nonetheless, carefully controlled correlation measurements have recently revealed

that correlations can be very small in the cortex (Ecker et al., 2010; Renart et al.,

2010). However, even very weak correlations can impair the computational perform-

ance of the cortex (Zohary et al., 1994; Sompolinsky et al., 2001; Wilke and Eurich,

2002; Averbeck and Lee, 2004). Whether or not weak correlations are significant in

computation sensitively depends on the structure of the correlations and the population

code (Abbott and Dayan, 1999).

This subtle relationship between correlations and computation is problematic for

theorists and experimentalists attempting to understand computation in the cortex. If

the contribution of correlations to computation were small enough to be ignored, we

could make significant progress in our understanding of neural computation. In practice,

most experimentalists and theorists simply ignore correlations, without justification, and

hope that this does not negate their results.

The computational consequences of ignoring correlations can be quantified by cal-

culating �I
diag

, defined as follows:

�I
diag

⌘ I � I
diag

, (2.12)

where I is a measure of computational performance with correlations, and I
diag

is a

measure of computational performance without correlations (?; Wu et al., 2001; Aver-
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beck et al., 2006). For example, I could be the Fisher Information (Eqn. 2.10) of a

correlated population code, and I
diag

could be Fisher Information of the same popula-

tion code but without correlated variability.

For a simple toy model containing just two neurons we can see that the consequences

of ignoring correlations depend on the relationship between correlations and average

neural responses (Fig. 2.4). If these interact so that there is no difference between a

population decoder that ignores correlations and a decoder that does not ignore cor-

relations, then �I
diag

= 0 and correlations can be ignored without harming decoding.

However, if correlations do effect decoding then �I
diag

> 0 and ignoring correlations

harms computation (Wu et al., 2001; Nirenberg and Latham, 2003).

All the theoretical studies that we have discussed here are based on simple popula-

tion coding models, where the correlation structure is chosen arbitrarily. In real neural

populations, the correlation structure is determined by network connectivity and net-

work input. To conclusively determine whether or not correlations can be ignored, a

network model with realistic network correlations must be investigated. We will discuss

this further in chapter 5.

2.4.3 The role of noise in computation

Most spike train irregularity in the cortex is caused by synaptic background noise (van

Vreeswijk and Sompolinsky, 1996; van Vreeswijk and Sompolinsky, 1998). This is sur-

prising, because this noise can be mostly eliminated using network connectivity that is

completely structured (Destexhe and Contreras, 2006). So why are neural spike trains

so irregular? Could this irregularity be useful in computation, or, is it an evolutionary

mistake that fundamentally impairs cortical function?

There have been a number of intriguing theories of neural computation in which

synaptic background noise is beneficial (Destexhe and Contreras, 2006). One proposal

is that the cortex uses stochastic resonance (Longtin et al., 1991; Bulsara et al., 1991;

Stemmler, 1996; Destexhe and Contreras, 2006; McDonnell and Abbott, 2009; Green-

wood et al., 2000). Stowe imagine that struc- tured connectivity produces orientation

tuning while background connectivity provides dynamic balance.chastic resonance oc-

curs when an increase in noise increases computational performance in a non-linear

system (Fig. 2.5) (McDonnell and Abbott, 2009). Usually, this improvement is bound
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Figure 2.4: Correlations and computation
Ignoring correlations can harm computational performance dramatically, depending on
the structure of the correlations. Here, the presence or absence of stimulus s1 (yellow)
and stimulus s2 (green) is computed from the spiking activity of two neurons. The
encoding of these stimuli is noisy, as illustrated using ellipses that represent 95% con-
fidence intervals. The panels on the left show the neural encoding without correlations
and the panels on the right show the encoding with correlations. (a) The computa-
tional performance of a decoder that ignores correlations (black line) can be just as
good as a decoder that does not ignore correlations (red line), if the correlations have
no effect on the decoder. The decoders, represented by these lines detect stimuli by re-
porting whether network activity is above or below the line. (b) If correlations do effect
the decoder substantially, then computation can be harmed significantly by ignoring
correlations. Adapted by permission from Macmillan Publishers Ltd: Nature Reviews
Neuroscience (Averbeck et al., 2006), copyright 2006.
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by a stochastic resonance peak, because too much noise eventually degrades incoming

signals.

 





 








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
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



Figure 2.5: Stochastic resonance
The computational performance of a non-linear system can increase with noise, as in
this cartoon. This is called stochastic resonance. Computational performance is maxim-
ised at a stochastic resonance peak. Excessive noise degrades the systems performance
substantially, and insufficient noise also impairs performance.

A single neuron is an example of a non-linear dynamical system in which stochastic

resonance might occur (Longtin et al., 1991; Bulsara et al., 1991; Stemmler, 1996).

Typically, neurons behave as thresholding units, producing spikes when synaptic input

is above some threshold and remaining silent otherwise. This non-linearity can impair

the transmission of information through the neuron if the synaptic drive is not close

to threshold. However, noise can effectively increase the range of synaptic signals that

can be transmitted through a neuron (Lecar and Nossal, 1971), by allowing signals that

are far from threshold to occasionally fluctuate across the spiking threshold. In this

way, stochastic resonance occurs and computational performance is enhanced because

of synaptic background noise.

Stochastic resonance has not yet been demonstrated in population codes. It is

possible that the detrimental effects of synaptic background noise are so substantial
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that there is no resonance peak in neural populations. We will discuss this further in

chapter 5.

Another possible use of spike train irregularity is in probabilistic population coding,

where a population of neurons represents an entire stimulus probability distribution,

rather than a single stimulus parameter alone (Ma et al., 2006; Knill and Pouget, 2004).

In probabilistic population coding, distributions are represented parametrically, using

the statistics of neural activity. Probabilistic population codes are capable of supporting

sophisticated computations such as Bayesian inference (Knill and Pouget, 2004).

Cortical irregularity might also play a role in memory. Network models that spike

regularly can form spurious memory states that are irrelevant at best and harmful at

worst (Hertz et al., 1991). The background connectivity responsible for irregular spiking

can also act as a memory reservoir, from which relevant memories can be recalled and

irrelevant memories can be ignored. Recently, this has been demonstrated in a balanced

network with realistic spike train irregularity (Roudi and Latham, 2007).

Another approach to understanding the computational role of cortical irregularity is

to treat irregularity as a complicated chaotic signal, rather than noise (Buonomano and

Merzenich, 1995; Hopfield and Brody, 2001; Maass et al., 2002; Maass and Markram,

2004; Jaeger and Haas, 2004; Sussillo and Abbott, 2009). Chaotic network dynamics

support computation by supplying a computational reservoir, from which a broad range

of computations can be extracted using a simple linear decoder. The computational

reservoir, as its name suggests, encodes a large number of computations in network

activity. These computations are produced by network dynamics which repeatedly pro-

ject network activity through non-linear neurons and network connectivity, producing

a complicated superposition of computations.

A problem with this proposal is that it is particularly difficult to implement in a

spiking network. However, it has recently been demonstrated that a linear operation

can be used to robustly extract sophisticated Bayesian computations from a network

of spiking neurons (Boerlin and Denève, 2011; Boerlin, 2011; Deneve, 2008a; Deneve,

2008b). In these models, neurons spike to signal a computational error. These spikes

are then used for error correction. The membrane potential of each neuron is a measure

of the error size. Computational robustness, dynamic balance and the consequent spike

train irregularity are all features of this error reduction mechanism.
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It is not clear which, if any, of these computational proposals explain the existence

of cortical noise. It may be that the brain uses noise in several different ways and that

more than one of these proposals is correct. At the other extreme, cortical irregularity

may simply be a truly useless handicap - something that fundamentally limits the com-

putational capacity of a brain. In any case, it is important that we identify as many

unique theories of neural computation as possible, consistent with known physiology

and anatomy.

In this thesis, we propose that cortical noise is a signature of stochastic resonance

in a neural population (Chapter 5). We begin by describing a balanced network model

that is capable of producing realistic spike train irregularity and feature tuning (Chapter

3). Before we can calculate the computational performance of this network, we must

calculate the spike train correlations (Chapter 4). We can then understand how spike

train irregularity, orientation tuning, computational performance and balanced network

connectivity all interact to produce the rich, computational and dynamical diversity

displayed by brains and their owners.
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Part I

Dynamics
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Chapter 3

Orientation Tuning in Balanced

Networks

3.1 Introduction

Neurons in the visual cortex are orientation tuned (Hubel and Wiesel, 1962; Blasdel and

Fitzpatrick, 1984; Chapman and Stryker, 1993), contrast invariant (Sclar and Freeman,

1982) and dynamically balanced (Haider et al., 2006; Ecker et al., 2010). Reconciling

these diverse phenomena in a single cortical model is a major theoretical challenge, be-

cause the network connectivity underlying each observation is very different in the mod-

els proposed so far (Hubel and Wiesel, 1962; Ben-Yishai et al., 1995; Somers et al., 1995;

Hansel and Sompolinsky, 1996; van Vreeswijk and Sompolinsky, 1996; van Vreeswijk and

Sompolinsky, 1998). Solving this problem is important because it will provide a long

sought unifying explanation for many visual cortex observations, and more importantly,

it may lead to a general theory of cortical activity and connectivity (Ferster and Miller,

2000).

Orientation tuned neurons respond vigorously to images containing edges at a pre-

ferred orientation (Hubel and Wiesel, 1962; Blasdel and Fitzpatrick, 1984; Chapman

and Stryker, 1993). These responses are contrast invariant, with tuning curve shapes

preserved as the image contrast changes (Sclar and Freeman, 1982). The spiking activ-

ity of these neurons is irregular and asynchronous (Ecker et al., 2010), a consequence

of dynamically balancing excitatory and inhibitory synaptic input (van Vreeswijk and

Sompolinsky, 1996; van Vreeswijk and Sompolinsky, 1998; Haider et al., 2006; Ecker
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et al., 2010).

Background connectivity, which is strong, random and sparse, is responsible for dy-

namic balancing (van Vreeswijk and Sompolinsky, 1996; van Vreeswijk and Sompolinsky,

1998; Brunel, 2000). This connectivity is very different to the connectivity responsible

for orientation tuning and contrast invariance, which is highly structured (Hubel and

Wiesel, 1962; Ben-Yishai et al., 1995; Somers et al., 1995; Hansel and Sompolinsky,

1996; Ferster and Miller, 2000). If connectivity is structured and strong, it is possible

to have orientation tuning and dynamic balance simultaneously (Lerchner et al., 2006).

However, this structure is difficult to learn because the strong inhibitory structure must

precisely balance the strong excitatory structure.

We propose that a combination of weak structured connectivity embedded in strong

background connectivity is responsible for irregular, orientation tuned spiking activ-

ity. Connectivity of this form was recently used in a cortical model of memory, with

structured connectivity responsible for memory storage and background connectivity re-

sponsible for irregular spiking (Roudi and Latham, 2007). Here, we imagine that struc-

tured connectivity produces orientation tuning while background connectivity provides

dynamic balance. We expect this model to be as stable as unstructured balanced net-

works, because weak structure is unlikely to disrupt strong background connectivity.

A potential problem with this proposal is that the contribution of strong background

connectivity might overwhelm the contribution of weak structured connectivity. We

find that this does not happen, so neurons can be orientation tuned and balanced.

However, the orientation tuning is noisy, because dynamic balancing is noisy. This is

actually consistent with the much overlooked observation of noisy orientation tuning in

experiments (Chapman and Stryker, 1993; Blasdel and Fitzpatrick, 1984).

We also find that orientation tuning is contrast invariant in our model. Large syn-

aptic drive fluctuations from dynamic balancing effectively linearise single neuron dy-

namics, allowing tuning curve shapes to become invariant to image contrast. This

linearisation mechanism has been observed experimentally (Anderson et al., 2000).

3.2 Balanced network model

Our model consists of three populations of neurons; an input population (X) that en-

codes orientation ✓, a population of excitatory neurons (E) and a population of in-
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hibitory neurons (I) (Fig. 3.1). The orientation ✓ of an edge in a visual stimulus is

represented by a hill of spiking activity in the input population. The contrast of the

stimulus, c, is represented by the height of the activity hill. We can loosely consider this

to to be a model of an orientation hyper-column, where the input population is layer 4

of V1 and the E-I population is layer 2/3 (Amit and Brunel, 1997a; Amit and Brunel,

1997b). For convenience, we refer to the excitatory and inhibitory population together

as the E-I population (excitatory-inhibitory).

E

I
X

Figure 3.1: Network model
Our network model consists of three populations of neurons. The input population
(X) contains excitatory neurons that project onto our recurrently connected excitatory
(E) and inhibitory (I) populations. Background connectivity is parametrised by w0.
Structured connectivity between excitatory neurons is parametrised by j

F

and j0.

Network connectivity is sparse and random. Each neuron in the E-I population

receives connections from K other neurons on average from the E-I population and K
X

neurons on average from the input population. Neurons in the input population do not

connect to each other. Synaptic strengths are not random, but are chosen so that E-I

neurons can be orientation tuned and balanced.

The input population contains N
X

excitatory neurons and the E-I population con-

tains N neurons. The number of excitatory neurons in the E-I population is N
E

and
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the number of inhibitory neurons is N
I

, where

N
E

= p
E

N (3.1)

N
I

= (1� p
E

)N (3.2)

and p
E

is the proportion of excitatory neurons. Here, N + N
X

corresponds to the

number of neurons in a cortical column, which is about 1 million neurons.

3.2.1 Single neuron dynamics

Neurons interact by transmitting action potentials, which are binary signals (Hodgkin

and Huxley, 1952). Therefore, we use binary state neurons in our network model.

This is a standard assumption in spiking network models (McCulloch and Pitts, 1943;

Renart et al., 2010). Specifically, we use x
i

(t) to denote the state of the ith neuron

at time t, where neurons may be in a spiking state denoted by x
i

= 1 or in a qui-

escent state, denoted by x
i

= 0. We will often use the vector notation x (t) =

(x1 (t) , x2 (t) , . . . , xN+N

X

(t)) to denote the spiking state of the entire network.

Spiking is largely determined by synaptic input, through a non-linear, noisy trans-

formation. We capture these dynamics using a simple spiking model in which the

synaptic drive h
i

determines the transition rates between the quiescent state and the

spiking state of the ith neuron at time t:

r (0 ! 1) = f (h
i

) /⌧
Q

r (1 ! 0) = (1� f (h
i

)) /⌧
Q

, (3.3)

where ⌧
Q

is the typical neuron response-time:

⌧
Q

=

8
<

:
⌧
E

i 2 E ;

⌧
I

i 2 I ,
(3.4)

and f (h
i

) is a sigmoidal non-linearity. Throughout much of the thesis, we use the

Heaviside function for this non-linearity:

f (h
i

) = ⇥ (h
i

) , (3.5)
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where ⇥ (h
i

) = 1 if h
i

> 0 and ⇥ (h
i

) = 0 otherwise. Also, we use Q 2 {E, I} to label

a neural parameter as belonging to either the excitatory population E or the inhibit-

ory population I. We will use this convention throughout the thesis when discussing

properties specific to different neural populations.

The synaptic drive consists of a recurrent component and a feed-forward component:

h
i

(t) =

NX

j2E,I

A
ij

x
j

(t) +

N

XX

j2X
F
ij

x
j

(t)� ✓Q, (3.6)

where A
ij

is the strength of the synaptic connection from neuron j to neuron i, F
ij

is

the strength of the synaptic connection from input neuron j to neuron i, and ✓Q is the

spiking threshold, where Q 2 {E, I}.
Spiking dynamics of the input population are similar to the spiking dynamics of the

E-I population. The transition rates between the quiescent state and the spiking state

of the ith input neuron at time t are:

r (0 ! 1) = u
i

(✓) /⌧
X

r (1 ! 0) = (1� u
i

(✓)) /⌧
X

, (3.7)

where ⌧
X

is the typical input neuron response-time and u
i

(✓) determines how the input

population encodes orientation ✓.

Each input neuron represents a different orientation by spiking most when its pre-

ferred orientation is present (Fig. 3.2). Specifically, the ith neuron in the input popula-

tion represents orientation ✓ as follows:

u
i

(✓) = c exp

✓
�sin

2
(✓

i

� ✓0)

22

◆
, (3.8)

where c 2 [0, 1] is the input contrast,  represents the width of the spiking hill of activity

relative to background spiking activity, and

✓
i

= ⇡i/N
X

, (3.9)

is the preferred orientation of the ith neuron. The spiking activity of the population,

therefore, is peaked at the neuron that responds most strongly to ✓.
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Figure 3.2: Network input and structured connectivity
The input population equilibrium firing rate is a hill of activity with a peak at ✓

o

(left).
Recurrent structured connectivity is Mexican-Hat shaped, with stronger connections
between neurons with similar preferred orientations and weaker connections between
neurons with dissimilar preferred orientations (right). Structured connectivity like this
can amplify orientation tuned population activity, such as the input population here.

The neurons in our model capture some of the most important features of real neur-

ons such as non-linear dynamics and spiking activity. They have often been used before

in neuroscience, because they can be understood quantitatively (Hertz et al., 1991).

Indeed, they were originally developed as analytically tractable models of magnetism

(Glauber, 1963). However, as with all models, there are many neuron features that are

not captured, such as complicated synaptic dynamics, dendritic dynamics and action

potential generation. This is not a serious problem when studying balanced network

dynamics, because balanced networks can produce realistic cortex-like spiking activity

even with artificial neurons, as we shall see (Douglas and Martin, 1991). Furthermore,

excessively complex models can be intractable and uninterpretable, so simple neuron

models are often better.

3.2.2 Network connectivity

We propose that a combination of weak structured connectivity embedded in strong

background connectivity can produce orientation-tuned, balanced network activity. The

connection strength from neuron j to neuron i is chosen randomly according to the
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following equation:

A
ij

=

8
<

:

w0p
K

W
ij

+

j0
K

J
ij

prob K/N ;

0 prob 1�K/N ,
(3.10)

Here, W is the background connectivity required for balanced cortical dynamics and J is

the structured connectivity that may produce orientation tuned responses. The relative

contributions are determined by the parameters w0 and j0.

Structured connectivity is mexican hat shaped between excitatory neurons (Fig. 3.2,

right). We have chosen this connectivity because it matches the structure of our input.

It is stronger between neurons that have similar orientation preferences than between

those that have a preference for very different orientations. Therefore, it amplifies the

response of neurons that are firing vigorously in response to a particular orientation.

Specifically, structure is given by:

J
ij

= p�1
E

8
><

>:

exp

h
� sin2(✓

i

�✓

j

)
2�2

J

i
i, j excitatory neurons ;

0 otherwise ,
(3.11)

where

✓
j

= ⇡j/N
E

, (3.12)

and �
J

is the full width of this structured connectivity.

Background connectivity is responsible for the dynamic balance between excitatory

and inhibitory synaptic drive. We let the background connection strengths depend only

on neuron type, so we write:

W
ij

=

8
><

>:

WQE neuron j is excitatory ;

�WQI neuron j is inhibitory ,
(3.13)

where WQE and WQI are positive constants with Q = E if neuron i is excitatory and

Q = I if it is inhibitory.

Feed-forward connectivity from the input population X is similar to the E-I con-

nectivity that we have just described, except that it is excitatory (Ferster and Lind-
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strom, 1983; Martin and Whitteridge, 1984). It consists of weak structured connectivity

embedded in strong background connectivity:

F
ij

=

8
<

:

w0p
K

WF

ij

+

j

F

K

JF

ij

prob K
x

/N
x

;

0 prob 1�K
x

/N
x

,
(3.14)

Here, WF is the feed-forward background connectivity and JF is feed-forward structured

connectivity. The relative contributions are determined by w
o

and j
F

. Input neurons

do not connect to each other.

As before, we use mexican hat shaped connectivity as feed-forward structure. This

amplifies the activity of neurons in the input population whose preferred orientation is

close to orientation ✓:

JF

ij

=

8
><

>:

exp


� sin2(✓

i

�✓

X

j

)

2�2
F

�
i 2 E and j 2 X ;

0 otherwise ,
(3.15)

where,

✓X
j

= ⇡j/N
X

where i 2 [1, N
X

] ,

and �
F

determines the full width of the feed-forward structure.

Background connectivity from the input population is determined by neuron type

in the E-I population:

WF

ij

=

8
><

>:

WEX neuron i is excitatory ;

W IX neuron i is inhibitory ,
(3.16)

where WEX and W IX are positive.

3.2.3 Balance conditions

In strongly connected networks there is a danger that connectivity may produce patholo-

gical dynamical states in which neurons spike incessantly (or remain completely silent).

This can happen because excitatory and inhibitory connections are strong enough to

overwhelm neurons with synaptic input.
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To prevent this, background connectivity must satisfy the following balance condi-

tions (van Vreeswijk and Sompolinsky, 1996; van Vreeswijk and Sompolinsky, 1998):

WEX/W IX > WEI/W II > WEE/W IE

WEI

(1� p
E

) > WEEp
E

.
(3.17)

If these conditions are satisfied, strong excitatory synaptic drive and strong inhibitory

synaptic drive will dynamically balance producing a total synaptic drive that fluctuates

around the spiking threshold. The resulting network state is called the balanced sta,e.

3.3 Results

We have described a network model which has the potential to produce orientation

tuned balanced network activity, similar to the spiking activity of V1, using weak struc-

tured connectivity embedded in strong background connectivity. There are a number

of potential problems with our proposal which must be investigated. For example,

strong background connectivity might completely overwhelm the contribution of weak

structure. Also, orientation tuned cells might not be contrast invariant.

3.3.1 Network simulations

We investigate the capacity of this network to produce orientation tuned responses and

balanced network dynamics by measuring firing rates and spike trains of the neurons in

a simulation of the network.

We simulate the network using the Gillespie Algorithm (Gillespie, 1977). This al-

gorithm was originally developed for simulating stochastic discrete-state systems and

was recently used to simulate weakly connected spiking neural networks (Benayoun

et al., 2010). The algorithm is exact in that it provides spiking dynamics that are

perfectly consistent with our network dynamics (Eqns. 3.3, 3.7).

The parameters that we use in our simulations are compiled in table 3.1. We do

not need to fine-tune these parameters because the balanced state is very robust to

parameter choice. Therefore, we use the same parameters throughout our work, unless

stated otherwise.
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N 500 N
X

400

K 100 K
X

160

WEE

0.312 WEX

0.65

W IE

0.312 W IX

0.56

W II

3.37 j
F

5

WEI

3.75 c 0.3

p
E

0.8  0.775

j0 1 ✓0 ⇡/2

w
o

1 �
F

0.775

�
J

0.775

Table 3.1: Network parameters
We use these network parameters in our numerical calculations and simulations, unless
otherwise stated. Connectivity parameters were chosen so that different input compon-
ents, such as average excitatory input, average inhibitory input and average structured
input are approximately the same size. Also, parameters are chosen so that the mean
excitatory firing rate is given by ⌫E ' 0.2 and the mean inhibitory firing rate is given
by ⌫I ' 0.2, in the large network size limit. The relative sizes of the E-I population N ,
the input population N

x

, the average number of synapses per neuron K and K
X

are
held constant throughout this work.

3.3.2 Balanced, irregular, asynchronous, spiking dynamics

We begin by demonstrating that our network is balanced and that resulting spike trains

are irregular and asynchronous. A problem for some models of orientation tuning is that

structured connectivity might disrupt the balance of excitation and inhibition. Indeed,

this is a major difficulty for models that use strong structured connectivity (Lerchner

et al., 2006; van Vreeswijk and Sompolinsky, 2005). We don’t expect this to be a

problem for our network because structured connectivity is weak.

We measure the excitatory and inhibitory synaptic drive to a randomly chosen

neuron from our network (Fig. 3.3). These dynamically balance producing a total

input that is close to the spiking threshold. This dynamic balancing produces irregular

asynchronous spiking activity, as can be seen from a raster plot of network activity (Fig.

3.4). We will quantify this asynchronicity explicitly in chapter 4 by calculating spike

train correlations numerically and analytically.
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Figure 3.3: Balance of excitation and inhibition
In a balanced network, the excitatory input current (green) and inhibitory input current
(red) are large in magnitude relative to the neural threshold (dashed line). However,
these inputs balance dynamically so that the total input current (black) is close to
the threshold. This dynamic balancing is noisy, so neurons spike irregularly, as in the
cortex. The input and spike train is given for an excitatory neuron in a network with
N = 10000N

X

= 8000K = 2000K
X

= 3200.
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Figure 3.4: Irregular, asynchronous dynamics
In a balanced network, neurons are asynchronous and irregular. This raster plot shows
spike trains from 50 example neurons. Excitatory neurons (black) have an bump of
activity around ✓ = ⇡/2 whereas inhibitory neurons (grey) do not have an activity bump.
These bumps are partially obscured because of temporal irregularity and irregularity
across the population. A spike here represents a transition from state 0 to state 1.

We can understand why neural activity is balanced and irregular by analysing the

synaptic drive to the neurons in our network. We begin by writing the synaptic drive

h
i

(t) (Eqn. 3.6) in terms of the average synaptic drive m
i

(t) and fluctuations about

this average:

h
i

(t) = m
i

(t) + �
i

⇠
i

, (3.18)

where ⇠
i

represents O (1) fluctuations, and

m
i

(t) ⌘ hh
i

(t)i (3.19)

�
i

⌘
q⌦�

�h
i

�2↵
, (3.20)

with brackets h. . .i denoting an average over different realisations of spiking network

activity. This average is equivalent to a trial-average, but in a dream experiment, where

an infinite number of trials are performed and network statistics are identical for each
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trial.

We can calculate the mean synaptic drive, by taking an average of equation 3.6,

leading to:

m
i

(t) =
NX

j2E,I

A
ij

⌫
j

(t) +

N

XX

j2X
F
ij

⌫
j

(t)� ✓Q (3.21)

where

⌫
j

(t) = hx
j

(t)i , (3.22)

is the instantaneous firing rate of the jth neuron.

Then, substituting our equations for network connectivity (Eqns. 3.10 and 3.14) into

the mean synaptic drive equation (Eqn. 3.21), we obtain equations for the mean synaptic

drive to an excitatory neuron mE

i

(t) and the mean synaptic drive to an inhibitory neuron

mI

i

(t):

mE

i

(t) =
p
K
�
w
o

WEEpE⌫E (t)� w
o

WEIpI⌫I (t) + w0W
EXpX⌫X (t)

�

+ j
o

X

j2E
J
ij

⌫
j

(t) pE/N
E

+ j
F

X

j2X
JF

ij

⌫
j

(t) pX/N
X

+

X

j2E,I

�A
ij

⌫
j

(t) +
X

j2X
�F

ij

⌫
j

(t)� ✓E (3.23)

mI

i

(t) =
p
K
�
w
o

W IEpE⌫E (t)� w
o

W IIpI⌫I (t) + w0W
IXpX⌫X (t)

�

+

X

j2E,I

�A
ij

⌫
j

(t) +
X

j2X
�F

ij

⌫
j

(t)� ✓I , (3.24)

where

⌫E (t) ⌘
X

j2E
⌫
j

(t) /N
E

(3.25)

⌫I (t) ⌘
X

j2I
⌫
j

(t) /N
I

(3.26)

⌫X (t) ⌘
X

j2X
⌫
j

(t) /N
X

, (3.27)

representing the mean excitatory, inhibitory and external population firing rates, re-
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spectively, and

�A
ij

= A
ij

� w
o

WQRpR (�1)

�

RI

p
K/N

R

� j
o

J
ij

pE�
QE

�
RE

/N
E

�F
ij

= F
ij

� w
o

WQXpX
p
K/N

X

� j
o

JF

ij

pX�
QE

/N
X

, (3.28)

represent connectivity noise, resulting from the random component of network con-

nectivity (Eqns. 3.14, 3.10), where Q = E if i 2 E and Q = I if i 2 I, and similarly

R = E if i 2 E and R = I if i 2 I. Also, pI ⌘ 1� pE and pX = K
X

/K = N
X

/N . This

connectivity noise is analogous to random differences in connectivity between different

animals from the same species.

The contribution of the mean background network connectivity to the mean synaptic

drive seems to be much larger than the contribution of connectivity noise and the

contribution of structured connectivity. We can see this be calculating the approximate

size of each term in equations 3.23 and 3.24:

j
o

X

j2E
J
ij

⌫
j

(t) pE/N
E

⇠ O (N
E

/N
E

)

j
F

X

j2X
JF

ij

⌫
j

(t) pX/N
X

⇠ O (N
X

/N
X

) . (3.29)

Both of these terms are O (1), much smaller than the contribution of the mean back-

ground network connectivity terms which are O�pK
�

(Eqns. 3.23, 3.24).

Similarly, the contribution of connectivity noise is O (1):

X

j2E,I

�A
ij

⌫
j

(t) ⇠ O
⇣p

N/
p
N
⌘

X

j2X
�F

ij

⌫
j

(t) ⇠ O
⇣p

N
X

/
p
N

X

⌘
, (3.30)

because �A
ij

⇠ O�1/pN
�
, �F

ij

⇠ O�1/pN
X

�
and according to the central limit the-

orem, the sum of N zero-mean uncorrelated random variables is O�pN
�
.

These equations seem to indicate that the contribution of background connectivity

is
p
K times larger than the spiking thresholds ✓E , ✓I ⇠ O (1). In the cortex, K ⇠ 2000

(Braitenber and Schuz, 1991; Binzegger et al., 2004) so the contribution of background

may be excessively large, producing pathological dynamical states in which neurons are
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completely silent or spiking incessantly. In balanced networks, this does not happen

because strong excitatory and inhibitory input dynamically balance:

w
o

WEEpE⌫E (t)� w
o

WEIpI⌫I (t) + w
o

WEXpX⌫X (t) ⇠ O
⇣
1/
p
K
⌘

(3.31)

w
o

W IEpE⌫E (t)� w
o

W IIpI⌫I (t) + w
o

W IXpX⌫X (t) ⇠ O
⇣
1/
p
K
⌘
. (3.32)

This dynamic balancing is possible because WEE , WEI , W IE , W II , WEX and W IX

satisfy the balance conditions (Eqn. 3.17) (van Vreeswijk and Sompolinsky, 1998).

Therefore, by inserting equation 3.32, 3.31, 3.30 and 3.29 into equation 3.23 we see

that the approximate size of the mean synaptic drive:

m
i

(t) ⇠ O
⇣p

K/
p
K
⌘
⇠ O (1) . (3.33)

This is about the same size as the spiking thresholds ✓E , ✓I ⇠ O (1). Therefore, patho-

logical dynamical states can be avoided. Structured connectivity does not disrupt this

balance. Indeed, the balance equations for a network with background connectivity

(Eqns. 3.31) are the same as the balance equations for a network without structured

connectivity.

Next, we demonstrate that an irregular, asynchronous spiking state is consistent

with our dynamical equations. We do this by calculating the size of synaptic drive fluc-

tuations, represented by the synaptic drive standard deviation �
i

(Eqn. 3.20). If these

fluctuations are the same size as the mean synaptic drive then the synaptic drive will

often cross the spiking threshold stochastically and spiking dynamics will be irregular.

We begin by writing the synaptic drive standard deviation in terms of the variance

of neural spike trains:

�2
i

'
N

EX

j2E
A2

ij

⇢
jj

+

N

IX

j2I
A2

ij

⇢
jj

+

N

XX

j2X
F 2
ij

⇢
jj

, (3.34)

where

⇢
ii

⌘
D
(�x

i

)

2
E
, (3.35)

is the variance of the ith neuron. Here we have neglected the contribution of synaptic

drive correlations, because in balanced networks, synaptic drive correlations balance

dynamically in the same way that the mean synaptic drive balances dynamically (Renart
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et al., 2010) (Chapter 4).

Now, substituting our equations for network connectivity (Eqns. 3.14, 3.10) into

equation 3.34 we can write:

�2
i

=

�
w
o

WEE

�2
pE
X

j2E
⇢
jj

/N
E

+

�
w
o

WEI

�2
pI
X

j2I
⇢
jj

/N
I

+

�
w0W

EX

�2
pX
X

j2X
⇢
jj

/N
X

+O
⇣
1/
p
K
⌘
, (3.36)

where the O�1/pK
�

term represents the contribution of connectivity noise and struc-

tured connectivity. Spiking dynamics are irregular, so ⇢
ii

⇠ O (1) for all neurons

i 2 E, I,X. Therefore synaptic drive fluctuations are about the same size as the mean

synaptic drive (Eqn. 3.33):

�
i

⇠ O (1) . (3.37)

This analysis explains how spike trains in a balanced network with weak structured

connectivity can be irregular and asynchronous. Synaptic drive fluctuations are about

the same size as the mean synaptic drive, so the total synaptic drive will often cross the

spiking threshold stochastically, producing irregular spike trains. If the network only

had structured connectivity, then the synaptic drive fluctuations would be very small

(�
i

⇠ O (1/K)) and spike trains would be highly regular for most network inputs.

3.3.3 Orientation tuning

We have proposed that weak structured connectivity embedded in strong background

connectivity can produce orientation tuned, balanced network activity. We demonstrate

this by simulating our network and measuring the firing rates of all neurons. For com-

putational reasons, we assume ergodicity and estimate firing rates across time. All

statistical estimates converge towards the true statistics when simulations and meas-

urements become infinitely long.

We find that the neurons in our network do have orientation tuning (Fig. 3.5). The

orientation representation is noisy across the population. Similar population noise is

also observed in experiments (Fregnac and Imbert, 1984; Blasdel and Fitzpatrick, 1984;

Chapman and Stryker, 1993; Maldonado, 1997; Ferster and Miller, 2000; Olshausen and

Field, 2005). The inhibitory population has no orientation preference (Fig. 3.5).
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Figure 3.5: Orientation tuning in balanced networks
The equilibrium firing rates of neurons in the excitatory population (E) and inhibitory
population (I) are shown. The population response is noisy so we show a smoothed
version of the firing rate (blue). Smoothing is performed by convolving the population
firing rate with a Gaussian function with standard deviation ⇡/16. Firing rates are
estimated during an 11 second simulation for a network with parameters given by table
3.1.

We can understand why background connectivity does not overwhelm the contribu-

tion of structured connectivity by inserting our dynamic balance equations (Eqns. 3.31

and 3.32) into our equation for mean synaptic drive (Eqn. 3.23):

m
i

(t) = w0O (1) + j
o

X

j2E
J
ij

⌫
j

(t) pE/N
E

+ j
F

X

j2X
JF

ij

⌫
j

(t) pX/N
X

�✓E . (3.38)

The contribution of structured connectivity and background connectivity to the mean

synaptic drive are about the same size. Therefore, structured connectivity that matches

the structure of the network input can produce orientation tuned responses.

However, dynamic balance is not exact. By pure chance, some neurons receive more

synaptic input than others. This is called quenched noise, because it is frozen into

the network and does not disappear over time like dynamical noise. Quenched noise

manifests itself as tuning curve inhomogeneity. It explains why the orientation tuning

in our model is noisy and may explain some of the inhomogeneity observed in visual

cortex tuning curves (Fregnac and Imbert, 1984; Maldonado, 1997; Ferster and Miller,
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2000; Olshausen and Field, 2005).

Inhibitory neurons do not have orientation tuning because they do not have struc-

tured connectivity in our model. In theory, there is no reason why inhibitory neurons

cannot have weak structured connectivity so this is something that can be included in

extensions of our model.

3.3.4 Contrast invariance

In the visual cortex, when the contrast of the stimulus is increased, the response of

orientation tuned cells increases linearly (Sclar and Freeman, 1982). This is called

contrast invariance because the shape of the overall population response is invariant to

contrast changes. Any plausible model of visual cortex responses must have contrast

invariance, along with orientation tuning.

We investigate the contrast dependence of our model by measuring firing rates in

a series of network simulations, each one receiving inputs at different contrast levels.

We find that networks with background connectivity are contrast invariant, whereas

networks without background connectivity are not (Fig. 3.6).
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Figure 3.6: Contrast invariance
Networks with background connectivity (left, w0 = 1) are contrast invariant, whereas
networks without background connectivity (right, w

o

= 1/
p
100⇥K) are not contrast

invariant. The equilibrium firing rates of the excitatory population receiving input at
three different contrasts (solid lines) are shown. Rescaled firing rates are calculated to
test contrast invariance (dashed lines). The population response is noisy so we show a
smoothed version of the population firing rate. Smoothing is performed by convolving
the population firing rate with a Gaussian function with standard deviation ⇡/16. Firing
rates are estimated during an 10 second simulation.
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Networks without background connectivity are not contrast invariant, because the

relationship between neural firing rates and input contrast is highly non-linear.

In balanced networks, background connectivity approximately linearises the rela-

tionship between the mean input and output. This linearisation is exact for the mean

population firing rates in large networks, as we can see by solving the dynamic balance

equations (Eqns. 3.31):

⌫E (t) = cE⌫X (t) +O
⇣
1/

p
K
⌘

(3.39)

⌫I (t) = cI⌫X (t) +O
⇣
1/
p
K
⌘
, (3.40)

where

cE =

�
WEIW IX �W IIWEX

�
/
�
WEEW II �WEIW IE

�⇥ pX/pE (3.41)

cI =

�
WEEW IX �W IEWEX

�
/
�
WEEW II �WEIW IE

�⇥ pX/pI . (3.42)

These equations show that the E-I population tracks the input population firing rate

with great precision. The input firing rates are proportional to contrast (Eqn. 3.8).

Therefore, the mean E-I population firing rate is proportional to contrast. Incidentally,

this tracking does not depend on structured connectivity.

3.4 Discussion

Cortical activity can be irregular and uniform simultaneously - from the uniformity of

orientation tuning and contrast invariance (Hubel and Wiesel, 1962; Sclar and Freeman,

1982) to the irregularity of Poisson-like spike trains and synaptic background noise

(Burns and Webb, 1976; Softky and Koch, 1993; Bair et al., 1994). The coexistence of

these opposites prompts us to ask: how can network connectivity produce such wildly

disparate phenomena?

We find that weak structured connectivity embedded in a strong background con-

nectivity can solve this problem. Structured connectivity produces orientation tuning

and background connectivity is responsible for irregular spiking. This orientation tun-

ing is contrast invariant, because structured connectivity provides contrast invariant

synaptic input, and background connectivity allows firing rates to adopt this contrast
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invariance, by linearising single neuron dynamics. Background connectivity also causes

orientation tuning inhomogeneity, by introducing quenched noise.

An alternative to our proposal is that strong structured connectivity produces con-

trast invariant orientation tuning (Lerchner et al., 2006). One problem with that pro-

posal is that learning may be difficult, because the balance conditions require inhibitory

synaptic plasticity to match excitatory synaptic plasticity.

Testing theories of cortical connectivity is difficult, because measuring cortical con-

nectivity directly is difficult (DeFelipe, 2010). This is especially true when structure is

weak, because the strong background component of connectivity will mask the struc-

tured connectivity that we want to measure. Nonetheless, recent observation of promis-

cuous inhibitory connectivity in the mouse cortex suggests that structure may be weak

(Fino and Yuste, 2011; Hofer et al., 2011), because if structure is strong, then inhibitory

connectivity must be structured so that it can balance the strong structured excitation.

Also, the historical failure to discover precisely wired cortical circuits is in itself con-

sistent with our proposal, because it suggests that structured connectivity is hidden. In

future work, it may be possible to infer the presence of weak structured connectivity by

systematically perturbing connection strengths by small amounts according to preferred

orientation and measuring the effect on orientation tuning.

There is plenty of indirect evidence for our proposed connectivity model, apart

from the observation of orientation tuning and contrast invariance. First of all, the

facilitation of contrast invariance using synaptic background noise has been observed

in anaesthetised cats (Anderson et al., 2000). This synaptic background noise was also

found to have a very weak dependence on orientation, just like the synaptic background

noise in our model (Eqn. 3.36). This is inconsistent with the synaptic background noise

in a network with strong structure, which is strongly dependent on orientation (Lerchner

et al., 2006). Further indirect support for our proposal is provided by the widely ignored

observations of ‘poorly tuned’ cells in the visual cortex (Blasdel and Fitzpatrick, 1984;

Chapman and Stryker, 1993; Olshausen and Field, 2005), which is consistent with the

quenched noise caused by strong background connectivity. An explicit comparison of

observed orientation tuning inhomogeneity with orientation tuning inhomogeneity in

our model would provide another interesting indirect test of our model.

Apart from orientation tuning, contrast invariance and spike train irregularity, spike
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trains in V1 are also asynchronous (Ecker et al., 2010; Renart et al., 2010). Therefore,

spike trains in our network model must also be asynchronous. In the next chapter

(Chapter 4), we calculate the size of correlations in our network. We will study the

computational performance of this network in chapter 5.

We have presented our connectivity model as an orientation hyper-column model.

However, there are many differences between this model and a real orientation hyper-

column. For example, the probability that two excitatory neurons connect depends

on the preferred orientation (Ko et al., 2011), whereas neurons in our model connect

promiscuously. It is possible that this observed connectivity may be a form of weak

structure, different to the type of weak structure that we consider, but broadly consistent

with our proposal. In future work it would be interesting to study networks with weak

structured connectivity of this form.

In truth, the comparison to an orientation hyper-column does not reflect our primary

interest. Our goal is to understand how an arbitrary piece of cortex can be tuned to

an arbitrary input feature and have irregular asynchronous spiking activity. Our simple

model allowed us to distill the essential properties of feature tuning, whereas an ex-

cessively complex model may have been intractable. A combination of weak structure

embedded in strong background connectivity may unify a wide variety of cortical phe-

nomena across a wide range of cortical regions.
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Chapter 4

Spike-train Correlations in

Balanced Networks

4.1 Introduction

Spike train correlations play an important role in cortical computation and dynam-

ics (Averbeck et al., 2006). For example, the correlation between pre-synaptic and

post-synaptic spiking activity is important in synaptic plasticity and learning (Hebb,

1949). Also, the capacity of a network to encode and decode information depends on

correlations (Wu et al., 2001; Nirenberg and Latham, 2003), and, the measurement of

correlations might be useful as a practical experimental tool for inferring network con-

nectivity, if, the relationship between correlation and connectivity can be understood

(Abeles, 1991). In this chapter, we study spike-train correlations in a balanced network.

Despite their importance for many cortical functions, correlations are poorly un-

derstood (Abbott and Dayan, 1999). The main reason for this is that correlations are

very difficult to measure (Ecker et al., 2010). Small movements of recording electrodes,

errors in single cell isolation from multi-electrode recordings and oscillations induced

by anaesthetics all create spurious correlation measurements. When accurate measure-

ments are available, the quantity of correlation pairs is not large enough to quantify the

relationship between computation and correlation.

Rather than attempting to resolve these experimental problems, we study correla-

tions analytically. We calculate the correlation between the spike-trains of all pairs of

neurons in a balanced network. These calculations are complicated because neurons in
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balanced networks interact strongly. By performing a series of biologically reasonable

approximations we obtain mathematical expressions that relate correlations directly to

network connectivity and input. This is the first full prediction of correlations in bal-

anced networks and as such, it is an important step forward in our understanding of

cortical network dynamics.

We can use our mathematical expressions to understand the relationship between

correlations and structured connectivity. If structured connectivity does not produce

substantial correlations, Hebbian learning may be impossible and attempts to infer

structured connectivity using correlation measurements might also fail. We find that

structured connectivity does increase correlations substantially. However, the contribu-

tion of background connectivity to correlations is on the same order of magnitude as

the contribution of structured connectivity. This result is not encouraging for experi-

mentalists who are attempting to use correlations as a proxy for connectivity, because

it will be extremely difficult to infer structured connectivity separately from random

connectivity using correlations. However, there is hope for Hebbian plasticity, which

might still work, but in a background of quenched noise.

We also calculate the typical size of correlations in balanced networks with structure.

The size of correlations is important because it can determine whether or not correlations

play a role in computation. We find that the typical size of correlations is 0.02. This is

very weak, though it is stronger than the typical size of correlations in networks without

structure (Renart et al., 2010). These predictions match recent measurements from the

visual cortex of awake monkeys viewing oriented gratings, in which correlations were

about 0.005± 0.004 (Ecker et al., 2010).

4.2 Correlation analysis

Our goal is to derive a mathematical expression for the correlation C
ij

between a pair

of neurons, i and j in a balanced network. We will relate the correlation coefficient

C
ij

directly to recurrent network connectivity A (Eqn. 3.10), feedforward network

connectivity F (Eqn. 3.14) and the mean firing rate of the input population u (✓) (Eqn.

3.8):

C
ij

= f
ij

(A,F,u (✓)) . (4.1)
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We calculate correlations in the same network model that we introduced in chapter

3. Network connectivity consists of weak structured connectivity, parametrised by j
o

and j
F

embedded in strong background connectivity, parametrised by w
o

(Eqns. 3.10,

3.14). Neurons in the network model are not very realistic. However, because much of

the spiking activity in the cortex is the result of strong connectivity, we can still have

realistic irregular asynchronous spike trains and orientation tuning, similar to neurons

in V1 (Hubel and Wiesel, 1959; Softky and Koch, 1993; Ecker et al., 2010).

Calculating correlations in a strongly interacting network is difficult, and requires

knowledge of dynamical systems theory, differential equations and linear algebra. Read-

ers may prefer to skip our calculation and jump to the result, which appears in equation

4.46. However, we do not recommend this, as much insight into neural network dynam-

ics may be acquired by following our calculation, which is, in itself an important result.

With this in mind, we have relegated many of the less interesting technical compon-

ents of our calculation to the methods section, where interested readers can find all the

details.

Our calculation is in three parts:

1. We calculate the firing rates of neurons, by exploiting the fact that in balanced

networks the synaptic drive is approximately Gaussian (Rudolph et al., 2005).

2. We derive a dynamical equation for the covariance between spike trains, by ex-

ploiting the fact that in balanced networks spike trains are irregular (Burns and

Webb, 1976; Softky and Koch, 1993; Bair et al., 1994) and asynchronous (Ecker

et al., 2010; Renart et al., 2010).

3. Finally, we solve the firing rate dynamical equations and covariance dynamical

equations at equilibrium, and use the solutions to obtain an expression for bal-

anced network correlations C
ij

.

We will test our predictions by comparing them to simulation measurements, before

answering questions about the origin of correlations.
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4.2.1 Firing rate equations

We begin our analysis by deriving a dynamical equation for the firing rates of neurons

in our network. As before, the firing rate that we calculate is defined as

⌫
i

⌘ hx
i

i , (4.2)

where brackets denote an average over all neuron states at time t:

hf (x)i ⌘
X

x

f (x)P (x, t) . (4.3)

where P (x, t) denotes the probability that the network is in state x at time t and f (x)

is an arbitrary function of x, where x = (x1, x2, . . . , xi, . . . xN+N

X

). This firing rate is

equivalent to a trial-averaged firing rate, but in an ideal experiment, where an infinite

number of trials are performed and experiment conditions do not change, apart from

random fluctuations.

We can derive a dynamical equation for firing rates using the equations for the

dynamics of individual neurons (Eqns. 3.3, 3.7). Individual neurons are noisy, and

so, the equation that describes the spiking state of the network is probabilistic. This

equation, known as the Master Equation is given by ( Supplementary Methods 4.5.1)

(Glauber, 1963; Ginzburg and Sompolinsky, 1994):

dP (x, t)

dt
= �

X

i

r (x
i

! 1� x
i

)P (x, t) +
X

i

r (1� x
i

! x
i

)P
�
x(i), t

�
. (4.4)

Here, P
�
x(i), t

�
denotes the probability that the network is in state x(i) at time t, where

x(i)
= (x1, x2, . . . , 1� x

i

, . . . x
N+N

X

). If neuron i is in the E-I population, the transition

rate r (x
i

! 1� x
i

) is given by equation 3.3. If neuron i is in the input population, the

transition rate is given by equation 3.7.

Combining the Master Equation (Eqn. 4.4) with our firing rate definition (Eqn. 4.2)

we can easily derive dynamical equations for the firing rates (Supplementary Methods
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4.5.2) (Ginzburg and Sompolinsky, 1994):

⌧0
d

dt
⌫
i

= �⌫
i

+ hf (h
i

)i i 2 E, I ; (4.5)

⌧0
d

dt
⌫
i

= �⌫
i

+ u
i

i 2 X , (4.6)

where f (h
i

) is a sigmoidal function of h
i

, the synaptic drive to the ith neuron (Eqn.

3.6) and u
i

determines how the input population encodes orientation (Eqn. 3.8).

The firing rate equations for neurons in the input population X can be solved eas-

ily, because they are uncoupled linear differential equations, whereas the equations for

neurons in the E-I population are more complicated, because of the term hf (h
i

)i. This

term is a complicated average over all neuron states x (Eqn. 3.6, 4.3). However, we can

simplify this if we rewrite it as an average over total synaptic input h
i

:

hf(h
i

)i =
X

x

f(h
i

)P (x, t) =

ˆ
f(h

i

)p(h
i

, t)dh
i

. (4.7)

In a sense, this step moves the calculation from the axon to the soma.

To calculate this new average, we must identify the synaptic drive probability distri-

bution p(h
i

, t). In a balanced network, h
i

is approximately Gaussian (Fig. 4.1), similar

to cortical input (Destexhe et al., 2003; Rudolph et al., 2005). Mathematically, this

is a consequence of the fact that h
i

is the sum of a large number of weakly correlated

random variables and the central limit theorem states that the sum of a large number

of independent random variables is approximately Gaussian. Therefore we can write

p(h
i

) =

1

(2⇡�2
i

)

1/2
exp

"
�(h

i

�m
i

)

2

2�2
i

#
, (4.8)

where m
i

⌘ ⌦
h
i

↵
is the mean synaptic drive (Eqn. 3.21 ) and �2

i

⌘ ⌦
(�h

i

)

2↵ is the

synaptic drive variance (Eqn. 3.34 ).
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Figure 4.1: Gaussian input
The synaptic input current to a neuron in a balanced network is Gaussian distributed
close to the neural threshold (blue line). The predicted input distribution (red) matches
the measured distribution (black). The input current is measured for an excitatory
neuron during a 10 second simulation.

We can relate the mean synaptic drive to the firing rate by taking an average of

equation 3.6:

m
i

=

NX

j2E,I

A
ij

⌫
j

+

N

XX

j2X
F
ij

⌫
j

� ✓Q , (4.9)

where A
ij

is the strength of the synaptic connection from neuron j to neuron i, F
ij

is

the strength of the synaptic connection from input neuron j to neuron i, and ✓Q is the

spiking threshold, where Q 2 {E, I}.
A similar calculation gives us the variance (Supplementary Methods 4.5.2):

�2
i

'
X

j2E,I

A
ij

⌫
j

(1� ⌫
j

)AT

ji

+

X

j2X
F
ij

⌫
j

(1� ⌫
j

)F T

ji

, (4.10)

where AT denotes the transpose of A.

We can now solve the integral in equation 4.7. For the particular case where f (x) =

⇥ (x), the Heaviside function, this integral yields the following non-linear differential

equations for the firing rates:

⌧0
d⌫

i

dt
= �⌫

i

+ �

✓
m

i

�
i

◆
i 2 E, I , (4.11)

where � is the cumulative normal function (Supplementary Methods 4.5.2),

�(x) ⌘
ˆ

x

�1
dz

exp[�z2/2]

(2⇡)1/2
. (4.12)
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Our goal is to calculate correlations at equilibrium, and so, we must calculate firing

rates at equilibrium:

⌫
i

= �

✓
m

i

�
i

◆
i 2 E, I (4.13)

⌫
i

= u
i

i 2 X . (4.14)

These equations are non-linear but they can be solved numerically using the New-

ton–Raphson method (Supplementary Methods 4.5.2). We will discuss these solutions

later in this chapter.

4.2.2 Correlation equations

We can now begin our correlation analysis. Our goal is to derive an expression for the

correlation between a pair of neurons

C
ij

= ⇢
ij

/
p
⇢
ii

⇢
jj

, (4.15)

where

⇢
ij

= h�x
i

�x
j

i . (4.16)

This analysis is more complicated than the firing rate derivation, though some of the

steps are similar.

First, we calculate the diagonal elements of ⇢. Using the fact that x2
i

= x
i

, we find:

⇢
ii

⌘ ⌦(�x
i

)

2↵
=

⌦
x2
i

↵� ⌦⌫2
i

↵
= ⌫

i

� ⌫2
i

. (4.17)

Next we calculate the off-diagonal elements of ⇢. This calculation is more complic-

ated. Similar to the firing rate derivation, we can combine the Master Equation for our

network dynamics with our covariance definition. This results in the following dynam-

ical equation for the equal-time covariance between neurons (Supplementary Methods

4.5.3) (Ginzburg and Sompolinsky, 1994):

⌧0
d⇢

ij

dt
= �2⇢

ij

+ h�x
i

�f
j

i+ h�f
i

�x
j

i , (4.18)

where i, j 2 E, I and i 6= j. Here we have used the notation �f
i

= f (h
i

)� hf (h
i

)i .
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This expression is complicated because of the h�x
i

�f
j

i term and the h�f
i

�x
j

i term.

We had to deal with a similar term in our firing rate calculation (Eqn. 4.7). In that

calculation, we replaced an average over x with an average over h. Here, we would like

to do something similar. However, h�x
i

�f
j

i and h�f
i

�x
j

i contain terms that depend on

both x and h, so simply replacing the average over x with an average over h is not

useful.

We must transform h�x
i

�f
j

i into a more tractable form before we take an average

over h. We achieve this by multiplying �x by a pseudo connectivity matrix H to produce

a pseudo synaptic-drive �h0
i

=

P
j

H
ij

�x
j

, where H is chosen so that (�h0
i

, �h
j

) can be

treated as a weakly correlated zero mean two-dimensional Gaussian random variable.

A matrix of this form will exist if the network is balanced because spike trains in

balanced networks are asynchronous (Ecker et al., 2010) and the sum of a large number

of uncorrelated random variables can be treated as a Gaussian random variable, by the

central limit theorem. We also require H to be invertible, for reasons that shall become

clear shortly.

Now, using H, we can transform the problematic h�x
i

�f
j

i terms into the following

form:
⌦
�h0

i

�f
j

↵
=

X

k

H
ik

h�x
k

�f
j

i . (4.19)

If we replace the average over x with an average over h0
i

and h
j

, this becomes tractable:

⌦
�h0

i

�f
j

↵
=

X

x

�h0
i

�f(h
j

)P (x, t) =

ˆ
�h0

i

�f(h
j

)p
�
h0
i

, h
j

, t
�
dh0

i

dh
j

. (4.20)

Given our definition of �h0
i

, we can treat the synaptic drive distribution p (h0
i

, h
j

, t) as a

two-dimensional Gaussian with mean (m0
i

,m
j

) and covariance �:

� ⌘
0

@ ⌃

ii

⌃

ij

⌃

ji

⌃

jj

1

A (4.21)

where

⌃

ij

⌘ ⌦�h0
i

�h
j

↵
. (4.22)

This integral is still quite complicated. However, it can be greatly simplified if we

perform a Taylor series expansion of p (h0
i

, h
j

, t), assuming ⌃

ij

⌧ ⌃

ii

⌃

jj

(Supplementary
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Methods 4.5.2):

p
�
h0
i

, h
j

, t
�
=

 
1 + �h0

i

�h
j

✓
⌃

ij

⌃

ii

⌃

jj

◆
+O

 ✓
⌃

ij

⌃

ii

⌃

jj

◆2
!!

p
�
h0
i

, t
�
p (h

j

, t) . (4.23)

We can ignore higher order terms in this series, because in balanced networks, synaptic

drive fluctuations ⌃
ii

are large (Rudolph et al., 2005) and we can make the ansatz that

synaptic drive fluctuations ⌃

ij

are small, because the spike trains that they produce

are weakly correlated (Ecker et al., 2010). We will check that this ansatz produces

self-consistent correlation equations later.

To first order, we can now solve the integral in equation 4.20 (Supplementary Meth-

ods 4.5.2):

ˆ
�h0

i

�f(h
j

)p (h0
i

, h
j

, t) dh0
i

dh
j

'

'
ˆ
�h0

i

�f(h
j

)

⇣
1 +

�h

0
i

�h

j

⌃
ii

⌃
jj

⌃

ij

⌘
p (h0

i

, t) p (h
j

, t) dh0
i

dh
j

= ⌃

ij

g
jj

,
(4.24)

where

g
ij

= �
ij

@⌫
j

@m
j

= �
ij

exp[�m2
j

/2�2
j

]

(2⇡�2
j

)

1/2
. (4.25)

We call g
ij

the gain. It represents the sensitivity of a neuron’s firing rate to changes

in the average synaptic drive to that neuron. The neuron gain shall appear again in

various calculations throughout the remainder of this thesis.

Only a few simple steps now remain in our derivation. First of all we must relate ⌃

to ⇢ (Eqn. 4.26). This is straightforward

⌃ =

⌦
�h0 ⌦ �h

↵

=

X

x

(H · �x)⌦ (A · �x+ F · �x) p (x, t)

=H⇢AT

+HrTFT , (4.26)

where r represents the covariance between the spiking activity of neurons in the E-I

population and neurons in the input population X:

r
ij

⌘ h�x
i

�x
j

i i 2 X j 2 E, I . (4.27)
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Now, inserting this (Eqn. 4.26) into equation 4.24 we can obtain a simple expression

for our troublesome term:

h�x⌦ �fi = H�1
�
H⇢AT

+HrTFT

�
g = ⇢ATg + rTFTg . (4.28)

We also have to transform h�f
i

�x
j

i into a tractable form. Similar to the h�x
i

�f
j

i
calculation, we can multiplying h�f

i

�x
j

i by a pseudo connectivity matrix, but on the

right hand side this time. The resulting expression can be simplified using a Taylor

series expansion, as before, leading to:

h�f ⌦ �xi = gA⇢+ gFr . (4.29)

Finally, we substitute equation 4.28 and equation 4.29 into equation 4.18. This gives

us a first order linear differential equation for the covariance between two neurons in

our E-I population:

⌧0
d

dt

⇢
ij

= �2⇢
ij

+

⇥
gA⇢+ ⇢ATg

⇤
ij

+

⇥
gFr+ rTFTg

⇤
ij

; i 6= j i, j 2 E, I . (4.30)

This equation describes the time evolution of the spike train covariance ⇢ of recurrently

connected excitatory and inhibitory neurons in a balanced network.

The covariance between neurons in the E-I population depends on the covariance r

between neurons in external population X and neurons in the E-I population. We can

derive a linear differential equation for r using similar methods to our derivation of ⇢

(Supplementary Methods 4.5.2):

⌧0
dr

dt
= �2r+ rATg + nFTg , (4.31)

where n is the covariance of our input population X:

n
ij

⌘ h�x
i

�x
j

i = �
ij

�
⌫
i

� ⌫2
i

�
; i, j 2 X . (4.32)

Neurons in the input population are unconnected, so their spike trains are uncorrelated.

This is captured by the fact that n is a diagonal matrix.

Correlations in balanced networks were recently studied by Renart el al. (Renart
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et al., 2010). Their work is similar to ours in that they derive the same equilibrium

covariance equation that we have derived (Eqn. 4.30). However, there are a number

of important differences. The balanced network that we study contains structured

connectivity, along with background connectivity, whereas Renart el al. study networks

that only contain background connectivity. Also, our derivation is quite different and

may be more easily adapted to the analysis of correlations in networks of more realistic

neurons. In the next section, we go further than Renart et al. and solve the covariance

equations at equilibrium.

4.2.3 Solving the correlation equations

In this section we solve the covariance equations and the firing rate equations that

we have derived to finally obtain an expression for the spike train correlations C
ij

in a

balanced network. We begin by writing down the balanced network covariance equations

4.30, 4.31 and 4.32 at equilibrium:

2⇢ =

⇥
gA⇢+ ⇢ATg

⇤
od

+

⇥
gFr+ rTFTg

⇤
od

+ 2⇢d , (4.33)

2r = rATg + nFTg , (4.34)

n
ij

= ⌫
i

(1� ⌫
i

) �
ij

, i, j 2 X (4.35)

where we have used the following notation

Mod

ij

= M
ij

(1� �
ij

) (4.36)

Md

ij

= M
ij

�
ij

. (4.37)

These are linear equations so we can use linear algebra to solve them. This is

particularly straightforward for the covariance between E-I neurons and neurons in our

external population (Eqn. 4.34):

r = nFTg
�
2I �ATg

��1
. (4.38)

However, the solution of the E-I covariance equation is more complicated. This is

because the mathematical structures of the covariance between two different neurons

and the covariance of a neuron with itself (its variance) are very different (Eqn. 4.33).
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We deal with this by rewriting equation 4.33 in the following form:

2⇢od

= gA⇢od

+ ⇢odATg + �+ �T � ⇠ , (4.39)

� = gA⇢d

+ gFr , (4.40)

⇠ ⌘
h
⇢odATg + gA⇢od

i
d

+

⇥
rTFTg + gFr

⇤
d

. (4.41)

Now, multiplying both sides of equation 4.39 by the conjugate eigenvalues of gA

allows us to write:

2e†
µ

⇢ode†
⌫

= �
µ

e†
µ

⇢ode†
⌫

+ �
⌫

e†
µ

⇢ode†
⌫

+ e†
µ

�e†
⌫

+ e†
µ

�Te†
⌫

� e†
µ

⇠e†
⌫

, (4.42)

where

e†
µ

gA = �
µ

e†
µ

(4.43)

gAe
µ

= �
µ

e
µ

. (4.44)

The term e†
µ

⇠e†
⌫

is much smaller that the other terms so its contribution to equation 4.42

can be ignored (Supplementary Methods 4.5.3). Multiplying both sides of this equation

by the eigenvectors of gA and solving for ⇢od gives:

⇢od

=

X

⌫,µ

e
µ

e†
µ

�
�+ �T

�
e†
⌫

e
⌫

2� (�
µ

+ �
⌫

)

. (4.45)

Finally, inserting equation 4.45 and equation 4.17 into equation 4.1 we can write

down a single equation for the correlation between two different neurons, i and j in a

balanced network:

C
ij

= (⌫
i

� ⌫2
i

)

�1/2

"
X

⌫,µ

e
µ

e†
µ

�
�+ �T

�
e†
⌫

e
⌫

2� (�
µ

+ �
⌫

)

#

ij

(⌫
j

� ⌫2
j

)

�1/2 (4.46)

� = gA⇢d

+ gFnFTg
�
2I �ATg

��1
. (4.47)

This equation provides a prediction for the spiking covariance between all pairs of

neurons in our network, given network connectivity and input statistics. It is the first

full prediction for the correlations of a strongly connected balanced network.

Correlations in networks without strong background connectivity have been calcu-
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lated analytically before (Ginzburg and Sompolinsky, 1994). The correlation equa-

tions for weakly correlated networks are similar to the equations for strongly con-

nected networks except that the neuron gain is g
ij

= �
ij

@f (m
i

) /@m
i

, compared to

g
ij

= �
ij

@ hf (h
i

)i /@m
i

in strongly connected networks. This difference is a consequence

of synaptic background noise, generated by background connectivity, which effectively

smooths the non-linear dynamics of individual neurons.

4.3 Results

4.3.1 The origin of correlations

We can now explain the origin of correlations in the cortex. Our correlation equations

(Eqns. 4.46 and 4.47) reveal that there are two sources of spike correlations: recurrent

input from cortical populations (the first term in �); and correlated input from external

populations (the second term in �). These sources are transformed by the connectivity

and gain of individual neurons by projecting the effective input covariance �+�T onto

eigenvectors of the ’effective connectivity matrix’ gA. Projections onto eigenvectors

whose eigenvalues are closest to 1 contribute most to network correlations.

Our description of the origin of correlations is technical. This reflects the exact

nature of our prediction. Such exact descriptions are necessary for studying many

properties of balanced networks, such as the contribution of structured connectivity

to correlations and the contribution of correlations to information. However, many

properties of correlations can be understood without resorting to exact predictions,

such as the dependence of correlations on the number of connections per neuron. We

will investigate balanced network correlations qualitatively and quantitatively.

4.3.2 Simulations and predictions

In deriving our predictions, we made a number of approximations, which though reas-

onable, must be checked in network simulations. We do this by measuring the firing

rates and correlations of all the neurons in a simulation of our network.

As before, we simulate our balanced network using the Gillespie Algorithm (Gillespie,

1977). During each simulation, we measure firing rates and correlations. For computa-
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tional reasons, we assume ergodicity and estimate statistics across time. All statistical

estimates converge towards the true statistics when simulations (and measurements)

become infinitely long. This is also the limit for which our analytic predictions apply -

when the network is at equilibrium.

For each simulation and prediction, we use the network parameters given in table

3.1, unless otherwise stated. We do not need to fine-tune these parameters because the

balanced state is very robust to parameter choice.

We can accurately predict the firing rate of every neuron in our network (Fig. 4.2,

inset). The neuron firing rate distribution is skewed, with a peak close to zero (Fig. 4.2).

This shape is consistent with a range of firing rate recording experiments (Hromádka

et al., 2008; O’Connor et al., 2010).
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Figure 4.2: Firing rate prediction, measurement and histogram
The firing rate distribution in a balanced network is skewed towards zero with a low
firing rate peak (black bars). We can accurately predict the firing rate distribution (red
dots) and the individual firing rates ⌫

i

of neurons in our network (inset) for a network
containing N = 2000 neurons. The mean prediction error is 0.023.

We find that our correlation predictions closely match measured correlations (Fig.

4.3, inset). This is the first analytic prediction of correlations in a balanced network.

Correlations are weak on average but are widely distributed relative to this average. The

distribution is sharply peaked and skewed towards zero (Fig. 4.3). This is consistent

with recent correlation recordings (Ecker et al., 2010).
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Figure 4.3: Correlation distribution, prediction and measurement
Correlations in balanced networks are weak on average and widely distributed relative to
this average (black bars). The correlation distribution is skewed towards zero. We can
accurately predict this distribution (red dots, left) and the correlations between pairs of
neurons in our network (inset). Each point represents the correlation C

ij

between a pair
of randomly selected neurons i and j. The dashed line is the 45

o line. The correlation
error

P
N

ij

��C
ij

�Cm

ij

��/N2 is 0.004, where Cm

ij

is the measured correlation between neuron
i and j .

Although our predictions are accurate, they are not perfect. Indeed, we don’t ex-

pect them to be perfect, because some of the approximations in our analysis are only

applicable to large networks. However, this is not a serious problem, because a typical

cortical column is extremely large, containing millions of neurons. Nonetheless, we must

demonstrate that our predictions do improve as we increase the size of our networks. We

quantify the accuracy of our correlation predictions by calculating
P

N

ij

��C
ij

� Cm

ij

��/N2,

where Cm

ij

is the measured correlation between neuron i and j. We find that this error

decreases with network size (Fig. 4.4).

It is also important that our predictions are accurate for networks with different

levels of background connectivity and structured connectivity. Our correlation predic-

tions consists of
�
N2 �N

�
/2 distinct numbers. To compare predicted correlations to

measured correlations for a range of networks we use C + s.d. (C) as a summary stat-
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istic, where C is the mean correlation between spike trains in our network and s.d. (C)

is the standard deviation of correlation coefficients. This quantity captures the typical

size of correlations in our network. We find that measured correlations closely match

predicted correlations (Fig. 4.4) for a range of networks with different amounts of back-

ground connectivity and structured connectivity. Therefore, we can rest assured that

our predictions are accurate for a range of network parameters and network sizes.
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Figure 4.4: Correlation prediction accuracy
The error in our correlation predictions decreases as the network size increases (left).
A straight line fit to the error indicates that the error decreases with N�0.63. For each
prediction, the same network parameters are used (Table 3.1), apart from N , N

X

, K
and K

X

which all increase by the same proportion. The average firing rate is held
constant, by adjusting the spiking thresholds. Also, we increase the measurement time
T according to T = N ⇥ 50 sec, because correlations become smaller with 1/

p
N (Fig.

4.8) and this requires more accurate correlation estimates. This accuracy increases withp
T , so measurement time must increase linearly with network size to provide a fair

comparison between networks. We also find that our correlation predictions represented
by C+ s.d. (C) closely match predicted correlations, represented by C

m

+ s.d. (C
m

) for
a wide range of parameters (w0 2 [0.01, 2] , j0 2 [0.01, 2] ⇥ w

o

), where the network size
is N = 500 and the measurement time is T = 250 sec.

4.3.3 The contribution of structured connectivity and background

connectivity to correlations

We now investigate the relationship between correlations and connectivity. It is im-

portant to understand this relationship because the interaction of connectivity and

correlations is central to the theory of cortical memory formation (Hebb, 1949). If the

contribution of structured connectivity to correlations is overwhelmed by the contribu-

tion of background connectivity, Hebbian learning may be impossible. Also, attempts
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to infer structured connectivity using correlation measurements may be hopeless.

We find that structured connectivity parametrised by j0 increases correlations sub-

stantially (Fig. 4.5). The average correlation becomes more positive and the correlation

standard deviation increases substantially.
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Figure 4.5: Structured connectivity and correlations
Structured connectivity increases correlations. Here the predicted mean correlation
(grey dashed line), and the mean +/� standard deviation (grey shading) are shown.
For each prediction, the average excitatory firing rate is held constant, by adjusting
the spiking thresholds. The eigenvalue spectrum of our ’effective connectivity matrix’
gA is shown without structure (left inset) and with structure (right inset). Structured
connectivity can increase correlations if some eigenvalues are close to 1.

It is not surprising that the increase in the magnitude of average correlations is

positive, rather than negative. In our model, structured connections only occur between

excitatory neurons. Consequently, the contribution of structure to total synaptic drive

correlations is positive on average, which, in turn, causes positive increases in average

spike correlations.

It is surprising however that this increase is so substantial, because structured con-

nectivity is much weaker than background connectivity. We can understand this math-

ematically, in terms of the eigenvalues �
n

and eigenvectors e
n

of the effective connectivity

matrix gA where gAe
n

= �
n

e
n

. Eigenvectors whose eigenvalues are closest to 1 make
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the largest contribution to correlations (Eqn. 4.46). Although structured connectivity

is weak it has some O (1) eigenvalues. As j
o

increases, these eigenvalues increase and

consequently, the correlations increase.

Next, we study the contribution of background connectivity to correlations. We

find that background connectivity, parametrised by w0, decreases average correlations,

but increases the correlation standard deviation (Fig. 4.6). However, this contribution

eventually saturates.

Background connectivity is much stronger than structured connectivity so it is not

surprising that it contributes to correlations. The decrease in mean correlation strengths

is a result of synaptic drive correlations between excitatory and inhibitory synaptic

inputs balancing the positive correlations from structured connectivity.
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Figure 4.6: Background connectivity and correlations
Background connectivity decreases mean correlations (grey dashed line, left) and in-
creases the standard deviation of correlations (grey shading, left). These correlation
changes eventually saturate. Correlations decrease with background connectivity be-
cause correlations are largely determined by the gain (inset, right), and background
connectivity decreases the mean gain (right). For each prediction here, the average
firing rate is held constant, by adjusting the spiking thresholds.

The decrease in correlations before saturation can be understood in terms of the

mean gain g ⌘ P
i

g
ii

/N (Eqn. 4.25), because the gain plays an important role in

determining the size of correlations (Eqns. 4.44, 4.46, 4.47). If the gain is small, then

correlations will be small, regardless of network connectivity (Fig. 4.6).

We can understand this relationship mathematically by estimating the gain of a
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neuron in terms of background connectivity, parametrised by w
o

:

g
ii

=

exp[�(m
i

/�
i

)

2/2]

(2⇡�2
i

)

1/2
(4.48)

We can simplify this by observing that background connectivity is predominantly re-

sponsible for synaptic background noise, so �
i

⇠ w0 (Eqn. 4.10). Also, the ratio m
i

/�
i

is constant because we have required firing rates to be constant (Eqn. 4.13):

m
i

/�
i

= ��1
(⌫

i

) . (4.49)

Therefore, for typical amounts of background connectivity (w0 ⇠ O (1)) we have:

g
ii

⇠ w�1
o

. (4.50)

The gain decreases as background increases, at a given firing rate, so correlations de-

crease as background connectivity increases.

The saturating contribution of background connectivity can also be understood

mathematically by looking at the eigenvalue spectrum of the effective connectivity mat-

rix gA. These eigenvalues determine the contribution of different connectivity com-

ponents to correlations, as we have already discussed (Eqn. 4.46). If these eigenvalues

saturate with background connectivity, then the contribution of background connectiv-

ity to correlations will also saturate.

When w0 becomes large, the typical size of these eigenvalues in terms of background

connectivity, parametrised by w
o

, is given by:

�
µ

⇠ g
ii

⇥A
ij

�! O �w�1
o

⇥ w
o

�
.

(4.51)

Therefore, these eigenvalues become independent of background connectivity and con-

sequently, the contribution of background connectivity to correlations saturates eventu-

ally.
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4.3.4 Firing rate, preferred orientation and correlations

The relationship between correlations and firing rates is important for computation. If

correlations are higher between neurons with similar preferred orientations, then the

ability of the network to encode and decode information may be harmed (Averbeck

et al., 2006) (Fig. 2.4). Here, we study this relationship in balanced networks.

We find that if a pair of neurons in a balanced network have high firing rates, they

are more likely to be correlated (Fig. 4.7). Consequently, neurons that encode stimuli

of similar orientation have higher correlations on average. This relationship is not very

strong, so it is not clear that it would harm computations significantly. This is something

that we will address in the next chapter.
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Figure 4.7: Firing rate, preferred orientation and correlations
Pairs of neurons with high firing rates are more likely to be correlated than neurons
with low firing rates. A least squares fit to the full set of correlations has a slope of
0.27 (dashed blue line, left). Consequently, neurons that receive input tuned to similar
orientations are more correlated (right). This can be seen clearly from the average
correlation (red line, right). Here, averages are given by the average correlation at a
particular orientation difference, and then smoothed by convolving with a Gaussian with
standard deviation of ⇡/8. As before, averaging and regression are performed for the
entire population, whereas only a randomly selected subset of correlations are plotted,
for clarity.

4.3.5 Correlation scaling

In this section we estimate the size of correlations in balanced networks by calculating

how correlations scale with K, the average number of synapses per neuron. The size of
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correlations is important because it can determine whether or not correlations play a

role in computation (Abbott and Dayan, 1999). The scaling of correlations with K is a

good indicator of correlation size because K is very large in the cortex (Braitenber and

Schuz, 1991; Binzegger et al., 2004) and therefore plays an important role in determining

spike train statistics, as we have seen in the previous chapters.

We quantify correlation size by calculating the mean correlation C of the E-I popu-

lation and the correlation standard deviation s.d.(C) (Supplementary Methods 4.5.4).

Our approach is to calculate the relative size of each term in our covariance equation

(Eqn. 4.39). Some terms will be much smaller than others because of their depend-

ence on K. The smallest terms can be ignored and the resulting equation can easily

be solved. We find that correlations get smaller as the number of synapses per neuron

increases:

C ⇠ 1/K

s.d.(C) ⇠ 1/
p
K .

(4.52)

We made a number of approximations in this analysis which can be corroborated

by solving our covariance equation numerically (Eqn. 4.46) for a series of networks of

increasing size. Again, we find that C ⇠ 1/K and s.d.(C) ⇠ 1/
p
K (Fig. 4.8). This is

in agreement with our analysis.

These scaling results allow us to predict the typical size of correlations in the cortex.

Neurons in the cortex typically have about 1000 � 2000 connections (Braitenber and

Schuz, 1991; Binzegger et al., 2004). Consequently, correlations in balanced networks

are about 0.02. This is consistent with the most recent measurements of correlations in

cortical networks (Ecker et al., 2010; Renart et al., 2010).

We also find that structured connectivity and background connectivity both make

a similar sized contribution to C and s.d.(C) (Supplementary Methods 4.5.4). This

is consistent with our previous observations that structured connectivity can increase

correlations substantially (Figs. 4.5 and 4.7).

Our scaling results are qualitatively similar to the results of Renart et al. (Renart

et al., 2010) who also found that C ⇠ 1/K in their balanced network model. However,

the result is quantitatively different because our networks contain structured connectiv-

ity and we have shown that the contribution of structured connectivity is just as large
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as the contribution of background connectivity.

An important contribution of (Renart et al., 2010) was their investigation into the

size of synaptic drive correlations. They observed that the average correlation of excit-

atory synaptic drives, c
EE

is large and positive; c
EE

⇠ O (1). Similarly, the average

correlation of inhibitory synaptic drives, c
II

is large and positive; c
II

⇠ O (1). The

average correlation between inhibitory and excitatory synaptic drives c
EI

is large and

negative; c
EI

⇠ O (�1). However, the total synaptic drive correlation c
tot

is weak

c
tot

⇠ O�1/pK
�
. They proposed that this is a consequence of correlation compon-

ents balancing each other, similar to the balancing of excitatory and inhibitory mean

synaptic drive in balanced networks (Renart et al., 2010).

   

















Figure 4.8: Correlation scaling
Correlation scaling shows that correlations are weak in a balanced network. Here, the
average spike correlation C between neurons in a balanced network are shown in black
and the correlation standard deviation is shown in red s.d. (C). Dashed lines of order
1/K (black) and 1/

p
K (red) show the scaling of spike train correlations. We also show

the average correlations between excitatory and inhibitory synaptic drives c
EE

(purple),
c
II

(orange), �c
IE

and �c
EI

(blue). These correlations cancel so that the total synaptic
drive correlation c

tot

(green) is small and is of order 1/
p
K (dashed green line).

We find that synaptic drive correlations also balance in networks that have struc-

tured connectivity and background connectivity (Fig. 4.8). The background connectiv-
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ity correlations balance the structured connectivity correlations producing synaptic drive

correlations that are weak (Fig. 4.6). This is important because in our analysis, we as-

sumed that the contribution of correlations to synaptic drive variance was small enough

to be ignored (Eqn. 4.10). It is also important for computation, because potentially

harmful correlations induced by structured connectivity are reduced in balanced net-

works.

4.4 Discussion

Since the seminal work of Adrian and Zotterman (Adrian and Zotterman, 1926), the

firing rates of neurons have become the subject of intense investigation. Spike train

correlations have only recently received the same attention, mostly because they are

difficult to measure (Ecker et al., 2010; Cohen and Kohn, 2011). Nonetheless, correla-

tions can play just as important a role in cortical function (Averbeck et al., 2006).

We study correlations analytically using techniques from statistical physics and dy-

namical systems theory. We expect this analysis to be difficult, if not intractable,

because single neuron dynamics are highly non-linear. However, synaptic background

noise is large in balanced networks (Destexhe et al., 2003; Rudolph et al., 2005) and

spike trains are asynchronous (Ecker et al., 2010; Cohen and Kohn, 2011), allowing us

to linearise the complicated non-linear network dynamics and derive a tractable math-

ematical relationship between correlations and connectivity.

Our analysis reveals that correlations in the cortex are weak, about 0.02, and highly

heterogeneous across a population. Specifically, the correlation standard deviation is of

order 1/
p
K and the mean correlation is of order 1/K. This is consistent with recent

correlation measurements of 0.005 ± 0.004 (Ecker et al., 2010; Renart et al., 2010).

Although this is weak, it is much larger than correlations in networks that do not have

background connectivity, about
p
K times larger (Ginzburg and Sompolinsky, 1994;

Hertz, 2010). We investigate the implications of correlation size for computation in the

next chapter and find that balanced network correlations are too small to play a critical

role in computation, though they are not small enough to be ignored. Recent work

by Renart et al. also found that correlations are weak (Renart et al., 2010), but in a

network model that does not contain structured connectivity.

We find that the contribution of structured connectivity to correlations can be just
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as large as the contribution of background connectivity, despite the fact that structured

connectivity is much weaker than background connectivity in our model. Therefore,

we predict that it will be difficult, if not impossible to unravel the contributions of

background connectivity and structured connectivity in experiments. Consequently,

experimentalists hoping to infer structure using correlation measurements will face ana-

lysis and measurement difficulties. We also anticipate difficulties for Hebbian learning

in the cortex, because background connectivity produces spurious correlations which

impairs the ability of a network to learn. Some form of population averaging may be

necessary to stabilise Hebbian learning in balanced networks.

We find that the distribution of correlations in a balanced network can be sharply

peaked close to zero. This is reminiscent of firing rate distributions which are also

skewed and sharply peaked (Hromádka et al., 2008; O’Connor et al., 2010). Recently it

was proposed that such firing rate distributions are produced by neural tuning curves

stretching synaptic drives that are Gaussian distributed (Roxin et al., 2011). A similar

mechanism may explain the skewed correlation distributions that we have calculated.

One problem with our analysis is that the neurons in our network model are not

very realistic. This is not a serious problem because spiking activity in our network

model can still be realistic - background connectivity produces synaptic background

noise which in turn produces irregular asynchronous spiking activity. Nonetheless, in

future work it would be interesting to investigate correlations in a network of realistic

neurons. This may be difficult, because typically, there is a trade-off between model

complexity and analytic tractability. Nonetheless, there has been some progress using

simulations of conductance based integrate and fire neurons (Kumar et al., 2008; Hertz,

2010; Lerchner and Latham, 2011). These studies indicate that correlations are weak

in the balanced state but can be much larger in the unbalanced state. This may ex-

plain some of the surprisingly large correlation measurements that are often reported

(Hertz, 2010; Cohen and Kohn, 2011). However, a problem with all simulation based

results is that they depend on simulation parameters in some unknown way. Even if

a phenomenon is observed for some broad range of parameter values, there may be

some undetected singularities where network activity is different. Future analytic cal-

culations of correlations between realistic neurons may reveal as yet unknown subtleties

in balanced network spike train correlations that may be important in learning and
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computation.

In this chapter we calculated correlations in a balanced network at equilibrium.

However, correlations can fluctuate in time, just as firing rates fluctuate in time. These

fluctuations may play an important role in computations, especially for computations

that are performed rapidly. Also, correlation fluctuations may be important for short

time-scale learning. It is difficult to measure the time course of correlations, because

averaging across a single trial is not possible for such measurements. Analysis is also

difficult, because time-dependent correlation equations are more complicated than equi-

librium equations. In this chapter, we have already derived time-dependent correlation

equations for a balanced network, but we have not solved them. In future work, the role

of correlation fluctuations in learning and computation could be investigated by solving

these time dependent equations.

The most important prediction arising from this work is that structured connectiv-

ity increases correlations by amplifying salient inputs. Already, there is some evidence

for this from experiments where monkeys view orientated bars, which are particularly

salient, producing correlations in V1 of 0.005± 0.004, compared to natural image view-

ing which produce correlations of 0.001 ± 0.005 (Ecker et al., 2010). Furthermore, we

also predict that similarly tuned cells are slightly more correlated than cells that have

dissimilar tuning. There is also some evidence for this from experiments where correla-

tions are 0.023± 0.005 for similarly tuned cells compared to 0.008± 0.002 for cells with

dissimilar tuning (Ecker et al., 2010). However, a more systematic investigation of our

prediction is necessary, preferably across animals and sensory modalities.

We have made substantial progress in the analysis of cortical correlations. The cor-

relation equations that we derive can be used to calculate the typical correlation strength

in the cortex and the relative contribution of structured connectivity and background

connectivity. However, our analysis has revealed a complicated relationship between

correlations and structured connectivity and between correlations and network input.

This complexity is not surprising, given that the cortex consists of many interconnected

non-linear dynamical spiking neurons. In learning and computation, the details matter,

so it is important that we understand them. In the next chapter, we will quantify the

role of correlations in computation.
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4.5 Supplementary Methods

In this section, we provide derivations for all the equations in this chapter. Although

all of these derivations are important mathematically, they provide little additional

neuroscience insight and they are quite technical. Therefore, we have not included them

in the main text. For the sake of completeness, we have reproduced some derivations

from previous work, as noted.

4.5.1 Master equation

Here we derive the Master equation for our network dynamics (Eqn. 4.4). This Master

equation has been derived before (Ginzburg and Sompolinsky, 1994).

We begin by considering the dynamics of the neurons in our network (Fig. 4.9). If

the network is in state x at time t+�t, then for sufficiently small �t, the network was

either in the same state x, or in a different state x(i) at time t.

Figure 4.9: Neuron model
This graphical model represents the stochastic dynamics of our network. The network
can evolve to the state x at time t + �t from the same state x at time t, or from a
different state x(i) at time t. The network transition probabilities are notated beside
the directed edge of the corresponding network state transition. We have used plate
notation to denote all the possible transitions from past network states.
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Therefore, the probability that the network is in state x at time t+�t is given by:

P (x, t+�t) =P (x, t)
⇣
1�

X

i

r (x
i

! 1� x
i

)

⌘
�t

+

X

i

r (1� x
i

! x
i

)P
�
x(i), t

�
�t , (4.53)

where P (x, t) denotes the probability that the network is in state x at time t and

P
�
x(i), t

�
denotes the probability that the network is in state x(i) at time t.

By dividing both sides of equation 4.53 by �t and taking the small �t limit we

obtain the Master equation for our network dynamics:

d

dt
P (x, t) ⌘ lim

�t!0

P (x, t+�t)� P (x, t)

�t

=�
X

i

r (x
i

! 1� x
i

)P (x, t) +
X

i

r (1� x
i

! x
i

)P
�
x(i), t

�
. (4.54)

Q.E.D.

4.5.2 Firing rate equations

Here we derive the firing rate equations for our network (Eqn. 4.5). These equations

were also derived previously (Ginzburg and Sompolinsky, 1994). We begin by combining

our Master Equation (Eqn. 4.4) and our firing rate definition (Eqn. 4.2) as follows:

d

dt
v
i

=

X

x

x
i

d

dt
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= h(1� 2x
i

) r (x
i

)i . (4.55)

Here, we have abused notation, using r (x
j

) to denote r (x
j

! 1� x
j

) and we have used

brackets
⌦
. . .
↵

to denote an average over all neuron states at time t.

We can derive dynamical equations for our firing rates by inserting our transition

rate expressions (Eqns. 4.56 and 4.57) into equation 4.55. For neurons in our external
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population the transition rate can be written as

r (x
i

) =

1

2⌧
X

(1 + (2x
i

� 1) (2u
i

� 1)) , (4.56)

and for neurons in our recurrently connected population the transition rate can be

written as:

r (x
i

) =

1

2⌧
Q

(1 + (2x
i

� 1) (2f (h
i

)� 1)) , (4.57)

with time constants given by

⌧
Q

=

8
<

:
⌧
E

i 2 E

⌧
I

i 2 I .
(4.58)

In this chapter we assume that ⌧
E

= ⌧0 and ⌧
I

= ⌧0.

Now, inserting 4.57 into 4.55 we find:

d
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⌫
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1
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h(1� 2x

i

) (1 + (2x
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� 1) (2f (h
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) + (2f (h
i

)� 1)i

=� 1

⌧0
hx

i

� f (h
i

)i . (4.59)

Here, we have used the fact that (1� 2x
i

)

2
= 1. A similar calculation can also be

performed for neurons in our input population. This produces the firing rate equations

for our network (Eqns. 4.5):

⌧0
d

dt
⌫
i

=� ⌫
i

+ hf (h
i

)i i 2 E, I

⌧
X

d

dt
⌫
i

=� ⌫
i

+ u
i

i 2 X . (4.60)

Q.E.D.
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Synaptic drive variance

Next, we calculate the variance of the synaptic drive to a neuron in our network (Eqn.

4.10):

�2
i

=

D
[A · �x+ F · �x]2

i

E

=

h
(A+ F)

⌦
�x�xT

↵
(A+ F)T

i

ii

=

⇥
A⇢AT

+ FnFT

+ 2FrAT

⇤
ii

, (4.61)

where n is the covariance of the input population X:

n
ij

= �
ij

�⌦
x2
i

↵� ⌫2
i

�
= �

ij

�
⌫
i

� ⌫2
i

�
i, j 2 X , (4.62)

and r is the covariance between the input population X and the E-I population:

r
ij

= h�x
i

�x
j

i i 2 X, j 2 E, I . (4.63)

This synaptic drive variance equation (Eqn. 4.61) is complicated because of the con-

tribution of correlations. However, in a balanced network the synaptic drive correlations

balance, just as the mean synaptic input balances (Renart et al., 2010). Therefore, we

can approximate the synaptic drive variance as follows:

�2
i

'
X

j2E,I

A
ij

⌫
j

(1� ⌫
j

)AT

ji

+

X

j2X
F
ij

⌫
j

(1� ⌫
j

)F T

ji

. (4.64)

Q.E.D.
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Equilibrium firing rate

Next we derive an equation for the equilibrium firing rate of a neuron in a balanced

network (Eqn. 4.13):

⌫
i

=

ˆ
⇥(h

i

)p(h
i

, t) dh
i

=

ˆ
⇥(h

i

) exp[� (h
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)

2 /2�2
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](2⇡�2
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�1/2 dh
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⇥(m
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) exp[� (�h
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)

2 /2�2
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)
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i

(4.65)

=

ˆ 1

�m

i

/�

i

exp[�z2/2](2⇡)�1/2 dz

=

ˆ
m

i

/�

i

�1
exp[�z2/2](2⇡)�1/2 dz

= � (m
i

/�
i

) , (4.66)

where we have rewritten equation 4.65 using z ⌘ �h
i

/�
i

.

Q.E.D.

Newton–Raphson method

We use the Newton-Raphson algorithm to solve our equilibrium firing rate equations

(Algorithm 4.1). This algorithm converges towards the zeros of the following function:

z
i

(⌫) ⌘ ⌫
i

� � (m
i

/�
i

) , (4.67)

using the Jacobian

J
ij

=

@

@⌫
j

z
i

=

@⌫
i

@⌫
j

� @

@⌫
j

� (m
i

/�
i

)

=�
ij

�
X

k

g
ii

˜A
ik

@⌫
k

@⌫
j

+

X

k

g
ii

˜F
ik

@u
k

@⌫
j

=�
ij

� g
ii

˜A
ij

, (4.68)

where
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g
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=

exp[�m2
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/2�2
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(2⇡�2
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1/2
, (4.69)
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˜F
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✓
1� m

j

2�2
i

F
ij

(1� 2u
j

)

◆
. (4.71)

Algorithm 4.1 Newton–Raphson method
Initialise: Randomly choose firing rates ⌫

Iterate:
Solve J4⌫ = �z (⌫) for 4⌫

Update ⌫ ! 4⌫ + ⌫
Stop when max

i

|z
i

| < z
threshold

4.5.3 Covariance derivation

Here we derive the equal-time covariance equations for our network (Eqn. 4.18). This

derivation is reproduced from (Ginzburg and Sompolinsky, 1994). We begin by com-

bining the Master Equation (Eqn. 4.4) with the covariance definition (Eqn. 4.16):
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))i /⌧0 . (4.72)

This can be rewritten as follows:

⌧
o

d

dt

hx
i

x
j

i = �2 hx
i

x
j

i+ hx
i

f (h
j

)i+ hx
j

f (h
i

)i . (4.73)

Now, inserting equation 4.73 and equation 4.13 into our equal-time covariance defin-
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ition (Eqn. 4.16) we find the following:

⌧
o

d

dt
⇢
ij

=⌧
o

d

dt
hx

i

x
j

i � ⌧
o

hx
j

i d

dt
hx

i

i � ⌧
o

hx
i

i d

dt
hx

j

i

=� 2 (hx
i

x
j

i � hx
i

i hx
j

i) + (hx
i

f
j

i � hx
i

i hf
j

i) + (hf
i

x
j

i � hf
i

i hx
j

i)
=� 2⇢

ij

+ h�x
i

�f
j

i+ h�f
i

�x
j

i , (4.74)

where we have abused notation to write f
j

= f (h
j

) and �f
i

⌘ f (h
i

)� hf (h
i

)i.
Incidentally, if i 2 X and j 2 E, I, and ⌧

X

= ⌧
o

we obtain an equation for the

covariance between neurons in the input population and neurons in the E-I population:

⌧
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r
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�f
j

i . (4.75)

Q.E.D.

Taylor series expansion

Here we will show that the synaptic drive probability distribution p (h0
i

, h
j

, t) can

be simplified using a Taylor series expansion (Eqn. 4.23). This distribution is a two-

dimensional Gaussian with mean (m0
i

,m
j

) and covariance:
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⇢ �2
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1

A . (4.76)

Here, we have relabelled the elements of � with �
i

, �
j

and ⇢ for notational convenience.

First we need to calculate the inverse of �:

��1
=

1

�2
i

�2
j

� ⇢2
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@ �2
j

�⇢

�⇢ �2
i

1

A . (4.77)
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We can then write the synaptic drive probability distribution p (h0
i

, h
j

, t) as follows:
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Now, if we make the ansatz that ⇢/ (�
i

�
j

)

2 is small, we can simplify p (h0
i

, h
j

, t) with a

Taylor series expansion:
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Q.E.D

Covariance Integral

Here, we solve the integral in equation 4.24. We begin by writing:
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The first term can be integrated as follows:

⌦
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where
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Together, these give
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Q.E.D.

Covariance between input population X and the E-I population

Here, we derive an expression for the covariance r between the input population X

and the E-I population (Eqn. 4.31). We have already derived a dynamical equation for

this covariance (Eqn. 4.75):

⌧
o

d

dt

r
ij

= �2r
ij

+ h�x
i

�f
j

i ; i 2 X j 2 E, I . (4.86)

We can simplify the term h�x
i

�f
j

i, just as we simplified the E-I population covariance

equation (Eqn. 4.74). We begin by making the following transformation:

⌦
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⌦ �f
↵
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· h�x⌦ �fi , (4.87)

where we have defined a ’pseudo synaptic-drive’: �h0
r

= H
r

·�x, where H
r

is an invertible

matrix that is chosen so that (�h0
ri

, �h
j

) can be treated as a weakly correlated, zero mean

two dimensional Gaussian random variable. Now, replacing averages over spikes with

averages over synaptic drives, and performing a Taylor expansion, we can write:
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jj
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Now all that remains is to write ⌃r in terms of r and n:

⌃r

=

⌦
�h0
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(H
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· �x)⌦ (A · �x+ F · �x) p (x, t) dx
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r

rAT

+H
r

nFT . (4.89)

Now, substituting equation 4.89 and equation 4.88 into equation 4.87, we can write

h�x⌦ �fi = H�1
r

�
H

r

rAT

+H
r

nFT

�
g = rATg + nFTg . (4.90)

Finally, substituting equation 4.90 into equation 4.86 we find:

⌧0
dr

dt
= �2r+ r ·AT · g + n · FT · g . (4.91)

Q.E.D.

Equilibrium solution approximation

Here, we show that the term e†
µ

·⇠ ·e†
⌫

is much smaller that the other terms e†
µ

·⇢od ·e†
⌫

and e†
µ

· � · e†
⌫

in equation 4.42. Our approach is to calculate the size of each term in

equation 4.42 in terms of the E-I population size N and the average number of synapses

per neuron K.

We begin by writing the spike train covariance in terms of the mean covariance ⇢

and the covariance standard deviation s.d. (⇢):

⇢
ij

⌘ ⇢+ s.d. (⇢) ⌘
ij

, (4.92)

where averages are population averages and ⌘
ij

represents quenched fluctuations in the
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population covariance. We can now write:
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Here, we have used the fact that ⇢ ⇠ 1/K and s.d. (⇢) ⇠ 1/
p
K (Supplementary

Methods 4.5.4).

Next we calculate the size of e†
µ

· � · e†
⌫

. In a strongly connected network we have

�
ij
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(Supplementary Methods 4.5.4). Therefore
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Finally, we can calculate the size of e†
µ

·⇠·e†
⌫

by observing that ⇠
ii

⇠ 1/
p
K. Therefore
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This term is much smaller than the other terms in equation 4.42, as required.

4.5.4 Correlation scaling

Here, we calculate the scaling of the mean correlation C and the correlation standard

deviation s.d. (C). Our approach is to calculate the relative size of each term in our

covariance equation. We must begin by calculating the size of the covariance r between

the input population X and the E-I population (Eqn. 4.33). We then calculate the size

of the E-I covariance ⇢ using equation 4.34 before finally calculating the size of C and

s.d. (C).

Scaling of covariance r

Here, we calculate the scaling of r with K by quantifying the size of the mean

covariances rE and rI and the covariance standard deviations, �E

r

and �I

r

, defined as
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follows:
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We begin by calculating the mean covariance rE and rI by averaging our equilibrium

equation for r (Eqn. 4.34) using average connectivity (Eqns. 3.10, 3.14):
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where

gQ ⌘
X

i2Q
g
ii

/N
Q

n ⌘
X

i2X
n
ii

/N
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.

There are no non-zero solutions to these equations if rE , rI ⇠ O (1) or if rE , rI ⇠
O�1/pK

�
. However, if rE , rI ⇠ O (1/K) there is a solution, following Renart et. al.

(Renart et al., 2010). This solution can be obtained for large K by solving the following
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equations for rE and rI :
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Therefore,

rE , rI ⇠ O (1/K) . (4.105)

Also, we see that the contribution of structured connectivity to the covariance rE and

rI is the same order of magnitude as the contribution of background connectivity. This

is consistent with our previous results (Fig. 4.5).

Similarly we calculate the the covariance standard deviation �E

r

and �I

r

. We begin

by calculating the typical size of r(2)
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Therefore, using the fact rE , rI ⇠ O (1/K), we can see from equations 4.98 and 4.99

that:
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Scaling of covariance ⇢

Next, we calculate the size of the covariance ⇢ by calculating the mean covariances

⇢QP and the covariance standard deviation �QP

⇢

, defined as follows:
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i2Q,j2P
⇢
ij

/ (N
Q

N
P

) (4.106)
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This calculation is similar to the previous calculation, except that there are more

terms:
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Again, there are no non-zero solutions to these equations if ⇢EE , ⇢EI , ⇢IE , ⇢II ⇠
O (1) or if ⇢EE , ⇢EI , ⇢IE , ⇢II ⇠ O

⇣
1/
p
K
⌘
. However, if ⇢EE , ⇢EI , ⇢IE , ⇢II ⇠ O (1/K),

there is a solution. This solution can be obtained by solving the following equations for

107



⇢EE , ⇢EI , ⇢IE and ⇢II :
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Therefore,

⇢EE , ⇢EI , ⇢IE , ⇢II ⇠ O (1/K) . (4.114)

Also, we see that the contribution of structured connectivity to the covariance ⇢EE , ⇢EI , ⇢IE

and ⇢II is the same order of magnitude as the contribution of background connectivity.

This is consistent with our previous results (Fig. 4.5).

We calculate the size of covariance standard deviation �QP

⇢

, just as we calculated

�E

r

and �I

r

. We find that:

�QP

⇢

⇠ O
⇣
1/
p
K
⌘

(4.115)

Finally, we can calculate C and the correlation standard deviation s.d. (C). This is

straightforward, because ⇢
ii

⇠ O (1). Therefore, we can conclude from equation 4.114

and equation 4.115 that
C ⇠ 1/K

s.d.(C) ⇠ 1/
p
K .

(4.116)

Q.E.D.
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Part II

Computation
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Chapter 5

Information in Balanced Networks

5.1 Introduction

Naturally occurring images typically contain many orientated bars (Olshausen and

Field, 1996; Bell and Sejnowski, 1997). In orientation selectivity, the orientation of

these bars must be detected. It is important for the cortex to perform this computa-

tion because it is an essential building block for many other spatial computations such

as object recognition (Ferster and Miller, 2000). In this chapter we investigate how

orientation selectivity can be implemented in balanced networks.

Information quantifies the ability of a network to perform orientation selectivity

(Averbeck et al., 2006). If information is high, computational performance can be good.

If information is low, it is difficult to detect orientation, and computational performance

is poor.

We quantify the ability of a network to perform orientation selectivity by calculat-

ing information analytically. Information cannot be measured experimentally because

it requires measurements of correlations between all neuron pairs (Ecker et al., 2010).

Using the correlation equations that we derived in chapter 4, we can derive a mathe-

matical relationship between information and network connectivity. This allows us to

answer questions about the role of connectivity, correlations and spike train irregularity

in spatial computation.

We begin by considering the role of structured connectivity. We find that structured

connectivity increases information dramatically, by tuning neural responses to orienta-

tion. Therefore, orientation tuning is more than phenomenological - it is important for
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cortical function. This is interesting because the structured connectivity in our balanced

network model is much weaker than background connectivity. The orientation tuning

produced by structured connectivity is similar to the orientation tuning recorded in

many visual cortex neurons (Hubel and Wiesel, 1959).

Next, we investigate the computational role of background connectivity. Dynami-

cally, background connectivity is responsible for synaptic background noise and spike

train irregularity, so we expect it to harm computation (van Vreeswijk and Sompolin-

sky, 1996; van Vreeswijk and Sompolinsky, 1998). As expected, we find that background

connectivity reduces information. However, this computational damage only occurs over

a narrow range of contrasts. At most contrast levels, information is higher in networks

with background connectivity. This exemplifies a performance-stability trade-off: the

cost of high performance is a lower operating range; the trade-off arises because while

background connectivity produces noise, it also maintains the network in a highly in-

formative state. It thus provides computational stability, just as it provides dynamic

stability. Furthermore, we find that the contrast invariance of orientation tuned cells is

a signature of this computational stability.

Finally, we investigate the role of correlations in computation. This is an impor-

tant question because correlations may increase or decrease information dramatically,

depending on which neurons are correlated (Wu et al., 2001; Nirenberg and Latham,

2003). There has been much debate about this because information calculations, both

in theory and experiment would be much easier if the contribution of correlations could

be ignored (Averbeck et al., 2006). We find that correlations cannot be ignored, de-

spite the fact that correlations are weak in balanced networks. Furthermore, we find

that information increases with correlations. However, this relationship is not causal.

The connectivity that produces correlations is the same connectivity that produces ori-

entation tuning. The complicated relationship between correlations and tuning curves

exemplifies the difficulty in prescribing computational functions to particular spike train

statistics.

5.2 Orientation selectivity in balanced networks

We quantify orientation selectivity in a balanced network of recurrently connected exci-

tatory and inhibitory neurons. We use the same network model that we have analysed

113



throughout this thesis (Fig. 5.1). The neurons in the model produce irregular, asyn-

chronous spike trains and have orientation tuning (Chapter 3), similar to neurons in V1

(Hubel and Wiesel, 1959; Softky and Koch, 1993; Ecker et al., 2010).

E

I
X

Figure 5.1: Orientation selectivity
Our network model consists of three populations of neurons; an input population (X),
a population of excitatory neurons (E) and a population of inhibitory neurons (I).
The input population contains neurons that encode the orientation ✓ of a stimulus.
These neurons project onto our excitatory and inhibitory populations which provide an
estimate ˆ✓ of the input orientation. As before, background connectivity is parameterized
by w

o

. Structured connectivity between excitatory neurons is parameterised by j
F

and
j0.

As before, network connectivity consists of weak structured connectivity embedded

in strong background connectivity (Eqns. 3.10, 3.14). The structured connectivity,

parameterised by j
o

and j
F

is responsible for producing orientation tuned responses.

The background connectivity, parameterised by w
o

is responsible for the irregular asyn-

chronous spiking activity.

The balanced network spiking activity encodes the orientation ✓ of an edge from

a visual stimulus. In orientation selectivity, this spiking activity must be decoded to

provide an estimate, ˆ✓ of the edge’s orientation. We will quantify the ability of a

balanced network to support this computation by calculating information.

This model may be loosely considered to be a V1 orientation hypercolumn model.

However, we can easily treat it as a model for any feature tuned cortical region. Indeed,

most of our results and analysis can be generalised to the entire cortex. However,

this modeling flexibility comes at a price. There are many V1 phenomena and simple

cell phenomena that our model does not currently capture, such as color tuning and

adaptation. These phenomena can be easily accommodated without adversely effecting
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our analysis. In truth, however, we are more interested in discovering general principles

of cortical computation than idiosyncratic properties of any particular region of cortex.

5.3 Information analysis

We quantify orientation selectivity performance by calculating the information that a

balanced network contains about the angular variable, ✓, as a function of recurrent

connectivity A, feedforward connectivity F and input population firing rate u (✓):

I (✓) = f (A,F,u (✓)) . (5.1)

Ideally, we would like to calculate Fisher information, which provides a lower bound

on the variance of the optimal unbiased estimator. However, this requires the calculation

of the full probability distribution of activity p (x|✓), which is intractable for most

network models.

Instead we calculate a related quantity called linear Fisher information. This calcu-

lation is surprisingly simple, as it only requires knowledge of the spike correlations and

firing rates, which we have calculated already.

5.3.1 Linear Fisher Information

Linear Fisher information is defined as the inverse variance of a locally unbiased optimal

linear estimator (Deneve et al., 1999; Sompolinsky et al., 2001). It provides a good

measure of a network’s ability to perform orientation selectivity, and it is analytically

tractable, as we shall see (Seriès et al., 2004).

To calculate linear Fisher information, we must first derive an expression for an

unbiased optimal linear estimator. When we say unbiased, we mean that the estimator

is correct on average, and when we say optimal, we mean that the variance of the

estimates is as small as possible. A linear estimator, w, is an estimator that can be

used to estimate ✓ from population activity in the following way:

ˆ✓ = w · (x(✓)� ⌫ (✓0)) , (5.2)
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where

⌫ (✓0) = hx (✓0)i , (5.3)

is the firing rate of the population in response to orientation ✓0.

We begin by requiring our estimate to be correct on average, or more specifically,

we require it to be locally unbiased around ✓
o

:

@

@✓

⌦
ˆ✓
↵����

✓

o

= 1 . (5.4)

This is satisfied if we constrain w to have the following form:

w =

�
˜w · ⌫ 0

(✓
o

)

��1
˜w , (5.5)

where ˜w is another linear decoder and we have used a prime to denote a derivative with

respect to ✓.

Next, we require the variance of our estimates to be as small as possible. The

variance of ˆ✓ can be written in terms of ˜w:

var
�
ˆ✓
�
=

˜w · ⇢ · ˜w/
�
˜w · ⌫ 0

(✓
o

)

�2
. (5.6)

The decoder with the smallest variance can be derived by minimising this variance

analytically:
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(5.7)

Solving this, we find that

˜w
opt

/ ⇢�1 · ⌫ 0
(✓

o

) . (5.8)

We obtain an exact expression for the locally unbiased optimal linear estimator w
opt

by inserting equation 5.8 into equation 5.5:

w
opt

= ⇢�1 · ⌫ 0
(✓

o

) /
�
⌫ 0

(✓
o

) · ⇢�1 · ⌫ 0
(✓

o

)

�
. (5.9)

This optimal estimator can decode the orientation encoded in the spiking activity of

a balanced network. The performance of this decoder is best in a locally linear region
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around ✓0. We will not actually use this decoder in this work, because we do not need it

to calculate information. Nonetheless, we have verified that it can perform orientation

selectivity optimally (data not shown).

It is now straightforward to calculate linear Fisher information. By inserting equa-

tion 5.8 into equation 5.6 we can write:

I (✓0) = 1/var
�
ˆ✓
�
= ⌫ 0

(✓
o

) · ⇢�1 · ⌫ 0
(✓

o

) . (5.10)

Linear Fisher information is a good measure of the ability of our network to perform

orientation selectivity because accurate orientation selectivity corresponds to high in-

formation. Also, linear Fisher information is tractable because it only depends on

correlations, which we have already calculated, and tuning curve slopes ⌫ 0
(✓

o

), which

we will calculate in the next section.

5.3.2 Tuning curve slopes

The sensitivity of firing rates to changes in ✓ is represented by ⌫ 0
(✓

o

). We can write

down an equation for ⌫ 0
i

by differentiating our firing rate equation (Eqn. 4.13):
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where g
ii

is the gain of neuron i, the same gain function that appeared in our correlation

calculation (Eqn. 4.25).

Using the fact that correlations cancel in balanced networks, we calculate the deriva-

tive of the synaptic drive variance (Eqn. 4.10):
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We can now write down a linear equation for ⌫ 0, the tuning curve slopes of neurons in

our network:

⌫ 0
= g ˜A · ⌫ 0

+ g˜F · u0 , (5.15)
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where
˜A
ij

= A
ij
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) , (5.16)

and
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ij
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ij
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2�2
i

F 2
ij

(1� 2u
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) . (5.17)

This equation shows that the sensitivity of firing rates to ✓ is equal to the sensitivity

of firing rates to the mean synaptic drive g
ii

multiplied by the sensitivity of the effective

mean synaptic drive to ✓. Together, these terms determine the sensitivity of a balanced

network. Solving this gives:

⌫ 0
=

⇣
1� gÃ

⌘�1
gF̃ · u0 . (5.18)

This expression characterises how the population firing rate depends on the orientation

✓. Here, u0 tells us how changes to ✓ effect the input population firing rate.

5.3.3 Input information and output information

We can now write down an expression for output linear Fisher information. Substituting

our expression for ⌫ 0 (Eq. 5.18) into our linear Fisher information expression (Eqn. 5.10)

we find:

I
out

(✓
o

) = u0 · F̃Tg
⇣⇣

1� gÃ
⌘
⇢
⇣
1� ÃTg

⌘⌘�1
gF̃·u0 , (5.19)

where ⇢ is the matrix of covariances between neuron pairs that we calculated in the last

chapter (Eqn. 4.45).

To evaluate the computational performance of our network, we must compare this

output information to the input information. Input information is considerably easier

to derive than output information. Inserting our expression for the input covariance n

(Eqn. 4.35) into our linear Fisher information expression (Eqn. 5.10) we find:

I
in

(✓
o

) = u0 · n�1 · u0
=

N

XX

i2X

�
u0
i

�2
/
�
u
i

� u2
i

�
. (5.20)

Incidentally, this is also the input Fisher information.
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We quantify the ability of a network to perform orientation selectivity by calculating

the ratio of output information to input information. Throughout the remainder of this

work we will simply refer to this quantity as the information:

F (✓0) = I
out

(✓
o

) /I
in

(✓
o

) . (5.21)

This is a complicated function of recurrent connectivity A, feedforward connectivity F

and the firing rate of the input population u (✓).

5.4 Results

Although we now have an equation that relates information directly to connectivity

and input (Eqn. 5.21), it is difficult to interpret this equation. The reason for this is

that information is naturally expressed as a function of correlations ⇢ and tuning curve

slopes ⌫ 0. However, these statistics are inextricably linked to each other. They are

both determined by the same connectivity and input. Here we will attempt to unravel

our information equation so that we can understand how correlations and connectivity

contribute to information.

5.4.1 The origin of information

Immediately, we can see that there are two sources of information in our network. The

first source is the external population. Feedforward connectivity F transmits informa-

tion from the external population to the E-I population . This connectivity must match

the structure of the input if it is to successfully transmit information. The second

source of information is past network activity. This information is transmitted from the

past to the present through recurrent network connectivity A. Again, this connectivity

must match the structure of the balanced network spiking activity if it is to successfully

transmit information from the past.

The contribution of both sources is modulated by the neural gain function g. The

neural gain captures the sensitivity of individual neurons to changes in the average

synaptic drive. If the gain is small, information will be low, regardless of the network

connectivity.

Finally, information is strongly dependent on the amount of noise, ⇢, in our network.
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As we know, balanced networks are highly irregular (Softky and Koch, 1993). There-

fore, we expect intrinsic neuronal variability represented by ⇢d to reduce information.

Balanced networks are also asynchronous, so we do not expect covariance ⇢od to have

an enormous impact on information, though it may contribute to some extent (Shadlen

and Newsome, 1994). We will discuss the contribution of all these factors in further

detail.

5.4.2 Simulations and predictions

Before using our information expression (Eqn. 5.21) to study orientation selectivity,

we must check that the approximations we make in our analysis are acceptable. We

do this by comparing our predicted information to information estimated from network

simulations.

We would like to measure linear Fisher information directly. However, linear Fisher

information characterises the sensitivity of an unbiased decoder to infinitesimal changes

in parameter ✓ and we cannot measure infinitesimally small changes. Instead, we mea-

sure firing rates and correlations in two simulations of a network; one receiving input en-

coding orientation ✓+ = ✓+�✓/2 and the other receiving input encoding ✓� = ✓��✓/2.

We can then use these measurements to calculate the output Fisher Criteria and the

input Fisher Criteria:

Im
out

(✓) =

✓
⌫ (✓+)� ⌫ (✓�)

�✓

◆
·
✓
⇢ (✓+) + ⇢ (✓�)

2

◆�1

·
✓
⌫ (✓+)� ⌫ (✓�)

�✓

◆
, (5.22)
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The ratio of these gives a good measure of Information, if �✓ is small:

Fm

=

Im
out

(✓)

Im
in

(✓)
. (5.24)

It is much more difficult to estimate information than firing rates or correlations because

the Fisher Criteria depends on the difference ⌫
i

(✓+)� ⌫
i

(✓�) between two very similar

firing rates. We must estimate these firing rates to a precision that is much higher than

the difference. This requires very long simulations.

As before, we simulate our network using the Gillespie Algorithm (Gillespie, 1977).
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We find that we can accurately predict the information in balanced networks using

equation 5.21, for a wide range of network parameters (Fig. 5.2). We can now proceed

to study the role of correlations, structured connectivity, background connectivity and

spike train irregularity in orientation selectivity.
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Figure 5.2: Predicted information
Predicted information matches measured information for a wide range of networks with
different levels of structure and background connectivity (w

o

2 [0.5, 2], j
o

2 w
o

⇥ [0, 2] ).
The average percentage error is

P
N

s

i

|(F
i

� Fm

i

) /Fm

i

| ⇥ 100/N
s

= 10.7%. Each mea-
surement is obtained in a 1000 second network simulation using �✓ = 10

o.

5.4.3 The contribution of structured connectivity to information

We begin by investigating the contribution of structured connectivity to information.

We have already demonstrated that weak structured connectivity can produce orienta-

tion tuned responses in balanced networks (Fig. 3.5). However, this does not imply that

structured connectivity increases information. It may be that orientation tuning is an

epiphenomenon, and that correlations and noise completely obstruct their contribution

to computation.

We calculate information (Eqn. 5.21) for a series of networks containing increasing

amounts of structure (parameterised by j0). For each calculation we adjust the spiking

thresholds ✓E and ✓I so that the mean firing rate of the network is constant. This

allows us to assess the contribution of structure, independent of changes to the mean

firing rate. We find that structured connectivity increases information dramatically

(Fig. 5.3). This is a clear demonstration that weak structured connectivity embedded
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in random connectivity can be useful for computations such as orientation selectivity

and that orientation tuning is useful rather than being an epiphenomenon.
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Figure 5.3: Structure and information
Weak structured connectivity embedded in strong background connectivity increases
information (left). Correlations that result from structured connectivity increase as
information increases (right). The shaded area corresponds to the correlation mean
(dashed line) ± correlation standard deviation. Spiking thresholds are chosen so that
the mean excitatory firing rate is ⌫E = 0.2 for all j0.

We also find that correlations originating from structured connectivity increase with

information (Fig. 5.3). However, this does not mean that correlations cause information

to increase. Structure also increases orientation tuning, which is known to increase

information (Sompolinsky and Shapley, 1997). Correlations originating from structure

are more phenomenological than functional.

We can understand these results mathematically, by calculating the contribution of

structured connectivity to the network response. We begin by writing the eigenvalues


µ

and eigenvectors d
µ

of structured connectivity J/K in the following form:

K�1Jd
µ

= 
µ

d
µ

(5.25)

We have chosen the structured connectivity so that its eigenvectors d
µ

are similar to the

mean network input. When network input is projected through structured connectivity,

the components that encode ✓ are amplified:

Ad
µ

=

✓
w
op
K

W +

j
o

K
J

◆
d
µ

= b
µ

+ j
o


µ

d
µ

, . (5.26)

Here, b
µ

is the noisy contribution of random background connectivity. The size of
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the amplification is determined by the size of the connectivity eigenvalues 
µ

, and

this structure size j
o

. This explains how structured connectivity, parameterised by j0

can be used to amplify particular inputs that match the structure, thereby increasing

computational performance.

5.4.4 The contribution of background connectivity to information

A growing body of experimental evidence indicates that background connectivity is

responsible for a wide range of dynamical phenomena in the cortex (Shu and Hasenstaub,

2003; Haider et al., 2006). However, the functional role of this connectivity is not

understood and is currently the subject of great debate and investigation in theoretical

neuroscience (Destexhe and Contreras, 2006).

We find that background connectivity contributes to orientation selectivity by pro-

viding computational stability. To demonstrate this, we calculate information in a series

of networks receiving inputs of increasing contrast (Fig. 5.4, top). Information is high

for a wide range of contrasts in networks with background connectivity, whereas net-

works without background connectivity have high information for a narrow range of

contrast levels only. This represents a performance-stability trade off. Networks with-

out background connectivity can have higher performance levels but pay the price of

computational instability, whereas the cost of computational stability is reduced perfor-

mance.

This computational stability is a consequence of the fact that firing rates are not

too small or too large for a wide range of contrasts, so information can be transmitted

from the synaptic drives into spike trains (Fig. 5.4, middle). Contrast invariance is a

signature of this computational stability. Networks with background connectivity have

contrast invariant tuning curves, whereas networks without background connectivity are

not contrast invariant, as we saw in chapter 3 (Fig. 3.6).

The optimal amount of background connectivity depends on contrast (Fig. 5.4,

bottom). At most contrast levels, some background connectivity increases information.

However, if there is too much background connectivity, information decreases.
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Figure 5.4: Contrast and information
Background connectivity provides computational stability - information is relatively
high for a wide range of contrasts in networks with background connectivity, whereas
networks without background connectivity have low information for most contrast levels
(top). This is a consequence of the fact that firing rates are either very low or close to
maximum for most contrast levels in networks without background connectivity (mid-
dle). The optimal amount of background connectivity depends on contrast (bottom).
The average information for w0 = 0.1 is I

avg

= 0.43, for w0 = 0.4 it is I
avg

= 0.45 and
for w0 = 0.8 it is I

avg

= 0.33. Thresholds are chosen so that the mean excitatory firing
rate is ⌫E = 0.2 at contrast c = 0.3, for all networks.
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Figure 5.5: Background and information
Correlations that result from background connectivity decrease as information decreases.
The shaded area corresponds to the correlation mean (dashed line) ± correlation stan-
dard deviation. This relationship between correlations and information is particular to
a choice of contrast and mean firing rate, where background connectivity, parameterised
by w0 decreases information (inset).

Correlations originating from background connectivity increase with information

at the contrast for which information is largest (Fig. 5.5). Again, we cannot conclude

from this that correlations cause information to increase. Indeed, for a different choice of

contrast, the relationship between information and correlation can be more complicated.

We can understand these results mathematically, by looking at the information

equation (Eqn. 5.21). In this equation, we see that the contribution of connectivity and

spike train correlations to information are modulated by the gain, g (Eqn. 4.25). This

is a diagonal matrix that represents the sensitivity of firing rates to the mean synaptic

drive. When the elements of the gain are small, information is small, regardless of what

connectivity we use. If we can understand how background connectivity, parameterised

by w
o

affects the gain, we can begin to understand how background connectivity affects

information. In particular, we can understand why the optimal amount of background

connectivity is zero for some contrasts and non-zero for other contrasts.
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The amount of background connectivity that maximizes the gain of neuron i can be

calculated by solving the following equation:

@
w
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= �g
ii

�
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✓
m

i

@
w

o

✓
m

i

�
i

◆
+ @
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�
i

◆
= 0 . (5.27)

This equation is very general so it is difficult to solve directly, and the exact solution is

difficult to interpret. However, there are particular cases that are analytically tractable.

For example, at a fixed firing rate we can use equation 4.13 to show that:
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Now, using this result, we can calculate amount of background connectivity that maxi-

mizes the gain of neuron i:
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We can conclude that at a fixed firing rate, the gain is maximized when w
o

= 0, because

the synaptic drive variance �2
i

of a neuron is always smaller in a network without

background connectivity (Eqn. 4.10) than in a network with background connectivity.

This fixed firing rate solution corresponds to the information peak in figure 5.4 (top).

Information is largest when there is no background connectivity (w0 = 0) and decreases

as background connectivity increases.

It should be noted that this is not the complete story. The gain is a diagonal matrix,

so its shape across the population also contributes to information. Also, correlations

depend on background connectivity and contribute to information. However, all of these

factors are modulated by the elements of the gain matrix, so if the gain is small, the

contribution of these terms will be small.

As we have discussed, networks without background connectivity have higher infor-

mation across a narrow range of contrasts. However, at most contrast levels, information

is higher in networks with background connectivity, because the firing rate is neither

too high nor too low (Fig. 5.4, top). We can understand this result mathematically

by examining the gain, again, but this time allowing the firing rate to vary as we vary
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background connectivity (Eqn. 5.27):
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As we have noted, this equation is very general so it is difficult to solve directly. However,

when @
w

o

�
i

6= 0 we can write
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This is now a quadratic equation for m
i

/�
i

, which can be easily solved:
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This is a complicated solution. However, when @
w

o

m
i

= 0 we see that

|m
i

|
�
i

= 1 . (5.33)

This tells us that when when @
w

o

m
i

= 0 the gain is maximized when the mean synaptic

drive and synaptic background noise are the same size. More generally, we can see from

equations 5.32, 4.9 and 4.10 that the gain is maximized when

|m
i

|
�
i

⇠ O (1) . (5.34)

This is an intriguing result. It explains how background connectivity can facilitate an

increase in information. In our our literature review (Chapter 2) we saw that networks

without random background connectivity have m
i

/�
i

⇠ O�pK
�
, which leads to regular

spike trains, inconsistent with observed cortical dynamics. However, networks that

do have background connectivity have relatively large synaptic background noise, or

m
i

/�
i

⇠ O (1). Now, we have shown (Eqn. 5.34) that when
��m

i

��/�
i

⇠ O (1), the

gain is maximized, facilitating high performance at orientation selectivity. Therefore,

background connectivity is important for cortical function as well as cortical dynamics.
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5.4.5 Correlations and information

Finally, we ask whether correlations increase or decrease information in balanced net-

works. Naively, we might expect correlations to always decrease information, though in

theory, we know that it is possible for correlations to increase or decrease information

(Averbeck et al., 2006).

We have found that correlations in balanced networks can increase with information

(Figs. 5.3 and 5.5). However, this relationship is not causal. The connectivity that

produces correlated spiking is the same connectivity that produces orientation tuning

and contrast invariance. Therefore, it is impossible to attribute information increases

to correlation increases.

The complicated relationship between correlations and tuning curves exemplifies

the difficulty in prescribing computational functions to particular spike train statistics.

Rather than looking for direct relationships between correlations and information, we

quantify the effect of ignoring correlations in orientation selectivity. Theorists and

experimentalists would like to ignore the contribution of correlations because calculating

correlations and measuring correlations is difficult (Ecker et al., 2010; Averbeck et al.,

2006). To quantify the effect of ignoring correlations, we calculate

�I
diag

/I = (I � I
diag

) /I , (5.35)

where I
diag

is the inverse variance of an unbiased decoder that ignores correlations but

is optimal otherwise (?; Wu et al., 2001; Averbeck et al., 2006).

We calculate I
diag

by writing down an expression for the unbiased sub-optimal de-

coder that ignores correlations:

w
diag

= ⇢�1
d

⌫ 0/
�
⌫ 0⇢�1

d

⌫ 0� . (5.36)

We can then use this to calculate I
diag

:

I
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Using this expression, we calculate �I
diag

/I for a series of networks with different
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levels of structured connectivity and background connectivity (Fig. 5.6). We find that

correlations cannot be ignored, despite the fact that correlations are weak. It is particu-

larly bad to ignore correlations in networks with lots of structure (j0 = 3, for example).

However, correlations cancel in networks with background connectivity, so ignoring cor-

relations is not disastrous in balanced networks, although up to 40% of information is

lost in the example shown here.
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Figure 5.6: Correlations and information
The effect of ignoring correlations on information for a series of networks with different
levels of background connectivity and structured connectivity. When �I

diag

/I = 0

correlations can be ignored. When �I
diag

/I = 1, all information is lost if correlations
are ignored.

5.5 Discussion

The computational role of spike train correlations and spike train irregularity are cur-

rently the subject of intense debate in theoretical neuroscience (Destexhe and Contreras,

2006; Averbeck et al., 2006). Given that the bulk of cortical activity is irregular and

asynchronous, it is especially disturbing that we do not yet know its functional role.

Spike train irregularity is a particularly mysterious phenomenum because the synaptic

background noise that causes irregularity can harm computation.
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Previous attempts to discover the role of irregularity and correlation in computation

have been impaired by the absence of a plausible theory of cortical activity (Abbott

and Dayan, 1999; Seriès et al., 2004; Beck et al., 2011). None of these models have

background connectivity, so synaptic background noise is not realistic. However, in re-

cent years, a credible explanation of cortical dynamics has been provided by balanced

network theory (van Vreeswijk and Sompolinsky, 1996; Amit and Brunel, 1997a; van

Vreeswijk and Sompolinsky, 1998; Brunel, 2000; Lerchner et al., 2004; Lerchner et al.,

2006; Hertz, 2010; Lerchner and Latham, 2011). In this thesis, we extend this theory

to explain orientation tuning, using weak structured connectivity (Chapter 3). We also

calculate spike train correlations in a balanced network (Chapter 4). That preliminary

work has allowed us to calculate linear Fisher information, which quantifies the abil-

ity of a balanced network to perform orientation selectivity. We obtain mathematical

expressions which relate information to network connectivity and input, enabling us to

address the role of irregularity, correlations and orientation tuning in computation.

We find that orientation tuning improves orientation selectivity. This is not entirely

inevitable, because the structured connectivity that produces orientation tuning is much

weaker than the background connectivity in our model.

This observation suggests that a balanced network model with weak structured con-

nectivity embedded in strong background connectivity is a plausible model for cortical

connectivity. Recently, similar connectivity was used in a cortical memory model (Roudi

and Latham, 2007). In this memory model, background connectivity acts as a mem-

ory reservoir, effectively enveloping irrelevant memories. In orientation selectivity, the

contribution of background connectivity is very different.

Surprisingly, we find that background connectivity improves computational perfor-

mance across a wide range of stimulus contrasts. This computational stability comes at

a cost. For a narrow range of stimulus contrasts, computational performance is reduced.

The mechanism is simple - synaptic background noise increases the operating range of

the network, providing computational stability, in the same way that it provides dynam-

ical stability. This is an example of stochastic resonance (McDonnell and Abbott, 2009).

Stochastic resonance has been demonstrated before in single neurons (Longtin et al.,

1991; Bulsara et al., 1991; Stemmler, 1996; Destexhe and Contreras, 2006; McDonnell

and Abbott, 2009; Greenwood et al., 2000) and has been proposed as an explanation
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for the presence of synaptic background noise in V1 (Anderson et al., 2000). However,

this is the first demonstration of stochastic resonance in a cortical network model with

realistic spiking activity. The contrast invariance of orientation tuned cells is a signature

of this stochastic resonance.

The discovery of a simple computational role for synaptic background noise sug-

gests that the brain is optimal, in some sense (Barlow, 1961). The original observation

that background connectivity is responsible for synaptic noise (van Vreeswijk and Som-

polinsky, 1996; van Vreeswijk and Sompolinsky, 1998) had raised the prospect that the

cortex was sub-optimal, because synaptic background noise is avoidable noise. Our work

indicates that, rather than being an evolutionary mistake, networks with background

connectivity are optimal.

It is difficult to unravel the contribution of correlations to computation. Unsur-

prisingly, correlations are larger in networks with structured connectivity, because con-

nectivity produces correlations. Structure also produces orientation tuning, which we

know increases information. Therefore, we cannot conclude that correlations cause in-

formation to increase. The relationship between correlations and information cannot

be disentangled in a network model with realistic spike train irregularity such as our

balanced network model.

Nonetheless, we can calculate the effect of ignoring correlations. This is an important

practical issue for experimentalists and theorists, because ignoring correlations would

simplify both theoretical analysis and data analysis (Averbeck et al., 2006). We find

that although correlations are weak, they are not weak enough to be ignored completely.

Neither are they strong enough to cause catastrophic computational damage if ignored.

The equilibrium state of a balanced network and computation in this state have

been the focus of our investigation, so far. This is an important computational state.

However, in future work it would be interesting to calculate information contained in

a network out of equilibrium. This should be possible using the non-equilibrium firing

rate equations and covariance equations that we derived for balanced networks (Chapter

4).

It would also be interesting to implement a more complex computation than orien-

tation selectivity, such as object recognition for example. Orientation selectivity is a

particularly simple computation, especially in a network that receives orientation tuned
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input. It has served to unveil some interesting computational properties. A more in-

volved computation, such as object recognition, or some Bayesian inference, should pro-

vide additional insight into the computational roles of neural irregularity, asynchronicity

and connectivity.

A number of experimental predictions arise from our work. Behavioural studies

should reveal impaired orientation selectivity at most contrast levels in animals with

reduced synaptic background noise, with improved performance for some narrow range

of contrasts. We can also predict that small targeted perturbations to synaptic weights

should be enough to destroy orientation tuning, if structured connectivity is weak.

The work that we have presented provides an important link between cortical func-

tion and activity. Our calculations have enabled us to answer some long standing com-

putational neuroscience questions. However, the equations we derive also illustrate that

the relationship between computational performance and connectivity is complicated,

underlying the fallacy of assigning simple functions to specific network statistics such

as correlations.
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Chapter 6

Perspectives

The air surrounding us contains an enormous number of atoms, violently smashing

against each other, following extremely complicated paths. Measuring the movement

of all these atoms and predicting their trajectories is practically impossible. Nonethe-

less, easily measurable quantities such as temperature, pressure and volume provide an

excellent description of a gaseous state and can be easily related to each other using

Boyle’s Law and Charles’ Law. These macroscopic quantities emerge from the micro-

scopic movements of individual atoms in a gas and can be related to each other using

statistical mechanics. For example, using statistical mechanics, the temperature of a

gas can be linearly related to the average kinetic energy of individual atoms.

In neuroscience, we are faced with a similar problem, with hundreds of millions

of neurons, all interacting with each other according to complicated neural dynamics

to produce irregular, asynchronous spike trains. Our goal is to derive a mathematical

relationship between the macroscopic and microscopic properties of a balanced network.

We use techniques from statistical mechanics and dynamical systems theory to relate

macroscopic quantities such as information, correlations and firing rates to microscopic

quantities such as network connectivity and spike transition rates.

Just as the relationship between the macroscopic and microscopic provided impor-

tant insights in thermodynamics, the equations that we derive provide new insight into

correlations and computational performance in the cortex. In particular, we find:

1. A unifying model of network connectivity with weak structured connectivity em-

bedded in strong background connectivity can produce orientation tuned, contrast

invariant, irregular, asynchronous neural responses, consistent with a large body
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of cortical experiments.

2. Spike train correlations in a balanced network are weak, but not weak enough to

be ignored in computation.

3. Synaptic background noise can improve computational performance by maintain-

ing a network in a highly informative state for a broad range of inputs.

This last result is perhaps the most important, as it provides a simple functional

explanation for the existence of synaptic background noise in the cortex. Without

a functional explanation, such as this, we would have to conclude that the brain is

severely sub-optimal in computation, contradicting one of the most successful theories

of cortical function.

6.1 Open questions

Building upon the results and analysis of this thesis, there are many new dynamical

and computational questions that we can now ask. We have already developed some

of these new directions, in unpublished work. We finish by discussing some of these

possibilities.

To begin, we ask if higher order spike train statistics play an important role in com-

putation? We have already calculated first order statistics and second order statistics

of balanced network spike trains and quantified their role in orientation selectivity. One

of the most important steps in this analysis was treating synaptic background noise as

a one, or two-dimensional Gaussian input. Perhaps, by treating synaptic background

noise as high dimensional Gaussian input, we might calculate higher order spike train

statistics and quantify their computational role, if any.

Another interesting direction for generalisation is increased computational complex-

ity. The brain is capable of performing computations that are much more complex

than orientation selectivity. For example, object recognition is an important, but diffi-

cult, survival dependent computation that animals perform. The insight and analysis

that we have developed investigating orientation selectivity may provide clues for the

implementation of such difficult computations.

Temporal differentiation is another example of a difficult computation that the brain

must perform. The brain must compute derivatives when predicting the trajectory of
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temporally varying quantities, such as the position of a moving object. In recent, unpub-

lished work, we have found that balanced networks can naturally compute derivatives.

There are many other temporal computations whose neural implementation has not yet

been discovered.

Learning in balanced networks is another interesting direction for generalisation of

our work. We have demonstrated that much of the spiking activity observed in the

cortex can be explained using a connectivity model with weak structured connectivity

embedded in strong background connectivity. It would be interesting to understand

how this weak structure can be learned.

One possible learning mechanism is a Hebbian learning rule, in which synapses

between correlated neurons increase in strength and synapses between uncorrelated

neurons decrease in strength. A problem with this mechanism is that the contribution

of background connectivity to correlations is about the same size as the contribution

of structure, and this may interfere with learning. However, the noisy contribution of

background connectivity correlations might actually help, by preventing the formation

of unstable memory states.

The extent to which network connectivity is random or structured is unknown. A

number of ambitious experimental programmes are currently addressing this question by

directly measuring cortical connectivity. Our proposed model for network connectivity

provides a new and promising target for these experiments.

How does the brain compute? This is the central question in computational neuro-

science. We have made some progress towards an answer, describing the role of synaptic

background noise, structured connectivity and correlations in orientation selectivity. In

the end, however, we have raised as many new questions as we have answered. This is

a reflection of the depth and breadth of this subject. Indeed, disentangling computa-

tion in balanced networks promises to be one of the great challenges for 21st century

neuroscience.
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