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The precise estimation of annual average daily traffic (AADT) is of significant
importance worldwide for transportation agencies. This paper uses three
modeling frameworks to predict the AADT for heavy-duty trucks. In total, 12
models are developed based on regression and Bayesian analysis using a training
data-set. A separate validation data-set is used to compare the results from the 12
models, spanning the years 2005 through 2007 and taken from 67 continuous data
recorders. Parameters of significance include roadway functional class, popula-
tion density, and spatial location; five regional areas � northeast, northwest,
central, southeast, and southwest � of the state of Ohio in the USA; and average
daily truck traffic. The results show that a full Bayesian negative binomial model
with a coefficient offset is the most efficient model framework for all four seasons
of the year. This model is able to account for between 87% and 92% of the
variability within the data-set.

Keywords: Bayesian analysis; AADT; average daily truck traffic; regression
analysis; traffic monitoring program

Introduction

The accurate estimation of annual average daily traffic (AADT) plays a vital role for

day-to-day operations within a government department of transportation. As a

result, there have been many research studies over recent decades focused on

developing more efficient methods to estimate AADT. Additionally, most recent

emphasis is being placed on predicting specific vehicle classes (especially heavy-duty

vehicles � known in the USA as classes 4�13) instead of total AADT. One common

or traditional approach is to develop individual monthly adjustment factors from

continuous count locations, then group these factors together, and finally assign

short-term counts to each group. The main concern associated with this traditional

approach includes the development of errors and uncertainties throughout each step

of the process.

As a result of this shortcoming, some research has focused on developing new

methods based on local conditions in order to estimate AADT directly. Some of the

*Corresponding author. Email: i.tsapakis@ucl.ac.uk

Transportation Planning and Technology, 2013

Vol. 36, No. 2, 201�217, http://dx.doi.org/10.1080/03081060.2013.770944

# 2013 The Author(s). Published by Taylor & Francis.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://

creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly cited. The moral rights of the named author(s) have been asserted.

http://dx.doi.org/10.1080/03081060.2013.770944
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


more common approaches include artificial neural networks and ordinary least

squares regression (Faghri and Hua 1995; Lam and Xu 2000; Lingras et al. 2000;

Sharma et al. 2000, 2001). The data requirements from these methods vary from

simple regression models based on roadway functional classification, to increased

data needs such as socioeconomic and land use parameters. For example, Neveu

(1983) developed the regression models to predict AADT for roads of each

functional class; Mohamad et al. (1998) developed a multiple regression model

using the roadway type, the accessibility of the road, the county population, and the

total arterial mileage of a county; and Fricker and Sinha (1987) used population,

vehicle registration, and employment as predictors in their models. Xia et al. (1999)

developed multiple regression models for Florida based on roadway characteristics,

such as number of lanes and functional classification for non-state roads. Zhao and

Chung (2001) used roadway data, socioeconomic characteristics, expressway

accessibility, and accessibility to regional employment centers to develop four

multiple regression models for expressway roads in a Florida county and Zhao and

Park (2004) used weighted regression models to estimate AADT, conducting multiple

linear regression analyses separately for selected rural and urban areas to identify

explanatory variables for interpreting seasonal traffic patterns.

In addition to more traditional regression models, researchers have added

innovative statistical modeling to improve the overall performance of their

predictions. Lingras, Sharma, and Zhong (2002) used genetically designed regression

models for individual hours, while Tang, Lam, and Ng (2003) built a nonparametric

regression model to forecast short-term traffic volumes for one year. Zhong, Sharma,

and Lingras (2004) developed a locally weighted regression model, a form of

memory-based algorithm for learning continuous mapping from real-valued input

vectors to real-valued output vectors. In most cases, the more advanced models

improve the findings by a few percentage points.

Two areas for potential development include the creation of models that directly

predict AADT for heavy-duty trucks (specifically vehicle classes 4�13), and the

altering of the model framework to include negative binomial models into a full

Bayesian framework. Since AADT is a nonnegative count variable, it is reasonable to

use a negative binomial model instead of a more traditional ordinary least squares

regression model. One negative of the regression model is the generation of negative

AADT values. The potential benefits of the Bayesian framework include the

implementation of prior knowledge into the prediction model, as well as developing

a posterior distribution of the beta coefficients.

Of the three objectives of this study on which this paper is based, the first is to

develop eight data-sets � a training set and validation set for each of the four seasons

in a year. The second objective is to develop three individual modeling frameworks

using the four seasonal training data-sets. Model One is an ordinary least squares

regression model, while Models Two and Three are full Bayesian negative binomial

models � the difference being that Model Two includes a coefficient offset and Model

Three does not. The third objective is to compare the three model frameworks using

the validation data-sets across all seasonal durations. The end result of this research

study shows the effectiveness of the three model frameworks for directly predicting

seasonal AADT for heavy-duty vehicles.
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Study data

There are 67 continuous count stations across the state of Ohio from the years 2002

through 2007 that collected volume counts for heavy-duty vehicles in classes 4�13

(Federal Highway Administration 2001). Based on these continuous count stations,

the final development of the training and validation data-sets used in this study is

based on two criteria. The first criterion requires a minimum number of collected

hourly heavy-duty vehicle volumes per day per continuous count station. The second
requires a minimum number of complete, no missing hourly volumes, for days of the

year per continuous count station. Additional land use, socioeconomic, and

population density data are provided at the county level using US census data

(US Census Bureau 2008).

Site-specific requirements

The first criterion in the empirical setting is site-specific. In this case, each site used in

the development of the final data-sets requires a continuous 24-hour data collection

period to calculate average daily traffic (ADT). Depending on the time of day, and

location of the continuous count, the 24-hour ADT may include hourly volumes with

zero recorded heavy-duty vehicle counts. The selection of 280 complete days provides

an adequate amount of data when using the American Association of State Highway

and Transportation Officials (AASHTO) recommended formula for estimating

AADT (AASHTO 1992; Spiegelhalter et al. 2004). Using a lower number of
complete days hinders the overall performance of the AASHTO recommended

formula.

Temporal aggregation of the data-sets

The temporal aggregation of the data is based both annually as well as seasonally.

The initial data-set is comprised of 48,893 daily traffic volumes for the years 2002

through 2007 in the state of Ohio. The data from 2002 to 2004 are only used as prior
knowledge for the full Bayesian models, while 75% of the data collected from 2005 to

2007 is used for both training and modeling, and the remaining 25% is used to

populate the validation data-set for the three model frameworks. No data provided

within this study are used for both the training and validation data-sets. The second

temporal aggregation is based on the seasonality of the data. The winter months are

December through February, spring months are March through May, summer is

June through August, and fall is September through November. Table 1 presents a

summary of the parameters populated in the final data-sets for 2005 through 2007. It
represents urban and rural counties, spatial distribution, and multiple roadway

function classes creating a representative statewide empirical setting.

Statistical methodology

Three model methodologies are developed in this study. Model One is an ordinary

least squares regression model and Models Two and Three are full Bayesian negative

binomial models. The overall model structure for each model includes ADT volumes

for heavy-duty vehicles; roadway functional classes, which include interstate, freeway,
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and principal arterial highways (based on the US Highway Performance Monitoring

System [HPMS] classification); spatial locations, which include northeast, northwest,

central, southeast, and southwest locations within Ohio; and temporal variables such
as Mondays, midweek, and Fridays.

Model one: ordinary least squares regression

Several studies have used regression models effectively to predict AADT (Xia et al.

1999; Zhao and Chung 2001; Lingras, Sharma, and Zhong 2002). There is, however,

one potential limitation associated when using an ordinary least squares method

when predicting AADT. AADT is considered to be count data, and should not be

modeled as a continuous variable. As a result of modeling AADT as a continuous

variable, there is some potential for predicting negative values, which is impossible

for a positive parameter such as AADT.

Models two and three: negative binomial

As a result of the limitation with the basic regression model, there are two common

ways to model count data. These two methods are the Poisson and negative binomial
models. One criterion for the correct use of the Poisson model is that the mean and

variance of the prediction should be equivalent. If this criterion is not satisfied, the

negative binomial model should be used. As a result of the nonequivalent mean and

variance, the negative binomial model is selected over the Poisson model. In this

study, there are two negative binomial model frameworks, as shown in Equations (1)

and (2):

ki ¼ b1x1e b0þb2x2þ:::þbnxnð Þ (1)

ki ¼ e b0þb1x1þb2x2þ:::þbnxnð Þ (2)

Table 1. Summary statistics for the final data-set.

Entire Data-seta

Variable Average Minimum Maximum

Functional classb N/A 1 12

Lanes 4.3 2 8

ADT classes 4�13 3608.2 0 24,234

AADT classes 4�13 3609.7 15 14,050

Population densityc (population/mi2) 993.5 33.1 3035.7

Percent interstated 43.9 (21,464)e

Percent freewayd 17.5 (8556)e

Percent principal arteriald 32.6 (15,939)e

Percent minor arterialsd 6.0 (2934)e

Notes: aThe entire data-set comprises 48,893 ADT observations.
bThe roadway functional classification is based on the guidance provided by the HPMS.
cPopulation density is defined as the total number of people per county divided by the number of square
miles per county.
dPercent refers to the total number of observations for each roadway functional class for the entire data-set.
eValues within the parentheses are the number of observations per variable.
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where, b0� constant term; b1,. . ., bn� estimated parameters in vector form; and

x1,. . ., xn� explanatory variables developed for the individual models.

Equation (1) includes a coefficient offset while Equation (2) does not include a

coefficient offset. The use of an offset is common when there is a wide range of values
for an individual parameter such as ADT. In this study, the models require all

variables to have a p-value less than 0.05 which corresponds to a 95% confidence

level. Once the key parameters are identified, the next phase is to develop our eight

predictive models, one model for each season using both Equations (1) and (2)

implementing a full Bayesian methodology.

Full Bayesian methodology

Once the initial models are developed, a Bayesian methodology with Gibbs sampling

is adopted in order to obtain the predictive posterior simulation of AADT. In a fully

developed Bayesian framework for modeling and inference of estimated parameters,

the Bayesian model specification requires a likelihood function, and prior distribu-
tion to obtain the posterior density of the estimated parameters from the given data.

The Bayesian methodology is developed from Equation (3):

pðH vÞ ¼ pðHÞpðv HÞj
R

pðHÞpðv HÞdHj

�
�
�
�
�

8 pðHÞpðv HÞj (3)

where the prior distribution p(u) expresses the uncertainty before and the posterior

distribution p(ujx) describes the uncertainty after seeing the data. In order to obtain

the predictive posterior simulation associated with AADT, three Monte Carlo

Markov Chains are developed with Gibbs sampling. In the Monte Carlo simulation,

informative priors with some precision are assigned to the parameter coefficients.
These informative priors are based on the model results using data provided from

2002 through 2004. In addition to the prior knowledge, a three chain approach is

used in the simulation. In each of the chains, different initial values are selected for

each chain and, after sufficient simulation iterations, the three chains are evaluated

for convergence. In this study, the convergence of the three chains is based on

Gelman�Rubin statistics, Kernel density, autocorrelation, trace plots, and times

series plots (Gelman et al. 2003; Robichaud & Gordon 2003). Once the model

converges, the posterior distributions are summarized (shown later in Tables 3�6).

Results

The AADT predictions developed in this study are based on the initial results of the

three models for each season of the year. The initial results are based solely on the

model training data-set, which randomly samples 75% of the 2005�2007 data.
The second set of results is based on the estimated model performance. The model

performance is evaluated with the 2005�2007 validation data-set. As described

previously, it is important to note that no data from the validation data-set is used in

the initial model development. The model performance is based on the model

prediction values versus the actual validation data-set AADTs.
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Initial results: ordinary least squares regression models

The results from the regression models for the four seasons are shown in Table 2. The

variables with a statistical significance at the 95% confidence level include heavy-duty

truck ADTs as well as interstate, freeway, and principal arterial roadway functional

classifications. Other variables of significance include population density as well as

spatial location. The final sets of variables are temporal based on the day of week:

Monday, midweek, and Friday. Additionally, other variables including number of

lanes, socioeconomic and additional land use categories are also tried. Unfortu-

nately, these parameters are not considered statistically significant, or, in the case of

the number of lanes, create multicollinearity problems with other variables.

The results show the AADT predictions are higher with an increase in heavy-duty

ADT. The roadway classification for interstates produces higher predicted AADTs

than do freeway and principal arterials. Other findings of interest show the northwest

and central areas predict higher AADTs than southern Ohio. This result is expected

because northwest and central Ohio includes more urban areas such as Toledo, in the

northwest, and the state capital Columbus, in the central area, when compared with

the southeast. The final overall results are developed for the day of the week. In

general, the ADTs are lower for Monday followed by Friday with the highest during

the midweek, Tuesday through Thursday. As a result of the higher prediction values

associated with the ADT and the other variables remaining constant, the net effect of

the day of the week is similar to a daily adjustment factor which results in a larger

subtraction of values with the midweek, followed by Friday, and lastly Monday. The

Table 2. Regression model coefficients.

Model coefficients

Variable name Spring model Summer model Fall model Winter model

Constant 700.036 563.920 977.529 982.359

Truck ADT classes 4�13 0.638 0.634 0.597 0.573

Interstate 3199.530 2941.930 2665.136 3756.312

Freeway 1105.856 1121.471 998.724 1295.978

Principal arterial 335.872 254.929 258.363 392.389

Population density

(population/mi2)

�1.63E-01 �1.74E-01 �1.97E-01 �3.71E-01

Northwest Ohio 845.400 933.432 462.919 466.904

Central Ohio 842.494 702.819 476.775 375.207

Southwest Ohio 226.096 565.635 N/A N/A

Southeast Ohio 464.130 565.500 N/A N/A

Monday �1566.896 �1495.514 �1313.483 �1136.265

Midweek (Tuesday through

Thursday)

�2044.769 �1889.574 �1664.600 �1593.948

Friday �1604.455 �1619.532 �1306.301 �1308.538

Number of observations 3546 3363 4315 3119

x2 7915.67 7799.64 9039.98 6249.31

Adjusted R2 0.89 0.90 0.88 0.86

Notes: All variables are statistically significant at the 0.05 level.
N/A �the variable is not statistically significant and was not included in the final model.
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Table 3. Full Bayesian framework with coefficient offsets for spring and summer.

Variablea,b Mean

Standard

deviation

MC

Errorc 2.5%d Mediand 97.5%d

Spring full Bayesian model with coefficient offsets

Constant 1.937 0.035 0.002 1.870 1.936 2.010

Truck ADT classes

4�13

0.754 0.006 0.000 0.741 0.754 0.765

Interstate 1.005 0.038 0.002 0.931 1.005 1.079

Freeway 0.687 0.033 0.002 0.623 0.687 0.753

Principal arterial 0.414 0.028 0.001 0.359 0.414 0.467

Population density

(population/mi2)

N/A N/A N/A N/A N/A N/A

Northwest Ohio 0.068 0.015 0.000 0.040 0.068 0.098

Central Ohio

Southwest Ohio �0.101 0.022 0.001 �0.143 �0.102 �0.058

Southeast Ohio �0.133 0.030 0.001 �0.192 �0.133 �0.073

Monday �0.805 0.017 0.000 �0.839 �0.805 �0.771

Midweek (Tuesday

through

Thursday)

�0.967 0.015 0.001 �0.996 �0.967 �0.938

Friday �0.880 0.018 0.001 �0.916 �0.880 �0.845

Inverse dispersion 11.810 0.287 0.002 11.250 11.810 12.380

Summer full Bayesian model with coefficient offsets

Constant 2.161 0.042 0.002 2.073 2.162 2.240

Truck ADT classes

4�13

0.570 0.006 0.000 0.558 0.571 0.582

Interstate 2.035 0.047 0.002 1.947 2.035 2.128

Freeway 1.583 0.041 0.002 1.505 1.583 1.663

Principal arterial 0.914 0.034 0.002 0.849 0.914 0.982

Population density

(population/mi2)

1.02E-05 8.73E-06 2.94E-07 �6.67E-06 1.02E-05 2.74E-05

Northwest Ohio 0.174 0.020 0.001 0.135 0.174 0.214

Central Ohio

Southwest Ohio �0.053 0.027 0.001 �0.106 �0.053 �0.002

Southeast Ohio

Monday �0.541 0.022 0.001 �0.584 �0.541 �0.497

Midweek (Tuesday

through

Thursday)

�0.603 0.017 0.001 �0.637 �0.602 �0.570

Friday �0.568 0.023 0.001 �0.613 �0.567 �0.523

Inverse dispersion 6.786 0.168 0.001 6.464 6.784 7.122

aAll variables are statistically significant at the 95% confidence level.
bN/A suggests that the variables are not statistically significant in the final model.
cMC error shows the Markov chain error. This measure helps identify model convergence.
d2.5% and 97.5% show the middle 95% of the data while being the midpoint of the parameter distribution.
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Table 4. Full Bayesian framework with coefficient offsets for fall and winter.

Variablea,b Mean Standard deviation MC Errorc 2.5%d Mediand 97.5%d

Fall full Bayesian model with coefficient offsets

Constant 3.311 0.039 0.002 3.234 3.312 3.384

Truck ADT classes 4�13 0.389 0.005 0.000 0.380 0.389 0.399

Interstate 2.512 0.038 0.002 2.437 2.513 2.585

Freeway 1.763 0.039 0.002 1.687 1.764 1.840

Principal arterial 1.000 0.035 0.002 0.929 1.000 1.069

Population density (population/mi2) �8.38E-05 9.13E-06 2.17E-07 �1.02E-04 �8.36E-05 �6.63E-05

Northwest Ohio 0.211 0.022 0.001 0.167 0.211 0.254

Central Ohio N/A N/A N/A N/A N/A N/A

Southwest Ohio N/A N/A N/A N/A N/A N/A

Southeast Ohio N/A N/A N/A N/A N/A N/A

Monday �0.436 0.025 0.001 �0.486 �0.436 �0.386

Midweek (Tuesday through Thursday) �0.451 0.020 0.001 �0.489 �0.451 �0.412

Friday �0.378 0.025 0.001 �0.427 �0.378 �0.329

Inverse dispersion 4.036 0.085 0.001 3.871 4.035 4.205

Winter full Bayesian model with coefficient offsets

Constant 3.141 0.041 0.002 3.062 3.142 3.218

Truck ADT classes 4�13 0.593 0.007 0.000 0.580 0.593 0.606

Interstate 1.294 0.047 0.002 1.200 1.294 1.382

Freeway 0.839 0.042 0.002 0.754 0.840 0.917

Principal arterial 0.403 0.035 0.002 0.332 0.404 0.473

Population density (population/mi2) �6.97E-05 8.86E-06 2.40E-07 �8.72E-05 �6.94E-05 �5.28E-05

Northwest Ohio 0.069 0.023 0.001 0.022 0.069 0.115

Central Ohio N/A N/A N/A N/A N/A N/A

Southwest Ohio �0.320 0.029 0.001 �0.379 �0.319 �0.263

Southeast Ohio �0.287 0.046 0.001 �0.377 �0.286 �0.198

Monday �0.525 0.024 0.001 �0.572 �0.525 �0.479

Midweek (Tuesday through Thursday) �0.874 0.020 0.001 �0.914 �0.873 �0.835

Friday �0.806 0.025 0.001 �0.854 �0.806 �0.757

Inverse dispersion 6.005 0.152 0.001 5.713 6.002 6.307

aAll variables are statistically significant at the 95% confidence level.
bN/A suggests that the variables are not statistically significant in the final model.
cMC error shows the Markov chain error. This measure helps identify model convergence.
d2.5% and 97.5% show the middle 95% of the data while being the midpoint of the parameter distribution.
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Table 5. Full Bayesian framework with no coefficient offsets for spring and summer.

Variablea,b Mean Standard deviation MC Errorc 2.5%d Mediand 97.5%d

Spring full Bayesian model with no coefficient offsets

Constant 4.927 0.056 0.003 4.821 4.923 5.040

Truck ADT classes 4�13 1.44E-04 4.24E-06 1.57E-07 1.36E-04 1.44E-04 1.53E-04

Interstate 3.250 0.063 0.003 3.121 3.253 3.374

Freeway 2.647 0.056 0.003 2.535 2.648 2.754

Principal arterial 1.913 0.048 0.002 1.816 1.914 2.005

Population density (population/mi2) �4.84E-05 1.18E-05 3.47E-07 �7.12E-05 �4.86E-05 �2.51E-05

Northwest Ohio 0.196 0.030 0.001 0.136 0.196 0.254

Central Ohio N/A N/A N/A N/A N/A N/A

Southwest Ohio �0.398 0.039 0.001 �0.473 �0.398 �0.321

Southeast Ohio �0.643 0.057 0.001 �0.753 �0.643 �0.531

Monday �0.384 0.031 0.001 �0.446 �0.385 �0.322

Midweek (Tuesday through Thursday) �0.498 0.026 0.001 �0.549 �0.498 �0.446

Friday �0.423 0.031 0.001 �0.484 �0.423 �0.362

Inverse dispersion 3.454 0.079 0.000 3.300 3.453 3.610

Summer full Bayesian model with no coefficient offsets

Constant 4.721 0.049 0.002 4.633 4.729 4.829

Truck ADT classes 4�13 1.35E-04 4.07E-06 1.37E-07 1.27E-04 1.35E-04 1.43E-04

Interstate 3.456 0.057 0.003 3.341 3.450 3.563

Freeway 2.794 0.050 0.002 2.695 2.794 2.893

Principal arterial 2.002 0.042 0.002 1.919 2.003 2.082

Population density (population/mi2) �8.98E-05 1.30E-05 3.67E-07 �1.15E-04 �8.96E-05 �6.46E-05

Northwest Ohio 0.186 0.034 0.001 0.120 0.186 0.250

Central Ohio N/A N/A N/A N/A N/A N/A

Southwest Ohio �0.358 0.039 0.001 �0.435 �0.357 �0.280

Southeast Ohio �0.585 0.062 0.002 �0.706 �0.585 �0.461

Monday �0.348 0.033 0.001 �0.412 �0.348 �0.283

Midweek (Tuesday through Thursday) �0.427 0.027 0.001 �0.478 �0.428 �0.375

Friday �0.372 0.035 0.001 �0.438 �0.372 �0.304

Inverse dispersion 3.061 0.071 0.000 2.922 3.060 3.203

aAll variables are statistically significant at the 95% confidence level.
bN/A suggests that the variables are not statistically significant in the final model.
cMC error shows the Markov chain error. This measure helps identify model convergence.
d2.5% and 97.5% show the middle 95% of the data while being the midpoint of the parameter distribution.
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Table 6. Full Bayesian framework with no coefficient offsets for fall and winter.

Variablea,b Mean Standard deviation MC Errorc 2.5%d Mediand 97.5%d

Fall full Bayesian model with no coefficient offsets

Constant 5.439 0.040 0.002 5.361 5.440 5.518

Truck ADT classes 4�13 1.36E-04 3.70E-06 1.20E-07 1.29E-04 1.36E-04 1.43E-04

Interstate 2.744 0.046 0.002 2.657 2.743 2.836

Freeway 2.235 0.045 0.002 2.150 2.235 2.322

Principal arterial 1.494 0.040 0.002 1.416 1.494 1.572

Population density (population/mi2) �8.07E-05 1.09E-05 2.53E-07 �1.02E-04 �8.07E-05 �5.99E-05

Northwest Ohio N/A N/A N/A N/A N/A N/A

Central Ohio 0.091 0.031 0.001 0.031 0.091 0.150

Southwest Ohio �0.431 0.031 0.000 �0.493 �0.431 �0.370

Southeast Ohio �0.439 0.048 0.001 �0.533 �0.439 �0.346

Monday �0.339 0.029 0.001 �0.396 �0.339 �0.283

Midweek (Tuesday through Thursday) �0.422 0.023 0.001 �0.466 �0.422 �0.377

Friday �0.341 0.029 0.001 �0.399 �0.341 �0.284

Inverse dispersion 3.055 0.063 0.000 2.932 3.055 3.179

Winter full Bayesian model with no coefficient offsets

Constant 5.396 0.064 0.003 5.270 5.399 5.517

Truck ADT classes 4�13 1.36E-04 5.09E-06 1.68E-07 1.26E-04 1.36E-04 1.46E-04

Interstate 2.965 0.070 0.004 2.830 2.964 3.106

Freeway 2.292 0.064 0.003 2.166 2.291 2.417

Principal arterial 1.510 0.059 0.003 1.395 1.512 1.623

Population density (population/mi2) �1.33E-04 1.36E-05 3.79E-07 �1.59E-04 �1.33E-04 �1.06E-04

Northwest Ohio 0.136 0.037 0.001 0.062 0.136 0.207

Central Ohio 0.179 0.042 0.001 0.098 0.178 0.261

Southwest Ohio �0.558 0.043 0.001 �0.644 �0.557 �0.473

Southeast Ohio �0.579 0.069 0.002 �0.713 �0.581 �0.442

Monday �0.271 0.037 0.001 �0.343 �0.271 �0.199

Midweek (Tuesday through Thursday) �0.412 0.030 0.001 �0.470 �0.412 �0.353

Friday �0.332 0.037 0.001 �0.405 �0.333 �0.260

Inverse dispersion 2.612 0.063 0.000 2.490 2.612 2.738

aAll variables are statistically significant at the 95% confidence level.
bN/A suggests that the variables are not statistically significant in the final model.
cMC error shows the Markov chain error. This measure helps identify model convergence.
d2.5% and 97.5% show the middle 95% of the data while being the midpoint of the parameter distribution.
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temporal factor would in turn create a relatively similar AADT estimate for one

particular section of roadway for all weekday samples.

Initial results: full Bayesian negative binomial model

The second set of results is developed for Models Two and Three using a full

Bayesian model framework. The results produced by Model Two are shown in Tables

3 and 4, and those of Model Three are shown in Tables 5 and 6.
The results for Model Two with the offset indicate that, as the heavy-duty ADT

increases, the predicted AADT also increases. In terms of the HPMS roadway

classification, the interstate has the greatest influence on AADT, followed by freeway

and principal arterials. Field data estimates developed in the northwest produce

higher AADT estimates than in the southwest and southeast. The central geographic

location is no longer a significant variable. Similar to the regression findings, the

highest ADT volumes on average occur during the midweek followed by Friday and

Monday. In order to predict relatively similar AADT for an individual segment,
independent of the day of the week, the temporal results show the requirement to

lower AADT predictions for the midweek, followed by Friday and Monday. The

highest inverse dispersion results in the lowest overall dispersion, a measurement of

model performance (the variance divided by the mean), indicates that spring is the

most efficient model followed by summer, winter, and finally the fall.

The results for Model Three with no offset generally have similar trends in terms

of sign and magnitude when directly compared with Model Two. As the ADT values

increase, so do the predicted AADT predictions. The interstate roadway class still has
the greatest influence on AADT followed by freeway and principal arterials. ADT

estimates for the northwest increase the AADT prediction while southwest and

southeast lower AADT estimates. The central geographic location is not significant

in the spring and summer while the northwest is not significant in the fall.

The results remain consistent with the other models that have the highest ADT

volumes occurring during the midweek, followed by Friday and Monday. This in

turn requires temporal adjustment as seen with the midweek followed by Friday and

then Monday to remain as relatively similar AADT final predictions for individual
segments. The lowest overall dispersion remains the spring followed by summer, fall,

and winter. In comparison to Model Two, the inverse dispersion values are smaller;

therefore, these models are not as efficient as Model Two.

Comparison of results

A comparison of the performance of each of the three model frameworks is shown in

Figures 1�4. In each case, the models developed with the training data-sets are

compared with the AADTs provided by the validation data-set. As described

previously, the training and validation data-sets are both developed randomly for

each season, and no data are used in both data-sets. In each of the four figures, the

horizontal axis is the AADT validation data-set for heavy-duty trucks (classes 4�13)
and the vertical axis is the predicted AADTs from each of the three model

frameworks for each section.

The results for the three models developed for spring 2005�2007 are shown in

Figure 1. The results show Model One underpredicts AADT by 4%, while Model
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Three overpredicts by 20%. The overall explanation of the variability within the

validation data-set by the prediction models ranges from 70 to 91%. When

comparing the negative binomial models, Model Two with the ADT offset performs

better than Model Three. Model Three does not have an ADT offset, and the

predicted AADTs are significantly overestimated when the AADTs are greater than

10,000 veh/day. In terms of model selection, the impact of the ADT offset is

diminished as the predicted AADTs are reduced.
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Figure 1. Comparison of the spring model results.
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Figure 2. Comparison of the summer model results.
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The results for the summer season are shown in Figure 2. Models One and Two

slightly underpredict by 4% and 9%, respectively, while Model Three, on average,

overpredicts by 26%. This overprediction is influenced by the ADT values. The

models’ ability to describe the variability within the validation data-set ranges from

70% for Model Three to 92% for Models One and Two.

The results from the fall season, Figure 3, show that Models One and Two both

underpredict the AADTs by 7 and 5%, respectively. In both cases, the R2 values are
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Figure 3. Comparison of the fall model results.
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Figure 4. Comparison of the winter model results.
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0.93 and 0.95. The results for Model Three explain 70% of the variability and on

average are closer in prediction, overpredicting by 6% with the validation data-set

AADTs. The overall results show less variability between the three models as well as

the three other seasons.
The final seasonal comparison of the data is shown in Figure 4 for the winter

season. The overall findings remain consistent with the spring and summer seasons.

Models One and Two predict similar values with Model One underestimating AADT

by 4% and Model Two overpredicting by 1%. In both cases, the average prediction

values are complementary to the validation data-set. Model Three still overpredicts

on average by 23%, and the ability to explain 72% of the variability within the

validation data-set.

Summary of model performance

A summary of the three model performance evaluations is provided in Table 7. There

are two sets of results from this table. The first set of results shows the percentage of

predicted heavy-duty AADTs that are within 10% of the validation data-set AADTs

per season. The overall result shows that Model Two has the highest percentage of

values within 10% of the actual value for all seasons. The results when comparing

Models One and Three are mixed. Model Three performs slightly better for the

spring and summer months while Model One is more efficient in prediction for the

fall and winter months. Generally, there are fewer variables required in Model Three

than Model One. All three models have the overall highest accuracy rating for the

spring season, while the lowest predicting accuracy varies per model across the other

three seasons. Other results stem from the inclusion of the offset as shown in Model

Two. Model Two with the offset has less variation, with an overall improvement of

5�10% over the non-offset model, Model Three. The inverse dispersion term is higher,

indicating a better performance for all negative binomial models with coefficient

offsets (Model Two) than Model Three with no coefficient offsets. The higher inverse

dispersion parameters are for spring followed by summer in both Models Two and

Three while the fall and winter provide lower inverse dispersion values.

Additional findings illustrate the influence of the model framework between the

ordinary least squares regression model and the two negative binomial models. In the

case of Model One, for each season the individual models predict negative heavy-duty

Table 7. Summary of model performance.

Spring Summer Fall Winter

Observations within 10% of the validation data-set AADT

Model One 20.1% 19.7% 18.6% 19.1%

Model Two 33.9% 20.7% 21.1% 22.7%

Model Three 22.4% 21.7% 16.7% 15.0%

Number of predicted AADTs less than Zero

Model One 9.8% 12.9% 8.3% 8.7%

Model Two 0 0 0 0

Model Three 0 0 0 0

Note: The predicted values may be 910%.
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truck AADTs for approximately 8�13% of the total number of observations, while

the negative binomial models on the other hand predict no AADTs less than zero.

The negative predictions show the potential limitations when using ordinary least

squares regression.

Conclusions

The overall scope of the study on which this paper is based has been to develop

seasonal regression and negative binomial models to predict heavy-duty truck

AADT directly. One of the strengths of this approach is the reduction in prediction

errors and, unlike the traditional method, does not require grouping automated

traffic recorders or the assignment of short-term counts to groups (Robichaud and
Gordon 2003).

The objectives of this study included the development of seasonal training and

validation data-sets, the initial assessment of model coefficients across the seasons,

and the comparison of individual model performance. The ultimate goal was the

development of an accurate modeling approach for predicting heavy-duty AADT for

a segment of road. In order to validate the models, the initial data-sets were

separated seasonally with 75% of the observations into a training data-set and the

remaining 25% of the observations into a validation data-set. The random separation
of the training and validation data-sets for each season of the year allowed for a non-

biased assessment of the prediction capabilities developed per season for each of the

models.

The flow of commodities across the state of Ohio may vary for each season of the

year and, therefore, it may not be accurate to constrain model coefficients across the

various seasons. Initial models using all the training data were developed with

seasonal indicator variables within the model. Based on the level of significance, it is

reasonable to split the model seasonally. For example, the model coefficient results
shown in Table 2, including the influence of the midweek, Tuesday through

Thursday, changed seasonally from �2044, �1889, �1664, �1593 (spring, sum-

mer, fall, and winter) throughout the year. A second example is shown in Tables 3

and 4, illustrating the potential negative for constraining the model coefficients.

These coefficients varied from 0.754, 0.570, 0.389, to 0.593 for the spring, summer,

fall, and winter seasons. Generally, all three model frameworks showed that an

increase in ADT increased the predicted AADTs. The roadway classifications

demonstrated that the interstate indicator variable had the greatest influence on
AADTs followed by freeway and principal arterial highways. Northern samples over

southern areas increased AADT estimates. Temporally, the weekday volumes showed

higher ADT values for midweek over Friday and Monday. This in turn required a

greater adjustment for the midweek followed by Friday and Monday.

The final results from this research were based on the overall predictive results of

the models. Three models were developed within this study for each season. The first

model was an ordinary least squares regression model, while the second and third

were full Bayesian negative binomial models, the first with an offset and the second
without an offset. The results demonstrated that Model Two, the negative binomial

with an offset, performed the best while the other two models had mixed results. The

main rationale of the offset was a direct result of the wide variation in the ADT

values for heavy-duty vehicles. The offset limited the variation as seen in Model
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Three with the higher ADTs and, therefore, produced more accurate results. The

final conclusions indicate the limitations of Model One with respect to the prediction

of negative AADTs. In this study, Model One predicted negative values approxi-

mately 10% of the time for each season, while the negative binomial by its very

nature did not predict negative values. The final comparison showed that Model Two

with the offset was the most efficient model form for predicting seasonal AADTs.
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