
Vol. 29 no. 2 2013, pages 189–196
BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/bts680

Gene expression Advance Access publication November 21, 2012

A beta-mixture quantile normalization method for correcting

probe design bias in Illumina Infinium 450 k DNA methylation data
Andrew E. Teschendorff1,*, Francesco Marabita2, Matthias Lechner3, Thomas Bartlett1,
Jesper Tegner2, David Gomez-Cabrero2 and Stephan Beck3

1Statistical Genomics Group, UCL Cancer Institute, University College London, London WC1E 6BT, UK, 2Department of
Medicine, Unit of Computational Medicine, Centre for Molecular Medicine, Karolinska Institute, Solna 171 76, Stockholm,
Sweden and 3Medical Genomics Group, UCL Cancer Institute, University College London, London WC1E 6BT, UK

Associate Editor: Olga Troyanskaya

ABSTRACT

Motivation: The Illumina Infinium 450 k DNA Methylation Beadchip is a

prime candidate technology for Epigenome-Wide Association Studies

(EWAS). However, a difficulty associated with these beadarrays is that

probes come in two different designs, characterized by widely differ-

ent DNA methylation distributions and dynamic range, which may bias

downstream analyses. A key statistical issue is therefore how best to

adjust for the two different probe designs.

Results: Here we propose a novel model-based intra-array normal-

ization strategy for 450 k data, called BMIQ (Beta MIxture Quantile

dilation), to adjust the beta-values of type2 design probes into a stat-

istical distribution characteristic of type1 probes. The strategy involves

application of a three-state beta-mixture model to assign probes to

methylation states, subsequent transformation of probabilities into

quantiles and finally a methylation-dependent dilation transformation

to preserve the monotonicity and continuity of the data. We validate

our method on cell-line data, fresh frozen and paraffin-embedded

tumour tissue samples and demonstrate that BMIQ compares favour-

ably with two competing methods. Specifically, we show that BMIQ

improves the robustness of the normalization procedure, reduces the

technical variation and bias of type2 probe values and successfully

eliminates the type1 enrichment bias caused by the lower dynamic

range of type2 probes. BMIQ will be useful as a preprocessing step for

any study using the Illumina Infinium 450 k platform.

Availability: BMIQ is freely available from http://code.google.

com/p/bmiq/.
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1 INTRODUCTION

In the past few years, the field of epigenomics has risen to prom-

inence (Feinberg, 2010; Petronis, 2010). Epigenomics not only

offers an improved understanding of fundamental biological

processes such as cellular differentiation and early embryogenesis,

but is also widely recognized to be key in understanding

the pathogenesis of complex genetic diseases like cancer

(Baylin and Ohm, 2006; Feinberg et al., 2006; Jones and Baylin,

2007). One particular epigenetic mark of interest is DNA methy-

lation. Indeed, DNAmethylation markers have been proposed as

early detection, diagnostic and prognostic markers in awide range

of different diseases (Rakyan et al., 2011). Underpinning this

increased interest in epigenomics are significant advances in bea-

darray technology, which now allow routine measurement of

DNA methylation at over thousands of CpG dinucleotides

(Bibikova et al., 2009, 2011; Sandoval et al., 2011). Among

these, the Illumina Infinium 450k Human Methylation

Beadchip offers both scalability and coverage (4480 000 probes)

and is thus suitable for Epigenome-Wide Association Studies

(EWAS) (Dedeurwaerder et al., 2011; Rakyan et al., 2011;

Sandoval et al., 2011).
A key statistical issue with the Illumina 450k beadchip is that

probes come in two different designs, which causes the methyla-

tion values derived from these two designs to exhibit widely dif-

ferent distributions (Dedeurwaerder et al., 2011). Indeed, type2

probes are typically characterized by a much lower dynamic

range compared with type1 probes, even after adjustment for dif-

ferences in biological characteristics such as CpG density

(Dedeurwaerder et al., 2011). Comparison with bisulphite pyrose-

quencing data further showed that type2 probe values are biased

and generally less reproducible (Dedeurwaerder et al., 2011). To

correct for this bias, a peak-based correction (PBC) method was

proposed (Dedeurwaerder et al., 2011) which normalises type2

design probes so as to render them comparable with type1

probes. Making the statistical distributions of type1 and type2

probes comparable is important for several reasons. Not doing

so may introduce an enrichment bias towards type1 probes when

ranking probes in supervised analyses, as the dynamic range of

type1 probes is significantly higher. Moreover, methods that seek

to determine differentially methylated regions (Jaffe et al., 2012)

also assume that probes within these regions are comparable and

thus one would want to avoid any sources of technical variation

within them. Finally, one would wish to apply unsupervised di-

mensional reduction algorithms (Houseman et al., 2008; Koestler

et al., 2010) and classification algorithms (Zhuang et al., 2012) to

one single dataset, and not separately to two different assays.
Although the PBC method was validated in one dataset

(Dedeurwaerder et al., 2011) and has now been implemented in

a pipeline for 450k data (Wang et al., 2012), two recent studies

have exposed potential problems with PBC, specially when*To whom correspondence should be addressed
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applied to tissue samples (Maksimovic et al., 2012; Touleimat
and Tost, 2012). In fact, as noted in these studies, PBC breaks

down when the methylation density distribution does not exhibit
well-defined peaks/modes. Hence, both studies proposed subset

quantile normalization methods (SQN and SWAN) to correct
for the type2 bias and which avoid the pitfalls of PBC

(Maksimovic et al., 2012; Touleimat and Tost, 2012). In this
work, we show that PBC often leads to discontinuities (‘holes’)

in the type2 density distribution. To address this problem, we
here propose a novel mixture model-based normalization algo-

rithm, called Beta MIxture Quantile dilation (BMIQ). We sub-
ject BMIQ to a rigorous evaluation using numerous independent

datasets and using a number of different evaluation criteria to
assess its robustness and performance. Specifically, we assess

BMIQ in terms of reducing (i) the technical variance, (ii) the

type2 bias, (iii) and the above-mentioned type1 enrichment
bias. We further benchmark BMIQ against PBC and SWAN.

For assessing technical variance and to allow a comprehensive
comparison of BMIQ to PBC/SWAN across many datasets, we

use in addition to replicates, a novel evaluation framework based
on using adjacent type1–type2 probe pairs within probe clusters,

a framework which we show leads to consistent and robust con-
clusions across 10 independent datasets. We demonstrate that,

overall, BMIQ compares favourably to PBC and SWAN.

2 METHODS

2.1 Biological data: DNA methylation

Illumina Infinium 450k DNAm assay The DNA methylation

data considered in this work were all generated using Illumina’s

Infinium Human Methylation 450k beadchip. Full details of this tech-

nology are described in Bibikova et al. (2011) and Sandoval et al. (2011).

Briefly, the methylation value of each probe follows an approximate �-

valued distribution, with � constrained to lie between 0 (unmethylated

locus) and 1 (methylated). This follows from the definition of � as the

ratio of methylated to combined intensity values, i.e

� ¼
M

UþMþ e
ð1Þ

where U and M are the unmethylated and methylated intensity values of

the probe (averaged over bead replicates) and e ¼ 100 is a small correc-

tion term to regularize probes of low total signal intensity (i.e. probes

with UþM � 0 after background subtraction). Throughout we used

non–background-corrected DNAm data. Of the 485 577 probes, 72%

are of a type2 design in which the U and M measurements are obtained

in different colour channels, while the rest (28%) of the probes are of the

old type1 design in which both U and M measurements are obtained in

the same colour channel. Importantly, type1 and type2 probes differ sig-

nificantly in terms of CpG density, with CpGs mapping to CpGs islands

overrepresented among type1 probes (Bibikova et al., 2011; Sandoval

et al., 2011).

Datasets 1 and 2: (BT) and (CL) This is a subset of the 450k

dataset considered in Dedeurwaerder et al. (2011). We used the data from

eight fresh frozen (FF) breast tumours and eight normal breast tissue

specimens [hereafter refered to as (BT)], as well as the three replicates

from the HCT116 WT cell-line [hereafer refered to as (CL)]. For these

cell-lines, matched bisulphite pyrosequencing (BPS) data were available

for nine type2 probes.

Datasets 3 and 4: (FFPE) and (FF) This 450k dataset consists

of 32 formalin-fixed paraffin-embedded (FFPE) head and neck cancers

(HNCs), of which 18 were HPVþ and 14 HPV�, as well as five fresh

frozen HNCs (FF), of which 2 were HPVþ and 3 HPV�. The data are

available from GEO under accession number GSE38271.

Dataset 5: (GBM) This 450k dataset consists of 81 glioblastoma

multiformes (GBMs) (Turcan et al., 2012), 49 of which were categorized as

CpG island methylator positive (CIMPþ) and 32 as CIMP�.

Datasets 6–10: TCGA, LIV, LC, BLDC, HCC These 450k

samples are all from the TCGA: Specifically, Dataset6 (TCGA) consists

of 10 samples as provided in the Bioconductor data package

TCGAmethylation 450k, Dataset7 (LIV) consists of nine normal liver

tissue samples from Batch203 in the TCGA data portal, Dataset8 (LC)

consists of 22 lung cancer samples from Batch196, Dataset9 (BLDC)

consists of 12 bladder cancer samples from Batch86 and Dataset10

(HCC) consists of 10 hepatocellular carcinoma samples from Batch153.

2.2 BMIQ: Beta MIxture Quantile dilation

normalization strategy

The normalization of type2 probe values into type1 must satisfy the

following criteria. (i) It must allow for the different biological character-

istics of type1 and type2 probes, i.e type1 probes are significantly more

likely to map to CpG islands than type2 probes, and hence the relative

proportion of methylated and unmethylated probes will vary between the

two designs. In the case of the type2 probes, this means that these pro-

portions must be invariant under the normalization transformation. (ii)

The transformation of the type2 probe values should reduce the bias,

which amounts to matching of the density distributions of the two

design types, specially at the unmethylated and methylated extremes.

(iii) The transformation must be monotonic, that is, the relative ranking

of beta values of the type2 probes must be invariant under the transform-

ation. Next, we propose a normalization strategy for the type2 probes

satisfying the above properties and which is based on three steps:

� Fitting of a three-state (unmethylated-U, hemimethylated-H, fully

methylated-M) beta mixture model to the type1 and type2 probes

separately. For sake of convenience we refer to intermediate allelic

methylation as hemimethylation even though hemimethylation

is most often used in the context of strand-specific methylation.

Let aIU, b
I
U

� �
, aIH, b

I
H

� �
, aIM, bIM
� �� �

denote the parameters of the

three beta distributions for the type1 probes, and similarly let

aIIU, b
II
U

� �
, aIIH, b

II
H

� �
, aIIM, bIIM
� �� �

describe the estimated parameters of

the three beta components for the type2 probes. State membership

of individual probes is determined by the maximum probability

criterion.

� For those type2 probes assigned to the U-state, transform their

probabilities of belonging to the U-state to quantiles using the in-

verse of the cumulative beta distribution with beta parameters

aIU, b
I
U

� �
estimated from the type1 U component. Let �IIU denote

the normalized values of the type2 U-probes.

� For those type2 probes assigned to the M-state, transform their

probabilities of belonging to the M-state to quantiles using the in-

verse of the cumulative beta distribution with beta parameters

aIM, bIM
� �

estimated from the type1 M component. Let �IIM denote

the normalized values of the type2 M-probes.

� For the type2 probes assigned to the H-state, we perform a dilation

(scale) transformation to ‘fit’ the data into the ‘gap’ with endpoints

defined by max �IIU
� �

and min �IIM
� �

.

We next describe each of the above steps in detail. We first model each

beta value � as,

pð�tÞ ¼ �tUBð�ja
t
U, b

t
UÞ þ �

t
HBð�ja

t
H, b

t
HÞ þ �

t
MBð�jatM, btMÞ ð2Þ
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where B denotes the beta probability density function and t denotes the

design type t ¼ ðI, IIÞ. We infer the parameters ð�, a, bÞ using an

Expectation Maximization (EM) algorithm as described in (Ji et al.,

2005). The estimated parameters we denote again by ð�ts, a
t
s, b

t
sÞ where t

labels the design and s one of the three states (U,H,M). The resulting

means of the estimated beta-distributions are denoted by mt
s where

mt
s ¼

ats
ats þ bts

ð3Þ

Further, let UII,HII,MII denote the set of type2 probes assigned to

unmethylated, hemimethylated or fully methylated states (using the max-

imum probability criterion), and let UL
II (U

R
II) denote the set of UII probes

with �-values smaller (larger) than mII
U. Similarly, letML

II (M
R
II) denote the

set ofMII probes with �-values smaller (larger) thanmII
M. This subdivision

into values which fall left (L) or right (R) of the mean are necessary since

the state membership probabilities estimated from the EM algorithm are

two tailed. Next, for the UL
II probes we estimate their type2 tail probabil-

ities of belonging to the U-state, i.e p ¼ PðUj�UL
II
Þ ¼ Fð�UL

II
jaIIU, b

II
UÞ where

F denotes the cumulative distribution beta function. We then transform

these probabilities back to quantiles (i.e �-values), but using the type1

parameters, i.e

q ¼ F�1ðpjaIU, b
I
UÞ ð4Þ

and finally set the normalized �-value, �UL
II
¼ q. An identical transform-

ation (using 1� F instead of F) is performed for the UR
II probes. Next,

we perform the analogous operation for the ML
II and MR

II probes. This

therefore yields normalized type2 values for all type2 U and M probes.

Finally, it remains to normalize the type2 H probes. Since the type2 H

probe value distribution is sandwiched between the U and M probe dis-

tributions, we can use an empirical approach to normalize these values,

thus also bypassing the difficulty that type2 H probe values are not well

described by a beta distribution (Supplementary Fig. S1). Specifically, we

first identify the minima and maxima of the type2 H-probes,

maxH ¼ maxf�IIHg and minH ¼ minf�IIHg, and let �
ð�Þ
H ¼ maxH�minH.

We also find the minimum of theM-probes, i.eminM ¼ minf�IIMg and the

maximum of the U-probes, i.e. maxU ¼ maxf�IIUg. We point out that in

fact all of these extrema represent robust values, because they do not

represent extrema on the bounded (0,1) support, i.e. the values

maxU,minH,maxH and minM are not close to 0 or 1. Next, we define

distances

�UH ¼ minH�maxU

�HM ¼ �maxHþminM

We want the new normalized maximum and minimum values of

H-probes to satisfy

nmaxH ¼ minf�IIMg ��HM

nminH ¼ maxf�IIUg þ�UH

so that �
ð�Þ
H ¼ nmaxH� nminH. The normalized �-values for the

H-probes is then given by the conformal (shiftþ dilation) transformation

�IIH ¼ nminHþ dfð�
II
H �minHÞ ð5Þ

where df ¼ �
ð�Þ
H =�

ð�Þ
H is the dilation factor. It is important to observe that

the conformal transformation involves a non-uniform rescaling of the

H probe beta values since it depends on the beta-value of the probe.

This is absolutely key in order to avoid gaps or holes from emerging in

the normalized distribution.

This algorithm is flexible in that the dilation can be performed also

including theML
II (and/or the U

RÞIIÞ probes, which means that the match-

ing of the density distributions is only done on the respective tails (i.e. the

MR
II and UL

II probes). We point that in practice we find that the optimal

performance is attained by including the ML
II probes with the H-probes

when performing the conformal transformation. This is because we

observed that it is the left tail end of the methylated type2 distribution

that is generally not well described by a beta-distribution (Supplementary

Fig. S1), presumably as a result of the dye bias, which is specific to the

type2 distribution.

There are a number of other important points to note about BMIQ: (i)

First, it is important to choose reasonable initial weight parameters

f�ðIIÞU ,�ðIIÞH ,�ðIIÞM g in the EM-algorithm. As these fractions can vary signifi-

cantly from study to study, or even sample to sample depending on the

nature of the samples assayed, it is important to choose reasonable initial

values on a per-sample basis. Not doing so may result in mild disconti-

nuities in the type2 density distribution. To obtain estimates for these

prior weight parameters, we first note that their estimation only requires

estimates for the two thresholds used for calling the three states, since the

weights for a given sample are determined given a choice of thresholds.

Moreover, although the thresholds will show little inter-sample variabil-

ity, the weights may not, reflecting the biological differences in the

number of probes that are unmethylated, hemimethylated or fully methy-

lated. In BMIQ, the estimation of the initial thresholds proceeds in an

automatic fashion on a per-sample basis: in detail, we use the estimated

thresholds from the type1 distribution (which always gives an excellent fit,

Supplementary Fig. S1) to then obtain type2-specific thresholds using a

simple correction reflecting the difference in the modes between the type1

and type2 distributions. Specifically, if t
ðIÞ
U is the lower threshold

(i.e. type1 � values less than t
ðIÞ
U are called unmethylated) and UMðIÞ

and UMðIIÞ are the estimated modes of the unmethylated type1 and

type2 components, the intial prior estimate for tðIIÞU would

be t
ðIIÞ
U ¼ t

ðIÞ
U þ ðUMðIIÞ �UMðIÞÞ. Similarly, the threshold for calling

probes fully methylated or just hemi-methylated would be

t
ðIIÞ
M ¼ t

ðIÞ
M þ ðMMðIIÞ �MMðIÞÞ where MM denotes the mode of the

methylated state. We note that resulting thresholds would normally

fall within the ranges 0.2–0.3 and 0.60–0.8, respectively. Having thus

identified reasonable initial estimates for the weights f�ðIIÞU ,�ðIIÞH ,�ðIIÞM g,

the algorithm will then automatically determine the unmethylated, hemi-

methylated and methylated fractions for each sample individually.

(ii) A second important observation is the overall robustness of BMIQ

to the goodness of the type2 EM-fit. This is important, since we consis-

tenly observe that the methylated type2 distribution is not well described

by a beta function (Supplementary Fig. S1). In this regard we have

also verified that using a beta mixture model with more than three

states does not improve the overall type2 fit. Fortunately however, as

explained above, the goodness of fit problem associated with the H

and M-probes can be easily circumvented by modelling only the right

tail of the methylated component as the corresponding tail of a beta

distribution. In this case, the left tail is modelled together with the H-

probes using the observed empirical distribution. Hence, the probe values

that are not well described by a beta distribution are not normalized using

estimated beta parameters, which means that their normalization is in-

sensitive to the goodness of fit.

3 RESULTS

3.1 Improved robustness of BMIQ

To validate BMIQ, we first applied it to data where the PBC

method has been shown to work reasonably well. Thus, we
applied it to a fresh frozen breast tumour sample from
Dataset1 (Dedeurwaerder et al., 2011) (Fig. 1A). We can see

that for this particular sample, the methylated type1 peak is
well defined and as a result both PBC and BMIQ appear to do

well in generating smooth density distributions for the type2
probes, which at the methylation extremes are also reasonably
well matched to the type1 density distribution. Next, we applied

both PBC and BMIQ to the FFPE tumour samples from
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Dataset3, for which the type1 methylated peak was not well
defined (Fig. 1B). In these samples, PBC generated a type2 dens-
ity distribution that exhibited relatively sharp changes (‘holes’)
(Fig. 1B), suggestive of a non-optimal adjustment and indicating

that in such cases PBC breaks down. This is not suprising since
PBC relies heavily on the ability to detect clear unmethylated and

methylated modes in the type1 density distribution in order to
then adjust the type2 distribution accordingly. Importantly,

BMIQ does not use the type1 modes to adjust the type2 data,
and hence BMIQ normalization of the type2 probes generated a

much smoother density distribution, suggestive of an improved
normalization framework (Fig. 1B). Moreover, the tail ends of

the BMIQ type2 distribution better matched those of the type1

distribution without affecting the fractions of unmethylated,
hemimethylated and fully methylated probes, which are pre-

served by the BMIQ transformation.

3.2 BMIQ reduces technical variation

To further test BMIQ we applied it to Dataset2 (CL) consisting

of three replicates of a given cell-line, to investigate if reprodu-
cibility is improved. First, we computed for each of the probes its

standard deviation across the three replicates and for each of the
three scenarios: no normalization, PBC and BMIQ. As seen,

BMIQ performed similarly to PBC and led to a significant re-
duction in inter-replicate variability (Fig. 2A). To check this fur-

ther, we compared the normalization methods in terms of the

Euclidean distance between the three possible pairs of replicates
across the type2 probes (Fig. 2B). Using this measure, BMIQ not

only led to a significant improvement, but was also marginally
better than PBC (Fig. 2B).

3.3 BMIQ reduces bias of type2 methylation values

Using replicates to evaluate normalization methods assesses the

method in terms of reducing technical variability but does not

evaluate whether the actual values of the replicates are closer to
the true estimate. This requires comparison with a gold-standard,

which is provided by matched BPS data (Dedeurwaerder et al.,
2011). Hence, we compared the methods in terms of the devi-

ations from BPS methylation values for the nine type2 probes in

Dedeurwaerder et al. (2011) for which matched 450k BPS data
were available. Similar to PBC, we observed that BMIQ signifi-

cantly reduced the bias of type2 values (Fig. 3), although there
was no improvement over PBC itself, presumably owing to the

Fig. 1. (A) Density distributions of beta-values for the type1 probes,

type2 probes (unnormalized) and normalized type2 probes for a breast

tumour sample from Dataset1. (B) Density distributions of beta-values

for the type1 probes, type2 probes (unnormalized) and normalized type2

probes for a head and neck tumour sample from Dataset3. Left panels

are for PBC, right panels for BMIQ

Fig. 2. (A) Boxplots comparing the standard deviation (y-axis) of type1

(1) and type2 (2) probes over the three HCT116 WT replicates from

(Dedeurwaerder et al., 2011), for the case of no design normalization

(NONE), PBC and BMIQ. (B) As (A) but now comparing the

Manhattan distances over type2 probes only for each pair of replicates

Fig. 3. Barplot comparing the maximum and mean absolute deviation of

450k values from their corresponding bisulphite pyrosquencing values

over the nine type2 probes considered in Dedeurwaerder et al., (2011).

We compare these deviation measures for the case of no design normal-

ization (NONE), PBC normalization and BMIQ

192

A.E.Teschendorff et al.

 at U
niversity C

ollege L
ondon on June 18, 2013

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

http://bioinformatics.oxfordjournals.org/


fact that in these specific samples the methylated type1 peak was
well defined, a scenario in which PBC works well.

3.4 BMIQ eliminates the type1 enrichment bias

To further test BMIQ, we considered the supervised context, in
which a ranked list of probes correlating with a phenotype of

interest is derived. Given the higher dynamic range of type1
probes, one expects that this would favour type1 probes and

that therefore there would be a relative over enrichment of
type1 over type2 probes in a top ranked list of probes.
However, one key difficulty when assessing whether there is a

bias towards type1 probes is that type1 and type2 probes differ
significantly in terms of their biological characteristics, in par-
ticular in terms of CpG density. Hence, in order to avoid con-

founding by CpG density, we only selected probes that mapped
to CpG islands and to 200bp upstream of the TSS, thus allowing
a sensible comparison between type1 and type2 probes. We con-

sidered three different datasets and derived for each a ranked list
of probes associated with a phenotype of interest: breast cancer
versus normal breast [Dataset1 (BT)], HPVþ versus HPV�HNC

[Dataset3 (FFPE)], and CIMPþ versus CIMP� (GBM)
(Dataset5). The ranking was performed using the magnitude of

differential methylation. Although this ranking does not take the
within-phenotype variability into account, it remains a popular
method (Dedeurwaerder et al., 2011; Du et al., 2010), and for our

purposes, using the absolute difference in beta-values allows us
to better interpret the performance of the different normalization
methods. To assess any potential bias towards type1 probes, we

computed for a given number of top ranked probes the odds
ratio (OR) of relative enrichment of type1 over type2 probes.
Across all three datasets, we indeed observed a bias towards

type1 probes, although the severity of this bias varied substan-
tially from study to study (Fig. 4). Using PBC, in one dataset this

bias was eliminated; however, in the other two datasets, PBC
overcorrected the data leading to a bias favouring type2

probes. In contrast, BMIQ eliminated the type1 enrichment

bias in all three datasets (the resulting OR was always close

to 1) without overcorrecting the data and avoiding the type2

enrichment bias seen for PBC.

3.5 Reduced technical variability within probe clusters

To further assess BMIQ, we devised an evaluation framework

which exploits the well known spatial correlation of DNA

methylation at scales 5500bp (Eckhardt et al., 2006).

Approximately 27% of the 450k probes fall into 12 501 probe

clusters, defined as contiguous regions containing at least seven

probes with no two adjacent probes separated by4300bp (Jaffe

et al., 2012). Within these probe clusters, we posited that pairs of

adjacent probes, one from each design and within 200 bp of each

other, should have similar methylation values. Among the 12 501

probe clusters we identified on the order of �30 000 of such

adjacent type1–type2 probe pairs. Thus, to evaluate the normal-

ization algorithms, we asked which one minimizes the absolute

difference in methylation between such closely adjacent type1–

type2 pairs. We considered a total of 10 independent datasets,

seven of which had idat files, thus allowing also for a direct

comparison with SWAN (Maksimovic et al., 2012). For each

dataset, we computed the mean of the absolute deviations over

probe pairs and samples. Comparison of these average deviations

revealed that BMIQ consistently reduced the technical variation,

while also outperforming PBC and SWAN (Table 1). In fact, in

9 of 10 datasets, BMIQ was substantially better as assessed using

a pairedWilcoxon rank sum test over all probe pairs and samples

(Table 1). Example methylation profiles within these probe

clusters confirmed that BMIQ successfully reduces the technical

variability, while PBC can break down either overcorrecting

or suppressing the type2 data values, leading to substantial dif-

ferences in methylation between neighbouring probes, even at

scales of5100bp (Fig. 5 and Supplementary Table S1).

Fig. 4. OR of relative enrichment of type1 probes over type2 probes among the top 100, top 250, top 500 and top 1000 ranked probes, where probes were

ranked according to the absolute difference in methylation (beta-values). ORs are shown for the case of no design normalization (NONE), PBC and BMIQ

normalization. Supervised analysis and ranking was performed only on probes mapping to CpG islands and within 200bp upstream of transcription start

site to correct for biological differences between type1 and type2 probes. The line OR¼ 1 represents the ideal scenario of no relative enrichment of type1

versus type2 probes. The 95% confidence envelope around OR¼ 1 is shown to assess significant deviations from OR¼ 1. (A) Eight breast cancers versus

eight normal breast (Dataset1), (B) 18 HPVþ HNCs versus 14 HPV� HNCs (Dataset3), (C) 49 CIMPþ GBMs versus 32 CIMP� GBMs (Dataset5)
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3.6 BMIQ robustly identifies features associated

with HPV status

Finally, it must be verified that the reduction in technical vari-

ance obtained with BMIQ is not at the expense of a reduced

biological signal. Since it is difficult to establish what constitutes

a true positive, we used a training test set strategy, to identify

features in a training set and calling them true positives if vali-

dated in a test set. This strategy thus allows for a comparison

of sensitivity and positive predictive value (PPV) between the
different normalization methods. To perform this analysis,

we used Dataset4(FF) consisting of 2 HPVþ and 3 HPV�

fresh frozen head and neck cancers to derive features associated
with HPV status. As test set we used Dataset3(FFPE) consisting

of 18 HPVþ and 14 HPV� head and neck cancers (FFPE

tissue). Using limma (Smyth, 2005) and an FDR threshold
of 0.35, we observed that BMIQ identified substantially more

differentially methylated features than PBC or SWAN

(Table 2). Importantly, this was not at the expense of a smaller
PPV, and so, overall, BMIQ identified substantially more

true positives (Table 2).

4 DISCUSSION

In this work we have presented a novel mixture-model-based

algorithm (BMIQ) for correcting the bias associated with
type2 probe values in 450k studies. Confirming the observations

Fig. 5. Examples of methylation profiles, from Dataset4(FF), of three probe clusters on chromosomes 19, 1 and 15, respectively. The design type of each

probe is indicated with 1 and 2. The non design normalized data (NONE), PBC, SWAN and BMIQ corrected data are superimposed. Observe how

across the three loci, BMIQ generally corrects the data in a way which is more consistent with the neighbouring type1 values. In the left panel PBC

overcorrects the data, in the right panel there is suppression, while in the middle panel PBC both overcorrects and suppresses beta values. The data values

can be found in Supplementary Table S1

Table 1. For each dataset we compare the absolute deviation in methy-

lation between adjacent type1–type2 probe pairs (probes within 200bp of

each other), averaged over probe pairs and samples, for four different

normalisation methods

Dataset NONE

(%)

PBC

(%)

SWAN

(%)

BMIQ

(%)

P

BT 7.8 6.3 NA 6.2 510�10

CL 8.6 18.4 NA 7.2 510�10

FFPE 9.2 8.0 8.5 7.8 510�10

FF 8.5 8.1 7.6 7.3 510�10

GBM 9.2 7.6 NA 7.5 510�10

TCGA 9.4 7.8 8.3 7.4 510�10

LIV 10.0 6.3 7.4 6.4 �1

LC 10.3 7.0 7.7 6.7 510�10

BLDC 11.0 8.0 7.9 7.6 510�10

HCC 12.0 8.5 8.7 8.1 510�10

NONE refers to the case of no adjustment for probe design type. The last column

give the paired Wilcoxon rank sum test P-value (treating each probe-pair deviation in

each sample as a separate value), assessing the statistical significance that the absolute

deviation for BMIQ is smaller than the next best competing method. NA indicates

non-available owing to lack of access to idat files needed for processing by SWAN.

In bold-face we show the smallest deviation across methods.

Table 2. Table listing the number of differentially methylated probes

(nDMPs) associated with HPV status in Dataset4 (FF), and the corres-

ponding estimates for the positive predictive value (PPV) and number of

true positives (nTPs) estimated using Dataset3 (FFPE) as test set

Metric NONE PBC SWAN BMIQ

nDMP 51 70 41 252

PPV 0.25 0.18 0.19 0.20

nTP 13 13 8 51

DMPs were defined at an FDR threshold of 0.35, and those with the same sign of

limma t-statistic in the two sets and with a corresponding P-value50.01 in the test

set were deemed true positives.
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made in Touleimat and Tost (2012) and Maksimovic et al.
(2012), we have seen that PBC can break down in samples
with ill-defined type1 methylation peaks, causing sharp, almost

discontinuous changes (which we call ‘holes’) in the density dis-
tributions (Fig. 1B), which motivated our quest to find a more
robust algorithm. We have shown that BMIQ improves the

robustness and can successfully normalize the type2 distribution,
avoiding the appearance of such ‘holes’ (Fig. 1B). Moreover,
BMIQ successfully matches the tail-ends of the type1 and

type2 distributions, while faithfully preserving the proportions
of unmethylated and methylated probes within each of the
two designs.
To further test BMIQ, we used data on technical replicates (to

show that it reduces technical variability) and matched BPS data
(to show that it reduces the bias of type2 probe values). Using
these criteria, we have seen that BMIQ leads to significant im-

provements, similar to the improvements noted for PBC (Figs 2
and 3). In relation to these evaluation criteria, it is worth point-
ing out that BMIQ was compared with PBC on samples with

well-defined type1 methylation peaks, i.e. on data that were used
to develop PBC itself. Hence, it is likely that an evaluation of
technical reproducibility (using replicates) and type2 value bias

(using matched BPS data) on data where the methylated type1
peaks are less well-defined would favour BMIQ over PBC.
However, we did not have access to technical replicates or

matched BPS data in the other specific datasets considered
here. Therefore, in order to further assess BMIQ, we devised a
supervised framework across three independent datasets to ob-

jectively compare the algorithms in their ability to reduce the
expected enrichment bias of type1 probes. First, we showed
that if no design normalization is performed then there is

indeed an enrichment bias towards type1 probes, even when ad-
justed for CpG density (Fig. 4). We also showed that in two
datasets, PBC overcorrected the type2 data, leading to an over-

inflated dynamic range, thus favouring type2 probes and causing
an ‘overshooting’ of the enrichment scores, reflected by a signifi-
cant underenrichment of type1 probes (Fig. 4B and C). In con-

trast, BMIQ successfully avoided any type1/type2 enrichment
bias in all three datasets, indicative of an improved normaliza-
tion of type2 values (Fig. 4). We should point out that the over-

correction of type2 values and the associated overinflated
dynamic range caused by PBC is consistent with the presence
of ‘holes’ in the hemimethylated region of the type2 density dis-

tribution. Thus, with PBC there is an artificial expulsion of data
points from the hemimethylated region to the unmethylated and/
or methylated extremes. In a further assessment of BMIQ, we

conducted a detailed spatial analysis of DNA methylation at the
level of probe clusters across 10 independent datasets. By care-
fully analysing adjacent type1–type2 probe pairs, we observed

that PBC can often overcorrect or suppress the data (in some
cases inducing abnormally large 30% changes in methylation), in
contrast to BMIQ, which normalized type2 values in a way that

rendered them more consistent with the values of neighbouring
type1 probes (Fig. 5 and Table 1). Interestingly, BMIQ also
appeared to outperform SWAN (Table 1), which is part of the

popular and widely used minfi package (Hansen and Aryee,
2012). Of note, the reduction in technical variance achieved
by BMIQ was not at the expense of a lower biological

signal (Table 2).

In summary, using a number of different evaluation criteria

and numerous datasets, we have seen that BMIQ compares fa-

vourably with both PBC and SWAN. Although we did not com-

pare BMIQ to SQN (Touleimat and Tost, 2012), this latter

method is very similar to SWAN, as they both rely on a probe

subset quantile normalization. Like SQN/SWAN, BMIQ uses

quantiles to normalize the type2 probe values into a distribution

that is comparable with that of type1 probes. However, unlike

SQN and SWAN, BMIQ is based on an explicit beta-mixture

modeling framework, and uses state-membership probabilities

under this beta mixture model to reassign the quantiles of

the type2 probes according to the type1 distribution. Thus,

BMIQ is assumption-free, as it does not require a separate

normalization to be performed on selected subsets of probes

that are matched for biological characteristics (e.g. CpG density),

as done in SQN and SWAN. In fact, under the BMIQ frame-

work, all the biological differences (including CpG density)

between the type1 and type2 probes are captured by the esti-

mated fractions of unmethylated, hemimethylated and methy-

lated probes, which will be different between the two assays.

Thus, BMIQ does not depend on a priori and somewhat

arbitrary choices of which biological characteristics to use

when matching the type1 and type2 distributions. For instance,

in SQN the normalization is performed on probe subsets defined

by specific CpG characteristics (e.g. shelves, shores, CpG is-

lands); however, multiple different definitions for say CpG is-

lands exist (Gardiner-Garden and Frommer, 1987; Takai and

Jones, 2002; Wu et al., 2010; Zhao et al., 2009). Similarly, in

SWAN the number of CpGs in the probe body, even if they

differ by one, is used to define probe normalization categories,

and thus it is unclear whether these probe categories represent an

optimal way of dividing the probes up. Therefore, we see the

beta-mixture model framework of BMIQ as an important con-

ceptual advantage over SQN/SWAN, since, as demonstrated

here, it successfully normalises type2 probe values, faithfully pre-

serving the numerous and complex biological differences that

exist between the two designs without ever needing to define

probe subsets. Nevertheless, it will be interesting to conduct a

comprehensive and detailed comparison of BMIQ, SQN and

SWAN on matched 450k BPS data on a sufficiently large

number of loci and samples.

5 CONCLUSIONS

We have presented a mixture model assumption-free normaliza-

tion algorithm, BMIQ, which will be useful for correcting the

bias associated with the type2 assay in DNA methylation studies

using the Illumina Infinium 450k platform.
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