
6

Solving Boundary Integral Problems with BEM++

WOJCIECH ŚMIGAJ, University College London and Adam Mickiewicz University in Poznań
TIMO BETCKE, SIMON ARRIDGE, JOEL PHILLIPS, and MARTIN SCHWEIGER,
University College London

Many important partial differential equation problems in homogeneous media, such as those of acoustic or
electromagnetic wave propagation, can be represented in the form of integral equations on the boundary of
the domain of interest. In order to solve such problems, the boundary element method (BEM) can be applied.
The advantage compared to domain-discretisation-based methods such as finite element methods is that
only a discretisation of the boundary is necessary, which significantly reduces the number of unknowns.
Yet, BEM formulations are much more difficult to implement than finite element methods. In this article,
we present BEM++, a novel open-source library for the solution of boundary integral equations for Laplace,
Helmholtz and Maxwell problems in three space dimensions. BEM++ is a C++ library with Python bindings
for all important features, making it possible to integrate the library into other C++ projects or to use it
directly via Python scripts. The internal structure and design decisions for BEM++ are discussed. Several
examples are presented to demonstrate the performance of the library for larger problems.

Categories and Subject Descriptors: G.1.8 [Numerical Analysis]: Partial Differential Equations—Elliptical
equations; G.4 [Mathematical Software]: Algorithm design and analysis

General Terms: Algorithms, Documentation, Performance

Additional Key Words and Phrases: Boundary element methods, Boundary integral equations, C++, Python
interface

ACM Reference Format:
Wojciech Śmigaj, Timo Betcke, Simon Arridge, Joel Phillips, and Martin Schweiger. 2015. Solving boundary
integral problems with BEM++. ACM Trans. Math. Softw. 41, 2, Article 6 (January 2015), 40 pages.
DOI: http://dx.doi.org/10.1145/2590830

1. INTRODUCTION

The efficient numerical solution of partial differential equations (PDEs) via boundary
integral formulations plays an important role in diverse applications, such as acoustics,
electrostatics, computational electromagnetics or elasticity [Colton and Kress 2013;
Nédélec 2001; Harrington and Harrington 1996]. Consider as an example a Laplace
problem of the form

−�u(x) = 0 (1)

in some domain � ⊂ R
d with piecewise smooth Lipschitz boundary �, where d = 2, 3.

Green’s representation theorem allows us to write the solution u as

u(x) =
∫

�

g(x, y)
∂

∂n
u(y) d�(y) −

∫
�

∂

∂n(y)
g(x, y) u(y) d�(y) for x ∈ �. (2)

This work is supported by Engineering and Physical Sciences Research Council Grants EP/I030042/1 and
EP/H004009/2.
Authors’ addresses: W. Śmigaj, Department of Mathematics, University College London, London, UK, and
Faculty of Physics, Adam Mickiewicz University, Poznań, Poland; S. Arridge and M. Schweiger, Department
of Computer Science, University College London, London, UK; T. Betcke and J. Phillips, Department of
Mathematics, University College London, London, UK. Correspondence email: t.betcke@ucl.ac.uk.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for third-party components of this
work must be honored. For all other uses, contact the Owner/Author.
2015 Copyright is held by the author/owner(s).
0098-3500/2015/01-ART6
DOI: http://dx.doi.org/10.1145/2590830

ACM Transactions on Mathematical Software, Vol. 41, No. 2, Article 6, Publication date: January 2015.

6:2 W. Śmigaj et al.

Here, n is the unit outward pointing normal at � and g(x, y) is the Laplace Green’s
function defined as

g(x, y) =
{− 1

2π
log |x − y|, d = 2,

1
4π |x−y| , d = 3.

(3)

Hence, in principle, if either u or ∂
∂nu is known on �, we can recover the unknown

quantity by restricting (2) to the boundary and solving for the unknown boundary
data.

The advantage of boundary-integral formulations of PDE problems is that we require
only O(Nd−1) unknowns to discretise the boundary �, where N is the number of vari-
ables in each space dimension. In contrast, for domain-based methods, we need O(Nd)
variables. Moreover, solving exterior problems in �+ := R

d \ � is naturally possible
with boundary integral equations. Yet there are also some fundamental disadvantages
compared to domain formulations. Probably the most significant ones are these.

—Calculation of matrix entries requires the evaluation of complicated singular inte-
grals, which in the case of Galerkin formulations for problems in d = 3 are four-
dimensional.

—The operators are nonlocal, leading to dense matrices. Hence, the cost of a matrix-
vector product for problems in d = 3 space dimensions is O(N4), while for standard
finite elements with sparse discretisations the cost is O(N3).

Traditionally, the cost of dense-matrix storage and evaluation has restricted the appli-
cability of boundary element methods to problems of moderate size. However, advances
in the evaluation of singular integrals appearing in boundary element methods and the
development of fast formulations based on H-matrices, wavelets or the fast multipole
method (FMM) have made it possible to solve very large application problems with
boundary elements. The fast formulations reduce the cost and storage of matrix-vector
products to O(N2 logα N) (α ≥ 0 depends on the formulation) for problems in three
space dimensions [Of et al. 2006; Cheng et al. 2006; Bebendorf 2008; Harbrecht and
Schneider 2006; Sauter and Schwab 2011].

In this article, we describe a novel project to develop a modern open-source library for
boundary-element calculations, BEM++. It combines many of the recent advances in
the development of boundary element methods into one easy-to-use software package.

The library itself is written in C++. In addition, we provide Python bindings for
almost all high-level features of the library. The Python wrappers also contain several
simple visualisation functions that facilitate interactive use of the library.

To allow a natural strong formulation of boundary integral problems, the library
uses the concepts of spaces, dual spaces, operators, and grid functions. Weak-form
discretisations are done automatically when they are needed. Automatic projections
provide mappings between function spaces and their duals so that functions on grids
are always represented in the correct spaces.

Extensibility is ensured by building heavily on C++ object orientation. The library
uses templates for its low-level implementation, on which a standard object-oriented
layer is built. The latter makes use of runtime polymorphism and inheritance to allow
the user to extend the library, for example, by providing new kernels, function spaces,
or grid types.

Reuse of existing high-quality software was an important principle from the start.
The grid management is done with Dune-Grid [Bastian et al. 2008a, 2008b; DUNE
2012], a high-performance parallel grid library, which supports features such as load
balancing and adaptive refinement. Although this advanced functionality of Dune is
not yet used in the current version of BEM++, it ensures the availability of the basic

ACM Transactions on Mathematical Software, Vol. 41, No. 2, Article 6, Publication date: January 2015.

Solving Boundary Integral Problems with BEM++ 6:3

infrastructure for parallelisation on HPC clusters. For the solution of linear systems, we
provide interfaces to Trilinos [Heroux et al. 2005; Trilinos 2012], giving access to a range
of high-quality iterative solvers, and allow to use BEM++ objects without conversion
in more complex Trilinos-based applications. Fast solution of large boundary-element
problems is made possible by an interface to AHMED [Bebendorf 2008, 2012], which
implements the adaptive cross approximation (ACA) algorithm and a complete H-
matrix algebra.

The library is an ongoing project and its functionality is continuously extended. The
most recent version of BEM++, 2.0, includes the following features:

—Galerkin discretisation of the single-, double-, and adjoint double-layer potential
boundary operators and hypersingular boundary operators associated with the
Laplace and Helmholtz equations in three dimensions, as well as of the single- and
double-layer potential boundary operators associated with the Maxwell equations in
three dimensions;

—off-surface evaluation of potentials;
—piecewise polynomial scalar basis functions of order up to 10 (continuous or discon-

tinuous) and Raviart-Thomas basis functions of the lowest order;
—grids composed of planar triangular elements; import of grids in Gmsh format;
—solution of discretised equations using iterative solvers from Trilinos (including

GMRES, CG);
—interfaces to AHMED forH-matrix assembly,H-matrix-vector product andH-matrix-

based preconditioners;
—parallel matrix assembly and matrix-vector product on shared-memory machines;
—Python wrappers of the main library features.

These features permit the current version of the library to be used in a wide range of
contexts while development of advanced features, in particular MPI support, is ongoing.

The current version of the library relies on Galerkin discretisations of boundary
integral equations. We do not claim that this is always the best approach. Collocation,
and in particular Nyström methods have been used highly successfully in a range
of application areas. The initial focus on Galerkin discretisations was motivated by
their suitability for a natural description of FEM-BEM coupling and by the aim of
incorporating at a later stage novel developments about a posteriori error estimation.
(A future goal is to provide results together with good error estimates.) However, the
software design of the library is open to other types of discretisation methods, and in
future we may choose to add support for Nyström methods, for example.

The library itself is available under a permissive MIT license, which allows unre-
stricted use in open-source and commercial applications. The licenses of the dependen-
cies are compatible with this model in the sense that they do not restrict the license of
the main library. The only exception is AHMED, which is only open for noncommercial
applications. The use of AHMED in BEM++ is optional.

The source code of the library is available from its home page, www.bempp.org. The
library comes with a dedicated Python-based installer that automatically downloads
and installs all necessary dependencies before building and installing BEM++ itself.
Full installation instructions can be found on the website of the library.

BEM++ is not the only recent open-source software project whose aim is to develop
a versatile boundary element library. The Fortran package Maiprogs [Maischak 2013]
makes it possible to use Galerkin BEM to solve the Laplace, Helmholtz, Lamé and
Stokes equations. High-order basis functions, including the hp variant of BEM, are
supported. BEMLAB [Wieleba and Sikora 2011] is a C++ library capable of solving
the Laplace and Helmholtz equations; piecewise constant, linear and quadratic basis
functions are supported. The Concepts C++ library [Schmidt 2013] currently contains

ACM Transactions on Mathematical Software, Vol. 41, No. 2, Article 6, Publication date: January 2015.

6:4 W. Śmigaj et al.

an implementation of BEM for the Laplace equation. Both the Galerkin and the col-
location variants are available, with piecewise constant or linear basis functions. All
the preceding libraries handle both 2D and 3D geometries. However, only dense matrix
assembly is possible (FMM and ACA are not supported), which limits the applicability
of these libraries to problems of modest size.

Two general-purpose libraries implementing accelerated variants of BEM are
HyENA (Hyperbolic and Elliptic Numerical Analysis [Messner et al. 2010])1 and BETL
(Boundary Element Template Library [Hiptmair and Kielhorn 2012; Kielhorn 2012]).
HyENA uses ACA to speed up the solution of the Laplace, Helmholtz and Lamé equa-
tions in 2D and 3D using the Galerkin or collocation approaches. Up to quadratic basis
functions are supported. BETL provides access to implementations of both ACA and
FMM, and can be used to discretise boundary operators associated with the Laplace,
Helmholtz and Maxwell equations in 3D using the Galerkin approach. Isoparametric
elements of order up to 4 are available. An in-depth overview of BETL can be found in
Hiptmair and Kielhorn [2012].

In addition, there exist several codes designed for solving a particular equation with
BEM. For instance, Puma-EM [van den Bosch 2013] is a C++/Python package that
calculates electromagnetic fields scattered by perfectly conducting 3D obstacles using
FMM-accelerated BEM.

Like BETL and HyENA, BEM++ provides an accelerated BEM implementation based
on ACA, thanks to its interface to the AHMED library. However, while both HyENA and
BETL are designed as pure C++ template libraries. BEM++ has been developed for easy
access from scripting languages, making very different design decisions necessary (see
Section 3.2). Another difference is the high-level operator interface in BEM++, which
allows natural formulations of products of two operators and products of operators
and functions. The correct mappings between the spaces are handled automatically by
BEM++ (see Section 3.5).

The plan of this article is as follows. In Section 2, we review the foundations of
boundary element methods. Section 3 is devoted to a presentation of the major fea-
tures of BEM++. The practical use of BEM++ is demonstrated in Section 4, where we
develop example Python scripts that use the library to solve particular PDEs. Finally,
in Section 5, we discuss plans for further development of the library.

An extended preprint of this article [Śmigaj et al. 2013] is available from the BEM++
home page. It describes the library in more detail and contains additional code exam-
ples and benchmarks, covering in particular the solution of problems with Neumann
boundary conditions, calculation of Sobolev norms, use of higher-order basis functions
and opposite-order preconditioning.

2. GALERKIN BOUNDARY ELEMENTS

2.1. Boundary Integral Operators and Calderón Projection

Elliptic Equations. In this section, we will give a brief overview of some of the con-
cepts of boundary integral equations for the solution of the Laplace problem (1). For a
complete presentation of the theory of boundary integral equations, see, for example,
Steinbach [2008].

We denote by v := γ int
0 u the Dirichlet trace of u(x) onto the boundary � and by

t := γ int
1 u the conormal derivative, which in the case of the Laplace problem is just

the normal derivative, or Neumann trace, of the solution u(x) on �. By convention,
we assume that normal directions point to the exterior of the domain �. We use the

1We would like to thank the developers of the HyENA project for making available their implementation of
the Sauter-Schwab quadrature rules [Sauter and Schwab 2011] to BEM++.

ACM Transactions on Mathematical Software, Vol. 41, No. 2, Article 6, Publication date: January 2015.

Solving Boundary Integral Problems with BEM++ 6:5

symbol Hs(�) for the standard Sobolev space of order s ∈ R on �, as defined in Steinbach
[2008, p. 33]. Define the single-layer potential operator V : H− 1

2 (�) → H1(�) and the
double-layer potential operator K : H

1
2 (�) → H1(�) by

[Vψ](x) =
∫

�

g(x, y) ψ(y) d�(y), [Kφ](x) =
∫

�

γ int
1,yg(x, y) φ(y) d�(y), x ∈ �. (4)

Using Green’s representation theorem (2), the solution u now takes the form

u = Vt − Kv. (5)

Then, by taking traces on both sides of (5), we get

v =
(

1
2

I − K
)

v + V t, (6)

where V : H− 1
2 (�) → H

1
2 (�) is the single-layer potential boundary operator and K :

H
1
2 (�) → H

1
2 (�) the double-layer potential boundary operator, defined by

[Vψ](x) :=
∫

�

g(x, y) ψ(y) d�(y) and [Kφ](x) :=
∫

�

γ int
1,yg(x, y) φ(y) d�(y) (7)

for (ψ, φ) ∈ H− 1
2 (�)× H

1
2 (�). The identity operator in (6) results from the jump relation

of the double-layer potential. In a strict sense, the prefactor 1
2 is only valid almost

everywhere [Steinbach 2008, p. 123]. Taking the conormal derivative on both sides
of (5) leads to

t = Dv +
(

1
2

I + T
)

t. (8)

Here, D : H
1
2 (�) → H− 1

2 (�) is the hypersingular operator and T : H− 1
2 (�) → H− 1

2 (�)
is the adjoint double-layer potential boundary operator. They are defined by

[T ψ](x) :=
∫

�

γ int
1,xg(x, y) ψ(y) d�(y) (9)

and

[Dφ](x) := −γ int
1,x

[∫
�

γ int
1,yg(x, y) φ(y) d�(y)

]
. (10)

Combining (6) and (8), we obtain the Calderón projection[
v

t

]
=

[1
2 I − K V

D 1
2 I + T

] [
v

t

]
. (11)

By prescribing either v or t, we can derive from (11) an equation for the corresponding
other unknown. A pair (v, t) ∈ H

1
2 (�)× H− 1

2 (�) describes the boundary trace and conor-
mal trace of a solution of the Laplace problem (1) if and only if this pair satisfies (11).
With a suitable kernel g(x, y) the representation in (11) is also valid for other elliptic
PDEs, for example, the Helmholtz equation.

Maxwell Equations. Consider a domain � with boundary �, filled with a material
with permittivity ε and permittivity μ, and define the wavenumber k := (εμ)1/2ω. The
treatment of the time-harmonic Maxwell equations

∇ × E = iωμH, ∇ × H = −iωεE, (12)

ACM Transactions on Mathematical Software, Vol. 41, No. 2, Article 6, Publication date: January 2015.

6:6 W. Śmigaj et al.

in BEM++ closely follows that of Buffa and Hiptmair [2003]. Let u stand for either
the electric field E or the magnetic field H. The interior Dirichlet trace γD,intu of u at a
point x ∈ � is defined as

[γD,intu](x) ≡ u|�,int(x) × n(x), (13)

where n is the outward unit vector normal to � at x and u|�,int(x) is the limit of u(y) as
y approaches x from within �. The interior Neumann trace γN,intu at x ∈ � is defined
as

[γN,intu](x) ≡ 1
ik

(∇ × u)|�,int(x) × n(x). (14)

The exterior traces are defined analogously. Both the Dirichlet and Neumann trace
belong to the Sobolev space H−1/2

× (div�, �) defined in Buffa and Hiptmair [2003].
Owing to the duality between the electric and magnetic field, only two integral

operators are needed rather than four as in the Laplace case: the single-layer potential
operator �SL,k and the double-layer potential operator �DL,k. They are defined by

[�SL,kv](x) := ik
∫

�

gk(x, y) v(y) d�(y) − 1
ik

∇x

∫
�

gk(x, y) (∇� · v)(y) d�(y), (15a)

[
DL,kv](x) := ∇x ×
∫

�

gk(x, y) v(y) d�(y), (15b)

where

gk(x, y) ≡ exp(ik|x − y|)
4π |x − y| (16)

is the Green’s function of the Helmholtz equation with wave number k and v(x) is a
vector-valued function defined on a surface �.

Taking the interior and exterior Dirichlet and Neumann traces of the Stratton-Chu
representation formula [Buffa and Hiptmair 2003, Theorem 6], one arrives at the
boundary integral equations(

−1
2

I + Ck

)
γD,intu + SkγN,intu = 0, (17a)

−SkγD,intu +
(

−1
2

I + Ck

)
γN,intu = 0, (17b)

where the single-layer boundary operator Sk : H−1/2
× (div�, �) → H−1/2

× (div�, �) and
double-layer boundary operator Ck : H−1/2

× (div�, �) → H−1/2
× (div�, �) denote the aver-

ages of the interior and exterior traces of the corresponding potential operators with
wavenumber k, and I stands for the identity operator. Similarly, Maxwell equations
in an exterior domain R

3 \ � filled with a material corresponding to wave number k,
with the Silver-Muller boundary conditions imposed at infinity, can be reduced to the
boundary integral equations(

1
2

I + Ck

)
γD,extu + SkγN,extu = 0, (18a)

−SkγD,extu +
(

1
2

I + Ck

)
γN,extu = 0. (18b)

ACM Transactions on Mathematical Software, Vol. 41, No. 2, Article 6, Publication date: January 2015.

Solving Boundary Integral Problems with BEM++ 6:7

2.2. Boundary Element Spaces

To discretise the Sobolev spaces H− 1
2 (�) and H

1
2 (�), we introduce the triangulation Th

of � with triangular surface elements τ� and associated nodes xi such that Th = ⋃
� τ�.

Here, h denotes the mesh size. We define two spaces of functions.

—The space of piecewise constant functions S0
h(�) := span{ψ (0)

k } with

ψ
(0)
k (x) =

{
1 for x ∈ τk

0 for x /∈ τk.
(19)

—The space of continuous piecewise linear functions S1
h(�) := span{φ(1)

j } with

φ
(1)
j (xi) =

{
1 for i = j
0 for i �= j.

(20)

Approximation results for these spaces are given, for instance, in Steinbach [2008,
Section 10.2].

To discretise the Sobolev space H−1/2
× (div�, �), we use the space of lowest-order

Raviart-Thomas functions [Raviart and Thomas 1977].
In the following, we distinguish between shape functions, defined on a reference el-

ement (typically the unit triangle or the unit square), element-level basis functions,
obtained by mapping the shape functions onto a (single) physical element, and basis
functions, obtained by joining together one or more element-level basis functions de-
fined on one or more adjacent physical elements. This usage is consistent with, for
example, Szabo and Babuška [1991, p. 95] and Šolı́n [2005, p. 67]. We call the family of
all shape functions associated with a particular reference element a shapeset. For ex-
ample, a shapeset associated with the unit triangle with vertices x1 = (0, 0), x2 = (0, 1)
and x3 = (1, 0) might be the set of the three linearly independent linear functions φ

(1)
j

(j = 1, 2, 3) defined on that triangle and satisfying Eq. (20).

2.3. Galerkin Discretisation of a Dirichlet Problem

Laplace Equation. We now describe as an example the Galerkin discretisation of a
Dirichlet problem. Here, the boundary data v are given and we need to compute t.
Using the first row of (11), we obtain

V t =
(

1
2

I + K
)

v. (21)

Denote by

〈 f, g〉 :=
∫

�

f (x) g(x) d�(x) (22)

the standard L2(�) inner product. The variational formulation of (21) is now given as
follows. Find t ∈ H

1
2 (�) such that

〈ψ, V t〉 =
〈
ψ,

(
1
2

I + K
)

v

〉
(23)

for ψ ∈ H− 1
2 (�). By restricting H

1
2 (�) to S1

h(�) and restricting H− 1
2 (�) to S0

h(�), we
obtain the corresponding discretised Galerkin formulation, which takes the matrix
form

Vt =
(

1
2

M + K
)

v.

ACM Transactions on Mathematical Software, Vol. 41, No. 2, Article 6, Publication date: January 2015.

6:8 W. Śmigaj et al.

The matrices are defined by

Vi, j =
∫

�

ψ
(0)
i (x)

∫
�

g(x, y) φ
(0)
j (y) d�(y) d�(x),

Mi, j =
∫

�

ψ
(0)
i (x) φ

(1)
j (x) d�(x),

Ki, j =
∫

�

ψ
(0)
i (x)

∫
�

g(x, y) φ
(1)
j (y) d�(y) d�(x).

If the solution t is piecewise sufficiently smooth, then the following error estimate
holds [Steinbach 2008, Chapter 12]:

‖t − th‖H− 1
2 (�)

= O(h
3
2),

where th is the solution of the discretised variational problem. This reflects the power of
Galerkin boundary elements. We achieve superlinear convergence in the right space for
the unknown t despite only using piecewise constant basis functions to approximate t.

Note the importance of the concept of dual spaces in the context of Galerkin boundary
element methods. The functions on both sides of (21) are elements of H

1
2 (�). In order

for (23) to be well defined, we need that ψ ∈ H− 1
2 (�), the dual space of H

1
2 (�). BEM++

understands this notion of dual spaces of range spaces, and requires the user to define
the domain, the range, and the dual-to-range space for linear operators.

A drawback of Galerkin boundary elements compared to collocation methods is that
the corresponding matrix elements are expensive to evaluate. The computation of V
and K requires the evaluation of four-dimensional integrals over singular kernels if the
support elements of the basis functions interface or intersect each other. Fast numerical
quadrature rules have been developed to deal with this problem (see, e.g., Sauter and
Schwab [2011], Chernov et al. [2011], Chernov and Schwab [2012] and Polimeridis et al.
[2013]). In special cases, semi-analytical [Rjasanow and Steinbach 2007; Polimeridis
and Mosig 2010], or even fully analytical [Lenoir and Salles 2012], rules have also been
developed.

Maxwell Equations. Following Buffa and Hiptmair [2003], the Galerkin weak forms
of the operators Sk and Ck are defined with respect to the antisymmetric pseudo-inner
product

〈u, v〉τ ,� ≡
∫

�

u(x) · [v(x) × n(x)] d�(x). (24)

Explicit expressions for the weak forms of Sk and Ck are given in Eqs. (32) and (33)
from Buffa and Hiptmair [2003] (the former needs to be multiplied by i to adapt it to
the convention used in BEM++).

3. AN OVERVIEW OF BEM++

3.1. General Structure

The BEM++ library is composed of five major parts, schematically illustrated in
Figure 1.

The Grid module is responsible for grid management. It is essentially a wrapper of
the Dune-FoamGrid library [Gräser and Sander 2012], which provides an implemen-
tation of the abstract grid interface defined by the Dune-Grid package.

The Fiber (Fast Integration Boundary Element Routines) module is a key component
of the library, incorporating most of its low-level functionality. It is responsible for the

ACM Transactions on Mathematical Software, Vol. 41, No. 2, Article 6, Publication date: January 2015.

Solving Boundary Integral Problems with BEM++ 6:9

Fig. 1. The five modules of BEM++, together with their most important classes.

local assembly, that is, the evaluation of boundary-element integrals on single elements
or pairs of elements, without taking into account their connectivity. In addition to
classes performing the actual integration, Fiber defines a set of interfaces representing
elements of weak forms of boundary-integral operators, such as kernels and shape
function transformations. This module is independent from the rest of BEM++ except
for a small set of auxiliary header files used throughout the library. It could therefore
be used in separate boundary-element codes, providing the most basic functionality
common to all boundary-element libraries—evaluation of elementary integrals. With
this in mind, the members of Fiber are defined in separate C++ namespace, Fiber,
rather than the Bempp namespace used in the rest of BEM++. More information about
the interfaces used to define weak forms in Fiber can be found in Sections 3.9 and 3.10
of the extended preprint of this article [Śmigaj et al. 2013].

The Space module consists of the Space class and its derivatives. A Space represents
a space of functions defined on the elements of a grid. It provides a mapping between
those elements and shapesets (Fiber::Shapeset objects) defined on the corresponding
reference elements. It also acts as a degree-of-freedom manager, using its knowledge
of element-to-element connectivity and the function space continuity properties to
generate a mapping from local to global degrees of freedom and vice-versa. Table I
lists the main spaces currently available in BEM++.

The Assembly module is the largest part of the library. It defines classes repre-
senting integral operators and functions defined on grids, which will be discussed in
Sections 3.3–3.6. In particular, it contains the code responsible for the global assembly,
that is, the formation of matrices of discretised operators from elementary integrals
produced by the Fiber module.

Finally, the LinAlg module provides interfaces to a range of linear solvers. These will
be briefly discussed in Section 3.7.

ACM Transactions on Mathematical Software, Vol. 41, No. 2, Article 6, Publication date: January 2015.

6:10 W. Śmigaj et al.

Table I. Main Spaces Available in BEM++

Name Description

PiecewiseConstantScalarSpace Space S(0)
h of piecewise constant functions.

PiecewiseConstantDualGridScalarSpace Space of piecewise constant functions defined
on the dual grid.

PiecewiseLinearContinuousScalarSpace Space S(1)
h of continuous piecewise linear

functions.
PiecewiseLinearDiscontinuousScalarSpace Space of element-wise linear functions.
PiecewisePolynomialContinuousScalarSpace Space of continuous piecewise polynomial

functions.
PiecewisePolynomialDiscontinuousScalarSpace Space of element-wise polynomial functions.
RaviartThomas0VectorSpace Space of lowest-order Raviart-Thomas basis

functions.
UnitScalarSpace Space of globally constant functions.

3.2. Design for Scriptability

A major goal in the development of BEM++ was to provide Python bindings in addition
to the core C++ interface. This aim had a significant influence on the overall structure
of the BEM++ code.

Numerous scientific libraries written in C++, such as the BEM codes HyENA and
BETL and the grid-management library Dune, make heavy use of C++ templates to
maximise performance. In such codes, quantities such as integration order, element
shape or integral operator type tend to be parameters of class or function templates
and are determined at compile time. The total number of possible variants of any
template can be very large, but in a particular user program a template is actually
instantiated only for a small number of parameter combinations.

This code flavour is perfectly reasonable for libraries intended to be used from C++
only; however, it becomes much less convenient when scripting-language interfaces are
to be developed. A scripting-language wrapper of a C++ library typically requires access
to a binary containing the compiled version of all the C++ code it may need to execute.
For template-based libraries, this means that the templates need to be explicitly in-
stantiated for all the permissible parameter combinations. Since the number of these
grows exponentially with the number of template parameters, scriptable C++ codes
need to use templates sparingly. For this reason, BEM++ relies mostly on dynamic
polymorphism (technically implemented with virtual functions) and restricts the use
of templates to two areas.

First, many classes in BEM++ are templates parametrised by the type used to repre-
sent values of (scalar components of) basis functions, and/or the type used to represent
values of (scalar components of) functions produced by integral operators acting on
these basis functions. These parameters are usually called BasisFunctionType and
ResultType, respectively. Occasionally, other parameter names, such as ValueType, are
also used. The parameters are allowed to take at most four values—float, double,
std::complex<float> and std::complex<double>—corresponding to the single- and
double-precision real and complex numbers, and the templates are explicitly instan-
tiated for each sensible combination of these parameters. This gives at most eight
different variants (mixing different precisions is not allowed).

Second, to improve performance and reduce code duplication, in some low-level code,
we combine coarse-grained dynamic polymorphism and fine-grained static polymor-
phism. This is most easily shown with an example. In the process of assembling
the right-hand side of an integral equation, the user typically needs to expand a
known function f , defined analytically or by interpolation of experimental data, in a

ACM Transactions on Mathematical Software, Vol. 41, No. 2, Article 6, Publication date: January 2015.

Solving Boundary Integral Problems with BEM++ 6:11

Fig. 2. Dependencies between some of the classes related to evaluation of user-define functions.

boundary-element space. In BEM++, such functions are represented with classes de-
rived from the abstract Function base class. The latter contains, in particular, the
virtual function Function::evaluate(), which takes the geometrical data (e.g., global
coordinates, surface normals etc.) associated with a list of points and is expected to pro-
duce the list of values of f at these points. The coarse-grained nature of this interface—
with several evaluations of f per virtual-function call—helps to reduce the overhead
due to dynamic polymorphism. However, it comes at the price of increased complexity
of implementation: the body of the evaluate() method of every concrete subclass of
Function now needs to contain a loop over the supplied points.

To remedy this, BEM++ provides a number of class templates, such as Surface-
NormalIndependentFunction, derived from Function and parameterised with the name
of a user-defined functor class (see Figure 2). This class should provide an evaluate()
method able to calculate f at a single point. The implementation of SurfaceNor-
malIndependentFunction::evaluate() loops over the supplied points and calls the
evaluate() method of the functor object for each of these points separately, gathering
the results and storing them in an array that is subsequently returned to the caller.

This mechanism has several advantages. The use of static polymorphism on the
fine-grained level allows us to the reduce amount of code that needs to be written by
user to the bare minimum (evaluation of f a single point), which simplifies develop-
ment and limits the room for errors. It also improves performance, as the calls to the
functor’s evaluate() method can be inlined and potentially automatically vectorised
by the compiler. On the other hand, the presence of the abstract Function class pre-
vents the “spill-out” of the functor-type template parameter into other fragments of the
library and the ensuing combinatorial explosion of the number of necessary template
instantiations. It also permits us to provide a separate set of subclasses of Function
that implement the virtual evaluate() method by calling a user-defined Python func-
tion. For the purposes of code external to the Function hierarchy, there is no difference
between functions defined in C++ and in Python.

A similar approach (abstract base class + derived class templates parametrised with
functors) is also used to represent terms occurring in boundary integrals, such as
kernels or shape function transformations (standing for element-level basis functions
or their curls, for example).

3.3. Abstract and Discrete Boundary Operators

BEM++ distinguishes between two types of boundary operators: abstract and discrete
ones.

Abstract operators, subclasses of the AbstractBoundaryOperator class, represent
boundary operators in their strong form. An abstract operator is a mapping L : Xh → Yh,
where the domain Xh and the range Yh are two (finite-dimensional) spaces of functions
defined on surfaces � and � (Xh and Yh may be equal). Discrete operators, subclasses of
the DiscreteBoundaryOperator class, represent boundary operators in their Galerkin

ACM Transactions on Mathematical Software, Vol. 41, No. 2, Article 6, Publication date: January 2015.

6:12 W. Śmigaj et al.

Fig. 3. Relationships between the main classes representing boundary operators.

weak form. The weak form of L is obtained by applying it to each basis function of the
trial space Xh and projecting the result on the basis functions of the test space Y ′

h dual
to Yh. This yields a matrix L (see Section 2.3). Interpreted as an operator, this matrix
L : C

m → C
n acts on (algebraic) vectors of dimension m = dim Xh and produces vectors

of dimension n = dim Y ′
h.

Abstract operators can be divided into two main categories: local and non-local op-
erators. Let f (x) be a function from Xh; we say that L is local if (Lf)(x) depends only
on the values of f in an infinitesimal neighbourhood of x. The identity operator and
differential operators, such as the Laplace-Beltrami operator, are local and their dis-
cretised weak forms are sparse matrices. Conversely, integral operators are in general
non-local and their discretised weak forms are dense matrices.

Figure 3 depicts the relationships between the BoundaryOperator, Abstract-
BoundaryOperator and DiscreteBoundaryOperator classes, showing also some sub-
classes of the latter two.

It is obviously possible to use the discrete operators directly to solve a given boundary-
element problem. However, BEM++ provides also a higher-level interface, in which
direct access to discrete operators is not necessary. This allows programs to be written
in a manner following more closely the simpler strong-form formulation of problems.

With this aim in mind, BEM++ defines the BoundaryOperator class, which acts as
a wrapper of a pair of shared pointers referencing an AbstractBoundaryOperator and
its discretised version, a DiscreteBoundaryOperator. The second pointer is at first null
and is initialised only after the first call to BoundaryOperator::weakForm(). To create
a BoundaryOperator object representing a standard integral operator, the user calls a
nonmember constructor function, for example, the following one.

template <typename BasisFunctionType, typename ResultType>
BoundaryOperator<BasisFunctionType, ResultType>
laplace3dSingleLayerBoundaryOperator(

ACM Transactions on Mathematical Software, Vol. 41, No. 2, Article 6, Publication date: January 2015.

Solving Boundary Integral Problems with BEM++ 6:13

Table II. Functions that Construct the Elementary Operators Currently Defined in BEM++

Function Weak form

identityOperator()
∫
�

φ(x) ψ(x) d�(x)
maxwell3dIdentityOperator()

∫
�

φ(x) · [ψ(x) × n(x)]
laplaceBeltrami3dOperator()

∫
�

∇�φ(x) · ∇�ψ(x) d�(x)

laplace3dSingleLayerBoundaryOperator()
∫
�

∫
�

φ(x) g(x, y) ψ(y) d�(x) d�(y)
laplace3dDoubleLayerBoundaryOperator()

∫
�

∫
�

φ(x) ∂n(y)g(x, y) ψ(y) d�(x) d�(y)
laplace3dAdjointDoubleLayerBoundaryOperator()

∫
�

∫
�

φ(x) ∂n(x)g(x, y) ψ(y) d�(x) d�(y)
laplace3dHypersingularBoundaryOperator()

∫
�

∫
�

curl� φ(x) · g(x, y) curl� ψ(y) d�(x) d�(y)

helmholtz3dSingleLayerBoundaryOperator()
∫
�

∫
�

φ(x) gk(x, y) ψ(y) d�(x) d�(y)
helmholtz3dDoubleLayerBoundaryOperator()

∫
�

∫
�

φ(x) ∂n(y)gk(x, y) ψ(y) d�(x) d�(y)
helmholtz3dAdjointDoubleLayerBoundaryOperator()

∫
�

∫
�

φ(x) ∂n(x)gk(x, y) ψ(y) d�(x) d�(y)
helmholtz3dHypersingularBoundaryOperator()

∫
�

∫
�

gk(x, y)[curl� φ(x) · curl� ψ(y)

−k2 φ(x) n(x) · ψ(y) n(y)] d�(x) d�(y)

maxwell3dSingleLayerBoundaryOperator()
∫
�

∫
�

gk(x, y)[−ikφ(x) · ψ(y)
− 1

ik div� φ(x) div� ψ(y)] d�(x) d�(y)
maxwell3dDoubleLayerBoundaryOperator()

∫
�

∫
�

∇xgk(x, y) · [φ(x) × ψ(y)] d�(x) d�(y)

const shared_ptr<const Context<
BasisFunctionType, ResultType> >& context,

const shared_ptr<const Space<BasisFunctionType> >& domain,
const shared_ptr<const Space<BasisFunctionType> >& range,
const shared_ptr<const Space<BasisFunctionType> >& dualToRange,
const std::string& label = "",
int symmetry = NO_SYMMETRY);

The key parameters are the first four ones. The parameter context controls the details
of subsequent operator discretisation and will be described in Section 3.4. The next
three parameters are the spaces representing the domain of the abstract operator, its
range and the space dual to the range. They might, for example, be chosen as the
space of functions piecewise constant or piecewise linear on elements making up a
specific grid. The domain and the space dual to the range are used during subsequent
discretisation of the operator as the trial and test space, respectively. The range, in
turn, is used in the creation of functions obtained by acting with the operator on
already defined functions. This will be covered in more detail in Section 3.5.

Most predefined abstract operators in BEM++ are represented with instances of the
GeneralSingularIntegralBoundaryOperator or GeneralLocalBoundaryOperator class.
For example, the laplace3dSingleLayerBoundaryOperator() function discussed previ-
ously creates a new instance of GeneralSingularIntegralBoundaryOperator and wraps
it in a BoundaryOperator object, which is then returned to the caller. The mechanism
of construction of other operators is completely analogous, as will be evident from the
examples presented in Section 4. Table II lists the elementary boundary operators that
are currently defined in BEM++.

Both in the C++ and Python interface to BEM++, the arithmetic operators (+, -, *
and /) acting on BoundaryOperators are overloaded. Thus, the user can easily create
composite operators representing linear superpositions of elementary ones, as in this
code.

typedef BoundaryOperator<double, double> BO;
BO I = identityOperator<double, double>(...);

ACM Transactions on Mathematical Software, Vol. 41, No. 2, Article 6, Publication date: January 2015.

6:14 W. Śmigaj et al.

BO K = laplace3dDoubleLayerBoundaryOperator<double, double>(...);
BO combined = 0.5 * I + K;

It is also possible to create operators consisting of several blocks in order to solve
systems of boundary integral equations. Such operators are represented with the
BlockedBoundaryOperator class, whose instances are treated analogously to those of
BoundaryOperator—for example, the user can pass them to solver classes or extract
their discrete weak forms. Example code creating a blocked boundary operator will be
presented in Section 4.2.

3.4. Construction of Discrete Weak Forms

The discrete weak form of a given boundary operator is created on the first call to its
weakForm() method, which returns a shared pointer to a DiscreteBoundaryOperator
object. The details of the discretisation procedure are controlled by the Context object
previously passed to the constructor of the BoundaryOperator. It is essentially a combi-
nation of two more specialised objects: QuadratureStrategy and AssemblyOptions. The
former defines the strategy used to evaluate the element-by-element integrals occur-
ring in the entries of the discretised weak form of the operator. Currently BEM++ offers
a single concrete subclass of QuadratureStrategy: the NumericalQuadratureStrategy,
which implements Sauter-Schwab quadrature rules [Sauter and Schwab 2011]. More
information about the quadrature-related classes in BEM++ will be given in Section 3.9.
The AssemblyOptions object controls higher-level aspects of the weak-form assembly.
Most importantly, it determines whether the ACA algorithm is used to accelerate the
assembly and to reduce the memory consumption. AssemblyOptions can also be used
to switch between serial and parallel assembly.

After the construction of a weak form, a shared pointer to it is stored in the Boundary-
Operator object, so that any further calls to the weakForm() method do not trigger
the costly recomputation of the discrete operator. Moreover, the implementation of
BoundaryOperator ensures that all copies of a given BoundaryOperator (objects gener-
ated by calling its copy constructor) share a single DiscreteBoundaryOperator repre-
senting their common weak form, regardless of whether these copies are made before
or after the discretisation. Thus, if, for instance, a given elementary integral operator is
reused in several blocks of a blocked boundary operator, or occurs on both the left- and
the right-hand side of an integral equation, it is discretised only once. Of course, this
holds also if the operator is used as part of a more complex expression, for example, a
superposition of several operators. The possibility of this reuse of discrete weak forms
relies crucially on the fact that most objects in BEM++, such as those representating
grids, function spaces, and abstract operators, are immutable.

3.5. Grid Functions

Functions defined on surfaces are represented in BEM++ with GridFunction objects.
As opposed to a Function, which can be defined in an arbitrary way (with an analytical
formula, interpolation of experimental data etc.), a GridFunction is expressed as a
superposition of the basis functions of a certain space defined on a boundary-element
grid. One of the GridFunction constructors transforms a Function to a GridFunction.

The interaction of operators and functions is an area where the strong-form language
proves particularly convenient. Consider an operator A : X → Y . We approximate the
spaces X, Y and the dual space Y ′ by the finite-dimensional spaces Xh := span{xi}m

i=1,
Yh := span{yi}n

i=1 and Y ′
h := span{y′

i}p
i=1. The Galerkin weak-form approximation of A in

these finite-dimensional spaces is the matrix A(h)
i j := 〈y′

i, Axj〉, i = 1, . . . , p, j = 1, . . . , m.
Now consider a function f := ∑m

j=1 f (h)
j x j ∈ Xh with associated coefficient vector f (h).

ACM Transactions on Mathematical Software, Vol. 41, No. 2, Article 6, Publication date: January 2015.

Solving Boundary Integral Problems with BEM++ 6:15

Then, the result of the action of A on f is a function g = Af ∈ Y . To obtain an
approximation g̃ = ∑n

j=1 g̃(h)
j yj ∈ Yh of g, we compute the vector of projections

〈y′
i, g〉 = 〈y′

i, Af 〉 = [
A(h)f (h)]

i =: μi, i = 1, . . . , p.

We then solve the least-squares problem

〈y′
i, g̃〉 =

n∑
j=1

〈y′
i, yj〉g̃(h)

j = μi, i = 1, . . . , p

to obtain the coefficients g̃(h)
j of g̃ ∈ Yh, which can be done by multiplying the vec-

tor μ with the pseudo inverse of the mass matrix M with elements Mi j = 〈y′
i, yj〉. The

pseudoinverse takes the form M† = (MHM)−1MH for p ≥ n and MH(MMH)−1, otherwise.
In BEM++, the multiplication by pseudoinverse is implemented using sparse direct
solves with the product MHM or MMH , respectively.

The calculation of the vector of coefficients of a function g generated by an integral
operator is necessary whenever g needs to be evaluated or acted upon with another
operator. For example, if one wants to evaluate the function h = ABf , two such conver-
sions from projections to coefficients are needed. As we have seen, at least when the
spaces X, Y and Y ′ are nonequal, the process involves a fair number of algebraic op-
erations. With its interface modelled after the strong formulation, BEM++ completely
encapsulates these manipulations, letting the user obtain the function h simply by
writing

GridFunction<BasisFunctionType, ResultType> h = A * (B * f);

To this end, the GridFunction class offers a dual interface. A GridFunction can be con-
structed either from a list of coefficients in a primal space Yh or projections on the basis
of a dual space Y ′

h (in the latter case, the primal space also needs to be provided). Sim-
ilarly, in addition to the coefficients() method that returns the vector of coefficients
of a given function in its primal space, GridFunction provides the projections(const
Space<BasisFunctionType>& dualSpace) method that calculates on the fly the vector
of scalar products of the GridFunction with the basis functions of dualSpace. Thus, a
GridFunction can convert freely between its primal and dual representation.

3.6. Potential Operators

In Sections 3.3 and 3.4, we discussed the classes representing boundary operators—
integral operators defined on (d−1)-dimensional surfaces embedded in a d-dimensional
space. In order to evaluate the solution of a boundary integral equation problem away
from the surface, we need to use the representation formula from Eq. (5), contain-
ing the potential operators V and K defined in Eq. (4). These potential operators
map from the boundary � into the domain � and are therefore treated differently
in BEM++ than the boundary operators V and K, which map from � into �. Specifi-
cally, they are represented with a hierarchy of classes implementing the interface de-
fined by the PotentialOperator abstract base class. Its most important member is the
evaluateAtPoints() function, which applies the operator to a supplied GridFunction
and evaluates the resulting potential at specified points. The use of potential operators
will be illustrated in Section 4.2.

3.7. Solution of Equations

The discrete operator objects in BEM++ are meant to be easily usable from the Trili-
nos library. For this reason, the DiscreteBoundaryOperator class is derived from
Thyra::LinearOpBase, which defines the fundamental operator interface in Trilinos.

ACM Transactions on Mathematical Software, Vol. 41, No. 2, Article 6, Publication date: January 2015.

6:16 W. Śmigaj et al.

This interface includes, in particular, the apply() method implementing the matrix-
vector product (more precisely, the y := αAx+βy operation). As a result, discretisations
of integral operators assembled by BEM++ can be directly passed to a wide range of
solvers provided by various components of Trilinos, such as the iterative linear solvers
from the Stratimikos-Belos module or the eigensolvers from the Anasazi module.

To facilitate the common task of solving linear equations involving integral operators,
BEM++ provides a common high-level interface to the solvers from Stratimikos-Belos,
including a GMRES and a CG solver, in the form of the DefaultIterativeSolver class.
In particular, the DefaultIterativeSolver constructor accepts a BoundaryOperator (or
a BlockedBoundaryOperator), rather than its discretisation, while the right-hand side
and the solution are passed as GridFunctions rather than algebraic vectors. Thus,
it is possible to use consistently the strong-form description of an integral-equation
problem both during its formulation (construction of constituent boundary operators)
and its solution. The only part where a transition to the description in terms of discrete
weak forms is necessary is the construction of a preconditioner. This is by design, to
allow greater flexibility in adding a preconditioner. An example demonstrating the
construction of a preconditioner will be discussed in Section 4.2.

3.8. Python Interface

The Python bindings to BEM++ are generated using SWIG, a well-known and mature
package for connecting programs written in C/C++ with a wide range of high-level
programming languages [Beazley 2003; SWIG 2012]. The C++ and Python interfaces
to BEM++ are in general very similar; here we will briefly discuss the few aspects
handled differently.

The most important difference concerns the construction of objects. As was men-
tioned in Section 3.2, most C++ classes and non-member functions in BEM++
depend on the BasisFunctionType and/or ResultType template parameters. Since
Python has no notion of templates, SWIG generates a separate Python function
or class for each allowed combination of these parameters. Thus, for example,
the Python function laplace3dSingleLayerBoundaryOperator float64 complex128()
acts as a proxy for the C++ function template laplace3dSingleLayerBoundary-
Operator<BasisFunctionType, ResultType>() instantiated with BasisFunction-
Type=double and ResultType=std::complex<double> >. (The declaration of this func-
tion template was shown in Section 3.3.) It would be cumbersome, though, and go
against the weak-typed nature of Python to have to specify these types explicitly each
time an object is constructed.

To remedy this, we first of all extend the Python wrappers of all C++ tem-
plate classes with the additional methods basisFunctionType() and/or resultType(),
which return the (Pythonic) name of the respective type used in the class template
instantiation. For example, the method Laplace3dSingleLayerBoundaryOperator
float64 complex128.basisFunctionType() returns the string "float64". Second, in
the bempp.lib module we define a family of factory functions that deduce the exact
types of the objects to be constructed from the types of their arguments. For instance,
the standard way of constructing a single-layer potential boundary operator in Python
is to call the function

createLaplace3dSingleLayerBoundaryOperator(
context, domain, range, dualToRange, label=None)

from bempp.lib. This function retrieves the basis function type and result type from
the context object, verifies that the three spaces have the same basis function type, and
finally calls the appropriate laplace3dSingleLayerBoundaryOperator * *() wrapper.

ACM Transactions on Mathematical Software, Vol. 41, No. 2, Article 6, Publication date: January 2015.

Solving Boundary Integral Problems with BEM++ 6:17

In some cases, the constructor’s parameters are not enough to determine some or all of
the types. For example, the constructor of the PiecewiseConstantScalarSpace<Basis-
FunctionType> C++ class template takes a single parameter: a shared pointer to a
constant Grid object. Since Grid is not a class template, it does not constrain the value
of BasisFunctionType. In such cases, the Python factory function takes a Context object
as an additional parameter; this object is then used to determine the values of all the
necessary types. Thus, the signature of the createPiecewiseConstantScalarSpace()
function is

createPiecewiseConstantScalarSpace(context, grid)

and the type used to represent the values of the basis function of the newly constructed
space is determined by calling context.basisFunctionType().

In the end, therefore, the basis function type and return type must be specified ex-
plicitly only once: during the construction of the NumericalQuadratureStrategy, which
is normally the first BEM++ object to be created. Thus, the factory function

createNumericalQuadratureStrategy(
basisFunctionType, resultType, accuracyOptions)

takes strings ("float64", "complex128" etc.) as its first two arguments. The use of the
factory functions from the bempp.lib module will be illustrated by the examples from
Section 4.

A second area where the two interfaces of BEM++ differ is the construction of Grid-
Functions. The Python interface contains special implementations of the abstract
Function interface, described in Section 3.2, with the evaluate() method invoking
a Python callable object. Thus, the user can construct a GridFunction representing,
for example, input Dirichlet or Neumann data simply by writing a Python function
evaluating these data at a prescribed point and passing this function to the create-
GridFunction() factory. The actual discretisation process is naturally slower than it
would be in pure C++, since it involves repeated callbacks from C++ to Python, but
this overhead is normally insignificant in comparison to the total time taken by a
boundary-element calculation.

Finally, the third difference concerns the array classes used in both interfaces. In
the C++ version, we use mainly the 1-, 2-, and 3-dimensional array classes Col, Mat
and Cube provided by the Armadillo library [Sanderson 2012]. For technical reasons,
low-level code also employs simpler multidimensional array classes Array2d, Array3d
and Array4d defined in the Fiber module. In the Python bindings, Armadillo arrays
are transparently converted into “native” NumPy arrays.

3.9. Quadrature

BEM++ makes it possible to customise the quadrature rules under use at several levels
of generality and complexity.

As was mentioned in Section 3.1, the Fiber module is responsible for the local as-
sembly, that is, the evaluation of boundary-element integrals on single elements or
pairs of elements, without taking into account their connectivity. In particular, in
the process of integral operator discretisation, the QuadratureStrategy implementa-
tion in use creates an object derived from LocalAssemblerForIntegralOperators. The
evaluateLocalWeakForms() method of the latter is then repeatedly called to evaluate
the element-by-element integrals contributing to each matrix entry that needs to be
calculated. Thus, one can change completely the method used to evaluate integrals
by deriving a new class from LocalAssemblerForIntegralOperators, and implement-
ing its evaluateLocalWeakForms() method. This class should be accompanied by a

ACM Transactions on Mathematical Software, Vol. 41, No. 2, Article 6, Publication date: January 2015.

6:18 W. Śmigaj et al.

new subclass of QuadratureStrategy, whose implementation of makeAssemblerFor-
InternalOperators() will return an instance of the custom local assembler class. In
this way, one could, for example, envisage implementation of semianalytic quadrature
rules for a particular family of operators.
NumericalQuadratureStrategy, the built-in implementation of QuadratureStrategy,

is strongly customisable; as long as one is happy with numerical quadrature, therefore,
implementation of a custom local assembler is probably unnecessary. The quadrature
rule used to approximate a particular integral is built in two steps. First, an im-
plementation of the QuadratureDescriptorSelectorForIntegralOperators interface
constructs a DoubleQuadratureDescriptor object that specifies (a) whether the test
and trial elements integrated upon share any (and if so, which) vertices or edges and
(b) the desired order of accuracy of the quadrature rule. The QuadratureDescriptor-
SelectorForIntegralOperators has access to the geometrical data of the grid (positions
of element vertices), so that it can, for example, vary the quadrature order with dis-
tance between elements. Second, once a quadrature descriptor has been created, an
implementation of the DoubleQuadratureRuleFamily interface builds a list of quadra-
ture points and weights making up a quadrature rule of the required order and, if the
elements are not disjoint, adapted to the singularity expected from the integrand.

By default, NumericalQuadratureStrategy uses an instance of DefaultQuadrature-
DescriptorSelectorForIntegralOperators to construct quadrature descriptors. This
class by default makes regular integrals be evaluated with the lowest-order quadrature
rule ensuring exact integration of a product of any test and trial functions defined on
the given elements. The order of singular quadrature rules is by default chosen to be
greater by 5 from that of regular ones. These choices can be modified by passing an
AccuracyOptionsEx object to a constructor of NumericalQuadratureStrategy; in this
way, it is possible to set quadrature orders to fixed values, increase them by a fixed
amount with respect to defaults, or even make the regular quadrature order dependent
on the interelement distance. An example of how this can be done will be given in
Section 4.1. Note that since integral operator weak forms contain kernel functions in
addition to test and trial functions, it is a good idea to increase slightly at least the
regular quadrature orders even for coarse grids.

The default implementation of DoubleQuadratureRuleFamily, DefaultDouble-
QuadratureRuleFamily, uses tensor products of Dunavant’s [1985] rules for triangles
to approximate integrals on regular pairs of elements and Sauter-Schwab transforma-
tions of tensor (four-dimensional) Gauss-Legendre rules to approximate integrals on
singular element pairs.

The user can pass custom instances of QuadratureDescriptorSelectorFactory (a fac-
tory class used to create QuadratureDescriptorSelectorForIntegralOperators objects
supplied with geometric data specific to individual operators) or DoubleQuadrature-
RuleFamily to constructors of NumericalQuadratureStrategy. These instances will
then be used instead of the default implementations. Quadrature rules used in the
discretisation of local operators, construction of grid functions, and evaluation of po-
tentials can be customised in a similar way, using a parallel hierarchy of classes such
as QuadratureDescriptorSelectorForPotentialOperators or SingleQuadratureRule-
Family.

The number of classes responsible for the selection of quadrature rules may at first
seem overwhelming. However, they make it possible to modify selected aspects of the
process without reimplementing everything from scratch. For example, here is how
specific modifications of the BEM++ integration mechanism might be implemented.

—To set quadrature orders to a fixed amount, change them by a fixed amount or
make the regular quadrature order depend on interelement distance, construct an

ACM Transactions on Mathematical Software, Vol. 41, No. 2, Article 6, Publication date: January 2015.

Solving Boundary Integral Problems with BEM++ 6:19

appropriate AccuracyOptionsEx object and pass it to a NumericalQuadratureStrategy
constructor.

—To replace the Sauter-Schwab coordinate transformations [Sauter and Schwab 2011]
by the ones proposed by Polimeridis et al. [2013], derive a new class from Double-
QuadratureRuleFamily and pass an instance of it to a NumericalQuadratureStrategy
constructor.

—To make the quadrature order selection dependent on element shape (e.g., raising it
for strongly deformed elements), derive new classes from QuadratureDescriptor-
SelectorForIntegralOperators and QuadratureDescriptorSelectorFactory and
pass an instance of the latter to a constructor of NumericalQuadratureStrategy.

—To use semianalytic quadrature rules or to evaluate integrals adaptively, derive a
new class from LocalAssemblerForIntegralOperators and make it used by a new
subclass of QuadratureStrategy.

4. EXAMPLES

In this section, we will present a number of examples demonstrating the use and capa-
bilities of BEM++. In the first part, we will introduce the Python interface to BEM++
by creating a script solving possibly the simplest problem of all—the Laplace equation
in a bounded domain with Dirichlet boundary conditions. In the second part, we will
turn our attention to the Helmholtz equation, considering in particular acoustic wave
scattering on permeable and nonpermeable obstacles. This will allow us to demonstrate
the creation of blocked operators and preconditioners and evaluation of solutions away
from a discretised surface. In the third part, we will show how to handle mixed (part
Dirichlet, part Neumann) boundary conditions. Finally, in the fourth part, we will
discuss the solution of Maxwell equations with BEM++.

4.1. Laplace Equation with Dirichlet Boundary Conditions

Introduction. In this section, we will develop a Python script using BEM++ to solve
Eq. (21), the Dirichlet problem for the Laplace equation in a bounded domain � ∈ R

3

with boundary �.

Initialisation. We start by importing the symbols from the lib module of the bempp
package. We also load NumPy, the de-facto standard Python module providing a pow-
erful multidimensional-array data type.

from bempp.lib import *
import numpy as np

Before creating the operators, we need to specify certain options controlling the manner
in which their weak form will be assembled.

The first of them is QuadratureStrategy, which determines how individual integrals
occurring in the weak forms are calculated. Currently, BEM++ only supports numerical
quadrature, and thus we construct a NumericalQuadratureStrategy object.

accuracyOptions = createAccuracyOptions()
accuracyOptions.doubleRegular.setRelativeQuadratureOrder(4)
accuracyOptions.singleRegular.setRelativeQuadratureOrder(2)
quadStrategy = createNumericalQuadratureStrategy(

"float64", "float64", accuracyOptions)

The createNumericalQuadratureStrategy() function takes three parameters. The first
two are used to determine the BasisFunctionType and ResultType parameters de-
scribed in Section 3.2. They can be set to "float32", "float64", "complex64", or
"complex128", which are the standard NumPy names of single- and double-precision

ACM Transactions on Mathematical Software, Vol. 41, No. 2, Article 6, Publication date: January 2015.

6:20 W. Śmigaj et al.

real and complex types. In our case, we want both the basis function values and the
values of functions produced by boundary integral operators to be represented with
double-precision real numbers, so we set these parameters to "float64". The last pa-
rameter controls the numerical quadrature accuracy, and should be set to an instance
of AccuracyOptions or AccuracyOptionsEx. The numerical quadrature strategy uses
three separate families of quadrature rules to perform single integrals of regular func-
tions, double integrals of regular functions and double integrals of singular functions.
By default, regular quadrature is done using the least expensive rule ensuring exact in-
tegration of a product of a test and a trial function. Since boundary-element integrals
contain, in addition, kernel functions, it is often a good idea to increase the regular
quadrature orders slightly, as we did in this code snippet. (A call to setRelative-
QuadratureOrder(delta) increases the quadrature order by delta with respect to the
default; alternatively, setAbsoluteQuadratureOrder(order) may be used to set the
order to the fixed value order.) The default singular quadrature order is usually ad-
equate, so in this snippet, we left it unchanged. If necessary, it can be increased by
calling set...QuadratureOrder() on the doubleSingular member of AccuracyOptions.

Higher-level aspects of the weak-form assembly are controlled by AssemblyOptions
objects. In particular, these determine whether the ACA algorithm is used to accelerate
the assembly and to reduce the memory consumption. They can also be used to switch
between serial and parallel assembly. To turn on ACA (which is off by default), it
suffices to write the following three lines.

assemblyOptions = createAssemblyOptions()
acaOptions = createAcaOptions()
assemblyOptions.switchToAca(acaOptions).

One can also fine-tune the ACA parameters by editing the AcaOptions object—for
example, the ACA tolerance can be set to 10−5 by inserting

acaOptions.eps = 1e-5

before the last line of the previous snippet.
The quadrature strategy and assembly options must now be merged into a so-called

assembly context.

context = createContext(quadStrategy, assemblyOptions)

This object encompasses all the parameters influencing operator assembly, including
the chosen basis-function and result types. It will be passed to the constructors of most
objects created in the sequel.

Grid and Spaces. We proceed by loading a triangular grid approximating the sur-
face � from a file in the Gmsh [Geuzaine and Remacle 2009, 2012] format.

grid = createGridFactory().importGmshGrid("triangular",
"sphere-ico-3.msh")

The file sphere-ico-3.msh is included in the Supplementary Material and contains a
1280-element triangulation of a sphere with unit radius and centred at the origin.

Now we can define the approximation spaces. As described in Section 2.2, we will
use the space S1

h(�) of continuous, piecewise linear scalar functions to approximate v

and the space S0
h(�) of piecewice constant scalar functions to approximate t.

pconsts = createPiecewiseConstantScalarSpace(context, grid)
plins = createPiecewiseLinearContinuousScalarSpace(context, grid)

ACM Transactions on Mathematical Software, Vol. 41, No. 2, Article 6, Publication date: January 2015.

Solving Boundary Integral Problems with BEM++ 6:21

Operators. At this point, we are ready to create the individual operators. Looking at
Eq. (21), we see that we need the single- and double-layer potential boundary operators
for the 3D Laplace equation and the identity operator.

slpOp = createLaplace3dSingleLayerBoundaryOperator(
context, pconsts, plins, pconsts)

dlpOp = createLaplace3dDoubleLayerBoundaryOperator(
context, plins, plins, pconsts)

idOp = createIdentityOperator(
context, plins, plins, pconsts)

These three calls produce BoundaryOperator objects (combining a reference to an ab-
stract boundary operator with one to its, initially null, discretisation). The meaning of
the parameters is the same as for the C++ laplace3dSingleLayerBoundaryOperator()
function described in Section 3.3.

The composite operator 1
2 I + K occurring on the right-hand side of Eq. (21) can be

constructed simply by writing

rhsOp = 0.5 * idOp + dlpOp

since BEM++ provides appropriate overloads of the typical arithmetic operators for
BoundaryOperator objects. It is important to stress that the result, rhsOp, will not store
its discrete weak form as a single H-matrix. Instead, invocation of rhsOp.weakForm()
will trigger discretisation of idOp and dlpOp, and rhsOp operator will only store ref-
erences (technically, shared pointers) to the resulting weak forms. The matrix-vector
product for rhsOp will then be realised by processing the results generated by the
matrix-vector products of the elementary operators idOp and dlpOp.

This implicit treatment of composite operators mirrors the design of the Thyra mod-
ule of Trilinos [Bartlett 2007] and makes it easy to construct even very complicated
operators. Occasionally, the need arises, however, to “compress” a composite operator to
a single H-matrix, for example to calculate its H-LU decomposition or to eliminate the
memory overhead incurred by storing individual terms of a superposition of operators
as separate H-matrices. A way to do it, the asDiscreteAcaBoundaryOperator() method,
will be presented in Section 4.2.

Right-Hand Side. We now need an object representing the expansion of the known
Dirichlet trace v in the space of piecewise linears. We will take v to correspond to the
exact solution of the Laplace equation

uexact(x) = 1
4π |x − x0| with x0 = (2, 2, 2). (25)

We define, therefore, a native Python function

def evalDirichletTrace(point):
x, y, z = point
dist = np.sqrt((x - 2)**2 + (y - 2)**2 + (z - 2)**2)
return 1 / (4 * np.pi * dist)

receiving an array of coordinates of a single point and returning the value of v at this
point. Subsequently, we pass it as the last argument of createGridFunction()

dirichletTrace = createGridFunction(
context, plins, pconsts, evalDirichletTrace)

whose declaration looks as follows.

ACM Transactions on Mathematical Software, Vol. 41, No. 2, Article 6, Publication date: January 2015.

6:22 W. Śmigaj et al.

def createGridFunction(context, space, dualSpace, callable,
surfaceNormalDependent=False)

Internally, this routine calculates the vector of projections of the function f defined
by the Python callable object callable on the basis functions of the space represented
by the object dualSpace, and then converts this vector into the vector of coefficients
of f in space in the manner described in Section 3.5. In our example, we choose
space to be a space of piecewise linears and dualSpace a space of piecewise constants.
The assembly context context provides the quadrature strategy used to evaluate the
necessary scalar products, while the surfaceNormalDependent argument determines
whether callable needs information about the orientation of the vector normal to the
grid at the evaluation point. If so, the components of this vector are passed as the
second parameter to callable.

To construct the function standing on the right-hand side of Eq. (21), we act with the
operator rhsOp on the Dirichlet trace, using an appropriate overload of the multiplica-
tion operator.

rhs = rhsOp * dirichletTrace

This produces a GridFunction expanded in the range space of rhsOp, that is, the space
of piecewise linears.

Solution. We have now assembled all the elements of the equation and we are ready
to solve it. We will use the wrapper of the GMRES solver from Trilinos provided by
BEM++.

solver = createDefaultIterativeSolver(slpOp)
solver.initializeSolver(defaultGmresParameterList(1e-8))
solution = solver.solve(rhs)
print solution.solverMessage()
solFun = solution.gridFunction()

As can be seen, the solver takes the operator as a BoundaryOperator object and the
right-hand side as a GridFunction; the discretisation is done automatically and there
is no need to access the ensuing matrices and vectors explicitly. The solution, the
Neumann trace t, is also extracted in the form of a GridFunction.

To see a plot of the Neumann trace on �, we can use the bempp.visualizationmodule,
which provides a number of functions for rapid visualization of solutions calculated
with BEM++. Internally, it is based on TVTK [Ramachandran 2005], a set of Python
bindings of the VTK toolkit [Kitware 2012b]. To plot a single grid function, it suffices
to write as follows.

import bempp.visualization as vis
vis.plotGridFunction(solFun, "cell_data")

The string "cell data" indicates that the function should be treated as constant on
each element of the grid, which is consistent with the space we have chosen to expand
the Neumann trace. The default mode is "vertex data", which causes the function to
be linearly interpolated from its values at vertices of the grid. Figure 4 shows the plot
generated by code snippet.

For serious data analysis it may be preferable to use a dedicated VTK viewer, such
as Paraview [Kitware 2012a]. By calling

solFun.exportToVtk("cell_data", "neumann_trace", "solution")

one can export the solution to a VTK file solution.vtu as a cell-data series labelled
neumann trace.

ACM Transactions on Mathematical Software, Vol. 41, No. 2, Article 6, Publication date: January 2015.

Solving Boundary Integral Problems with BEM++ 6:23

Fig. 4. Neumann trace of the solution calculated with the code presented in Section 4.1.

The full code of the above program can be found in the interior laplace
dirichlet.py script included in the Supplementary Material.

Benchmarks. To give an idea about the speed of calculations, Table III lists the time
used to assemble the discrete weak forms of the two boundary operators and to solve
the resulting algebraic equation for a series of triangular grids generated by repeat-
edly refining an icosahedron and projecting the resulting nodes on the unit sphere.
The table also lists the relative error of the obtained solution, defined as ‖v − v0‖/‖v0‖,
where v0 is the exact Neumann trace, v its approximation computed numerically, and
‖. . .‖ stands for either the L2 or the H− 1

2 -norm.2 The calculations were done on a
12-core, 2.80-GHz Intel workstation. The BEM++ library, built with the GCC 4.4.5
compiler using the -O3 -m64 -march=native compilation flags, was linked against the
Intel MKL library. Regular Galerkin integrals over element pairs were approximated
using quadrature rules of order greater by 4 than default3 and singular integrals with
quadrature rules of the default order of accuracy.4 Regular integrals over single ele-
ments, evaluated during the discretisation of input Dirichlet data, were approximated
using quadrature rules of order greater by 2 than default, comprising 4 quadrature
points. Iterative solver tolerance was set to 1E−8. We have verified that increasing
the quadrature rule orders or decreasing the solver tolerance had only a negligible
effect on the accuracy of the solution. In contrast, the accuracy was somewhat affected
by the ACA tolerance parameter (ε), thus for each grid we present results for several
values of ε. Provided that this parameter is chosen sufficiently small, we recover the
theoretically predicted convergence rates of O(h) in the L2 norm and O(h3/2) in the
H−1/2 norm, with h the element size [Steinbach 2008, pp. 264-265]. In this and all
other examples, the η parameter occurring in the admissibility condition used in ACA
[Bebendorf 2008, section 1.3] was left at the default value of 1.2.

2The method used to calculate Sobolev-space norms is discussed in the extended preprint of this article
[Śmigaj et al. 2013].
3Specifically, a 6 × 6-point rule was used to approximate entries of the matrix of operator V , discretised
with piecewise constant test and trial functions, and 6 × 7-point rule was used to approximate entries of the
matrix of operator K, discretised with piecewise constant test and piecewise linear trial functions.
4Specifically, Sauter-Schwab quadrature rules based on the 3- and 4-point Gauss-Legendre rules were used
in the discretisation of operators V and K, respectively.

ACM Transactions on Mathematical Software, Vol. 41, No. 2, Article 6, Publication date: January 2015.

6:24 W. Śmigaj et al.

Table III. Benchmarks for the Solution of the Dirichlet Problem for the Laplace Equation Inside a Unit Sphere

ACA
DLP op. SLP op. Solver

Relative Relative
#Elem. tol. Mem. (MB / %) t (s) Mem. (MB / %) t (s) #It. t (s) L2 error H− 1

2 error
80 1E−2 0.0 / 100 0.1 0.0 / 100 0.0 15 0.0 8.56E−2 2.95E−2
80 1E−3 0.0 / 100 0.1 0.0 / 100 0.0 15 0.0 8.56E−2 2.95E−2
80 1E−4 0.0 / 100 0.1 0.0 / 100 0.0 15 0.0 8.56E−2 2.95E−2

320 1E−3 0.3 / 81 0.2 0.7 / 96 0.0 24 0.1 4.11E−2 9.34E−3
320 1E−4 0.3 / 88 0.1 0.8 / 97 0.0 23 0.1 4.11E−2 9.33E−3
320 1E−5 0.4 / 99 0.1 0.8 / 99 0.0 23 0.2 4.11E−2 9.33E−3

1280 1E−3 2.6 / 41 0.4 4.2 / 34 0.1 35 0.1 1.98E−2 3.17E−3
1280 1E−4 3.0 / 47 0.4 5.1 / 41 0.1 33 0.1 1.97E−2 3.12E−3
1280 1E−5 3.5 / 55 0.5 6.1 / 49 0.1 33 0.0 1.97E−2 3.12E−3
5120 1E−4 16.0 / 16 2.0 29.4 / 15 0.6 45 0.2 9.72E−3 1.09E−3
5120 1E−5 20.9 / 21 2.3 36.6 / 18 0.7 44 0.3 9.71E−3 1.08E−3
5120 1E−6 26.0 / 26 2.7 45.3 / 23 0.8 43 0.3 9.71E−3 1.08E−3

20480 1E−4 92.1 / 6 10.4 150.3 / 5 3.3 55 1.8 4.92E−3 4.04E−4
20480 1E−5 121.8 / 8 12.6 192.6 / 6 3.9 53 1.7 4.83E−3 3.81E−4
20480 1E−6 155.4 / 10 15.1 244.8 / 8 4.7 53 1.7 4.83E−3 3.81E−4
81920 1E−5 669.5 / 3 69.7 958.6 / 2 20.6 62 10.2 2.41E−3 1.35E−4
81920 1E−6 866.9 / 3 84.7 1238.7 / 2 24.9 61 10.3 2.41E−3 1.34E−4
81920 1E−7 1065.6 / 4 99.5 1541.3 / 3 29.8 61 11.2 2.41E−3 1.34E−4

327680 1E−6 4755.7 / 1 469.5 6004.8 / 1 125.5 68 41.6 1.21E−3 4.75E−5
327680 1E−7 5892.2 / 1 555.1 7515.7 / 1 150.7 68 46.2 1.21E−3 4.75E−5
327680 1E−8 7083.8 / 2 643.5 9124.5 / 1 178.0 68 46.6 1.21E−3 4.75E−5

Abbreviations: #Elem. = Number of elements; tol. = tolerance; op. = operator; Mem. = Memory; t = Time;
#It. = Number of iterations. The memory use of ACA-compressed operators is listed in megabytes and in
percent of the memory use of equivalent dense operators. The number of unknowns is equal to the number
of elements.

It can be seen that the weak-form assembly of the double-layer potential boundary
operator K takes approximately three times longer than that of the single-layer poten-
tial boundary operator V . This is because the trial space of K consists of continuous
piecewise linear functions whose supports extend over several elements, so the weak-
form assembly requires the evaluation of, on average, three times more elementary
integrals.

Let us now consider an example with a more complex geometry. Calculation of the
distribution of charge on the surface of an electric conductor held at a fixed potential v(x)
requires the solution of the exterior Dirichlet problem for the Laplace equation. The
latter can be transformed to the integral equation

V γ ext
1 u =

(
−1

2
I + K

)
γ ext

0 u, (26)

which involves the exterior Dirichlet and Neumann traces γ ext
0 u = g and γ ext

1 u. As
shown in elementary texts (see, e.g., Griffiths [1998]), the surface charge density σ
is proportional to the Neumann trace of the electrostatic potential on the conductor
surface, γ ext

1 u. Figure 5 shows the map of σ on the surface of a bolt held at a constant
potential. The concentration of surface charge in the vicinity of edges and vertices
is clearly visible. The calculation was done on a 154,076-element mesh derived from
a CAD model obtained from OpenCASCADE [2012]. The unknown Neumann data
were expanded in piecewise constant basis functions. Regular Galerkin integrals were
approximated using quadrature rules of order greater by 4 than default, and singular

ACM Transactions on Mathematical Software, Vol. 41, No. 2, Article 6, Publication date: January 2015.

Solving Boundary Integral Problems with BEM++ 6:25

Fig. 5. Charge density (in nC/m2) on the surface of a 13-mm-long bolt held at the potential u = 1 V.

integrals with quadrature rules of the default order of accuracy. In view of the elongated
shape of the object, to improve load balancing between processor cores, we limited the
maximum H-matrix block size to 1

8 of the number of unknowns. With ACA tolerance
set to 1E−6 and GMRES tolerance set to 1E−8, the solution of this problem took 402 s.
The script bolt.py, together with the mesh bolt.msh, is included in the Supplementary
Material.

Section 4.1 of the extended preprint of this article [Śmigaj et al. 2013] contains
additional examples demonstrating the solution of the Laplace equation with Neumann
boundary conditions, use of higher-order basis functions and application of opposite-
order preconditioning, together with accompanying benchmarks.

4.2. Acoustic Wave Scattering

Mathematical Background. Let � with surface � be a bounded acoustical obstacle
made of material with density ρint and speed of sound cint embedded in an infinite
homogeneous medium with density ρext and speed of sound cext. The propagation of
time-harmonic acoustic waves in this system is described by the equations

�p(x) + k2
int p(x) = 0 for x ∈ �, (27a)

�p(x) + k2
ext p(x) = 0 for x ∈ R

3 \ �, (27b)

γ int
0 p(x) = γ ext

0 p(x) for x ∈ �, (27c)

ρ−1
int γ int

1 p(x) = ρ−1
ext γ ext

1 p(x) for x ∈ �, (27d)

where the wave numbers kint and kext are defined as ω/cint and ω/cext, respectively,
with ω being the angular frequency, and p(x) denotes the pressure perturbation at
point x. We want to calculate the pressure generated by the incident wave pinc(x)
fulfilling the exterior Helmholtz equation (27b) in the whole three-dimensional space.
Thus, we decompose the total field in the exterior medium into a sum of the incident
and scattered field,

p(x) = pinc(x) + psc(x) for x ∈ R
3 \ �, (28)

with the scattered field fulfilling Sommerfeld’s radiation conditions at infinity,

lim
|x|→∞

|x|
[

∂

∂|x| psc(x) − ikext psc(x)
]

= 0. (29)

There exist several integral-equation formulations of the scattering problem defined
in Eqs. (27)–(29). One that will be suitable for our presentation was given by Kleinman
and Martin [1988] and reads[

Dext + α−1 Dint Text + Tint

Kext + Kint −Vext − αVint

] [
γ ext

0 p
γ ext

1 p

]
=

[
γ ext

1 pinc

−γ ext
0 pinc

]
, (30)

ACM Transactions on Mathematical Software, Vol. 41, No. 2, Article 6, Publication date: January 2015.

6:26 W. Śmigaj et al.

where α := ρint/ρext and V , K, T and D are the single-layer potential, double-layer
potential, adjoint double-layer potential and hypersingular boundary operators for the
interior or exterior Helmholtz equation (depending on the subscript). This formulation
has the virtue of being free from the irregular frequency problem [Kleinman and Martin
1988].

The overall structure of the code required to solve this system of equations is similar
to that presented in the previous section, so we will only discuss newly introduced fea-
tures. The full code is available in scattering.py script included in the Supplementary
Material.

Creation of Operators. The first difference with respect to the code used to solve the
Laplace equation is that the operators we are dealing with are now complex-valued.
This needs to be indicated in the call to createNumericalQuadratureStrategy() by
setting its second argument to "complex128".

quadStrategy = createNumericalQuadratureStrategy(
"float64", "complex128", accuracyOptions)

The construction of the elementary operators proceeds very similarly to the Laplace
case, except that it becomes necessary to specify the wave number:

rhoExt = 1.; rhoInt = 2.; kExt = 4.; kInt = kExt / 5.

slpOpInt = createHelmholtz3dSingleLayerBoundaryOperator(
context, pconsts, plins, pconsts, kInt, "SLP_int")

slpOpExt = createHelmholtz3dSingleLayerBoundaryOperator(
context, pconsts, plins, pconsts, kExt, "SLP_ext")

dlpOpInt = createHelmholtz3dDoubleLayerBoundaryOperator(
context, plins, plins, pconsts, kInt, "DLP_int")

dlpOpExt = createHelmholtz3dDoubleLayerBoundaryOperator(
context, plins, plins, pconsts, kExt, "DLP_ext")

hypOpInt = createHelmholtz3dHypersingularBoundaryOperator(
context, plins, pconsts, plins, kInt, "Hyp_int")

hypOpExt = createHelmholtz3dHypersingularBoundaryOperator(
context, plins, pconsts, plins, kExt, "Hyp_ext")

As before, we use the space S1
h(�) of piecewise linears to expand γ ext

0 p and the space
S0

h(�) of piecewise constants to expand γ ext
1 p. These two spaces will also used to test

the first and second equation, respectively.
The composite operators to be placed in individual blocks are defined as follows.

alpha = rhoInt / rhoExt
lhsOp00 = hypOpExt + (1./alpha) * hypOpInt
lhsOp10 = dlpOpExt + dlpOpInt
lhsOp01 = adjoint(lhsOp10)
lhsOp11 = -slpOpExt - alpha * slpOpInt

Note that it is not necessary to create elementary adjoint double-layer potential bound-
ary operators: the operator Text + Tint can be constructed by passing the object repre-
senting the sum Kext + Kint to the adjoint() function. The resulting adjoint operator
will reuse the discrete weak forms of the double-layer potential boundary operators, as
is the case for other composite operators, such as sums.

ACM Transactions on Mathematical Software, Vol. 41, No. 2, Article 6, Publication date: January 2015.

Solving Boundary Integral Problems with BEM++ 6:27

Since we are dealing with a system of two integral equations, we need to construct
a BlockedBoundaryOperator object, as indicated in Section 3.3. This is very easy in
Python—the individual blocks are passed simply as members of a nested list.

lhsOp = createBlockedBoundaryOperator(
context, [[lhsOp00, lhsOp01], [lhsOp10, lhsOp11]])

Incident Field. We choose the incident field to be a plane wave propagating in the
x direction. The grid functions representing its Dirichlet and Neumann traces on � are
defined in the familiar way.

def uIncDirichletTrace(point):
x, y, z = point
return np.exp(1j * kExt * x)

uInc = createGridFunction(context, plins, pconsts, uIncDirichletTrace)

def uIncNeumannTrace(point, normal):
x, y, z = point
nx, ny, nz = normal
return 1j * kExt * nx * np.exp(1j * kExt * x)

uIncDeriv = createGridFunction(context, pconsts, plins,
uIncNeumannTrace,
surfaceNormalDependent=True)

Solution and Preconditioning. The equations can now be solved by constructing the
solver in the way described in Section 4.1—which we do not repeat here—and passing
the list of grid functions occupying the individual blocks of the right-hand side to the
solve() method.

solution = solver.solve([uIncDeriv, -uInc])

However, the convergence of the GMRES solver is slow: Already for a 1280-element
spherical grid 270 iterations are required to reduce the residual norm below 1E−8,
and the number of iterations grows rapidly with the size of the grid. We will therefore
apply a preconditioner to speed up the calculations. Owing to the structure of Eq. (30),
a natural preconditioner is the approximate inverse of[

Dext + α−1Dint 0
0 −Vext − αVint

]
, (31)

where the sans-serif symbols denote discrete weak forms of the operators labelled with
the corresponding serif letters.

Remark 4.1. We note that the block diagonal preconditioner given in (31) is not
stable with respect to all wavenumbers. We have nevertheless chosen to present this
preconditioner as it is very simple to apply in BEM++, gives good performance for low
to moderate wavenumbers unless very close to a resonance, and demonstrates the ef-
fectiveness of purely algebraic preconditioning based on H-matrix LU decompositions.

Approximate inverses of H-matrices can be obtained readily by means of the ap-
proximate H-matrix LU decomposition algorithm [Bebendorf 2008, pp. 180–183]. To
construct this preconditioner, we can use the following code.

precTol = 1e-2
invLhsOp00 = acaOperatorApproximateLuInverse(

lhsOp00.weakForm().asDiscreteAcaBoundaryOperator(), precTol)
invLhsOp11 = acaOperatorApproximateLuInverse(

ACM Transactions on Mathematical Software, Vol. 41, No. 2, Article 6, Publication date: January 2015.

6:28 W. Śmigaj et al.

lhsOp11.weakForm().asDiscreteAcaBoundaryOperator(), precTol)
prec = discreteBlockDiagonalPreconditioner([invLhsOp00, invLhsOp11])

This acaOperatorApproximateLuInverse() function takes two arguments: a Discrete-
AcaBoundaryOperator object, that is, a discrete operator stored as an H-matrix, and
a number δ controlling the approximation accuracy. It returns a new discrete oper-
ator storing the approximate LU decomposition of the original operator and acting
as its approximate inverse. To obtain the required DiscreteAcaBoundaryOperators,
we proceed in two steps. First, we call weakForm() to retrieve references to the dis-
crete weak forms of the boundary operators that we want to invert. These operators
are in fact superpositions of pairs of elementary boundary operators, and hence, as
mentioned in Section 4.1, their weak forms are little more than thin wrappers over
pointers to the weak forms of the individual operands. Therefore we need to call the
asDiscreteAcaBoundaryOperator() method, which uses the H-matrix arithmetics to
“compress” a DiscreteBoundaryOperator to a single H-matrix and returns the result-
ing DiscreteAcaBoundaryOperator object. In this snippet, we call the method without
any arguments; however, it accepts two optional parameters than can be used to con-
trol the accuracy of arithmetic operations used to generate the resulting H-matrix
(H-matrix arithmetic being intrinsically nonexact).

Currently, asDiscreteAcaBoundaryOperator() is not yet supported for all discrete
boundary operators; in particular, it cannot be used to convert to H-matrices products
of operators or operators stored in the dense form. However, the most common types of
composite operators, such as linear superpositions or (even) blocked operators, can be
transformed into single H-matrices.

The discreteBlockDiagonalPreconditioner() function produces a Preconditioner
object wrapping a block-diagonal operator, with the argument being a list of discrete
operators to be placed in the diagonal blocks. This function is provided for convenience,
block-diagonal operators being an important class of preconditioners. It is possible to
make a preconditioner out of any discrete operator; it suffices to pass it to the discrete-
OperatorToPreconditioner() function.

The newly created preconditioner needs now to be made available to the linear solver.
This can be done with the second (optional) parameter to the initializeSolver()
method.

solver.initializeSolver(params, prec)

The application of this preconditioner reduces the number of iterations to 32 for the
1280-element grid, and this number stays roughly constant as the grid is refined (with
the wave number kept constant).

Off-Surface Field Evaluation. The two components of the solution, the exterior
Dirichlet and Neumann traces of the total pressure field on �, can be retrieved as
follows.

uExt = solution.gridFunction(0)
uExtDeriv = solution.gridFunction(1)

The traces may be plotted in the same way as in the Laplace case, that is, by calling
plotGridFunction() from the visualization module. In many cases, one is interested,
however, not only in the values of the field on the computational surface, but also away
from it. These can be calculated using the Green’s representation formula, which reads

p(x) =
{

pinc(x) − (
Vextγ

ext
1 psc

)
(x) + (

Kextγ
ext
0 psc

)
(x) for x ∈ R

3 \ �,(
Vextγ

int
1 p

)
(x) − (

Kextγ
int
0 p

)
(x) for x ∈ � \ �,

(32)

ACM Transactions on Mathematical Software, Vol. 41, No. 2, Article 6, Publication date: January 2015.

Solving Boundary Integral Problems with BEM++ 6:29

Fig. 6. Cross-section of the pressure distribution generated by plane wave impinging on a permeable sphere,
as calculated with the code presented in Section 4.2.

where the calligraphic letters denote the single- and double-layer potential operators
(cf. Section 3.6) associated with the fundamental solution of the Helmholtz equation
in the interior and exterior domain. Their representations in BEM++, instances of
subclasses of PotentialOperator, are created as follows:

slPotInt = createHelmholtz3dSingleLayerPotentialOperator(context, kInt)
dlPotInt = createHelmholtz3dDoubleLayerPotentialOperator(context, kInt)

etc. To evaluate a potential A f , where A is a potential operator and f a grid function, at
points {xi}n

i=1, one should call the evaluateAtPoints() method of PotentialOperator.
It takes a GridFunction object representing the function f acted upon by the operator,
a two-dimensional NumPy array whose columns should contain the coordinates of
the points {xi}n

i=1, and an EvaluationOptions object that controls some aspects of the
evaluation procedure, such as the level of parallelisation. For instance, assuming that
the array points contains the coordinates of some points lying inside �, the snippet

evalOptions = createEvaluationOptions()
vals = (slPotInt.evaluateAtPoints(uIntDeriv, points, evalOptions)

- dlPotInt.evaluateAtPoints(uInt, points, evalOptions))

will produce an array of values of the pressure field at these points. The file
scattering.py included in the Supplementary Material contains the complete code
needed to calculate and plot the pressure field sampled at a regular grid of 201 × 201
points lying in the xy plane, together with the surface of the scatterer represented as
a wireframe grid. The graph generated in this way is shown in Figure 6.

Benchmarks. Table IV shows the results obtained by running the code presented
in this section on a series of spherical grids, with the ratio of exterior wavelength
λ := 2π/kext to element size h kept constant and approximately equal to 10. The ratio of
kext to kint was also fixed and equal to 5. In all calculations, the ACA tolerance ε was set to
10E−4 and the solver tolerance to 10E−8. The maximum rank of H-matrix blocks to be

ACM Transactions on Mathematical Software, Vol. 41, No. 2, Article 6, Publication date: January 2015.

6:30 W. Śmigaj et al.

Table IV. H-Matrix Assembly and Solution Times of the Problem of Plane-Wave Scattering
on a Permeable Unit Sphere

Compr. rate (%) No prec. Prec. (δ = 0.1) Prec. (δ = 0.01)

kext #Elem. tass Vext Kext Dext #It. tsol tHLU #It. tsol tHLU #It. tsol

1 80 0.4 100 100 100 47 0.03 0.0 17 0.0 0.0 15 0.0
2 320 0.9 92 93 100 100 0.19 0.0 23 0.0 0.1 19 0.0
4 1280 4.2 48 56 67 286 1.85 0.7 54 0.4 1.0 32 0.3
8 5120 24.9 20 22 31 786 35.2 3.4 50 2.7 7.1 40 2.4

16 20480 147.9 8 10 14 — — 23.2 231 62.1 49.7 190 60.3
32 81920 904.8 3 4 6 — — 169.5 1068 1667.3 445.6 250 495.6

All times are given in seconds.

Table V. Errors for the Problem of Plane-Wave Scattering on a Permeable Unit Sphere

Dirichlet trace Neumann trace

kext #Elem. Rel. L2 error Rel. H
1
2 error Rel. L2 error Rel. H− 1

2 error

21 80 2.70E−2 4.34E−2 3.05E−1 1.10E−1
12 320 1.81E−2 3.73E−2 1.86E−1 5.46E−2
14 1280 1.08E−2 3.16E−2 1.37E−1 3.54E−2
88 5120 8.11E−3 2.88E−2 1.17E−1 2.73E−2

616 20480 6.79E−3 2.75E−2 1.08E−1 1.96E−2
632 81920 6.73E−3 2.71E−2 1.05E−1 2.15E−2

considered low-rank during ACA was set to 1500 to reduce peak memory consumption
in AHMED. Regular Galerkin integrals were approximated using quadrature rules of
order greater by 2 than default5 and singular integrals with quadrature rules of the
default order of accuracy. The table shows the assembly times tass for the block operator
system, compression rates achieved in the storage of the three exterior operators Vext,
Kext and Dext,6 the times tHLU taken by theH-LU decompositions, and the GMRES solver
iteration counts #It. and solver times tsol. The table compares the values obtained for no
preconditioning with those for the block-diagonal preconditioner defined in Eq. (31), for
two values of the H-LU decomposition accuracy δ. In Table V, we present the associated
errors measured against an accurate solution obtained by series expansion.

Extraordinary Acoustical Transmission and Screening. The laws of scalar acoustics
apply essentially in gaseous and liquid media; the propagation of sound in solids is
governed by the more complex theory of elasticity. However, the problem of scatter-
ing of sound on solid objects can often be simplified by treating them as sound-hard
obstacles, that is, by imposing on their surface homogeneous Neumann boundary con-
ditions instead of the more rigorous transmission conditions. This leads to the exterior
Neumann problem for the Helmholtz equation. Its most popular stable (free from the
irregular frequency problem) integral formulation is due to Burton and Miller [1971]
and reads (

1
2

I − K + αD
)

γ ext
0 p = γ ext

0 pinc + αγ ext
1 pinc, (33)

5This choice yields three quadrature points on elements supporting piecewise constant basis functions and
four quadrature points on those supporting piecewise linear basis functions.
6The compression rate is defined as the ratio between the memory consumption of the H-matrix and the
equivalent dense matrix. The compression rates of the interior operators—not shown—are slightly better
because kint < kext.

ACM Transactions on Mathematical Software, Vol. 41, No. 2, Article 6, Publication date: January 2015.

Solving Boundary Integral Problems with BEM++ 6:31

where I is the identity operator, K and D the double-layer potential and hypersingular
boundary operators for the exterior domain, and α is an imaginary coupling coefficient,
usually chosen, after Kress [1985], as i/kext.

After small modifications, the code developed in this section can be used to handle
this class of problems. As an illustraction, we will consider the application of BEM++ to
the modelling of sound scattering by perforated metallic plates. Ebbesen et al. [1998] re-
ported that metallic screens pierced by an array of subwavelength holes became almost
transparent to light at certain frequencies—letting through much more energy than
one would expect judging on the fraction of the volume taken by air. This effect, dubbed
the extraordinary optical transmission, excited a lot of interest, and its physical mech-
anism, based on the interaction of long-range propagating surface waves and localised
cavity modes, was intensely studied in the last decade [Liu and Lalanne 2008; Garcı́a
de Abajo 2007]. More recently, an analogous effect was observed for acoustic waves
[Estrada et al. 2008], together with the phenomenon of extraordinary screening—very
low transmittance at specific frequencies. Here we present results of calculations per-
formed for one of the geometries studied experimentally and theoretically by Estrada
et al. [2008].

We consider a plane wave of wavelength λ propagating along the +z direction and
impinging perpendicularly on a finite aluminum plate of thickness t = 3 mm, perforated
with an array of m× n circular holes with diameter d = 3 mm, arranged on a square
lattice with period a = 5 mm. The plate is treated as a sound-hard obstacle. Its lateral
dimensions are such that the centres of the outermost holes lie at the distance a/2 from
the plate’s edges.

Figure 7 shows the pressure distributions generated by plane waves of wavelengths
5.4 mm (top) and 8 mm (bottom). In each case, the field on the surface of the plate is
juxtaposed with the map of the field in the y = 0 plane. The figure obtained for the
shorter wavelength illustrates the effect of extraordinary screening—the amplitude of
the transmitted wave is low and strong interference fringes behind the plate testify
its high reflectivity—while at the longer wavelength most of the incoming energy is
transmitted through the obstacle. These results are in agreement with the findings of
Estrada et al. [2008].

The simulations were done by discretising Eq. (33) on a 31,966-element mesh rep-
resenting the plate with 9 × 7 holes. The incident field and the sought total field were
expanded in the space of continuous piecewise linear functions. This led to an algebraic
system of equations with 15,859 unknowns. The quadrature orders were chosen as in
the section “Benchmarks”. The GMRES tolerance was set to 1E−8. At an ACA toler-
ance of 1E−5, the discrete weak forms of K and D were compressed to 20% and 15% of
the corresponding dense-matrix memory usage, respectively, at the shorter wavelength
of λ = 5.4 mm; at λ = 8 mm these figures were 18% and 14%. The total solution time
(excluding off-surface evaluation of the calculated field) at λ = 5.4 mm was 403 s and
at λ = 8 mm, 361 s. The script used in the simulations, holey plate.py, together with
the mesh holey plate.msh, is included in the Supplementary Material.

4.3. Laplace Equation with Mixed Boundary Conditions

We will discuss now how BEM++ can be used to solve problems with mixed boundary
conditions. Consider the Laplace equation imposed inside a domain � with boundary �,
with Dirichlet boundary conditions prescribed on a subset of the boundary, �D ⊂ �, and
Neumann boundary conditions prescribed on the rest of the boundary, �N = � \ �D:

(�u)(x) = 0 for x ∈ �, (34a)

γ ext
0 u(x) = gD(x) for x ∈ �D, (34b)

ACM Transactions on Mathematical Software, Vol. 41, No. 2, Article 6, Publication date: January 2015.

6:32 W. Śmigaj et al.

Fig. 7. Magnitude of the acoustic pressure generated by a plane wave with wavelength 5.4 mm (top) and
8 mm (bottom) impinging on a perforated sound-hard plate with dimensions specified in the text.

γ ext
1 u(x) = gN(x) for x ∈ �N. (34c)

A boundary integral formulation of this problem reads [Steinbach 2008, p. 179]

(V t̃)(x) − (Kũ)(x) =
(

1
2

I + K
)

g̃D(x) − (V g̃N)(x) for x ∈ �D, (35a)

(Dũ)(x) − (K′t̃)(x) =
(

1
2

I − K′
)

g̃N(x) − (Dg̃D)(x) for x ∈ �N, (35b)

where g̃D ∈ H
1
2 (�) and g̃N ∈ H− 1

2 (�) are suitable extensions of the prescribed boundary
data gD ∈ H

1
2 (�D) and gN ∈ H− 1

2 (�N) to the whole surface of the domain, whereas the
new unknowns ũ and t̃ are defined as

ũ := γ int
0 u − g̃D, t̃ := γ int

1 u − g̃N. (36)

These functions ara nonzero only on �N and �D, respectively.
The special difficulty of handling problems with mixed boundary conditions lies in

the need of introducing function spaces defined only on parts (segments) of grids.
Since version 2.0, BEM++ offers this possibility: each function constructing a Space ob-
ject (e.g., createPiecewiseConstantScalarSpace()) takes an optional argument of type

ACM Transactions on Mathematical Software, Vol. 41, No. 2, Article 6, Publication date: January 2015.

Solving Boundary Integral Problems with BEM++ 6:33

GridSegment, which describes the part of a grid to which the support of basis functions
of the newly constructed Space should be restricted. A GridSegment is effectively a list
of the indices of the elements, edges and vertices belonging to the chosen part of the
grid.

Suppose that a grid has been imported from the Gmsh file grid.msh by using the
following code.

grid = createGridFactory().importGmshGrid("triangular", "grid.msh")

A Gmsh file can contain indices of so-called physical entities associated with elements.
(In the BEM++ documentation, we prefer to use the term domain indices to avoid
confusion with entities understood as elements of grids—faces, edges and vertices.) If
the elements belonging to �D have been assigned the physical entity index (domain
index) 1 and those belonging to �N the index 2, then GridSegment objects representing
the two parts of the grid can be constructed as follows.

segmentD = GridSegment.closedDomain(grid, 1)
segmentN = segmentD.complement()

The closedDomain(grid, index) static function creates a segment consisting of the
elements of the grid grid whose domain index is equal to index , together with all
their edges and vertices. The four standard set operations (union, difference, inter-
section and complement) are defined for GridSegment objects, which makes it possible
to construct more complicated segments. In the last snippet, segmentN is set to the
complement of segmentD; thus, it will contain all the elements belonging to �N and
the edges and vertices lying inside �N, excluding the edges and vertices lying on the
boundary separating �N from �D.

With the segmentD and segmentN objects available and after creating a Context ob-
ject, which is done as in the previous section, the spaces of piecewise constants and
(continuous) piecewise linears on �D and �N can be constructed as follows.

pwiseConstantsD = createPiecewiseConstantScalarSpace(
context, grid, segmentD)

pwiseConstantsN = createPiecewiseConstantScalarSpace(
context, grid, segmentN)

pwiseLinearsD = createPiecewiseLinearContinuousScalarSpace(
context, grid, segmentD)

pwiseLinearsN = createPiecewiseLinearContinuousScalarSpace(
context, grid, segmentN)

The way a Space constructor uses the lists of indices from a GridSegment object is space-
dependent. For example, pwiseConstantsD will include only the piecewise constant
basis functions defined on the elements belonging to segmentD, whereas pwiseLinearsD
will include only the continuous, piecewise linear (“hat”) basis functions associated
with the vertices belonging to segmentD. Note that, as a result, the support of some
basis functions of pwiseConstantsD, namely those associated with the vertices lying on
the boundary of �D, will extend outside �D. It is possible to clip all basis functions to
the elements belonging to �D by setting the optional parameter strictlyOnSegment to
True.

clippedPwiseLinearsD = createPiecewiseLinearContinuousScalarSpace(
context, grid, segmentD, strictlyOnSegment=True).

Note that functions belonging to a space constructed in this way will still be continuous
on the specified grid segment, but not on the whole grid.

ACM Transactions on Mathematical Software, Vol. 41, No. 2, Article 6, Publication date: January 2015.

6:34 W. Śmigaj et al.

BoundaryOperator objects representing the operators V , K etc. from Eq. (35) are
constructed as usual, with pwiseConstantsD, pwiseLinearsD, pwiseConstantsN, and
pwiseLinearsN passed as the domain, range and dual-to-range spaces, as appro-
priate. The construction of the GridFunction objects representing g̃D and g̃N re-
quires some extra care. Suppose that the Python functions evalDirichletTrace() and
evalNeumannTrace() return the values of gD and gN on �D and �N. To find the best ap-
proximation in pwiseLinearsD of an extension g̃D ∈ H

1
2 (�) of gD ∈ H

1
2 (�D), we cannot

simply use the following function call.

dirichletTraceD = createGridFunction(
context, pwiseLinearsD, pwiseLinearsD, evalDirichletTrace)

Instead, we should choose as the dual space (the third argument) a space of functions
defined strictly on �D.

dirichletTraceD = createGridFunction(
context, pwiseLinearsD, clippedPwiseLinearsD, evalDirichletTrace).

In this way, the coefficients of dirichletTraceD in the basis of pwiseLinearsD are
determined solely from the values of g̃D on �D; the form of the basis functions of
pwiseLinearsDwill then automatically ensure the global continuity of dirichletTraceD
and its linear decay to zero within one layer of elements adjacent to �D.

Since the basis functions of pwiseConstantsN do not extend outside �N, the best
approximation of g̃N in pwiseConstantsN can be simply obtained with the following.

neumannTraceN = createGridFunction(
context, pwiseConstantsN, pwiseConstantsN, evalNeumannTrace)

The construction of a BlockedBoundaryOperator and a vector of GridFunctions repre-
senting the left- and right-hand side of Eq. (35), as well as the solution of the resulting
system, is done as in Section 4.2. This yields the GridFunctions dirichletTraceN and
neumannTraceD approximating ũ : �N → R and t̃ : �D → R. Typically, one is interested
in γ int

0 u and γ int
1 u rather than ũ and t̃. From Eq. (36), γ int

0 u = ũ + g̃D; however, it is not
possible to write

dirichletTrace = dirichletTraceD + dirichletTraceN

since the two GridFunctions on the right-hand side are expanded in different func-
tion spaces. The remedy is to create identity operators mapping pwiseLinearsD and
pwiseLinearsN into the space of continuous piecewise linears defined on the whole
grid, pwiseLinears:

pwiseLinears = createPiecewiseLinearContinuousScalarSpace(
context, grid)

scatterPwiseLinearsD = createIdentityOperator(
context, pwiseLinearsD, pwiseLinears, pwiseLinears)

scatterPwiseLinearsN = createIdentityOperator(
context, pwiseLinearsN, pwiseLinears, pwiseLinears)

and to use them to bring dirichletTraceD and dirichletTraceN into a common function
space.

dirichletTrace = (scatterPwiseLinearsD * dirichletTraceD
+ scatterPwiseLinearsN * dirichletTraceN)

The script interior laplace mixed.py included in the Supplementary Material is
a complete implementation of the ideas outlined in this section. The script solves the

ACM Transactions on Mathematical Software, Vol. 41, No. 2, Article 6, Publication date: January 2015.

Solving Boundary Integral Problems with BEM++ 6:35

Table VI. Error of the Solution of the Laplace Equation with Mixed Boundary
Conditions on Spherical Meshes with Varying Number of Elements

Dirichlet trace Neumann trace

#Elem. Rel. L2 error Rel. H
1
2 error Rel. L2 error Rel. H− 1

2 error

320 5.87E−4 1.26E−2 3.96E−2 9.36E−3
1280 1.41E−4 4.36E−3 1.95E−2 3.15E−3
5120 3.48E−5 1.53E−3 9.67E−3 1.09E−3

20480 8.65E−6 5.39E−4 4.82E−3 3.82E−4
81920 2.14E−6 1.90E−4 2.41E−3 1.35E−4

The total number of unknowns is roughly equal to 75% of the number of
elements.

Laplace equation inside the unit sphere with Dirichlet boundary conditions imposed on
the part of its boundary with x2 > x3/

√
3 and Neumann boundary conditions imposed

on the rest of the boundary; the functions gD(x) and gN(x) are derived from the exact
solution (25). Table VI lists the relative L2(�)- and H± 1

2 (�)-errors of the Dirichlet and
Neumann traces obtained using a selection of spherical grids. In all calculations, the
ACA tolerance ε was set to 10E−7 and the solver tolerance to 10E−8. Regular integrals
over pairs of elements were approximated using quadrature rules of order greater by 4
than default, integrals over single elements using quadrature rules of order greater
by 2 than default, and singular integrals with quadrature rules of the default order of
accuracy. The convergence rates of γ int

0 u and γ int
1 u match those observed and predicted

for pure Dirichlet and Neumann problems discussed in Section 4.1.

4.4. Maxwell Equations

Exterior Dirichlet Problem. In the first example, we will solve the Maxwell equations
(12) in the exterior of a unit sphere �, on whose surface � we impose the Dirichlet
boundary conditions derived from the exact solution

Eexact(x) = eφh(1)
1 (kr) for x ∈ R

3 \ �. (37)

Here, h(1)
1 (·) is the spherical Hankel function of the first kind and first order, (r, θ, φ)

are the spherical coordinates anchored at the point x0 with Cartesian coordinates
(0.1, 0.1, 0.1), the symbol eφ denotes the unit vector parallel to dx/dφ and k is the wave
number.

An integral formulation of this problem is given by Eq. (18a). To solve it with BEM++,
we proceed similarly as in previous sections. We first create a space spanning the lowest
order Raviart-Thomas basis function defined on the grid’s elements.

space = createRaviartThomas0VectorSpace(context, grid)

Afterwards, we construct the necessary operators.

slpOp = createMaxwell3dSingleLayerBoundaryOperator(
context, space, space, space, k, "SLP")

dlpOp = createMaxwell3dSingleLayerBoundaryOperator(
context, space, space, space, k, "SLP")

idOp = createMaxwell3dIdentityOperator(
context, space, space, space, "Id")

Note that we used the createMaxwell3dIdentityOperator() function instead of
createIdentityOperator(), as the latter function would create an operator with the

ACM Transactions on Mathematical Software, Vol. 41, No. 2, Article 6, Publication date: January 2015.

6:36 W. Śmigaj et al.

Table VII. Benchmarks for the Solution of the Dirichlet Problem for Maxwell Equations
Outside a Unit Sphere

S Preconditioner Solver Rel.
k #Elem. Mem. (MB / %) t (s) Mem. (MB) t (s) #It. t (s) L2 error

1 80 0.2 / 100 0.1 0.2 0.0 7 0.0 4.4E−1
2 320 3.5 / 99 0.5 1.5 0.2 19 0.0 1.1E−1
4 1280 36.3 / 65 2.7 10.1 1.5 37 0.2 4.0E−2
8 5120 243.5 / 27 12.1 70.6 10.8 42 1.7 2.5E−1

16 20480 1547.7 / 11 62.1 543.7 72.0 180 32.9 2.1E−1
32 81920 10355.2 / 4 441.4 4547.9 682.9 255 325.1 2.0E−1

The memory use of the operator S is listed in megabytes and in percent of the memory use of
an equivalent dense operator. The memory and time consumption of C is very similar and has
been omitted for brevity. The number of unknowns is roughly equal to 150% of the number of
elements.

weak form defined with regard to the standard sesquilinear inner product rather than
the antisymmetric pseudoinner product used in Buffa and Hiptmair’s [2003] formalism.

We also need to create a GridFunction representing the Dirichlet data γDEexact :=
Eexact|� × n. To this end, we first define a Python function returning a three-element
array, whose elements will be interpreted by BEM++ as the components of the vector
γDEexact at a given point.

def evalDirichletTraceInc(point, normal):
x, y, z = point - 0.1
r = sqrt(x**2 + y**2 + z**2)
kr = k * r
h1kr = (-1j - kr) * exp(1j * kr) / (kr * kr)
field = h1kr * [-y / r, x / r, 0.]
return np.cross(field, normal)

Subsequently, we call createGridFunction(), as usual.

dirichletTraceInc = createGridFunction(
context, space, space, evalDirichletTraceInc,
surfaceNormalDependent=True)

The rest of the program is fairly standard. The complete script, exterior maxwell
dirichlet.py, can be found in the Supplementary Material.

Table VII shows the results obtained by running this script on a series of spherical
grids, with the wavelength-to-element-size ratio λ/h kept constant and approximately
equal to 10. Numerical quadrature of regular integrals was done using a quadrature
rule of order greater by 2 than the library’s default; that of singular integrals, using
the default rule. The ACA tolerance ε was fixed to 1E−4. We found that increasing
quadrature order or decreasing ACA tolerance had negligible effect on the accuracy
of the solution. We used an approximate H-LU decomposition of the operator S to
precondition the GMRES iterative solver; the LU accuracy was set to 0.1 and the
GMRES solver tolerance to 1E−8. The solution error initially decreases quickly with
element size, and then becomes stable. The fast initial decay is an artifact caused by
the fact that the influence of the field singularity at x0 on the field’s behaviour on �
becomes weaker as the wavelength decreases.

Scattering by a Screen. The second, more practical example concerns the calculation
of the field radiated by a horn antenna, represented as an open (infinitesimally thin)

ACM Transactions on Mathematical Software, Vol. 41, No. 2, Article 6, Publication date: January 2015.

Solving Boundary Integral Problems with BEM++ 6:37

Fig. 8. (a) Geometry of the horn antenna (not to scale). (b) Magnitude of the electric field on the horizontal
symmetry plane of the antenna. (c) Normalised radiation patterns generated by the antenna in horizontal
and vertical symmetry planes.

perfectly conducting screen. The geometry of the object is shown in Figure 8(a). The
excitation field Einc is generated by a z-oriented electric dipole located on the symmetry
axis of the feeding waveguide, 4.5 mm to the left from the input plane of the horn.
In the simulation the waveguide is taken to be short-circuited on its left end. As
the waveguide is single-moded and at the simulation frequency, corresponding to the
wavelength 3 mm, its most slowly evanescent mode has decay length of only 0.56 mm,
the excitation field is very close to that of the fundamental mode of the waveguide.

The problem can be reduced to solving the electric-field integral equation

SkU = γDEinc, (38)

where U is the jump of γN,extE across the screen. This equation can be derived by
subtracting Eqs. (17a) and (18a) describing the interior and exterior Dirichlet problems
with γD,intE = γD,extE = −Einc on a perfectly conducting screen of finite thickness d and
taking the limit d ↓ 0. Physical considerations [Bouwkamp 1950] additionally impose
the edge condition: the edge-parallel component of E vanishes on all edges of the screen.
Numerically, this condition is imposed by setting the coefficients of all Raviart-Thomas
basis functions associated with the screen edges to zero. This is the default behaviour
of BEM++; if necessary, it can be changed by setting the optional parameter putDofs-
OnBoundaries of createRaviartThomas0VectorSpace() to True.

The horn antenna.py script solving this problem can be found in the Supplementary
Material. The antenna was discretised with 55,006 triangular elements with typical
size of h ≈ λ/10 (λ/15 on the feeding waveguide), which led to a linear system of size

ACM Transactions on Mathematical Software, Vol. 41, No. 2, Article 6, Publication date: January 2015.

6:38 W. Śmigaj et al.

82,393. To improve load balancing, the maximum H-matrix block size was set to 10,000.
All remaining calculation parameters were chosen as in the previous section. Assembly
of the H-matrix representation of the discretisation of Sk took 160 s; the compression
rate was 4%. The H-LU preconditioner was generated in 198 s. The GMRES solver
converged in 105 iterations and 56 s. Figure 8(b) shows the magnitude of the field on
the horizontal symmetry plane of the antenna (z = 0), and Figure 8(c) the radiation
patterns (normalised to their maxima) on the planes horizontal and vertical symmetry
planes (z = 0 and x = 0, respectively).

An example of solving an electromagnetic transmission problem with BEM++ is
given in Betcke et al. [2013].

5. FUTURE DEVELOPMENTS

The core library is now stable and supports a variety of problems based on Laplace,
Helmholtz or Maxwell equations. Some smaller functionalities of the library have not
been described here, such as a growing Python module generating meshes of primitive
objects (for benchmarking) or the interface to PyTrilinos.

Work is ongoing on the implementation of additional preconditioners, such as al-
gebraic multigrid preconditioners for Laplace-type problems [Of 2008] and Calderon
preconditioners for the electric-field integral equation [Andriulli et al. 2008].

A big development focus at the moment is the integration of Fast Multipole Methods
for the various kernels. Initial developments are available in an experimental branch
and will be included in the main code in one of the upcoming major releases once they
are sufficiently optimised.

A significant area of interest is also fast boundary element methods on modern many-
core architectures. The current version of BEM++ uses Intel TBB [Intel 2012] to par-
allelise operations on shared-memory systems. The current implementation performs
well on modern multicore systems with 12 to 16 CPU cores. However, parallelisation
on true many-core architectures, such as NVIDIA Tesla or Intel MIC requires different
strategies and will be a focus of development in the coming years.

ACKNOWLEDGMENTS

BEM++ has profited greatly from many external collaborators. In particular, we would like to thank the
HyENA developers at TU Graz for making available their numerical integration routines for BEM++. We
would like to thank Mario Bebendorf from Uni Bonn for his support in integrating AHMED into BEM++,
and Günther Of and Olaf Steinbach from TU Graz and Lars Kielhorn from ETH Zurich for many helpful
discussions. The DUNE team has been very supportive in integrating the DUNE interface into BEM++,
and we would in particular like to acknowledge the DUNE support given to us by Andreas Dedner from
the University of Warwick and Oliver Sander from RWTH Aachen who developed the Foamgrid module
for DUNE which forms the basis of our grid classes. Many early beta testers have helped the BEM++
development. In particular, Peter Monk from the University of Delaware and Gerhard Unger from TU Graz
gave significant constructive feedback while testing the early versions of the library. Finally, we would like
to thank the anonymous referees for their constructive criticism that significantly improved this article.

REFERENCES

F. Andriulli, K. Cools, H. Bagci, F. Olyslager, A. Buffa, S. Christiansen, and E. Michielssen. 2008. A multi-
plicative Calderon preconditioner for the electric field integral equation. IEEE Trans. Antenn. Propagat.
56, 8, 2398–2412.

R. A. Bartlett. 2007. Thyra linear operators and vectors. Tech. Rep. SAND2007-5984. Sandia National
Laboratories, Albuquerque, NM.

P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, R. Kornhuber, M. Ohlberger, and O. Sander. 2008a.
A generic grid interface for parallel and adaptive scientific computing. Part II: Implementation and tests
in DUNE. Computing 82, 2–3, 121–138.

ACM Transactions on Mathematical Software, Vol. 41, No. 2, Article 6, Publication date: January 2015.

Solving Boundary Integral Problems with BEM++ 6:39

P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, M. Ohlberger, and O. Sander. 2008b. A generic grid
interface for parallel and adaptive scientific computing. Part I: Abstract framework. Computing 82, 2–3,
103–119.

D. Beazley. 2003. Automated scientific software scripting with SWIG. Future Gen. Comput. Syst. 19, 5,
599–609. (Tools for Program Development and Analysis. Best papers from two Technical Sessions, at
ICCS2001, San Francisco, CA, USA, and ICCS2002, Amsterdam, The Netherlands.)

M. Bebendorf. 2008. Hierarchical Matrices: A Means to Efficiently Solve Elliptic Boundary Value Problems.
Lecture Notes in computational Science and Engineering, vol. 63, Springer, Berlin Heidelberg.

M. Bebendorf. 2012. Another software library on hierarchical matrices for elliptic differential equations
(AHMED). http://bebendorf.ins.uni-bonn.de/AHMED.html.

T. Betcke, S. Arridge, J. Phillips, M. Schweiger, and W. Śmigaj. 2013. Solution of electromagnetic problems
with BEM++. In Oberwolfach Report, Vol. 03/2013.

C. J. Bouwkamp. 1950. On Bethe’s theory of diffraction by small holes. Philips Res. Rep. 5, 321.
A. Buffa and R. Hiptmair. 2003. Galerkin boundary element methods for electromagnetic scattering. In

Topics in Computational Wave Propagation, Springer, 83–124.
A. J. Burton and G. F. Miller. 1971. The application of integral equation methods to the numerical solution

of some exterior boundary-value problems. R. Soc. London Proc. Ser. A 323, 201–210.
H. Cheng, W. Y. Crutchfield, Z. Gimbutas, L. F. Greengard, J. F. Ethridge, J. Huang, V. Rokhlin, N. Yarvin,

and J. Zhao. 2006. A wideband fast multipole method for the Helmholtz equation in three dimensions.
J. Comp. Phys. 216, 1, 300–325.

A. Chernov and C. Schwab. 2012. Exponential convergence of Gauss–Jacobi quadratures for singular inte-
grals over simplices in arbitrary dimension. SIAM J. Numer. Anal. 50, 3, 1433–1455.

A. Chernov, T. von Petersdorff, and C. Schwab. 2011. Exponential convergence of hp quadrature for integral
operators with Gevrey kernels. ESAIM: Math. Model. Numer. Analy. 45, 3, 387–422.

D. L. Colton and R. Kress. 2013. Inverse Acoustic and Electromagnetic Scattering Theory. Springer.
D. A. Dunavant. 1985. High degree efficient symmetrical Gaussian quadrature rules for the triangle. Int. J.

Num. Meth. Eng. 21, 6, 1129–1148.
DUNE. 2012. Distributed and Unified Numerics Environment (DUNE). http://www.dune-project.org.
T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff. 1998. Extraordinary optical transmission

through sub-wavelength hole arrays. Nature 391, 667–669.
H. Estrada, P. Candelas, A. Uris, F. Belmar, F. J. Garcı́a de Abajo, and F. Meseguer. 2008. Extraordinary

sound screening in perforated plates. Phys. Rev. Lett. 101, 8, 084302.
F. J. Garcı́a de Abajo. 2007. Colloquium: Light scattering by particle and hole arrays. Rev. Mod. Phys. 79,

1267–1290.
C. Geuzaine and J.-F. Remacle. 2009. GMSH: A three-dimensional finite element mesh generator with built-in

pre- and post-processing facilities. Int. J. Num. Meth. Engng 79, 11, 1309–1331.
C. Geuzaine and J.-F. Remacle. 2012. GMSH. http://geuz.org/gmsh.
C. Gräser and O. Sander. 2012. Dune-FoamGrid. http://users.dune-project.org/projects/dune-foamgrid.
D. J. Griffiths. 1998. Introduction to Electrodynamics 3rd Ed. Benjamin Cummings.
H. Harbrecht and R. Schneider. 2006. Wavelet Galerkin schemes for boundary integral equations—

Implementation and quadrature. SIAM J. Sci. Comput. 27, 4, 1347–1370.
R. F. Harrington and J. L. Harrington. 1996. Field Computation by Moment Methods. Oxford University

Press.
M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda, R. B. Lehoucq, K. R. Long,

R. P. Pawlowski, E. T. Phipps, A. G. Salinger, H. K. Thornquist, R. S. Tuminaro, J. M. Willenbring, A.
Williams, and K. S. Stanley. 2005. An overview of the Trilinos project. ACM Trans. Math. Softw. 31, 3,
397–423.

R. Hiptmair and L. Kielhorn. 2012. BETL — A generic boundary element template library. Tech. Rep.
2012-36. Seminar for Applied Mathematics, ETH Zürich.

Intel. 2012. Intel Threading Building Blocks. http://threadingbuildingblocks.org.
L. Kielhorn. 2012. Boundary Element Template Library (BETL). http://www.sam.math.ethz.ch/betl.
Kitware. 2012a. Paraview. http://www.paraview.org.
Kitware. 2012b. Visualizaton Toolkit (VTK). http://www.vtk.org.
R. Kleinman and P. Martin. 1988. On single integral equations for the transmission problem of acoustics.

SIAM J. Appl. Math. 48, 2, 307–325.

ACM Transactions on Mathematical Software, Vol. 41, No. 2, Article 6, Publication date: January 2015.

6:40 W. Śmigaj et al.

R. Kress. 1985. Minimizing the condition number of boundary integral operators in acoustic and electromag-
netic scattering. Quart. J. Mech. Appl. Math. 38, 2, 323–341.

M. Lenoir and N. Salles. 2012. Evaluation of 3-d singular and nearly singular integrals in Galerkin BEM for
thin layers. SIAM J. Sci. Comput. 34, 6, A3057–A3078.

H. Liu and P. Lalanne. 2008. Microscopic theory of the extraordinary optical transmission. Nature 452,
728–731.

M. Maischak. 2013. MaiProgs. http://www.ifam.uni-hannover.de/∼maiprogs.
M. Messner, M. Messner, P. Urthaler, and F. Rammerstorfer. 2010. Hyperbolic and Elliptic Numerical Anal-

ysis (HyENA). http://portal.tugraz.at/portal/page/portal/Files/i2610/files/Forschung/Software/HyENA/
html/index.html.

J.-C. Nédélec. 2001. Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Prob-
lems. Springer.

G. Of. 2008. An efficient algebraic multigrid preconditioner for a fast multipole boundary element method.
Computing 82, 2–3, 139–155.

G. Of, O. Steinbach, and W. L. Wendland. 2006. The fast multipole method for the symmetric boundary
integral formulation. Ima J. Numer. Anal. 26, 2, 272–296.

OpenCASCADE. 2012. OpenCASCADE: Shape gallery. http://www.opencascade.org/showroom/shapegallery.
A. G. Polimeridis and J. R. Mosig. 2010. Complete semi-analytical treatment of weakly singular integrals on

planar triangles via the direct evaluation method. Intl. J. Numer. Meth. Eng. 83, 1625–1650.
A. G. Polimeridis, F. Vipiana, J. R. Mosig, and D. R. Wilton. 2013. DIRECTFN: Fully numerical algorithms for

high precision computation of singular integrals in Galerkin SIE methods. IEEE Trans. Anten. Propag.
61, 3112–3122.

P. Ramachandran. 2004–2005. An introduction to Traited VTK (TVTK). http://docs.enthought.com/mayavi/
tvtk/README.html.

P.-A. Raviart and J.-M. Thomas. 1977. A mixed finite element method for 2nd order elliptic problems. In
Mathematical Aspects of Finite Element Methods, Springer, 292–315.

S. Rjasanow and O. Steinbach. 2007. The Fast Solution of Boundary Integral Equations. Springer, Berlin
Heidelberg.

C. Sanderson. 2012. Armadillo: C++ linear algebra library. http://arma.sourceforge.net.
S. A. Sauter and C. Schwab. 2011. Boundary Element Methods. Springer Series in Computational Mathe-

matics, 39, Springer, Berlin Heidelberg.
K. Schmidt. 2013. Concepts – A numerical C++ library. http://www.concepts.math.ethz.ch.
W. Śmigaj, T. Betcke, S. Arridge, J. Phillips, and M. Schweiger. 2013. Solving boundary integral problems

with BEM++. http://www.bempp.org/files/bempp-toms-preprint.pdf.
P. Šolı́n. 2005. Partial Differential Equations and the Finite Element Method. Wiley.
O. Steinbach. 2008. Numerical Approximation Methods for Elliptic Boundary Value Problems. Springer.
SWIG. 2012. Simplified Wrapper and Interface Generator (SWIG). http://www.swig.org.
B. A. Szabo and I. Babuška. 1991. Finite Element Analysis. Wiley.
Trilinos. 2012. Trilinos. http://trilinos.sandia.gov.
I. van den Bosch. 2013. Puma-EM. http://puma-em.sourceforge.net.
P. Wieleba and J. Sikora. 2011. “BEMLAB”—universal, open source, boundary element method library

applied in micro-electro-mechanical systems. Studies Appl. Electromagn. Mech. 35, 173–182.

Received December 2012; revised September 2013; accepted January 2014

ACM Transactions on Mathematical Software, Vol. 41, No. 2, Article 6, Publication date: January 2015.

