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Abstract

It has long been agreed by academics that the inversion method is the method of choice
for generating random variates, given the availability of a cheap but accurate approx-
imation of the quantile function. However for several probability distributions arising
in practice a satisfactory method of approximating these functions is not available.
The main focus of this thesis will be to develop Taylor and asymptotic series rep-
resentations for quantile functions of the following probability distributions; Variance
Gamma, Generalized Inverse Gaussian, Hyperbolic, α-Stable and Snedecor’s F distri-
butions. As a secondary matter we briefly investigate the problem of approximating the
entire quantile function. Indeed with the availability of these new analytic expressions a
whole host of possibilities become available. We outline several algorithms and in par-
ticular provide a C++ implementation for the variance gamma case. To our knowledge
this is the fastest available algorithm of its sort.
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Chapter 1

Introduction

Analytic expressions for quantile functions have long been sought after. The import-

ance of these functions comes from their widespread use in applications of statistics,

probability theory, finance and econometrics. Therefore much effort has been devoted

into their study, in particular since closed form expressions for the quantile function of

most distributions are not known, several approximations appear in the literature. These

approximations generally fall into one of four categories, series expansions, functional

approximations, numerical algorithms or closed form expressions written in terms of a

quantile function of another distribution. The focus of this report is on the former two

categories.

We follow the philosophy of Steinbrecher and Shaw (2008), Shaw et al. (2011)

and Shaw and McCabe (2009) closely, that is to “elevate quantile functions to the same

level of management as many of the classical special functions of mathematical physics

and applied mathematics”. In particular this requires efficient computation. According

to Lozier and Olver (1994), there are three stages in the development of computational

procedures of special functions:

1. Derivation of relevant mathematical properties: This stage is primarily an ex-

ercise in applied mathematics, and is concerned with finding representations of

various forms such as, asymptotic expansions, difference and differential equa-

tions, functional identities, integral representations, and Taylor series expansions.

2. Development of numerical approximations and algorithms: This stage is an ex-

ercise in numerical analysis and is concerned with finding Chebyshev series ex-

pansions, minimax polynomial and rational approximations, Padé approxima-

tions, numerical quadrature and numerical solutions of difference and differential

equations.

3. Construction and testing of robust software: This final stage is an exercise in

computer science, and though highly dependent on stage 2, great benefits can be
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gained at this stage such as the possibility of parallelization and or the utilization

of various platform specific features.

The bulk of the work we carry out in this report belongs to stages 1 and 2, in particular

we will develop Taylor and asymptotic series expansions for the quantile functions of

the following probability distributions; Variance Gamma, Generalized Inverse Gaus-

sian, Hyperbolic, α-Stable and Snedecor’s F. With these analytic expressions in place

we proceed to stage 2 where we will be concerned with the construction of various types

of approximants such as continued fractions, Chebyshev series and minimax approx-

imations. Finally we briefly visit stage 3, where a C++ implementation of an algorithm

used to approximate the variance gamma quantile is provided.

There is no shortage of research articles discussing the approximation of quantile

functions, see for example Dagpunar (1989); Derflinger et al. (2009, 2010); Lai (2009);

Farnum (1991); Leydold and Hörmann (2011) to name a few. These papers are primar-

ily concerned with applying numerical techniques such as root finding and interpolation

to approximate the quantile function. Our approach however is centred around formu-

lating a first order ordinary differential equation problem. We are not the first however

to consider this differential equation approach, such a route is also taken by Ulrich and

Watson (1987) and Leobacher and Pillichshammer (2002). Here numerical schemes

such as Runge-Kutta methods are used to seek solutions. On the other hand we will

seek analytic solutions by applying certain well known techniques from applied math-

ematics.

Aside from Shaw’s series of Quantile Mechanics papers which we will discuss in

subsequent chapters, few authors have written about series representations of quantile

functions. Possibly the earliest known (at least to this author) series representation is the

famous Cornish Fisher expansion introduced in (Cornish and Fisher, 1938; Fisher and

Cornish, 1960). The Cornish Fisher expansion expresses the u-quantile of a random

variable X in terms of its cumulants and the u-quantile of the standard Gaussian distri-

bution. The idea was generalized in Hill and Davis (1968) by allowing for non Gaussian

base distributions. The Cornish Fisher expansion is often used for VAR applications in

finance, see for example Jaschke (2002).

Another interesting approach was introduced by Takemura (1983). Here a base

quantile function QB is chosen, based on which an orthonormal basis for the set of

square integrable functions on the unit interval is formed. Consequently the Fourier

series expansion of the target quantile QT with respect to this basis may be developed.

Unlike the Cornish Fisher expansion which is asymptotic in nature Takemura’s ap-

proach yields a convergent series in the L2 norm. Note however the computation of the

Fourier coefficients usually requires numerical quadrature and that for approximation
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purposes the L∞ norm is preferred, see Shaw et al. (2011) for details. We will discuss

the Cornish Fisher expansion and Takemura’s approach in more detail in chapter 4.

After a brief introduction to the theory of quantile functions in chapter 2 we mo-

tivate the discussion with a chapter on applications and another on existing methods. In

chapter 5 we discuss some general techniques used to solve non-linear ordinary differ-

ential equations. These will be employed in chapter 6, where we provide series repres-

entations for some quantile functions not currently available. Key to this approach is

the availability of the density function. In chapter 7 some alternative approaches reliant

instead on the characteristic and distribution functions respectively are investigated. As

a result series representations for the α-stable quantile function will be presented.

The fact that a convergent series for a specific quantile function is available may

seem to indicate that the computation of such a function is of no concern. However for

modern computing systems this is simply not the case, since:

• they are limited in speed; a big concern for slowly converging power series when

a desired accuracy is required,

• can only represent a finite range of numbers; the terms of the series may become

extremely small or large leading to underflow and overflow errors respectively,

• and can only perform finite precision arithmetic; which of course is a problem

for most numerical computations.

It is for these reasons series acceleration techniques (Brezinski and Zaglia, 1991) prove

so useful, and we will use them to good affect in our numerical experiments discussed

in chapter 8. Here the reader will find many useful recipes to construct algorithms

for approximating Q. The key here is to apply a change of variable. To this end we

will employ a technique devised by Shaw et al. (2011), albeit from a slightly different

perspective, and consequently tackle the problem of approximating Q. An overview of

a C++ program implementing these ideas is presented in section 8.9.

To summarize the key contributions in this thesis are provided in chapters 6 and 8.

Chapter 6 will be concerned with the developing the “ingredients” required to construct

numerical recipes for approximating Q. In particular we write down some functional

identities and develop some series representations in this chapter. In chapter 8 we put

together some numerical recipes based on these ingredients, for example

• we devise a strategy based on continued fractions,

• using the methods of Thacher (1964) and Sidi (1975) we construct Chebyshev-

Padé approximants,
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• and based on Maehly’s indirect method (Maehly, 1963) we construct minimax
approximations.

Note that key to all these numerical methods is knowledge of the Taylor coefficients.
Some timing and comparison information is provided in chapter 8. In particular we
compare Thacher’s and Maehly’s methods to the standard approaches of computing
Chebyshev coefficients and minimax approximants. The point is that on their own
Taylor series expansions may not provide good approximations but with a little extra
effort, they may be used as stepping stones to construct much superior approximants.

Of course there will be an overhead in generating these approximations. The res-
ulting approximation is only valid for one set of distribution parameters. Given this
initial setup time we imagine Monte Carlo users of sample sizes 106 and upwards for
the same set of parameters may find the techniques in this thesis useful.



Chapter 2

Quantile Functions

In this section we give a brief introduction to quantile functions and fix notation. Con-
sider a random variable, X defined on the probability space (Ω,B,P). The cumulat-
ive distribution function (c.d.f.) of X , is the function FX : R 7→ [0, 1] defined by
FX(x) = P(X ≤ x). What makes the c.d.f. FX(x) so useful is that, it completely
characterizes the probability distribution of X in the following sense.

Theorem 1. If two random variables X1 and X2 both have the same distribution func-

tion F then X1 and X2 have the same probability distribution.

Proof. See Jacod and Protter (2004, p. 39)

As we will see another way to characterize a probability distribution of a random
variable X is through the Quantile function which we define next.

Definition 2. The Quantile function of a random variable X , is the function QX :

(0, 1) 7→ R defined by

QX(u) = inf {x : F (x) ≥ u} .

The uth quantile of X is defined to be the value QX(u), denoted by xu. If u is a
multiple of 1/100, then the quantile xu is often referred to as the (u× 100)th percentile.
Some quantiles have been designated specific names, for example x0.25 is referred to
as the lower quartile (or the 25th percentile), x0.5 is referred to as the median (or the
50th percentile) and x0.75 is reffered to as the upper quartile (or the 75th percentile)1.
The following theorem lists some useful properties of the quantile function. Note in
particular when the distribution function F is continuous and strictly increasing the
definition of Q coincides with the functional inverse of F .

Theorem 3. Suppose X : Ω 7→ R is a random variable with c.d.f. F and quantile

function Q, then
1According to David (1995) the terms percentile, quartile and median were first introduced by Galton

in the late eighteen hundreds.
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1. Q is a non-decreasing function

2. Q(F (x)) ≤ x, ∀x ∈ R

3. F (Q(u)) ≥ u, ∀u ∈ (0, 1)

4. Q(u) ≤ x if and only if F (x) ≥ u

5. If F−1 exists, then Q (u) = F−1 (u)

Proof. Define A (u) = {y : F (y) ≥ u}.

1. Suppose u1 ≤ u2 then since F is non-decreasing we have A (u1) ⊇ A (u2) and

hence Q(u1) ≤ Q(u2).

2. Q(F (x)) = inf A (F (x)), but clearly x ∈ A (F (x)) so the result follows.

3. If A (u) is a closed set in R ∪ {−∞,∞} then it must contain its infimum, that

is Q (u) ∈ A (u) so F (Q (u)) ≥ u. To show A (u) is closed we prove any

convergent sequence (xn)n≥1 in A (u) has a limit point which is also in A (u).

Suppose xn → x0 as n → ∞, then since xn ∈ A (u) we have F (xn) ≥ u for

all n ≥ 1 and in particular lim infn→∞ F (xn) ≥ u. However since F is non-

decreasing and right continuous we have also have lim infn→∞ F (xn) ≤ F (x0),

hence F (x0) ≥ u which implies x0 ∈ A (u).

4. If Q (u) ≤ x then x ∈ A (u) so F (x) ≥ u. Conversely if F (x) ≥ u then again

x ∈ A (u) and Q (u) ≤ x since Q (u) is the infimum.

5. In the case the functional inverse exists we may writeA (u) = {y : y ≥ F−1 (u)}
and the infimum of this set is clearly F−1 (u).

As mentioned earlier the quantile function characterizes the probability distribution;

two random variables with the same quantile function will have the same probability

distribution.

Theorem 4. Let X1 and X2 be two real valued random variables with quantile func-

tions Q1 and Q2 respectively. If Q1(u) = Q2(u), ∀u ∈ (0, 1) then X1 and X2 have the

same probability distribution.

Proof. Let the distribution functions of X1 and X2 be given by F1 and F2 respectively.

For a fixed value x0 by part 2 of theorem 3 we have Q1 (F2 (x0)) = Q2 (F2 (x0)) ≤ x0

hence F1 (x0) ≥ F2 (x0) by part 4. On the other hand Q2 (F1 (x0)) = Q1 (F1 (x0)) ≤
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x0 so F2 (x0) ≥ F1 (x0) and we may conclude F1 = F2. The result then follows from
theorem 1.

we have suppose F1 (x0) < F2 (x0), then by parts 1 and 5 of theorem 3 we have
Q2 (F1 (x0)) ≤ Q2 (F2 (x0)) ≤ x0. Applying part 3 of the same theorem yields the
contradiction F1 (x0) ≥ F2 (x0). A similar argument rules out the case F1 (x0) >

F2 (x0), thus F1 = F2.

When working with a location-scale family of distributions, the following theorem
is useful. Given that we know the quantile function of a random variable X , with
distribution belonging to a location-scale family, it is a simple matter to compute the
quantile function of any other member of the family. This follows from the fact if Y
is also a member of the same location-scale family then it may be written as a linear
transformation of X .

Theorem 5. Suppose that X is a random variable with a strictly increasing and con-

tinuous c.d.f. Let Y = a+ bX for some constants a, b ∈ R with b 6= 0 then,

QY (u) =

a+ bQX (u) b > 0

a+ bQX (1− u) b < 0

where QX and QY are the quantile functions of X and Y respectively.

Proof. The c.d.f. FY of Y can be written in terms of the c.d.f. FX of X as,

FY (y) =

FX
(
y−a
b

)
b > 0

1− FX
(
y−a
b

)
b < 0

from which the result follows.

Life also becomes a lot simpler when we are dealing with symmetric distributions,
due to the following theorem. Suppose we wanted to approximate the quantile function
on its domain (0, 1), then in the symmetric case we need only focus our attention on
the shorter interval [1/2, 1) .

Theorem 6. Suppose X is a random variable with a strictly increasing and continuous

c.d.f . If the density fX of X satisfies f (x) = f (−x), ∀x ∈ R then

QX (u) = −QX (1− u) , u ∈ (0, 1) .

Proof. From symmetry of X we have FX (x) = 1 − FX (−x) and the result follows.

There are some probability distributions for which an explicit expression for the
quantile function may be written down explicitly.
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Example 7 (Pareto). The c.d.f. of the Pareto distribution is given by,

F (x;xm, α) = 1−
(xm
x

)α
, x ≥ xm, xm, α > 0,

which can be directly inverted to obtain,

Q (u;xm, α) =
xm

(1− u)
1
α

.

Example 8 (Logistic). The c.d.f. of the logistic distribution is given by,

F (x;µ, s) =
1

1 + e−(x−µ)/s
, x, µ ∈ R, s > 0,

which can be directly inverted to obtain,

Q (u;µ, s) = µ+ s ln

(
u

1− u

)
.

There are many other examples for which the c.d.f. is invertible such as in the case
of the Student-t distribution with ν = 1, 2, 4 degrees of freedom. For a more compre-
hensive list the reader is referred to the monograph by Gilchrist (2000). However for the
large majority of probability distributions the quantile function may not be expressed
in closed form as in the above examples. The Student-t, Beta, Variance Gamma and
Generalized Hyperbolic are amongst this class of distributions. There are many reasons
why one would want to compute the quantile, some of which are discussed in chapter
3. The aim of this report is to investigate methods used to find useful representations
of quantile functions when a closed form expression is not available.



Chapter 3

Applications

Below we will discuss some applications of the quantile function. They provide the mo-

tivation behind seeking practical representations of these functions. We have focused

on finance related applications but obviously the quantile function has much broader

appeal, in particular in applications of statistics and econometrics which we have not

included, see Gilchrist (2000) for further examples.

3.1 Value at Risk
Value at risk (VaR) is the most widely used risk measure in finance. It is defined as

follows, for a fixed time horizon T, let L denote the potential loss of a portfolio of risky

assets over this period. Assume further that the distribution function of the loss L is

given by FL (x) = P (L ≤ x), then for a given confidence level α ∈ (0, 1) the VaR is

defined as,

VaRα,T = inf {x ∈ R : P (L > x) ≤ 1− α} . (3.1.1)

That is the VaR is the smallest number x such the the probability the loss exceeds x is

less than 1− α over the time period T . Typical values of α are α = 0.95 or α = 0.99.

Note that equivalently we may write (3.1.1) as,

VaRα,T = inf {x ∈ R : P (L ≤ x) ≥ α}

= inf {x ∈ R : FL (x) ≥ α} .

From this we see the VaR is simply the α quantile of the loss distribution. Although

popular there are many shortcomings of VaR, for details we refer the interested reader

to McNeil et al. (2005).
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3.2 Monte Carlo
A necessary requirement to Monte Carlo simulations is the ability to produce random

numbers. Assuming that a good random number generator is available, and capable

of producing random deviates from U(0, 1), the standard uniform distribution, a trans-

formation method is required to transform these deviates to the desired distribution, e.g.

Normal, Student-t etc. The inversion method is the simplest and most general method

for this purpose and makes direct use of the quantile function. Suppose U ∼ U (0, 1)

then we may generate a random variate X with desired c.d.f. F through the transform-

ation X = Q (U), where Q is the associated quantile function. To verify this claim

observe that,

P (X ≤ x) = P (Q (U) ≤ x)

= P (U ≤ F (x))

= F (x) .

Note we have not placed any restrictions (such as continuity or strict monotonicity)

on F , the second equality follows from part (4) of theorem 3. In some specific cases

due to the difficulty in evaluating Q (U) the inverse method may be computationally

expensive resulting in a slow algorithm. Dependent on the cost in evaluating Q (U) the

inverse method is generally considered to be the method of choice amongst academics

(L’Ecuyer, 2012; Korn et al., 2010). One of the objectives of this thesis is to improve

the efficiency in evaluating the quantile function so that we can benefit from some of

the advantages of the inversion method listed below.

1. It is the most general method, it can be used to generate variates from discrete,

continuous and mixed distributions, see Law and Kelton (2000, § 8.2.1).

2. It only requires one uniform random variate U to generate a non-uniform variate

X . Also due to the monotonicity of Q there is a one to one correspondence

between the U and X , in the case F is continuous and strictly increasing.

3. It allows one to sample from conditional distributions. Suppose the random vari-

able X has c.d.f. F then the random variable X given X ∈ [a, b) has the c.d.f.

H(x) = P (a ≤ X ≤ x |a ≤ X ≤ b). Using the quantile function Q of X it is

easy to generate random variates with c.d.f. H , see for example Korn et al. (2010,

§ 2.6.3) or Glasserman (2004, e.g. 2.2.5.).

4. Often the only transformation method compatible with important variance reduc-

tion techniques such as antithetic variates, common random numbers, stratified
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and Latin hypercube sampling is the inversion method, see L’Ecuyer (2012) and

references therein. This is due to the fact that variance reduction techniques rely

on introducing correlation between the variates and the inversion method is cap-

able of inducing maximum positive or negative correlation between the generated

variates, see for example Bratley et al. (1987, p. 47), Law and Kelton (2000, p.

472) or Devroye (1986, p. 29) for details. For other reduction techniques (such

as the method of control variates, importance sampling etc.) one may have the

freedom to choose another transformation method (rejection sampling, ratio of

uniforms etc.). However as pointed out by Korn et al. (2010, § 2.4.1), the best

way to transform uniform random numbers is the inversion method because it

preserves structures. If the distribution structure of the uniformly distributed ran-

dom numbers is good, so will the structure of the transformed random numbers

(see also the remark below on Neave’s effect).

5. It allows one to generate the maximum of a sample in an efficient manner.

Suppose we are interested in generating X = max {X1, . . . , Xn}, where the

Xi’s are independent identically distributed random variates. One could gener-

ate X1, . . . , Xn and then take the maximum, however a more efficient method

exists. Suppose we find V = max {U1, . . . , Un} where U1, . . . , Un are inde-

pendent identically distributed uniform [0, 1] random variates, then it happens

that X = Q (V ). This method avoids having to generate the entire sequence

X1, . . . , Xn, see Devroye (1986, p. 30) for more information.

6. It allows one to generate order statistics in an efficient manner. Suppose

X1, . . . , Xn are independent and identically distributed random variables and we

are interested in generating the order statistic X(i) for some i ∈ {1, . . . , n}. An

obvious approach would be to generate the Xi’s through any method available

and then sort the output X1, . . . , Xn in ascending order, and choose the ith smal-

lest value in the list. This technique can be extremely slow when n is large as it

requires us to generate n different random variates and sort the result when all

we are interested in generating is X(i). An alternative approach is provided by

the following algorithm,

(a) Generate Y ∼ Beta (i, n− i+ 1)

(b) Set X(i) = Q (Y )

The validity of this algorithm is established in Law and Kelton (2000, prob. 8.5).

7. When considering low discrepancy sequences (quasi random numbers) some au-

thors suggest the only method that preserves the structure of the sequence is the
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inversion method, see for example Galanti and Jung (1997), Moro (1995), Joy
et al. (1996, footnote 6), or Korn et al. (2010, § 2.7.5). It should be noted however
Ökten and Göncü (2011) have suggested through empirical tests that preference
of the inversion method over the Box Muller transform is a result of “common
folklore”. In the same reference the Marsaglia transform is clearly rejected as a
viable choice.

8. Acceptance rejection methods (and their extensions such as adaptive rejection
sampling) are generally inapplicable with quasi Monte Carlo methods (Glasser-
man, 2004, p. 62). The effectiveness of quasi Monte Carlo deteriorates as the
dimension increases. The dimension of the problem is typically the maximum
number of uniforms required to generate a simulation “path”. With a rejection
scheme there is no single upper bound on the number of uniforms required to
generate a single nonuniform variable; therefore simulations that use rejection
methods correspond to infinite dimensional problems. As we have noted since
the inversion method requires only one uniform variable per nonuniform variable,
this issue does not arise with the inversion method.

9. When uniform pseudo random variate generation methods are paired with trans-
form methods to generate variates from a specified distribution, the two may be
incompatible. Four transform methods have been paired and studied with lin-
ear congruential generators in Hörmann (1993) and the recommended method of
transform is the inversion method. For example when the Box Muller transform
is paired with congruential generators strange behaviour known as the Neave ef-
fect has been reported, see remark 9 and the references Ripley (1987, p. 55) or
Jäckel (2002, § 9.3.2). The root cause of this bad behaviour is the poor perform-
ance of the uniform generator; for this particular pairing some workarounds are
given in Golder and Settle (1976). However the problem is not just with linear
congruential generators, it has also been reported to occur when the Box Muller
transform is paired with a Tausworthe generator, see Tezuka (1991). Other trans-
form methods which have been reported to be susceptible to Neave’s effect are
Marsaglia’s and Bailey’s polar methods used to generate normal and student-t
variates respectively, see Gentle (2003, p. 185).

Remark 9. In his experiment Neave used a linear congruential generator,

Xi = (bXi−1 + c) modm

to generate U (0, 1) random variates Ui = Xi/m. He used the following parameter
values, multiplier b = 131, increment c = 0 and modulus m = 235. When paired with
the Box Muller transform to generate a pair of independent N (0, 1) random variates,
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Y =
√
−2 lnUi cos (2πUi+1)

Z =
√
−2 lnUi sin (2πUi+1) ,

Neave observed that for two million random variates generated the pseudo random

numbers Z lie in the range (−3.3, 3.6), but obviously there is a positive probability

for normal variates to fall outside of this range. We repeated Neave’s experiment in

Mathematica (Wolfram-Research, 2010) and contrasted it to the inversion method. The

code for the experiment along with the test results are supplied in figure C.0.1. Our tests

not only confirm Neave’s findings but also confirm that this strange behaviour does not

occur with the inversion method.

3.3 Copulas
Copula functions are used to model dependency amongst random variables in a very

versatile way. They allow us to define a dependency structure independent of how

the marginals are defined. In this way arbitrary marginal distributions may be linked

together with prespecified dependency structures. In order to be self contained we give

a brief overview of this topic. As we will see, quantile functions take a prominent role

in copula theory. Standard references for this section are Nelsen (2006) and Joe (1997),

we will however closely follow the expositions given in Franke et al. (2011, Ch. 17)

and Embrechts et al. (2003). We begin with a definition,

Definition 10. An d-dimensional copula is a continuous function C : [0, 1]d 7→ [0, 1]

satisfying the following properties, for all u = (u1, . . . , ud)
> ∈ [0, 1]d and j ∈

{1, . . . , d}:

1. C (u1, . . . , ud) is increasing in each of its arguments.

2. C (1, . . . , 1, uj, 1, . . . , 1) = uj

3. for all v = (v1, . . . , vd)
> ∈ [0, 1]d such that vj ≤ uj ,

VC (u,v) ≥ 0

where VC is the C-volume given by,

VC (u,v) =
2∑

i1=1

· · ·
2∑

id=1

(−1)i1+···+id C (g1i1 , . . . , gdid)

and gj1 = vj and gj2 = uj .
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These properties guarantee that copulae are valid distribution functions defined on the
d-dimensional unit cube. Property (1) is a required property for any distribution func-
tion. Property (2) says that the marginals of the copula are uniform. The final property
says that any d-dimensional cube in [0, 1]d has non negative C-volume. In the case
where d = 2 this property reads C (v1, v2) − C (v1, u2) − C (u1, v2) + C (u1, u2) ≥ 0

and is a generalization of non-decreasing functions to higher dimensions. The follow-
ing fundamental theorem links copula functions to more general probability distribution
functions.

Theorem 11 (Sklar’s Theorem). Let F be a d-dimensional probability distribution

function with marginals F1, . . . , Fd. Then there exists a copula C such that

F (x1, . . . , xd) = C (F1 (x1) , . . . , Fd (xd)) , ∀x1, . . . , xd ∈ R. (3.3.1)

If F1, . . . , Fd are continuous then C is unique. Conversely if C is a copula function and

F1, . . . , Fd are distribution functions then the function F defined in (3.3.1) is a joint

distribution function with marginals F1, . . . , Fd.

A corollary to this theorem allows us to extract the copula from the joint distribu-
tion, provided we have knowledge of the quantile functions of the associated marginals.

Corollary 12. Let X = (X1, . . . , Xd)
> be a d-dimensional random vector with joint

distribution function FX. If the marginals F1, . . . , Fd of FX are continuous and C is a

copula satisfying (3.3.1) then,

C (u1, . . . , ud) = FX (Q1 (u1) , . . . , Qd (ud)) , ∀u1, . . . , ud ∈ [0, 1] , (3.3.2)

where Qi is the quantile function associated with the marginal distribution function Fi.

This allows us to isolate the dependence part of the joint distribution, and the
resulting copula in (3.3.2) is called the implicit copula of this distribution. The next
theorem states that copulae are invariant under monotonically increasing transforma-
tions and is particularly useful when trying to extract the implicit copula from a joint
distribution function.

Theorem 13. Let X = (X1, . . . , Xd)
> be a d-dimensional random vector with copula

CX and continuous marginals. Suppose Tj is a strictly increasing function on the range

of Xj for j = 1, . . . , d. Consider the transformed random vector Y = (Y1, . . . , Yd)
>,

where Yj = Tj (Xj) for j = 1, . . . , d with copula CY. Then CX = CY almost every-

where.
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Example 14 (Gaussian Copula). We may extract the dependency structure, that is the

implicit copula associated with the Gaussian distribution. This allows us to form distri-

butions in which we are free to choose non-normal marginals, but the dependency struc-

ture remains Gaussian. To extract the Gaussian copula suppose X = (X1, . . . , Xd)
> ∼

Nd (µ,Σ) whereµ = (µ1, ..., µd) and Σ = (σij)i,j=1,...,d. From Sklar’s theorem there

exists a copula CX such that distribution function FX, of X may be written as,

FX (x1, . . . , xd) = CX (F1 (x1) , . . . , Fd (xd)) ,

where FXj is the distribution function of Xj . Next define the function Tj as,

Tj (x) =
x− µj
σj

,

where we have adopted the convention σj = σjj . Let Yj = Tj (Xj) for j = 1, . . . d

then Yj ∼ N (µj, σj) and Y = (Y1, . . . , Yd)
> ∼ Nd (0,Ψ), where Ψ =

(
σij
σiσj

)
i,j=1,...,d

is the correlation matrix associated with Σ. Again by Sklar’s theorem there exists a

unique copula CGa
Ψ , called the Gaussian copula such that distribution function FY, of

Y may be written as,

FY (y1, . . . , yd) = CGa
Ψ (Φ (y1) , . . . ,Φ (yd)) ,

where Φ is the standard normal c.d.f. Since Tj is strictly increasing on R, by theorem

(13) we may conclude CX = CGa
Ψ . In addition (3.3.2) allows us to write down an

explicit expression for the Gaussian copula.

CX = CGa
Ψ

= FY (y1, . . . , yd)

= FY

(
Φ−1 (u1) , . . . ,Φ−1 (ud)

)
=

1

(2π)d/2
√
|Ψ|

ˆ Φ−1(u1)

−∞
· · ·
ˆ Φ−1(ud)

−∞
exp

(
−1

2
x>Ψ−1x

)
dx1 . . . dxd

Thus any multivariate Gaussian distribution may be constructed from the Gaussian cop-

ula and the associated marginals. Similar methods may be used to write down an ex-

pression for other implicit copulae such as the Student-t copula.

The primary role of quantile functions in copula theory, is in the simulation of

the random vector X = (X1, . . . , Xd)
> with joint distribution defined by the copula

CX and d marginal distributions F1, . . . , Fd, which we discuss next. To this end we

introduce the concept of conditional copula distributions. Assume j ∈ 2, . . . , d− 1,



3.3. Copulas 22

Algorithm 1 Conditional Sampling

1. generate d independent pseudo random variables v1, . . . , vd uniformly distributed
on [0, 1].

2. for j = 1, . . . , d set uj = C−1
j (uj |u1, . . . , uj−1 ); the pseudo random variables

u1, . . . , ud will have standard uniform marginal distributions and a dependence
structure given by the copula CX.

3. for j = 1, . . . , d set xj = Qj (uj); the pseudo random variables x1, . . . , xd
will have marginal distributions given by F1, . . . , Fd respectively and depend-
ence structure given by the copula CX.

then the conditional copula is defined as the conditional distribution of Uj , given the

values of U1, . . . , Uj−1,

Cj (uj |u1, . . . , uj−1 ) = P (Uj ≤ uj |U1 = u1, . . . , Uj−1 = uj−1 ) ,

and the j-dimensional marginal copula Cj is defined as,

Cj (u1, . . . , uj) = CX (u1, . . . , uj, 1, . . . , 1) .

Denote by ckj the derivative of the j-dimensional marginal copula Cj , with respect to

the first k ≤ j arguments,

ckj (u1, . . . , uj) =
∂kCj (u1, . . . , uj)

∂u1, . . . , ∂uk
.

Keeping in mind the copula Cj (u1, . . . , uj) is the joint distribution of the j uniform

random variables U1, . . . , Uj , and using the continuity property of probability, we may

prove the following identity, see Franke et al. (2011, p. 347), relating the conditional

copula to the partial derivatives of the marginal copulas Cj and Cj−1,

Cj (uj |u1, . . . , uj−1 ) =
cj−1
j (u1, . . . , uj)

cj−1
j−1 (u1, . . . , uj−1)

.

This identity may be used in simulating the random vector X = (X1, . . . , Xd)
> as

described above using algorithm 1.

Although quite general the efficiency of the conditional sampling method depends

on the availability of analytic expressions for the inverse of the conditional copula C−1
j

and the quantile functions Qj , for j = 1, . . . , d. If such expressions are not avail-

able or do not exist, numerical root finding techniques are usually employed, which

result in slow sampling procedures. For this reason more efficient algorithms have
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Algorithm 2 Sampling from a Gaussian Copula
Input: the correlation matrix Ψ.
Output: A set of pseudo random numbers u1, . . . , ud with joint distribution function
specified by the Gaussian copula CGa

Ψ .

1. Perform the Cholesky decomposition Ψ = ATA.

2. Generate independent and identically distributed standard Gaussian deviates,
Y = (Y1, . . . , Yd)

T .

3. Set X = (X1, . . . , Xd) = AY.

4. Return Ui = Φ (Xi) for i = 1, . . . , d.

been devised for sampling from specific types of copulae, such as Gaussian, Student-t,
Archimedean etc. The crucial point is that all these algorithms return a set of uniform
distributed pseudo random variables u1, . . . , ud with the desired dependency structure
just like step 2 of algorithm 1. To generate pseudo random variables x1, . . . , xd with
the required marginals step 3 must be applied, for which knowledge of the associated
quantile functions Q1, . . . , Qd is essential. For example algorithm 2 describes an effi-
cient method to generate pseudo random variables u1, . . . , ud from a Gaussian copula,
in order to construct the sample x1, . . . , xd a means to compute the marginal quantiles
Q1, . . . , Qd is absolutely necessary. For further details on simulation procedures see
for example, Embrechts et al. (2003), Franke et al. (2011, p. 347) and Schmidt (2006).



Chapter 4

Existing Methods

We now look at some of the existing methods used to evaluate the u-quantile xu =

QX (u) of a continuous random variableX . This is a vast research area and it is difficult

to provide a review of all the literature. However most of the techniques utilized are

extensions of common techniques used in numerical analysis, such as root finding,

rational approximations, interpolation and series expansions, which we discuss in the

following sections from a historical perspective. In the spirit of this thesis we will

discuss existing series expansions in some detail, in particular the much celebrated

series expansion due to Cornish and Fisher is derived in section 4.2.

4.1 Numerical Techniques
Since an analytic expression for the quantile function is not known in the case of most

distributions, numerical methods are often deployed, some of which we discuss in this

subsection. Good sources of these techniques in the context of Quantile functions in-

clude Kennedy and Gentle (1980, Ch. 5), Lange (2010, Ch. 5) and Devroye (1986). We

will focus on continuous distributions, since if a distribution is concentrated on a finite

set of points and has no parametric dependencies, it is then a matter of tabulating the

c.d.f. and employing a search algorithm to find the required u-quantile, see for example

Bratley et al. (1987, § 5.2.1).

4.1.1 Root Finding
Suppose the c.d.f. F is continuous and strictly monotone, and that we have the means of

computing F (x). By definition the u-quantile xu of F satisfies the equation F (xu) =

u. Define the function g (x) := F (x) − u. Then the unique root xu of g in R can

be found by standard root finding techniques. Probably the most famous technique

is Newton’s method. It is an iterative technique in which approximations xk of the

solution xu take the form

xk+1 = xk −
g (xk)

g′ (xk)
.
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A variation of Newton’s method is the secant method in which successive approxima-
tions are given by

xk+1 = xk −
g (xk) (xk − xk−1)

(g (xk)− g (xk−1))
.

It is useful when the evaluation of g′ (x) is costly. However both these methods suffer
from slow convergence when applied to strangely shaped functions, for example when
the c.d.f. changes slope too rapidly, corresponding to densities with several modes and
especially high spikes, Hörmann et al. (2004, § 7.1). As a final resort the Bisection
method may be applied which is known to converge for any c.d.f. even if not continu-
ous at the cost of slower rates of convergence. Of course a hybrid algorithm could be
designed, for example to start with the secant method and to resort to the Bisection
method when the rate of convergence decreases. In addition root finding techniques are
often used to refine the output of another algorithm. For example Acklam (2009) con-
structs a rational approximant to the standard normal quantile with a relative accuracy
no larger than 1.15 × 10−9 and then applies one iteration of Halley’s method (a third
order root finding scheme) to compute the quantile to full machine precision.

Fixed point iteration or functional iteration may also be used to find the root of
the function g. In this case define the function h (x) := xF (x) /u, then it is easy
to see the fixed point xu of h is a root of g. Many fixed point algorithms however
require for convergence that there exists a constant K such that |h′ (x)| < K < 1 in
a neighbourhood of the fixed point. Clearly h violates this condition. Farnum (1991)
however suggests to use Steffensen’s acceleration technique which does not require the
derivative of h to be bounded above and below by unity, |h′ (x)| < 1.

4.1.2 Rational Approximation
The idea behind this approach is to approximate the quantile function Q by a function
of the form,

Q (x) =
a0 + a1x+ · · ·+ anx

n

b0 + b1x+ · · ·+ bnxn
+ e (x) , (4.1.1)

on the interval domain (0, 1) where e (x) is an error term satisfying some accuracy
bound, say e (x) < ε.

To keep round off error to a minimum the polynomials appearing in the numerator
and denominator are usually evaluated according to Horner’s rule. There are several
examples in the literature of rational function approximations of the normal quantile
see Odeh and Evans (1974), Beasley and Springer (1977), Moro (1995) and Acklam
(2009). It is not necessary to approximate Q on its domain by one rational approx-
imation, we may split the domain and use several rational approximations. This was
the approach taken in the above references. Recently Shaw et al. (2011) through the
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use of a clever change of variable, developed a single rational approximation for the
normal quantile. The result is an algorithm that is branch-less and well suited for GPU
architectures. Consequently their technique is gaining popularity amongst the finance
community. Another algorithm well suited for GPU architectures is provide by Giles
(2010) which is employed by the current CUDA library. The coefficients appearing in
(4.1.1) can be computed using the second algorithm of Remes or the differential correc-
tion algorithm, see Press et al. (2007) or Ralston and Rabinowitz (2001). We will have
much more to say about minimax and rational approximations in general in chapter 8.

4.1.3 Interpolation
References for this section are Hörmann et al. (2004, § 7.2) and Bratley et al. (1987, §
5.2.2). The simplest approach is as follows, tabulate a sequence of pairs (F (xi) , xi),
this is normally achieved through some method of numerical integration, and may re-
quire significant set-up time. Using a search algorithm find to xi such that F (xi) ≤
u ≤ F (xi+1). Next use some interpolation technique to find a more accurate approx-
imation. A more sophisticated approach was provided by Ahrens and Kohrt (1981),
which can be described as follows,

1. numerically integrate the p.d.f. to obtain F ;

2. decide how to partition (0, 1) the domain of Q, into unequal length intervals
based on the behaviour of F ;

3. determine the form and the coefficients of the interpolating function for each such
interval.

Although the set-up time for this procedure is large Ahrens and Kohrt claim that if
many variates need to be generated, then not including the set-up time required the
speed and accuracy of their method is as good as the best available methods tailored
for specific distributions. There is one notable drawback of their approach however, the
set-up requires the parameters of the distribution to be fixed, thus we must repeat the
initialization procedure for each set of parameters we are interested in. An interesting
extension of this technique however can be found in Derflinger et al. (2010).

4.1.4 Relationship between Distributions
If a relationship between two distributions exists, and the quantile function of one of the
distributions is known, then sometimes it is possible to exploit this relationship to derive
an expression for the quantile function of the second distribution in terms of the quantile
function of the first distribution. In section 6.1 we provide a concrete example, in which
the relationship between the beta and F distributions is utilized to derive an expression
for the quantile function of the F distribution in terms of the quantile function of the
beta distribution.
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4.2 Cornish-Fisher Expansions
Probably the best known series representation of the quantile function is the Cornish
Fisher expansion introduced in Cornish and Fisher (1938) and Fisher and Cornish
(1960). Let FT be the c.d.f. of an arbitrary distribution which we will call the tar-

get distribution and FB be the c.d.f. of some chosen base distribution. In their original
papers Cornish and Fisher set the base distribution as FB = Φ, where Φ is the c.d.f. of
the standard normal distribution. Later Hill and Davis (1968) generalized the Cornish
Fisher expansion by allowing the base distribution to be arbitrary, not necessarily nor-
mal. In this section we will derive the generalized Cornish-Fisher expansion and dis-
cuss its deficiencies. Let x and z be the u quantiles of FT and FB respectively, the idea
is to solve the equation,

FT (x) = FB (z) . (4.2.1)

for x. Note that (Shaw et al., 2011) also tackle the problem of solving (4.2.1), albeit
through a much different approach, which is discussed in chapter 6. Cornish and Fisher
provided an asymptotic series expansion of x based on polynomials in z whose coeffi-
cients are the cumulants of the target distribution. The derivation of Hill and Davis is
based on Lagrange’s inversion formula, see for example (Whittaker and Watson, 1927,
p. 133). We reproduce the theorem here for convenience.

Theorem 15. Let f and g be functions of z analytic inside and on a contour C sur-

rounding a point a. Let t ∈ C be a point such that the inequality

|tg (z)| < |z − a|

is satisfied at all points z on the perimeter C, then the equation

ξ = a+ tg (ξ) , (4.2.2)

regarded as an equation in ξ has one root in the interior of C. Further more any

function of ξ analytic inside and on C can be expanded as a power series in t by the

formula,

f (ξ) = f (a) +
∞∑
n=1

tn

n!
Dn−1
a [f ′ (a) (g (a))n] , (4.2.3)

where Dx is the differential operator defined by Dx = d
dx

.

What theorem 15 says is that if a function ξ of t is implicitly defined as in (4.2.2)
with respect to a parameter a then any analytic function f of ξ can be expressed as a
power series in t. Let A (x) := FT (x)− FB (x) then we may rewrite (4.2.1) as,
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FB (x) = FB (z)− A (x) . (4.2.4)

By defining the variables

a = FB (z) , ξ = FB (x)

and denoting by QB the quantile function associated with FB, (4.2.4) may be written

as

ξ = a− A (QB (ξ)) ,

which is of the form (4.2.2) with g = A ◦ QB. Hence we may solve for QB (ξ) = x

using Lagrange’s inversion formula. Setting t = −1 yields,

QB (ξ) = QB (a) +
∞∑
n=1

(−1)n

n!
Dn−1
a [Q′B (a) (A ◦QB (a))n] .

Substituting dz
da
Dz for Da this may be written in the original variables,

x = z +
∞∑
n=1

(−1)−n

n!

(
1

fB (z)
Dz

)n−1 [
(A (z))n

fB (z)

]
,

which can be written as,

x = z +
∞∑
n=1

(−1)−n

n!
D(n−1)

[(
FT − FB

fB
(z)

)n]
, (4.2.5)

where D(n) :=
(
D +

f ′B
fB

)(
D + 2

f ′B
fB

)
· · ·
(
D + n

f ′B
fB

)
. To see this note,

D(n−1)

[(
FT − FB

fB

)n]
=

(
D +

f ′B
fB

)
· · ·
(
D + (n− 1)

f ′B
fB

)[(
FT − FB

fB

)n]
=

(
f−1
B Df 1

B

)
. . .
(
f
−(n−1)
B Df

(n−1)
B

)[(FT − FB
fB

)n]
= f−1

B Df 1
B · · · f

−(n−1)
B Df

(n−1)
B

[(
FT − FB

fB

)n]
= f−1

B Df−1
B Df−1

B · · · f
−1
B D

[
f

(n−1)
B

(
FT − FB

fB

)n]
=

(
f−1
B D

)n−1
[

(FT − FB)n

fB

]
,

where we have used the operator identity D + n
f ′B
fB

= f−nB DfnB. Equation (4.2.5) is
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called the generalized Cornish-Fisher expansion, it provides an approximation to the

function x = QT (FB (z)), where QT is the quantile function associated with FT . It

is shown by Hill and Davis in (Hill and Davis, 1968) that in the case FB = Φ, (4.2.5)

reduces to the standard Cornish Fisher equation. Let Q̃T denote an approximation of

QT obtained by truncating (4.2.5) after a finite number of terms. Although widely used

in the finance for VAR calculations, we note some of the drawbacks of the Cornish

Fisher expansion:

• Q̃T is not necessarily monotone.

• Q̃T has the wrong tail behaviour, that is the approximations of the u-quantiles

become less reliable as u→ 0 or u→ 1.

• The series is asymptotic, thus the approximations do not necessarily improve by

increasing the order n of the approximation.

These properties may have serious consequences, for example the loss of monotonicity

may lead to a situation where the 99% VAR is less than the 95% VAR! See Jaschke

(2002) for further discussion of these deficiencies. In the following sections we will

derive series expansions of our own, aiming to overcome some of these inadequacies.

Remark 16. Suppose θn is a sequence of statistical estimators for a parameter of in-

terest. Let Fn be the distribution function of θn and assume θn converges in distribution

to the standard normal as n→∞. The motivation behind the Cornish Fisher expansion

was to estimate the quantile of Fn so that we may compute confidence intervals for θn.

When the sequence of distributions Fn converge to the standard normal, the Cornish

Fisher approximation provides a better approximation than the normal approximation

itself, see Jaschke (2002).

4.3 Orthogonal Expansions
In this section we will develop an orthogonal expansion for the target quantile function

QT as proposed by Takemura (1983). Consider the set of distribution functions with

finite second moment,

Γ2 =

{
F :

ˆ ∞
−∞

x2dF <∞
}
.

By associating each F with its associated quantile functionQ, the set Γ2 is mapped into

L2 [0, 1] the set of square integrable functions on (0, 1) since,

ˆ 1

0

Q (u)2 du =

ˆ ∞
−∞

x2dF <∞.
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Now let FB ∈ Γ2 and consider the set of square integrable functions with respect to FB
on a set A ⊆ R,

L2 (A;FB) =

{
g :

ˆ
A

g (x)2 dFB (x) <∞
}
.

The primary theorem of Takemura’s paper, states that if we can find an orthonormal
basis {ψi}∞i=0 for the space L2 (A,FB) then {ψi ◦QB}∞i=0 will serve as an orthonormal
basis for the space L2 [0, 1], where QB is the quantile function associated with FB.

Example 17. Let FB = Φ be the distribution function of the standard normal distribu-
tion and A = R, then the space L2 (R,Φ) contains those functions for which,

ˆ
R
g (x)2 dΦ (x) =

1√
2π

ˆ ∞
−∞

g (x)2 e−x
2/2dx <∞.

It is well known that these functions form a Hilbert space for which the Hermite polyno-
mialsHn (x) form an orthonormal basis. Hence we have that

{
Hn (QB (u)) /

√
n!
}∞
n=0

,

where QB (u) =
√

2 erf−1 (2u− 1), is an orthonormal basis for the space L2 [0, 1].

Elementary Fourier theory then tells us for any target distribution function FT ∈
Γ2, we may expand the associated quantile function QT as

QT (u) =
∞∑
i=0

aiψi (QB (u)) , (4.3.1)

where

ai = 〈QT , ψi ◦QB〉 =

ˆ 1

0

QT (u)ψi (QB (u)) du. (4.3.2)

See Takemura’s original paper for an exact statement of the theorem. The crux of the
matter then is to find a base distribution for which we can find an orthonormal basis
of the set L2 (A,FB). Takemura gives two other examples of base distributions where
this is possible, namely the standard exponential and uniform distributions. In these
cases it turns out that the set of Laguerre and Legendre polynomials respectively form
an orthonormal basis of L2 (A,FB).

Takemura’s approach is certainly an elegant one, in that he manages to apply
classical Fourier theory to express the target quantile function QT in terms of a base
quantile function QB, analogous to the generalized Cornish Fisher expansion. Unlike
the Cornish Fisher expansion however (4.3.1) is a convergent series. From a practical
perspective the primary setbacks with this approach are that: 1) the convergence of
(4.3.1) is in the L2 norm, and 2) the coefficients ai usually cannot be computed ana-
lytically so one must resort to numerical quadrature. Thus it may happen that approx-
imating QT by truncating (4.3.1) the average error is small while the error in the tails
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is large. For this reason the L∞ norm is preferred, so if one must resort to numerical
quadrature to compute the coefficients ai we would imagine that it be more worthwhile
to approximate the Chebyshev coefficients. We will take up the topic of approximating
the Chebyshev coefficients in chapter 8.



Chapter 5

Solution Techniques

In subsequent sections we will deal with nonlinear ordinary differential equations

which in general are known to be notoriously difficult to solve. Thus in modern times

many advanced techniques have been developed to deal with such problems. For ex-

ample Adomian’s decomposition method (Adomian, 1990), He’s variational iteration

method (He and Wu, 2007) and the Lie Group method (Olver, 2000) to name a few,

have proved useful in the literature. We have applied some of these techniques to

our problem, but find none more effective than two of the oldest methods of solution,

namely the method of undetermined coefficients and the method of successive differen-

tiation, see Tenenbaum and Pollard (1985). However in order to apply these methods

a set of identities is required to handle the non linear terms appearing in the differ-

ential equation. Both of these methods yield recursive definitions of the coefficients

appearing in a Taylor series expansion for the solution of the differential equation,

y′ (x) = f (x, y) . (5.0.1)

The reader will of course recognize this as Taylor’s method of numerical integration.

Note that most texts on numerical analysis and applied mathematics, see for example

the classics Henrici (1964) and Gear (1971), state that Taylor’s method is primarily only

of theoretical concern, and can only be applied in practice to very special cases. This is

because the analytic determination of the Taylor series coefficients, i.e. the calculation

of the higher order derivatives was deemed too complicated in most cases. For this

reason Taylor series techniques were not pursued further in favour of other algorithms.

However with the advent of digital computers and in particular automatic differenti-

ation (not to be confused with numerical or symbolic differentiation) this argument no

longer holds. Before continuing let us be clear what we mean by these three types of

differentiation:

• Numerical differentiation is a crude way of approximating derivatives through

difference quotients prone to cancellation and truncation errors.
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• Symbolic differentiation is the study of algorithms and software for the manipu-

lation of mathematical expressions according to the usual rules of calculus. No

value is assigned to variables in the resulting expression (hence the term sym-

bolic), an exact symbolic formula for the derivative is produced. The biggest

drawback of symbolic differentiation that it may be both memory and time con-

suming.

• Automatic differentiation “is a recursive procedure to compute the value of de-

rivatives of certain functions at a given point” see Jorba (2005) and references

therein. We will discuss the main tools of automatic differentiation below, as

well as what we see as a small extension to the current automatic differentiation

tool set found in the literature, namely the use of theorem 24. The key attraction

for automatic differentiation is that it does not suffer from truncation error and is

fast in comparison to symbolic differentiation.

By the mid fifties J.C.P. Miller had developed a general recurrent power series method

to handle a certain class of differential equations (Halin, 1983). However at that time

such software was considered “exotic” and did not receive much attention. Indeed

according to Rall (1981) a 1962 article by Hanson et al. (1962) titled “Analytic Differ-

entiation by a Computer” was only published in the “Unusual Applications” section of

the communications of the ACM. It is due to this neglect that recurrent Taylor series

methods were reinvented by several other researchers who were not aware of Miller’s

contributions (Halin, 1983). Today several authors report that when high precision is

required Taylor’s method is the method of choice, see for example Corliss and Chang

(1982), Barrio et al. (2005) and Jorba (2005). Hence it has been applied to a wide

range of problems ranging from astronomical problems to problems in nuclear reactor

physics. It can also be coupled with interval arithmetic (Moore et al., 2009) to create

a numerical integrator capable of producing guaranteed results. That is interval arith-

metic allows us to obtain error bounds that account for both the truncation and round

off errors, as opposed to algorithms implemented in floating point arithmetic in which

the round off error is difficult to analyse and often ignored. Applied to our problem (at

least in theory) this would allow us to produce validated approximations to the quantile

function, in which both the round off and truncation errors have been accounted for.

However this is not an area of research we have pursued further.

5.1 Taylor’s Method
The Taylor series method is one of the oldest known methods for the numerical integ-

ration of (5.0.1). It consists of performing a Taylor series expansion of y (x) around

some point x0 at which the value of y is known. The truncated Taylor polynomial,
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y (x) ≈
N∑
n=0

y(n) (x0)

n!
(x− x0)n , (5.1.1)

will then be a useful approximation of y in some neighbourhood of x0. There are two
common techniques for computing the coefficients appearing in (5.1.1),

1. The method of undetermined coefficients: assumes that the solution takes the
form,

y (x) =
∞∑
n=0

an (x− x0)n . (5.1.2)

Then a recursive identity for the coefficients an in (5.1.2) is obtained by substi-
tuting this infinite sum into (5.0.1) and equating the powers in (x− x0). Note
that it is precisely at this step the recursive identities of section 5.2 will prove
invaluable in dealing with the nonlinear terms.

2. The method of successive differentiation: makes use of the fact that the coeffi-
cients appearing in (5.1.1) can be obtained by repeatedly differentiating (5.0.1),
in particular we have,

y = y (x0)

y′ = f

y′′ = fx + fyf

y(3) = fxx + 2fxyf + fxfy + fyyf
2f

...
...

...

Continuing in this way it soon becomes apparent the complexity of computing
the derivatives leads to an unmanageable solution process. It is precisely for this
reason Taylor’s method has been sidelined in favour of other numerical integra-
tion techniques. However with the advent of automated differentiation this is no
longer the case. We refer to Rall (1981) for an introduction.

5.2 Recursive Identities
In this section we introduce some useful identities used in the manipulation of power
series. These will be crucial in handling the non-linear terms present in the differential
equations (6.0.2) and (6.0.3). Note that based on these identities several programs, see
for example Lara et al. (1999) or Jorba (2005), have been written which take as input
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the right hand side of (5.0.1) and produce as output a stream of Taylor coefficients.

The drawback of these programs is that they work for a specific class of differential

equations. Some of the differential equations we deal with in this thesis fall outside

of this class. Hence we will give explicit expressions for the coefficients appearing in

the Taylor series solutions. Consequently this alleviates any dependency on external

libraries to construct the required solution. On the other hand if one wishes to construct

a program which is capable of producing approximations for a wide variety of quantile

functions when only the density function is known as in Ulrich and Watson (1987) or

Derflinger et al. (2010), such programs would surely prove useful. For now we are

more interested in dealing with specific cases so do not pursue this idea further.

All of the recursive identities we will employ can be derived from a classical result

in analysis.

Definition 18. Given two sequences{an}∞n=0 and {bn}∞n=0 the convolution of the se-

quences is defined as

cn =
n∑
i=0

aibn−i, n = 0, 1, . . .

The series
∑∞

n=0 cn is called the Cauchy product of the series
∑∞

n=0 an and
∑∞

n=0 bn.

Mertens’ theorem states the conditions under which the Cauchy product con-

verges.

Theorem 19 (Mertens). If
∑∞

n=0 an converges and
∑∞

n=0 bn converges absolutely then(
∞∑
n=0

an

)(
∞∑
n=0

bn

)
=
∞∑
n=0

cn

where {cn}∞n=0 is the convolution of {an}∞n=0 and {bn}∞n=0.

Proof. See Apostol (1974, p. 204)

A direct consequence of this theorem allows us to find a power series representa-

tion of the product of two analytic functions.

Theorem 20 (Product). Suppose f and g are analytic functions on the open balls

B (0; r) and B (0;R) respectively, with power series representations about the origin

given as f (z) =
∑∞

n=0 anz
n and g (z) =

∑∞
n=0 bnz

n . Then

f (z) g (z) =
∞∑
n=0

cnz
n, ∀z ∈ B (0, r) ∩B (0, R)

where
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cn =
n∑
i=0

aibn−i, n = 0, 1, . . .

Proof. See Apostol (1974, p. 237).

With this theorem at hand it is an easy exercise to find a power series representation
for the reciprocal of f and the ratio of two functions f and g, provided g(z) 6= 0.

Theorem 21 (Reciprocal). Suppose f is as defined in theorem 20 and in addition

f (0) 6= 0. Then there exists a neighbourhood B (0; δ) in which the reciprocal of f

has the series representation

1

f (z)
=
∞∑
n=0

bnz
n, ∀z ∈ B (0, δ)

where

bn =

 1
a0
, n = 0

− 1
a0

∑n
i=1 aibn−i, n ≥ 1

.

Proof. See Apostol (1974, p. 239).

Theorem 22 (Quotient). Suppose f and g are defined as in theorem 20 and in addition

g(0) 6= 0. Then there exists a neighbourhood B (0; δ) in which the ratio f/g has the

series representation

f (z)

g (z)
=
∞∑
n=0

cnz
n, ∀z ∈ B (0, r) ∩B (0, R)

where

cn =

a0
b0
, n = 0

1
b0

(an −
∑n

i=1 bicn−i) , n ≥ 1
.

Proof. Write

∞∑
n=0

anz
n =

(
∞∑
n=0

cnz
n

)(
∞∑
n=0

bnz
n

)
.

The result is then a direct consequence of theorems 20.

The next theorem can be used to find a power series representation of integer
powers of an analytic function g. Let b(k)

n denote the nth coefficient of the power series
expansion of [g (z)]k, for some integer power k ≥ 2. Assume that bm is the first non
zero coefficient in the expansion of g (z), then a recursive relation for the coefficients
b

(k)
n is given in the next theorem.
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Theorem 23. Let k ∈ {2, 3, . . .} and suppose g is an analytic function on the open

ball B (0;R), with power series representation about the origin given by g (z) =∑∞
n=m bnz

n, m ≥ 0. Then

[g (z)]k =
∞∑
n=0

b(k)
n zn, ∀z ∈ B (0, R)

where

b(k)
n =


0 n < km

bkm n = km

bk−1
m

∑n−k
j=1

((
k+1
n−km

)
j − 1

)
bj+mb

(k)
n−j n > km

.

Proof. See Knuth (1998, p. 526).

The coefficients b(k)
n are useful in finding a power series representation of the

composition of two analytic functions f (g (z)). This is a powerful tool for solving
autonomous equations.

Theorem 24 (Substitution). Suppose f and g are analytic functions on the open balls

B (0; r) and B (0;R) respectively, with power series representations about the origin

given as f (z) =
∑∞

n=0 anz
n and g (z) =

∑∞
n=0 bnz

n with b0 = 0. If for a fixed

z ∈ B (0;R), we have
∑∞

0 |bnzn| < r, then for this z we can write

f ◦ g (z) = f (g (z)) =
∞∑
n=0

cnz
n

where

cn =

a0, n = 0∑n
k=1 akb

(k)
n , n ≥ 1

and the coefficients b(k)
n are defined as in theorem 23.

Proof. For the convergence part see Apostol (1974, p. 239). The identity for the coef-
ficients cn is proved in Henrici (1974, p. 36).

When f in theorem 24 is the exponential function, a relatively simple formula
exists for the coefficients appearing in the power series expansion of exp {g (z)}.

Theorem 25. If g is an analytic function on the open ball B (0;R), with power series

representation about the origin given as g (z) =
∑∞

n=0 bnz
n, then for all z ∈ B (0;R)

we have

eg(z) =
∞∑
n=0

anz
n
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where

an =

eb0 , n = 0

1
n

∑n
k=1 kbkan−k, n ≥ 1

and b(k)
n are defined as in theorem 24.

Proof. The convergence part follows from applying theorem 24 to eg(z)−b0 . To de-
rive the given expression for the coefficients an, let h (z) = eg(z) and note h′ (z) =

g′ (z)h (z). An application of theorem 20 produces the required result.

Similarly we may derive coefficients for many other elementary functions. For
example,

• if f (z) = ln (z) and g is a positive analytic function with g (0) 6= 0 we have

ln (g (z)) =
∞∑
n=0

anz
n

where

an =

ln (b0) , n = 0

1
nb0

(
nbn −

∑n−1
k=1 (n− k) bkan−k

)
, n ≥ 1

.

• if f (z) = zα, α ∈ R\ {0} and g is an analytic function with g (0) 6=0 we have

(g (z))α =
∞∑
n=0

anz
n

where

an =

bα0 , n = 0

1
nb0

(∑n−1
k=0 (αn− (α + 1) k) akbn−k

)
, n ≥ 1

.

Formulas for other elementary functions such as the trigonometric functions may be
found in Hairer et al. (1993).

Remark 26. The number of arithmetic operations required to compute the first n coeffi-
cients b1, . . . , bn in theorem 21 is O(n2). To see this note that the number of operations
required to compute the kth coefficient once we know b0, b1, . . . , bk−1 is O (k). Hence
the total number of operations required to compute bn is

∑n
k=1 O (k) = O (n2). In a

similar way we may conclude that the computational complexity of computing the first
n coefficients in theorems 22, 23 and 25 is O (n2) and in theorem 24 is O (n3).



Chapter 6

Quantile Mechanics

For a given c.d.f. F denote by Q the associated quantile function. We restrict our

attention to the class of distributions for which F is strictly increasing and absolutely

continuous. In this case we have

Q (u) = F−1 (u) (6.0.1)

where F−1 is the compositional inverse of F . Suppose the corresponding density func-

tion f (x) is known. Differentiating (6.0.1) we obtain the first order quantile equation,

dQ (u)

du
=

1

F ′ (F−1 (u))
=

1

f(Q (u))
. (6.0.2)

This is an autonomous equation in which the nonlinear terms are introduced through

the density function f . Many distributions of interest have complicated densities, for

example the densities of the generalized hyperbolic distributions are written in terms of

higher transcendental functions. Thus the solutions to (6.0.2) are often difficult to find,

and hence this route has been relatively unexplored in the literature (Ulrich and Watson,

1987). However provided the reciprocal of the density 1/f is an analytic function at the

initial condition x0 = Q (u0) we may employ some of the oldest methods of numerical

integration of initial value problems, namely the method of undetermined coefficients

and the method of successive differentiation, to determine the Taylor series expansion

of Q. Since the equations in question are non-linear, finding their solutions requires

some special series manipulation techniques, see chapter 5 for details.

Writing (6.0.2) as,

f(Q (u))
dQ (u)

du
= 1,

and applying the product rule with a further differentiation leads to the differential

equation,
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d2Q

du2
= H (Q (u))

(
dQ

du

)2

, (6.0.3)

where

H (x) = − d

dx
log f (x) . (6.0.4)

We will refer to (6.0.3) as the second order quantile equation. The dependence on the

density f in (6.0.3) is now through the H-function (6.0.4). The benefit of this added

differentiation is, as we shall see later, in some cases the nonlinear terms appearing in

(6.0.3) are more manageable and hence elementary solution techniques may be applied.

This was the precisely the approach taken by Steinbrecher and Shaw (2008). They

considered power series solutions to the second order quantile equation focusing on

particular distributions belonging to the Pearson family (see appendix A). We will ex-

tend their work here by examining some non-Pearson distributions, in particular we will

look at the cases where f is the density function of the hyperbolic, variance gamma,

generalized inverse Gaussian and Snedecor’s F distributions. In addition with the aid

of the methods of chapter 5 we will primarily be concerned with solving the first order

quantile equation.

In order to approximate the quantile function in the tail regions we will apply a

change of variable and build approximants to the transformed function. To fix notation

suppose we wish to generate a random variate X from a target distribution with con-

tinuous c.d.f. FT and quantile function QT . If we generate a random variate Z from

a base distribution with continuous c.d.f. FB and quantile function QB, then we have

from the inversion method

X = QT (FB (Z))

since FB (Z) ∼ U (0, 1). Let us denote this composition by

A (z) := QT (FB (z)) . (6.0.5)

The function A (z) is obtained by applying the change of variable u = FB (z) to the

target quantile function QT (u). The target quantile may then be written as

QT (u) = A (QB (u)) . (6.0.6)

For later use we note that the inverse of A is given by

A−1 (z) = QB (FT (x)) .
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There is no restriction on the choice of base distribution, however as will be seen be-

low in searching for such changes of variable we were motivated by the asymptotic

behaviour of QT .

We will now derive an ordinary differential equation describing the function A

arising from the change of variable. Starting with the first order quantile equation for

the target quantile function QT ,

dQT (u)

du
=

1

fT (QT (u))
, (6.0.7)

we make a change of variable z = QB (u). A simple application of the chain rule for

differentiation to (6.0.6) and using the fact that QB also satisfies the first order quantile

equation gives

dQT (u)

du
=
dA

dz

dz

du
=
dA

dz

dQB

du
=
dA

dz

1

fB(QB (u))
=
dA

dz

1

fB(z)
.

Substituting this identity into (6.0.7) we obtain a first order nonlinear differential equa-

tion

dA

dz
=

fB (z)

fT (A (z))
, (6.0.8)

which we call the first order recycling equation. Of course we could have obtained the

same result by differentiating (6.0.5) with respect to z. A second order version of this

equation was treated in Shaw et al. (2011), namely

d2A

dz2
+HB (z)

dA

dz
= HT (A (z))

(
dA

dz

)2

,

where

HB (x) = − d

dx
ln (fB (x)) , and HT (x) = − d

dx
ln (fT (x)) .

Note that the idea of expressing target quantiles in terms of base quantiles is not

a new one, indeed this is the idea behind the generalized Cornish Fisher expansion,

see section 4.2 for a derivation and some of its drawbacks. Another interesting idea

along these lines was introduced by Takemura (1983). Here the the Fourier series

expansion of the target quantile QT is developed with respect to an orthonormal basis

of the form {ψi ◦QB}∞i=0, where {ψi}∞i=0 is itself an orthonormal basis for a set of

square integrable functions, we refer the reader to section 4.3 for details. Unlike the

Cornish Fisher expansion which is asymptotic in nature Takemura’s approach yields

a convergent series in the L2 norm. Note however the computation of the Fourier
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coefficients usually requires numerical quadrature and that for approximation purposes
the L∞ norm is preferred.

Standard numerical techniques such as root finding and interpolation for approx-
imating the associated quantile functions often fail, particularly in the “deep” tail re-
gions of the distribution, see for example Derflinger et al. (2010). Thus in addition
to developing convergent power series solutions to (6.0.2) and (6.0.6) we also develop
asymptotic expansions of Q at the singular points u = 0 and u = 1. In general it is
not easy to discover these asymptotic behaviours, some trial and error and intelligent
fiddling is required, see Bender and Orszag (1978, Ch. 4). Our approach is to consider
Q as being implicitly defined by the equation,

F (Q) = u.

Asymptotic iteration methods, see for example Bruijn (1981, Ch. 2) for an introduction,
may then be used to obtain the leading terms in the expansion. The resulting series are
divergent but as we will see they are still numerically useful.

In the following sections we will focus on the variance gamma, generalized inverse
Gaussian, and hyperbolic distributions. For each of these distributions we will find
power series expansions of Q and A as well as the asymptotic behaviour of Q near its
singular points. Despite the unsightly appearance of the coefficients appearing in these
expansions, they are simple to program if rather tedious.

All results in this chapter are derived with pen and paper with the following ex-
ceptions:

• Once the coefficients appearing in the Taylor series were derived (by hand) us-
ing the tools of chapter 5, they were programmed in Mathematica (Wolfram-
Research, 2010) to generate the first few terms of each of the Taylor series we
consider.

• The first few terms of the asymptotic expansion of the hyperbolic quantile were
derived with the aid of Mathematica. From this we conjectured the form of the
expansion and derived the coefficients by hand.

• Conversely the form of the asymptotic expansions for variance gamma and gen-
eralized inverse Gaussian quantile functions were derived by hand and a com-
puter orientated recurrence scheme is then applied to compute the values of the
coefficients appearing in these expansions. A computer algebra system such as
Mathematica is required to execute this scheme.

It should be pointed out that Mathematica Wolfram-Research (2010) is a useful and
powerful tool, but it is of little use to us in deriving the bulk of the results in this
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chapter. For example Mathematica has a built in function for the hyperbolic quantile

but it has no idea how to differentiate this function, so it can not be used to derive a

Taylor series expansion of the function, see the remarks in the introduction of chapter

8 for details. Also in that chapter we provide an example which exposes a bug in

Mathematica’s implementation of the hyperbolic quantile. Similar comments apply

to the generalized inverse Gaussian distribution. The situation is even worse for the

variance gamma distribution since Mathematica Wolfram-Research (2010) does not

have a built in function for the variance gamma quantile.

6.1 Beta, F and Student-t Distributions
In this subsection we will derive a series representation for the compositional inverse

of the regularized incomplete beta function I−1 (u;α, β) about the points u = 0 and

u = 1. Then from the relationships between the regularized incomplete beta function

I (x;α, β) and the beta, F and student-t distributions we will derive expressions for

the corresponding quantiles of each distribution. The results presented in this section

are those of Steinbrecher and Shaw (2008), with one minor addition; we provide the

expansion of I−1 (u;α, β) at u = 1 and its link with Snedecor’s F quantile. We begin

our study with the beta distribution denoted Beta (α, β), where α and β are positive

shape parameters. The associated density fB and c.d.f. FB are given by,

fB (x;α, β) =
1

B(α, β)
xα−1(1− x)β−1, x ∈ [0, 1] ,

and

FB (x;α, β) = I (x;α, β) ,

respectively, where B (α, β) is the beta function and I (x;α, β) is the regularized in-

complete beta function. To avoid confusion later on we will denote the beta quantile by

QB (u;α, β), but for now for the sake of notational convenience we suppress the extra

parametrization and simply denote the beta quantile by Q. From the density of the beta

distribution we may write down the second order quantile equation (6.0.3) as

Q (1−Q)
d2Q

du2
= (1− α +Q (α + β − 2))

(
dQ

du

)2

.

Boundary conditions can then be imposed from the value of the c.d.f. at the endpoints

of the support; Q (0) = 0 and Q (1) = 1. Of course to be able to apply the Taylor

series method we need to formulate an initial value problem. To this end observe the

asymptotic behaviour of Q. Note that the first order quantile equation (6.0.2) is given

by,
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dQ

du
= B (α, β) (Q)1−α (1−Q)1−β ,

from which we obtain the asymptotic relationship,

dQ

du
∼ B (α, β) (Q)1−α , u→ 0,

motivating the change of variable v = (αuB (α, β))1/α. In the new variable the problem

may be stated as,

Q (1−Q)
d2Q

dv2
= (1− α +Q (α + β − 2))

(
dQ

dv

)2

− (1− α)

v

dQ

dv
,

Q (0) = 0, Q′ (0) = 1,

where we have used the asymptotic relationship Q (v) ∼ v as v → 0 to derive the

second initial condition. We seek a power series solution of the form

QB (v;α, β) =
∞∑
n=0

an (α, β) vn. (6.1.1)

After some routine manipulations (see chapter 5) we obtain the following recurrence

relation for the coefficients,

an=


0, n = 0

1, n = 1

bn
(n−1)2+(n−1)α

, n ≥ 2

,

where

bn = (1− α)
n−2∑
i=1

(i+ 1)(n− i)ai+1an−i

+(α + β − 2)
n−1∑
i=1

n−i−1∑
j=0

(j + 1)(n− i− j)aiaj+1an−i−j

−
n−1∑
i=2

(n− i− α + 1)(n− i+ 1)an−i+1

(
ai −

i−1∑
j=0

ajai−j

)

+(1− α)
n−1∑
i=1

aian−i,
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and the dependence of the coefficients on the parameters α and β has been sup-

pressed. The number of arithmetic operations required to compute the first n coeffi-

cients a1, . . . , an is O (n2). The first few terms of the series are given by,

v +
(β − 1)v2

1 + α
+

(β − 1) (α2 + α(3β − 1) + 5β − 4) v3

2(1 + α)2(2 + α)
+ O

(
v4
)
.

We have in effect derived a Frobenius series expansion for the inverse of the reg-

ularized incomplete beta function I−1 (u;α, β) about the point u = 0. For numerical

purposes it would also be beneficial to have an expansion about the point u = 1. This

is easily obtained through the identity,

I (x;α, β) = 1− I (1− x; β, α) ,

from which it follows,

QB (u;α, β) = 1−QB (1− u; β, α) . (6.1.2)

Thus the series expansion (6.1.1) along with the identity (6.1.2) provide us with good

approximations of the beta quantile near the points u = 0 and u = 1 respectively.

Rather than repeating the above procedure for the F (n1, n2) distribution we can utilize

a well known relationship between the c.d.f.’s of the Beta (α, β) and F (n1, n2) distri-

butions,

FF (x;n1, n2) = FB

(
n1x

n1x+ n2

;
n1

2
,
n2

2

)
= I
(

n1x

n1x+ n2

;
n1

2
,
n2

2

)
.

This allows us to write the F quantile QF (u;n1, n2) in terms of the beta quantile

QB
(
u; n1

2
, n2

2

)
as follows,

QF(n1,n2) (u) =
n2y

n1 (1− y)
, (6.1.3)

where y = QB
(
u; n1

2
, n2

2

)
. We now have a method of approximating the quantile

function of the F (n1, n2) distribution, in particular in the tail regions.

Denoting the c.d.f. and the quantile function of the student-t distribution with ν ∈
N degrees of freedom by Ft (x; ν) and Qt (u; ν) respectively. Utilizing the following

relationship between the c.d.f.’s of the student-t and beta distributions

Ft (x; ν) =

1
2
FB
(

ν
ν+x2

; ν
2
, 1

2

)
, x ≤ 0

1− 1
2
FB
(

ν
ν+x2

; ν
2
, 1

2

)
, x > 0

,
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we obtain the following relationship between the corresponding quantile functions,

Qt (u; ν) =


−
(

ν

QB(2u; ν
2
, 1
2)
− ν
)1/2

, 0 ≤ u ≤ 1
2(

ν

QB(2(1−u); ν
2
, 1
2)
− ν
)1/2

, 1
2
< u ≤ 1

(6.1.4)

Note that this formula along with (6.1.1) provide a useful approximation of the student-

t quantile in the tail regions. In addition Steinbrecher and Shaw (2008) have developed

a series expansion about the point u = 1/2 which can be used for an approximation in

the central regions. Taking into account the symmetry of the distribution this provides

us with all the necessary ingredients to formulate an algorithm for approximating the

student-t quantile.

6.2 Hyperbolic Distribution
We now turn to our first major contribution. In this section we will develop Taylor

and asymptotic series expansions for the hyperbolic distribution. In addition we will

choose a suitable base distribution and solve the recycling equation (6.0.8) when the

target distribution is hyperbolic. In later sections we will repeat the analysis for the

variance gamma and generalized inverse Gaussian distributions.

Amongst others it was observed by Eberlein and Keller (1995) and Bingham and

Kiesel (2001) the hyperbolic distribution is superior to the normal distribution in mod-

elling log returns of share prices. Numerical inversion of the hyperbolic distribution

function was considered in Leobacher and Pillichshammer (2002). There numerical

methods were considered to solve (6.0.2) and only the leading order behaviour of the

left and right tails was given. Here we will provide an analytic solution to (6.0.2) and

the full asymptotic behaviour of the tails.

6.2.1 Taylor Series
The density of the of the hyperbolic distribution Hyp (α, β, δ, µ) (see example 37 on

page 142) is given by,

f (x;α, β, δ, µ) =
γ

2αδK1 (δγ)
e−α
√
δ2+(x−µ)2+β(x−µ), (6.2.1)

where α > 0, |β| < α, δ > 0 and µ ∈ R are shape, skewness, scale and location

parameters respectively and for notational convenience we have set γ =
√
α2 − β2.

By defining α1 := δα and β1 := δβ, we obtain an alternative parametrization in which

α1 and β1 are now location and scale invariant parameters. Hence without loss of gen-

erality we may set µ = 0 and δ = 1, since Q (u;α1, β1, µ, δ) = µ+δ Q (u;α1, β1, 0, 1).

The first order quantile equation (6.0.2) then reads,
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Figure 6.2.1: Graph of QHyp (u; 2, 3/2, 1, 0)

dQ

du
= N0e

α1

√
1+Q2−β1Q (6.2.2)

where N0 = 2α1K1 (γ1) /γ1 and γ1 =
√
α2

1 − β2
1 . To form an initial value problem let

u0 ∈ (0, 1) and impose the initial condition Q (u0) = x0. For all practical purposes

x0 is usually determined by solving the equation F (x0) − u0 = 0 using a root finding

procedure (alternatively we may choose x0 ∈ R and approximate u0 by numerically

integrating the density). By applying the method of undetermined coefficients we find

Q admits the Taylor series expansion

Q (u) =
∞∑
n=0

qn(u− u0)n, (6.2.3)

where the coefficients qn are defined recursively as follows,

qn =

x0, n = 0

N0

n
bn−1, n ≥ 1

,

bn =

eα1

√
1+x20−β1x0 , n = 0

1
n

∑n
k=1 k(α1ak − β1qk)bn−k, n ≥ 1

,

and

an =


√

1 + x2
0, n = 0

1
na0

(
nqnq0 +

∑n−2
k=0(k + 1)(qk+1qn−k−1 − ak+1an−k−1)

)
, n ≥ 1

.
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Figure 6.2.2: Error made by truncating (6.2.3) after n = 2, 4, 8 and 16 terms.
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Figure 6.2.3: Error made by truncating (6.2.3) after n = 1, 2, 4, 8 and 16 terms.

The number of arithmetic operations required to compute the first n coefficients

q1, . . . , qn is O (n2). The first few terms of the series are given by

Q (u) = x0 + φN0 (u− u0) +
1

2

(x0α1

θ
− β1

)
φ2N2

0 (u− u0)2 +O
(
(u− u0)3) ,

where θ =
√

1 + x2
0 and φ = eα1θ−β1x0 .

To gain some qualitative insight we look at an example, consider the set of distri-

bution parameters α = 2, β = 3/2, δ = 1 and µ = 0. A plot of the corresponding

quantile function is given in figure 6.2.1. Denote by Qn (u) the nth order Taylor poly-

nomial obtained by truncating (6.2.3) after the nth term. Log-linear and log-log plots

of the error in Qn (u) for various values of n are given in figures 6.2.2 and 6.2.3 re-

spectively. Of course we do not recommend approximating the quantile function using

a Taylor polynomial (more sophisticated approximations will be constructed in chapter

8), our purpose here is to empirically validate the series.



6.2. Hyperbolic Distribution 49

6.2.2 Asymptotic Expansion
To develop the asymptotic behaviour at the singular points u = 0 and u = 1 note that

the hyperbolic distribution function F satisfies the relationship

F (x;α1, β1, 1, 0) = 1− F (−x;α1,−β1, 1, 0) ,

which implies

Q (u;α1, β1, 1, 0) = −Q (1− u;α1,−β1, 1, 0) .

Hence without loss of generality we need only look for an asymptotic expansion of Q

as u→ 1. Now under the assumption 1� Q as u→ 1, we obtain from (6.2.2),

dQ

du
∼ N0e

(α1−β1)Q, as u→ 1.

Solving this asymptotic relationship along with the condition Q (1) = ∞ yields the

leading order behaviour of Q,

Q (u) ∼ − ln (N0 (α1 − β1) (1− u))

(α1 − β1)
, as u→ 1.

From which we note that Q has a logarithmic singularity at u = 1. To develop further

terms in the expansion, define x := Q (u), from which it follows u = F (x) and note

that Q is implicitly defined by the equation

1− F (x) =

ˆ ∞
x

f(t) dt.

Rearranging and introducing the variable v we obtain

v := (1− u)N0 =

ˆ ∞
x

e−α1

√
1+t2+β1t dt.

The idea is to expand the integrand appearing in the right hand side and integrate term-

wise, this process can be carried out symbolically, giving the first few terms in the

expansion,

v ∼ e−x(α1−β1)

(
1

α1 − β1

− α1

2(α1 − β1)x
+
α1 (4 + α1(α1 − β1)δ2)

8(α1 − β1)2x2
+O

(
1

x3

))
.

Taking logs and inverting the resulting series allows us to write down the first few terms

in the asymptotic expansion of x,

x ∼ y +
α1

2 (α1 − β1) y
+

α1

2 (α1 − β1)2 y2
+O

(
1

y3

)
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from which we can conjecture the form the asymptotic expansion of Q as,

Q(u) ∼ y +
∞∑
n=1

qn
yn
, as u→ 1, (6.2.4)

where,

y = − ln (N0 (α1 − β1) (1− u))

(α1 − β1)
. (6.2.5)

Substituting (6.2.4) into the first order quantile equation (6.2.2) allows us to derive a

recurrence relationship for the coefficients qn,

qn =


0, n = 0

− α1

2(α1−β1)
, n = 1

− 1
(α1−β1)

(
(n− 1)qn−1 + 1

n

∑n−1
k=1 kbkcn−k + α1dn

)
, n ≥ 2

, (6.2.6)

where

an =


0, n = 0

1
2

+ q1, n = 1

qn + dn, n ≥ 2

,

bn = α1an − β1qn,

cn =

1, n = 0

1
n

∑n
k=1 kbkcn−k, n ≥ 1

,

and

dn =
1

n− 1

n−2∑
k=0

(k + 1)(qk+1qn−k−2 − ak+1an−k−2).

The number of arithmetic operations required to compute the first n coefficients

q1, . . . , qn is O (n2). Note that (6.2.4) is a divergent series, however of the summation

methods we tested we found Levin’s u transform and Padé approximants useful meth-

ods for the summation of (6.2.4), see section 8.3 for details. In both cases analytic

continuation was observed. Later in chapter 8, we will briefly look at algorithms for

constructing rational approximants of Q valid on the domain [10−10, 1− 10−10], but if

necessary one may utilize (6.2.4) to obtain approximations on a wider region.
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Figure 6.2.4: Error made by truncating (6.2.4) after n = 1, 2, 4, 8 and 16 terms.
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Figure 6.2.5: A plot of QHyp (·; 2, 3/2, 1, 0) as a function of the tail variable y.

Consider again the hyperbolic quantileQHyp (u; 2, 3/2, 1, 0), and denote byQn (u)

the series (6.2.4) truncated after the nth term. A plot of the error made by Qn (u) for

various values of n is given in figure 6.2.4.

In figure 6.2.5 we plot the quantile function QHyp (·; 2, 3/2, 1, 0) in the right tail

region as a function of the tail variable y defined by (6.2.5). Notice in this region the

quantile functionQHyp as a function of y appears to be linear. In the next section we will

make a change of variable based on the left and right tail behaviour of QHyp, allowing

us to build approximations of QHyp in the tail regions.

6.2.3 Change of Variable

We now look for a change of variable so that we may better approximate the quantile

function in the tail regions. Motivated by the asymptotic behaviour of Q near its singu-

lar points, in particular its leading order behaviour we introduce the base distribution

defined by the density
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fB (x) :=

p− (α1 + β1) e(α1+β1)x, x ≤ xm

p+ (α1 − β1) e−(α1−β1)x, x > xm
.

Here xm := β1/γ1 is the mode of the hyperbolic distribution, p− := e−(α1−β1)xmpm,

p+ := e(α1−β1)xm (1− pm) and pm := FT (xm). The associated distribution and

quantile functions can be written down as

FB (x) =

p−e(α1+β1)x, x ≤ xm

1− p+e
−(α1−β1)x, x > xm

, (6.2.7)

and

QB (u) =


1

α1+β1
ln
(

u
p−

)
, u ≤ pm

− 1
α1−β1 ln

(
1−u
p+

)
, u > pm

, (6.2.8)

respectively. Substituting this choice of fB into the recycling equation (6.0.8) results in

a left and right problem

dA

dz
= p−(α1 + β1)N0e

α1

√
1+A2−β1A+(α1+β1)z, z ≤ xm

and

dA

dz
= p+(α1 − β1)N0e

α1

√
1+A2−β1A−(α1−β1)z, z > xm

respectively, along with the suitably imposed initial conditions. For the left problem,

we choose u0 ∈ (0, pm] and impose the initial condition x0 = A (z0) = QT (u0), where

z0 := QB (u0). Similarly for the right problem choose u0 ∈ [p−, 1). Sometimes we

will use the notation AL (z) and AR (z) to denote the solutions to the left and right

problems respectively, that is

A (z) =

AL (z) z ≤ xm

AR (z) z > xm
.

Again through the method of undetermined coefficients we obtain the Taylor series

expansion of A,

A (z) =
∞∑
n=0

an(z − z0)n, (6.2.9)

where the coefficients are defined recursively by



6.3. Variance Gamma Distribution 53

an =

x0, n = 0

N0

n
θ (α1 + β1) dn−1, n ≥ 1

,

bn =


√

1 + x2
0, n = 0

1
nb0

(
nana0 +

∑n−2
k=0(k + 1) (ak+1an−k−1 − bk+1bn−k−1)

)
, n ≥ 1

,

cn =

α1 (b1 + φ) + β1 (1− a1) , n = 1

α1bn − β1an, n 6= 1
,

and

dn =

eα1

√
1+x20−β1x0+ρz0 , n = 0

1
n

∑n
k=1 kckdn−k, n ≥ 1

.

For the solution to the left and right problem make the replacements given in table

6.1. The number of arithmetic operations required to compute the first n coefficients
a1, . . . , an is O (n2).

Table 6.1: Hyperbolic Coefficients

Left Right
θ p− p+

φ +1 −1
ρ (α1 + β1) − (α1 − β1)

Consider again the hyperbolic quantileQHyp (u; 2, 3/2, 1, 0), and denote by An (z)

the nth order Taylor polynomial obtained by truncating (6.2.9) after the nth term. A
plot of the error made by An (z) for n = 1, 2, 4, 8, 16 is given in figure 6.2.6. We end
this section by contrasting the error made in the approximations An (z) and Qn (u),
the nth order Taylor polynomial obtained by truncating (6.2.3). Consider the following
experiment, we expand QHyp (u; 2, 3/2, 1, 0) about u0 = 0.95 and A (z) about the point
z0 = QB (u0). We are interested in approximating QHyp (u; 2, 3/2, 1, 0) at the point
u = 0.99. The errors made in the approximations An (QB (u)) and Qn (u) are listed in
table (6.2) for various of the values of the order n.

6.3 Variance Gamma Distribution
Our second major contribution is to apply the above analysis to the variance gamma
distribution, which as we will see supplies its own hurdles. The variance gamma dis-
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n |Q (u)−Qn (u)| |Q (u)− An (QB (u))|
10 0.061609 0.000023
20 0.003810 2.33× 10−8

30 0.000289 3.13× 10−11

40 0.000024 4.71× 10−14

50 2.1× 10−6 7.57× 10−17

Table 6.2: Comparison of the errors made in the approximations Qn (u) and
An (QB (u)).
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Figure 6.2.6: Error made by truncating (6.2.9) after n = 1, 2, 4, 8 and 16 terms.

tribution (see example 39 on page 143) was introduced in the finance literature by

Madan and Seneta (1990). To our knowledge there has been very little written on the

approximation of the variance gamma quantile.

6.3.1 Taylor Series
The density of the variance gamma distribution is given by,

fVG (x;λ, α, β, µ) =
γ2λ

(2α)λ−1/2√πΓ (λ)
|x− µ|λ−

1
2 Kλ− 1

2
(α |x− µ|) eβ(x−µ),

(6.3.1)

where λ > 0, α > 0, |β| < α, γ =
√
α− β and µ ∈ R. Setting the location parameter

µ to zero and substituting the density (6.3.1) into the quantile equation (6.0.2) gives

dQ

du
= G(Q(u)), (6.3.2)

where the function G is defined as

G (y) := N0
e−βy|y| 12−λ

Kλ− 1
2
(α|y|)
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Figure 6.3.1: Graph of QVG (u;λ, α, β, µ) where λ = 2.2624, α = 264.9466, β =
−2.3421 and µ = 0.0002585.

and N0 = (2α)λ−1/2√π Γ (λ) /γ2λ. Our strategy to solve (6.3.2) will be to apply the

method of successive differentiation to obtain the Taylor series representation of Q,

Q (u) =
∞∑
n=0

qn
n!

(u− u0)n, (6.3.3)

where q0 is determined by the imposed initial condition1, and the remaining coefficients

are given by

qn =
dn−1

dun−1

∣∣∣∣
u=u0

G (Q (u)) , n ≥ 1.

Thus the problem reduces to finding the higher order derivatives of the composition

G ◦ Q, which may be obtained recursively through Faà di Bruno’s formula. Note first

that G can be written as the product of three functions A (y) := e−βy, B (y) := |y| 12−λ,

and C (y) :=
[
Kλ− 1

2
(α|y|)

]−1

(the function A as defined here should not be confused

with the solution of the recycling equation (6.0.8), which we shall denote by AL or AR
in this section). Thus an application of the general Leibniz rule yields

G(n) (y) = N0

n∑
k=0

k∑
j=0

(
n

k

)(
k

j

)
A(n−k) (y)B(j) (y)C(k−j) (y) . (6.3.4)

The higher order derivatives of the functions A and B appearing in (6.3.4) are given by

A(n) (y) = (−β)n e−βy

1In the variance gamma case we must be cautious not to impose the initial condition at u0 ∈ (0, 1)
such that x0 = Q (u0) = 0, i.e. at the zero quantile location since the function G (y) is not analytic at
y = 0.
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and

B(n) (y) = y
1
2
−n−λ

n−1∏
i=0

(
1

2
− λ− i

)
sgn (y)

respectively. To find the nth derivative of C note that C can be written as the composi-

tion C (y) = C1 ◦ C2 (y), where C1 (y) := 1/y and C2 (y) := Kλ− 1
2
(α|y|). Hence we

may obtain C(n) (y) through an application of Faà di Bruno’s formula,

C(n) (y) =
∑ n!

m1!m2! · · ·mn!
C

(m1+···+mn)
1 (C2 (y))

n∏
j=0

(
C

(j)
2 (y)

j!

)mj

,

where the summation is taken over all solutions (m1,m2, . . . ,mn) ∈ Zn≥0 to the Dio-

phantine equation2

m1 + 2m2 + 3m3 · · ·+ nmn = n. (6.3.5)

The formulae for the higher order derivatives of C1 and C2 are given by

C
(n)
1 (y) = (−1)n n! y−(n+1),

and

C
(n)
2 (y) =

(
−α

2

)n n∑
k=0

(
n

k

)
×

Kλ− 1
2
−(2k−n)(αy), y > 0

(−1)n Kλ− 1
2
−(2k−n)(−αy) y < 0

,

respectively. Here we have used the identity (Olver et al., 2010, eq. 10.29.5)

K(n)
v (z) =

(
−1

2

)n n∑
k=0

(
n

k

)
Kv−(2k−n) (z) , (6.3.6)

which can easily be proved by induction. Formula (6.3.6) shows that to compute the

higher order derivatives of the modified Bessel function of the second kind K(n)
v (z) with

respect to z, we need only a routine to compute Kv (z). Now given the scheme (6.3.4)

to compute G(n) (y) and the first coefficient q0 defined by the initial condition, we may

compute the remaining coefficients qn for n ≥ 1 recursively, by another application of

Faà di Bruno’s formula.

To gain some qualitative insight we look at an example, consider the set of distri-

bution parameters λ = 2.2624, α = 264.9466, β = −2.3421 and µ = 0.0002585. A

2Note that the solutions to (6.3.5) correspond to the integer partitions of n.
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Figure 6.3.2: Error made by truncating (6.3.3) after n = 2, 4, 8 and 16 terms.
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Figure 6.3.3: Error made by truncating (6.3.3) after n = 1, 2, 4, 8 and 16 terms.

plot of the corresponding quantile functionQVG (u;λ, α, β, µ) is given in figure (6.3.1).

Log-linear and log-log plots of the error made by truncating (6.3.3) are given in figures

6.3.2 and 6.3.3 respectively.

6.3.2 Asymptotic Expansion
Next we will focus on deriving an asymptotic expansion for Q (u). Similar to the

hyperbolic quantile the following equality holds,

Q (u;λ, α, β, 0) = −Q (1− u;λ, α,−β, 0) ,

so again without loss of generality we need only seek an asymptotic expansion of Q as

u→ 1. Our strategy here will be to,

1. derive an asymptotic expansion for the density f as x→∞,

2. integrate term-wise to obtain an asymptotic expansion for the distribution func-

tion F as x→∞,
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3. and finally invert this expansion to obtain an asymptotic expansion for the

quantile function Q as u→ 1.

For the first step we will make use of the asymptotic relationship (Olver et al., 2010,

§10.40)

Kv (z) ∼
( π

2z

) 1
2
e−z

∞∑
k=0

ak (v)

zk
as z →∞,

where

ak (v) :=
1

k!8k

k∏
j=1

(
4v2 − (2j − 1)2

)
.

From which it follows

f (x) ∼ γ2λ

(2α)λ Γ (λ)
e−(α−β)xxλ−1

∞∑
k=0

ak
(
λ− 1

2

)
αk

x−k as x→∞.

Working under the assumption that term-wise integration is a legal operation we obtain

an asymptotic expansion for the distribution function,

1− F (x) ∼ γ2λ

2λΓ (λ)

∞∑
k=0

α−λ−kak
(
λ− 2−1

) ˆ ∞
x

e−(α−β)xtλ−k−1dt

=
γ2λ

2λΓ (λ)

∞∑
k=0

α−λ−kak
(
λ− 2−1

)
Γ (λ− k, x (α− β)) , (6.3.7)

where Γ (a, z) is the upper incomplete gamma function, which for large z satisfies the

asymptotic relationship (Olver et al., 2010, §8.11)

Γ (a, z) ∼ za−1e−z
∞∑
j=0

Γ (a)

Γ (a− j)
z−j. (6.3.8)

Substituting (6.3.8) into (6.3.7) and assuming the terms of the series may be rearranged

we obtain

1− F (x) ∼ (2α)−λ γ2λ

Γ(λ)
xλ−1e−x(α−β)

∞∑
k=0

bkx
−k as x→∞, (6.3.9)

where
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bk =
k∑
j=0

(α− β)−(j+1)α−(k−j)

(
k−1∏
i=0

(λ− k + i)

)
ak−j

(
λ− 1

2

)
.

The expression (6.3.9) describes the asymptotic behaviour of the variance gamma c.d.f.

as x → ∞. Let u := F (x) in (6.3.9), our goal then is to invert this relationship to

obtain an asymptotic expansion of the quantile function Q (u) as u → 1. Introducing

the variable

v :=
(2α)λ

√
πΓ(λ)

γ2λ
(1− u),

and rearranging (6.3.9) we obtain

v ∼ xλ−1e−x(α−β)D

(
1

x

)
as x→∞, (6.3.10)

where D is the formal power series defined by D (z) :=
∑∞

k=0 bkz
k. Taking logs and

introducing the variable

y := − ln v/ (α− β) (6.3.11)

we may write (6.3.10) as

x ∼ y +
λ− 1

α− β
log x+

1

α− β
logD

(
1

x

)
. (6.3.12)

We wish to write x in terms y, this task may at first appear difficult to achieve but as

it happens we are in luck. Similar expressions occur frequently in analytic number

theory and some useful methods have been developed to invert these kinds of relation-

ships. A drawback of these methods is that they require symbolic computation. The

most basic method which one can apply to invert (6.3.12) is the method of asymptotic

iteration (Bruijn, 1981). However in our implementation we found that Mathematica

Wolfram-Research (2010) struggles when requested to generate even a moderate num-

ber of terms (six or more) with this method. Fortunately Salvy (1994) studied these

types of asymptotic expansions and observed similar behaviour and provides us with

a much more efficient approach. There it was noted that the form of the asymptotic

inverse is given by

x = Q (u) ∼ y +
∞∑
n=0

Pn (lny)

yn
, (6.3.13)

where P0 (ξ) is a polynomial of degree 1 and Pn (ξ) are polynomials of degree n for

n ≥ 1. Following a similar analysis of that in Salvy (1994), it can by shown that the

polynomial Pn may be determined up to some unknown constant terms c0, . . . , cn by

the recurrence relationship
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Pn (ξ) =


(λ−1)
(α−β)

ξ + c0 n = 0

(λ−1)
(α−β)

(Pn−1 (ξ)− Pn−1 (0))− (λ−1)
(α−β)

(n− 1)
´ ξ

0
Pn−1 (t) dt+ cn n ≥ 0

.

(6.3.14)

The unknown constant terms c0, . . . , cn may be computed through the following itera-

tion scheme,

• starting with u0 (t) = log (b0), compute

uk (t) =
(λ− 1)

(α− β)
log (1 + tuk−1 (t)) +

1

α− β
logD

(
t

1 + tuk−1 (t)

)
,

k = 1, . . . , n+ 1

• extract the constants

ck =
[
tk
]
un+1 (t) , k = 0, . . . , n

where
[
tk
]
un+1 (t) is used to denote the coefficient of the tk term in un+1 (t).

An implementation of this scheme in Mathematica (Wolfram-Research, 2010) code has

been included in an appendix, see code listing C.0.3. Through this process the first few

terms of the asymptotic expansion of Q may be generated as follows,

Q (u) ∼ y +
(λ− 1) log y − log (α− β)

α− β

+
(λ− 1) (2α + αλ− βλ+ 2α(λ− 1) log y − 2α log (α− β))

2yα(α− β)2
+ · · ·

as u → 1. Consider again the variance gamma quantile QVG (u;λ, α, β, µ) with para-

meter values λ = 2.2624, α = 264.9466, β = −2.3421 and µ = 0.0002585. In this

case a plot of the error made by truncating (6.3.13) is given in figure 6.3.4.

In figure 6.3.5 we plot the quantile function QVG (·;λ, α, β, µ) in the right tail

region as a function of the tail variable y defined by (6.3.11). Notice in this region the

quantile functionQVG as a function of y appears to be linear. In the next section we will

make a change of variable based on the left and right tail behaviour of QVG, allowing

us to build approximations of QVG in the tail regions.

6.3.3 Change of Variable
We now look for a change of variable so that we may better approximate the quantile

function in the tail regions. As in the hyperbolic case motivated by the asymptotic



6.3. Variance Gamma Distribution 61

n = 8

n = 1
n = 2

n = 4

n = 16

0.05 0.055 0.06 0.065 0.07 0.075 0.08

10-7

10-6

10-5

10-4

0.001

0.01

y

 Q
Hu
L
-

Q
n
Hu
L¤

Figure 6.3.4: Error made by truncating (6.3.13) after n = 1, 2, 4, 8 and 16 terms.
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Figure 6.3.5: A plot of QVG (u;λ, α, β, µ) as a function of tail variable y.
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behaviour of the quantile function near its singularities, in particular by its leading

order behaviour we introduce the base distribution defined by the density

fB (x) :=

p− (α + β) e(α+β)x x ≤ 0

p+ (α− β) e−(α−β)x x > 0
,

where p− := F (0) and p+ := 1−p−. The associated distribution and quantile functions

can be written down as

FB (x) =

p−e(α+β)x, x ≤ 0

1− p+e
−(α−β)x, x > 0

and

QB (u) =


1

α1+β1
ln
(

u
p−

)
, u ≤ p−

− 1
α1−β1 ln

(
1−u
p+

)
, u > p−

respectively. Substituting this choice of fB into the recycling equation (6.0.8) results in

a left and right problem given by

dAL
dz

= GL(z), z ≤ QB (p−) (6.3.15)

and

dAR
dz

= GR(z), z > QB (p−) (6.3.16)

respectively, along with the suitably imposed initial conditions. For the left problem,

we choose u0 ∈ (0, p−) and impose the initial condition x0 = AL (z0) = QT (u0),

where z0 := QB (u0). Similarly for the right problem we choose u0 ∈ (p−, 1). The

functions GL and GR appearing on right hand side of these differential equations are

defined as

GL (z) := p−(α + β)e(α+β)zG (AL (z)) ,

and

GR (z) := p+(α− β)e−(α−β)zG (AR (z)) .

Suppose that the series solution of either problem is given by

∞∑
n=0

qn
n!

(z − z0)n. (6.3.17)



6.3. Variance Gamma Distribution 63

n |Q (u)−Qn (u)| |Q (u)− An (QB (u))|
10 0.00737 1.7× 10−6

20 0.00496 1.9× 10−8

30 0.00368 3.1× 10−10

40 0.00285 5.8× 10−12

50 0.00227 1.1× 10−13

Table 6.3: Comparison of the errors made in the approximations Qn (u) and
An (QB (u)).

Here the first coefficient q0 is determined by the initial condition imposed at z0 and the

remaining coefficients are given by

qn = G
(n−1)
L (z0) , n ≥ 1,

for the left problem and

qn = G
(n−1)
R (z0) , n ≥ 1,

for the right problem. Both sets of coefficients may easily be computed from an applic-

ation of Liebniz’s rule,

G
(n)
L (z) = p−e

(α+β)z

n∑
k=0

(
n

k

)
(α + β)k+1 (G ◦ AL)(n−k) (z) ,

G
(n)
R (z) = p+e

−(α−β)z

n∑
k=0

(
n

k

)
(−1)k (α− β)k+1 (G ◦ AR)(n−k) (z) .

Starting with q0 the higher order derivatives of the compositions G ◦ AL and G ◦ AR
appearing in these formulae are computed recursively, in precisely the same way we

computed the higher order derivatives of G ◦Q above.

Consider again the variance gamma quantile QVG (u;λ, α, β, µ) with parameter

values λ = 2.2624, α = 264.9466, β = −2.3421 and µ = 0.0002585 and denote

by An (z) the nth order polynomial obtained by truncating the series solution of the

recycling equation (6.3.17). A plot of the error made by An (z), for n = 1, 2, 4, 8, 16

is given in figure 6.3.6. We end this subsection by contrasting the error made in the

approximations An (z) and Qn (u), the nth order polynomial obtained by truncating

(6.3.3). Consider the following experiment, we expand QVG (u;λ, α, β, µ) about u0 =

0.001 and A (z) about the point z0 = QB (u0). We are interested in approximating

QVG (u;λ, α, β, µ) at the point u = 1 × 10−6. The errors made in the approximations

An (QB (u)) and Qn (u) are listed in table (6.3) for various of the values of the order n.
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Figure 6.3.6: Error made by truncating (6.3.17) after n = 1, 2, 4, 8 and 16 terms.

6.3.4 A more efficient method
In the method described above two applications of Faà di Bruno’s formula were re-

quired. This formula is useful for finding an explicit expression of the higher order

derivatives of composite functions such as G ◦ Q and C1 ◦ C2. However the most ex-

plicit method is not always the most desirable computationally. More specifically note

that Faà di Bruno’s formula may be stated as

(G ◦Q)(n) (u) =
n∑
r=1

Yn,rG
(r) (Q (u)) . (6.3.18)

The major draw back in using (6.3.18) is the calculation of the terms

Yn,r =
∑ n!

m1!m2! · · ·mn!

n∏
j=0

(
Q(j) (u0)

j!

)mj
, (6.3.19)

where the sum is taken over all non-negative integer solutions of (6.3.5) or equivalently

the integer partitions of n. Note that the number of partitions p (n) of an integer n

grows exponentially with n, thus for large values of n the sum (6.3.19) may be compu-

tationally expensive due to the large number of summands. For a method to compute

Yn,r see the article by Klimko (1973). We prefer to avoid the use of Faà di Bruno’s

formula by utilizing the techniques described in section 5.2, in particular theorem 24.

Rather than applying Faà di Bruno’s formula, an alternative more efficient scheme

to compute the derivatives of G ◦ Q at u = u0 exists, provided that we have q0 = 0.

If x0 = Q (u0) 6= 0 then this is easily accomplished by introducing a translation in

the dependent variable Q by −x0 in (6.3.2). Then qn = (G ◦Q)(n) (u0) /n! for n ≥ 1

may be computed from a straight forward application of theorem 24. Consequently the

coefficients qn may be expressed as



6.3. Variance Gamma Distribution 65

qn=

0, n = 0

1
n
hn−1, n ≥ 1

,

where

hn=

g0, n = 0∑n
k=1 gkq

(k)
n , n ≥ 1

,

q(k)
n =


0, n < k

(q1)k, n = k∑n−k
j=1

((
k+1
n−k

)
j − 1

) qj+1

q1
q

(k)
n−j, n > k

,

gn = N0

n∑
k=0

k∑
j=0

dn−kbk−jaj,

dn=

{
1
c0
, n = 0

− 1
c0

∑n
k=1 ckdn−k, n ≥ 1

,

cn =
C(n) (0)

n!
, bn =

B(n) (0)

n!
, and an =

A(n) (0)

n!
.

The solution to (6.3.2) is then given by

Q (u) = x0 +
∞∑
n=0

qn (u− u0)n .

The number of arithmetic operations required to compute the first n coefficients
q1, . . . , qn is O (n3). The justification behind this as follows (see also the remarks at the
end of chapter 5), it takes

• O (n2) time to compute d1, . . . , dn,

• O (n3) time to compute g1, . . . , gn,

• O (n3) time to compute q(1)
j , . . . , q

(n)
j for all 1 ≤ j ≤ n,

• and O (n2) time to compute h1, . . . , hn.

Thus the coefficients q1, . . . , qn may be computed in O (n3) time.
In a similar way we can derive solutions to the recycling equations (6.3.15) and

(6.3.16). In particular we have

AL (z) = x0 +
∞∑
n=0

qn (u− u0)n ,
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Figure 6.4.1: Graph of QGIG (u;λ, χ, ψ) where λ = 3/2, χ = 5 and ψ = 2.

where

qn=

0 n = 0

p−(α + β)e(α+β)z0 1
n

∑n−1
k=0

(α+β)k

k!
hn−k−1 n ≥ 1

,

and

AR (z) = x0 +
∞∑
n=0

qn (u− u0)n ,

where

qn=

0, n = 0

p+(α− β)e−(α−β)z0 1
n

∑n−1
k=0(−1)k (α−β)k

k!
hn−k−1, n ≥ 1

and hn is as before. The number of arithmetic operations required to compute the first

n coefficients a1, . . . , an is O (n3).

6.4 Generalized Inverse Gaussian Distribution
Our third major contribution is to present similar results for the generalized inverse

Gaussian (GIG) distribution. This distribution differs from the hyperbolic and variance

gamma in the sense that it does not belong but is related to the generalized hyperbolic

family of distributions. Fortunately the work done in the previous two sections will pay

dividends, and indeed as we will see there are some remarkable similarities.

6.4.1 Taylor Series
The GIG distribution is used in the construction of generalized hyperbolic distributions;

more specifically a normal mean mixture distribution where the mixing distribution

is the GIG distribution results in a generalized hyperbolic distribution, see appendix
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B for details. Consequently if one can generate GIG random variates then a simple

transformation may be applied to generate variates from the generalized hyperbolic

distribution (Weron, 2004). The probability density function of a GIG random variable

is given by

fGIG (x;λ, χ, ψ) =
(ψ/χ)λ/2

2Kλ

(√
ψχ
)xλ−1e−

1
2(χx−1+ψx), x > 0, (6.4.1)

where λ ∈ R, χ > 0, ψ > 0 and Kv (z) is the modified Bessel function of the third

kind with index v.

We will use an alternative parametrization to the standard one above, let η =√
χ/ψ and ω =

√
χψ, the density then reads

fGIG (x;λ, η, ω) =
1

2ηλKλ (ω)
xλ−1e−

ω
2 (ηx−1+ 1

η
x). (6.4.2)

In this new parametrization ω and λ are scale invariant and η is a scale parameter, so

in the following we may set η = 1 without loss of generality. The first order quantile

equation (6.0.2) now reads,

dQ

du
= 2Kλ (ω) e

1
2
ω( 1

Q
+Q)Q1−λ.

Let u0 ∈ (0, 1) and impose the initial condition Q (u0) = x0. For the case λ 6= 1, the

GIG quantile Q admits the Taylor series expansion

Q (u) =
∞∑
n=0

qn(u− u0)n, (6.4.3)

where the coefficients qn are defined recursively as follows,

qn =

x0, n = 0

2
n
Kλ(ω)

∑n−1
i=0 bicn−i−1, n ≥ 1

,

where,

an =

 1
q0
, n = 0

− 1
q0

∑n
i=1 qian−i, n ≥ 1

,

bn =

e
ω
2

(a0+q0), n = 0

ω
2n

∑n
i=1 i (ai + qi) bn−i, n ≥ 1

,

and
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Figure 6.4.2: Error made by truncating (6.4.3) after n = 2, 4, 8 and 16 terms.

n = 2

n = 4

n = 8

n = 16

n = 1

10-6 10-5 10-4 0.001 0.01 0.1
10-12

10-10

10-8

10-6

10-4

0.01

1

 u- u0¤

 Q
Hu
L
-

Q
n
Hu
L¤

Figure 6.4.3: Error made by truncating (6.4.3) after n = 1, 2, 4, 8 and 16 terms.

cn =

q
1−λ
0 , n = 0

1
q0

∑n
i=1

(
(2−λ)i
n
− 1
)
qicn−i, n ≥ 1

.

The number of arithmetic operations required to compute the first n coefficients

q1, . . . , qn is O (n2). For the special case λ = 1, the coefficients are somewhat sim-

plified, with an and bn as defined above the coefficients appearing in (6.4.3) become

qn =

x0, n = 0

2
n
K1(ω)bn−1, n ≥ 1

.

To gain some qualitative insight we look at an example, consider the set of distribution

parameters λ = 3/2, χ = 5 and ψ = 2. A plot of the corresponding quantile func-

tion QGIG (u;λ, χ, ψ) is given in figure 6.4.1 on page 66. Log-linear and log-log plots

of the error in this case made by truncating (6.4.3) are given in figures 6.4.2 and ??

respectively.
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6.4.2 Asymptotic Expansion
Next we will focus on developing the asymptotic behaviour ofQ as u→ 1. We proceed

in an analogous fashion to the variance gamma case, and find that remarkably the form

of asymptotic expansion of QGIG is very similar to that of QVG as u → 1. From the

properties of the c.d.f. we have,

1− F (x) =
1

2Kλ(ω)

ˆ ∞
x

tλ−1e−
1
2( 1

t
+t)ωdt.

Expanding the e−ω/2t term and integrating term-wise we obtain,

1− F (x) ∼ 1

2Kλ(ω)

∞∑
k=0

(−1)k

k!

(
2

ω

)λ−2k

Γ
(
λ− k, ωx

2

)
, as x→∞,

where Γ (a, z) is the upper incomplete gamma function. As in the variance gamma case

substituting (6.3.8) and rearranging the terms provides us with a more convenient form

of the asymptotic expansion for the GIG c.d.f.,

1− F (x) ∼ 1

2Kλ(ω)
xλ−1e−

ωx
2

∞∑
k=0

bkx
−k, as x→∞, (6.4.4)

where

bk =
k∑
j=0

(−1)k−j

(k − j)!

(ω
2

)k−2j−1
(
j−1∏
i=0

(λ− k + i)

)
.

Now let u := F (x) and introduce the variable v := 2Kλ(ω)(1−u), then we can rewrite

(6.4.4) as,

v ∼ xλ−1e−
ωx
2 D(

1

x
), (6.4.5)

where D is the formal power series defined by D (z) =
∑∞

k=0 bkz
k. To invert the

asymptotic relationship (6.4.5) we start by taking logs and introducing the variable

y := −(2/ω) ln v. (6.4.6)

We may now write (6.4.5) as,

x ∼ y +
2(λ− 1)

ω
log x+

2

ω
logD

(
1

x

)
. (6.4.7)

One may now apply the method of asymptotic iteration (Bruijn, 1981) to invert (6.4.7).

However for the same reasons as in the variance gamma case we apply the method of
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Salvy (1994). Again the form of the asymptotic inverse is given by,

x = Q (u) ∼ y +
∞∑
n=0

Pn (lny)

yn
, (6.4.8)

where P0 (ξ) is a polynomial of degree 1 and Pn (ξ) is a polynomial of degree n for

n ≥ 1. Following a similar analysis of that in Salvy (1994) it can by shown that Pn
may be determined up to some unknown constant terms c0, . . . , cn by the recurrence

relationship,

Pn (ξ) =


2(λ−1)
ω

ξ + c0, n = 0

2(λ−1)
ω

(Pn−1 (ξ)− Pn−1 (0))− 2(λ−1)
ω

(n− 1)
´ ξ

0
Pn−1 (t) dt+ cn, n ≥ 0

.

(6.4.9)

The unknown constant terms c0, . . . , cn may be computed through the following itera-

tion scheme,

• starting with u0 (t) = log (b0), compute

uk (t) =
2(λ− 1)

ω
log (1 + tuk−1 (t)) +

2

ω
logD

(
t

1 + tuk−1 (t)

)
,

k = 1, . . . , n+ 1

• extract the constants

ck =
[
tk
]
un+1 (t) , k = 0, . . . , n

where
[
tk
]
un+1 (t) is used to denote the coefficient of the tk term in un+1 (t).

Through this process the first few terms of the asymptotic expansion of Q may be

generated as follows,

Q (u) ∼ y +
2
(
(−1 + λ) ln y + ln

(
2
ω

))
ω

+
4λ− ω2 − 4 + 4(−1 + λ)2 ln y + 4(−1 + λ) ln

(
2
ω

)
ω2y

+ · · ·

as u → 1. To observe the asymptotic behaviour of Q (u) as u → 0, we utilize the

following identity,

Q (u;λ, 1, ω) =
1

Q (1− u;−λ, 1, ω)
, (6.4.10)
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Figure 6.4.4: Error made by truncating (6.4.8) after n = 2, 4, 8 and 16 terms.
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Figure 6.4.5: A plot of QGIG (u; 3/2, 5, 2) as a function of the tail variable y.

which can be easily proven as follows; by definition of the density (6.4.2) we have

f (x;λ, 1, ω) =
1

x2
f

(
1

x
;−λ, 1, ω

)
.

Integrating both sides then yields

F (x;λ, 1, ω) = 1− F
(

1

x
;−λ, 1, ω

)
,

from which (6.4.10) follows. Consider again QGIG (u; 5, 2, 3/2), a plot of the error

made in this case by truncating (6.4.8) is given in figure 6.4.4.

In figure 6.4.5 we plot the quantile function QGIG (·; 3/2, 5, 2) in the right tail re-

gion as a function of the tail variable y as defined by (6.4.6). Notice in this region

the quantile function QGIG as a function of y appears to be linear. In the next section

we will make a change of variable based on the left and right tail behaviour of QGIG,

allowing us to build approximations of QGIG in the tail regions.
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6.4.3 Change of Variable
Next we consider solving the recycling ODE, but first we must choose a base distri-

bution. Again motivated by the asymptotic behaviour of Q as u → 0 and u → 1,

in particular the leading order behaviours we suggest the following base distribution

characterized by the density function

fB (x) =

pL
ω

2x2
e−

ω
2x , x ≤ xm

pR
ω
2
e−

ω
2
x, x > xm

. (6.4.11)

Here xm serves as a cut-off point between two suitably weighted density functions, in

particular xm is the mode of the GIG distribution defined by,

xm =
λ− 1 +

√
(λ− 1)2 + ω2

ω
.

Note that the density function fL (x) := (ω/2x2)e−ω/2x belongs to the scaled inverse

χ2 distribution with 2 degrees of freedom and scale parameter ω/2, and that the density

function fR (x) := (ω/2)e−ωx/2 is the density of an exponential distribution with rate

parameter ω/2. The normalizing constants pL and pR are defined by,

pL = e
ω

2xm pm,

and,

pR = e
ω
2
xm (1− pm) ,

where pm = FGIG (xm) . The associated base distribution and quantile functions can be

written down as,

FB (x) =

pLe
− ω

2x , x ≤ xm

1− pRe
−ω

2
x, x > xm

and

QB (u) =

− ω
2 ln(u/pL)

, u ≤ pm

xm + 2
ω

ln
(
pm−1
u−1

)
, u > pm

(6.4.12)

respectively. Substituting this choice of fB into the recycling equation (6.0.8) then

leads to a left and right problem given by

dA

dz
= pLKλ (ω)

ω

z2
e−

ω
2z e

1
2
ω( 1

A
+A)A1−λ, z ≤ xm (6.4.13)

and
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dA

dz
= pRωKλ (ω) e

1
2
ω( 1

A
+A−z)A1−λ, z > xm (6.4.14)

respectively, along with the suitably imposed initial conditions. For the left problem,

we choose u0 ∈ (0, pm] and impose the initial condition x0 = A (z0) = QT (u0), where

z0 := QB (u0). Similarly for the right problem we choose u0 ∈ [pm, 1). Treating the

left problem first, we find,

A (z) =
∞∑
n=0

an(z − z0)n, (6.4.15)

where the coefficients are computed recursively through the identity,

an=

x0 n = 0

2pL
n

Kλ (ω)
(∑n−1

k=0

∑n−k−1
j=0 (k + 1)bk+1djen−k−j−1

)
n ≥ 1

,

where,

bn=

e
−ω/2z0 n = 0

ω
2n

∑n−1
k=0(−1)k (k+1)

zk+2
0

bn−k−1 n ≥ 1
,

cn=

 1
a0

n = 0

− 1
a0

∑n
i=1 aicn−i n ≥ 1

,

dn=

eω(c0+a0)/2 n = 0

ω
2n

∑n
i=1 i(ci + ai)dn−i n ≥ 1

,

and

en=

a
1−λ
0 n = 0

1
a0

∑n
i=1

(
(2−λ)i
n
− 1
)
aien−i n ≥ 1

.

The number of arithmetic operations required to compute the first n coefficients

a1, . . . , an is O (n2). The coefficients appearing in the series solution (6.4.15) to the

right problem 6.4.14 are given by,

an=

x0 n = 0

ωpR
n

Kλ (ω)
(∑n−1

k=0 dken−k−1

)
n ≥ 1

,

where cn and en are defined as in the solution to the left problem above and
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n |Q (u)−Qn (u)| |Q (u)− An (QB (u))|
10 0.080106 0.00048
20 0.048378 4.2× 10−6

30 0.033651 2.8× 10−9

40 0.024941 3.6× 10−11

50 0.019183 7.5× 10−12

Table 6.4: Comparison of the errors made in the approximations Qn (u) and
An (QB (u)).
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Figure 6.4.6: Error made by truncating (6.4.15) after n = 1, 2, 4, 8 and 16 terms.

bn=

ω
2
(c1 + a1 − 1) n = 1

ω
2
(cn + an) n 6= 1

,

and

dn=

eb0−ωz0/2 n = 0

1
n

∑n
i=1 ibidn−i n ≥ 1

.

Denote by An(z) the nth order polynomial obtained by truncating (6.4.15) and consider
again QGIG (u; 3/2, 5, 2), a plot of the error made by An(z), for n = 1, 2, 4, 8, 16 is
given in figure 6.4.6. We end this section by contrasting the error made in the approxim-
ationsAn (z) andQn (u), the nth order polynomial obtained by truncating (6.4.3). Con-
sider the following experiment, we expandQGIG (u; 3/2, 5, 2) about u0 = 0.1 andA (z)

about the point z0 = QB (u0). We are interested in approximating QGIG (u; 3/2, 5, 2)

at the point u = 1 × 10−3. The errors made in the approximations An (QB (u)) and
Qn (u) are listed in table (6.4) for various of the values of the order n.



Chapter 7

Alternative Routes

There is more than one way to gain a handle on the quantile function Q, we refer the
reader to figure 7.0.1. Our main contribution thus far has been to develop methods to
find representations of Q given the density function f . This route is marked by the
diagonal arrow in figure 7.0.1. However the density f need not be our starting point.
In the following two subsections we look at a couple of alternative routes that start out
by examining the characteristic function φ and c.d.f. F respectively. The first of these
ideas was introduced by Shaw and McCabe (2009) and the second is an idea which we
believe to be new and is applicable when the series representation of F is available.

ΦHtL f HxL

QHuL

Integration

Inverse Fourier Transform

Functional, Numerical or Series 

Inversion

Quantile Equations

C
.Q

.E
.

FHxL

Figure 7.0.1

7.1 Momentum Space
In many situations one does not know the density or the distribution function of a
random variable in closed form but the characteristic function is known exactly. Such
is the case when dealing with a stable distribution, for which the probability density
function does not have a closed form expression. Another case is when modelling with
a Lévy process {Xt}t≥0, the density ofXt is rarely known but its characteristic function
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is given by the Lévy–Khinchine formula. Motivated by these remarks, the aim of this

section is to derive an analytic representation of the quantile function with knowledge

only of the characteristic function. The traditional route taken in this scenario (provided

that all steps are valid) is as follows, for a particular probability distribution assuming

that we have a closed form expression of the characteristic function φX but not the

associated density function fX ,

• apply the inverse Fourier transform to φX to obtain fX ,

• integrate the density fX to obtain the distribution function FX ,

• and invert the distribution function FX to obtain QX .

This route has been outlined by the solid arrows in figure 7.0.1. In certain situations

the Gil Pilaez inversion formula (see theorem 27) may be applied to the characteristic

function to obtain the c.d.f. but an inversion step is still required. In this section we

discuss a much more direct approach to the problem introduced by Shaw and McCabe

(2009).

7.1.1 Characteristic Quantile Equation (C.Q.E.)
A non-linear second order integro differential equation is derived which links the char-

acteristic function to the associated quantile function. Solving such an equation would

allow us to short cut the three step procedure described above.

The characteristic function φX : R 7→ C of a random variable X is defined as the

expectation of the random variable eitX ,

φX (t) = E
[
eitX

]
=

ˆ ∞
−∞

eitxdFX(x), (7.1.1)

where i =
√
−1 and the integral is of the Riemann-Stieltjes kind. If the density fX

exists then φX is the Fourier transform of fX ,

φX (t) = F {fX (x)} (t) =

ˆ ∞
−∞

eitxfX (x) dx. (7.1.2)

In this case, given φX the density can be recovered by applying the inverse Fourier

transform,

fX (x) = F−1 {φX (t)} (x) =
1

2π

ˆ ∞
−∞

φX (t) e−itxdt. (7.1.3)

Next we will derive a series of relationships between the characteristic and quantile

functions.

• First by making the substitution u = FX (x) and x = QX (u) in (7.1.1) we obtain
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φX (t) =

ˆ 1

0

eitQX(u)du. (7.1.4)

• Second by substituting (7.1.3) into the first order quantile equation (6.0.2) we

obtain

dQX

du

ˆ ∞
−∞

φX (t) e−itQX(u)dt = 2π. (7.1.5)

• Differentiating (7.1.5) with respect to u yields

d2QX

du2

ˆ ∞
−∞

φX (x) e−itQX(u)dt− i
(
dQX

du

)2 ˆ ∞
−∞

tφX (t) e−itQX(u)dt = 0. (7.1.6)

• Finally combining (7.1.5) and (7.1.6) leads to a fourth identity which we shall

refer to as the characteristic quantile equation (C.Q.E.)

d2QX

du2
=

(
dQX

du

)3
1

2π

ˆ ∞
−∞

itφX (t) e−itQX(u)dt. (7.1.7)

An important property of this equation is that it is location and scale invariant. To

see this consider the transformation Y = a+bX , for some constants a and b > 0. Then

the characteristic and quantile functions of Y are given by,

φY (t) = eitaφX (bt)

and

QY (u) = a+ bQX (u)

respectively. Substituting into (7.1.7) we see that the characteristic quantile equation

remains unaltered under location and scale transformations.

7.1.2 Inversion
Given a characteristic function φ, many inversion theorems exist which express the

associated c.d.f. FX in terms of φX . One such expression for FX is given by the Gil-

Pelaez inversion formula (Gil-Pelaez, 1951) and is the subject of this sub section. It has

the advantage over other formulations in that constant terms such as FX (0) have been

evaluated. The original proof of the formula given by Gil-Pelaez hinges on an applica-

tion of Tonelli’s theorem followed by the dominated convergence theorem. It is derived

in Shaw and McCabe (2009) using tools from residue calculus, we will however base

our proof on Shephard (1991), which relies on an application of the Riemann-Lebesgue

lemma. In the following L1 (A) denotes the set of Lebesgue integrable functions on the

set A.
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Theorem 27. Suppose X is a r.v. with density, distribution, and characteristic functions

given by fX , FX and φX respectively. If the mean of X exists, E [X] <∞, and both the

density and characteristic functions are integrable, fX , φX ∈ L1 (R), then

FX (x) =
1

2
− 1

2π

ˆ ∞
0

φX (t) e−itx − φX (−t) eitx

it
dt,

where i =
√
−1.

Proof. Consider the function,

g (y) =

sgn (y) , y ∈ [−h, h]

0 , y /∈ [−h, h]
.

Its Fourier transform is given by,

φh (t) =

ˆ h

−h
eitysgn (y) dy =

eith + e−ith − 2

it
=

2 (cosht− 1)

it
.

Define uh as the convolution of g with fX ,

uh (x) := fX ∗ g (x)

=

ˆ h

−h
fX (x− y) sgn (y) dy

= −
ˆ 0

−h
fX (x− y) dy +

ˆ h

0

fX (x− y) dy

= 2FX (x)− FX (x+ h)− FX (x− h)

Note limh→∞ uh (x) = 2FX (x)− 1, is clearly a bounded function but not a member of

L1 (R). From the convolution theorem uh has the transform,

ûh (t) = f̂X ∗ g (t) = 2φ (t)
(cosht− 1)

it

which is integrable since (cosht− 1) /it is continuous and bounded on R and φX ∈
L1 (R) by the hypothesis. Thus we may apply the Fourier inversion theorem to obtain

the identity,

uh (x) =
1

2π

ˆ ∞
−∞

e−itxûh (t) dt

=
2

2π

ˆ ∞
−∞

e−itxφX (t)
(cosht− 1)

it
dt

=
2

2π

ˆ ∞
0

(cosht− 1) η (t) dt
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where η (t) = (φX (t) e−itx − φX (−t) eitx) /it. We show next that η (t) is an integrable
function on R. Since the mean of X exists, we can conclude φX is differentiable at 0,
since E [X] = −iφ′X (0) and hence η (t) is bounded on a neighbourhood of 0. To see
this define r (t) := φX (t) eitx, which is differentiable at 0, and note that η (t) can be
written as

η (t) =
r (t)

t
+
r (−t)
t

=
r (t)− r (0)

t
+
r (0)− r (−t)

t
.

From which we obtain limt→0 η (t) = 2r′ (0). Hence for a given ε > 0 there exists
a δ > 0 such that if |t| ≤ δ then |η (t)− 2r′ (0)| < ε. This implies η (t) is bounded
and hence integrable on the interval [−δ, δ]. It is an easy exercise to show η (t) is
integrable away from the origin, that is

´∞
δ
η (t) dt < ∞ and

´ −δ
−∞ η (t) dt < ∞. Since

η (t) ∈ L1 (R) we may apply the Riemann-Lebesgue lemma to conclude,

lim
h→∞

uh (x) =
2

2π
lim
h→∞

ˆ ∞
0

cos (ht) η (t) dt− 2

2π
lim
h→∞

ˆ ∞
0

η (t) dt

= − 2

2π

ˆ ∞
0

η (t) dt = 2FX (x)− 1.

and the result follows.

Later we will find Taylor series expansions of the quantile function centred at the
point u0 := FX (0). A corollary to this theorem will allow us to locate the point u0 in
the unit interval.

Corollary 28 (The zero quantile location). Let QX be the quantile function of X , if the

value u0 satisfies QX (u0) = 0, then

u0 =
1

2
− 1

2π

ˆ ∞
0

φX (t)− φX (−t)
it

dt.

7.1.3 Taylor Series
The next result due to Shaw and McCabe (2009), will be useful in expressing the coef-
ficients of a Taylor series expansion of the quantile.

Theorem 29. Suppose X is a random variable with quantile function QX and charac-

teristic function φX . Assume further that QX is infinitely differentiable at u ∈ (0, 1),

then for n ≥ 2,

Q
(n)
X (u) = [Q′X (u)]

n+1
Pn [Q′X (u) ;QX (u)] , (7.1.8)

where Pn [Q′X (u) ;QX (u)] is a polynomial in Q′X (u) of degree n− 2 and is given by

the recurrence relation,
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Pn [x;QX ] =



´∞
−∞ itφX (t) e−itQX(u)dt n = 2

nxP2 [x;QX ]Pn−1 [x;QX ]

+x2P2 [x;QX ] ∂
∂x
Pn−1 [x;QX ]

+ ∂
∂QX

Pn−1 [x;QX ] n ≥ 3

(7.1.9)

Proof. For n = 2, the characteristic quantile equation (7.1.7) can be written as

Q′′X (u) = [Q′X (u)]
3
P2 [Q′X (u) ;QX (u)] , (7.1.10)

which is clearly of the form (7.1.8). Assume that

Q
(n)
X (u) = [Q′X (u)]

n+1
Pn [Q′X (u) ;QX (u)] ,

then,

Q
(n+1)
X (u) = (n+ 1) [Q′X (u)]

n+1
Q′′X (u)Pn [Q′X (u) ;QX (u)]

+ [Q′X (u)]
n+1 ∂

∂u
Pn [Q′X (u) ;QX (u)] (7.1.11)

From the chain rule we have,

∂

∂u
Pn [Q′X (u) ;QX (u)] = [Q′X (u)]

3
P2 [Q′X (u) ;QX (u)]

∂Pn
∂Q′X

+
∂Pn
∂QX

Q′X . (7.1.12)

Substituting (7.1.10) and (7.1.12) into (7.1.11) then yields,

Q
(n+1)
X (u) = (n+ 1) [Q′X (u)]

n+2
Pn+1 [Q′X (u) ;QX (u)] .

Let, Mk :=
´∞
−∞ t

kφX (t) e−itQX(u)dt, then the first few terms of the sequence

{Pn (x;Qx (u))}∞n=2 are given by,
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P2 (x;QX (u)) = iM1

P3 (x;QX (u)) =
3i2

4π2
M2

1x+
M2

2π

P4 (x;QX (u)) =
15i3

8π3
M3

1x
2 +

5i

2π2
M1M2x+

i3

2π
M3

P5 (x;QX (u)) =
105i4

16π4
M4

1x
3 +

105i2

8π3
M2

1M2x
2 +

5

4π2

(
2M2

2 + 3M1M3

)
x+

i2

2π
M4

P6 (x;QX (u)) =
945i5

32π5
M5

1x
4 +

315

4π4
i3M3

1M2x
3 +

35i

4π3

(
4M1M

2
2 + 3M2

1M3

)
x2

− 7i

4π2
(5M2M3 + 3M1M4)x+

i

2π
M5 (7.1.13)

As in theorem 29 if we assume the quantile function QX is infinitely differentiable,

then its Taylor series expansion about the point u0 takes the form,

QX (u) =
∞∑
n=0

Q
(n)
X (u0)

n!
(u− u0)n

=
∞∑
n=0

1

n!
[Q′X (u0)]

n+1
Pn [Q′X (u0) ;QX (u0)] (u− u0)n (7.1.14)

= Q′X (u0)
∞∑
n=0

Pn [Q′X (u0) ;QX (u0)]

n!
vn (7.1.15)

where v = Q′X (u0) (u− u0). Of course a point of expansion u0 must be chosen. Due

to possible simplifications, the zero quantile location makes a worthy candidate, see

corollary 28. Such a u0 implies QX (u0) = 0 and hence Mk =
´∞
−∞ t

kφX (t) dt. Thus

we may write

QX (u) = Q′X (u0)
∞∑
n=0

Pn [Q′X (u0) ; 0]

n!
vn. (7.1.16)

The final ingredient required to compute the terms of the Taylor series is to evaluate the

derivative of QX at u0. From equation (7.1.5) we obtain

Q′X (u0) =

(
1

2π

ˆ ∞
−∞

φX (t) dt

)−1

.

Further simplifications are possible if the distribution ofX is symmetric (i.e. its density

fX is an even function, assuming µ = 0) thenQX will be an odd function about u = 1/2.

Recall that the Taylor series of an odd function has non-zero coefficients only for the
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odd degree terms. If also we denote the zero-quantile location by u0, again see corollary
28 then (7.1.16) can be written as

QX (u) = Q′X (u0)
∞∑
n=0

P2n+1 [Q′X (1/2) ; 0]

(2n+ 1)!
v2n+1 (7.1.17)

where

Q′X (1/2) =

(
1

2π

ˆ ∞
−∞

φX (t) dt

)−1

. (7.1.18)

Another useful theorem relating the characteristic function to the derivatives of the
density function is,

Theorem 30. If X is a random variable with density fX and characteristic function

φX , then

f
(k)
X (0) =

(−i)k

2π
Mk,

where,

Mk :=

ˆ ∞
−∞

tkφX (t) dt.

We now look at a concrete example to demonstrate some of the ideas discussed in
this section.

Example 31 (Symmetric Stable Distributions). The stable distribution requires four
parameters to describe, an index of stability α ∈ (0, 2], a skewness parameter β ∈
[−1, 1], a scale parameter γ > 0 and a location parameter µ ∈ R. By taking advantage
of the location and scale invariance of the characteristic quantile equation we may set
µ = 0 and γ = 1. Then in the symmetric case β = 0, the characteristic function of the
stable distribution is given by, see for example Weron (2004),

φX (t) = exp {− |t|α} .

In general the probability density function of the stable distribution does not have a
closed form expression. We give a series representation using the above analysis. Since
the density in this case is an even function its Maclauren series takes the form,

fX (x) =
∞∑
n=0

f (2n) (0)

(2n)!
x2n =

1

2π

∞∑
n=0

(−1)n
M2n

(2n)!
x2n. (7.1.19)

Where we have used theorem 30 to obtain the second equality. The coefficients M2n

may be computed as follows,



7.1. Momentum Space 83

M2n =

ˆ ∞
−∞

t2n exp {− |t|α} dt = 2

ˆ ∞
0

t2n exp {−tα} dt.

By making the change of variable y = tα we obtain,

M2n =
2

α
Γ

(
2n+ 1

α

)
, n = 0, 1, 2, . . . (7.1.20)

We could now of course integrate the resultant series (7.1.19) term by term to obtain a

series representation of the associated c.d.f. This series could then be inverted to obtain

a series representation of the associated quantile function. Note however the whole

point of this section was to short cut this method; that is we derive a series represent-

ation of quantile function directly from the characteristic function. The objective is to

solve the recurrence relationship (7.1.9) and substitute into (7.1.17) to obtain a series

representation for the quantile function. Note M2n+1 = 0, for n = 0, 1, 2, . . . and from

(7.1.18) we obtain

Q′X (1/2) =

(
1

π

ˆ ∞
0

exp {−tα} dt
)−1

=

(
1/αΓ (1/α)

π

)−1

=
π

Γ (1 + α)
.

From an implementation point of view one approach as suggested by Shaw and

McCabe (2009) is to use a computer algebra system such as Mathematica (Wolfram-

Research, 2010) to generate and store the polynomials of the form (7.1.13) to disk,

and then program the coefficients Mn targeted for a specific distribution. However it is

not a difficult task to write a polynomial class capable of differentiating itself in lower

level languages such as C++. With such a class in place the implementation of the

recursively defined polynomials Pn as in theorem 29 is a straightforward task. Along

with the numerical methods to be discussed in chapter 8 this technique hugely improves

the practicality of the momentum space approach described above.

The bulk of the work involved in computing the terms of the Taylor series (7.1.14)

or in the symmetric case (7.1.17) is to compute the polynomials Pn through the re-

cursive definition (7.1.9). Therefore it would be advantages to solve this recurrence

relationship. At first it is difficult to see any pattern emerging in the first few terms

of the sequence (7.1.13), from which one could form a conjecture. However notice

the similarity between the sequence of polynomials {Pn (x;Qx (u))}∞n=2 and the se-

quence
{
P̃ n (x)

}∞
n=2

defined as follows; let {an}∞n=1 be some undetermined sequence,

{Mn}∞n=1 be defined as above and define

P̃ n (x) :=
n−1∑
k=1

anBn,k (M1, . . . ,Mn−k+1)xk−1, n ≥ 2
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where Bn,k (·) are the Bell polynomials, for an introduction and definition see Comtet

(1974). The first few terms of this sequence can be computed as,

P̃ 2 (x) = a1M1

P̃ 3 (x) = a2M
2
1x+ a1M2

P̃ 4 (x) = a3M
3
1x

2 + 3a2M1M2x+ a1M3

P̃ 5 (x) = a4M
4
1x

3 + 6a3M
2
1M2x

2 + a2

(
3M2

2 + 4M1M3

)
x+ a1M4

P̃ 6 (x) = a5M
5
1x

4 + 10a4M
3
1M2x

3 + a3

(
15M1M

2
2 + 10M2

1M3

)
x2(7.1.21)

+a2 (10M2M3 + 5M1M4)x+ a1M5.

Notice the striking similarity between the first few terms of the sequences (7.1.13)

and (7.1.21). Perhaps this provides a clue into solving the recurrence relationship

(7.1.9). Solving this recurrence relationship would certainly improve the practicality

of the technique and allow us to compute high order terms much more efficiently. To

this end one must wonder if we can repeat the above analysis with the characteristic

function replaced by the moment generating function when it exists. Possibly the poly-

nomials would be simplified, certainly the even numbered polynomials will not depend

on i.

7.2 The Lagrange Approach
Under the appropriate conditions Lagrange’s inversion formula is capable of providing

us with a series representation of functional inverses. Yet it seems to be ignored in

the literature when one wants to find an approximation to the quantile function, which

itself is at least in the continuous case, defined as the functional inverse of the c.d.f.

Based on this observation we provide a convergent series representation for the quantile

function of the asymmetric α-stable distribution. Note however the method is much

more general than this; all it requires is a power series representation of the c.d.f.

Suppose the c.d.f. FX of a random variableX has the Taylor series representation,

FX (x) =
∞∑
n=0

fn
n!
xn,

The relationship between FX and the associated quantile function QX is given by

FX (QX (u)) = u, for all u ∈ (0, 1). We would like to find the Taylor series ex-

pansion of the inverse function QX . One such expression to achieve this is provided by

Lagrange’s Inversion formula, see Aldrovandi (2001, § 13.3). However Lagrange’s in-

version formula applies to nonunits (i.e. power series with no constant term see Henrici
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(1974, p. 12)), to this end define the function H (x) = FX (x) − f0. Applying Lag-

range’s inversion formula to H then yields a series representation for inverse function

H−1 (u) = Q (u+ f0),

H−1 (u) =
∞∑
n=1

qn
n!
un.

Consequently the Taylor series expansion of QX (u) = H−1 (u− f0) may be written

as

QX (u) =
∞∑
n=1

qn
n!

(u− u0)n

where u0 = f0 and the coefficients qn are provided by Lagrange’s Inversion formula

written in terms of Bell Polynomials (Aldrovandi, 2001, § 13.3)

qn =

 1
f1

n = 1

− 1
fn1

∑n
k=1 qkBn,k (f1, . . . , fn−k+1) n ≥ 2

, (7.2.1)

Here the coefficients Bn,k (f1, . . . , fn−k+1) appearing in the sum are known as Bell

polynomials and are defined by a rather detailed expression

Bn,k (f1, . . . , fn−k+1) :=
∑

v1,v2,...≥0
v1+v2+···=k

v1+2v2+3v3···=n

n!∏n
j=1 [vj! (j!)vj ]

f v11 f
v2
2 · · · f

vn−k+1

n−k+1 , (7.2.2)

where the summation is taken over all solutions (v1, v2, . . . , vn) ∈ Zn≥0 to the Diophant-

ine equation

v1 + 2v2 + 3v3 · · ·+ nvn = n (7.2.3)

with the added constraint, the sum of the solutions is equal to k, i.e.
∑n

j=0 vj = k. For

example the solutions (v1, v2, v3, v4) for n = 4 are given by

{(4, 0, 0, 0), (2, 1, 0, 0), (0, 2, 0, 0), (0, 0, 0, 1), (1, 0, 1, 0)}

and if k = 2 this picks out the solutions (0, 2, 0, 0) and (1, 0, 1, 0). Note that solutions

to (7.2.3) correspond exactly to the integer partitions of n. An integer partition of a

number n is an unordered sequence of positive integers whose sum is equal to n. The

added constraint implies we should look for partitions in which the number of non

zero summands is equal to k. For example the integer partitions of n = 4 are given

by (1, 1, 1, 1), (1, 1, 2), (2, 2), (4), and (1, 3), and in the case k = 2 this singles out
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the partitions (2, 2) and (1, 3). Thus to summarize the sum in (7.2.2) is taken over all

integer partitions of n in which the number of summands is given by k.

The above recursion (7.2.1) can be solved (see Aldrovandi (2001, § 13.3)) leading

to a computationally more efficient expression for the coefficients,

qn =


1
f1

n = 1

1
fn1

∑n−1
k=1(−1)k (n+k−1)!

(n−1)!
Bn−1,k

(
f2
2f1
, f3

3f1
, . . . , fn−k+1

(n−k+1)f1

)
n ≥ 2

. (7.2.4)

7.2.1 α-Stable Distribution.
The α-stable distribution, denoted Sα (β, µ, σ) is commonly characterized through its

characteristic function. However there are many different parametrizations in existence

which has lead to much confusion. Thus from the outset we state explicitly the two

parametrizations we will work with in this report and provide the relationships between

them. We will call these parametrizations P1 and P2 respectively. In the following a

subscript under a parameter denotes the parametrization being used. We will primarily

work with Zoltarev’s type (B) parametrization, see Zolotarev (1986, p. 12) denoted by

P2. In this parametrization the characteristic function takes the form,

φ (t) = exp
{
σ2

(
itµ2 − |t|α e−i(π/2)β2K(α)sgn(t)

)}
, (7.2.5)

where α ∈ (0, 2] is the tail index, µ2 ∈ R is a location parameter, σ2 > 0 is a scale

parameter, β ∈ [−1, 1] is an asymmetry parameter andK(α) := α−1+sgn(1−α). P1

is the classic parametrization, and is probably the most common due to the simplicity

of the characteristic function given by, see Samorodnitsky and Taqqu (1994, p. 5),

φ (t) = exp
{
−σα1 |t|

α
(

1− iβ1tan
(πα

2

)
sgn (t)

)
+ iµ1t

}
. (7.2.6)

A connection between the parametrization P2 and P1 can be derived by taking logar-

ithms and equating first the real parts of (7.2.5) and (7.2.6), followed by the coefficients

of t and |t|α in the imaginary parts, leading to the set of relations,

µ1 = µ2σ2

σ1 =

(
cos
(

1

2
πK (α) β2

)
σ2

)
1
α

β1 = cot
(πα

2

)
tan
(

1

2
πK (α) β2

)
.
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Despite the fact no closed form expression for the c.d.f. Fα (x; β, µ, σ) of the stable dis-

tribution in the general case is known, it can be expressed in terms of an infinite series

expansion. As is usual for a location-scale family of probability distributions, without

loss of generality we may set the location µ2 and scale σ2 parameters to 0 and 1 re-

spectively. In addition it is sufficient to consider expansions of the c.d.f. Fα (x; β, 0, 1)

for values of x > 0 only since the following equality holds,

Fα (x; β, 0, 1) = 1− Fα (−x;−β, 0, 1) . (7.2.7)

Theorem 32. Let X ∼ Sα (x; β2, 0, 1) be a standard α-stable random variable. Then

the cumulative distribution function of X admits the following infinite series represent-

ations,

Fα (x; β2, 0, 1) =
∞∑
n=0

fn
n!
xn, (7.2.8)

where

fn =


1
2

(
1− β2K(α)

α

)
n = 0

(−1)n−1 1
π

Γ(nα+1)
n

sin
(
πn
2

(
1 + β2K(α)

α

))
n ≥ 1

,

and

Fα (x; β2, 0, 1) =
∞∑
n=0

f̃n
n!
x−αn, (7.2.9)

where

f̃n=

1 n = 0

(−1)n 1
απ

Γ(αn+1)
n

sin
(
nπ
2

(α + β2K (α))
)

n ≥ 1
,

If 1 < α ≤ 2 then (7.2.8) is absolutely convergent for all x > 0 and if 0 < α < 1 then

(7.2.8) is an asymptotic expansion of Fα (x; β2, 0, 1) as x→ 0. In contrast if 0 < α < 1

then the series (7.2.9) is absolutely convergent for x > 0 and if 1 < α ≤ 2 then (7.2.9)

is an asymptotic expansion of Fα (x; β2, 0, 1) as x→∞.

Proof. The proof proceeds by obtaining a series expansion of the density of X . This

is achieved by applying the inverse Fourier transform to (7.2.5), expanding the expo-

nential function, and then performing a contour integration, see Lukacs (1970, § 5.8)

for details. The expansion in the density can be integrated term by term to obtain an

expansion of the c.d.f.

Note when 1 < α ≤ 2, the series (7.2.8) rapidly converges for values of x near

zero, where as (7.2.9) converges rapidly for large values of x. The opposite is true

when 0 < α < 1. Thus we can now apply Lagrange’s inversion formula to find

a series expansion of the quantile function Qα in the central and tail regions. Since

the expansions (7.2.8) and (7.2.9) are valid only for x > 0, the resulting expansions
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of Qα are only valid for u > u0, where u0 is the zero quantile location defined by

u0 := Fα (0; β2, 0, 1). This does not pose a restriction however since it follows from

(7.2.7)

Qα (u; β, 0, 1) = −Qα (1− u;−β, 0, 1) .

To find the functional inverse of (7.2.8) we apply Lagrange’s inversion formula to the

function Fα (x)− f0, the quantile function then has the following infinite series repres-

entation valid for u > u0,

Qα(u; β, 0, 1) =
∞∑
n=1

qn
n!

(u− u0) n (7.2.10)

where the coefficients qn are given by (7.2.4) and

u0 = f0 =
1

2

(
1− β2K (α)

α

)
.

To find the functional inverse of (7.2.9) we make the change of variable y := x
1
α , and

apply Lagrange’s inversion formula to the power series,

G (y) :=
∞∑
n=1

f̃n
n!
yn.

The quantile function is then given by

Qα(u; β, 0, 1) =
[
G−1 (u− 1)

]− 1
α ,

where

G−1 (u) =
∞∑
n=1

q̃n
n!
un, (7.2.11)

and the coefficients q̃n are given by (7.2.4) with fn replaced by f̃n. Note when 1 <

α ≤ 2 the series (7.2.10) rapidly converges for values of u near u0, where as (7.2.11)

converges rapidly for values of u close to 1. In this case partial sums of (7.2.10) serve

as good approximations of the quantile function in the central regions where as partial

sums of (7.2.11) can be used to approximate the tails. The opposite is true when 0 <

α < 1. The first few terms of (7.2.10) are given by,
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Qα(u; β, 0, 1) =
πcsc (πρ)

Γ
(
1 + 1

α

) (u− u0) +
π2cot (πρ) csc (πρ) Γ

(
2+α
α

)
2Γ
(
1 + 1

α

)3 (u− u0) 2

+ O
(
(u− u0)3)

Implementation is a straightforward matter, high level languages such as Mathem-
atica have a built in implementation of the Bell polynomials. We provide a Mathematica
implementation used to generate series in figure C.0.2 on page 146. As long as we have
a series representation of the c.d.f. using this approach we could derive a series repres-
entation for the associated Quantile function. However there is one obvious drawback,
even though the coefficients qn can be computed using elementary algebraic opera-
tions, the number of partitions p (n) of an integer n grows exponentially with n, thus
for large values of n the sum in (7.2.2) may be computationally expensive due to the
large number of summands.

However the problem of reverting a power series is a classical one in mathematics
and many efficient algorithms have been devised as a result. For example Dahlquist and
Björck (2008) present a convenient but not so efficient algorithm based on Toeplitz
matrices requiring O (N3 logN) floating point operations (flops). Knuth (1998, § 4.7)
gives several algorithms for power series reversion including a classical algorithm due
to Lagrange (1768) that requires O (N3) flops to compute the first N terms. More re-
cently Brent and Kung (1978) provide an algorithm which requires onlyO (N logN)3/2

flops. However as we shall see in our numerical methods chapter 8, rarely is there a
need to compute more than 200 terms. Due to the constants of proportionaly involved
Knuth states that N must become quite large before Lagrange’s classical algorithm
loses out to Brent and Kung’s high speed method. Brent and Kung (1978) also state in
their paper that they have not tested the algorithm extensively for stability problems. In
addition, Lagrange’s classical algorithm is far simpler to program. It is for these reas-
ons we advise the reader interested in implementing the above scheme to compute the
α-stable quantile series to base their implementation on Lagrange’s classical algorithm.

Concerning the numerical evaluation of the distribution function Fα of the stable
distribution it has been remarked by various authors (Stoyanov and Racheva-Iotova,
2004) that the series expansions given in theorem 32 are only useful for approximat-
ing Fα for either small or large values of x, due to the slow convergence of the series.
It is for this reason standard methods such as the Fast Fourier transform or numerical
quadrature techniques are applied to evaluate Fα. However we found in our exper-
imentation that series acceleration techniques such as Padé approximants and Levin
type transforms could be applied to (7.2.8) and (7.2.9), see section 8.3. The same com-
ments apply for the series representation of the density and quantile functions. Con-
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Figure 7.2.1: Plot of Mathematica’s implementation of Qα(u; β1, µ1, σ1) where α =
1.7811, β1 = 0.2834, µ1 = 0.0009 and σ1 = 0.0141, the Padé approximant R10,10 (u)
and 4th order asymptotic expansions.

sider the following Mathematica Wolfram-Research (2010) code which depends on the
functions defined in figure C.0.2 on page 146.

nN = 4;

padeQC[u_] = PadeApproximant[QC[u, 20], {u, 0, {10,

10}}];

(*Cache the cdf coefficients*)

Table[ft[n, \[Beta]2], {n, 0, nN}];

Table[ft[n, -\[Beta]2], {n, 0, nN}];

rightQTail[u_] = \[Mu]1 + \[Sigma]1 QT[u, \[Beta]2, nN

]^(-1/\[Alpha]);

leftQTail[ u_] = \[Mu]1 + \[Sigma]1 (-QT[1 - u, -\[

Beta]2, nN]^(-1/\[Alpha]));

Plot[{InverseCDF[ StableDistribution[1, \[Alpha], \[

Beta]1, \[Mu]1, \[Sigma]1], u], \[Mu]1 + \[Sigma]1

padeQC[u - f0], rightQTail[u], leftQTail[u]}, {u,

0, 1}, PlotRange -> {-0.09, 0.09}]

The code uses the first 20 terms of the Taylor Series (7.2.10) to generate a Padé approx-
imant R10,10 (u) whose graph is visually indistinguishable from Mathematica’s imple-
mentation of the α-stable quantile, see figure 7.2.1. Although this is promising, we
do not have access to a benchmark implementation of the α-stable quantile so unfortu-
nately we can not provide a more precise error analysis (we are not hold much faith in
the accuracy of Mathematica’s implementation of the α-stable quantile).



Chapter 8

Numerical Techniques and Examples

The goal of this chapter is to discuss some techniques to approximate the

VG (λ, α, β, µ), Hyp (α, β, δ, µ) and GIG (λ, χ, ψ) quantile functions. Some of these

techniques may be incorporated into algorithms which accept a set of distribution

parameters and construct at runtime an approximation QA to the quantile function

satisfying some prespecified accuracy requirements. The techniques discussed here

rely heavily on the results developed in chapter 6, for example the Taylor expansion of

Q may be used to construct Padé approximants, Chebyshev expansions and minimax

approximants.

We shall call the time it takes to construct an approximation QA the setup time,

and the time it takes to evaluate QA at a point u the execution time of the algorithm.

Ideally one would like low setup and execution times, but usually there is a trade-off

between the two.

The procedures assume the availability of an integration and root finding routine

to compute the distribution and quantile functions respectively to full (or at least near)

machine precision. These routines will be used to compute the initial conditions and

manage the error in the approximation ofQ. To begin with we partition the unit interval

and for convenience name each part as follows,

(0, τL) = Left Tail Region

[τL, u1) = Left Region

[u1, u2] = Central Region

(u2, τR] = Right Region

(1− τR, 1) = Right Tail Region

This five part partition is motivated by the behaviour of the quantile function, the parts

are constructed so that Q has small variation in the central region, relatively large vari-

ation in the left and right regions and possibly infinite variation in the tail regions.
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Consequently we will build approximations to Q directly in the central region, in the

left and right regions we will apply a change of variable and build approximations to

the transformed functions, and finally in the tail regions we will employ the asymptotic

expansions of Q.

When constructing an approximation a suitable measure of the error must be

chosen, some common choices are:

• absolute error

eabs (u) = |Q (u)−QA (u)|

• relative error

erel (u) =
eabs (u)

|Q (u)|

• u-error

eu (u) = |u− F (QA (u))|

Note that the first two of these measures require the exact computation of Q (u). In

addition as pointed out by Devroye (1986) and Hörmann et al. (2004) the absolute

error requires the approximation to be overly accurate in the tail regions, the relative

error is not defined at the zero quantile location and the u-error can be problematic

when the c.d.f. F is too steep. Therefore no universal recommendation can be made.

Code for all the algorithms we consider is given. We use Mathematica Wolfram-

Research (2010) as our programming environment; we use it as a rapid prototyping

tool, we do not rely on Mathematica’s symbolic capabilities so expect the algorithms

to be easily portable to lower level languages. In fact for the purposes of constructing

approximations to the quantile functionQ the symbolic capabilities of Mathematica are

of little use to us, for two key reasons:

1. the built in functions for the hyperbolic and generalized inverse Gaussian

quantiles are not reliable, see section 8.1, in addition there is no built in quantile

function for the variance gamma distribution.

2. Mathematica has no idea how to differentiate the quantile functions of the

hyperbolic, variance gamma or generalized inverse Gaussian distributions.

Therefore calls to functions such as Series[], PadeApproximant[] or

MiniMaxApproximation[]1 to generate the Taylor series, Padé and Cheby-

shev approximants respectively will fail when applied to these functions.

1MiniMaxApproximation[] needs the first two derivatives ofQ to compute the extremal points
of the optimal error curve.
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On the other hand Mathematica has no issue differentiating the Normal quantile, so

one may easily construct Taylor expansions, Padé and Chebyshev approximants for

this function as demonstrated by the code below.

Q[u_] := InverseCDF[NormalDistribution[0, 1], u]

(*Taylor Series about u=1/2*)

Series[Q[u], {u, 1/2, 3}]

(*Pade Approximant*)

PadeApproximant[Q[u], {u, 1/2, {3, 3}}] // Simplify

(*Chebyshev Approximant*)

GeneralMiniMaxApproximation[{p, Q[p], 1}, {p, {10^-3, 1 -

10^-3}, 7, 7}, u]

However all is not lost, the “ingredients” that we developed in chapter 6 will prove

invaluable in constructing these types of approximants for the hyperbolic, variance

gamma or generalized inverse Gaussian quantiles. We discuss the details and imple-

mentation of some numerical recipes next. To make the discussion more concrete we

consider applying the methods to the hyperbolic quantile QHyp (u;α, β, δ, µ) with para-

meters α = 2, β = 3/2, δ = 1 and µ = 0, see figure 6.2.1 on page 47. It should

be emphasized however that the methods discussed below apply equally well to the

variance gamma and generalized inverse Gaussian quantile functions with some minor

modifications.

8.1 Root Finder
We consider root finding a bread and butter method. One because all other methods we

consider rely on this method to evaluate the quantile function at some specified points

and two some built in library routines to compute the quantile function can not be

trusted. Take for example the following Mathematica Wolfram-Research (2010) code.

(* evaluate the c.d.f. at the point x = -3*)

u0 = N[CDF[HyperbolicDistribution[2, 3/2, 1, 0], -3]]

(* evaluate the quantile function at the point u = F(-3)

*)

x0 = N[InverseCDF[HyperbolicDistribution[2, 3/2, 1, 0],

u0]]

The output is u0 = 5.36058*10^-6 and x0 = -23.0839. Clearly there is an

inconsistency between the build in CDF and InverseCDF functions, we expect x0 to

be approximately equal to 3. Since numerically integrating the density function agrees

with the CDF function we believe the InverseCDF function is at fault. Thus we
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define the quantile function QRF[] in terms of a Newton Raphson based method as
follows,

precision = 30; (*$MachinePrecision*)

F[x_] := CDF[HyperbolicDistribution[2, 3/2, 1, 0], x]

G[x_, u_] := F[x] - u;

(*FindRoot uses Newton Raphson by default*)

QRF[u_] := x /. FindRoot[G[x, u], {x, 0},

WorkingPrecision -> precision]

Now the output of the quantile function is as expected.

In[1]:= u0 = F[-3]

x0 = Q[u0]

Out[1]= 5.36058384200167863956651004148*10^-6

Out[2]= -3.00000000000000000000000000000

The problem is not just with Mathematica’s implementation of the hyperbolic quantile,
we observed similar problems with Mathematica’s generalized inverse Gaussian and
generalized hyperbolic quantiles.

Note that in this example we have set the initial estimate for the Newton Raphson
scheme as the location parameter µ = 0. This is a naive choice and as we will see in
section 8.3.3 by using a Padé approximant as the initial estimate we can improve upon
the rate of convergence of the numerical scheme.

8.2 Numerical Integrators
Numerical integrators are used to find numerical solutions of differential equations. We
may apply them to the first order quantile equation Q′ = 1/f (Q) to approximate the
quantile function. The Mathematica code below uses the built in function NDSolve

to solve the quantile equation in the case of the hyperbolic distribution on the interval
[εL, 1− εR], where the we have chosen the cutoff points εL = εR = 10−9 (note Leo-
bacher and Pillichshammer (2002) provide analytical formulae to choose εL and εR).
Selecting a larger region in the unit interval will result in failure for this example, so the
algorithm should be supplemented by the asymptotic expansions developed in chapter
6,

In[1]:= \[Epsilon] = 10^-9; \[Mu] = 0; \[Delta] = 1; \[

Alpha] = 2; \[Beta] = 3/2;

f[x_] := PDF[HyperbolicDistribution[2, 3/2, 1, 0], x]

F[x_] := CDF[HyperbolicDistribution[2, 3/2, 1, 0], x];

xm = N[\[Mu] + \[Beta] \[Delta]/Sqrt[\[Alpha]^2 - \[Beta

]^2]];
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Figure 8.2.1: u-error plot produced by the numerical integrator .

um = N[F[xm]];

solution = NDSolve[{Q’[u] == 1/f[Q[u]], Q[um] == xm},

Q, {u, \[Epsilon], 1 - \[Epsilon]}, AccuracyGoal ->

Infinity, Method -> "StiffnessSwitching"];

Evaluate[Q[N[F[-3]]] /. solution]

Out[1]= {-3.00001}

As can be seen from the u-error plot, figure 8.2.1, the accuracy of the method at least

when working in double precision is poor.

Given that we can easily generate the Taylor coefficients ofQ another plausible ap-

proach to approximate the quantile function is to construct a numerical integrator based

on Taylor’s method. It has been reported by many authors that when high precision is

required this is the method of choice, see for example Corliss and Chang (1982), Barrio

et al. (2005) and Jorba (2005). The idea here is to discretize the domain [a, b] ⊂ (0, 1)

into a non-uniform grid a = u0, . . . , un = b. To build this grid we must determine

the step sizes hk = uk − uk−1 for k = 1, . . . n. In addition at each grid point uk we

must determine the order mk of Taylor polynomial so that the required accuracy goals

are achieved. That is both the stepsize and order are variable. Based on two or more

terms of the Taylor series certain tests have been devised to compute the hk andmk, see

again the references mentioned above and the review article Halin (1983). The result

of Taylor’s method is a piecewise polynomial approximation to the quantile function,

note however we will not discuss this method further here.

8.3 Continued Fractions and Padé Approximants
Continued fractions and Padé approximants can be used for the summation of various

types of series. We give a brief introduction, followed by some examples demonstrating

the strengths of these types of approximations. In the context of approximating quantile
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functions some simple techniques to manage the error and construct an appropriate

partition will also be considered.

8.3.1 Continued Fractions
Much like an infinite sum

∑∞
n=0 an is a limit process involving addition and an infinite

product
∏∞

n=0 an is a limit process involving multiplication, continued fractions are

limit processes involving division. An expression of the form

b0 +
a1

b1 +
a2

b2 +
a3

b3 + . . .

where ak and bk are complex numbers and ak 6= 0 for all k ≥ 1 is called a continued

fraction and can be written more compactly as

b0 +
∞

K
n=1

(
an
bn

)
or

b0 +
a1

b1 +

a2

b2 + · · ·+
an
bn + · · ·

The quantities an and bn are called the partial numerators and partial denominators

respectively. Analogous to partial sums of an infinite series we can form the nth con-

vergent fn of a continued fraction defined as

fn = b0 +
a1

b1 +
a2

b2 +
a3

b3 + . . . +
an

bn

= b0 +
a1

b1 +

a2

b2 + · · ·+
an
bn

A continued fraction b0 +
∞

K
n=1

(an/bn) is said to converge if and only if the sequence of

approximants {fn}∞n=0 converges to a limit f ∈ C. The nth convergent fn of a continued

fraction may be written as the ratio

fn =
An
Bn
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where An and Bn are called the nth numerator and denominator respectively and may

be computed recursively as follows,

An = bnAn−1 + anAn−2, Bn = bnBn−1 + anBn−2 (8.3.1)

with A−1 = 1, A0 = b0, B−1 = 0 and B0 = 1.

There are various different types of continued fractions and various methods to

construct them, we refer the interested reader to the excellent monograph by Cuyt et al.

(2008). In particular we will be interested in continued fractions of the type

f (z) = c0 +
∞

K
n=1

(anz
1

)
, c0 ∈ C, an ∈ C\ {0} , n ≥ 1,

which are known as regular C-fractions. Note that the nth convergent

fn (z) =
An (z)

Bn (z)

is a rational function. The nth numerator An (z) is a polynomial of degree dn/2e and

the nth denominator Bn (z) is a polynomial of degree bn/2c. Given the formal power

series expansion f (z) =
∑∞

n=0 cnz
n the coefficients an may be obtained using the pro-

gressive form of Rutishauser’s quotient difference algorithm (Cuyt et al., 2008, theorem

6.1.2). The algorithm proceeds as follows:

• Compute the coefficients dn appearing in the expansion

1

f (z)
=
∞∑
n=0

dnz
n

via theorem 21 on page 36.

• Populate the qd-table consisting of the values q(k)
l and e(k)

l using the recurrence

relations

q
(0)
1 = −d1

d2

, q
(−k)
k+1 = 0, k ≥ 1

e
(1)
0 = 0, e

(0)
1 =

d2

d1

, e
(−k)
k+1 =

dk+2

dk+1

, k ≥ 1

e
(k+1)
l =

q
(k)
l+1

q
(k+1)
l

e
(k)
l , l ≥ 1, k ≥ 1

q
(k+1)
l = q

(k)
l + e

(k)
l − e

(k+1)
l−1 , l ≥ 1, k ≥ 1

where the top two lines are used to initialize the table.
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• The coefficients an are then given by

a1 = c1, a2l = −q(1)
l , a2l+1 = −e(1)

l , l ≥ 1.

We provide a C++ implementation of the algorithm available in an online code reposit-

ory (Munir, 2012), see the ProgressiveQD class and a Mathematica implementation

in figure C.0.5 on page 149. Note to construct the nth convergent fn (z) using this al-

gorithm requires knowledge of the first n+ 1 Taylor coefficients, c0, . . . , cn+1. We will

construct regular C-fractions in section 8.9 where they are used to approximate the VG

quantile and in section 8.8 to construct minimax approximations.

8.3.2 Padé Approximants
Again consider the power series representation of a function f given by

f (z) =
∞∑
n=0

cnz
n.

We introduce the polynomial functions Nm (z) and Dn (z) of maximal degree m and n

respectively

Nm (z) = amz
m + · · ·+ a1z + a0, Dn (z) = bnz

n + · · ·+ b1z + b0.

A Padé approximant Rm,n (z) of f is a rational function of the form

Rm,n (z) =
Nm (z)

Dn (z)
(8.3.2)

such that the Maclauren expansion of Rm,n (z) agrees with that of f (z) as far as pos-

sible, more precisely

degree Nm (z) ≤ m, degree Dn (z) ≤ n

∞∑
n=0

cnz
n = Rm,n (z) +O

(
zm+n+1

)
.

If n = 0 then Rm,0 (z) is simply the mth order Taylor polynomial. Several construction

methods are available to compute Rm,n (z), see for example Baker and Graves-Morris

(1996). Note to construct the Padé approximant Rm,n (z) requires knowledge of the

first m + n + 1 Taylor coefficients c0, c1, . . . , cm+n. Padé approximants are often su-

perior to Taylor expansions but inferior (in the Chebyshev sense) to some of the other
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approximations we consider below. However as the following two examples demon-
strate Padé approximants have their advantages.

Example 33 (Series Acceleration). Sometimes Taylor series expansions converge so
slow that it renders them useless for numerical purposes. Consider the expansion of the
α-stable c.d.f.

Fα (x; β2, 0, 1) =
∞∑
n=0

fn
n!
xn (8.3.3)

where the coefficients fn are given in theorem 32 on page 87. The following Mathem-
atica code constructs the Taylor polynomial R50,0 (x), the Padé approximant R10,10 and
plots them against and the α-stable c.d.f. F3/2 (x; 1/5, 0, 1).

(*Zoltarev’s Type (B) parameterisation*)

\[Alpha] = 3/2; \[Beta]2 = 1/5; \[Mu]2 = 0; \[Sigma]2 =

1;

(*classical parameterisation*)

k = \[Alpha] - 1 + Sign[1 - \[Alpha]];

\[Mu]1 = N[\[Mu]2*\[Sigma]2];

\[Sigma]1 = N[(Cos[(1/2)*Pi*k*\[Beta]2]*\[Sigma]2)^(1/\[

Alpha])];

\[Beta]1 = N[Cot[(Pi*\[Alpha])/2]*Tan[(1/2)*Pi*k*\[Beta

]2]];

\[Theta] = N[(\[Beta]2/\[Alpha])*k]; \[Rho] = N[(1 + \[

Theta])/2];

(*cdf coefficients*)

b0 = (1/2)*(1 - (\[Beta]2*k)/\[Alpha]);

b[n_] := Piecewise[{{b[0] = b0, n == 0}, {b[n]

= (-1)^(n - 1)*(1/Pi)*(Gamma[n/\[Alpha] + 1]/n)*

Sin[Pi*n*\[Rho]], n >= 1}}];

(*cdf Taylor Series*)

F[x_, n_] := Sum[(b[k]/k!)*x^k, {k, 0, n}];

(*construct Pade approximant*)

pade[x_] = PadeApproximant[F[x, 20], {x, 0, {10, 10}}]

(*plot result*)
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Figure 8.3.1: Series acceleration of the power series of Fα.

Plot[{CDF[ StableDistribution[1, \[Alpha], \[Beta]1,

\[Mu]1, \[Sigma]1], x], F[x, 50], pade[x]}, {x,

-10, 10}, PlotRange -> {0, 1.2}]

Recall that the series (8.3.3) in this example is valid for x > 0 and for values of x < 0

we must exploit the relationship (7.2.7). The resulting plot is provided in figure 8.3.1.

We see there is no visible difference betweenR10,10 and Mathematica’s implementation

of the α-stable c.d.f. F3/2 (x; 1/5, 0, 1) for x > 0. Unfortunately we may not perform

a more detailed error analysis at present since we do not have access to reliable routine

capable of computing the α-stable c.d.f. to high accuracy.

Example 34 (Analytic continuation). In this example we will see how the region of

convergence is often extended by utilizing Padé approximants. Recall the asymptotic

expansion of the Hyperbolic quantile

Q(u) ∼ y +
∞∑
n=1

qn
yn
, as u→ 1 (8.3.4)

where the coefficients qn are given by (6.2.6). LetW (z) =
∑∞

n=0 qnz
n, so thatQ (u) ∼

y + W (1/y). Let us now construct the Padé approximant R4,4 (z) of W (z). We are

interested in comparing the truncated asymptotic expansion

Q(u) ∼ y +
K∑
n=1

qn
yn

with the approximation

Q(u) ∼ y +R4,4

(
1

y

)
.
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Figure 8.3.2: A Padé approximant used to sum a divergent series.

The Mathematica code to do so is given in figure C.0.4 on page 148. Figure 8.3.2
shows the graph of the asymptotic expansion 8.3.4 truncated after the K = 4, K = 6

andK = 8 terms; clearly the series is divergent. However as the graph of y+R4,4 (1/y)

suggests we may successfully sum this series by constructing Padé approximants. Such
approximations are very useful in the deep tail regions.

There is a deep connection between Padé approximants and various types of con-
tinued fractions. In fact under some mild conditions, the convergents of a regular C-
fraction fn correspond the staircase entries R0,0, R1,0, R1,1, R2,1, R2,2, . . . in the Padé
table. The reader is referred to (Cuyt et al., 2008) for a full account.

8.3.3 Error and Partition Management
Padé approximants and regular C-fractions are very easy to construct given a Taylor
series expansion. Since the parameters of the probability distribution govern the shape
of the quantile function and the radius of convergence of the series, we cannot expect a
fixed partition to work for all parameter values. Therefore we devise a simple technique
to fix the partition at run time given a set of parameter values and manage the error on
each of these parts.

Like Taylor polynomials, Padé approximants provide exceptionally good approx-
imations near the point of expansion but the error deteriorates as we move away from
this point. Hence to test whether Rm,n (u) is a valid approximation we need only
to verify that the accuracy requirements are met at the end points of the region of
approximation. More specifically suppose we want to approximate Q (u) (which is
increasing and continuous) on [u1, u2] to within a prescribed accuracy ε. Assume
further that by utilizing a bracketing algorithm (like the bisection method for ex-
ample) we have obtained intervals which enclose the exact value of the quantile func-
tion at the points u1 and u2, that is Q (u1) ∈ [x1, y1] and Q (u2) ∈ [x2, y2] with
|x1 − y1| < ε and |x2 − y2| < ε. If we can find an approximation Rm,n (u) such
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that Rn,m (u1) ∈ [x1, y1], Rn,m (u2) ∈ [x2, y2] and Rm.n (u) is free from defects2 in

[u1, u2] then |Rm.n (u)−Q (u)| < ε for all u ∈ [u1, u2]. Based on this observation

one method to find a valid approximation of Q (u) on [u1, u2] would be to construct a

sequence of Padé approximants, for example along the main diagonal of the Padé table,

and terminating the procedure when the above criteria is satisfied. The idea behind the

algorithm is then as follows,

• The order of the asymptotic expansion is chosen in advance, and a numerical

search is conducted to determine τL and τR, which are typically small values

≈ 10−9. For example suppose we decide on a 10th degree expansion for the left

and right tails, then we must determine for what regions (0, τL) and (1− τR, 1)

these expansions are valid. These expansions provide increasingly better approx-

imations of Q as we approach the singular points 0 or 1. Starting with a large

value, say τL = τR = 10−1 the algorithm determines whether the truncated ex-

pansions are valid in this range using the above technique. The values of τL and

τR are incrementally reduced, say by a factor of 10 until a valid range is found.

• Next a point of expansion u0 for the central region is determined, one may choose

u0 = 1/2, the zero quantile location or u0 = F (xm) where xm is the mode of the

distribution or another appropriate choice. On this region the Taylor expansion

of Q at u0 serves as a useful approximation. Hence we construct a sequence of

approximants along the main diagonal of the Padé table. The sequence is termin-

ated when an approximant Rn,n is found which satisfies the required accuracy

goals. We will discuss how to choose the points u1 and u2 below.

• On the left and right regions the left and right solutions of the recycling

equation (6.0.8) denoted AL and AR respectively, serve as good approxima-

tions, this is precisely what they were designed to do. Again a series ac-

celeration method is applied to the Taylor polynomials of AL and AR. The

points at which we impose the initial conditions are critical. For example

we may choose u0 = FB (z0) where z0 = (QB (τL) +QB (um/2)) /2 and

z0 = (QB (1− τR) +QB (um/2)) /2 for the left and right problems respectively.

But by varying these initial conditions we alter the range of distribution paramet-

ers for which the algorithm is valid. Hence the algorithm proceeds by trial and

error to determine at which point the initial conditions are imposed so that the

error conditions are satisfied.
2A Padé approximant may exhibit spurious poles not present in the original function f (z). A robust

algorithm should check that none of the real roots of the denominator polynomial appearing in the Padé
approximant lie in the interval of approximation. Such poles are called defects, see Baker and Graves-
Morris (1996) for details.
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The points u1 and u2 enclosing the central region are determined by an estimate r̃ of
the radius of convergence r for the series. In particular we set

u1 = u0 − r̄

and

u2 = u0 + r̄

where

r̄ = min {r̃, |u0 − 0.1| , |u0 − 0.9|} .

For simplicity our approximation of r̃ will be based on the Cauchy’s root test

r =
1

lim
n→∞

|qn|1/n
.

However note that the problem of estimating the radius of convergence is a rather old
one and many more advanced techniques have been developed to determine r̃. For ex-
ample Chang and Corliss (1980) form a small system of equations based on three, four
and five terms of the series (8.5.5) to determine r̃. However we are not overly concerned
if r̃ over estimates the radius of convergence of (8.5.5) since this will be compensated
by the fact that applying an appropriate summation technique will provide analytic con-
tinuation of (8.5.5). Thus for this iteration of the algorithm we will be content with a
simple estimate of r̃ based on Cauchy’s root test. A complete Mathematica implement-
ation of this algorithm for the hyperbolic quantile and a C++ implementation for the
variance gamma quantile are given in an online code repository (Munir, 2012). We
apply the algorithm to our test case QHyp (u; 2, 3/2, 1, 0) with a specified accuracy of
ε = 2× 10−6, the resulting error plots are given in figure 8.3.3.

The resulting error plots are by no means optimal in the Chebyshev sense, however
this approximation, lets call it QApprox[u] has its benefits. First it is very quick to
setup QApprox[u] , in this case the setup time is just 0.156 seconds (about the same
time as it takes to evaluate Q (u) six times using the root finder of section 8.1 on our
test machine). Second QApprox[u] is very accurate in the tails, since it exploits the
asymptotic expansions of Q (u) developed in chapter 6. Finally by using the output
of QApprox[u] as the initial estimate for a Newton Raphson based root finder can
increase the speed of convergence of the scheme. Consider the following code, two
Newton Raphson based root finders are defined QRFNaive[u] and QRFPade[u].

F[x_] := CDF[HyperbolicDistribution[2, 3/2, 1, 0], x]

G[x_, u_] := F[x] - u;
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Figure 8.3.3: u-error |u− F (QA (u))| plots of Padé Approximants.
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(*FindRoot uses Newton Raphson by default*)

QRFNaive[u_?NumericQ] := x /. FindRoot[G[x, u], {x, 0}]

QRFPade[u_?NumericQ] := x /. FindRoot[G[x, u], {x,

QApprox[u]}]

QRFNaive[u] uses the location parameter µ = 0 as an initial estimate and

QRFPade[u] uses the output of QApprox[u]. The following test code generates

103 Hyp (2, 3/2, 1, 0) random variates using the inversion method based on both of

these root finders.

In[1]:= n = 10^3; uniforms = RandomReal[1, n];

res1 = Timing[ Map[QRF, uniforms]; ]

res2 = Timing[Map[QRFPade, uniforms];]

res1[[1]]/res2[[1]]

Out[1]= {18.689, Null}

Out[2]= {5.99, Null}

Out[3]= 3.12003

From the output we see that QRFPade[u] is over three times faster than

QRFNaive[u].

8.4 Sequence Transforms
Often, it happens that the series

∑∞
n=0 an converges too slowly to be numerically useful.

Fortunately there are several tricks for accelerating the rate of convergence of the series,

or equivalently the sequence of partial sums

sn =
n∑
k=0

ak.

If limn→∞ sn = s exists, then we may write down the remainder after truncating the

series at the nth term as

rn = s− sn.

The idea behind sequence transformation methods is to transform the sequence {sn}∞n=0

into a new sequence {s′n}
∞
n=0 such that the rate of convergence is improved. The trans-

formed sequence must of course still converge to the same limit limn→∞ s
′
n = s . Con-

vergence will then be improved if the sequence of transformed remainders {r′n}
∞
n=0,

where r′n = s− s′n vanish more rapidly than the original remainders {rn}∞n=0, that is
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lim
n→∞

r′n
rn

= lim
n→∞

s− s′n
s− sn

= 0.

Note that the sequence {sn}∞n=0 need not be convergent, for a general account of the

theory see the excellent article by Weniger (2001) or the monographs by Brezinski and

Zaglia (1991) and Sidi (2002). In some cases sequence transformation methods may

be used to transform a divergent series into a meaningful convergent sequence, for

example, to "sum" a power series beyond its radius of convergence (analytic continu-

ation), or to extend the useful region of an asymptotic series.

There is a great variety of sequence transformations discussed in the literature,

we briefly discuss Levin’s sequence transform (Levin, 1972) next, which is possibly

the best single general purpose sequence acceleration method currently known. It is

defined as

L(n)
k (sn, ωn) =

∑k
j=0 (−1)j

(
k
j

) (ξ+n+j)k−1

(ξ+n+k)k−1

sn+j
ωn+j∑k

j=0 (−1)j
(
k
j

) (ξ+n+j)k−1

(ξ+n+k)k−1
1

ωn+j

(8.4.1)

where the quantities ωn are remainder estimates and ξ is usually chosen as a 1/2 or

1. For example we may choose ωn = sn+1 − sn = an+1 resulting in what is known

as Levin’s d-transform or we may choose ωn = (1 + n) an which yields Levin’s u-

transform.

From an implementation point of view Levin’s transform is not computed as writ-

ten in (8.4.1). A more stable and efficient approach is to compute the numerator and

denominator appearing in (8.4.1) from the following three term recurrence relation

Dn
k+1 (ξ) = Dn+1

k (ξ)− (ξ + n) (ξ + n+ k)k−1

(ξ + n+ k + 1)k
Dn
k (ξ) .

The numerator in (8.4.1) may be computed by using the starting values

Dn
0 (ξ) =

sn
ωn

and we obtain the denominator by using the starting values

Dn
0 (ξ) =

1

ωn
.

For efficient Fortran and C++ implementations of these two transforms see Weniger

(2001) and Press et al. (2007) respectively. We provide a Mathematica implementation

in appendix C.0.6. Note that Levin’s transform acts on the values sn, . . . , sn+k, thus

to compute L(n)
k (sn, ωn) requires knowledge of the first n + k + 1 terms of the series

a0, . . . , an+k+1.
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When Levin’s transform is applied to a power series the result is a rational func-

tion3. These rational functions share many of the properties of Padé approximants,

by repeating the experiments in examples (33) and (34) with the Padé approximants

replaced by Levin’s u-transforms we observe similar benefits. Another example ap-

plication of Levin’s u-transform is given in the next section.

8.5 Chebyshev Series
We are interested in the problem of constructing Chebyshev series expansions of

the functions AL (z (u)), Q (u) and AR (z (u)) restricted to the sets [τL, u1], [u1, u2]

and [u2, 1− τR] respectively. In each case we introduce a linear change of vari-

able x which maps the restricted domain onto the set [−1, 1]. To ease notation let

g (x) := Q|[u1,u2] (x); in this case x| [u1, u2]→ [−1, 1] is defined by

x (u) =
u− 1

2
(u2 + u1)

1
2
(u2 − u1)

. (8.5.1)

Following from the properties of Q, the function g is continuous and of bounded total

variation and thus admits the expansion

g (x) =
g̃0

2
+
∞∑
k=0

g̃kTk (x) , x ∈ [−1, 1] (8.5.2)

where Tk (x) are the Chebyshev polynomials of the first kind and the coefficients ck are

defined by

g̃k =
2

π

ˆ 1

−1

g (x)
Tk (x)√
1− x2

dx. (8.5.3)

Since the quantile functions we have considered in this report are assumed to be infin-

itely differentiable, elementary Fourier theory tells us that the error made in truncating

the series (8.5.2) after K terms goes to zero more rapidly than any finite power of 1/K

as K →∞, see Gottlieb and Orszag (1977, § 3). Such rapid decrease of the remainder

motivates us to seek efficient methods to evaluate the integral in (8.5.3). We discuss

two possible approaches in the following two subsections.

8.5.1 Discrete Fourier Transform
The coefficients g̃k can rarely be evaluated analytically so the the usual process is to

write (8.5.3) as

g̃k =
2

π

ˆ π

0

g (cos θ) cos kθdθ,

3The numerator and denominator coefficients may be computed directly, see Roy et al. (1996).
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by making the change of variable x = cos θ. Now by applying the trapezoidal rule with

n equal sub-intervals we obtain

g̃k ≈
2

π

n∑′′

j=1

g

(
cos

πj

n

)
cos

πkj

n
(8.5.4)

where
∑′′

denotes a summation whose first and last terms are halved. This sum

is a discrete cosine transform, so a variant of the fast Fourier transform (Hamming,

1973, § 29.3) may be applied to compute this sum efficiently. We give a Mathem-

atica implementation of the algorithm used to approximate the hyperbolic quantile

QHyp (u; 2, 3/2, 1, 0) on the domain [u1, u2] = [0.1, 0.9] below.

(*Define end points*)

u1 = 0.1; u2 = 0.9;

(*Change of variable maps u range onto [-1,1]*)

xU[u_] := (u - (1/2)*(u2 + u1))/((1/2)*(u2 - u1));

uX[x_] := ((u2 + u1) + (u2 - u1)*x)/2;

g[\[Theta]_] := QRF[uX[Cos[\[Theta]]]]

(*Apply FFT*)

nN = 2^7 - 1;

xData = Table[N[g[(Pi*j)/nN]], {j, 0, nN}];

ccFFT = FourierDCT[xData, 1]*Sqrt[2/nN]; cFFT[n_] :=

ccFFT[[n + 1]];

(*Truncated Chebyshev Series*)

truncCS[x_, n_] := cFFT[0]/2 + Sum[cFFT[k]*ChebyshevT[k

, x], {k, 1, n}]

Plot[{u - CDF[HyperbolicDistribution[2, 3/2, 1, 0],

truncCS[xU[u], 23]]}, {u, u1, u2}]

The resulting error plot is given in figure 8.5.1c. Note that a rough estimate of the error

made by truncating 8.5.2 is given by the magnitude of the first neglected term, so by

monitoring this term the algorithm may be used to construct approximations at runtime

for a specified accuracy ε.

The larger we choose the interval [u1, u2] the slower the rate of convergence of

the resulting series. Therefore on the intervals [τL, u1] and [u2, 1− τR] we advise use
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Figure 8.5.1: u-error (u− F (QA (u))) plots obtained from truncated Chebyshev series
(FFT)

of the functions AL (z) and AR (z) as defined as in section 6.2. Let us choose τL =

τR = 10−10 as the cutoff points for the left and right regions. We want to compute the

Chebyshev expansion of the functionAR (z) on the domain [z1, z2] where z1 = QB (u2)

and z2 = QB (1− τR). The procedure is much the same as before. The complete

Mathematica code to compute the Chebyshev expansion of AR|[z1,z2] (z) is given in

figure C.0.7 on page 151. Minor modifications are required to compute the Chebyshev

expansion of AL (z). The error plots for the left and right regions are given in figure

8.5.1 (a) and (b) respectively. Clearly the error does not oscillate as one would expect

from a truncated Chebyshev series in these regions. Here we have plotted the errors

made in approximating the quantile function QT (u) = A (QB (u)) via Tn,0 (QB (u)).

Figure 8.5.2 instead directly plots the errors made in approximating the function A (z)

via Tn,0 (z) in the left and right regions; the error oscillates as expected, however as

observed in figure 8.5.1 making the substitution z = QB (u) dampens the oscillations

in the far tail regions.

8.5.2 From Taylor Series
There is an alternative approach to approximate the Chebyshev coefficients provided by

Thacher (1964) directly from the Taylor series coefficients. Suppose the Taylor series

expansion of Q (u) about u0 = (u2 + u1) /2 and g as defined above are be given by
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Figure 8.5.2: Direct plot of the absolute error made in the truncated Chebyshev series

Q (u) =
∞∑
n=0

qn(u− u0)n (8.5.5)

and

g (x) =
∞∑
k=0

gkx
k (8.5.6)

respectively. Then by inverting (8.5.1) and substituting into (8.5.5) we see that the

coefficients appearing in (8.5.6) may be written as

gk = qk

(
u2 − u1

2

)k
.

Now substituting the following relationship between the monomials xk and the Cheby-

shev polynomials (Thacher, 1964, eq. 4),

xk = T0 (x) +
k∑
j=1

θk,jTj (x)

where

θj,k =

21−j( j
j−k
2

)
j − k even

0 j − k odd
,

into (8.5.6), one may express the Chebyshev coefficients g̃k in terms of the Taylor

coefficients gk as follows,

g̃k =
∞∑
j=k

gjθj,k. (8.5.7)
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Thacher’s approach was simple, he observed that applying Shank’s transform to (8.5.7)

one may approximate the Chebyshev coefficients even for slowly convergent series. In

our experimentation we found Levin’s u-transform to also be affective, which of course

was not discovered at the time Thacher wrote his paper. Levin’s u transform has been

reported in many instances to outperform Shank’s transform (Smith and Ford, 1982).

Thus given the knowledge of the Taylor coefficients gk we now have a method to ap-

proximate the Chebyshev coefficients ofQ (u) without having to resort to the computa-

tionally expensive task of evaluating (8.5.3) through numerical quadrature. In a similar

fashion we can construct Chebyshev series expansions for the restrictions AL|[τL,u1]

and AR|[u2,1−τR]. We provide the code for the central region below, the complete Math-

ematica code to implement this procedure for the all three regions is given in an online

code repository Munir (2012).

(*Define end points*)

u1 = 0.1; u2 = 0.9;

(*Change of variable maps u range onto [-1,1]*)

xU[u_] := (u - (1/2)*(u2 + u1))/((1/2)*(u2 - u1));

uX[x_] := ((u2 + u1) + (u2 - u1)*x)/2;

(*define Taylor series in x*)

rC = (1/2)*(u2 - u1);

g[n_] := q[n]*rC^n; (*q[n] Taylor series coefficients

about u0=1/2*)

G[n_, x_] := Sum[g[k]*x^k, {k, 0, n}]

\[CapitalTheta][k_, n_] := Piecewise[{{2^(1 - k)*

Binomial[k, (k - n)/2], EvenQ[k - n]}, {0,

OddQ[k - n]}}];

gTpSum1[n_, m_] := Sum[g[k]*\[CapitalTheta][k, n], {k, n,

n + m}] m = 28;

(*generate Chebyshev Series*)

Table[s[m_] := gTpSum1[n, 2*m]; ccShank[n] =

SequenceLimit[Table[s[k], {k, 0, m}]], {n, 0, 25}]

cc[n_] := ccShank[n]

PSum[x_, n_] := cc[0]/2 + Sum[cc[k]*ChebyshevT[k, x], {k,

1, n}]

(*plot the u-error*)
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Plot[{u - CDF[HyperbolicDistribution[\[Alpha]1, \[

Beta]1, 1, 0], PSum[xU[u], 23]]}, {u, u1, u2

}]

8.5.3 Comparison
Table 8.1 lists the setup times for both methods. The total setup time to construct

the Chebyshev polynomials via FFT is 14.992 seconds. On the other hand Thacher’s

method takes 2.636 seconds which is a significant improvement. Note however the

sluggishness of the FFT algorithm is due to the slow root finder used to evaluate Q (u)

at a 128 points. The root finder employed here is that of section 8.1 based on the

Newton Raphson method working in double precision. The root finder uses the location

parameter µ = 0 as an initial estimate of the root. The third row of table 8.1 corresponds

to the setup times when the FFT algorithm is combined with the improved root finder

of section 8.3.3 (which requires a setup time of 0.156 seconds). The total setup time of

this method is then 2.652 seconds, similar to Thacher’s method.

There is one final approach that is worth mentioning due to its simplicity and

effectiveness. To approximate the Chebyshev coefficients the discrete cosine transform

is applied to the data points x0, . . . , xn, where

xi := Q (pi) , pi := u

(
cos

πi

n

)
, j = 0, . . . , n

and u (x) is the inverse of (8.5.1)

u (x) =
(u2 + u1) + (u2 − u1)x

2
.

From the properties of the Q, it follows that x0, . . . , xn is a decreasing list of numbers

x0 > x1 > · · · > xn which are in a sense “close”. Thus to compute x1 by a root finding

scheme we may use x0 as an initial estimate, to compute x2 we may use x1 as an initial

estimate and so on. Updating the initial estimates in this way has a big impact on the

computational effort required. The last row in table 8.1 lists the setup times using this

approach, the total setup time now becomes 5.585 seconds. The Mathematica code

below demonstrates, this technique is very simple to implement.

F[x_] := N[ CDF[HyperbolicDistribution[2, 3/2, 1, 0], x

]]

G[x_, u_] := F[x] - u;

(*FindRoot uses Newton Raphson by default*)

guess = 0;

QRF[u_] := Module[{},

(*find root and update the initial estimate*)
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Region (Degree of Approximant)
Left (26) Centre (23) Right (22) Total Setup Time

FFT (Naive Root Finder) 4.743 2.418 7.831 14.992
Thacher’s Method 2.075 0.249 0.312 2.636

(Taylor coefficients required) (116) (51) (52)
FFT (Improved Root Finder)

0.733 0.827 0.936 2.652
Root Finder Setup: 0.156

FFT (Specialized Root Finder) 1.56 1.467 2.558 5.585

Table 8.1: Setup up times (in seconds) required to compute the truncated Chebyshev
series.

guess = x /. FindRoot[G[x, u], {x, guess}];

guess ]

Of course updating the estimate in this way should not be used for general purpose

applications; for a random point ui ∈ (0, 1) unless we have other information available

perhaps the location parameter, the mean or the mode serve as the reasonable initial

estimates.

8.6 Chebyshev-Padé Approximants
Combining FFT with an improved root finder leads to better setup times. Perhaps

the greatest drawback of this approach is that it leads to approximants of high de-

gree leading to slow execution times. To reduce the degree of the approximant we

consider constructing Chebyshev-Padé approximants of the function g (x) as defined

above. Chebyshev-Padé approximants are rational functions of the form

Tm,n (x) :=
a0T0 (x) + · · ·+ amTm (x)

b0T0 (x) + · · ·+ bnTn (x)
, (8.6.1)

which have a formal Chebyshev series expansion in agreement with (8.5.2) up to and

including the term g̃m+nTm+n (x). Given the knowledge of the first n+m+ 1 Cheby-

shev coefficients g̃0, . . . , g̃n+m, an efficient way to construct Tm,n (x) is to employ the

algorithm of Sidi (1975), in which the coefficients appearing in (8.6.1) are computed

recursively. The coefficients appearing in the denominator are given by

bs = ξ
n−s∑
i=0

γ
(m,n)
i γ

(m,n)
s+1 , s = 1, 2, . . . , n

where

ξ =

(
1

2

∑(
γ

(m,n)
i

)2
)−1

,
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Figure 8.6.1: u-error (u− F (QA (u))) plots obtained from the Chebyshev-Padé ap-
proximants.

γ(m,n)
s =


1 s = 0

0 s = −1 or s = n+ 1

γ
(m+1,n−1)
s + ω(m,n)γ

(m,n−1)
s−1 1 ≤ s ≤ n

and

ω(m,n)=−
∑n−1

s=0 γ
(m+1,n−1)
s g̃|m+1−s|∑n−1

s=0 γ
(m,n−1)
s g̃|m−s|

.

The coefficients appearing in the numerator are given by

ar =
1

2

n∑
s=0

bs
(
g̃r+s + g̃|r−s|

)
, s = 1, 2, . . . , n.

We provide a Mathematica (Wolfram-Research, 2010) implementation of Sidi’s

method in figure C.0.8 on page 152. Applying this scheme to the same test case as

above we obtain the error plots given in figure (8.6.1).

The benefit of Chebyshev Padé approximants over truncated Chebyshev series is

that for lower degree approximants we obtain much better approximations (contrast

figure 8.6.1 with figure 8.5.1) hence we can expect faster execution times, but since the
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approximants are of lower degree fewer Chebyshev coefficients need to be computed

so the set up time may also be improved. However if we are to construct Chebyshev

Padé approximants on the fly (i.e. at run time) we need a means to control the error.

According to Ralston and Rabinowitz (2001, p. 304) often a good estimate of the error

in Tm,n (x) is given by |hN+1Tm+n+1 (x)| where N = m+ n and

hN+1 =
1

2

n∑
i=0

bi (g̃N+1−i + g̃N+1+i) .

8.7 Osculatory Rational Interpolation
Consider a partition of the form τL < um < 1 − τR where um is for example chosen

as um = F (xm) and xm is the mode. Choose the points p0, . . . , pK ∈ [τL, um], and let

s0, . . . , sK ∈ N. Suppose now we want to build a rational approximant Rm,n valid on

[τL, um] which satisfies the following conditions,

A
(j)
L (zk) = R(j)

m,n (zk) , 0 ≤ k ≤ K, 0 ≤ j ≤ sk − 1, (8.7.1)

where zk = QB (pk). That is we would like to construct a rational function Rm,n

such that at each of the K interpolation points zk the derivatives of the function AL
and Rm,n agree up to order sk − 1. Such a problem is called an osculatory rational

interpolation problem. The interpolation data on the right hand side of (8.7.1) may

be generated by solving the recycling equation (6.0.8) for AL with initial conditions

imposed at the points p0, . . . , pK . Provided a solution to the problem exists it may

be solved efficiently through the generalized Q.D. algorithm (Graves-Morris, 1980),

which yields a continued fraction of the form

AL (z) =
c0

1 −
q0

1 (z − z′0)

1 −
e0

1 (z − z′1)

1 −
q0

2 (z − z′2)

1

−
e0

2 (z − z′3)

1 − · · ·
(8.7.2)

The convergents A(n)
L (z) of (8.7.2) are rational functions called multipoint Padé ap-

proximants satisfying (8.7.1). The input to the algorithm is the interpolation data

(z0, AL (z0)) , . . . ,
(
z0, A

(s0−1)
L (z0)

)
, (z1, AL (z1)) , . . . ,

(
z1, A

(s1−1)
L (z1)

)
, . . . , (z1, AL (z1)) , . . . ,

(
zK , A

(sK−1)
L (zK)

)
.

Denote by z′0, z
′
1, . . . , z

′
N the corresponding set of confluent interpolation points, where

N = s0 + s1 + · · · + sK . The first s0 elements of this list are equal to z0 the next s1

elements are equal to z1 and so on. Once this data is generated we may use divided

differences to construct Newton’s interpolating polynomial (Conte and Boor, 1980)
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P (z) = c0 +
N∑
k=1

ck

k−1∏
j=0

(z − z′j).

The Q.D. algorithm requires the coefficients c0, . . . , cN to compute the partial numer-

ators q0
1, e

0
1, q

0
2 . . . recursively as follows (Baker and Graves-Morris, 1996, p. 347):

Initialization: For J = 0, 1, . . . , N − 1, define

ZJ
1 = z′J+1 − z′J

eJ+1
0 = 0

qJ1 =

[
ZJ

1 +
cJ
cJ+1

]−1

eJ1 = −qJ1 − qJ+1
1 (qJ1Z

J
1 − 1)

Recursion: For J = 0, 1, 2, . . . and i = 2, 3, . . . we construct all well defined

quantities qJi , eJi recursively from the formulas

ZJ
i = z′J+2i−1 − z′J+2i−2

qJi =

[
ZJ
i −

eJi−1

eJi−1 + qJi−1

qJ+1
i−1 + eJ+1

i−2

qJ+1
i−1

ZJ
i e

J+1
i−1 − 1

eJ+1
i−1

]−1

eJi = −qJi +
(
ZJ
i q

J
i − 1

) (
eJ+1
i−1 + qJ+1

i

) (
ZJ
i e

J+1
i−1 − 1

)−1

We give a Mathematica (Wolfram-Research, 2010) implementation of this algorithm in

figure C.0.9.

Similarly we may construct an approximation for AR valid on [um, 1− τR]. We

apply the method to our test case and provide the results in figure (8.7.1). The complete

Mathematica code is given in an online code repository (Munir, 2012). Table 8.2 lists

the interpolation data used to constructA(22)
L (z). Here we have solved the left recycling

equation by imposing initial conditions at two points z0 = QB (um/100) and z1 =

QB (um). The first 16 terms of the Taylor series solution at z0 and the first 7 terms of

the Taylor series solution at z1 are used to generate the interpolation data. To construct

A
(21)
R (z) the initial conditions were imposed at the points z0 = QB (um) and z1 =

QB (99 + um/100) and the interpolation data is generated by solving the right recycling

equation. The total setup time for this algorithm was 1.56 seconds.
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Figure 8.7.1: u-error (u− F (QA (u))) plots produced by the multipoint Padé Approx-
imants.

A
(n)
L (zi) z0 = QB (um/100) = −0.181869 z1 = QB (um) = 1.13389

n = 0 −1.09983 1.13389
n = 1 1.12481 4.14937
n = 2 0.16683 14.5228
n = 3 0.332126 92.1766
n = 4 0.868283 790.862
n = 5 2.77638 8926.25
n = 6 10.366 126122.
n = 7 43.7122
n = 8 202.915
n = 9 1015.45
n = 10 5382.01
n = 11 29776.7
n = 12 170446.
n = 13 1.01446× 106

n = 14 6.52123× 106

n = 15 4.95484× 107

Table 8.2: Taylor series are generated about the interpolation points z0 and z1 to con-
struct the interpolation data used to construct multi-point Padé approximant A(22)

L (z).
A total of 23 (16 + 7) Taylor coefficients are required.
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8.8 Minimax Approximations
Let ξ (t) and φ (t) be continuous and bicontinuous4 functions respectively over the

compact interval [a, b], the Chebyshev problem may be posed in some generality (Cody,

1970) as the determination of a rational function Rm,n (φ (t)) of the form

Rm,n (φ (t)) =
Pm (φ (t))

Qn (φ (t))
=
a0 + a1φ (t) + · · ·+ amφ

m (t)

b0 + b1φ (t) + · · ·+ bnφn (t)
.

such that the maximum error in the approximation

rm,n = max
t∈[a,b]

∣∣∣∣Rm,n (φ (t))− ξ (t)

g (t)

∣∣∣∣ (8.8.1)

is minimized. We may consider minimizing the absolute or relative error by setting the

weight function g to g (t) = 1 or g (t) = ξ (t) respectively. The rational approximation

R∗m,n (φ (t)) which minimizes rm,n is called the Chebyshev, minimax or the best fit

rational approximant with respect to the weight function g. The characteristic feature

of R∗m,n (φ (t)) is that the error curve

δ (t) =
Rm,n (φ (t))− ξ (t)

g (t)

oscillates sufficiently often with alternating signs and equal magnitude. Specifically

R∗m,n (φ (t)) is characterized by the existence of L = m+n+ 2 points t1 < t2 < · · · <
tL in [a, b] such that5

δ (ti) = (−1)i+1 rm,n. (8.8.2)

Based on this characterization several iterative algorithms have been devised to solve

Chebyshev’s problem. In this section we will focus on two methods, the commonly

employed second algorithm of Remez (Cody, 1970) and Maehly’s indirect method

(Maehly, 1963).

8.8.1 The Second Algorithm of Remez
The second algorithm of Remez is an iterative algorithm which produces a sequence of

approximants R(1)
m,n, R

(2)
m,n, . . . which converges to R∗m,n. The kth stage of the algorithm

involves two key steps:

1. Given a set of points t(k−1)
1 , . . . , t

(k−1)
L the system of equations (8.8.2)

δ
(
t
(k−1)
i

)
= (−1)i+1 rm,n, i = 1, . . . , L

4A bicontinuous function is a continuous function with a continuous inverse.
5More technically the error curve δ (t) attains L = m + n + 2 − d extremal points, but for most

practical purposes we may assume d = 0 see Ralston and Rabinowitz (2001) for details.
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is solved for the unknowns a0, . . . , am, b0, . . . , bn and the quantity rm,n from
which we obtain an intermediate approximation R(k)

m.n (φ (t)).

2. The corresponding error function

δ (t) =
R

(k)
m,n (φ (t))− ξ (t)

g (t)

is examined to determine a new set of critical points t(k)
1 , . . . , t

(k)
L , i.e. points at

which the error curve attains a local minimum or maximum.

If all the extrema of the error curve
∣∣∣δ (t(k)

i

)∣∣∣, i = 1, . . . , L agree to within some
prescribed accuracy after the kth stage the algorithm terminates, otherwise we pro-
ceed to the (k + 1)th iteration step, substituting the set of points t(k)

1 , . . . , t
(k)
L for

t
(k−1)
1 , . . . , t

(k−1)
L . To start the algorithm we need an initial guess t(0)

1 , . . . , t
(0)
L of the

set of critical points t1, . . . , tL. Such an initial guess may be obtained by examining the
error curve produced by a near best approximation such as a Chebyshev-Padé approxi-
mant Tm,n, see Ralston and Rabinowitz (2001) for details. Additional details of how to
perform the iteration steps are given in the same reference.

First we highlight some of the difficulties involved in computing R∗m,n for
QHyp (u;α, β, δ, µ) on the central region [u1, u2]. Let t = u, a = u1, b = u2, φ (u) = u

and ξ (u) = QHyp (u) then Chebyshev’s problem may be stated as; the determination of
the rational function R∗m,n which minimizes the quantity

rm,n = max
u∈[u1,u2]

∣∣∣∣Rm,n (u)−QHyp (u)

QHyp (u)

∣∣∣∣ . (8.8.3)

To solve this specialized version of Chebyshev’s problem we may apply the func-
tion MiniMaxApproximationwhich is Mathematica’s implementation of Remez’s
second algorithm. Suppose we want to compute the minimax approximation R∗4,4 (u),
the most obvious approach is to apply MiniMaxApproximation to Mathematica’s
built in hyperbolic quantile function as follows:

Q[u_] = InverseCDF[HyperbolicDistribution[2, 3/2, 1, 0],

u];

MiniMaxApproximation[Q[u], {u, {0.1, 0.9}, 4, 4}]

However the call to MiniMaxApproximation fails, Mathematica complains that
it does not know how to differentiate the hyperbolic quantile Q[u], the function
MiniMaxApproximation requires knowledge of the first two derivatives of Q[u]
in order to locate the critical points of δ (u). Fortunately MiniMaxApproximation
has an option called Derivatives in which the user may supply this additional in-
formation. Since Q(n) (u0) = qn is just the coefficient appearing in the Taylor series
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expansion of Q (u) about u0 we may supply MiniMaxApproximation with the

information it requires, namely q0, q1 and q2. Recall that the recurrent formulas of

chapter 6 allow us to compute the Taylor coefficients qn of Q (u) about an arbitrary

point u ∈ (0, 1). The complete implementation details are available in an online code

repository. We found this method useful for constructing minimax approximants in the

central region, but MiniMaxApproximation reports convergence problems when

we tried to construct approximants of high degree (> 4) in the left and right regions.

Fortunately there is another approach, let t = x, a = u1, b = u2, φ (x) = FHyp (x)

and ξ (x) = x then Chebyshev’s problem may be stated as; the determination of the

rational function R∗m,n which minimizes the quantity

rm,n = max
x∈[QHyp(u1),QHyp(u2)]

∣∣∣∣Rm,n (FHyp (x))− x
x

∣∣∣∣ . (8.8.4)

Note that by making the change of variable x = QHyp (u), (8.8.4) is equivalent to

(8.8.3), but by formulating the problem in this way avoids the need to evaluate the

quantile functionQHyp (u) (except at the endpoints u1 and u2) and hence greatly reduces

the computational effort required! Put another way the generalized Chebyshev problem

(8.8.1) may be interpreted as the determination of the rational function of Rm,n (x),

that gives a minimax approximation to the parametrically defined curve with x and y

coordinates given by

(x, y) = (φ (t) , ξ (t)) , t ∈ [a, b] .

The quantile function QHyp (u) on [u1, u2] may be defined parametrically as follows

(F (x) , x) , Q (u1) ≤ x ≤ Q (u2) .

Mathematica provides us with the function GeneralMiniMaxApproximation

which may be used to solve the generalized Chebyshev problem (8.8.1), again

via Remez’s second algorithm. In our notation the calling convention for

GeneralMiniMaxApproximation is as follows,

GeneralMiniMaxApproximation [φ, ξ, {t, {a, b} , m, n} , x]

The following Mathematica code computes the best approximation R∗10,10 (u) for

QHyp (2, 3/2, 1, 0) on [0.1, 0.9]. It takes roughly 93 seconds to execute on our test ma-

chine and the resulting error curve is plotted in figure 8.8.1 (c).

u1 = 1/10; u2 = 9/10; precision = 20;

x1 = QRF[u1]; x2 = QRF[u2];
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F[x_] = CDF[ HyperbolicDistribution[\[Alpha], \[Beta],

\[Delta], \[Mu]], x];

gmma = GeneralMiniMaxApproximation[{F[x], x}, {x, {x1,

x2}, 10, 10}, u, WorkingPrecision -> precision]

mmaQC[u_] = gmma[[2, 1]]

Next we look at computing Chebyshev approximants for AL (z) and AR (z) on the in-

tervals [QB (τL) , QB (u1)] and [QB (u2) , QB (1− τR)] corresponding to the left and

right regions respectively. On these intervals AL (z) and AR (z) may be defined para-

metrically as

(
A−1
L (x) , x

)
, QHyp (τL) ≤ x ≤ QHyp (u1)

and

(
A−1
R (x) , x

)
, QHyp (u2) ≤ x ≤ QHyp (1− τR)

respectively where recall from chapter 6 that A−1
L (x) = QB (FHyp (x)), A−1

R (x) =

QB (FHyp (x)) and the base quantile QB (u) is defined as in (6.2.8). The following

Mathematica code illustrates how to compute the Chebyshev approximant R∗5,4 (z) for

AR (z) on [QB (0.9) , QB (1− 10−10)].

precision = 20;

\[Gamma]1 = N[Sqrt[\[Alpha]1^2 - \[Beta]1^2], precision];

xM = N[\[Beta]1/\[Gamma]1, precision];

pM = N[F[xM], precision];

pR = N[E^((\[Alpha]1 - \[Beta]1) xM) (1 - pM), precision

];

FBR[x_] := 1 - E^(- (\[Alpha]1 - \[Beta]1) x) pR;(*Right

Base CDF*)

QBR[u_] := -(1/(\[Alpha]1 - \[Beta]1)) Log[(1 - u)/pR];

u2 = 9/10; \[Tau]R = 10^-10;

ARInv[x_] := QBR[F[x]]

x1 = QApprox[u2]; x2 = QApprox[1 - \[Tau]R];

gmmaARInv = GeneralMiniMaxApproximation[{ARInv[x], x},

{x, {x1, x2}, 5, 4}, z, WorkingPrecision ->
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(c) R∗10,10 (u)

Figure 8.8.1: Chebyshev approximants

precision, Brake -> {20, 20}, Bias -> -0.5]

Chebyshev approximants for AL (z) may be computed similarly. Figure 8.8.1 (a) and

(b) plot the resulting error curves. In this case it took 108 seconds to compute the

Chebyshev approximant R∗5,4 (z) for the right region and 7.3 seconds to compute the

Chebyshev approximantR∗7,6 (z) for the left region (note the left region is much smaller

than the right region), both approximants achieve a similar accuracy.

8.8.2 Maehly’s Indirect Method
There is one other method of computing R∗m,n which we discuss next that does not

require evaluating Q (u) (or F (x)) at a large number of points, it is Maehly’s indirect

method (Maehly, 1963). This method of determining R∗m,n (u) is applicable when a

sufficiently accurate approximation ofQ (u) is available. Such an initial approximation

may be obtained by constructing a Taylor series expansion or a regular C-fraction (see

section 8.3). Maehly’s indirect method then seeks to find a more optimal approximation

in the Chebyshev sense without the need to evaluate Q (u), which of course in our case

is an expensive operation. Thus one would expect reduced setup up times with this

approach. In fact according to Acton (1990, p. 310) when a sufficiently accurate power

series or continued fraction representation for ξ is available Maehly’s indirect method
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is superior to all others, since the iterative steps in the other algorithms need to be

preformed in high precision.

We first consider the polynomial case, assume that Q (u) is given by a high degree

polynomial

Q (u) ≈ P̄M (u) =
M∑
k=0

qk (u− u0)k

on the interval [u1, u2]. Our aim is to construct the best fit polynomial P ∗m (u)

(m�M ) which minimizes rm,0 with respect to the weight function g (u) = 1. Define

∆Pm (u) = P ∗m (u) − P̄m (u) and note that the error curve δ∗ (u) = P ∗m (u) − Q (u)

which characterizes the best fit polynomial may be written as

δ∗ (u) = ∆Pm (u)−
(
Q (u)− P̄m (u)

)
.

This shows that the polynomial ∆Pm (u) is the Chebyshev approximant to the function

Q (u)−P̄m (u). Key to Maehly’s indirect method is a means to compute the discrepancy

D (u) = Q (u) − P̄m (u) without having to evaluate Q (u). Since we have assumed

P̄M (u) is sufficiently accurate this may be achieved from the “tail” of the polynomial

D (u) =
M∑

k=m+1

qk (u− u0)k . (8.8.5)

We may now apply any direct method such as the Remez algorithm to (8.8.5) to find the

Chebyshev approximant ∆Pm (u). The mth degree Chebyshev approximant to Q (u) is

then given by

P ∗m (u) = P̄m (u) + ∆Pm (u) .

Note rather than computing the coefficients of P ∗m (u) directly in Maehly’s indirect

method we compute the perturbations required to transform the Taylor polynomial

P̄m (u) into the best fit polynomial P ∗m (u). The Mathematica code below is used to

compute the Chebyshev approximant P ∗16 (u) of Q (u) on [0.1, 0.9] from the Taylor

polynomial P̄100 (u) about u = 1/2.

m = 20; M = 100; u1 = 1/10; u2 = 9/10;

tail[u_] := Sum[q[k]*(u - u0)^k, {k, m + 1, M}];

Timing[

mmlist = MiniMaxApproximation[1 + tail[u], {u, {u1, u2

}, m, 0}, Brake -> {20, 20}]

]
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\[CapitalDelta]P[u_] = mmlist[[2, 1]];

(*Chebyshev Approximant*)

P[u_] = Sum[q[k]*(u - u0)^k, {k, 0, m}] + (\[CapitalDelta

]P[u] - 1)

Plot[{P[u] - QRF[u]}, {u, u1, u2}]

The approximant is computed in a mere 0.531 seconds (including the time required
to compute the Taylor coefficients); if on the other hand we were to construct P ∗16 (u)

using GeneralMiniMaxApproximation as follows,

Timing[

x1 = QRFPade[u1]; x2 = QRFPade[u2];

gmma = GeneralMiniMaxApproximation[{F[x], x, 1}, {x, {

x1, x2}, 18, 0}, u, WorkingPrecision -> 20]

]

mmaQ[u_] = gmma[[2, 1]]

the time required to compute P ∗16 (u) is over one minute! Not only is this method
computationally expensive, it also requires high precision arithmetic where as with
Maehly’s indirect method we were able to construct P ∗16 (u) using double precision
arithmetic, see remarks below. There are minor numerical differences between the coef-
ficients of P ∗16 (u) generated by GeneralMiniMaxApproximation and Maehly’s
indirect method, but for all practical purposes as figure 8.8.2 shows the graphs of the
error curves produced by either method are visually indistinguishable. The code to pro-
duce best fit polynomials for AL (z) and AR (z) is given in an online code repository
(Munir, 2012). We make some remarks on this method below.

• Maehly’s indirect method requires lower precision since if P̄m (u) is a good
approximant for Q (u) then the coefficients of the polynomial ∆Pm (u) =

P ∗m (u)− P̄m (u) will be considerably smaller in magnitude than the coefficients
of P ∗m (u), see Maehly’s original paper.

• As the example above illustrates, since we need only evaluate Q (u) once (at the
point of expansion u0), Maehly’s indirect method is computationally more ef-
ficient. The crippling factor for GeneralMiniMaxApproximation is that
for high order approximants we need to work in high precision. In contrast if we
wish to compute a lower order approximant, say the 14th degree Chebyshev ap-
proximant P ∗14 (u) then working in double precision is adequate. In this case the
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Figure 8.8.2: Comparison of error curve δ (u) produced by
GeneralMiniMaxApproximation and Maehly’s indirect method.

m
Gen...Approximation Maehly’s indirect method (M = 100)

Max error
Setup Time Precision Required Setup Time Precision Required

P ∗14 (u) 1.825 double 0.188 double 1.1× 10−5

P ∗16 (u) 58.952 extended 0.531 double 2.5× 10−6

P ∗20 (u) 90.496 extended 0.577 extended 1.27× 10−7

Table 8.3: Setup times and precision required by
GeneralMiniMaxApproximation and Maehly’s indirect method.

time required to compute P ∗14 (u) with GeneralMiniMaxApproximation

is 1.825 seconds in contrast to the 0.188 seconds required by Maehly’s indirect

method. When higher degree approximants need to be computed say, P ∗20 (u)

both methods require the use of high precision arithmetic, i.e. extended double

precision. Specifically GeneralMiniMaxApproximation requires that the

c.d.f. be computed in high precision whereas Maehly’s indirect method requires

that the Taylor coefficients and the Chebyshev approximant of the discrepancy

be computed in high precision. Again we observe that Maehly’s indirect method

is computationally more efficient; GeneralMiniMaxApproximation re-

quires over 90 seconds to compute P ∗20 (u) where as Maehly’s indirect method

requires only 0.577 seconds, we summarize these results in table 8.3.

• The error reported by Remez’s algorithm between the best fit polynomial

∆Pm (u) and the discrepancy D (u) serves as a good estimate of the maximal

error rm,n between P ∗m (u) and Q (u).

All these considerations suggest that at least in theory, one could devise a program

capable of generating best fit approximants for Q (u) on the fly (i.e. at run time).

Maehly’s indirect method is not restricted to polynomial approximations, it may
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also be used to produce best fit rational approximants. Suppose that we have a suffi-

ciently accurate continued fraction approximation to Q (u) on [u1, u2]

Q (u) ≈ R̄M (u) = q0 +
α1 (u− u0)

1 +

α2 (u− u0)

1 + · · ·+
αM (u− u0)

1
. (8.8.6)

Such an approximation may be generated using the first M + 1 Taylor coefficients

of Q (u) as discussed in section 8.3. We wish to compute the Chebyshev approximant

R∗m,n (u) (where n+m�M and 0 ≤ m−n ≤ 1) toQ (u) on [u1, u2] which minimizes

rm,n with respect to the weight function g (u) = 1. Let v = m+n, our starting point is

the vth convergent of the continued fraction 8.8.6

R̄v (u) =
Av (u)

Bv (u)
= q0 +

α1 (u− u0)

1 +

α2 (u− u0)

1 + · · ·+
αv (u− u0)

1

whereAv (u) andBv (u) are the vth numerator and denominator, recall from section 8.3

these are polynomials of degreem and n respectively. Define ∆Rm,n (u) = R∗m,n (u)−
R̄v (u) and note that the error curve δ∗ (u) = R∗m,n (u)−Q (u) which characterizes the

best fit rational function may be written as

δ∗ (u) = ∆Rm,n (u)−
(
Q (u)− R̄v (u)

)
.

This shows that the rational function ∆Rm,n (u) is the Chebyshev approximant to the

function Q (u) − R̄v (u). Again key to Maehly’s indirect method is a means compute

the discrepancy D (u) = Q (u) − R̄v (u) without having to evaluate Q (u). In the

polynomial case we simply used the “tail” of the Taylor expansion, for the rational case

Maehly derived the following analogous formula to evaluate the discrepancy

D (u) = Q (u)− R̄v (u) =
xv
∏v

i=1 (−αi)

Bv (u)
[
Bv−1 (u) + Bv(u)

Qv+1

] (8.8.7)

where Bv (u) is the vth denominator given by (8.3.1) and Qv+1 is the “tail” of the

continued fraction

Qv+1 =
αv+1 (u− u0)

1 +

αv+2 (u− u0)

1 + · · ·+
αM (u− u0)

1
.

We may now apply any direct method such as the second algorithm of Remez to (8.8.7)

to find the Chebyshev approximant ∆Rm,n (u) of the discrepancy D (u) on [u1, u2].

The Chebyshev approximant R∗m,n (u) to Q (u) is then given by

R∗m,n (u) = R̄v (u) + ∆Rm,n (u) .
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The Mathematica code below is used to compute the Chebyshev approximant R∗9,9 (u)

of Q (u) on [0.1, 0.9] from R̄50 (u). The code relies on some helper routines given

in figure C.0.10 used to construct the convergents, vth denominator and the tail of the

continued fraction.

m = 9; n = 9; v = m + n; M = 50;

Timing[

(*compute R_v from Taylor series expanded about u=1/2*)

taylorCoeffs = Table[q[n], {n, 0, M}];

partialNumerators = ProgressiveQD[taylorCoeffs];

ca[n_] := partialNumerators[[n]];

R[u_] = q[0] + BuildCFraction[partialNumerators[[1 ;; v

]], u];

(*compute the discrepancy*)

denominators = nthDenominator[partialNumerators[[1 ;; v

]], x];

B[n_] := denominators[[n]];

tail[x_] = conFracTail[v + 1, M, partialNumerators, x];

discrepancy[x_] = Simplify[(x^v*Product[-ca[i], {i, 1, v

}])/ (B[v]*(B[v - 1] + B[v]/tail[x]))];

mmlist = MiniMaxApproximation[ 1 + discrepancy[x - u0],

{x, {0.1, 0.9}, m, n}, WorkingPrecision -> 20]

]

(*Chebyshev Approximant R_{m,n}*)

\[CapitalDelta]R[x_] = mmlist[[2, 1]]

BR[u_] = R[u - u0] + (\[CapitalDelta]R[u] - 1);

The analysis and code above extend in an obvious way to the functions AL (z) and

AR (z), related error plots are given in figure 8.8.3 along with the number of Taylor

coefficients required to compute the Chebyshev approximants. Similar comments about

computational efficiency apply as in the polynomial case. On the practical side the

lack of a robust method to generate the rational Chebyshev approximants R∗n,m (u)

hinders progress. For example it may happen that MiniMaxApproximation and

GeneralMiniMaxApproximation fail to compute R∗3,3 (u) but are able to con-
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Figure 8.8.3: Chebyshev approximants generated from Maehly’s indirect method.

struct a higher degree approximant R∗4,3 (u) to the same function, see the Mathematica
documentation for details. This is why R∗7,6 (z) of figure 8.8.3 is not the true minimax

approximation; we could only compute the best fit approximant ∆R10,3 (z) to the dis-

crepancy as opposed to ∆R7,6 (z) using MiniMaxApproximation. Still, as figure
8.8.3 demonstrates the continued fraction approximation is significantly economized,

i.e. the error is more uniformly spread over the interval of approximation.

8.9 Implementation
In this section we give a brief overview of a C++ prototype which implements the first

algorithm described above for the variance gamma quantile. The code is available from
the online code repository Munir (2012). To implement the algorithm we need to model

three vital components:

1. the variance gamma distribution,

2. the series expansions of the quantile function and

3. the type of approximant to be employed.

Consequently there are three parts to the software system. Figure 8.9.1 describes a

class diagram for the first part. The primary objective of the VGDistribution class
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Figure 8.9.1: Probability Distribution Classes

Figure 8.9.2: Series Class Hierarchy

is to provide high precision approximations of the c.d.f. and quantile function. These

will be used for generating the initial conditions and controlling the error. Speed is not

of primary concern here. To compute the c.d.f. we used numerical quadrature supple-

mented with the asymptotic expansions of the c.d.f. developed in section 6.3. Note the

variance gamma density has an integrable singularity at the point x = µ, quadrature

schemes which account for this are particularly useful. Similarly to approximate the

quantile function we use a stable root finding scheme supplemented with the asymp-

totic expansions of the quantile function, see (6.3.13), to generate the initial intervals.

Working in double precision for the range of distribution parameters we have tested,

a relative accuracy of 10−13 is attainable with this setup, albeit the computation of the

quantile function is slow.

The class hierarchy for the second part of the system is shown in figure 8.9.2

which is responsible for generating the series developed in section 6.3.4. Most of the

work is carried out by the VGQSeries class. In computing the coefficients it uses an

optimization technique called memoization to avoid any redundant calculations.

An approximant for the variance gamma quantile function is constructed in the fi-

nal part of the system shown in figure 8.9.3. In particular the VGQApproximant class

partitions the unit interval as follows, 0 < τL < uL < u0 < uR < τR < 1, where u0 is
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Figure 8.9.3: Approximation Classes

the zero quantile location (recall the QVG is not analytic at the point u0), and constructs

a continued fraction approximation on each part using the progressive quotient differ-

ence algorithm, see section 8.3 for details. In the tail regions the asymptotic expansions

of Q are utilized. Of course other approximants such as Chebyshev-Padé approximants

could be constructed if required, but we do not consider these in this revision of the

software.

To demonstrate the utility of the algorithm we consider the following test case; the

parameters of the variance gamma process fitted to four years worth of S&P data as

reported in Seneta (2004) are σ̂2 = 6.447× 10−5, ν̂ = 0.4220, θ̂ = −1.510× 10−4 and

ĉ = 2.585× 10−4. These are related to µ, λ, α and β appearing in the variance gamma

density (6.3.1) as follows,

µ = c, λ =
1

ν
, α =

√
2σ2/ν + θ2

σ2
, β =

θ

σ2
.

Hence in our test case we use the estimated parameters; µ̂ = 0.0002585, λ̂ = 2.262443,

α̂ = 264.936625 and β̂ = −2.342174. A plot of QVG (u;λ, α, β, µ) is given in fig-

ure 6.3.1 on page 55. With a specified u-resolution of 10−10 on our test machine (an

Intel i7 2.4GHz laptop) we observed the total time to sample one million variance

gamma random variates to be less than 0.09 seconds. This is the fastest algorithm of its

sort we know of. The resulting error plots are given in figure 8.9.4. The total time can

be broken down as follows,

• 0.03 seconds setup time, i.e. the time required to build the approximant,

• 0.01 seconds to generate one million U (0, 1) variates needed to apply the inver-

sion method and

• 0.05 seconds execution time.

Of course the setup and execution times are dependent on the distribution parameters

and the desired accuracy. To put things into perspective for the reader we generate

one million standard normal uniform random variates using a C++ implementation
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of Acklam’s (2009) method, without the refinement step. The execution time of this
algorithm is then 0.03 seconds. Notice that the comparison is somewhat unjustified
in the sense that our algorithm guarantees a u-resolution (i.e. the maximum u-error)
of no greater than 1 × 10−10 where as Acklam’s algorithm is designed to produce a
maximum relative error of 1.15 × 10−9. However the point of the comparison was to
show that for a small extra cost (0.2 seconds to be precise, not including the setup time)
we can sample from a variance gamma distribution. The primary reason Acklam’s
algorithm has a better execution time is that it uses rational approximants of degree
10 while we are employing rational approximants of degree 24 and 14 in our example.
To reduce the degree and improve the execution time (at the expense of slower set up
times) there are several possibilities other than increasing the number of subintervals
(smaller intervals require lower degree approximants). For example one may construct
Chebyshev-Padé approximants as discussed in section 8.6, economize the resulting
continued fractions using the methods of Maehly (1963) or Ralston (1963) or construct
minimax approximants as discussed in 8.8.
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Figure 8.9.4: u-error |u− F (QA (u))| plots generated by the Padé approximants of
QVG (u;λ, α, β, µ) where λ = 2.262443, α = 264.936625, β = −2.342174 and µ =
0.0002585. Here Qn (y) is used to denote the asymptotic series 6.3.13 truncated after
the nth term.



Chapter 9

Conclusion & Further Work

We summarize what we have achieved in this report and believe to be original contri-
bution,

• For the hyperbolic, generalized inverse Gaussian and variance gamma distribu-
tions we have provided,

– asymptotic expansions for the quantile function Q as u→ 0 and u→ 1,

– convergent Taylor series expansions of Q at an arbitrary point u ∈ (0, 1),

– and solutions to the left and right recycling equations.

in sections 6.2, 6.3 and 6.4 respectively.

• A method to compute Snedecor’s F quantile was presented in section 6.1.

• We introduced a new approach in section 7.2 to obtain series representations for
the quantile function when a Taylor series expansion of the c.d.f. is available.
This technique proved particularly useful in determining both convergent and
asymptotic series expansions for the quantile function of the α-Stable distribu-
tion.

• Various numerical schemes, not commonly found in the literature in the context
of approximating the quantile functions for the VG (λ, α, β, µ), Hyp (α, β, δ, µ)

and GIG (λ, χ, ψ) distributions were explored in chapter 8, in particular it was
seen that algorithms based on

– Padé approximants,

– truncated Chebyshev series,

– Chebyshev-Padé approximants,

– Multipoint Padé approximants,

– and minimax approximants
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prove useful.

It should be emphasized the techniques we have applied in this report are quite general,
and applicable to a much wider range of distributions than we have considered in this
report. Indeed examining the density (B.2.1) of the generalized hyperbolic distribu-
tion it certainly appears to be amenable to the quantile mechanics approach. From a
financial perspective it would be interesting to see whether these techniques are also
applicable to the noncentral chi-squared distribution, the CGMY model or the normal
inverse Gaussian distribution. See also the remarks at the ends of sections 7.1 and 7.2.

Similarly we have only scratched the surface, in the context of the numerical tech-
niques available for approximating analytic functions. We briefly mention some of
these which we have not yet explored in any great detail. Methods to construct Cheby-
shev series solutions to nonlinear differential equations directly have been developed
by Clenshaw and Norton (1963). When the Levin u or Weniger transforms are applied
to a power series the result is a rational function, Roy et al. (1996, eq. 24) provide us
with closed form expressions for the coefficients appearing in the numerator and de-
nominator polynomials. Hänggi et al. (1980) study the summation of functions defined
in terms of various types of series through the use of continued fractions from a nu-
merical point of view. Castelianos and Rosenthal (1993) provide us with a procedure
to construct rational Chebyshev approximations of analytic functions. However they
fail to mention the coefficients appearing in equation (1.1) of their paper may be ob-
tained through Faà di Bruno’s formula. Wynn (1960) discusses very general techniques
for constructing rational approximations for functions specifically defined by power
series expansions. An interesting survey paper for practical rational approximations
is provided by Cody (1970). Several researchers have developed methods to solve
an osculatory rational interpolation problem, see for example Graves-Morris (1980),
Claessens (1976) and Gustavson and Yun (1979) for some of the methods available.
Indeed it would appear the numerical analyst is somewhat spoilt for choice, however
the reliability and stability of these algorithms must be investigated.



Appendix A

The Pearson Family of Distributions

The Pearson family or system describes a family of probability distributions. Any
distribution with a probability density function f satisfying an ordinary differential
equation of the form

1

f

df

dx
= − a+ x

b0 + b1x+ b2x2
(A.0.1)

is a member of this family. The parameters a, b0, b1 and b2 control the shape of the
probability distribution. There are twelve different types of Pearson distributions, sum-
marised in table A.1. The choice of parameters that recover the corresponding distri-
butions can be found in Johnson et al. (1994). Note that the normal distribution is not
assigned a type; it is in fact the limiting distribution of all other types.

Table A.1: Pearson Types

Common Name Type

Normal NA

Beta (Shifted) I

Symmetric Beta II

Gamma III

Pearson Type IV IV

Reciprocal of Gamma V

F VI

Student-t VII

VIII

IX

Exponential X

Pareto XI

XII

Next we consider the solutions to Pearson’s differential equation (A.0.1). The
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form of these solutions depends on the quadratic,

b2x
2 + b1x+ b0 = 0

Since the equation is separable its solution is easily obtained as,

f (x) = A exp

(
−
ˆ

a+ x

b0 + b1x+ b2x2
dx

)
, (A.0.2)

where A is a normalising constant chosen such that
´∞
−∞ f (x) dx = 1. We now look at

some particular cases.

Example 35. The normal curve is recovered by setting b1 = b2 = 0. Hence,

f (x) = Ae
−(x+a)2

2b0 ,

and using the fact
´∞
−∞ e

−cx2dx =
√
πc, the constant A can be computed as A =

1/
√

2πb0. The function f is thus the density of the normal distribution with mean −a
and variance b0.

Example 36. The student-t curve is recovered by setting b1 = a = 0, and with b1, b2 >

0 equation (A.0.2) becomes,

f (x) = A
(
b0 + b2x

2
)−(2b2)−1

.

Setting b2 = 1/ (ν + 1) and b0 = ν/ (ν + 1) we find,

f (x) = A

(
1 +

x2

ν

)− ν+1
2

,

where we have absorbed the factor ν/ (ν + 1) into the constant A. In this case the
normalising constant is given by,

A =
Γ
(
1 + ν

2

)
√
πνΓ

(
ν
2

) .
From which we see that f is the density of the student-t distribution with ν degrees of
freedom.
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Variance-Mean Mixture Distributions

In this appendix we will introduce normal variance-mean mixture distributions, and in

particular the family of generalized hyperbolic (GH) distributions. Amongst others,

members of the GH family include the student-t, hyperbolic, normal inverse Gaussian

and variance gamma distributions, all of which are of particular interest to finance. For

a financial based introduction see Weron (2004) or Bingham and Kiesel (2002). For a

more general yet readable treatment see Paolella (2007), our presentation closely fol-

lows this reference. The distribution of a random variable X is said to be a normal

variance-mean mixture if the conditional distribution of X given Y (the mixing vari-

able) is the normal distribution with mean µ+ βY and variance Y ,

(X | Y ) ∼ N (µ+ βY, Y ) ,

where N (m, s2) denotes the normal distribution with mean m and variance s2, Y is a

positive random variable independent of X and µ and β are constants. It follows that

X may be expressed as

X = µ+ βY +
√
Y Z,

where Z ∼ N(0, 1). This particular form of X makes simulation a simple procedure,

see Weron (2004). If Y is a continuous random variable with density function fY , the

density fX of X can be written down as

fX (x) =

ˆ ∞
0

fX,Y (x, y) dy

=

ˆ ∞
0

fX|Y (x|y) fY (y) dy

=

ˆ ∞
0

fN (x;µ+ βy, y) fY (y) dy. (B.0.1)
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Here fX,Y and fX|Y denote the joint and conditional density function of X and Y

respectively, and fN (µ;m, s2) denotes the density of N (m, s2). From this we see that

X has a continuous mixture distribution1; we are mixing normal distributions with the

distribution of Y . We will denote the distribution of X by Mixπ (µ, β), where π is the

distribution of Y , µ is a location parameter, and usually if β 6= 0 the distribution of X

will be skewed. Also of interest will be the characteristic function φX of X which we

derive next.

φX (t) =

ˆ ∞
−∞

eixtfX (x) dx

=

ˆ ∞
−∞

eixt
ˆ ∞

0

fN (x;µ+ βy, y) fY (y) dydx

=

ˆ ∞
0

ˆ ∞
−∞

eixtfN (x;µ+ βy, y) dxfY (y) dy

=

ˆ ∞
0

ei(µ+βy)t− 1
2
yt2fY (y) dy

= eiµtφY
(
βt+ it2/2

)
, (B.0.2)

where φY is the characteristic function of Y . Now we will look at a special choice

of Y which leads to a very interesting family of distributions, namely the generalised

hyperbolic distributions.

B.1 Generalized Inverse Gaussian
The generalised inverse Gaussian (GIG) is a three parameter distribution, special cases

of which are the inverse gamma, positive hyperbolic and Lévy distributions to name a

few. It arises in the context of first passage times of a diffusion process. The probability

density function of a GIG random variable is given by,

fGIG (x;λ, χ, ψ) =
(ψ/χ)λ/2

2Kλ

(√
ψχ
)xλ−1e−

1
2(χx−1+ψx), x > 0, (B.1.1)

where Kv (z) is the modified Bessel function of the second kind with index v ∈ R, and

has the integral representation

1Suppose C is a continuous random variable with support C. A random variable X is said to follow
a continuous mixture distribution if its density function can be expressed as, see Paolella (2007, p. 258),

fX (x) =

ˆ
C
fX|C (x |c ) fC (c) dc.
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Kv (t) =
1

2

ˆ ∞
0

xv−1e−
1
2
t(x+x−1)dx,

see Olver et al. (2010, §10.25). Denote by the ΘGIG the parameter space of the distri-
bution, it is defined as the union of three disjoint sets ΘGIG = A ∩B ∩ C where,

A =
{

(λ, χ, ψ) ∈ R3 : λ ∈ R, χ > 0, ψ > 0
}

(normal case)

B =
{

(λ, χ, ψ) ∈ R3 : λ > 0, χ = 0, ψ > 0
}

(boundary case I)

C =
{

(λ, χ, ψ) ∈ R3 : λ < 0, χ > 0, ψ = 0
}

(boundary case II).

The GIG distribution generalises quite a number of distributions which are summarised
in table B.1. The normal case, that is when (λ, χ, ψ) ∈ A, is referred to as the GIG
distribution in the strict sense. The boundary cases are present to include some limiting
cases, for example in the first boundary case the GIG distribution reduces to the Gamma
distribution.

Table B.1: Special Cases of GIG Distribution

Name Parameter Range

Normal Case λ ∈ R χ > 0 ψ > 0

Gamma λ > 0 χ = 0 ψ > 0

Inverse Gamma λ < 0 χ > 0 ψ = 0

Exponential λ = 1 χ = 0 ψ > 0

Positive Hyperbolic λ = 1 χ > 0 ψ > 0

Lévy λ = −1/2 χ > 0 ψ = 0

Inverse Gaussian λ = −1/2 χ > 0 ψ > 0

Dirac (limiting case, x ≥ 0) λ ∈ R
√

χ
ψ
→ x

√
χψ →∞

Later we will use the GIG distribution as a mixing distribution in a normal variance

mean mixture. From equation (B.0.2) we see that the characteristic function of this

normal mean mixture will depend on the characteristic function of the GIG distribution.

Thus we provide a derivation.

φGIG (t;λ, χ, ψ) =

ˆ ∞
−∞

eitxfGIG (x;λ, χ, ψ) dx

=
(ψ/χ)λ/2

2Kλ

(√
ψχ
) ˆ ∞

0

xλ−1 exp

{
−1

2

(
χx−1 + (ψ − 2it)x

)}
dx

Writing the integrand in this expression as,
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xλ−1 exp

−1

2

√
χ (ψ − 2it)

(√ψ − 2it

χ
x

)−1

+

(√
ψ − 2it

χ
x

) ,

and applying the change of variable y =
√

(ψ − 2it) /χx we obtain,

φGIG (t;λ, χ, ψ) =

(
ψ

ψ − 2it

)λ/2 Kλ

(√
χ (ψ − 2it)

)
Kλ

(√
ψχ
) . (B.1.2)

B.2 Generalized Hyperbolic Distribution
The GH distribution is a normal mean mixture distribution where the mixing distribu-

tion is a GIG distribution. Although this provides a natural parametrisation of λ, χ and

ψ from the GIG distribution along with µ and β from the mixing procedure another

parametrisation is more commonly used. We will instead use the parameters λ, α, β,

δ and µ. The parameter space of the generalised hyperbolic distribution is defined as

ΘGH = {(λ, α, β, δ, µ) ∈ R5 : α, δ ≥ 0, λ, µ ∈ R, |β| ≤ α}. By setting χ := δ2 and

ψ := α2−β2 we may define the generalised hyperbolic distribution GHyp (λ, α, β, δ, µ)

as a normal variance mean mixture where the mixing distribution is GIG(λ, χ, ψ),

GHyp (λ, α, β, δ, µ) := MixGIG
(
λ, δ2, α2 − β2

) (µ, β) .

In order to write down the associated density function we must evaluate the integrals

appearing in (B.0.1). This is a rather tedious task, but once we know the density func-

tion in the general case we can easily write down the density of the more specialized

cases. The same applies to the characteristic function. For notational convenience set

γ =
√

(α2 − β2), the density may then be derived as follows,

fGHyp (x;λ, α, β, δ, µ) = fMixGIG
(
λ, δ2, α2 − β2

) (x;µ, β)

=

ˆ ∞
0

fN (x;µ+ βy, y) fGIG (x;λ, χ, ψ) dy

=
1√
2π

(γ/δ)λ

2Kλ (γδ)

ˆ ∞
0

exp

{
−1

2

(x− (µ+ βy))2

y

}

×y(λ− 1
2)−1 exp

{
−1

2

(
δ2y−1 + γ2y

)}
dy

=
1√
2π

(γ/δ)λ

2Kλ (γδ)
eβ(x−µ)

ˆ ∞
0

y(λ− 1
2)−1

× exp

{
−1

2

((
δ2 + (x− µ)2) y−1 + α2y

)}
dy.
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Note the argument of the exponential function appearing in the integrand may be writ-

ten as

−1

2
α

√
δ2 + (x− µ)2

 α√
δ2 + (x− µ)2

y

−1

+

 α√
δ2 + (x− µ)2

y

 .

Hence by applying the change of variable v = αy/
√
δ2 + (x− µ)2 we obtain

fGHyp (x;λ, α, β, δ, µ) =
(γ/δ)λ eβ(x−µ)

√
2π


√
δ2 + (x− µ)2

α

λ− 1
2

×
Kλ− 1

2

(
α
√
δ2 + (x− µ)2

)
Kλ (γδ)

(B.2.1)

Note that there is another formulation of the GHyp density that will prove useful.

To this end we define a new function kλ (χ, ψ), closely related to the modified Bessel

function of the second kind

kλ (χ, ψ) :=

ˆ ∞
0

xλ−1 exp

{
−1

2

(
χx−1 + ψx

)}
dx.

It can be shown that (Paolella, 2007, p. 301),

kλ (χ, ψ) = 2

(√
χ

ψ

)λ
Kλ

(√
χψ
)
. (B.2.2)

Thus we may rewrite the GHyp density in terms of kλ (χ, ψ),

fGHyp (x;λ, α, β, δ, µ) =
kλ− 1

2

(
δ2 + (x− µ)2 , α2

)
√

2πkλ (δ2, α2 − β2)
eβ(x−µ). (B.2.3)

Two other identities that can be proven from elementary techniques of integration which

we will need later are,

kλ (0, ψ) =

(
ψ

2

)−λ
Γ (λ) , λ > 0, ψ > 0, (B.2.4)

and

kλ (χ, 0) =
(χ

2

)λ
Γ (−λ) , λ < 0, χ > 0. (B.2.5)

From (B.0.2) and (B.1.2) we obtain the characteristic function of the GHyp distribution.



B.2. Generalized Hyperbolic Distribution 142

φGHyp (t) = eiµt
(

α2 − β2

α2 − β2 + t (t− 2iβ)

)λ
2 Kλ

(
δ
√

(α2 − β2 − t (t− 2iβ))
)

Kλ (γδ)
.

(B.2.6)

Now we will have a look at some specific distributions of the GH family. Focusing

in particular on the the density and the characteristic functions, which are just special

cases of (B.2.1) and (B.2.6) respectively, with added parameter constraints.

Example 37 (Hyperbolic, if λ = 1, α > 0, |β| < α, δ > 0, µ ∈ R). With these para-

meter constraints in place we see that, λ = 1, χ = δ2 > 0 and ψ = α2−β2 > 0, which

suggests from table (B.1) that the hyperbolic (Hyp) distribution is a normal variance

mean mixture where the mixing distribution is the positive hyperbolic distribution. The

Hyp distribution is defined as,

Hyp (α, β, δ, µ) := GHyp (1, α, β, δ, µ) .

The formulae for the density and characteristic functions are then easily derived as

fHyp (x;α, β, δ, µ) =
γ

2αδK1 (δγ)
exp

{
−α
√
δ2 + (x− µ)2 + β (x− µ)

}
(B.2.7)

and

φHyp (t) =
γeiµt√

α2 − (it+ β)2

K1

(
δ
√
α2 − (it+ β)2

)
K1 (γδ)

respectively.

Example 38 (Normal Inverse Gaussian, if λ = −1/2, α > 0, |β| < α, δ > 0, µ ∈ R).
The normal inverse Gaussian (NIG) distribution is defined as,

NIG (α, β, δ, µ) := GHyp (−1/2, α, β, δ, µ) .

The formulae for the density and characteristic functions are then easily derived as

fNIG (x;α, β, δ, µ) =

 αδ

π
√
δ2 + (x− µ)2

 eβ(x−µ)+δγK1

(
α

√
δ2 + (x− µ)2

)
,

and
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φNIG (t) = e
iut+δ

(√
(α2−β2)−

√
α2−(β+it)2

)

respectively.

Example 39 (Variance Gamma, if λ > 0, α > 0, |β| < α, δ = 0, µ ∈ R). With these
parameter constraints in place we see that, λ = 1, χ = δ2 = 0 and ψ = α2 − β2 > 0,
which suggests from table (B.1) that the variance gamma (VG) distribution is a normal
variance mean mixture where the mixing distribution is the gamma distribution. The
VG distribution is defined as,

VG (λ, α, β, µ) := GHyp (λ, α, β, 0, µ) .

The formula for the density is a little more difficult to compute due to the δ = 0

appearing in the denominator of (B.2.1). It is much more convenient however to work
with the form of the GHyp density given by (B.2.3) and use the identities (B.2.4) and
(B.2.2) to obtain,

fVG (x;λ, α, β, µ) =
γ2λ

(2α)λ−1/2√πΓ (λ)
|x− µ|λ−

1
2 Kλ− 1

2
(α |x− µ|) eβ(x−µ).

(B.2.8)
It is a simple matter to write down the characteristic function from (B.2.6),

φVG (t) = eiµt
(

α2 − β2

α2 − β2 + t (t− 2iβ)

)λ
2

.



Appendix C

Code Listings

In this section we provide Mathematica (Wolfram-Research, 2010) implementations of
some of the algorithms we have employed in this report.
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H*
The Box Muller transform;

Input: A pair of UH0,1L random deviates;

Output: A NH0,1L random variate;

*L
BoxMuller@uniformVariates_D := ModuleB8e, Θ, k, n, U1, U2, Y, Z, normalVariates<,

U1 = N@uniformVariates@@1DDD;
U2 = N@uniformVariates@@2DDD;
Y = -2 Log@U1D Cos@2 Π U2D;

Z = -2 Log@U1D Sin@2 Π U2D;
H* We are only interested in examining Z *L
Z

F

H*Normal Quantile*L
Q@u_D := Quantile@NormalDistribution@0, 1D, uD;

H*Generate the UH0,1L variates using a congruential generator*L
n = 2000000;

uniformVariates =

BlockRandomASeedRandomA1, Method ® 9"Congruential", "Multiplier" ® 131,

"Increment" ® 0, "Modulus" ® 235=E; RandomReal@80, 1<, nDE;
H*Pair them up becuase Box muller works in pairs*L
uniformPairs =

Table@8uniformVariates@@kDD, uniformVariates@@k + 1DD<, 8k, 1, n - 1, 2<D;

H*Apply the Box Muller Transform*L
boxMullerVariates = Map@BoxMuller, uniformPairsD ;

Print@"Range of variates generated using Box Muller method: @",
Min@boxMullerVariatesD, ", " , Max@boxMullerVariatesD, "D"D

H*Do the same with the inverse transform*L
QVariates = Map@Q, uniformVariates@@1 ;; n � 2DDD ;

Print@"Range of variates generated using the inversion method: @",
Min@QVariatesD, ", " , Max@QVariatesD, "D"D

Range of variates generated using Box Muller method: @-3.21405, 3.54349D

Range of variates generated using the inversion method: @-5.77654, 4.57778D

Figure C.0.1: The Neave Effect
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H*classical parameterisation P1 of the stable distribution *L
Α = N@1.7811 D; Σ1 = N@0.0141 D; Β1 = N@0.2834 D; Μ1 = N@0.0009 D;

H* Convert to Zoltarev's Type HBL parameterisation P 2 *L
k = N@Α - 1 + Sign @1 - ΑDD;

Β2 = NB
2 ArcTan AΒ1 TanA Π Α

2
EE

Π k
F;

Σ2 = NBΣ1Α 1 + Β12 TanB
Π Α

2
F

2
F;

Μ2 = NB
Μ1 Σ1-Α

1 + Β12 TanA Π Α
2
E2

F;

Θ = NB
Β2

Α
kF; Ρ = N@H1 + ΘL � 2D;

H*CDF central series *L

f0 =
1

2
1 -
Β2 k

Α
;

fc @n_D : =
fc @0D = f0 n � 0

fc @nD = H-1Ln-1 1

Π

GammaA n

Α
+1E

n
Sin @Π n ΡD n ³ 1

;

FC@x_, n_ D : = â
k=0

n fc @kD
k !

xk ;

H*CDF tail series *L

ft @j_, Β_D : =
ft @0, ΒD = 1 j � 0

ft @j, ΒD = H-1Lj 1

Α Π

Gamma@j Α+1D
j

Sin B j Π

2
HΑ + Β kLF j ³ 1

;

bt @j_, Β_D : =
bt @0, ΒD = 1 j � 0

bt @j, ΒD = H-1Lj 1

Α Π

Gamma@j Α+1D
j

Sin B j Π

2
HΑ + Β kLF j ³ 1

;

v@x_D : = x-Α

FT@v_, Β_, n_ D : = â
j =0

n ft @j, ΒD
H j !L

v j ;

H*quantile central series *L

qc@n_D : =
qc@nD = 1

fc @1D n � 1

qc@nD = - 1

fc @1Dn Úk=1
n-1 qc@kD BellY @n, k, Table @fc @i D, 8i, 1, n - k + 1<DD n ³ 2

QC@u_, n_ D : = â
k=1

n N@qc@kDD
k !

uk ;

H*quantile asymptotic series *L
qt @n_, Β_D : =

qt @n, ΒD = 1

ft @1, ΒD n � 1

qt @n, ΒD = - 1

ft @1, ΒDn Úk=1
n-1 qt @k, ΒD BellY @n, k, Table @ft @i, ΒD, 8i, 1, n - k + 1<DD n ³ 2

QT@u_, Β_, n_ D : = â
k=0

n qt @k, ΒD
k !

Hu - 1Lk

Figure C.0.2: Mathematica implementation of α-stable c.d.f. and quantile series
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H*Generates the first m +

2 terms of the asyptotic expansion of the VG quantile as u ® 1*L
VGAsympQ@m_D : = Module B8a, b, AsympF, AsympQ, P, A, u, result, coefficientList <,
H*Asyptotic Expansion of the VG cdf as x ® ¥*L

a@k_, v_ D : =
1

k ! 8k
ä
j =1

k

I4 v 2 - H2 j - 1L2M;

b@k_D : = â
j =0

k

ä
i =0

j -1

HΛ - k + i L
HΑ - ΒL-Hj +1L

Αk-j
aBk - j, Λ -

1

2
F;

AsympF@n_, x_ D : = ã-x HΑ-ΒL x-H1-ΛLâ
k=0

n

Simplify B
b@kD

xk
F;

H*Asyptotic Expansion of the VG quantile as u ® 1*L

P@n_, Ξ_D : = Module B:Α =
HΛ - 1L
HΑ - ΒL

>,

P@n, ΞD = Α Ξ + c@0D n � 0

P@n, ΞD = c@nD + Α HP@n - 1, ΞD - P@n - 1, 0 DL - Α Hn - 1L Ù0
Ξ
P@n - 1, t D â t n ³ 0

F;

A@n_, x_ D : = â
k=0

n

b@kD xk ;

u@n_D : = Module B:Γ =
HΛ - 1L
HΑ - ΒL

>,

u@0D = Log@b@0DD n � 0

u@nD = Series BΓ Log@1 + t u @n - 1DD + 1

Α-Β
LogBABn,

t

1+t u @n-1D FF, 8t, 0, n <F n ³ 1
F;

AsympQ@n_, y_, Β_D : = y +â
k=0

n

Simplify B
P@k, Log @yDD

yk
F;

result = Timing @
coefficientList = Simplify @CoefficientList @u@m+ 1D, t DD;
c@n_D : = coefficientList @@n + 1DD;
AsympQ@m, y, ΒD
D;

result

F

H*Usage*L
res = VGAsympQ@1D;
Print @StringForm @"Construction Time = ``", res @@1DDD D
AsympQ@y_, Β_D = res @@2DD
Construction Time = 0.06200000000012551`

y +
H-1 + ΛL Log@yD + LogB 1

Α-Β
F

Α - Β
+

H-1 + ΛL J2 Α + Α Λ - Β Λ + 2 Α H-1 + ΛL Log@yD + 2 Α LogB 1

Α-Β
FN

2 y Α HΑ - ΒL

Figure C.0.3: Mathematica implementation of Salvy’s method applied to variance
gamma distribution function.
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H*Some Test Parameters*L
Μ = 0; ∆ = 1; Α = 2; Β = 3 � 2;

H*location scale Invariant Parameters*L
Α1 = Α ∆; Β1 = Β ∆;

H*coefficients*L

a@n_D :=
a@0D = 0 n � 0

a@1D = 1

2
+ q@1D n � 1

a@nD = q@nD + d@nD n ³ 2

;

b@n_D := b@nD = Α1 a@nD - Β1 q@nD

c@n_D :=
c@0D = 1 n � 0

c@nD = 1

n
Úk=1n k b@kD c@n - kD n ³ 1

;

d@n_D := d@nD =
1

n - 1
â
k=0

n-2

Hk + 1L Hq@k + 1D q@n - k - 2D - a@k + 1D a@n - k - 2DL

q@n_D :=

q@0D = 0 n � 0

q@1D = - Α1

2 HΑ1-Β1L n � 1

q@nD = - 1

HΑ1-Β1L IHn - 1L q@n - 1D +
1

n
Úk=1n-1 k b@kD c@n - kD + Α1 d@nDM n ³ 2

;

W@n_, z_D := â
k=0

n

q@kD zk;

Γ1 = NB Α12 - Β12 F;

A = NB
2 Α1 BesselK@1, Γ1D

Γ1
F;

y@u_D := -
Log@A HΑ1 - Β1L H1 - uLD

Α1 - Β1
;

z@u_D :=
1

y@uD
;

padeApprox@z_D = PadeApproximant@W@8, zD, 8z, 0, 84, 4<<D;

Plot@8
InverseCDF@HyperbolicDistribution@Α, Β, ∆, ΜD, uD,
y@uD + padeApprox@z@uDD,
y@uD + W@4, z@uDD,
y@uD + W@6, z@uDD,
y@uD + W@8, z@uDD<, 8u, 0, 1<, PlotRange ® 8-2, 10<D

Figure C.0.4: Generating Hyperbolic Asymptotic Expansion.
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H*Input: Set of taylor coefficients c0,...,cn
Output: Set of partial numerators appearing in associated C-Fraction*L

ProgressiveQD@taylorCoeffs_D :=
ModuleB8e, q, c, d, n, k, l, i, j, partialNumerators, parNum<,
n = Length@taylorCoeffsD - 1;
c@m_D := taylorCoeffs@@m + 1DD;

d@m_D :=
d@0D = 1

c@0D m � 0

d@mD = - 1

c@0D Úi=1
m c@iD d@m - iD m ³ 1

;

H*Initialisation*L

q@0, 1D = -
d@1D
d@0D

;

e@1, 0D = 0;

e@0, 1D =
d@2D
d@1D

;

ForBk = 1, k £ n - 2, k++,

q@-k, k + 1D = 0;

e@-k, k + 1D =
d@k + 2D
d@k + 1D

;

F;

partialNumerators = 8c@1D<;
ForBi = 0, i £ n - 2, i++, H*iterate thru the diagonals*L

ForBj = 0, j £ i, j++, H*iterate thru entries in diagonals*L
H*determine value of k and l,

see Handbook of Continued fractions see p. 110 diagram*L
k = -Hn - 2L + i;
l = Hn - 1L - i + Floor@j � 2D;
IfBEvenQ@jD,
parNum = q@k + 1, lD = He@k, lD - e@k + 1, l - 1DL + q@k, lD; ,

parNum = e@k + 1, lD =
q@k, l + 1D
q@k + 1, lD

e@k, lD;

F;
If@k � 0, partialNumerators = Append@partialNumerators, -parNumDD;
F;

F;
partialNumerators

F

Figure C.0.5: Progressive qd-algorithm used to construct regular C-fractions
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levinTransform@s_, Ω_, Ξ_, n_, k_D := ModuleB8num, den<,

num@m_, j_D :=
num@m, jD = s@mD

Ω@mD j � 0

num@m, jD = num@m + 1, j - 1D - HΞ+mL HΞ+m+j-1L
j-2

HΞ+m+jLj-1 num@m, j - 1D j ³ 1
;

den@m_, j_D :=
den@m, jD = 1

Ω@mD j � 0

den@m, jD = den@m + 1, j - 1D - HΞ+mL HΞ+m+j-1L
j-2

HΞ+m+jLj-1 den@m, j - 1D j ³ 1
;

H* the Levin transform is computed recursively *L
num@n, kD
den@n, kD
F

Figure C.0.6: Levin’s Transform
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Α = 2; Β = 3 � 2; ∆ = 1; Μ = 0;

Α1 = Α ∆; Β1 = Β ∆;

Γ1 = Α12
- Β12 ; xM =

Β1

Γ1
;

pM = F@xMD;

pR = ã
HΑ1-Β1L xM H1 - pML;

FBR@x_D := 1 - ã
- HΑ1-Β1L x pR; H*Right Base CDF*L

QBR@u_D := -
1

HΑ1 - Β1L LogB 1 - u

pR
F;

u2 = 9 � 10; ΤR = 10-10;

z1 = N@QBR@u2D, 20D;

z2 = N@QBR@1 - ΤRD, 20D;

xZ@z_D :=

z -
1

2
Hz2 + z1L

1

2
Hz2 - z1L ;

zX@x_D :=
Hz2 + z1L + Hz2 - z1L x

2
H*Inverse mapping, i.e. zHxL*L

AR@z_ ?NumericQD := QRFSpecialized@FBR@zDD
GR@Θ_D := AR@zX@Cos@ΘDDD
nN = 27

- 1;

xData = TableBNBGRB Π j

nN
FF, 8j, 0, nN<F;

ccFFT = FourierDCT@xData, 1D * Sqrt@2 � nND;

cFFT@n_D := ccFFT@@n + 1DD;

truncCS@x_, n_D :=
cFFT@0D

2
+ â

k=1

n

cFFT@kD ChebyshevT@k, xD
H*Plot quantile and approximation on right region*L
Plot@8

InverseCDF@HyperbolicDistribution@Α1, Β1, 1, 0D, uD,

truncCS@xZ@QBR@uDD, 20D<,

8u, u2, 1 - ΤR<
D

Figure C.0.7: Computing the Chebyshev Coefficients ofAR (z) with an FFT algorithm.
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H*Input: a list chebyshev coefficients 8c0,...,c n<
Output: chebyshev pade approximant *L

BuildChebyPadeApprox @chebyC_ D : = Module B8Ω, Γ, Μ0, q, p, Q, P, S, c, nC, m, n <,
H*to build an approximant of numerator degree m,

and denominator degree n requires coefficients c 0,...,c m+n*L
nC = Length @chebyC D - 1;

m= Ceiling @nC� 2D; H*degree of numerator *L
n = Floor @nC� 2D; H*degree of denomerator *L

c@k_D : = chebyC @@k + 1DD; H*Chebyshev coefficients *L

H*This recusive relationship to compute the gamma's is fast but

will only work if Γ@s,m,n -1DchebyC @Abs@m-sDD¹ 0 for s =0,...,n -1*L

Ω@m_, n_ D : = -
Ús=0

n-1
Γ@s, m + 1, n - 1D c@Abs@m+ 1 - sDD
Ús=0

n-1
Γ@s, m, n - 1D c@Abs@m- sDD

;

Γ@s_, m_, n_ D : =

Γ@s, m, n D = 1 s � 0

Γ@s, m, n D = 0 s � -1 ÈÈ s � n + 1

Γ@s, m, n D = Γ@s, m + 1, n - 1D + Ω@m, nD Γ@s - 1, m, n - 1D 1 £ s £ n

;

H*if the above condition is not met we can

compute the gamma's by solving a set of linear equations *L
H*Timing @eqs=Table @Ús=0

n
Γs N@chebyC @Abs@r -sDDD�0, 8r,m +1,m+n<D�. Γ0® 1;

sol = Solve @eqs,Table @Γs , 8s,1,n <DDD;
Γ@s_,m_,n_ D: =Γs�.Prepend @sol @@1DD, Γ0® 1D*L

Μ0 = NB
1

2
â
i =0

n

Γ@i, m, n D2

-1

F;

q@k_D : = q@kD = Μ0 â
i =0

n-k

Γ@i, m, n D Γ@k + i, m, n D;

p@k_D : = p@kD =
q@0D c@kD

2
+

1

2
â
i =1

n

q@i D Hc@k + i D + c@Abs@k - i DDL;

P@x_D : =
p@0D

2
+â

j =1

m

p@j D ChebyshevT @j, x D;

Q@x_D : =
q@0D

2
+â

j =1

n

q@j D ChebyshevT @j, x D;

S@x_D =
P@xD
Q@xD

;

S@xD

F

Figure C.0.8: Mathematica implementation of Sidi’s method for constructing
Chebyshev-Padé approximants.
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H*Input;

interpolationPoints = 8z0,...,z n<, list of confluent interpolation points;

newtonCoefficients = 8c0,...,c n<, list of coefficients appearing in

Hermite's interpolating polynomial Hin Newton's form L;
Output;

The n th convergent of the interpolating continued fraction.

*L
GeneralizedQD @interpolationPoints_, newtonCoefficients_ D : =

Module A8Z, e, q, a, b, z, c, n, conFrac <,
n = Length @interpolationPoints D - 1;

z@k_D : = interpolationPoints @@k + 1DD;

c@k_D : = ¶ newtonCoefficients @@k + 1DD 0 £ k £ n

0 k > n
;

Z@J_, i_ D : = ¶ z@J + 1D - z@JD i � 1 && 0 £ J £ n - 1

z@J + 2 i - 1D - z@J + 2 i - 2D i ³ 2 && J ³ 0
;

e@J_, i_ D : =

e@J, i D = 0 i � 0 && 1 £ J £ n

e@J, i D = -q@J, 1 D - q@J + 1, 1 D Hq@J, 1 D Z@J, 1 D - 1L i � 1 && 0 £ J £ n - 1

e@J, i D = -q@J, i D + HZ@J, i D q@J, i D - 1L He@J + 1, i - 1D
+ q@J + 1, i DL HZ@J, i D e@J + 1, i - 1D - 1L-1

i ³ 2 && J ³ 0
;

q@J_, i_ D : =

q@J, i D = JZ@J, 1 D + c@JD
c@J+1D N

-1
i � 1 && 0 £ J £ n - 1

q@J, i D = JZ@J, i D - e@J,i -1D
e@J,i -1D+q@J,i -1D

q@J+1,i -1D+e@J+1,i -2D
q@J+1,i -1D

Z@J,i D e@J+1,i -1D-1

e@J+1,i -1D N-1

i ³ 2 && J ³ 0 ;

H*Coefficients of the Theile type continued fraction, as they appear in

eq. H1.31 L of Ch.7, Pade Approximants by Graves -Morris; *L

a@k_D : =

a@0D = c@0D k � 0

a@kD = -eA0,
k

2
E Hx - z@k - 1DL EvenQ@kD

a@kD = -qA0,
k+1

2
E Hx - z@k - 1DL OddQ@kD

; H*partial numerators *L

b@k_D : = 1; H*partial denomitors *L

H*Construct the n th convergent of the interpolating continued fraction *L
conFrac = ComposeCF@a, b, n D;
conFrac

E

Figure C.0.9: Mathematica implementation of the generalized Q.D. algorithm.
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H* Constructs the nth convergent of a continued fraction

given partial numerators a0,...,an and partial denominators

b0,...,bn *L
ComposeCF@a_, b_, n_D := ModuleB8s, S<,

s@k_, Ω_D :=
a@kD

b@kD + Ω
;

S@k_, Ω_D := ¶ s@0, ΩD k � 0

S@k - 1, s@k, ΩDD k ³ 1
;

S@n, 0D

F
H* Constructs the nth convergent of a regular C-fraction

given partial numerators a0,...,an *L
BuildCFraction@partialNumerators_, x_D := Module@8n, a, b<,

n = Length@partialNumeratorsD - 1;
a@k_D := partialNumerators@@k + 1DD x;
b@k_D := 1;
ComposeCF@a, b, nD
D

nthDenominator@partialNumerators_, x_D := ModuleB8n, a, b, Q<,
n = Length@partialNumeratorsD - 1;
a@k_D := partialNumerators@@k + 1DD x;
b@k_D := 1;

Q@n_D := Q@nD =
0 n � -2

1 n � -1

b@nD Q@n - 1D + a@nD Q@n - 2D n ³ 0

;

Table@Q@kD, 8k, 0, n<D
F

conFracTail@v_, M_, partialNumerators_, var_D := Module@8<,
BuildCFraction@partialNumerators@@v ;; MDD, varD
D

Figure C.0.10: Some Mathematica code used to construct continued fractions.
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