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Abstract

The modulation of pentameric ligand-gated ion channels (pLGICs) by divalent cations is believed to play an important role
in their regulation in a physiological context. Ions such as calcium or zinc influence the activity of pLGIC neurotransmitter
receptors by binding to their extracellular domain and either potentiate or inhibit channel activation. Here we have
investigated by electrophysiology and X-ray crystallography the effect of divalent ions on ELIC, a close prokaryotic pLGIC
homologue of known structure. We found that divalent cations inhibit the activation of ELIC by the agonist cysteamine,
reducing both its potency and, at higher concentrations, its maximum response. Crystal structures of the channel in
complex with barium reveal the presence of several distinct binding sites. By mutagenesis we confirmed that the site
responsible for divalent inhibition is located at the outer rim of the extracellular domain, at the interface between adjacent
subunits but at some distance from the agonist binding region. Here, divalent cations interact with the protein via
carboxylate side-chains, and the site is similar in structure to calcium binding sites described in other proteins. There is
evidence that other pLGICs may be regulated by divalent ions binding to a similar region, even though the interacting
residues are not conserved within the family. Our study provides structural and functional insight into the allosteric
regulation of ELIC and is of potential relevance for the entire family.
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Introduction

The pentameric ligand-gated ion channels (pLGICs) are

ionotropic neurotransmitter receptors, which are activated by

the binding of ligands to specific sites of the protein. The family

includes both cation-selective channels, such as nicotinic Acetyl-

choline- (nAChRs) and Serotonin receptors (5HT3Rs), and anion-

selective channels, such as GABA- (GABARs) and Glycine

receptors (GlyRs) [1]. Despite these differences in ion selectivity,

the overall molecular architecture and the mechanism by which

ligands open the ion conduction path are conserved [2–8]. pLGIC

subunits form either homo- or hetero-pentamers that consist of at

least two functional units, an extracellular ligand-binding region

and a transmembrane pore [9,10]. Agonists open the channel by

binding to a conserved site in the extracellular domain, at the

interface between two subunits [11,12]. A homomeric receptor

contains five equivalent agonist binding sites, several of which

need to be occupied for maximum channel activation and this

makes the process highly cooperative [5,13–16]. Agonist binding is

accompanied by conformational rearrangements that are trans-

mitted over a distance of tens of angstroms from the extracellular

domain, via the domain interface to the pore [17]. These receptors

have thus become important model systems for the study of

allosteric mechanisms [18]. Many pLGICs are important drug

targets and all aspects of their function can be influenced by

pharmacological agents. These are a diverse set of molecules that

include agonists and competitive antagonists (which act on the

agonist binding site itself), pore blockers that inhibit ion

conduction, and allosteric modulators that interact with regions

distinct from the agonist-binding site. Modulators such as

benzodiazepines [19], general anesthetics [20], alcohol [21], and

the antiparasite ivermectin [22] can either enhance or inhibit

pLGIC activation. pLGIC function is affected also by divalent

cations (such as calcium and zinc) in two distinct ways. Cation-

selective pLGICs are somewhat permeable to divalents, but the

strong interaction between these ions and the pore decreases or

blocks conduction in a voltage-dependent manner [23,24]. In

addition to that, divalent cations can also modulate channel

gating. For instance, calcium potentiates the agonist responses of

nAChRs [25–27] and inhibits those of 5HT3Rs [28,29], and zinc

can either potentiate or inhibit channel activation, depending on

the type of pLGIC and the ion concentration [30–35].

Here we show that both the modulatory and the channel block

effects of divalent cations are present also in ELIC, a prokaryotic

pLGIC channel whose structure was determined in a noncon-

ducting conformation [36]. Agonists of ELIC include primary

amines such as cysteamine, propylamine, and the vertebrate

neurotransmitter GABA. In ELIC, these agonists occupy the
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canonical ligand-binding site of the family and open a cation-

selective pore with permeation properties similar to those of

eukaryotic channels [37]. Here we describe how divalent cations

permeate and block the ELIC pore, and how they also inhibit

ELIC gating, by binding in the extracellular domain, to a site

remote from the ligand-binding region.

Results

Modulation of ELIC Function by Divalent Ions
We have investigated the effects of divalent cations on ELIC by

electrophysiology and X-ray crystallography. Divalent cations can

influence ELIC function in several different ways depending on

concentration (Figure 1). The traces in Figure 1A show that low

mM concentrations of the alkaline earth metal ion Ca2+ decrease

the single channel conductance of ELIC when added to the

extracellular medium at negative holding potentials. ELIC single

channel currents are progressively reduced by increasing Ca2+

concentrations and decrease by approximately 25% of their

control amplitude at 5 mM Ca2+ (Figure 1C) and by a maximum

of about 50% at high Ca2+ concentration [37]. This effect is due to

tight interactions of divalent ions with the channel pore and has

been thoroughly characterized for different pLGIC family

members [23,24] including the homologous channel GLIC [38],

whose structure was determined by X-ray crystallography in a

conducting conformation [39,40].

Low extracellular calcium (greater than 100 mM) produces also

a voltage-independent decrease in agonist potency. This effect is

detectable at Ca2+ concentrations too low to decrease channel

conductance and is manifested as a parallel rightward shift in the

agonist dose–response curve (Figure 1D, Table S1). A similar effect

on agonist binding in the presence of calcium is observed in

isothermal titration calorimetry experiments (Figure 1E). Up to

1 mM calcium, the shift in the agonist dose–response curves is

truly parallel, as the maximum agonist current does not decrease

more than the single channel conductance does (Figure 1B and

1C). This pattern appears to reproduce the effects of competitive

antagonists, which bind to the ligand-binding site and reduce its

occupancy by the agonist in a surmountable way (e.g., their effect

can be overcome by increasing agonist concentration). This

resemblance is obvious if the effects of Ca2+ are compared with

those of the competitive antagonist acetylcholine, which is known

to bind to the agonist-binding site of ELIC (Figure 1F) [41]. The

Schild plot for acetylcholine [42,43] is linear with a slope of unity

and a binding affinity of 1.6 mM (Figure 1G, Table 1). The Schild

plot for Ca2+ is also linear, with a potency of 260 mM, but a

shallower slope of 0.8 (Figure 1G, Table 1).

The similarity between the effect of calcium and that of a

competitive antagonist disappears as Ca2+ concentrations are

increased above 1 mM. The current traces in Figure 1B show that

the reduction in agonist potency is now associated with a decrease

in the maximum agonist response. This decrease is too big to be

explained by the effect of Ca2+ on conductance: at 5 mM Ca2+ the

single channel conductance is reduced by 25% and the maximum

agonist response by 55% (Figure 1C). At progressively higher

concentrations of the divalent cation, the maximum current

response continues to decline and this decrease can be described

by a fit to a Langmuir equation with an IC50 of 6 mM (Figure 1H).

Despite the strong reduction in the maximum currents, the shift in

EC50 remains linear over a wide concentration range (Figure S1).

The pronounced drop in maximum current strongly suggests that

at higher concentrations calcium impairs the opening of the

channel and reduces agonist efficacy.

Next, we tried to establish whether calcium impairs the

maximum rate of ELIC gating (e.g., when the channel is fully

bound to the agonist) by measuring the on-relaxation of currents

elicited by rapid propylamine applications to outside-out patches

from HEK293 cells. Figure 1I shows that increasing Ca2+ from 50

to 200 mM does slow the onset of the current elicited by a

saturating agonist concentration (20 mM propylamine, red trace)

but that this effect is overcome by increasing agonist concentration

to 50 mM (green trace). Only minor changes in the time course of

deactivation were detected (Table 2). Thus the maximum rate with

which the agonist-bound channel opens is unchanged, which is

unexpected given the observed change in agonist efficacy. This

could be because we could test only low calcium (in high calcium

the concentrations of agonist required to saturate channel gating

are too high to be experimentally feasible). Alternatively, calcium

impairs gating by affecting a step in the channel activation that

controls the size of the maximum agonist response, but not the

speed of overall gating (see Discussion).

Finally, we found that divalent cations other than Ca2+ also

affect ELIC responses. In particular, other alkaline earth metal

ions, such as Mg2+, Sr2+, and Ba2+, are slightly weaker than Ca2+

in inhibiting ELIC (Figure 2A–C and E, Table 1, Table S1),

whereas the transition metal ion Zn2+ is considerably more potent

(i.e., Schild plot x-intercept 8 mM, Figure 2D and E, Table 1,

Table S1).

Structural Characterization of Divalent Ion Binding
In order to understand the structural basis of the effects of

divalent ions we aimed at identifying the region of interaction by

X-ray crystallography. Since the crystal form that was used for the

structure determination of ELIC contains high concentrations of

sulfate, which forms insoluble salts in the presence of most alkaline

earth metal ions, we had to identify novel crystallization conditions

compatible with divalent ions. In a broad screen we observed

crystals growing in Ba2+-acetate. Ba2+ can be readily located in the

electron density by its strong anomalous scattering properties, and

since it has comparable effects on channel function as Ca2+

(Figure 2A, Figure S2A), it is reasonable to assume that it will

Author Summary

Pentameric ligand-gated ion channels (pLGICs) are iono-
tropic neurotransmitter receptors that mediate electrical
signaling at chemical synapses. The pLGIC family includes
receptors for acetylcholine, serotonin, GABA and glycine,
which share a similar structural organization and activation
mechanism: the channels are closed in the absence of
ligands and open when neurotransmitters bind to a
conserved site in the extracellular domain. In many family
members, activation by the neurotransmitter can be
affected by modulators (including several drugs in
therapeutic use), which bind to different sites on the
channel. Channel function can be modulated also by
divalent cations, which either potentiate or inhibit pLGICs
at physiological concentrations. Here, we analyze this
mechanism in the pLGIC ELIC, a prokaryotic family
member of known structure. We show that divalent
cations such as calcium or zinc inhibit ELIC by occupying
an extracellular site remote from the ligand-binding region
thereby interfering with gating. Although the site of
interaction is not conserved between different family
members, we present evidence that regulation of other
pLGICs involves the same region. Our study has thus
provided insights into a regulatory process that appears to
be general for the pLGIC family in both eukaryotes and
prokaryotes.

Ca2+ Inhibition of ELIC
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occupy the same sites in the protein. Crystals of the ELIC/Ba2+

complex belong to two different, yet related crystal forms, one

similar to the original barium-free form of ELIC that was used for

structure determination (space group P21) and another growing in

a higher symmetry space group (P43) (Table 3). Datasets for both

crystal forms were collected to 3.8 Å (P21) and 3.3 Å (P43)

Figure 1. Inhibition of ELIC by calcium. (A) ELIC single channel currents in the presence of different extracellular concentrations of Ca2+ and all-
points amplitude histograms (recordings were from oocyte outside-out patches at 280 mV holding potential). (B) Maximum ELIC responses to
saturating concentrations of the agonist cysteamine in the absence and presence of Ca2+. Currents were measured from oocytes held at 240 mV
under two-electrode voltage clamp. Agonist application is indicated by a bar. Responses to cysteamine in the absence of extracellular Ca2+ are
followed by responses in the presence of Ca2+ (concentration in mM as shown) and by recovery application of cysteamine in the absence of Ca2+. (C)
Plot of maximum agonist responses and single channel currents at different Ca2+ concentrations. The currents are normalized to the control values (in
the absence of Ca2+). Maximum cysteamine currents (blue symbols) were measured with the two-electrode voltage clamp technique in oocytes as in
panel B. Single channel currents (green symbols) were measured in the outside-out configuration as in panel A. (D) Cysteamine dose–response
relationships for ELIC in the presence of different concentrations of Ca2+. (E) Equilibrium cysteamine binding isotherms determined by ITC for ELIC in
the absence (left) and presence of Ca2+. Solid curves represent fits to a single-site binding isotherm with Keff = 0.7 mM (no Ca2+) and 1.5 mM (0.6 mM
Ca2+), respectively. (F) Cysteamine dose–response relationships for ELIC in the presence of different concentrations of ACh. (G) Schild plot quantifying
the inhibition by Ca2+ and ACh. EC50 values were obtained from fits to data shown in panels (D) and (F). Potencies of the antagonists (pA values) were
obtained by linear regression, and the intersection with the x-axis is indicated (N). (H) Fraction of the maximum current response at different Ca2+

concentrations. The solid line shows a fit to a Langmuir equation with a Ki of 6 mM. The data presented in panels (C), (D), (F), and (H) are averages
from at least five oocytes; errors are SD. The solid lines in (D) and (F) show fits to a Hill equation. Currents were recorded at 240 mV. (I) Activation
kinetics of macroscopic currents of ELIC activated by propylamine in response to fast solution exchange at different Ca2+ concentrations. ELIC was
expressed in HEK 293 cells, and currents were recorded from excised patches in the outside-out configuration at 2100 mV.
doi:10.1371/journal.pbio.1001429.g001
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resolution and provide equivalent views of the channel and its

interaction with divalent cations.

The structures show a conformation of the channel that is

overall very similar to the structure of ELIC already described.

Strong peaks in the anomalous difference density allow us to detect

the presence of Ba2+ ions bound to three distinct sites of the

protein (Figure 3).

Firstly, a single Ba2+ ion per channel is located on the 5-fold axis

of symmetry at the extracellular end of the pore and is coordinated

by the side-chains of Asn251 (position 209 of the second

transmembrane domain in the numbering system developed for

the nAChR, Figure 3A–C). Throughout the article we will refer to

this site as Spore.

There are two additional sets of binding sites for Ba2+ in the

structure shown in Figure 3B. Both are found at the interface

between subunits in the extracellular domain in five symmetry-

related locations. One set of sites faces the channel vestibule and

will be referred to as Sin. The barium ion in Sin is coordinated by

Ser84 of the principal subunit and Asp86 of the complementary

subunit (Figure 3D). Barium ions are bound also to a set of five

equivalent sites on the outer rim of the extracellular domain

(Figure 3B and E). These sites, which we will call Sout, are about

15 Å below the ligand-binding pocket, towards the membrane

plane and are formed by the side-chains of acidic amino acids

contributed by both subunits. These residues include Asp113 at

the end of b6 on the principal side and Glu150 and Asp158 on the

loop connecting b8 and b9 on the complementary side (Figure 3A

and E). The refined 2Fo-Fc electron density map of this region

indicates a direct interaction of the respective carboxylate groups

with the bound ions resembling Ca2+-binding sites observed in

other proteins (Figure 3E, Figure S2B and C). Remarkably, in

none of the collected datasets did we find any evidence for Ba2+ in

the ligand-binding pocket itself.

Investigation of the Binding Sites of Divalent Ions by
Mutagenesis

The structure of ELIC in complex with Ba2+ has revealed the

location of three distinct sites for the interaction with divalent

cations. If binding to any of these sites is relevant for the inhibition

of the channel, we would expect that mutating the interacting

residues should affect the functional modulation by divalent ions.

Thus we mutated the residues that contact Ba2+ in the structure

and measured again the effects of Ca2+ by two-electrode voltage-

clamp electrophysiology (Figures 4 and 5, Table 1).

Given that the effects of low Ca2+ concentrations resemble those

of competitive antagonists, we tested also whether the agonist

binding site can play a role (even though we have no structural

evidence that divalents bind there). Our functional data show that

the agonist binding site is unlikely to be involved, because Ca2+

inhibition is not changed by a mutation here (R91A) that increases

agonist potency by 3–4-fold ([37], Figure 4A and F).

We then proceeded to investigate whether the inhibitory effects

of Ca2+ are produced via binding to the Spore site by truncating the

side-chain of the Asn residue in contact with the divalent ion. Our

X-ray crystallography data show that the structure of this N251A

mutant is on the whole similar to WT but lacks the anomalous

difference density in Spore. The structure of this mutant still shows

strong density of ions bound to Sout (and weaker density for Sin),

thus suggesting that effects of the mutation are local (Figure 4B).

Electrophysiological recording shows that agonists activate WT

and mutant N251A channels with similar potency and that the

inhibition by Ca2+ of these responses is only modestly decreased in

N251A (Figure 4C and Schild plots in 4F). This suggests that Spore

is not the major site responsible for the Ca2+ inhibition.

Figure 4F shows also that mutating the binding residues in

another set of divalent ion sites, Sin (which face the extracellular

vestibule), has little effect on Ca2+ inhibition. Mutation S84A (on

the principal side) changes neither the potency of the agonist nor

the inhibition by Ca2+ (Figure 4D). Similarly, in the mutant D86A

there is only a modest decrease in agonist potency, and the

inhibitory effect of Ca2+ is virtually unchanged (Figure 4E and F).

Thus we have shown that neither Spore nor Sin mediate the

functional effects of calcium on channel activation.

In contrast to that, we found that Ca2+ modulation is greatly

decreased when we change any of the residues that coordinate

divalent cations in Sout. This is seen both when the residues with

Table 1. Schild analysis of inhibition of ELIC.

ELIC Inhibitor pA Slope Ki
app [mM]

WT ACh 0.2160.06 1.060.1 1.6

WT Ca2+ 20.5760.03 0.860.05 0.26

WT/BAPTA Ca2+ 20.6960.11 1.060.3 0.20

WT Mg2+ 20.3660.02 0.960.01 0.43

WT Sr2+ 20.0760.02 0.960.02 0.85

WT Ba2+ 20.0760.01 1.160.03 0.85

WT Zn2+ 22.1660.13 1.260.01 0.007

R91A Ca2+ 20.6960.03 0.760.1 0.21

R91A ACh 20.7760.05 0.760.1 0.17

R91A TMA 0.7860.18 0.860.1 6.0

D86A Ca2+ 20.6060.11 0.860.1 0.25

S84A Ca2+ 20.8360.14 0.660.2 0.15

N251A Ca2+ 20.2760.19 0.960.2 0.53

D113A Ca2+ 0.6960.04 1.060.3 4.9

D113N Ca2+ 20.0260.08 1.060.01 0.95

D158A Ca2+ 0.7460.01 1.260.1 5.4

D158N Ca2+ 0.5060.17 0.560.2 3.2

E150A Ca2+ 0.2360.12 1.060.2 1.7

E150Q Ca2+ 0.0960.20 0.960.3 1.2

D113A/D158A Ca2+ N/D N/D N/D

D113A/D158A Ba2+ 0.8160.02 0.660.02 6.5

D113A/D158A Zn2+ N/D N/D N/D

D113A/D158A Ach 0.3260.06 0.860.1 2.1

WT/.25 mM Ca2+ Ach 0.0660.06 0.960.1 1.2

WT/.5 mM Ca2+ Ach 0.1160.09 0.960.01 1.3

WT/1 mM Ca2+ Ach 0.3560.01 1.160.01 2.2

WT/1 mM ACh Ca2+ 20.6560.01 0.960.02 0.22

doi:10.1371/journal.pbio.1001429.t001

Table 2. Activation and deactivation kinetics of ELIC.

Ca2+ (mM)
Propylamine
(mM) trise (ms) tdecay (ms) n

50 20 16.761.5 34.765.6 6

200 20 38.566.7 23.963.1 6

200 50 16.462.2 36.7612.7 6

50 20 19.663.1 33.566.9 6

doi:10.1371/journal.pbio.1001429.t002
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Figure 2. Inhibition of ELIC by different divalent cations. Dose–response relationships of ELIC activated by cysteamine at different
concentrations of Ba2+ (A), Sr2+ (B), and Mg2+ (C) and ELIC activated by propylamine at different concentrations of Zn2+ (D). (E) Schild plot quantifying
the inhibition by different divalent cations. EC50 values were obtained from fits to data shown in panels (A–D). Potencies of the Antagonists (pA
values) were obtained by linear regression, and the intersection with the x-axis is indicated. The data presented in panels (A–D) are averages from at
least 5 oocytes; errors are SD. The solid lines show fits to a Hill equation. Currents were recorded at 240 mV.
doi:10.1371/journal.pbio.1001429.g002

Table 3. Data collection and refinement statistics.

Crystallography WT Ba2+ WT Ba2+ N251A Ba2+ D113A/D158A Ba2+ WT TMAs

Data collection

Space group P43 P21 P21 P21 P21

Cell dimensions

a, b, c (Å) 100.4, 100.4, 263.7 104.6, 267.5, 109.3 101.5, 268.5, 101.2 103.7, 266.7, 108.8 105.4, 266.8, 110.9

a, b, c (u) 90, 90, 90 90, 112.6, 90 90, 108.6, 90 90, 112.8, 90 90, 109.6, 90

Resolution (Å) 40-3.3 40-3.8 40-3.7 40-4.4 40-4.0

Rmerge 12.5 (64.6) 11.9 (69.9) 11.8 (81.0) 12.6 (84.3) 11.0 (81.8)

I/sI 12.1 (2.7) 7.6 (2.1) 8.1 (2.1) 8.6 (2.5) 8.0 (1.5)

Completeness (%) 99.4 (96.6) 99.3 (99.0) 96.7 (96.2) 98.6 (97.7) 97.1 (85.6)

Redundancy 6.5 (6.1) 3.4 (3.5) 3.5 (3.6) 4.7 (4.7) 3.1 (3.0)

Refinement

Resolution (Å) 20-3.3 30-3.8 30-3.7 30-4.4 30-4.0

Rwork/Rfree 22.7/25.8 25.5/27.2 24.5/27.4 21.6/23.9 25.6/27.0

Wilson B-factor 90 86 109 107 102

R.m.s. deviations

Bond lengths (Å) 0.01 0.01 0.01 0.01 0.01

Bond angles (u) 1.2 1.2 1.0 1.3 1.2

Values in parentheses are for highest resolution shell. R.m.s., root mean square.
doi:10.1371/journal.pbio.1001429.t003
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acidic side chains (Asp 113, Glu150, and Asp158) are individually

replaced with their uncharged isosteric counterparts (Asn or Gln)

and when the acidic side-chains are truncated to Ala (Figure 5,

Figure S3). All of these mutations cause a variable but strong

decrease in the potency of Ca2+, which suggests that they weaken

the interaction with the ion and thus its inhibitory effects

(Figure 5E and F). The strongest effect among single mutants is

observed for residues Asp113 and Asp158 (Figure 5A, B, and E).

Combining these two mutations in the double mutant D113A/

D158A virtually abolishes the effects of both calcium and barium

on the agonist dose–response curves (Figure 5D, Figure S3E and

S3F). Remarkably, and in contrast to our observations in WT, in

this double mutant the decrease in Imax at high Ca2+ concentration

appears entirely due to the reduction in single channel conduc-

tance (Figure 5G). The binding of Ca2+ to Sout is thus responsible

for both functional effects on the shift of the EC50 and the decrease

of Imax. Figure 5 also shows that mutations in Sout shift the EC50

towards higher agonist concentrations, an effect that is not

surprising given that this region is thought to be important in

transducing agonist binding into channel activation (Figure 5A–D,

Figure S3, Table S1).

The X-ray structure of the double mutant D113A/D158A in

complex with Ba2+ is on the whole unperturbed. The double

mutation has removed the density of ions bound to Sout, while

leaving the strong anomalous difference density in Spore un-

changed. This confirms that in this mutant divalents fail to

modulate channel activation because they cannot bind to the Sout

site (Figure 5H).

Given that the same mutations abolish also the modulation by

Zn2+ (Figure 5I), it is very likely that Zn2+ inhibits ELIC by

binding to the same site. This finding is somewhat unexpected as

Zn2+ usually interacts with histidine or cysteine residues. However,

since the ligand binding domain of ELIC does not contain any

cysteines and since mutations of the two histidines, which are both

located on b10, did not affect the inhibition by Zn2+ (Figure S4), it

is likely that the interaction of this transition metal ion with ELIC

occurs at this site and therefore deviates from common binding

modes.

Figure 3. Structure of ELIC in complex with divalent cations. (A) Sequence of ELIC with secondary structure elements indicated below.
Residues contributing to ion coordination in different sites are highlighted (Sin, yellow; Sout, red; Spore, cyan; Arg 91 in the ligand-binding pocket, Slig,
grey). (B) Anomalous difference electron density of ELIC in complex with Ba2+ superimposed on the structure of the ELIC pentamer (shown as ribbon
representation). Ion-binding sites are labeled. Close-up of Spore (C) and Sin (D). The protein is shown as Ca-trace with selected side-chains close to Ba2+

(red sphere) shown as sticks. (E) Close-up of Sout. The protein is shown as Ca-trace with selected side-chains close to Ba2+ (red sphere) shown as sticks.
The 2Fo-Fc electron density of a dataset from a crystal of space group P21 was calculated at 3.8 Å and contoured at 1 s (shown in cyan). The refined
model used to calculate phases did not contain Ba2+-ions. The anomalous difference electron densities shown in (B–E) (red mesh) were calculated
from the same dataset at 5 Å and contoured at 5 s. Crystals of space group P43 showed a qualitatively similar picture. Structures in Figures 3–7 were
prepared with DINO (www.dino3d.org).
doi:10.1371/journal.pbio.1001429.g003

Ca2+ Inhibition of ELIC
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Independence of Ca2+ and Acetylcholine Inhibition
The results of our mutational analysis strongly suggest that the

observed inhibition of ELIC by divalent cations is mediated by the

specific interaction with a site that is located at the outer rim of the

extracellular domain, at the interface between neighboring

subunits. Since this site is distant from the agonist-binding region,

we wanted to explore whether there is any direct competition

between the effect of divalent ions and that of competitive

antagonists binding to the ligand-binding site. Such competitive

antagonists include quaternary ammonium compounds such as

tetramethylammonium, a weak antagonist (Figure S5), or acetyl-

choline, which inhibits the channel with higher affinity. The X-ray

structure of ELIC in complex with the heavy atom analogue

tetramethylarsonium (Figure 6A) and the recently determined

structure of ELIC in complex with acetylcholine [41] show that

both antagonists bind to the ligand-binding pocket and prevent the

binding of the agonist to the same site. The overlap of agonist- and

antagonist-binding sites is also reflected in the 10-fold increase in

the Schild affinity of acetylcholine in the mutant R91A. This is

similar to the increase in agonist potency in the same mutant

(Figure 6B and D). In contrast to the mutation in the binding site,

the Sout double mutant D113A/D158A abolishes the modulatory

effect of Ca2+ but does not alter the affinity of acetylcholine (WT

1.6 mM, D113A/D158A 2.1 mM), confirming that calcium and

acetylcholine act via distinct sites (Figure 6C and F, Table 1).

Finally, in order to probe whether the presence of one

antagonist would alter the effect of the other, we have studied

the inhibition of ELIC by acetylcholine in the presence of different

concentrations of Ca2+ and vice versa. In no case did we find any

significant change in the potency of either antagonist, which

suggests that the inhibitory effects are additive and the two

compounds thus act independently (Figure 6E–H).

Discussion

In the present study we have investigated how divalent cations

modulate the function of ELIC, a bacterial member of the pLGIC

family. ELIC is inhibited by alkaline earth metal ions and by the

transition metal ion zinc. The modulation reported here resembles

similar effects observed in other family members, where divalent

cations act as either positive or negative modulators of gating. Ca2+

potentiates channel activity in a subset of nAChRs [26,27], whereas it

has an inhibitory effect on 5HT3Rs [29]. Like in ELIC, in 5HT3Rs

calcium shifts the EC50 of activation towards higher ligand

concentrations [29]. The action of Zn2+ appears to be more complex.

In some subtypes of GABARs, Zn2+ inhibits channel activity [31],

whereas in GlyRs, nAChRs, and 5HT3Rs, it acts as a potentiator at

low concentrations and as an inhibitor at higher concentrations

[30,32,33]. These opposing effects are believed to be mediated by the

successive occupation of binding sites of different affinity.

Divalent Ions Inhibit ELIC Gating by Binding to Sout

X-ray structures of ELIC crystals grown in the presence of

barium have allowed us to identify five structurally equivalent

Figure 4. Divalent ion inhibition in mutants of the nonregulatory sites Spore and Sin. Dose–response relationships of the ELIC point mutant
R91A (A) activated by cysteamine at different concentrations of Ca2+. (B) Anomalous difference electron density (calculated at 5 Å and contoured at 5
s) from data of the mutant N251A in complex with Ba2+ superimposed on a model of ELIC in ribbon representation. Ion-binding sites are indicated.
Dose–response relationships of the ELIC point mutants N251A (C), S84A (D), and D86A (E) activated by cysteamine at different concentrations of Ca2+.
The data presented in panels (A), (B), (D), and (E) are averages from at least 5 oocytes; errors are SD. The solid lines show fits to a Hill equation.
Currents were recorded at 240 mV. A dose–response curve of WT in the absence of Ca2+ (dashed line) is shown for comparison. (F) Schild plots
quantifying the inhibition of ELIC mutants by Ca2+. EC50 values were obtained from fits to data shown in panels (A), (B), (D), and (E). Potencies of the
antagonists (pA values) were obtained by linear regression; the intersection with the x-axis is indicated (N). WT is shown for comparison.
doi:10.1371/journal.pbio.1001429.g004
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binding sites (Sout) located at subunit interfaces on the extracellular

domain about 15 Å from the agonist-binding region. These are

likely to be responsible for the observed inhibition, as mutations at

this site have a strong effect on the potency of both Ca2+ and Zn2+.

The sites resemble regulatory calcium-binding pockets found in

other ion channel proteins, where the divalent ions interact with

the side chains of acidic residues that are often organized in

clusters on the protein sequence (Figure 7A) [44–46]. The

interaction found in ELIC is, however, not typical for zinc-

binding sites, as these usually contain either histidines or cysteines

for ion coordination [47–49], residues that are unlikely to play this

role in ELIC (Figure 7A, Figure S4).

While the residues that interact with divalent cations in ELIC

are not conserved across pLGICs, there is evidence that equivalent

modulatory effects in other pLGICs involve the same (Sout) region.

In the a7-nAChR, the residue Glu 172, which has been identified

as a key residue in the interaction with calcium [50–52], resides on

the same loop as Glu 150 and Asp 158 (loop 8) in ELIC. Similarly,

histidine and glutamate residues contributing to the interaction

with Zn2+ in GABAARs were mapped to the same location, at the

interface between two subunits [53], thus indicating that the Zn2+-

dependent inhibition of GABAARs may follow a similar mecha-

nism. Residues in the same loop of 5HT3Rs have also been

proposed to participate to calcium regulation of this receptor [54].

Figure 5. Divalent ion inhibition in mutants of the regulatory site Sout. Dose–response relationships of the ELIC mutants D113A (A) and
D158A (B), E150A (C), and the double mutant D113A/D158A (D) activated by cysteamine at different concentrations of Ca2+ are shown. (E) Schild plots
quantifying the inhibition of ELIC mutants by Ca2+. EC50 values were obtained from data shown in panels (A–D). Potencies of the antagonists (pA
values) were obtained by linear regression; the intersection with the x-axis is indicated (N). WT is shown for comparison. (F) Graphical depiction of
potencies for Ca2+ inhibition in different mutants. (G) Maximum current response of the double mutant D113A/D158A at different Ca2+

concentrations. The currents are normalized to the maximum response in the absence of Ca2+. Whole cell currents measured at 240 mV with the
two-electrode voltage clamp technique are shown in red (the averages of at least 5 oocytes are shown; errors are SD). Single channel currents from
the double mutant D113A/D158A were measured in the outside-out configuration and are shown in green. WT macroscopic and single channel
currents are shown as dashed lines for comparison. (H) Anomalous difference electron density (calculated at 5 Å and contoured at 5 s) from data of
the double mutant D113A/D158A in complex with Ba2+ is superimposed on a model of ELIC in ribbon representation. Ion-binding sites are indicated.
(I) Dose–response relationships of the double mutant D113A/D158A activated by propylamine at different concentrations of Zn2+. The data
presented in panels (A–D) and (I) are averages from at least 5 oocytes; errors are SD. The solid lines show fits to a Hill equation. Currents were
recorded at 240 mV. A dose–response curve of WT in the absence of Ca2+ (dashed line) is shown for comparison.
doi:10.1371/journal.pbio.1001429.g005
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Interestingly, a study on the 5HT3R has identified an aspartate

residue in the pore domain as an important determinant for

calcium-dependent inhibition. The equivalent Asn residue in

ELIC coordinates the barium ion in the site Spore [55]. We

investigated this site by mutagenesis but did not find any indication

for a similar role in the calcium regulation of ELIC. The

phenotypic difference may be due to a stronger interaction with a

divalent ion in the 5HT3R where the respective residue is an

aspartate and thus carries a negative charge (cf., an uncharged

asparagine in ELIC).

The Mechanism of Action of Divalent Ions
The effect of calcium and other divalent cations on gating of

ELIC results in a complex functional phenotype. At low

extracellular calcium concentrations, we see a reduction in agonist

potency that resembles competitive inhibition (with a linear Schild

plot with a slope near unity). Despite this resemblance, the agonist

binding site is not involved in this process and the presence of the

antagonist acetylcholine (which binds in the canonical agonist site)

has no effect on the action of calcium. Finally, higher calcium

concentrations reduce the maximum agonist response (to a greater

extent than can be accounted for by a conductance decrease). At

first sight, these effects appear to be too complex to be explained

by a single microscopic action of divalents (i.e., the binding of Ca2+

to the site Sout). However, they can all be accounted for, if calcium

impairs a single step of ELIC activation, for example channel

opening, provided gating is efficient in wild-type ELIC (i.e., the

agonist efficacy E is high to start with, Figure 7B). This is a

plausible hypothesis, given the high open probability of the single

channel activity in Figure 1A.

In first approximation, the relation between maximum open

probability Pmax and efficacy E is:

Figure 6. Inhibition by ACh. (A) Anomalous difference electron density (calculated at 5 Å and contoured at 6 s) from data of WT in complex with
TMAs is superimposed on a model of ELIC in ribbon representation. The ligand-binding site is indicated. Dose–response relationships upon activation
with cysteamine of the ELIC mutants R91A (B) and the double mutant D113A/D158A (C) at different concentrations of ACh. (F) Schild plots
quantifying the inhibition of ELIC mutants by ACh. EC50 values were obtained from data shown in panels (B–C). Dose–response relationships upon
activation with cysteamine of WT in the presence of either 0.25 (E), 0.5 (F), or 1 mM Ca2+ (G). (H) Schild plots quantifying the inhibition of ELIC
mutants by ACh in the presence of Ca2+. EC50 values were obtained from data shown in panels (E–G). Potencies of the antagonists (pA values) were
obtained by linear regression; the intersection with the x-axis is indicated (N). The data presented in panels (B–C) and (E–G) are averages from at least
5 oocytes; errors are SD. The solid lines show fits to a Hill equation. Currents were recorded at 240 mV. A dose–response curve of WT in the absence
of ACh and Ca2+ (dashed line) is shown for comparison.
doi:10.1371/journal.pbio.1001429.g006
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Pmax~
E

Ez1
,

and our observations of an ELIC Pmax greater than 95% are

compatible with values of E that are greater than 20 (as reported

for other pLGIC such as nicotinic and glycine receptors). If the

value of E is high to start with, the reduction in efficacy produced

by divalents must be substantial before a decrease in maximum

response becomes apparent. That is why it is seen only at high

calcium concentrations. More modest decreases in efficacy, at low

calcium concentrations, will cause only a decrease in agonist

Figure 7. Potential mechanisms. (A) Interactions in the regulatory divalent ion-binding site of ELIC (left) in comparison with a regulatory Ca2+

binding site of the BK-channel (middle) and the Zn2+-transporter YiiP (right). (B) Schematic model of a potential mechanism for the inhibitory effect of
divalent ions. The two rows show simplified schemes for channel activation in control conditions (top) and in the presence of divalent ions. From left
to right, the schemes show that binding of agonist molecules (red ovals) to the extracellular domain (with microscopic affinity Kd) is followed by
conformational changes (yellow background) that result in channel opening. Channel gating (described by the efficacy equilibrium constant E) is
impaired when the channel is bound to divalent ions (yellow circles, ECa

2+). The decrease in agonist efficacy is likely to be due to a change in the rate
of opening, as shown by the size of the arrows in the last step of the reaction. (C) Schematic mechanism of how binding sites located on similar
places of an oligomeric channel could alternately stabilize the closed or open conformation of the channel.
doi:10.1371/journal.pbio.1001429.g007
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potency. This is because agonist EC50 is directly affected by the

value of E. In the simplest del Castillo-Katz model, EC50 is given

by:

EC50~
Kd

Ez1
,

where Kd is the microscopic dissociation constant of the agonist

(Figure 7B) [56].

It can also be shown (Text S1) that the effects of calcium and

those of a competitive antagonist are expected to be independent,

if we model equilibrium channel activation with a simple scheme,

where calcium binding impairs gating (by affecting E) and the

antagonist binds to the resting form of the channel. This model not

only predicts Schild-like behavior for the effect of calcium but

suggests also that the Schild intercept is a reasonable estimate for

the microscopic affinity of divalents (Text S1).

These conclusions are unchanged if we model channel

activation by a more detailed and realistic activation scheme,

incorporating an intermediate state between agonist binding and

channel opening. The existence of one or more gating interme-

diate states for channels in the nicotinic superfamily is supported

by several lines of evidence. For instance, Q analysis in muscle

nicotinic AChRs [57] indicates that blocks of residues move

asynchronously in the gating conformational change. In addition

to that, mechanisms with reaction intermediates (referred to as flip,

primed, or catch-and-hold [13,58–61]) are needed to explain

several aspects of the function of the GlyR and the muscle

nicotinic AChR, such as agonist efficacy (Figure 7B). In our

experiments, the presence of an additional intermediate step that

limits the maximum rate of current onset in agonist-bound ELIC

channels is required to explain the results of our agonist

concentration jumps. This is because we observed that low

calcium increased the agonist concentration needed to achieve the

maximum rate of current onset, but did not change the limiting

rate of channel gating. If activation went through a single

conformational step as the channel gates (as in a simple del

Castillo-Katz mechanism), this single step would control both the

rate of current onset for the agonist-bound channel and the

maximum response, and any changes in this would be experi-

mentally detectable (see Text S1).

Conclusions
In our study we have shown how the binding of calcium to a

single site remote from the ligand binding pocket modulates the

activation of the pLGIC ELIC. Given that divalent ions impair

ELIC gating, they are expected to bind more tightly to the resting

state of the channel and stabilize it. The location of the divalent

binding site at the interface between adjacent subunits is an

intriguing mechanism to stabilize distinct states in an allosteric

protein, given that these regions are involved in conformational

changes (Figure 7C). Thus, occupancy by divalent ions of sites at a

similar location in the different pLGICs will result in potentiation

or inhibition, depending on whether the equilibrium is shifted

towards conducting or nonconducting conformations. Allosteric

modulation is important for the pharmacology of pLGICs, as

many of pLGIC drugs in therapeutic use act by this mechanism,

although by binding to sites distinct from those of divalent ions.

Modulation by divalent ions of pLGICs occurs at concentra-

tions that are physiologically relevant in vertebrates and may

regulate the activity of channels in their natural environment

[31,62]. It is not known whether such regulation is important for

ELIC activity in its natural host Erwinia chrysanthemi, but it is

remarkable that the observed mechanism has been conserved

during evolution.

Materials and Methods

Protein Expression and Purification
ELIC WT and point mutants were expressed and purified as

described [36,37]. E. coli BL21DE3 containing a vector encoding

for a fusion protein consisting of the pelB signal sequence, a His10

tag, maltose binding protein, a HRV 3C protease site, and ELIC

were grown in M9 minimal medium at 37uC to an OD of 1.0 and

subsequently cooled to 20uC. Expression was induced by addition

of 0.3 mM IPTG and carried out overnight. All the following steps

were performed at 4uC. The protein was extracted from isolated

membranes in a buffer containing 1% n-Undecyl-b-D-Maltoside

(UDM, Anatrace, Inc.) and purified by Ni-NTA chromatography

(Qiagen). The purified MBP-ELIC-fusion protein was digested

with HRV 3C protease to cleave the His10-MBP protein. His10-

MBP and 3C protease were subsequently removed from solution

by binding to Ni-NTA resin. ELIC was concentrated and

subjected to gel-filtration on a Superdex 200 column (GE

Healthcare). The protein peak corresponding to the ELIC

pentamer was pooled and concentrated to 10 mg/ml and used

for crystallization.

Crystallization and Structure Determination
The purified protein was crystallized in sitting drops at 4uC.

Protein containing additional 0.5 mg/ml E. coli polar lipids (Avanti

Polar Lipids, Inc.) was mixed in a 1:1 ratio with reservoir solution

(50 mM ADA pH 6.5, 50 mM BaAc2, and 10% (w/v) PEG4000).

The crystals were cryoprotected by transfer into solutions

containing 30% ethyleneglycol. All datasets were collected on

frozen crystals on the X06SA beamline at the Swiss Light Source

(SLS) of the Paul Scherrer Institut (PSI) on a PILATUS detector

(Dectris). The data were indexed, integrated, and scaled with XDS

[63] and further processed with CCP4 programs [64]. The

structure of WT and mutants in space groups P43 and P21 were

determined by molecular replacement in PHASER [65] using the

ELIC pentamer (2VLO) as a search model. G164, which was not

included in the original model (2VLO), was introduced according

to the structure of the ELIC acetylcholine complex (3RQW). The

absence of this amino acid had only a local effect and did not

influence the location of neighboring residues. The model was

rebuilt in Coot [66] and refined maintaining strong NCS

constraints in PHENIX [67]. R and Rfree were monitored

throughout. Rfree was calculated by selecting 5% of the reflection

data in thin slices that were selected for the initial dataset of ELIC

and that were omitted in refinement.

Isothermal Titration Calorimetry
Binding of the agonist propylamine to ELIC in the presence and

absence of calcium was measured by isothermal titration

calorimetry (ITC) with a MicroCal ITC200 system (GE

Healthcare). The syringe was loaded with agonist solution

containing 30–37 mM propylamine dissolved in measurement

buffer (containing 25 mM Tris-HCl pH8.5, 150 mM NaCl, and in

certain experiments 0.6 mM CaCl2). The sample cell was loaded

with 300 ml of purified ELIC in measurement buffer containing

0.9 mM UDM at a concentration between 80 and 110 mM.

Agonist was applied by sequential injections of 2 ml aliquots

followed by a 180 s equilibration period after each injection. The

data were recorded at 4uC and analyzed by a fit to a single-site

binding isotherm.
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Two-Electrode Voltage Clamp Recording
Constructs containing the gene of either the WT or mutant

channels preceded by the signal sequence of the chicken a7nAchR

were cloned into the pTLN vector for expression in X. laevis

oocytes [68]. After linearization of the plasmid DNA by MluI,

capped complementary RNA was transcribed with the mMessage

mMachine kit (Ambion) and purified with the RNeasy kit

(Qiagen). For expression, 1–50 ng of RNA was injected into

defolliculated oocytes. Two-electrode voltage clamp measurements

were performed 1 d after injection at 20uC (OC-725B, Warner

Instrument Corp.). Currents were recorded in bath solutions

containing 10 mM HEPES (pH 7), 130 mM NaCl, and the

indicated concentrations of cysteamine and divalent cations. In

case of solutions containing Zn2+, cysteamine was replaced by

propylamine. The membrane potential in all dose–response

measurements was set to 240 mV. As ELIC is permeable to

divalent cations, we tested if endogenous calcium-activated

chloride channels affected our measurements. To chelate intra-

cellular calcium ions, the oocytes were incubated for 15 to 30 min

in bath solutions lacking divalent ions but containing 10 mM

BAPTA-AM. Dose–response curves in the presence of calcium

obtained from BAPTA-AM-treated oocytes did not differ from the

measurements of the untreated oocytes even at elevated Ca2+

concentration (Figure S6). The lack of a significant effect is likely

due to the strong outward-rectification of calcium-activated

chloride channels, which do not pass significant currents at

negative voltages.

Patch Clamp Recording in X. oocytes
X. laevis oocytes were transferred to a hyperosmotic solution to

manually remove the vitelline layer. Membrane patches were

recorded in the excised outside-out configuration 3–5 d after

injection of mRNA with an Axopatch 200B amplifier (Axon

Instruments) at 20uC. Data were sampled at 100 ms, filtered with

1,000 Hz, and analyzed using Clampfit (Axon Instruments, Inc.).

Bath solutions contained 10 mM HEPES (pH 7.0), 150 mM

NaCl, and indicated concentrations of ligands and divalent

cations. Electrodes had a resistance of 3–5 MV. Pipette solutions

contained 150 mM NaCl, 10 mM EGTA, 5 mM MgCl2, and

10 mM HEPES at pH 7.0. Bath electrodes were placed in 1 M

KCl solution connected to the bath solution by Agar bridges. The

agonists were applied to the patch using a stepper motor (SF77B

Perfusion fast step, Warner).

Patch Clamp Recording in HEK 293 Cells
Human embryonic kidney 293 cells (American Type Culture

Collection-CRL-1573;LGC Promochem) were maintained at

37uC in a 95% air/5% CO2 incubator in DMEM supplemented

with 0.11 g/l sodium pyruvate, 10% (v/v) heat-inactivated fetal

bovine serum, 100 U/ml penicillin G, 100 mg/ml streptomycin

sulfate, and 2 mM L-glutamine (Invitrogen). Cells (passaged every

2 d, up to 30 times) were plated and transfected by calcium

phosphate-DNA coprecipitation [69], with a total amount of DNA

of 3 mg/dish (82% ELIC and 18% eGFP DNA, both subcloned in

pcDNA3).

Cells were bathed in an extracellular solution containing (mM):

150 KCl, 0.05 or 0.2 CaCl2, and 10 HEPES, pH adjusted to 7.4

with KOH (osmolarity 310 mOsm). Patch pipettes were pulled

from thick-walled borosilicate glass (GC150F; Harvard Apparatus)

and fire polished to a resistance of 8–12 MV. Intracellular solution

contained (mM): 150 KCl, 0.5 CaCl2, 5 EGTA, and 10 HEPES,

pH adjusted to 7.4 with KOH. Agonist-evoked currents were

recorded at 20uC with an Axopatch 200B amplifier (Molecular

Devices) from outside-out patches held at 2100 mV. Patches were

stepped to this holding voltage 0.2 s before the agonist was applied

and otherwise held at 240 mV. No correction for junction

potential was applied (calculated value 0.2 mV). Currents were

filtered at 5 kHz, digitized at 50 kHz with Digidata 1322A, and

saved directly on computer with Clampex software (all MDS

Analytical Technologies).

All concentration jumps were performed using a piezo stepper

(Burleigh instruments) with an application tool made from theta

tube glass (Hilgenberg; final tip diameter, 150 mm). Voltage

commands for the piezo stepper were 200 ms square pulses

conditioned by low-pass eight-pole Bessel filtering (23 dB

frequency 5 kHz) to smooth oscillations. Actual exchange time

was estimated by recording the open-tip response to the

application of diluted extracellular solution (70% water) after

rupture of the patch. Only patches in which the 20%–80%

exchange time was faster than 250 ms were included in the

analysis.

Agonist solutions were freshly prepared every day from 1 M

stock solutions. Propylamine was applied at a concentration

known to elicit maximum response (20 mM and 50 mM, for 50

and 200 mM Ca2+, respectively). Traces shown are averages of 5 or

10 individual agonist currents, separated by at least 10 s.

Responses were averaged, and the time course of activation and

deactivation (between 95% and 5% of the peak current level) was

fitted with one exponential component (program Clampfit 9.0).

Accession Code
The coordinates of the P43 crystal form of ELIC in complex

with Ba2+ have been deposited with the Protein Data Bank under

code 2yn6.

Supporting Information

Figure S1 Dose–response relationships at high Ca2+ concentra-

tions. Cysteamine dose–response relationships of ELIC in the

presence of different concentrations of Ca2+. Currents were

recorded at 240 mV. The data are averages from at least 5

oocytes; errors are SD. The solid lines show fits to a Hill equation.

(B) Schild plot quantifying the inhibition by Ca2+. EC50 values

were obtained from fits to data shown in panel (A). Potencies of the

antagonists (pA values) were obtained by linear regression; the

intersection with the x-axis is indicated (N).
(JPG)

Figure S2 Barium binding. (A) Plot of maximum agonist

responses and single channel currents at different Ba2+ concen-

trations. The currents are normalized to the control values (in the

absence of Ba2+). Maximum cysteamine currents (blue symbols)

were measured with the two-electrode voltage clamp technique.

Single channel currents (green symbols) were measured from

excised patches in the outside-out configuration. (B, C) Structure

of the divalent cation binding site Sout. Stereo representations of

the binding region in two different crystal forms. The protein is

shown as Ca-trace with selected side-chains close to Ba2+ (red

sphere) shown as sticks. 2Fo-Fc electron densities are shown as

cyan mesh. The refined models used to calculate phases did not

contain Ba2+-ions. (B) Space group P43. The 2Fo-Fc electron

density was calculated at 3.3 Å and contoured at 1 s. The

anomalous difference electron density (calculated at 5 Å and

contoured at 5 s) was obtained from the same dataset. (C) Space

group P21. The 2Fo-Fc electron density was calculated at 3.8 Å

and contoured at 1 s. The anomalous difference electron density

(calculated at 5 Å and contoured at 5 s) was obtained from the

same dataset.

(JPG)
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Figure S3 Divalent ion inhibition in mutants of the regulatory

site Sout. Dose–response relationships of the ELIC mutants D113N

(A), D158N (B), and E150Q (C) activated by cysteamine at

different concentrations of Ca2+ are shown. (D) Schild plots

quantifying the inhibition of ELIC mutants by Ca2+. (E) Dose–

response relationships of the ELIC double mutant D113A/D158A

activated by cysteamine at different concentrations of Ba2+ are

shown. (F) Schild plot quantifying the inhibition of the ELIC

double mutant D113A/D158A by Ba2+. EC50 values were

obtained from data shown in panels (A–C) and (E). Potencies of

the antagonists (pA values) in (D) and (F) were obtained by linear

regression; the intersection with the x-axis is indicated (N). WT is

shown for comparison. The data presented in panels (A–C) and (E)

are averages from at least 5 oocytes; errors are SD. The solid lines

show fits to a Hill equation. Currents were recorded at 240 mV.

A dose–response curve of WT in the absence of Ca2+ (dashed line)

is shown for comparison.

(JPG)

Figure S4 Divalent ion inhibition in mutants of histidine

residues in the extracellular domain. Dose–response relationships

of the ELIC mutants H168A (A) and H176A (B) activated by

cysteamine at different concentrations of Ca2+ are shown. (C)

Schild plots quantifying the inhibition of ELIC mutants by Ca2+.

EC50 values were obtained from data shown in panels (A–B).

Potencies of the antagonists (pA values) were obtained by linear

regression; the intersection with the x-axis is indicated (N). WT is

shown for comparison. The data presented in panels (A–B) are

averages from at least 5 oocytes; errors are SD. The solid lines

show fits to a Hill equation. Currents were recorded at 240 mV.

A dose–response curve of WT in the absence of Ca2+ (dashed line)

is shown for comparison.

(JPG)

Figure S5 Inhibition by tetramethylammonium (TMA). Dose–

response relationships of WT (A) and the mutant R91A (B)

activated by cysteamine at different concentrations of TMA are

shown. A dose–response curve of WT in the absence of TMA

(dashed line) is shown for comparison. (C) Schild plots quantifying

the inhibition by TMA. EC50 values were obtained from data

shown in panels (A–B). Potencies of the antagonists (pA values)

were obtained by linear regression; the intersection with the x-axis

is indicated (N). WT is shown for comparison. The data presented

in panels (A–B) are averages from at least 5 oocytes; errors are SD.

The solid lines show fits to a Hill equation. Currents were recorded

at 240 mV.

(JPG)

Figure S6 Ca2+ inhibition measured from BAPTA-AM-treated

oocytes. Dose–response relationships of WT activated by cyste-

amine at different concentrations of Ca2+ are shown. To chelate

intracellular Ca2+, oocytes were incubated in solutions lacking

divalent ions but containing 10 mM Bapta-AM. (C) Schild plots

comparing the inhibition of ELIC in BAPTA-treated oocytes by

Ca2+. EC50 values were obtained from data shown in panel (A).

Potencies of the antagonists (pA values) were obtained by linear

regression; the intersection with the x-axis is indicated (N). WT from

oocytes treated by standard procedures is shown for comparison.

The data presented in panel (A) are averages from at least 5

oocytes; errors are SD. The solid lines show fits to a Hill equation.

Currents were recorded at 240 mV.

(JPG)

Table S1 Dose–response relationships of agonists in the

presence of different modulators.

(DOC)

Text S1 Supplementary discussion.

(DOCX)

Acknowledgments

We thank the staff of the X06SA beamline for support during data

collection, Ilian Jelezarov for help with calorimetry experiments, Alwin

Reiter and Dirk Trauner for providing a sample of tetramethyarsonium,

and members of the Dutzler lab for help in all stages of the project. Data

collection was performed at the X06SA beamline at the Swiss Light Source

of the Paul Scherrer Institute.

Author Contributions

The author(s) have made the following declarations about their

contributions: Conceived and designed the experiments: RD IZ LGS.

Performed the experiments: IZ CB AM. Analyzed the data: RD IZ CB

LGS AM. Wrote the paper: RD IZ LGS AM CB.

References

1. Hille B (2001) Ion channels of excitable membranes, third edition. Sunderland,

MA: Sinauer Associates Inc.

2. Karlin A (2002) Emerging structure of the nicotinic acetylcholine receptors. Nat
Rev Neurosci 3: 102–114.

3. Lester HA, Dibas MI, Dahan DS, Leite JF, Dougherty DA (2004) Cys-loop
receptors: new twists and turns. Trends Neurosci 27: 329–336.

4. Sine SM, Engel AG (2006) Recent advances in Cys-loop receptor structure and

function. Nature 440: 448–455.

5. Sivilotti LG (2010) What single-channel analysis tells us of the activation
mechanism of ligand-gated channels: the case of the glycine receptor. J Physiol

588: 45–58.

6. Miller PS, Smart TG (2010) Binding, activation and modulation of Cys-loop
receptors. Trends Pharmacol Sci 31: 161–174.

7. Thompson AJ, Lester HA, Lummis SC (2010) The structural basis of function in

Cys-loop receptors. Q Rev Biophys 43: 449–499.

8. Yakel JL (2010) Gating of nicotinic ACh receptors: latest insights into ligand

binding and function. J Physiol 588: 597–602.

9. Unwin N (2005) Refined structure of the nicotinic acetylcholine receptor at 4A
resolution. J Mol Biol 346: 967–989.

10. Hilf RJ, Dutzler R (2009) A prokaryotic perspective on pentameric ligand-gated

ion channel structure. Curr Opin Struct Biol 19: 418–424.

11. Celie PH, van Rossum-Fikkert SE, van Dijk WJ, Brejc K, Smit AB, et al. (2004)

Nicotine and carbamylcholine binding to nicotinic acetylcholine receptors as

studied in AChBP crystal structures. Neuron 41: 907–914.

12. Sabey K, Paradiso K, Zhang J, Steinbach JH (1999) Ligand binding and

activation of rat nicotinic alpha4beta2 receptors stably expressed in HEK293
cells. Mol Pharmacol 55: 58–66.

13. Burzomato V, Beato M, Groot-Kormelink PJ, Colquhoun D, Sivilotti LG (2004)
Single-channel behavior of heteromeric alpha1beta glycine receptors: an attempt

to detect a conformational change before the channel opens. J Neurosci 24:
10924–10940.

14. Lester HA, Changeux JP, Sheridan RE (1975) Conductance increases produced

by bath application of cholinergic agonists to Electrophorus electroplaques. J Gen

Physiol 65: 797–816.

15. Rayes D, De Rosa MJ, Sine SM, Bouzat C (2009) Number and locations of

agonist binding sites required to activate homomeric Cys-loop receptors.

J Neurosci 29: 6022–6032.

16. Beato M, Groot-Kormelink PJ, Colquhoun D, Sivilotti LG (2004) The

activation mechanism of alpha1 homomeric glycine receptors. J Neurosci 24:

895–906.

17. Grosman C, Zhou M, Auerbach A (2000) Mapping the conformational wave of
acetylcholine receptor channel gating. Nature 403: 773–776.

18. Taly A, Corringer PJ, Guedin D, Lestage P, Changeux JP (2009) Nicotinic

receptors: allosteric transitions and therapeutic targets in the nervous system.
Nat Rev Drug Discov 8: 733–750.

19. Mohler H (2011) The rise of a new GABA pharmacology. Neuropharmacology

60: 1042–1049.

20. Yamakura T, Bertaccini E, Trudell JR, Harris RA (2001) Anesthetics and ion

channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol

41: 23–51.

21. Lobo IA, Harris RA (2008) GABA(A) receptors and alcohol. Pharmacol
Biochem Behav 90: 90–94.

22. Hibbs RE, Gouaux E (2011) Principles of activation and permeation in an

anion-selective Cys-loop receptor. Nature 474: 54–60.

Ca2+ Inhibition of ELIC

PLOS Biology | www.plosbiology.org 13 November 2012 | Volume 10 | Issue 11 | e1001429



23. Dani JA, Eisenman G (1987) Monovalent and divalent cation permeation in

acetylcholine receptor channels. Ion transport related to structure. J Gen Physiol
89: 959–983.

24. Adams DJ, Dwyer TM, Hille B (1980) The permeability of endplate channels to

monovalent and divalent metal cations. J Gen Physiol 75: 493–510.
25. Sine SM, Claudio T, Sigworth FJ (1990) Activation of Torpedo acetylcholine

receptors expressed in mouse fibroblasts. Single channel current kinetics reveal
distinct agonist binding affinities. J Gen Physiol 96: 395–437.

26. Mulle C, Lena C, Changeux JP (1992) Potentiation of nicotinic receptor

response by external calcium in rat central neurons. Neuron 8: 937–945.
27. Vernino S, Amador M, Luetje CW, Patrick J, Dani JA (1992) Calcium

modulation and high calcium permeability of neuronal nicotinic acetylcholine
receptors. Neuron 8: 127–134.

28. Peters JA, Hales TG, Lambert JJ (1988) Divalent cations modulate 5-HT3
receptor-induced currents in N1E-115 neuroblastoma cells. Eur J Pharmacol

151: 491–495.

29. Niemeyer MI, Lummis SC (2001) The role of the agonist binding site in Ca(2+)
inhibition of the recombinant 5-HT(3A) receptor. Eur J Pharmacol 428: 153–

161.
30. Palma E, Maggi L, Miledi R, Eusebi F (1998) Effects of Zn2+ on wild and

mutant neuronal alpha7 nicotinic receptors. Proc Natl Acad Sci U S A 95:

10246–10250.
31. Smart TG, Xie X, Krishek BJ (1994) Modulation of inhibitory and excitatory

amino acid receptor ion channels by zinc. Prog Neurobiol 42: 393–441.
32. Laube B, Kuhse J, Rundstrom N, Kirsch J, Schmieden V, et al. (1995)

Modulation by zinc ions of native rat and recombinant human inhibitory glycine
receptors. J Physiol 483 (Pt 3): 613–619.

33. Hubbard PC, Lummis SC (2000) Zn(2+) enhancement of the recombinant 5-

HT(3) receptor is modulated by divalent cations. Eur J Pharmacol 394: 189–197.
34. Hsiao B, Mihalak KB, Magleby KL, Luetje CW (2008) Zinc potentiates

neuronal nicotinic receptors by increasing burst duration. J Neurophysiol 99:
999–1007.

35. Moroni M, Vijayan R, Carbone A, Zwart R, Biggin PC, et al. (2008) Non-

agonist-binding subunit interfaces confer distinct functional signatures to the
alternate stoichiometries of the alpha4beta2 nicotinic receptor: an alpha4-alpha4

interface is required for Zn2+ potentiation. J Neurosci 28: 6884–6894.
36. Hilf RJ, Dutzler R (2008) X-ray structure of a prokaryotic pentameric ligand-

gated ion channel. Nature 452: 375–379.
37. Zimmermann I, Dutzler R (2011) Ligand activation of the prokaryotic

pentameric ligand-gated ion channel ELIC. PLoS Biol 9: e1001101.

doi:10.1371/journal.pbio.1001101.
38. Hilf RJ, Bertozzi C, Zimmermann I, Reiter A, Trauner D, et al. (2010)

Structural basis of open channel block in a prokaryotic pentameric ligand-gated
ion channel. Nat Struct Mol Biol 17: 1330–1336.

39. Hilf RJ, Dutzler R (2009) Structure of a potentially open state of a proton-

activated pentameric ligand-gated ion channel. Nature 457: 115–118.
40. Bocquet N, Nury H, Baaden M, Le Poupon C, Changeux JP, et al. (2009) X-ray

structure of a pentameric ligand-gated ion channel in an apparently open
conformation. Nature 457: 111–114.

41. Pan J, Chen Q, Willenbring D, Yoshida K, Tillman T, et al. (2012) Structure of
the pentameric ligand-gated ion channel ELIC cocrystallized with its

competitive antagonist acetylcholine. Nat Commun 3: 714.

42. Arunlakshana O, Schild HO (1959) Some quantitative uses of drug antagonists.
Br J Pharmacol 14: 48–58.

43. Colquhoun D (2007) Why the Schild method is better than Schild realised.
Trends Pharmacol Sci 28: 608–614.

44. Yuan P, Leonetti MD, Hsiung Y, MacKinnon R (2012) Open structure of the

Ca2+ gating ring in the high-conductance Ca2+-activated K+ channel. Nature
481: 94–97.

45. Wu Y, Yang Y, Ye S, Jiang Y (2010) Structure of the gating ring from the human
large-conductance Ca(2+)-gated K(+) channel. Nature 466: 393–397.

46. Schumacher MA, Rivard AF, Bachinger HP, Adelman JP (2001) Structure of

the gating domain of a Ca2+-activated K+ channel complexed with Ca2+/
calmodulin. Nature 410: 1120–1124.

47. Auld DS (2009) The ins and outs of biological zinc sites. Biometals 22: 141–148.

48. Vallee BL, Auld DS (1990) Zinc coordination, function, and structure of zinc
enzymes and other proteins. Biochemistry 29: 5647–5659.

49. Lu M, Chai J, Fu D (2009) Structural basis for autoregulation of the zinc
transporter YiiP. Nat Struct Mol Biol 16: 1063–1067.

50. Galzi JL, Bertrand S, Corringer PJ, Changeux JP, Bertrand D (1996)
Identification of calcium binding sites that regulate potentiation of a neuronal

nicotinic acetylcholine receptor. The EMBO J 15: 5824–5832.

51. Eddins D, Sproul AD, Lyford LK, McLaughlin JT, Rosenberg RL (2002)
Glutamate 172, essential for modulation of L247T alpha7 ACh receptors by

Ca2+, lines the extracellular vestibule. Am J Physiol Cell Physiol 283: C1454–
C1460.

52. Lyford LK, Sproul AD, Eddins D, McLaughlin JT, Rosenberg RL (2003)
Agonist-induced conformational changes in the extracellular domain of alpha 7

nicotinic acetylcholine receptors. Mol Pharmacol 64: 650–658.

53. Hosie AM, Dunne EL, Harvey RJ, Smart TG (2003) Zinc-mediated inhibition
of GABA(A) receptors: discrete binding sites underlie subtype specificity. Nat

Neurosci 6: 362–369.

54. Thompson AJ, Lummis SC (2009) Calcium modulation of 5-HT3 receptor

binding and function. Neuropharmacology 56: 285–291.

55. Hu XQ, Lovinger DM (2005) Role of aspartate 298 in mouse 5-HT3A receptor
gating and modulation by extracellular Ca2+. J Physiol 568: 381–396.

56. Colquhoun D (1998) Binding, gating, affinity and efficacy: the interpretation of
structure-activity relationships for agonists and of the effects of mutating

receptors. Br J Pharmacol 125: 924–947.

57. Auerbach A (2005) Gating of acetylcholine receptor channels: brownian motion

across a broad transition state. Proc Natl Acad Sci U S A 102: 1408–1412.

58. Mukhtasimova N, Lee WY, Wang HL, Sine SM (2009) Detection and trapping
of intermediate states priming nicotinic receptor channel opening. Nature 459:

451–454.

59. Auerbach A (1992) Kinetic behavior of cloned mouse acetylcholine receptors. A

semi-autonomous, stepwise model of gating. Biophys J 62: 72–73.

60. Auerbach A (1993) A statistical analysis of acetylcholine receptor activation in

Xenopus myocytes: stepwise versus concerted models of gating. J Physiol 461:

339–378.

61. Jadey S, Auerbach A (2012) An integrated catch-and-hold mechanism activates

nicotinic acetylcholine receptors. J Gen Physiol 140: 17–28.

62. Amador M, Dani JA (1995) Mechanism for modulation of nicotinic

acetylcholine receptors that can influence synaptic transmission. J Neurosci
15: 4525–4532.

63. Kabsch W (1993) Automatic processing of rotation diffraction data from crystals

of initially unknown symmetry and cell constants. J Appl Cryst 26: 795–800.

64. CCP4 (1994) Collaborative Computational Project Nr. 4. The CCP4 Suite:

Programs for X-ray crystallography. Acta Crystallogr D 50: 760–763.

65. McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ

(2007) Phaser crystallographic software. J Appl Cryst 40: 658–674.

66. Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development
of Coot. Acta Crystallogr D Biol Crystallogr 66: 486–501.

67. Adams PD, Grosse-Kunstleve RW, Hung LW, Ioerger TR, McCoy AJ, et al.
(2002) PHENIX: building new software for automated crystallographic structure

determination. Acta Crystallogr D Biol Crystallogr 58: 1948–1954.

68. Lorenz C, Pusch M, Jentsch TJ (1996) Heteromultimeric CLC chloride channels

with novel properties. Proc Natl Acad Sci U S A 93: 13362–13366.

69. Groot-Kormelink PJ, Beato M, Finotti C, Harvey RJ, Sivilotti LG (2002)
Achieving optimal expression for single channel recording: a plasmid ratio

approach to the expression of alpha 1 glycine receptors in HEK293 cells.
J Neurosci Methods 113: 207–214.

Ca2+ Inhibition of ELIC

PLOS Biology | www.plosbiology.org 14 November 2012 | Volume 10 | Issue 11 | e1001429


