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The ability of solid particles to stabilise emulsions is a well known phenomenon which has recently been
demonstrated for the stabilisation of gas bubbles. In this paper, a new theoretical model is developed
which describes how an adsorbed layer of solid nanoparticles modifies the interfacial tension and diffusivity
of a gas bubble in a liquid and hence its stability. In agreement with experimental observations on micro-
bubbles coated with 15 nm diameter spherical gold particles, the results of simulations with the model indi-
cate that the particles substantially decrease the rate at which bubble dissolution occurs and enables them to
maintain a stable radius once a critical particle concentration has been reached.
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1. Introduction

Gas microbubbles are of considerable interest in a range of both
diagnostic and therapeutic medical applications including contrast
enhancement in ultrasound imaging [1], targeted drug delivery and
gene therapy [2]. Since they are normally used as vascular agents,
the bubbles cannot be more than a few micrometres in diameter
to avoid the risk of causing an embolism. A bubble smaller than
~100 pm in diameter, however, will rapidly dissolve when placed in
a liquid, due to interfacial tension and the gas concentration gradient
across the bubble surface. In order to counter this instability, micro-
bubbles used as imaging or therapeutic agents are coated, most com-
monly with surface active molecules which self assemble at the
liquid/gas interface in an aqueous liquid environment. This adsorp-
tion results in a reduction of both the interfacial tension and the dif-
fusivity of the gas across the bubble surface [3].

Previously, it was reported that surface deposition of nanoparticles
on microbubbles can enhance the nonlinearity of their oscillations [4].
This is a desirable property for ultrasound contrast enhancement and
for therapeutic monitoring as it improves detectability. In this study it
was also observed that this deposition of particles greatly enhances
the stability of the microbubbles. Fig. 1 shows micrographs of air
bubbles prepared using a microfluidic device coated with a surfactant
(PEG-40-stearate) and an aqueous suspension of spherical gold
nanoparticles (15 nm mean diameter) that undergo a negligible change
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in size over 3 days compared with bubbles coated with the same surfac-
tant but no particles which disappeared within 24 h. Experimental
details relating to bubble preparation may be found in Stride et al. [4].

The ability of small particles to stabilise colloid dispersions of larg-
er particles was first described by Ramsden [5] and later by Pickering
[6] and there are many examples in the literature where this method
has been used to increase the stability of an emulsion [7]. The aim of this
study was to derive a theoretical model to describe the effect upon the
stability of a gas microbubble of the adsorption of nanoparticles on to its
surface.

2. Theory

Fick's 1st law states that the rate of mass transfer (flux) per unit
area, J, of a component of concentration C across a plane is propor-
tional to the concentration gradient across that plane. This is
expressed in spherical polar coordinates as:

ac
J=-Dg M

where D is the diffusivity of the component in the surroundings and r
is the distance measured from the origin. For the case of a spherical
gas bubble (Fig. 2) of radius R(t) centred at r=0 in a liquid of infinite

volume Epstein and Plesset [8] derive an equation for <%—E)R as:
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Fig. 1. Comparison of the stability of two microbubble suspensions prepared in a microfluidic T-junction device: a) microbubbles coated with gold nanoparticles and a surfactant
(PEG-40 stearate); b) microbubbles coated with surfactant only. It can be clearly observed that the microbubble population with the nanoparticle coating has undergone a 15% re-
duction in mean diameter with the sample remaining relatively monodisperse after 72 h. The microbubble sample without the nanoparticle coating has undergone a much larger
(average 50%) reduction in size and change in size distribution after only 24 h. It may be noted that the microbubbles in a1 are larger and more uniform than those shown in b. This
is because, although the two suspensions were prepared in an identical fashion and initially has the same mean size, over the short time required to transfer the samples to the

microscope the bubbles coated only with surfactant had started to undergo change in size.

where C; and Cq(R) are the initial concentration of the gas in the
liquid and the dissolved gas saturation concentration at the bubble
wall respectively. It is assumed that G, the temperature (T) and pres-
sure (p) are constant throughout the liquid and that Henry's law
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Fig. 2. Schematic of a microbubble with surfactant and nanoparticle coating suspended
in an infinite liquid of variable dissolved gas content. The thickness of the shell is in re-
ality much smaller than the bubble radius but has been exaggerated here for illustra-
tion purposes.

applies at the gas/liquid interface. The mass flow rate through the
boundary can then be written as:
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where S, is the instantaneous surface area of the bubble. In order to
find an equation for the rate of change of bubble radius, Eq. (3) can
be incorporated in an equation describing the rate of change of the
mass of a bubble, m, under constant interfacial tension, o:

dm_ 2 dR o
E74T[R (E) [p( ) +

where B is the universal gas constant, M is the molecular weight of
the gas, p is the density of the gas in the bubble and the term ()
denotes conditions in the bulk liquid (i.e. neglecting the additional
pressure on the gas due to surface tension). Equating Eq. (4) with
Eq. (3) gives:
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It should be noted that in deriving Eq. (5), convection has been
neglected. The fully coupled mass transport problem was solved by
Ready and Cooper [9] and Weinberg [10]. It was found that the effects
of convection, particularly for bubbles with diameter of less than
1 mm, were however very small. The following derivation will there-
fore concentrate on the effects of surfactants and solid particles upon
bubble dissolution.
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The effect of a surfactant coating is to reduce the interfacial ten-
sion as well as providing a barrier to mass transfer across the bubble
wall. These effects become increasingly significant with increasing
surface concentration of surfactant molecules (I'). For an insoluble
molecular monolayer, the interfacial tension o(R) can be written as
[11,12]:
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where I is the initial surfactant concentration on the bubble surface
at which 0=0p, R=Ry, and K and x are constants characterising a
given surfactant. Similarly, the coefficient of diffusion in the presence
of a surfactant coating will also be a function of surface concentration,
which in turn is a function of bubble radius. Using a similar treatment
to that of Cable and Frade [13] D(R) can be written as the exponential
function:

D(R) = aDyexp <b <1 - <%>2>> (7)

Again a, b and Dq characterise a given surfactant. When nanoparticles
are adsorbed on to the interface of a dissolving microbubble, they affect
its dissolution in two ways. First, they reduce the effective surface area
available for the diffusion of gas molecules through the interface. As
the radius of the bubble decreases, the particles remain on the interface
and therefore their fractional coverage of the surface area of the bubble
increases. Thus the uncovered interfacial surface area can be written as:

Sa(R) = 4nR? (1 —fpo <%>2> (8)

where f, is the initial fractional coverage of particles on the bubble sur-
face. The second stabilisation mechanism comes into effect as the bubble
shrinks further. As the radius decreases, the particles on the interface be-
come increasingly close to each other and the radius of curvature of the
interface between them increases. There will come a point when the par-
ticles reach their packing density and the interface can become flattened
(Fig. 3).

At this point the capillary or Laplace pressure, p;, at the bubble
surface due to interfacial tension will be reduced to zero since:

20
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where 1. is the interfacial radius of curvature; as r.— %, p; — 0.

Following the derivation method of Epstein and Plesset but using
the terms described in Eqgs. (6), (7) and (8):
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It should be noted that for the case of a variable diffusivity, Eq. (2)
now represents an approximation to the true boundary condition, but
the additional terms in the series will be small (cf. Eq. (6) of Epstein
and Plesset). As above, the dissolved gas content at the bubble wall
is a function of pressure and will therefore also vary as the bubble
internal pressure changes. Following Epstein and Plesset, the follow-
ing relations can be defined:
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Here fis the ratio of the initial gas concentration to the concentra-
tion at saturation in the bulk liquid and d is the ratio of saturated dis-
solved gas to gas density. It is assumed that the value of d is not
affected by changes in surface tension again according to Epstein
and Plesset. Using these relationships Eq. (10) now becomes:
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3. Results and discussion

Eq. (11) was non-dimensionalised in terms of the new variables:
x'2=2dDot/R3 and €=R/Ry and solved numerically using a 4th
order Runge-Kutta method (via function ODE45 in MATLAB,
R2010b, MathWorks Inc.). Fig. 4 shows how the bubble radius
changes with time with different initial concentrations of particles,
fpo, on the bubble surface in a gas saturated solution at constant tem-
perature and pressure. As expected, for the particle coated bubbles,
the rate at which the bubbles dissolve decreases with time due to
the increasing proximity of the particles on the bubble surface.
Since there is no gas concentration gradient between the bubble
and the surrounding liquid in a gas saturated solution, the bubbles
reach a stable size and the higher the initial particle concentration
the more rapidly the bubble reaches this size and the larger it is.

Fig. 5 demonstrates the effect of reducing the dissolved gas con-
centration in the surrounding liquid so that f=0.75. Once again the
rate of bubble dissolution decreases with increasing initial surface
concentration but now there is a finite gas concentration gradient
across the bubble surface which remains even after the particles on
the bubble surface have reached their maximum concentration.
Since it is implicitly assumed in the above equations that the bubble

Fig. 3. Schematic of the effect of decreasing inter-particle spacing on the curvature of the bubble surface. As the particles become ever closer, the radius of curvature for the interface

between them increases.
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Fig. 4. Radius-time curve for a spherical air bubble in gas saturated liquid (f=1.00)
and various initial particle concentrations. The following parameters were used: a =
0.5, b=2, Dg=2.0x10""m?/s, K=1.5x10""'%, [,=1.0x10"*molecules/m? 0p,=
0.062 N/m, p.=1.204 kg/m°.

remains spherical and that the particles are rigid, the radius of the
bubble as would be observed experimentally cannot undergo further
change. The amount of gas inside the bubble could, however, contin-
ue to decrease and this is illustrated in Fig. 5 which shows how the ef-
fective bubble volume would change due to ongoing gas diffusion.
This process could continue until either: the curvature of the bubble
surface between the particles becomes convex and the Laplace pres-
sure becomes sufficiently negative that the direction of gas diffusion
is reversed, or, the close packed particle structure buckles. These ef-
fects are not described by Eq. (10) and the long term behaviour of
the bubbles must therefore be considered indeterminate. The as-
sumption of sphericity, is in agreement with the authors' experimen-
tal observations (Fig. 1), but other studies with much larger particle
to bubble diameter ratios have shown that non-spherical bubble
shapes can also be stably maintained [14]. Similarly, the assumption
that as the bubble shrinks the surface layer remains one-particle
thick and none are ejected due to the stresses resulting from interfa-
cial tension is supported by surface energy considerations and free
energy analysis [15]; but it is possible that this is not retained over
long periods.
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Fig. 5. Effective volume-time curve for a spherical bubble where f=0.75 and for vari-
ous initial particle concentrations. The following parameters were used: a=0.5, b=2,
Dp=2.0x10""m?/s, K=4.8x10"'8, [,=1.0x10"molecules/m? 0p=0.062 N/m,
p=1.204 kg/m>. The volume plotted is the effective volume that the bubble would
have as a result of ongoing gas diffusion from the bubble into the liquid. The size of
the bubble which would actually be observed experimentally however would not
changed due to the particle jamming effect.

There are a number of additional assumptions made in deriving
Eq. (10) which should be discussed. First, in obtaining the relation be-
tween bubble radius and surface concentration, the transport of sur-
factants into the bulk liquid has been ignored, making it valid only
for insoluble surfactants. In fact it has been suggested that soluble
surfactants have little effect on resistance to mass transfer through
the bubble shell [16]. Second, the effective diffusion coefficient was
modelled using a simple exponential function which has not been ex-
perimentally verified for the surfactants relevant for biomedical
microbubble agents since there are unfortunately few surfactants
for which the relationship between the resistance to mass transfer
and interfacial concentration has been fully characterised. Further-
more, the effect of surface hardening [17], when the surfactant mole-
cules reach a critical packing density and provide a mechanical
resistance to counter Laplace pressure similar to the particle jamming
effect, has not been incorporated into the model. It has also been as-
sumed that the nanoparticles are rigid and will not deform. The bub-
ble sizes considered here are larger than those which are relevant for
medical applications. Eq. (10) is valid for smaller bubbles down to a
few 100 nm, but particle stabilisation has yet to be experimentally
demonstrated for bubbles in the 1-10 pm range. These will both be
pursued in future work together with a direct quantitative compari-
son between theoretical and experimental results. !

A further important consideration in the case of biomedical agents
is that they typically contain high molecular weight gases (e.g. per-
fluorocarbons) not naturally present in the body and these undergo
substitution with dissolved gases in the blood following injection
[18]. The model proposed here could, however, be modified to ac-
count for dissolution behaviour in a multi-gas environment. This
would be achieved by writing the gas pressure inside the micro-
bubble as the sum of the partial pressures of its various constituent
species resulting in a new equation of state for each of the gases at
the bubble boundary. Applying Henry's law would result in a concen-
tration equation at the boundary and in the bulk liquid for each of the
species which could then be used to re-derive new forms of Egs. (3)
and (4) and hence a new model consisting of a set of equations to de-
scribe the rate of change of bubble size.

4. Conclusions

A new theoretical model has been derived to describe the influ-
ence of interfacially adsorbed solid particles upon the dissolution of
a gas bubble in a liquid. Numerical simulations indicate that both
the interfacial tension and diffusivity at the bubble surface can be
substantially reduced by the presence of particles to the extent the
bubble can maintain a stable radius if the particle concentration is
sufficiently high. This is in agreement with experimental observa-
tions. Further investigation and model development is required to
fully characterise the behaviour of the bubble under low concentra-
tions of dissolved gas in the surrounding liquid and in the presence
of soluble surfactants.
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