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ABSTRACT 

Calcite-water interactions are important not only in carbon sequestration and the 

global carbon cycle, but also in contaminant behaviour in calcite-bearing host rock 

and in many industrial applications. Here we quantify the effect of variations in 

surface structure on calcite surface reactivity. Firstly, we employ classical Molecular 

Dynamics simulations of calcite surfaces containing an etch pit and a growth terrace, 

to show that the local environment in water around structurally different surface sites 

is distinct. In addition to observing the expected formation of more calcium–water 

interactions and hydrogen-bonds at lower-coordinated sites, we also observed subtle 

differences in hydrogen bonding around acute versus obtuse edges and corners. We 

subsequently used this information to refine the protonation constants for the calcite 

surface sites, according to the Charge Distribution MUltiSite Ion Complexation (CD–

MUSIC) approach1. The subtle differences in hydrogen bonding translate into 

markedly different charging behaviour versus pH, in particular for acute versus obtuse 

corner sites. The results show quantitatively that calcite surface reactivity is directly 

related to surface topography. The information obtained in this study is not only 

crucial for the improvement of existing macroscopic surface models of the reactivity 

of calcite towards contaminants, but also improves our atomic-level understanding of 

mineral-water interactions. 

 

Keywords: Mineral-surface reactivity, surface-water interaction, topography, 

hydrogen-bonds, classical molecular dynamics. 
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INTRODUCTION 

 

Calcite is one of the most abundant minerals in the Earth’s surface environment. It is 

one of the main biominerals2 and of fundamental importance as a regulator of the 

chemistry of aquatic environments3, as a recorder of palaeo-environmental 

conditions4, scavenger of trace metals5 and as a long-term sink for carbon6. Calcite 

precipitation directly from solution and through mineral carbonation is currently one 

of the most viable routes for carbon sequestration7-9. The key issue in efficient and 

directed calcite precipitation, and in determining the long-term stability of calcite-

trapped CO2 and trace metals is a fundamental understanding of the mineral surface 

processes controlling crystal growth9-12 and dissolution13,14.  

In order to understand and describe the reactivity of the calcite mineral surface, 

several surface models have been developed over the last decades15-21. In recently 

developed models that follow the CD–MUSIC approach1,22, the proton affinity of a 

reactive surface group is related to the bond lengths within this group and the number 

of hydrogen-bonds (H-bonds) between the surface group and the solution. Currently, 

these models rely on bond-length analyses of average surface sites23-25 where the 

average number of H-bonds was obtained by fitting to experimental surface potential 

data19. Even though this calcite surface chemical model is in agreement with calcite 

surface potential data, it does not capture the differential reactivity of sites in acute or 

obtuse step edges observed experimentally26, nor does it predict different behaviour 

for step or kink sites known to play a crucial role during calcite growth10,11, 

dissolution14 and interaction with (in)organic compounds27. Clearly, a surface 
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chemical model for calcite that can describe this behaviour needs detailed information 

on the variation in bond lengths, in particular the bond between surface calcium and 

its coordinating water molecules that together form the ≡Ca(OH2)n surface group 

(with ≡ indicating surface site and n = 1 in previous models19,21), and H-bonds for 

structurally different surface sites. Thus far, such detailed site-specific information 

can only be obtained from computer simulation techniques. 

The calcite surface has been the subject of numerous simulation studies25-53. In 

particular, these studies focused on simulations of the flat or stepped (10 4) surface, 

which is the dominant face exposed on cleaved, growing and dissolving calcite54-56. 

Previous simulation studies of stepped and/or defective calcite surfaces have 

investigated dissolution energies34,37,42,57, kink energies58, and the interaction of water 

molecules42,52, trace metals34,59 and organic compounds27,41,45,53,60 with steps and 

defects. Perry et al.39 reported an average of two hydrogen-bonds for water molecules 

in the first water layer near the atomically flat calcite surface, with water molecules at 

a distance between 1.7 to 2.5 Å from the surface, experiencing a mixture of one, two, 

and three hydrogen-bonds. Lardge et al51 used Density Functional Theory (DFT) to 

investigate water adsorption on {10 4} calcite surfaces with steps and vacancies. 

They found that a single water molecule binds more strongly to acute steps than to 

obtuse steps. For calcite steps exposed to liquid water, Spagnoli et al42 showed that 

the water density was significantly greater at the obtuse than at the acute step. The 

disruption of the surrounding water by the atomically rough surface of the amorphous 

precursor to calcite has been shown12 to enhance its growth in favour of calcite.  

While Freeman et al.43 recently determined the variation in number of hydrogen 

bridges between closely spaced acute and obtuse steps at vicinal surfaces in their 

study , none of these previous studies reported the actual variation in numbers of 
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hydrogen-bonds around structurally different sites (face versus edge and corner sites, 

Figure 1), nor the variation in distance between distinct surface calcium sites and its 

nearest water molecule. Such information is crucial for the refinement of CD-MUSIC 

type surface chemical models and is therefore reported here. The information on the 

difference in water structure around these sites is subsequently used to quantify the 

protonation constants for the structurally different surface groups following the CD-

MUSIC formalism. This shows that subtle differences in the interaction of various 

sites with water molecules translate into significantly different charging behaviour, in 

particular for the acute versus obtuse corner (kink) sites. Implications for proton 

affinity constants and calcite surface reactivity towards calcium, (bi-)carbonate and 

contaminants are discussed.  

 

2. THEORETICAL METHODS 

The interaction of liquid water with the heterogeneous calcite surface was 

investigated using classical molecular dynamics simulations. These methods are 

based on the Born model of solids61 which assumes that the ions in the crystal interact 

via long-range electrostatic forces and short-range forces, including both the 

repulsions and the Van der Waals’ attractions between neighbouring electron charge 

clouds, and, where appropriate, angle-dependent forces to allow for directionality of 

bonding as, for example, in the covalent carbonate anion62. The electronic 

polarizability of the ions is included via the shell model of Dick and Overhauser63 in 

which each polarizable ion, in the present case the oxygen ion, is represented by a 

core and a massless shell, connected by a spring. The polarizability of the model ion 

is then determined by the spring constant and the charges of the core and shell. We 
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assigned the oxygen shell a small mass of 0.2 a.u. 64,65, which is small compared to the 

mass of the hydrogen atom of 1.0 a.u., which ensured that there would be no 

exchange of energy between vibrations of oxygen core and shell with oxygen and 

hydrogen vibrations.66 However, due to the small shell mass, we needed to run the 

MD simulation with a small timestep of 0.2 fs in order to keep the system stable. 

The computer code used for the molecular dynamics simulations was DL_POLY 

2.2067. In the DL_POLY code, the integration algorithms are based around the Verlet 

leap-frog scheme68 and we have used the Nosé–Hoover algorithm69,70 for the 

thermostat. The Nosé–Hoover parameters were set at 0.5 ps for both the thermostat 

and barostat relaxation times.  

We simulated a repeating calcite slab, containing 840 CaCO3 units, with a growth 

island of 16 CaCO3 units on one side and an etch pit of the same size on the other side 

of the slab (Figure 2). The initial 22 Å gap between the repeating slabs was filled with 

2048 water molecules, and the simulation cell contained 14,912 species including 

shells.  

The simulation cell was equilibrated at NPT (constant number of particles, pressure 

and temperature), at P = 1 atm and 300K, 320K and 340K for 140 ps after which the 

statistics were collected for at least another nanosecond at each temperature. To test if 

the 22 Å gap was wide enough to preclude interactions between the calcite surfaces, 

we additionally simulated the system with a gap of 28 Å distance, filled with 2560 

water molecules. After 140 ps equilibration and 60 ps data collection in NPT, we 

observed no effect of gap size on the radial distribution function for oxygen in the 

water molecules with oxygen and hydrogen in neighbouring water molecules or on 

the hydration energy. To test for strain in the simulation cell with the 22 Å gap, we 

ran the final configuration of the NPT production using the NσT (constant number of 
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particles, stress and temperature; 20 ps equilibration) ensemble, but no significant 

change in lattice vectors or angles was observed. 

 

Potential model 

 

Calcite has a rhombohedral crystal structure with space group R c and a = b = 4.990 

Å, c = 17.061 Å, α = β = 90º and γ = 120º 71. In order to simulate the structure, we 

have used the parameters for the short-range interactions in calcite derived 

empirically by Pavese et al.62, who reported very good agreement between their 

simulated and the experimental thermal dependence of structural and elastic 

properties of calcite. At the end of the production run in NPT, our calcite was 

calculated to have lattice parameters of a = b = 4.80±0.14 Å, c = 17.63±0.17 Å, α = β 

= 90.00±1.72º and γ = 119.81±2.14º. Although Pavese et al.’s potential model was 

fitted to bulk properties, it is generally possible for ionic materials to transfer potential 

parameters to surface calculations. In ionic materials after relaxation, the Madelung 

potentials are 90% or more of the bulk values and, hence, the change of ionic radii is 

negligible. In addition, it has been shown in a previous study of the surface structures 

and stabilities of three calcium carbonate polymorphs, namely calcite, aragonite and 

vaterite, that the potential model derived by Pavese et al.62 for calcite is directly 

transferable to different calcium carbonate phases, accurately reproducing the 

experimental morphologies of all three polymorphs29.  

The potential parameters used for the intra- and inter-molecular water interactions are 

those described in a previous paper of MD simulations on MgO surfaces30. For the 

interactions between water molecules and calcite surfaces, we have used the potential 

parameters previously fitted to calcite29 and successfully used in MD simulations of 
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water adsorption at point defects and crystal dissolution from calcite steps57,72. These 

potential parameters reproduce the experimental heat of formation of calcite from its 

aqueous ions to an acceptable degree of accuracy (within 20 kJ mol-1), even though 

the parameters were not fitted to this process. Table S1 in the supplementary 

information lists the parameters of the complete potential model used in this 

simulation study. Further evaluation of the potential parameters used is given in the 

next section. 

 

Car-Parrinello MD method 

 

Car-Parrinello molecular dynamics (CP-MD) simulations of a Ca2+and CaCO3 in 

water were carried out using the CP code included in the Quantum-ESPRESSO 

package, versions 3.2 and 4.0.173. The Perdew-Burke-Ernzerhof (PBE) gradient 

corrected functional74 was applied along with the Vanderbilt ultrasoft 

pseudopotentials (USPP)75. The electronic wavefunctions were expanded in a plane 

wave basis set with a kinetic energy cut-off of 30 Ry. The USPP for C was taken from 

the standard Quantum-ESPRESSO distribution, whereas the USPP for O and H were 

generated using the USPP 7.3 pseudopotential program with a scalar-relativistic 

calculation76. The time step for simulations was set to 0.12 fs and the electronic mass 

was set to 600 a.u. All simulations were carried out in the NVT ensemble using a 

Nosé-Hoover chain thermostat77 to maintain the average temperature at T = 400 K, 

which is necessary to obtain a liquid-like water structure and diffusion time scales 

when using gradient corrected density functionals78. The isotopic mass of deuterium 

(D) was used for hydrogen. The simulations of one Ca2+ and one CO3
2- where 



9 
 

conducted in a cubic cell of L = 11.94 Å containing 52 water molecules, and the 

simulations of one CaCO3 unit were conducted in a cubic cell of L = 11.94 Å 

containing 53 water molecules. After 2 ps of equilibration, the statistics were 

collected for ~ 18 ps. 

 

Validation of the classical MD simulations 

 
The polarizable shell-model water potential used in the present study has been 

specifically developed to simulate liquid water/solid interfaces. While more recently 

developed calcite-water interface MD methods12,46,47 were proven successful for 

simulating calcium carbonate nucleation and growth, the interfacial-water structure is 

better described by the potential model used in the current study, as compared to 

experimental data (Table 1) and with ab initio results on the distance between water 

molecules and a calcium ion (Figure 3). Moreover, simulations of the type presented 

in the present work would not be achievable using ab initio methods due to the sheer 

size required for the simulated calcite system. Therefore, the polarizable shell-model 

water potential30 was used in the current study. However, this potential has been 

shown previously to undergo a phase change at 300K within ~ 1 ns40,79 in NPT 

production runs with small systems (up to 860 water molecules). We therefore 

carefully re-evaluated the potential model for a water box of similar size to the water 

layer between the calcite slabs (2028 water molecules). After 3 ns production at 

260K, 280K, 300K, 320K, 340K and 400K in NPT, we observed a similar phase 

change only at the lowest two temperatures tested (Figure S1). This phase change 

coincides with a sudden decrease in potential energy and increase in density, and a 

steady drop in the 3D diffusion coefficients towards zero. After the phase change, 
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strong ordering of the water molecules is observed and the system is stable for the 

remainder of the production run (~2.5 ns). At the other temperatures for bulk water 

and the calcite-water configuration, no such phase change is observed for the entire 

production run (Figures S1 and S2). The bulk water density is similar to previously 

reported values for shell model water29,30,40 (Figure S1B) and bulk-water 3D diffusion 

coefficients are ~2.9 m2 s-1 at 400K and ~1.6 m2 s-1 at 340K, compared to the 

experimental value of 2.3 m2 s-1 at 300K80,81. 

Since our main aim was to investigate the water structure at the calcite-water 

interface, we also carefully evaluated the structure of our bulk water; of water around 

a calcium ion; and around a calcium-carbonate complex. The number of H-bonds 

obtained for our bulk water (3.8) compares well with the average number of H-bonds 

obtained from simulations of water using ab initio (nHB = 3.3 to 3.8 depending on the 

level of theory) or other water potentials like the TIP3P (nHB = 3.7) or the extended 

simple point charge (SCP/E) potentials (nHB = 3.582) (Table 2). The average OW-OW 

distance in our bulk water is 2.975 Å, independent of T. This value is very close to the 

experimental value of 2.976 Å using microwave spectra83. The number of H-bonds 

between water in the hydration shell of calcium and the surrounding water molecules 

also agrees with our ab initio results (Table 2). Moreover, the distance between the 

calcium ion and one to eight water molecules (NVT) results is identical to DFT 

results84 (Figure 3). Considering the calcium carbonate complex in water, there are 

approximately 1.5 times as many H-bonds with carbonate oxygen than observed in 

our DFT calculations (Table 3). However, it remains unresolved whether the 

polarizable shell model overestimates the number of H-bonds or whether DFT 

methods based on generalized gradient approximations (like the Perdew-Burke-

Ernzerhof or PBE gradient) under-estimate this number, due to the well-known 
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delocalization of electron charge. Note that the reported hydration energy of the 

carbonate ion of -1301 ± 2 kJ mol-1 46, as calculated using the potential parameters we 

are using, is consistent with the experimental value of -1314 kJ mol-1 85. 

To summarize, the structural properties of bulk water and water with a calcium ion 

and a calcium-carbonate complex, obtained using the shell model potential, are 

generally in very good agreement with ab initio results for the same systems and 

experimental values. Furthermore, phase transitions of liquid water to ice-like 

structure were only observed at simulation temperatures close to actual freezing for 

the system size in this study. 

 

Determining the water structure at the calcite surface 

 

Calcium and carbonate ions situated within the flat face are referred to here as face 

sites. At the calcite {10 4}surface, steps occur that have either an acute or obtuse 

angle to the surface26. We therefore refer to ions positioned in step edges as either 

acute or obtuse edge sites. Likewise, corner sites are classified according to the 

structure of the edges they terminate. For example, an acute Ca corner site is a 

calcium ion positioned where two acute edges meet. Note that both CO3 corner sites 

terminate one acute and one obtuse edge each. The results for acute and obtuse edge 

sites represent those flanking the etch pit and the growth island (Figure 2) unless 

stated otherwise. 

Distances between surface calcium atoms (≡Ca) and the oxygen ions in the 

coordinating water molecules (Owater) were extracted from the MD trajectories, as 

averaged over 3100 configurations sampled over a nanosecond of the production run. 

To distinguish between the structurally different surface sites, each of the calcium and 
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carbonate sites had been labelled differently: e.g. a calcium situated at a kink site was 

given a different label from a calcium at an acute or obtuse step edge or within a 

crystal face. The average distance of the first water layer perpendicular to the calcium 

carbonate plane was obtained by geometrical correction of the ≡Ca–Owater distance for 

its average angle relative to this plane.  

The number of hydrogen-bonds between the water molecules coordinated to the 

surface sites and the surrounding water molecules were also extracted from the MD 

trajectories. In particular, to determine the existence of an H-bond between two water 

molecules we have used the following geometrical criteria: (i) the donor-acceptor 

Ow···Ow distance is less than 3.5 Å; (ii) the donor-acceptor Hw···Ow distance is less 

than 2.45 Å; (iii) the hydrogen-donor-acceptor angle is less than 45º 82,86. To the 

authors’ knowledge, there are no configurational criteria for H-bonding between 

water and oxygen atoms with carbonate surface groups. We have therefore adopted 

Gupta and Chandra’s86 criteria for H-bonds between water and formic acid to 

determine the existence of a H-bond between surface carbonate groups and water 

molecules: (i) the donor-acceptor Ow···Oc distance is less than 3.3 Å; (ii) the donor-

acceptor Hw···Oc distance is less than 2.47 Å; (iii) the hydrogen-donor-acceptor angle 

is less than 45º. 

 

 CD-MUSIC approach 

Recently, the CD-MUSIC formalism has been used to develop a surface chemical 

model for calcite19. In summary, the proton affinity of a surface group is calculated 

from bond valence principles using the following empirical relationship1: 
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logK = –A ( + V) 1 

where A is a constant equal to 19.8, obtained from empirically fitting equation (1) to 

proton affinity constants of metal-hydroxyl complexes, V is the valence of the surface 

oxygen (V = –2), and  is the sum of valence bonds with the nearest neighbours, 

expressed in valence units (v.u.): 

 = + m·sH + n (1–sH) 2 

where is the valence contribution of all the cations (Mei) surrounding the 

oxygen atom, either calcium or carbon ions in the case of calcite. The last two terms 

in equation (2) are related to water interacting with the surface: m and n are the 

numbers of donating (≡O–H) and accepting (≡O···H) hydrogen-bonds. sH is the 

valence bond of a donating hydrogen-bond, (1–sH) is the valence bond of an accepting 

hydrogen-bond. The value for sH depends on the length of the O–H bond and is an 

average of 0.75 v.u. (0.68 to 0.88 v.u.87) per H. The contribution of the surrounding 

Me ions (sMe) is calculated according to88: 

sMe =  3 

where R is the distance of the calcium–Ow or carbon–oxygen. R0 is the element 

specific distance and b is a constant (0.37 ± 0.05 Å); R0 and b have been empirically 

determined from fitting equation (3) to the chemical connectivity in inorganic 

crystals88.  

The calcite values for RCa-Ow and m+n were originally assumed to be equal for face, 

edge and corner sites19. The value 2.45 Å37 was adopted for the average RCa-Ow and 
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the m+n values were obtained from fitting experimental ζ-potential data. From the 

classical MD simulations performed in the current study, the values for RCa-Ow and 

m+n have been determined for structurally distinct sites.  

Net proton charge for different groups of sites was determined by summation of the 

products of the concentration of the (de-)protonated surface sites and their charge. For 

obtuse corners, for example, the net proton charge σH is: 

 4 

Any charge contribution by adsorbing or desorbing lattice ions is ignored in this 

calculation. Aqueous and surface speciation calculations were carried out with the 

Visual Minteq 3.0 software88, for equilibrium conditions between calcite and a 0.01 

mol L-1 KCl solution at 25°C. Thermodynamic data for the CaCO3–CO2–H2O systems 

were taken from Plummer and Busenberg90. Electrostatic corrections for surface 

reactions were performed using the Three Plane model19. 

 

3. RESULTS AND DISCUSSION 
 

The interfacial water shows significant ordering due to adsorption of water molecules 

to the surface, which results in a first layer of ordered water molecules roughly 

parallel to the (10 4) surface at ~2.41 Å from surface calcium ions (see Table 1, 

Figure 4a), with its hydrogen atoms primarily interacting with water molecules in the 

liquid and with carbonate oxygen ions. The next layer of water molecules at a 

distance of ~3.5 Å from surface carbon atoms is still more ordered than bulk water, 

owing to H-bonding with adsorbed water molecules and surface carbonate groups. 
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Overall, the first layer of water molecules is situated at 2.41 Å (between 2.35 and 2.43 

Å) above the calcium carbonate plane, in general agreement with experimental22,24,25 

analysis (Table 1). The layering and orientation of the water molecules in the first and 

second layers are in general agreement with classical37,40 and ab initio52 MD 

simulations of the calcite-water interface. The average number of H-bonds per water 

molecule in the calcite-water interface observed here (Table 2) agrees well with those 

observed by Perry et al39.  

 

Water structure around surface calcium sites 

Radial distribution functions for water oxygen in the proximity of surface calcium 

ions expectedly show that, with increasing under-coordination of the surface calcium, 

the number of adsorbed oxygen atoms increases (Figure 5a and b, Table 1). The 

calcium ions in obtuse edge sites show a slightly higher density of water molecules in 

their first coordination shell compared to Ca in acute edge sites, in agreement with 

previous MD simulation results42,43.  

Table 2 reports the distribution and average number of hydrogen-bonds (nHB) between 

the water molecules coordinated to the surface calcium atoms and the surrounding 

water molecules. The number of H-bonds for the water molecules coordinated to 

calcium atoms is reduced considerably from the number of H-bonds obtained from 

the analysis of a molecular dynamics trajectory of bulk water, nHB = 3.8. However, 

the effect of calcium site types (face, edge, corner) on the H-bonding network is, on 

the other hand, not significant. In fact, water molecules adsorbed to Ca surface atoms 

are involved on average in 2.1-2.3 H-bonds. The interaction between water molecules 

and Ca surface sites is illustrated in a series of close-up snapshots in Figure 4. Figure 

4a shows the highly structured water at the interface between calcite and water. In 
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Figure 4b, only water molecules interacting with a Ca— and CO3—surface site are 

highlighted, with the water molecule adsorbed to the Ca face site given as ball-and-

stick (throughout all images), and adsorption indicated by the dashed black line. For 

this particular snapshot, two H-bonds are involved with the water molecule 

coordinated to the Ca face site. An example of the interaction between water 

molecules neighbouring Ca in an obtuse edge is depicted in Figure 4c. For this 

particular example, six H-bonds are formed per Ca edge site and its two adsorbed 

water molecules. In the example snapshot of an acute edge (Fig. 4d), two H-bonds are 

associated with per Ca edge site. The average nHB extracted from the DL_POLY 

trajectory is 4.04-4.47 per obtuse ≡Ca(OH2)n edge site and 4.32 per acute ≡Ca(OH2)n 

edge site. In Figure 4e, the interaction of water molecules adsorbed to an obtuse Ca 

corner with their surrounding water molecules is illustrated. The three adsorbed water 

molecules formed six H-bonds in total with surrounding water molecules at the 

moment of this snapshot. The average nHB obtained from the DL_POLY trajectory is 

6.52 for obtuse ≡Ca(OH2)n corners and 6.73 for acute ≡Ca(OH2)n corners. 

Implications of these results for the differential affinity of various surface ≡Ca(OH2)n 

sites towards protons will be discussed below. 

Freeman et al.43 observed lower numbers of H-bonds at the acute rather than obtuse 

step edge. Some of the disagreement with our observations might come from the 

potentials used for water (shell-model versus TIP3P) and the slightly different criteria 

used to define the existence of an H-bond between two water molecules. Moreover, 

their configuration was quite different from ours. Since their aim was to investigate 

protein-step interactions, they chose to study vicinal faces: their acute steps are 

located on the vicinal {31.8} surface and periodically repeat every ~1 nm; their 

obtuse steps are located on the vicinal {31.16} surface and periodically repeat every 
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~1.7 nm. The difference in step density may have caused some of the relative 

differences in number of HBs they obtained. Moreover, on the acute-stepped surface, 

they observed clumping together of the water molecules in the first layer, leaving 

voids of zero water density on the surface and no formation of a continuous network 

in contrast to their obtuse-stepped surface. This phenomenon was explained to arise 

from the lack of a continuous Ca cation network in the {31.8} surface, preventing the 

interaction with other water molecules within the first layer. Since a continuous Ca 

cation network does exist around the acute steps at the {10-14} surface, and the 

typical separation between steps on rhombohedral calcite crystals grown in the 

laboratory is of the order of 100 nm, our results are likely to be more indicative for 

the water structure around steps at the {10-14} surface. 

 

Water structure around surface carbonate groups 

The variation in interaction between oxygen within carbonate surface groups and the 

surrounding water molecules can be viewed from two perspectives. Firstly, like 

calcium, the carbonate surface sites can be in face, edge or corner position. Secondly, 

there are oxygen ions that point out of the surface towards the water molecules (‘type 

A’ in Figure 4a); ones that are approximately level with carbon in the crystal 

truncation plane (‘type X’, Fig. 4a); and ones that are pointing in towards the bulk 

crystal (‘type B’, Fig. 4a). During equilibration and, to a lesser extent, over the course 

of the production run, some carbonate surface groups have rotated, for example 

turning type B oxygen into an A or X position. This rotation was observed to be most 

significant for growth-island corners, and decreases for edge sites and face sites, with 

face sites showing only minor rotation during equilibration and none during 

production. This rotation caused the counter-intuitive interaction to occur of type B 
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oxygen in face and edge sites with water. 

Table 3 reports the distribution and average number of H-bonds between oxygen 

atoms within surface carbonate groups and the surrounding water molecules, 

determined according to the configurational criteria defined in Section 2. The 

rightmost column lists the average number of H bonds for the different surface 

oxygens, corrected for carbonate group rotation. The number of H-bonds with type A 

oxygen increases from 1.23 for face sites to 1.53 for corners. Type X oxygen has nHB 

values of around 1.35 for edge sites and 1.79 for corner sites, while corner-site 

oxygen type B has on average 0.75 H bonds.  

Figure 6 illustrates the average variation in water hydrogen (Hwater) density near the 

different types of carbonate oxygen at different surface positions as a Radial 

Distribution Function (RDF). For carbonate face sites, only type A oxygen atoms 

have a clear first shell with Hwater (Fig. 6a). In contrast, the RDF for carbonate sites at 

acute edges clearly shows that both type A and X oxygen have a higher H-bond 

density in Hwater (Fig. 6b), and carbonate groups in obtuse edges have similar first 

shells with Hwater for all three of their oxygen atoms (Fig. 6c). This result agrees with 

recent DFT simulations of the adsorption of one water molecule on the stepped 

(10 4) surface, where the adsorption energy on the acute step was 0.43 eV lower than 

on the obtuse step52. Carbonate corner sites also show a clear first shell with Hwater 

around all three of their oxygen atoms, albeit more strongly through types A and X 

than through type B (Fig. 6d). Note that, in Figure 6, not all Hwater in the first shell of 

carbonate oxygens (r<2.45Å) comply with the configurational criteria for hydrogen-

bonds86 and the RDF plots could not be corrected for any carbonate group rotation.  

The interaction between water molecules and oxygen in a carbonate face site is 

illustrated in Figure 4b. The carbonate face site in this snapshot interacts with one 
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water molecule through their type A oxygen. Examples of H-bonds with surface 

oxygen in an obtuse and acute edge are depicted in Figure 4c and d, respectively. In 

these particular examples, the surface carbonate groups interact with two to three 

Hwater. In Figure 4f, the interaction of an obtuse CO3 corner with its H-bonding water 

molecules is illustrated. In this snapshot, all three oxygen atoms form H-bonds with 

four surrounding water molecules. 

 

Implications for surface site reactivity 

With the variation in hydrogen-bonding between interfacial water and the calcite 

surface groups quantified, equations (1) to (3) can now be used to calculate the 

variation in affinity of the different surface groups for protons. Table 4 compares the 

resulting revised protonation constants with the previously published constants. Note 

that each water molecules that is adsorbed to a surface calcium ion is treated as one 

surface ≡xCa(OH2)y+1 site. Adsorption constants for calcium, carbonate and 

bicarbonate are also listed, for completeness, although these were not refined in the 

present study1.  

The refined protonation constants for surface calcium sites deviate slightly from the 

previously published values and vary up to one order of magnitude between the 

structurally different sites. The slight variation in number of HBs for structurally 

different calcium sites translates into non-negligible variation in proton affinities. The 

obtuse edge site ≡oeCaOH2
+2/3 releases its proton most readily of all surface calcium 

sites. Contrastingly, the acute edge site ≡aeCaOH2
+2/3

 is least likely to deprotonate; 

corners and face sites have intermediate protonation affinities. This behaviour is 

                                                
1 Note that these values need to be revised to obtain agreement of the revised model 
with measured surface potentials. 
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illustrated in Figure 7, where the lines with positive slopes plot the concentration of 

singly deprotonated calcium surface sites.  

The refined protonation constants for surface carbonate groups show a strong 

deviation from the previously published values (Table 4), due to the lower number of 

HBs observed in the simulation (Table 3) compared to the fitted number of HBs of 

2.2 as an average for all surface carbonate groups19. The refined surface carbonate 

protonation constants for face and edge sites shown in Figure 7a and b respectively, 

are comparable, while those for corner sites show a wide spread in values for the three 

different carbonate oxygens (Figure 7c). Type B oxygen, which is most closely 

associated with the calcite bulk, is the least likely to be doubly protonated. Despite its 

low number of HBs, it is closest in proton affinity to the previous value due to the 

shorter C-O bond length used in equation (3): in the previous model, a value of 1.27 

Å was used, while currently the 1.195 Å observed in the simulation results was used. 

This shorter C-O bond cancels the effect of the HBs when calculating the proton 

affinities. 

Another new insight gained from the MD simulations is the increase in the number of 

reactive sites. In previous models describing the surface reactivity of calcite using the 

Constant Capacitance model17,18, it has generally been assumed that only one oxygen 

atom per carbonate group interacts with the aqueous solution. Recently, Wolthers et 

al.19 suggested that carbonate corner sites interact with the aqueous solution through 

two oxygen atoms. The current results clearly show that carbonate surface groups 

interact through up to three oxygen atoms with the surrounding water molecules. 

Similarly, assuming one ≡xCa(OH2)y+1 site per surface calcium will lead to an 

underestimation of the number of reactive sites, given that up to three water 

molecules may be coordinated to one surface calcium. This implies that the density of 
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reactive surface sites can be far higher than the 4.9 ≡xCa(OH2)y+1 sites and 4.9 

≡xCO3
z-1 per nm-2 commonly assumed based on crystallographical site densities17, and 

that reactive surface site density is directly related to surface topography. 

In order to illustrate the impact of the proton affinity refinement on surface charging 

behaviour of structurally different sites, the net proton charge (equation 4) has been 

plotted in Figure 8 for various surfaces that were assumed to exist solely of one type 

of surface structure. For example, for the obtuse edge curve it was assumed that all 

calcite surface groups obey the protonation constants for obtuse edge sites. 

Interestingly, the surface proton charges in Figure 8 show that corners are overall 

positively charged, while flat faces and edges are overall negatively charged. For 

comparison, the net proton charge from the previous calcite CD-MUSIC model is 

plotted as well (grey line in Figure 8), with charges intermediate between the refined 

flat faces and obtuse edges. This suggests that the overall surface protonation for a 

calcite surface existing of some ratio of flat faces, edges and corners, is likely to be 

slightly higher than the previously published calcite models. Note that this outcome 

may change when lattice ion sorption constants are refined in order to fit experimental 

ζ-potential data.  

The strikingly higher negative charge on the obtuse compared to acute edges is caused 

by the subtle differences in hydrogen bonding with, in particular, the ≡xCa(OH2)y+1 

sites. Adsorption and incorporation of trace metals and (oxy)anions has previously 

been shown to occur differentially, with different ions preferring either acute or 

obtuse edge sites26,91,92. This behaviour has thus far been related to the difference in 

geometry and coordination of the acute versus obtuse edge sites26. Our quantitative 

results show that the chemical reactivity of the two edges is markedly distinct. 
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The differential charging behaviour of the obtuse and acute edges with pH is a likely 

cause for the selectivity of these edges towards certain metals and (oxy-)anions, 

together with the variation in geometry and coordination. Also, the distinct charging 

behaviour of faces and edges versus corners will control where constituent ions and 

contaminants will adsorb onto the surface. Clearly, the surface topography will affect 

the average calcite surface reactivity observed in macroscopic experiments such as 

bulk surface potential measurements and adsorption experiments. Furthermore, kink 

sites and edge sites are known to play a crucial role in calcite growth10,92,10 and 

dissolution35,56,94,95 kinetics. The detailed insight into the variation of interaction 

between water molecules and structurally different calcite surface sites obtained in the 

present study allows for the quantification of variations in reactivity of the structurally 

different sites and morphologically different surfaces. 
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5. CONCLUSIONS 

 
Classical molecular dynamic simulations of calcite {10 4} surfaces with an explicit 

etch pit and growth island show that the structure of the water surrounding different 

surface sites varies significantly: 

• While thus far it has been assumed in many surface complexation models that 

each surface calcium ion and carbonate group represents a single surface site, 

our results clearly show that this assumption may lead to a strong 

underestimation of the total number of reactive surface sites.  

• Surface calcium ions may adsorb up to three water molecules, depending on 

surface position (face, edge or corner). Since each adsorbed water molecule 

represents a surface reactive site, a single surface calcium ion may account for 

up to three surface reactive sites, each forming on average 2.2 hydrogen-bonds 

with neighbouring water molecules.  

• Surface carbonate groups may interact with surrounding water molecules 

through all three of their oxygen atoms, depending on their position in the 

surface (face, edge or corner). This behaviour is partially due to carbonate 

rotation, the extent of which again depends on the site. As a result, the surface 

carbonate groups may also account for up to three surface reactive sites, with 

the number of hydrogen-bonds increasing as the coordination of the carbonate 

group decreases. 
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• The subtle variations in the number of hydrogen-bonds observed for 

structurally distinct surface sites translate into significant differences in 

charging behaviour of the structurally different sites: 

o the net proton charge (as defined in equation 4) of obtuse edges is 

generally ten times more negative than those of acute edges and face 

sites;  

o corner sites show an overall strongly positive net proton charge. 

• The strong variation in charging behaviour at the obtuse and acute edges can 

also, at least in part, explain their previously observed differential uptake of 

contaminants.   

• The overall calcite mineral-surface reactivity is controlled by its topography. 

This paper shows how molecular dynamics simulations can be used to develop and 

refine macroscopic complexation models that are able to differentiate the acid-base 

and electrical charging properties of distinct surface sites, and are therefore capable of 

describing the reactivity of more realistic metal carbonate minerals. 

Future work will focus on the differential incorporation of impurity ions at the 

different surface sites. As a number of cations commonly observed in calcium 

carbonates, e.g. Mg and Sr, are used as proxies in palaeoclimatological investigations, 

quantitative understanding of their uptake and distribution within the mineral is of 

significant interest. 
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Supporting information: Potential energy and volume of a box of 2028 water 

molecules (Figure S1); potential energy of the calcite slab plus water over the course 

of a production (Figure S2); potential parameters used in this work (Table S1); 

distribution of HBs around surface calcium (Table S2) and carbonate (Table S3) sites 

for three different temperatures. 
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TABLES 
 

Table 1. Local environment of calcium surface sites at structurally different positions 

in the (10 4) surface: Distance at which the highest density of nearest oxygen in the 

water is found, and the number of oxygen atoms (nOw) in this shell. ≡ indicates a 

surface group; LW = liquid water; ML = monolayer coverage. 

≡Ca site position, this study ≡Ca-Owater (Å) nOw 
Face 2.435 0.99-1.15 
Acute edge, growth island 2.475 1.99 
Acute edge, etch pit 2.445 2.01 
Obtuse edges 2.435 1.77-1.96 
Acute corners, growth island 2.445 3.06 
Obtuse corners, growth island 2.435 3.06 
Corners, etch pit 2.475 1.01 
≡Ca-Owater previously published ≡Ca-Owater (Å) nH2O* 
Classical MD simulation 29 2.4 <ML 
Classical MD simulation32 2.55 ML 
Classical MD simulation37 2.45 ML 
Classical MD simulation40 2.2 LW 
Classical MD simulation44 2.2 LW 
Classical MD simulation39 2.3 LW 
ab initio simulation50 2.46 <ML 
ab initio simulation51 2.47 (face) 1 
 2.53 (obtuse edge) 1 
 2.65 (acute edge) 1 
Classical MD simulation46 2.0 LW 
Classical MD simulation47 ~2.3 LW 
Owater distance ┴ to (10-14)   
≡Ca-coordinated water, this study 2.41 (2.35-2.43)  
≡Ca-coordinated water, surface diffraction24 2.35 ± 0.05  
≡Ca-coordinated water, X-ray scattering 22 2.3 ± 0.1  
≡Ca-coordinated water, X-ray scattering25 2.50 ± 0.12  
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Table 2. Distribution of the number of hydrogen-bonds for the water molecules 

coordinated to the different calcium surfaces, free calcium or water oxygen. 

Temperature is 300K unless otherwise stated. The values given are percentages of 

molecules with the given number of hydrogen-bonds82. a range of average HBs for 

different density functional97; b 518 water molecules using DL_POLY; c values used 

for m + n in equation (2). 

 number of hydrogen-bonds  
≡Ca site position 0 (%) 1 (%) 2 (%) 3 (%) 4 (%) 5 (%) 6 (%) averagec 
face site  2.2 19.8 42.7 27.4 7.1 0.8 0.1 2.20 
acute edge site  3.1 23.6 39.2 24.6 7.9 1.5 0.2 2.16 
obtuse edge site  2.1 17.4 42.2 28.1 8.9 1.2 0.1 2.28 
acute corner site  2.2 19.8 42.7 27.4 7.1 0.8 0.1 2.20 
obtuse corner site  3.9 23.6 39.1 24.3 7.8 1.1 0.2 2.13 
Ca2+ in water         
T = 300K (shell model) 1.1 12.0 45.4 29.5 10.0 2.0 0.1 2.42 
T = 320K (shell model) 1.2 15.4 44.6 28.2 9.0 1.5 0.1 2.34 
T = 340K (shell model) 1.1 16.7 42.4 28.3 9.3 2.3 0.0 2.35 
T = 400K (shell model) 2.6 20.4 46.6 23.3 6.1 1.0 0.0 2.13 
T = 400K (ab initio) 0.1 15.5 51.4 31.7 1.3 0.0 0.0 2.19 
Pure water         
Bulk water (shell model) 0.2 2.1 10.6 27.2 34.2 20.0 5.8 3.79 
Bulk water (ab initio MD)        3.31-3.84a 
Bulk water (TIP3P) 0.2 0.8 7.1 28.9 52.3 10.3 0.5 3.65b 
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Table 3. Distribution of the number of hydrogen-bonds for oxygen within surface 

carbonate groups at structurally different positions and for oxygen within aqueous 

carbonate. Temperature is 300K unless stated otherwise. The values given are 

percentages of oxygen atoms with the given number of hydrogen-bonds86. a Car-

Parrinello Molecular Dynamics using the PBE functional (this work); b initial 

coordination of CO3 to metal ion Ca was bidentate; c initial coordination of CO3 to 

metal ion Ca was monodentate; d carbonate group rotation taken into account, values 

used for m + n in equation (2). 

 number of hydrogen-bonds  
≡O site position 0 

(%) 
1 

(%) 
2 

(%) 
3 

(%) 
4 

(%) 
5 

(%) 
6 

(%) 
average corrected 

averaged 
Face (A) 34.4 55.6 9.8 0.2 0.0 0.0 0.0 0.73 1.23 
Face (X) 60.9 34.2 4.8 0.1 0.0 0.0 0.0 0.30  
Face (B) 51.9 42.1 5.9 0.1 0.0 0.0 0.0 0.20  
          
Acute edge (A) 21.1 44.9 24.9 7.5 1.5 0.1 0.0 1.29 1.29 
Acute edge (X) 33.9 40.1 20.1 5.5 0.4 0.0 0.0 0.95 1.37 
Acute edge (B) 48.0 46.8 4.9 0.2 0.0 0.0 0.0 0.42  
          
Obtuse edge (A) 34.9 39.2 15.6 7.7 2.6 0.2 0.0 1.02 1.32 
Obtuse edge (X) 17.2 52.9 22.3 6.6 0.9 0.0 0.0 1.34 1.34 
Obtuse edge (B) 62.1 32.9 4.8 0.2 0.0 0.0 0.0 0.30  
          
Corner (A) 21.4 50.4 23.2 4.7 0.4 0.0 0.0 1.53 1.53 
Corner (X) 19.2 42.0 31.6 6.7 0.6 0.0 0.0 1.79 1.79 
Corner (B) 23.9 43.8 25.6 6.0 0.6 0.1 0.0 0.75 0.75 
O of CaCO3 in water          
T=300K (shell model) 4.8 26.7 28.9 21.7 9.8 5.7 2.5 3.58  
T=320K (shell model) 6.0 28.9 28.4 19.7 9.5 5.3 2.3 3.54  
T=340K (shell model) 12.9 26.7 25.8 18.3 8.9 8.9 5.2 3.47  
T=400K (shell model) 10.9 30.0 27.7 16.5 8.6 4.8 1.6 3.25  
T=400K (CP-MD)a, b 0.5 36.5 41.5 20.1 1.4 0.0 0.0 1.86  
T=400K (CP-MD)a, c 9.5 22.6 28.0 37.5 2.3 0.0 0.0 2.00  
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Table 4. CD-MUSIC model tableau describing calcite surface chemistry; x can either represent face (f), acute edge (ae), obtuse edge (oe), acute corner (ac), obtuse corner 
(oc) or obtuse/acute (c) corner; y and z represents formal charge; y = -2/3 for face, -1/3 for edge and 0 for corner sites; z = +2/3 for face, +1/3 for edge and 0 for corner sites; Δz0 
and Δz1 are Boltzmann parameters describing the charge distribution between the different planes across the mineral-solution interface1. Previous equilibrium constants were 
obtained using a total of a 2.4 and b 2.2 accepting and donating hydrogen bridges, ≡Ca-Owater = 2.45 Å and ≡C-O = 1.27 Å 19; c from Van Cappellen et al.17; d corner only. e 
Refined constants were calculated using equations (1-3), site specific ≡Ca-Owater and number of H-bonds as listed in Tables 1-3 for 300K and ≡C-O = 1.195 Å. 

 Components 2008 values Refined values 
Ca species H+ OH– Ca2+ CO  ≡xCaOHy logKold Δz0

 Δz1
 logKf

e logKae
e logKoe

e logKac
e logKoc

e 

≡xCaOH2
y+1 1    1 12.85 a +1 0 13.42 14.15 13.10 13.57 13.70 

≡xCaOy-1
 –1    1 -24.73 a -1 0 -25.30 -26.03 -24.98 -25.45 -25.58 

≡xCaHCO3
y 1 –1  1 1 10.15 c 0.6 - 0.6 10.15 c 10.15 c 10.15 c 10.15 c 10.15 c 

≡xCaCO3
y-1  –1  1 1 1.55 c 0.6 - 1.6 1.55 c 1.55 c 1.55 c 1.55 c 1.55 c 

CO3 species H+ OH– Ca2+ CO  ≡xCO3Hz    O type logKf
e logKae

e logKoe
e logKc

e 

≡xCO3
z-1 -1    1 -3.58 b -1 0 A -1.19 -0.95 -0.83 0.00 

         X  -0.64 -0.75 1.03 

         B    -3.09 

≡xCO3H2
z+1 1    1 -8.30 b,d +1 0 A -10.69 -10.93 -11.05 -11.88 

         X  -11.24 -11.13 -12.91 

         B    -8.79 

≡xCO3Caz+1 -1  1  1 -2.8 c -1 e + 2 e A,X,B -2.8 c -2.8 c -2.8 c -2.8 c 
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FIGURE CAPTIONS 
 

Figure 1. Sketch of a terrace on the calcite (10 4) face to indicate the position of face 

site, acute and obtuse edge sites, and different types of corner sites. 

 

Figure 2. Water layer between the calcite slabs; one slab with a terrace and the other 

with an etch pit. Black lines indicate surface topography; calcium indicated in green, 

oxygen in red, carbon in grey and hydrogen in white.  

 

Figure 3. Distance between Ca2+ and oxygen in water molecule versus number of 

water molecules. Shell model results (♦, dashed line) were obtained using the 

potential listed in Table S1; (□) Density Functional Theory results84; other results 

were previously obtained by Raiteri et al.46: molecular dynamic simulations using (*) 

polarizable potential (SWM4-NDP)96; (○) polarizable potential model97;  (∆) Raiteri 

force field46. 

 

Figure 4. (a) Simulation snapshot of the hydrated (10 4) calcite surface. Oxygen 

atoms within the surface carbonate groups that point towards the aqueous solution are 

labelled A throughout the text; those oxygen atoms that are approximately level with 

the carbon atom in the crystal truncation plane are labelled X; those oxygen atoms 

that point into the bulk calcite lattice are labelled B. Snapshot of the interaction with 

water molecules of selected calcium and carbonate surface (b) face sites, (c) obtuse 

and (d) acute edges, and of a (e) calcium and (f) carbonate corner with water 

molecules. Black lines indicate surface topography; calcium indicated in green, 
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oxygen in red, carbon in grey and hydrogen in white. The water molecule coordinated 

to surface calcium is given in ball-and-stick in (b-f), others are plotted as stick only. 

 

Figure 5. Radial distribution functions (RDF) for the local environment in the water at 

structurally different calcium surface sites. (a) Atomic density (g) variation in water 

oxygen with distance (r) around the surface calcium sites. (c) Average number (n) of 

water oxygen atoms within a sphere of radius r around the surface calcium sites. ≡ 

indicates surface site. Line numbers indicate the different surface calcium sites (≡Ca): 

(1, bright red) one obtuse corner; (2, dark red) one acute corner; (3, dark green) six 

obtuse edge sites; (4, bright green) five acute edge sites; (5, blue) 91 face sites. For 

details and exceptions, see Tables 1 and 2.  

 

Figure 6. RDF for water hydrogen atoms in the local environment of the oxygen 

atoms within surface carbonate groups (a) in 91 sites within a flat face; (b) in 11 sites 

at acute step edges; (c) in 7 sites at obtuse step edges and (d) in 2 corner sites of a 

growth island. In blue, the RDF for type ‘A’ oxygen atom, in green for type ‘X’ and 

in red for type ‘B’ oxygen within surface carbonate groups (Fig. 4a). 

 

Figure 7. Effect of refined protonation constants (Table 4) on surface speciation, 

illustrated for ≡xCaOHy and ≡xCO3Hz species at (a) face, (b) edge and (c) corner sites 

compared to surface speciation from Wolthers et al.19. For all plots, sorbed lattice ions 

are not plotted and equilibrium between calcite and a 0.01 mol L-1 KCl solution was 

assumed. 
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Figure 8. Net proton charge σH (Eq. 4) for the different groups of surface sites versus 

pH, scaled assuming all types are present at the same surface density and in the case 

of corners, divided by ten for illustration purposes. Net proton charge for the calcite 

surface according to the Wolthers et al.19 2008 model is plotted in grey for 

comparison. Note that charge contribution by sorbing lattice ions was ignored.  
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