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Abstract

In 2001, Krueger and Glover introduced a model describing the temporal SNR (tSNR) of an EPI time series as a function of
image SNR (SNR0). This model has been used to study physiological noise in fMRI, to optimize fMRI acquisition parameters,
and to estimate maximum attainable tSNR for a given set of MR image acquisition and processing parameters. In its current
form, this noise model requires the accurate estimation of image SNR. For multi-channel receiver coils, this is not
straightforward because it requires export and reconstruction of large amounts of k-space raw data and detailed, custom-
made image reconstruction methods. Here we present a simple extension to the model that allows characterization of the
temporal noise properties of EPI time series acquired with multi-channel receiver coils, and reconstructed with standard
root-sum-of-squares combination, without the need for raw data or custom-made image reconstruction. The proposed
extended model includes an additional parameter k which reflects the impact of noise correlations between receiver
channels on the data and scales an apparent image SNR (SNR90) measured directly from root-sum-of-squares reconstructed
magnitude images so that k= SNR90/SNR0 (under the condition of SNR0.50 and number of channels #32). Using Monte
Carlo simulations we show that the extended model parameters can be estimated with high accuracy. The estimation of the
parameter k was validated using an independent measure of the actual SNR0 for non-accelerated phantom data acquired at
3T with a 32-channel receiver coil. We also demonstrate that compared to the original model the extended model results in
an improved fit to human task-free non-accelerated fMRI data acquired at 7T with a 24-channel receiver coil. In particular,
the extended model improves the prediction of low to medium tSNR values and so can play an important role in the
optimization of high-resolution fMRI experiments at lower SNR levels.
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Introduction

The optimization of EPI acquisition parameters is important for

maximizing the sensitivity to relatively small BOLD signal changes

in fMRI studies. Factors such as spatial resolution, echo time (TE),

flip angle, and parallel imaging strategies can be optimized for a

given magnetic field strength and receiver coil arrangement. In

particular, these factors can influence the contribution of

physiological noise, for example from cardiac and respiratory

functions as well as motion, to the temporal noise, thereby

impacting on BOLD sensitivity. The noise model introduced by

Krueger and Glover [1] describes the temporal signal to noise

ratio (tSNR) of an EPI time series as a function of image SNR and

has been used to demonstrate that the ratio of physiological noise

to thermal noise increases with image SNR [1–3]. The model

allows the time series noise to be separated into thermal and

physiological components and can be used to estimate the

maximum attainable tSNR for a given set of MR acquisition

parameters [2] and processing strategies [4].

In its current form, the application of this noise model requires

an accurate estimate of the actual image SNR (SNR0). The

estimation procedure is particularly elaborate for images acquired

with multi-channel receiver coils, involving detailed steps to

correctly scale the image SNR [3,5]. Further steps are necessary

for images reconstructed using partial parallel imaging methods

[3,5]. Some of the main factors that must be taken into account

are noise correlation between receiver channels, change of

statistical distributions in the case of magnitude images, geometry

factors in under-sampled parallel imaging and temporal autocor-

relation in the k-space raw data [5]. Although a principled way to

reconstruct and output images in SNR units is proposed in [5], this

is not part of the standard image reconstruction available on

clinical MRI scanners. Thus, SNR0 can only be correctly

estimated by custom-made image reconstruction based on k-space

raw data. This approach is inefficient and in many cases even

impossible, since it requires export, storage and computation of

large amounts of raw data (e.g. ,70 GB for ,10 minutes of high-

resolution fMRI acquired using a 32-channel receiver coil).
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A common approach to combining information from multiple

receiver channels is to calculate the root-sum-of-squares (RSS)

across channels, after reconstructing the image separately for each

channel. This method is regularly used for non-accelerated image

acquisition [6] and parallel imaging employing GRAPPA [7]. It

has been demonstrated [8] that the image SNR can be estimated

from the background noise and image signal in RSS combined

non-accelerated images using a simple correction for the change in

statistical distributions due to rectification of multiple channel

data, i.e. the noncentral chi distribution. However, this approach

is only valid if no noise correlations between channels are present,

which is generally not the case for RSS composite images acquired

with state-of-the-art multi-channel RF head coils [3,9]. In fact, as

pointed out in [5], correctly estimating SNR has caused significant

confusion and discussion in the community. For example, the

SNR correction methods proposed in [10–12] account only for the

RSS combination and magnitude operation. This correction does

not take into account noise correlations in the data from the

different receiver channels as explained in [8]. Typical levels of

noise correlation (i.e. ,0.2 to 0.3 [9]) cause a spatial variation of

the noise in the composite images [6,13,14] and lead to errors in

SNR measurement when noise correlations are not taken into

account. To overcome this problem, the methods described in [5]

and [3] use the noise covariance matrix to account for correlations

between different channels when estimating the SNR and are in

line with the formulation of [6].

In this study, we extend the model proposed in [1] to allow the

tSNR of an EPI time course acquired without acceleration using

multi-channel receiver coils to be characterized, without the

necessity for complex custom-made image reconstruction of

absolute image SNR estimates. Instead, the straightforward

approach described in [8] is used for estimating an apparent

image SNR90 and the impact of noise covariance between receiver

coils is accounted for by introducing a constant scaling factor

k= SNR90/SNR0, which modulates the actual image SNR0. To

our knowledge, no other published methods can estimate the

parameters of the model proposed in [1] from RSS combined

magnitude data acquired using multi-channel receiver coils. We

derive our proposed extended model from basic physical principles

and use Monte Carlo simulations to optimize and demonstrate the

accuracy and precision of the resulting fit. We validate the

extended model fit using phantom data acquired at 3T and an

independent estimate of the actual SNR0. Finally we demonstrate

the improved fit of the extended model in human task-free fMRI

data acquired at 7T.

Theory
Following the theory outlined in [1] the total variance or noise

in an MR image time series s2 can be described by a combination

of independent raw noise s0
2 and physiological noise sp

2:

s2~s0
2zsp

2 ð1Þ

The noise variance s0
2 is assumed to comprise thermal noise

from the subject and scanner electronics. The physiological noise

sp
2 is assumed to arise from cardiac and respiratory functions,

which lead to oscillatory signal fluctuations in the vascular system

as well as small pulsatile movements of the brain and modulation

of the magnetic field. It has been shown that s0 increases with field

strength [15] but is independent of the MR signal strength,

whereas physiological noise has been shown to be signal-

dependent [1]. Note that in [1] the physiological noise is treated

as two separate components. One describes T2* related fluctua-

tions, which are TE-dependent and also lead to the BOLD effect

and the other arises from image-to-image fluctuations such as

pulsatile effects and scanner imperfections with no TE-dependen-

cies. For the purpose of the theory developed here, we do not

make a distinction between these components of physiological

noise and only consider the case of physiological noise represented

by s2
p. Therefore, following on from [1] and the formulation used

in [2], the temporal SNR (tSNR) can be defined as

tSNR~I=(s0
2zsp

2)1=2 ð2Þ

where I is the mean image signal intensity. If the actual image

SNR is defined as SNR0 = I/s0 and the physiological noise is

defined as a signal dependent function sp = lI, then the

relationship between tSNR and SNR0 is given by [2]:

tSNR~SNR0=(1zl2SNR2
0)1=2 ð3Þ

The parameter 1/l provides a measure of the maximum

attainable tSNR for a given set of acquisition parameters. It can

be estimated by measuring tSNR for different values of the actual

image SNR0 (e.g. by varying flip angle, voxel size or echo time).

From equation 3 it can be seen that, in the absence of

physiological noise, i.e. when l= 0, tSNR = SNR0. Equation 3

requires an accurate, unbiased estimate of SNR0 as discussed

above.

In the following we extend the model so that instead of the

actual SNR0, the apparent SNR90 measured from RSS combined

magnitude images using the approach proposed by [8] can be

used. For this method the SNR90 is the ratio of the signal intensity

in the measured object to the noise level in the background and

equals the actual SNR0 in the absence of noise correlations.

For a receiver system with n coils a measure of background noise

s90 in RSS combined images can be estimated using (equation 7 in

[8]):

s’0& mean noisesignal2
� �=

2n
� �1=2

ð4Þ

It is important to note that although this noise estimate includes

the corrections for the RSS combination and magnitude operation

(i.e. the noncentral chi distribution), it does not take into account

noise correlations and is therefore only accurate in their absence.

Equation 4 is therefore correct for data acquired using a single-coil

(which of course can not suffer from noise correlations) but not for

multi-channel receiver coil data with noise correlations between

receiver channels. We therefore use equation 4 to define the

apparent image SNR as, SNR90 < In/s90, where In is the mean

signal in the RSS combined images. For low SNR90 further

corrections must be applied to account for changes in the noise

statistics. We will neglect this correction in the following since they

are less than 2% for image SNR exceeding 50 and number of

receiver channels not exceeding 32 [3], (i.e. the currently

maximum number of channels in commercially available coils).

These additional corrections for the noise statistics are only

required at even lower SNR values for data acquired with less than

32 channels (Figure 1b, [3]).

In general SNR90 only equals the actual image SNR0 for data

acquired with a single-channel receiver coil. When n $2 receiver

coils are used to acquire array coil images and if noise correlations
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exist between the different channels of the receiver system, the

actual variance sIn
2 in a voxel with composite intensity In will

deviate from the background noise variance estimate s90
2 [13,14].

We therefore define a constant scaling factor k to account for

correlated noise, which relates SNR0 and SNR90 in a voxel by:

k~SNR’0=SNR0 ð5Þ

Replacing SNR0 by SNR90 in equation 3 yields our proposed

extended model:

tSNR~SNR’0=(k2zl2SNR’0
2)1=2 ð6Þ

where k and l can be estimated from equation 6 by measuring

tSNR for different values of SNR90 (i.e. in a similar way as for

equation 3). Note that because correlated noise is spatially varying,

k will also vary spatially over an image. Furthermore, we assume

that k will be dependent to some extent on the loading of the coil

and so will vary for phantoms and human subjects. In this study

we will therefore demonstrate the validity of equations 5 and 6 in

phantom and human data.

Methods

Accuracy and Precision of Extended Model Fit Estimated
from Monte Carlo Simulations

The estimation of l and k from the measured SNR90 and tSNR

data poses a non-linear problem, which was solved by a

multidimensional unconstrained nonlinear minimization (Nelder-

Mead) method in Matlab (2009a, The MathWorks, Natick, MA).

To address potential problems with model estimability, Monte

Carlo simulations were performed to study the accuracy and

precision of the estimation of k and l, and to determine how a set

of five SNR90 values should be best distributed to obtain fit

parameters with highest accuracy.

For the simulation, synthetic tSNR values were generated using

the extended model (equation 6) with a realistic set of parameters:

l= 1/90, k= 1.4 or 1.8 and five evenly distributed SNR90 values

in the range of 50 to 600 or 50 to 300. These SNR90 values are

typical for 7T and 3T data respectively; SNR90 values ,50 were

excluded, since they would require further correction for changes

in the noise distribution [8], if 32 or more channels were used.

Gaussian distributed noise with zero mean and a standard

deviation of 5 (typical for group studies [2,4]) was added to the

tSNR values to simulate measurement noise. The model was then

fitted to this set of synthetic data, yielding model parameters l and

k. This process was repeated 500 times to get a reliable estimate of

the mean and standard deviation (SD) of the fitted model

parameters l and k.

To determine how a set of five SNR90 values should be best

distributed to obtain unbiased and low noise estimates of l and k,

the above simulation was repeated 5000 times, each with a

different set of five arbitrary SNR90 values. Each repetition

resulted in an estimate of l and k calculated using five unique

SNR90 values, which were selected randomly from the given range

based on a uniform probability distribution. From the 5000 sets of

five SNR90 values, 250 were selected (i.e. five percent), for which

the estimate of l and k had the lowest percent bias. For these 250

estimates of l and k values, the accuracy was calculated from their

mean absolute bias and the precision from the SD. For visual

exploration, histograms of the best 250 sets were generated to

show the distribution of each of the five SNR90 values in increasing

order (Figure 1). The precision of the estimates based on the best

sets was estimated from the mean SD over the sets. For

comparison, the sets with the highest precision out of the 5000

sets and their SD were also determined, providing an approximate

upper limit of the highest precision achievable (regardless of

accuracy).

An additional simulation explored the model behaviour for

phantom data. Temporal SNR measurements on a gel phantom

are usually not significantly affected by signal dependent noise if

standard acquisition parameters are used due to the high temporal

stability of modern MRI scanners. Thus, the tSNR is small

compared to 1/l for the phantom and the tSNR is not saturated.

To determine whether k can be estimated robustly under these

conditions, the same Monte Carlo simulations described previ-

ously were repeated with the following parameters: l= 1/1800;

SNR0 = (SNR90/k) = 60 or 120 or 180 for k= 1.0 to 2.0 (increased

in steps of 0.1). The parameters were typical for phantom

measurements as determined from independently estimated SNR0

maps (see below) and quality assurance experiments [16,17].

The third type of Monte Carlo simulation addressed whether l
and k can be estimated robustly without relevant correlation

between the parameters. If the non-linear minimization problem is

ill posed, the estimated parameters may be spuriously correlated,

skewing the results. The correlation between parameters were

estimated for a measurement approximating the in-vivo dataset

acquired at 7T with SNR0 = (SNR90/k) = 80, 180, 270, 350, 450.

In one simulation k was varied from 1 to 2 (in steps of 0.0001) and

the effect on the estimation of l was studied. In the second

simulation 1/l was varied from 80 to 140 (in steps of 0.005) and

the effect on the estimation of k was studied. As in the previous

simulations Gaussian distributed noise with zero mean and a

standard deviation of 5 was added to the tSNR values for each

simulated 1/l or k set. Robust regression analysis (iteratively

reweighted least squares with the bisquare weighting function as

implemented in Matlab) was used to assess whether there was a

relevant correlation between the parameters.

Validation of Extended Model Fit using Phantom Data
and Independent Estimate of Actual Image SNR

We used EPI time series acquired from a phantom to confirm

that the scaling factor k estimated from the extended model

(equation 6) equals the ratio SNR90/SNR0 (i.e. to validate

equation 6) where SNR90 is estimated from RSS combined

images and SNR0 is an independent estimate of actual image

SNR, according to [3,5]. An agar gel phantom (construction based

on the Stanford Agar Phantom Recipe [16]) was scanned using a

3T whole-body MRI scanner (Magnetom TIM Trio, Siemens

Healthcare, Erlangen, Germany) operated with a 32-channel RF

head receive and RF body transmit coil. Three EPI runs were

acquired with different RF excitation flip angles to manipulate the

image SNR. Each run comprised of 205 volumes and the flip

angles were 17u, 37u and 90u. A thermal noise measurement of 20

Figure 1. Best sets of 5 SNR90 values for which the bias in k and 1/l is minimized, as determined from Monte Carlo simulations. The
results for different parameters l= 1/90, k= 1.4/1.8, SNR90 ranges = 50–600/50–300 are presented as histograms of the top 5% best sets of SNR90 in
(A–D). Acq # orders the 5 acquisitions according to their SNR90. It can be seen that these best sets sample low and high SNR’ values more densely.
For the small SNR90 range (C, D), high SNR90 values are more strongly represented, in order to better estimate 1/l.
doi:10.1371/journal.pone.0052075.g001
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EPI volumes with no RF excitation (i.e. 0u flip angle) was also

acquired. These flip angles resulted in images with equally spaced

image SNR levels from 0u up to a maximum at 90u, which is

approximately the Ernst angle for gray matter at 7 T for the used

TR [20].

The EPI data were collected with the following parameters [18]:

matrix = 64674, in-plane resolution = 3 mm63 mm, 49 sequen-

tially acquired slices, slice thickness = 2 mm, interslice

gap = 1 mm, TE = 30 ms, volume TR = 3.43 s, echo-spa-

cing = 500 ms, BW = 2298 Hz/Px. At the beginning of the

experiment the manufacturer’s automatic adjustment procedure

Figure 2. Validation of extended model fit for phantom data acquired at 3T using a 32-channel RF head receive coil. Results for a
single central slice through phantom data show maps of A) tSNR, B) SNR90 C) k, D) SNR0 E) SNR90/k F) SNR90/(k ?SNR0). The tSNR and SNR maps are
shown for the EPI data acquired with the largest flip angle (90u). The k map was estimated by fitting the extended model to each voxel of the tSNR
and SNR90 maps calculated from EPI time series acquired at 3 different flip angles (17u, 37u and 90u). In G, a plot of the mean and SD of tSNR against
SNR90 (red squares), SNR0 (green triangles) and SNR90/k (blue circles) within a 20620 voxels ROI at the centre of the phantom is shown for all flip
angle time series and the red solid line shows the fit of the extended model to the SNR90 values. The black dashed line is the line of identity.
doi:10.1371/journal.pone.0052075.g002
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was performed to correct for first and second order distortions in

the static magnetic field. The k-space raw data from all time series

were reconstructed using an algebraic trajectory-based reconstruc-

tion approach designed to minimize ghosting [19] followed by

RSS calculation to combine the images from the 32 receiver

channels. The resulting magnitude images were then processed

using routines implemented in Matlab.

A measure of noise (s90) was estimated from a background ROI

from the RSS images acquired without RF excitation (i.e. with 0u
flip angle) using equation 4. According to [8], this particular noise

measure is not affected by noise correlations. However, since in

general this assumption can be violated, we use this noise measure

to calculate apparent image SNR using SNR90 = I32/s90 where I32

is the mean signal at each voxel in the RSS combined images. The

tSNR was calculated using tSNR = I32/st
I32 where st

I32 is the

temporal standard deviation at each voxel. Voxelwise maps of

image SNR and tSNR were calculated for each flip angle time

series after discarding the first 5 volumes and correcting for low

frequency temporal drifts by fitting and removing a linear and

quadratic function of image number. The extended model defined

in equation 6 was fitted to the tSNR and SNR90 values at each

voxel in the central slice of the phantom resulting in maps of l and

k values.

The independent estimate of SNR0 was based on an established

method to estimate actual image SNR for RSS combined images

using the individual channels of k-space raw data [3,5,6]. The

SNR0 at each voxel in the RSS combined image is given by.

SNR0~bSHS= SHYS
� �1=2 ð8Þ

where S is the vector of complex image values across all coils for a

given voxel, SH is the Hermitian transpose of S, Y is the noise

covariance matrix and b is a correction factor to account for the

algebraic reconstruction method used to transform the k-space raw

data to images and autocorrelation in k-space data as well as other

effects, e.g. see [3,5]. The complex valued trajectory-based

reconstructed data from each channel in the first non-discarded

image of each flip angle EPI time series formed the vector S. Y
was calculated from the covariance between all pairs of channels of

k-space raw data acquired as the thermal noise measurement (i.e.

acquired with no RF excitation). The correction factor b was

estimated from the square root of the ratio between the integrated

power in the k-space raw noise data and the trajectory-based

reconstructed noise data. Note that this estimate for SNR0 takes

into account noise correlations between receiver channels.

Resulting maps of SNR0 were compared with maps of tSNR,

SNR90 and k values estimated from the RSS combined EPI time

series. The extended model was also fitted to the tSNR and SNR0

values to estimate l and k.

Fit of Extended Model to Human task-free fMRI Data
A 7T whole-body MRI scanner (Siemens Healthcare) using a

24-channel receive head coil with dedicated CP coil for RF

transmission (Nova Medical, Inc., Wilmington, MA) was used to

acquire EPI time series from 5 subjects. Written informed consent

was obtained from each participant for the study approved by the

ethics committee of the University of Magdeburg. The data were

acquired as part of a comprehensive study to investigate the

impact of physiological noise correction at 7T (further details of

the full study are reported in [4]).

Figure 3. Fit of extended model to human task-free fMRI data
acquired at 7T with a 24-channel receive head coil. A) Plot of
tSNR against SNR90 is shown for EPI time series acquired using 5
different flip angles (8u, 16u, 26u, 38u and 70u). Each data point (black
squares) represents the mean and standard error over 5 subjects of
mean tSNR and SNR90 in the VC ROI. The solid red line represents the fit
of the extended model (using equation 6) and the blue dashed line
represents the fit of the original model (using equation 3). B) Plot of
tSNR against the independently measured SNR0 for the same data as in
(A). Black triangles represent the mean and standard error over 5
subjects, the solid green line represents the fit of the extended model
(using equation 6) and the blue dashed line represents the fit of the
original model (using equation 3).
doi:10.1371/journal.pone.0052075.g003

Table 1. Parameters estimated from fit of extended model
(equation 6) and original model (equation 3) to human task-
free fMRI data acquired at 7T with a 24-channel receive head
coil (mean 6 standard deviation) and sum-of-squares errors
(SSE) indicating goodness-of-fit of the models.

Extended model (equation 6) Original model (equation 3)

1/l k SSE 1/l SSE

tSNR vs SNR90 95.269.2 1.560.2 17.8 89.169.4 191.5

tSNR vs SNR0 95.169.1 1.260.1 17.6 91.769.5 68.6

Parameters are given for model fits to tSNR versus SNR90 (data shown in
Figure 3a) and tSNR versus SNR0 (data shown in Figure 3b).
doi:10.1371/journal.pone.0052075.t001
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For each subject, 5 EPI runs were acquired while subjects were

presented with a blank screen and instructed to rest with their eyes

open. Each run comprised 150 volumes and was acquired with

one of the following flip angles: 8u, 16u, 26u, 38u and 70u, selected

in a randomized order. These flip angles were selected to produce

images with an equally spaced range of signal levels from 0u up to

a maximum at 70u, the Ernst angle for grey matter at 7 T at a

TR = 2 s, (assuming T1 = 1.9 s [20]). At higher field strengths it is

important to account for large B1 inhomogeneities [21] when

setting the RF excitation flip angle to maximize the image SNR in

a particular region of interest. Here the scanner adjustment

procedures resulted in an actual RF excitation flip angle, which

was reasonably close (within ,10%) of the nominal flip angle in

the studied region of interest, i.e., visual cortex. A thermal (raw)

noise measurement of 20 EPI volumes with no RF excitation (i.e.

0u flip angle) was also acquired.

At the beginning of the experiment the manufacturer’s

automatic adjustment procedure, optimized for 7T, was per-

formed to correct for first and second order distortions in the static

magnetic field and to set the RF transmitter voltage. The EPI data

were collected with the following parameters [18]: ma-

trix = 64664, in-plane resolution = 3 mm63 mm, 40 sequentially

acquired slices, slice thickness = 2 mm, interslice gap = 1 mm,

TE = 25 ms, volume TR = 2 s, echo-spacing = 500 ms,

BW = 2298 Hz/Px. The slice block was axial-to-coronal single

oblique and aligned and centered manually with the calcarine

fissure. For each subject, an axial, dual echo, gradient echo field

map and a T1-weighted anatomical image (MPRAGE, resolu-

tion = (1 mm)3, TE = 3.72 ms, TR = 2000 ms, flip angle = 5u,
TI = 1050 ms) were also acquired.

The k-space raw complex data from all time series were

reconstructed using a trajectory-based reconstruction [19] fol-

lowed by RSS calculation to combine the images from the 24

receiver channels. The resulting magnitude images were then

processed using SPM8 (http://www.fil.ion.ucl.ac.uk/spm/, [22])

with additional routines implemented in Matlab. After discarding

the first five volumes of each run, the EPI data were spatially co-

registered to the first volume of the first run. The gradient echo

field map was processed to create a voxel displacement map and

used to correct the realigned images for geometric distortions [23].

Each subject’s anatomical image was registered to their corre-

sponding undistorted, realigned EPI data and segmented into grey

and white matter tissue probability maps using the unified

segmentation procedure in SPM8 [24]. The resulting inverse

spatial normalization parameters were used to match a brain atlas

(AAL toolbox, [25]) defined in MNI space [26] to the anatomy of

each subject and hence define a visual cortex (VC) ROI. Finally

the ROIs were restricted to grey matter by masking with the grey

matter tissue probability maps (from the segmentation step) after

thresholding at a probability value greater than 0.01.

For each subject the noise measure (s90) was estimated from the

thermal noise measurement (i.e. with no RF excitation). For the

time series acquired with the different (non-zero) flip angles, maps

of SNR90 and tSNR were calculated as described previously for

the phantom data. The mean SNR90 and tSNR were calculated

for each subject’s VC ROI and the mean and SD were estimated

over subjects for each flip angle. The original noise model defined

in equation 3 and the extended model defined in equation 6 were

fitted to the mean tSNR and SNR90 values. Values for l and

model fit sum-of-squares errors (SSE) were estimated for the two

models and k was estimated for the extended model only.

An independent estimate of actual SNR0 was also calculated for

each subject and each flip angle time series using the complex

trajectory-based reconstructed data from each channel in the first

non-discarded image in the EPI time series and the noise

covariance as described previously for the phantom data. The

mean SNR0 was calculated for each subject’s VC ROI and the

mean and SD were estimated over subjects for each flip angle. As

for the SNR90 values, the original and extended noise models were

fitted to the mean tSNR and SNR0 values. Values for l and model

fit sum-of-squares errors (SSE) were estimated for the two models

and k was estimated for the extended model only.

Results

Accuracy and Precision of Model Fit Estimated from
Monte Carlo Simulations

The Monte Carlo simulations of the accuracy and precision

indicated that the non-linear model fit is an unbiased estimator,

provided that the set of five SNR90 values (over which the fitting is

performed) are well distributed. Figure 1 shows the top 5% best

sets of five SNR90 values for achieving model fits with a minimal

Figure 4. Subject specific maps of k estimated from fit of extended model to human task-free fMRI data acquired at 7T with a 24-
channel receive head coil (bottom row). The top row shows the corresponding subject specific EPI images acquired at the 70u flip angle.
doi:10.1371/journal.pone.0052075.g004
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bias for different SNR90 ranges (50–600 (a,b), 50–300 (c,d)) and k
values (1.4 (a,c) 1.8 (b,d)). Approximately speaking, unbiased fits

were observed for SNR90 sets which cover rather densely the low

and high SNR90 range and less densely the mid SNR90 range. The

bias in 1/l and k was always smaller than 1.2% when the best

SNR90 sets were chosen, indicating a high accuracy.

For the set of best SNR90 values yielding minimal bias, the

precision in estimating 1/l was high with SD always smaller than

7.0 for the large SNR90 range (50–600) and smaller than 11.3 for

the small SNR90 range (50–300). These SD values compared

reasonably with the overall lowest SD of 2.7 and 4.5 achieved in

all 5000 simulations of different SNR90, i.e., the highest achievable

precision. The precision in estimating k was comparably lower,

since the SD was always lower than 0.45 for the large SNR90 range

and 0.27 for the small SNR90 range (compared to the minimal SD

ranging between 0.12–0.15 for all simulations, i.e., the highest

precision achievable).

For the gel phantom, Monte Carlo simulations demonstrated

that it is possible to determine k robustly with high precision and

accuracy even when only relatively low values for SNR90/k were

measured compared to 1/l, i.e., a maximal SNR90/k= 180

compared to 1/l= 1800. The maximal bias in k was smaller than

2.3% and the SD was smaller than 0.085 for all simulated k values

from 1.0 to 2.0. Note that 1/l values could not be reliably

estimated as expected from the fact that only low SNR

measurements informed the fit.

For a wide range of SNR0 values (SNR0 = 80–140) the

regression analysis yielded a linear dependence (slope) of k on

1/l of 0.0025 (i.e., a change of 10 in 1/l would result on average

in a spurious change of 0.025 in k). Similarly, the linear

dependence of 1/l on k was 4.7 (i.e., a change of 0.5 in k would

result on average in a spurious change of 2.35 in 1/l). Thus, the

effect is rather small and confirms good estimability of the model

under realistic conditions.

Validation of Extended Model Fit using Phantom Data
and Independent Estimate of Actual Image SNR

The results of the validation using phantom data and an

independent estimate of actual image SNR are shown in Figure 2.

Maps of tSNR, SNR90, and SNR0 for the data acquired from the

largest flip angle (90u) are shown in Figures 2a, b and d

respectively and the map of k values estimated from the fit of

the extended model to the SNR90 maps from all flip angles is

shown in Figure 2c. In terms of magnitude and spatial distribution,

the similarity between the tSNR and SNR0 maps and the

difference between those and the SNR90 map are apparent.

However, voxelwise scaling of the SNR90 map by the k map

(Figure 2c) resulted in a map (Figure 2e) that was comparable to

both the tSNR and SNR0 maps. This result validates the proposed

linear relationship between SNR90 and SNR0 (equation 5). The

map of the ratio SNR90/(k?SNR0) shown in Figure 2f confirmed

that the k value estimated from the phantom data satisfied the

equation k= SNR90/SNR0 to within 4% averaged over the signal

in the central slice of the phantom (mean 6 SD of the ratio

SNR90/(k?SNR0) = 1.0460.1). The map of k values ranged from a

minimum of 0.4 up to 1.7 in the central slice of the phantom.

Since SNR90 is affected by noise correlations whereas SNR0

accounts for them, this result demonstrates the spatial variation of

the impact of correlated noise. Figure 2g shows a plot of tSNR

against SNR90, SNR0 and SNR90/k (mean 6 SD) within a 20620

voxels ROI at the centre of the phantom for all flip angle time

series. For this ROI, the fit of the extended model to the tSNR and

SNR90 values resulted in k= 1.560.1 (mean 6 SD) and the fit to

the tSNR and SNR0 values resulted in k= 1.060.04 (mean 6

SD), since noise correlations were accounted for in SNR0. As

expected from the results of the Monte Carlo simulation, the fit of

the l value was imprecise and biased with l= 1/935.861/833.3

for the first fit and l= 1/913.661/813.3 for the latter fit (mean 6

SD).

Fit of Extended Model to Human Task-free fMRI Data
Figure 3a shows plots of mean tSNR versus mean SNR90

measured in the VC ROI of 5 subjects for the task-free fMRI data

acquired at 7T. The parameters estimated from the fits of the two

models are given in Table 1. The extended model using equation 6

(red solid curve) gave a much improved fit compared to the

original model using equation 3 (blue dashed curve), with

SSE = 17.8 and 191.5 respectively. This was particularly apparent

at low to medium SNR90 values and was reflected by the value

estimated for the parameter k= 1.560.2 (mean 6 SD). Figure 4

shows the subject specific EPI images acquired at the 70u flip angle

together with the maps of k estimated for the fit of the extended

model to the tSNR versus SNR90 values at each voxel. The value

estimated for 1/l was slightly higher for the extended model

compared to the original model (95.269.2 and 89.169.4

respectively, (mean 6 SD)). Note that the difference between

these values fell within the precision in estimating 1/l for this

SNR90 range as predicted by the simulation results (i.e. SD ,7.0).

Figure 3b shows plots of tSNR against the actual image SNR

(SNR0) for the same data as in Figure 3a. The fits of the extended

model (solid green line) and the original model (blue dashed line)

are shown for these data and the parameters are given in Table 1.

For these results, the fit of the extended model was still improved

compared to the original model (SSE = 17.6 and 68.8 respectively),

even though one may have expected the original model to describe

the data as well as the extended model since actual image SNR

values were used. The plots show that again the fit of the original

model was more problematic at low to medium SNR0 values. This

was also highlighted by the fact that the k value estimated from the

extended model fit was not 1.0 as expected, but 1.260.1 (mean 6

SD). However, it should also be noted that the difference in

estimates of 1/l for the two models was not greater than their SD

values.

Discussion

The model introduced by Krueger and Glover [1] describes the

tSNR of an EPI time series as a function of image SNR. It can be

used to estimate the maximum attainable tSNR (1/l) or BOLD

sensitivity for a given set of MR acquisition parameters [2] and

image processing strategies [4]. This model requires that the image

SNR be estimated accurately, which is not straightforward for data

acquired using multi-channel coils. First of all, access to the k-

space raw data is necessary which can be cumbersome and often

practically impossible for large numbers of receiver coils (e.g. up to

30 GB per EPI time series in this study). Secondly, the steps

required to correctly scale the image SNR measurements are

complicated, and may require corrections for the RSS combina-

tion and magnitude operation, as well as for noise correlations

between receiver coils and the algebraic reconstruction. The

complexity and practical challenge are reflected by extensive

discussion in the literature [3,5,6,8,10,11,17]. In this work we have

proposed an extension to this model that allows the tSNR of an

EPI time series acquired using multi-channel receiver coils to be

characterized by estimating an apparent image SNR value

(SNR90) simply and directly from non-accelerated RSS combined

images. The extended model includes an additional parameter k,

which scales the apparent image SNR to be equal to the actual

Modelling Temporal Stability of EPI Time Series

PLOS ONE | www.plosone.org 8 December 2012 | Volume 7 | Issue 12 | e52075



SNR (SNR0). Since the apparent SNR90 does not account for

noise correlations between receiver coils whereas the actual SNR0

accounts for them, the parameter k reflects the impact of

correlation on the data.

Robustness of the Extended Model Studied with Monte
Carlo Simulations

The Monte Carlo simulations showed that the extended model

parameters l and k can be accurately determined without

significant bias from a series of five SNR90 and tSNR measure-

ments when the set of SNR90 values is appropriately chosen. In

other words, tSNR should be measured at high and low SNR90

values with less emphasis on the medium SNR90 range (Figure 1).

Based on only 5 measurements, a reasonable precision for the

estimated 1/l is achieved with a coefficient of variation of ,5–

10%. However, the precision of k estimates is somewhat low with

coefficients of variation between 20–30%. This is less critical when

the extended model is used for studies on the impact of

physiological noise whose primary outcome measure is 1/l. A

higher precision in k could be achieved by increasing the sampling

of SNR90 values. Furthermore, a robust estimation of k (coefficient

of variation ,5%) can be achieved even when the maximal SNR90

is low compared to 1/l (i.e. when l approaches 0 as it can for

phantom data when the MRI scanner is stable). In this case,

estimates of 1/l are not reliable. For typical SNR0 values observed

in vivo at 7T, the interdependence between estimates of 1/l and k
was low, corroborating a good estimability of the model.

We would like to note that the original model proposed by

Krueger and Glover [1] shows similar characteristics in estimating

1/l and also relies on a sufficient range of SNR90 values to avoid

bias in its estimation.

Validation of Extended Model using Phantom Data
The fit of the extended model to the phantom data resulted in a

map of k values that accurately (within 4%) scaled the map of

apparent SNR values (SNR90) to be equal to an independent

measure of the actual image SNR (SNR0) calculated using an

established method [3,5,6]. The results showed that k estimated

for SNR90 was spatially highly variable (.50% change) making

the extended model essential for bias free estimates. The spatial

variability of k can be well explained by the spatial variation of

noise in composite images as a result of noise correlations between

the different channels of the receiver system [13,14]. When the

extended model was fitted to the estimate of actual image SNR,

the estimate for k was as expected 1.060.01 (mean 6 SD). Note

that noise correlations between the different channels of the

receiver system were taken into account for the estimate of SNR0

via the noise covariance between all pairs of receiver channels (i.e.

equation 8). The large variability of values estimated for 1/l for

the two data sets could be explained by the results of the Monte

Carlo simulations, which demonstrated that 1/l values could not

be reliably estimated when all measured SNR values are low

compared to 1/l.

Fit of Extended Model to Human Task-free fMRI Data
The results for the human data showed a much improved fit of

the extended model to tSNR and SNR90 measured from non-

accelerated RSS combined images, compared to the original

model by Krueger and Glover [1]. Although the estimate of 1/l
was very similar for the two models (within the SD values), the fit

of the extended model was particularly improved for low to

medium values of SNR90. This suggests that at low to medium

SNR90 values, the original model may lead to incorrect estimates

of achievable tSNR if SNR values are not measured accurately.

This is particularly important for optimizing EPI parameters for

this lower SNR range where thermal noise components contribute

significantly, e.g. by varying spatial resolution [2,27] or flip angle

[28]. Using the extended model to characterize the tSNR as a

function of apparent image SNR (SNR90) estimated from RSS

combined images avoids these potential problems.

Notably, when actual SNR values (SNR0) were calculated using

the established method, the extended model still resulted in a

better fit than the original model and the estimate for k was

slightly higher than expected (1.260.1, mean 6 SD versus 1.0).

Possible reasons for this discrepancy are discussed below under

methodological considerations. Interestingly, the variation in

estimates of 1/l for both SNR measures and both models was

within the given precision. This highlights the relatively high

accuracy of estimates of 1/l for both the original and extended

models, suggesting that in general these models are rather robust

for estimating the maximum attainable tSNR for a given set of

MR acquisition parameters.

Methodological Considerations
The validation of the extended model using phantom data

clearly demonstrated that the estimate of k satisfied the equation

k= SNR90/SNR0 when SNR0 was calculated using an established

independent measure. This was less clear-cut for the human data.

A discrepancy of between 10% and 30% was observed between

SNR90/k and the independently measured SNR0, possibly due to

the limited precision of the k estimates. The discrepancy might be

reduced by sampling more SNR90 values. Furthermore, k was

estimated for tSNR and SNR90 values averaged over an ROI for

each subject, which could further decrease its precision due to the

presence of outliers or effects of non-linearity (i.e. averaging before

the non-linear fit). Examples of these are apparent in the estimated

maps of k shown in Figure 4.

The discrepancy may also have been related to limitations in

both the original and the extended noise models. For example, the

original model assumes that tSNR < SNR0 at lower SNR0 values,

(i.e. where noise is dominated by thermal noise). However, the

estimation of tSNR in human data requires motion correction,

which may alter the relationship between tSNR and SNR0.

Furthermore, correlations between the physiological noise from

different channels may have an effect on the tSNR, e.g. by spatial

resampling, which is not included in the original model presented

here and is also not accounted for by the image reconstruction.

These two latter effects may influence the estimate of k from

human EPI time series data in the extended model. As shown in

Figure 4, estimates for k are much higher around the edges of the

brain, and in the ventricles and other fluid spaces, where pulsatile

motion from fluid and head movement are typically most

apparent.

In this work, the parameter k has been interpreted as a factor

which accounts for the effect of noise correlations by scaling the

apparent image SNR (SNR90) so that it equals the actual SNR

(SNR0). In theory, k could be predicted from the receiver coils’

flux lines and noise correlation coefficients. Practically this is

complicated by large numbers of receiver coils, their geometric

arrangement, electrical coupling properties and differing sensitivity

profiles [8,13,14].

Many methods have been proposed to estimate the noise and

hence the SNR in MR images (for example see [5] for a detailed

review of methods). The noise measurement method used in this

work (i.e. using equation 4) was selected because it can be

estimated from a short thermal noise reference scan and has been

shown to be independent of noise correlations [8]. Furthermore, it
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does not require any pulse sequence or image reconstruction

modifications. It should be pointed out that this noise measure and

the proposed extended model is applicable to all situations where

there is a constant scale factor between the measured apparent

SNR90 and the actual SNR0 [5], although the spatial variation of k
is likely to be different for different situations. For example, the

extended model could be used to characterize the tSNR and

physiological noise properties of GRAPPA parallel imaging

acquisitions [7] and reconstructions because g-factors and under-

sampling factors introduce a constant scaling factor between

apparent and actual SNR. The extended model in its current form

is not valid for low SNR values (,50), if 32 or more channels are

used since correction factors must be applied to account for

changes in the noise distribution [8]. However, in principle a

correction for low SNR values could be added to the model [3,8],

although an iterative estimation approach may be necessary.

Conclusion
We have presented a simple extension to the noise model of [1]

which allows the characterization of tSNR and SNR of non-

accelerated RSS combined images from multi-channel receiver

coils without needing to handle raw data or to perform arduous

custom-made image reconstruction. To our knowledge, no other

published methods can estimate the model proposed in [1] from

RSS combined magnitude data from multi-channel receiver coils.

We derive the proposed extended model from basic physical

principles and show that our simple SNR correction is valid for

non-accelerated data with an SNR .50 and for multi-channel

receiver coils with #32 channels. Given these constraints, the

model can be applied to all situations where a constant scaling

factor exists between the actual SNR0 and the apparent SNR90

measured in the reconstructed and combined images (e.g. non-

accelerated, RSS combined images). We successfully validated the

model by Monte Carlo simulations as well as application to

phantom data at 3T and task-free human fMRI data at 7T. In

particular, the extended model improves the prediction of low to

medium tSNR values, which is especially important for optimizing

high-resolution fMRI experiments, where thermal noise compo-

nents contribute significantly. In summary, the extended model

offers a simple and robust method to investigate the fundamentals

of physiological noise, to assess the impact of physiological noise

correction and image reconstruction and to optimize EPI

acquisition parameters.
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