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Abstract

Background and Methods: Both the concept of ‘brain-sparing’ growth and associations between relative lower limb length,
childhood environment and adult disease risk are well established. Furthermore, tibia length is suggested to be particularly
plastic under conditions of environmental stress. The mechanisms responsible are uncertain, but three hypotheses may be
relevant. The ‘thrifty phenotype’ assumes that some components of growth are selectively sacrificed to preserve more
critical outcomes, like the brain. The ‘distal blood flow’ hypothesis assumes that blood nutrients decline with distance from
the heart, and hence may affect limbs in relation to basic body geometry. Temperature adaptation predicts a gradient of
decreased size along the limbs reflecting decreasing tissue temperature/blood flow. We examined these questions by
comparing the size of body segments among Peruvian children born and raised in differentially stressful environments. In
a cross-sectional sample of children aged 6 months to 14 years (n = 447) we measured head circumference, head-trunk
height, total upper and lower limb lengths, and zeugopod (ulna and tibia) and autopod (hand and foot) lengths.

Results: Highland children (exposed to greater stress) had significantly shorter limbs and zeugopod and autopod elements
than lowland children, while differences in head-trunk height were smaller. Zeugopod elements appeared most sensitive to
environmental conditions, as they were relatively shorter among highland children than their respective autopod elements.

Discussion: The results suggest that functional traits (hand, foot, and head) may be partially protected at the expense of the
tibia and ulna. The results do not fit the predictions of the distal blood flow and temperature adaptation models as
explanations for relative limb segment growth under stress conditions. Rather, our data support the extension of the thrifty
phenotype hypothesis to limb growth, and suggest that certain elements of limb growth may be sacrificed under tough
conditions to buffer more functional traits.
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Introduction

The environments occupied by contemporary human popula-

tions are characterised by a wide variety of ecological stresses,

including thermal load, altitude, dietary niche and disease load.

Developmental plasticity is suggested to be a key mechanism by

which organisms adjust to such environmental variability and has

been proposed to be a notable characteristic of humans, enabling

our species to colonise diverse environments with limited

technological assistance [1]. Nonetheless, variable growth plasticity

has been observed in many species. For example, brain-sparing

growth, whereby the growth of other organs or tissues is sacrificed

to protect the brain under conditions of environmental stress, is

a widely-accepted phenomenon in mammals in response to a range

of stressors including poor nutrition and hypoxia [2–5].

There is also evidence that total lower limb length is more

plastic than head-trunk height (commonly measured as sitting

height) among humans [6–8], but the reasons for this are unclear.

This heterogeneity in plasticity is relevant to health: a greater risk

of various chronic diseases, including cardiovascular disease,

hypertension, diabetes, obesity, liver dysfunction and dementia is

associated with shorter stature and with absolutely and relatively

shorter lower limbs, but is not associated with head-trunk height

[9–11] (though see [12–14]).

While only relative lower limb length is typically considered,

limb segments (stylopod: humerus or femur; zeugopod: ulna/
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radius or tibia/fibula; autopod: hand or foot) may also be

differentially sensitive to stress-related growth disruption. Previous

studies of human populations suggest that zeugopod elements may

be more sensitive than their respective stylopod elements, and the

tibia may be more sensitive than the ulna/radius. Within the limb,

it has been demonstrated that zeugopod elements are more

variable than stylopod elements, and the tibia more than the

radius [15–16]. Perhaps more pertinently for the present study,

which is concerned with relative limb segment variation in relation

to stress exposure, greater positive allometry relative to stature has

been demonstrated in lower than upper limb length, and strongest

of all in tibia length for archaeological and 19th–20th century

skeletal samples [16–17]. This does not necessarily equate to

greater environmental sensitivity, although this interpretation has

been proposed [17]. Studies of modern populations also suggest

that total lower limb length may be more sensitive than total upper

limb length [18–21], while the relative sensitivities of autopod

lengths are less well known (although see [11]). Therefore the

patterning of environmental sensitivity in different limb segments

remains to be thoroughly documented, and has implications for

understanding the nature of adaptive growth trade-offs under

stress conditions.

The reasons for the variable environmental sensitivity of

different anatomical regions are also unclear. Three hypotheses

may be relevant to explaining this heterogeneity in growth

plasticity, and so may help to further our understanding of the

underlying mechanisms and the basis of associations between body

proportions and disease risk.

First, the thrifty phenotype hypothesis [22] suggests that

individuals exposed to environmental stress pre- or post-natally

sacrifice the growth of certain organs or tissues (e.g. pancreas, liver

and skeletal muscle [23–24]) to protect organs whose function

would be more detrimentally influenced by impaired growth (e.g.

heart, brain). While it has been suggested that trade-offs in lower

limb length and head-trunk height are a stress response [25–26],

other limb proportions have not been explicitly investigated in

terms of this hypothesis. As stated above, it is widely accepted that

head (brain) size is most protected from the growth-reducing

effects of stress, but head-trunk height may be more protected than

limb length because the former houses major organs whose

function may be impaired by reduced growth [25]. Within the

limbs, the autopod (hands and feet) may be more protected from

stress exposure than the zeugopod elements to maintain the more

specialised functions of the former. There is currently no direct

evidence for this suggestion or for the extension of the thrifty

phenotype to autopod size. However, it has been proposed that the

need for the hand to perform fine manipulation and for the foot to

interact effectively with the ground during locomotion could

explain why their growth should be more strongly canalised, as

stronger natural selection on autopod elements might be expected

to ensure their effective function in behaviours that are funda-

mental to survival [27–29].

Second, the distal blood flow hypothesis was proposed in order

to explain the greater reduction in tibia length than head, trunk or

upper limb dimensions in foetuses exposed to prenatal hypoxia

through maternal smoking during pregnancy. It assumes that the

tibia is more affected by foetal hypoxia than other limb long bones,

head-trunk height, upper limb length or head size, because the

tibia is the last among these regions to receive oxygenated blood

due to the nature of the foetal circulation [19,30–31]. Relative

hand and foot lengths were not specifically considered in this

model as originally formulated. This hypothesis could potentially

be extended to include other nutrients and postnatal growth

patterns, and would predict a proximo-distal increase in environ-

mental sensitivity along the limb, with the lower limb being

affected more than the upper. However, empirical evidence for

this model is currently lacking [25].

A third possibility that must be considered is adaptation to cold,

since the impact of temperature adaptation on body size and

proportions has long been recognised in the form of Bergmann’s

and Allen’s ‘rules’ [32–33]. Allen’s rule predicts relatively shorter

extremities (e.g. limbs) in colder environments, and has been

shown to apply to a wide range of species including humans [34–

35]. However the mechanisms underlying such adaptations are

not well understood. Cold-induced vasoconstriction may play

a role in reducing nutrient delivery to the extremities, but

experimental work has also shown that cold temperatures directly

affect growth rates by modulating cartilage proliferation [36–37].

If temperature influences body proportions, a gradient of reduced

growth along each limb would be expected, in a similar manner to

that predicted under distal blood flow model. Thus these models

are mainly distinguished by details of their underlying mechanism:

temperature adaptation involves a more active mechanism of

reduced nutrient delivery through decreased peripheral blood

flow, in addition to any direct effects of temperature itself, while

the distal blood flow model invokes a more passive mechanism of

resource depletion with increasing distance from the heart.

The first aim of this study was to investigate heterogeneity in the

sensitivity of different regions of the body to childhood conditions

through the comparison of two populations with contrasting

burdens of ecological and environmental stress. We analysed total

upper and lower limb lengths, zeugopod and autopod lengths;

head-trunk height; and head circumference in highland (n = 200)

and lowland (n = 247) Peruvian children aged 6 months to 14

years, using cross-sectional anthropometric data (Figure 1). In

Peru, life in the Andean highlands is associated with a range of

environmental challenges including hypoxia, poorer nutrition and

healthcare access, poverty, and cold exposure [38–39]. Lowland

children also experience stress, particularly poverty, although the

overall stress load is markedly greater in rural highland

communities: multi-stress highland environments result in higher

rates of childhood stunting and wasting compared with the

lowlands [40]. The comparison of Peruvian highland and lowland

communities therefore offers an interesting context in which to

explore the role of developmental plasticity in accommodating

exposure to stress.

Given that the phenomenon of brain-sparing growth has been

widely demonstrated and accepted, we explored site differences in

the lengths of the limbs, limb segments and head-trunk height after

adjusting out the variance due to variation in head circumference.

This approach highlights variation in the size of distinct regions of

the body over and above that in head size, which is most

extensively but incompletely [41] protected from growth re-

striction. Data were analysed using ANCOVA performed in SPSS

17.0. Site differences in head circumference z score were tested

using ANCOVA, with sex and age included in the model. A

separate ANCOVA analysis was undertaken for each anthropo-

metric measure (dependent variables: total upper limb length, total

lower limb length, head-trunk height, and zeugopod and autopod

lengths for the upper and lower limbs). Head circumference and

age were entered as covariates, and site (highland or lowland) and

sex were entered as fixed factors. Tests for significant differences in

anthropometry between sites were performed using the Least

Significant Difference (LSD) test on the estimated marginal means

from which variance due to age and head circumference had been

removed.

Anthropometric variables were converted to z scores prior to

analysis using the LMS method (see Materials and Methods). Z

Trade-Offs in Limb Proportions among Peruvians
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scores are widely used in paediatric research in order to adjust data

for age effects so that characteristics can be compared across

a range of ages. They represent the position of an individual within

the frequency distribution for a given age in terms of standard

deviations from the mean. The use of z scores therefore takes into

account variation in body proportions at different ages, as well as

differences in the variability of different anthropometric dimen-

sions. All ANCOVA were performed on these z scores.

The second aim of this study was to consider which model

(thrifty phenotype, distal blood flow or temperature adaptation)

the results do not support. If the thrifty phenotype hypothesis

offered the most appropriate explanation, it was predicted that the

smallest population differences would be observed in head

circumference in line with the brain-sparing model, and that

when variance due to variation in head circumference had been

adjusted out, head-trunk height and autopod lengths would show

smaller population differences than total limb or zeugopod lengths,

since the growth of the former is hypothesised to be relatively more

protected from stress exposure to maintain function. In contrast, if

the distal blood flow model best accounted for the patterns

observed, a gradient of increasing population difference in limb or

limb segment length was predicted, and it was expected that the

upper limb would show smaller size differences between samples

than the lower limb. Similarly, temperature adaptation would

predict an increase in population differences from proximal to

distal along each limb, though perhaps without any difference

between upper and lower limb. Under all models, adjusting out

the variance due to head circumference z score, head-trunk height

Figure 1. Map of Peru showing location of study sites. Lima and Ayacucho Regions illustrated in white. Dark grey areas illustrate Lima
metropolitan area and Districts of Vinchos (south) and Santillana (north) in Ayacucho.
doi:10.1371/journal.pone.0051795.g001
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would be predicted to show the smallest differences between

samples, though the three theories would invoke different

physiological mechanisms.

Results

Tables S1,S2,S3,S4 give summary statistics for anthropometric

measures by age group and differences in raw measurements,

percentages and z scores. Lowland children are larger than

highland children in all dimensions, with absolute differences

increasing from the youngest age group until 10 years. Head

circumference shows the smallest population differences as

expected, although ANCOVA results indicate a significantly

greater head circumference by 0.852 z scores in lowland children

compared with highland children (p,0.001). This finding is

consistent with evidence that the brain-sparing effect may be

incomplete [41] and previous reports of reduced head circumfer-

ence at altitude [42–43].

The ANCOVA results confirm that even when adjusting out

variance due to head circumference z score and age, significant

differences remain between groups in head-trunk height and limb

length z scores (Table 1). Site differences in mean length z scores,

adjusting out the variance due to head circumference z score and

age, are significant (p,0.001 in each case).

Figure 2 illustrates the difference in anthropometry z scores

between highland and lowland sites, adjusting out the variance due

to head circumference z score and age. It demonstrates that the

differences in head-trunk height are substantially smaller than in

any of the limb measurements. Differences in total upper and

lower limb lengths between sites are similar in magnitude. It is

notable that site differences in autopod (hand or foot) length are

greater than in head-trunk height, but smaller than in total limb or

zeugopod lengths.

In each analysis, age and sex terms were not significant,

suggesting that the observed patterns do not vary significantly by

age. This is partly expected as z scores adjust for age and sex, but if

the differences in the relationship between head circumference

and z scores had varied with age, this should have been detectable

in the analysis. The results therefore indicate that the patterns

observed here apply across the range of ages studied (0.5–14

years).

Discussion

There is clear variation in the magnitude of differences between

highland and lowland Peruvian children in the size of distinct

regions of the body. Adjusting out the variance due to head

circumference z score and age, differences in head-trunk height

were markedly smaller than differences in limb or limb segment

lengths. In both limbs, site contrasts were smaller in the autopod

(hand or foot) than in total limb or zeugopod (ulna and tibia)

lengths, and differences in zeugopod length were slightly greater

than in total limb length. Observed differences were similar in

both the upper and lower limbs and in their homologous segments.

These site differences did not show any significant influence of age

or sex.

The results do not support the distal blood flow or temperature

adaptation models. The similarity in site differences in total limb

or limb segment lengths between the upper and lower limb, and

the smaller differences in autopod lengths compared with total

limb or zeugopod lengths refute the distal blood flow hypothesis,

which predicts greater differences in total lower than total upper

limb length, and greater differences in autopod than zeugopod

length. Differences in ambient temperature are also unlikely to

account for the pattern of results. Similar to the distal blood flow

hypothesis, a response to cold exposure was predicted to result in

a proximo-distal gradient of increasing length reduction from

stylopod to autopod, but this was not observed in our data.

Like many previous studies, the results support the phenomenon

of brain-sparing growth under conditions of stress. Furthermore,

the data suggest the selective protection of certain anatomical

regions (primarily head-trunk height and autopod lengths) over

others (e.g. zeugopod length), supporting the extension of the

thrifty phenotype hypothesis to limb proportions, particularly with

reference to autopod size. This hypothesis would suggest that

head-trunk height, and to a lesser extent autopod (hand or foot)

length, may be protected compared with zeugopod or total limb

lengths for functional reasons, although this interpretation remains

hypothetical until we are able to understand better the mechan-

isms underlying the patterns observed here.

We suggest that site differences in body proportions reflect

differential overall exposure to environmental stress. The highland

population is more deprived in terms of socioeconomic position

and access to education and healthcare, and suffers greater

exposure to poor nutrition, hypoxia and cold than the lowland

population. Elucidating the relative influences of these various

Table 1. Results of ANCOVA analyses for site differences in length z scores, including head circumference z score and age as
covariates in the model.

Anthropometry Z score

Lowland-highland
difference in estimated
marginal mean p value for term in ANCOVA Adjusted r2

age sex Head circ. z score Site

Head-trunk height 0.67 0.2 0.9 ,0.001 ,0.001 0.414

Total upper limb length 1.23 0.3 0.7 ,0.001 ,0.001 0.567

Total lower limb length 1.21 0.07 0.6 ,0.001 ,0.001 0.494

Ulna length 1.27 0.4 0.8 ,0.001 ,0.001 0.578

Tibia length 1.33 0.3 0.8 ,0.001 ,0.001 0.586

Hand length 1.07 0.8 0.8 ,0.001 ,0.001 0.468

Foot length 1.00 0.5 1.0 ,0.001 ,0.001 0.478

Bold text indicates significant p values for terms in the model. Head circ. = head circumference.
doi:10.1371/journal.pone.0051795.t001
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stressors was not possible in the current dataset due to the high

inter-correlation between potential explanatory factors. This

would require comparison of sites with greater overlap in their

socioeconomic, nutritional and health characteristics. Further-

more, environmental stressors like hypoxia and nutrition may have

different effects on growth and interact to affect final body size and

proportions [44], adding complexity to the relationship between

stress exposure and differential growth of body components.

It is also considered unlikely that genetic differences between

populations explain the results, although this remains to be

explicitly tested. Most Peruvians demonstrate predominantly

native South American ancestry with a degree of European

admixture [45–46], but there is relatively little published in-

formation on the genetic composition of Peruvian populations.

Peru has a long history of European migration beginning in the

16th century, and migration of Chinese and Japanese populations

in the 19th and 20th centuries is most notable in coastal towns and

cities including the capital Lima [47]. However, ethnic data (which

might shed some light on this issue) are not routinely collected in

the census [47–48], and there is little indication of how ancestry

varies regionally. Thorough genetic estimates of admixture are

also sparse. Studies using ancestry informative markers (AIMS)

have reported levels of Native American markers of over 90%

among male residents of Cerro de Pasco in the Peruvian highlands

and mean admixture rates of 10% (range 1–64%) in the offspring

of highland migrants to Lima [49–52]. In Bolivia (a close

geographic neighbour to Peru with aspects of shared migration

history) women of purported Andean ancestry in La Paz

(highlands) and Santa Cruz (lowlands) demonstrate a similarly

high level of Native American Ancestry (mean 80%) [53].

A small degree of genetic difference may exist between the study

populations, and given known differences in body proportion

between some major world populations [54], this could potentially

affect the results. Differences have been most clearly documented

between populations of African or Australian ancestry compared

with those of European or Asian ancestry (Native American

groups being considered most similar to the latter) [55–57], but

overall genetic differences probably account for a small proportion

of variation (,3.6%) in relative sitting height (head-trunk height

relative to stature) among world populations [25,57]. Unfortu-

nately, there is little indication in the literature as to the extent of

any genetic effects on the body proportions of Andeans (or any

populations for that matter), and correlations between ancestry,

socioeconomic position and altitude make the specific impact of

genetic ancestry difficult to detect. Comparisons of Andean

populations with international standards or reference datasets for

body size and proportions encounter similar problems of

correlated differences in genetics and socioeconomic conditions

between Andean and reference populations.

One study that attempted to determine genetic and altitude

effects on relative head-trunk height and lower limb length among

Bolivian children was unable to make clear inferences regarding

the impact of genetic factors for this reason [55]. While genetic

markers (e.g. AIMs) were not measured, among relatively high

SES urban children, Spanish surnames were not significantly

associated with relative sitting height (proportionally longer head-

trunk height compared with lower limb length). A significant

association between at least one parent being born in Bolivia and

high relatively sitting height was reported, but there was no

significant association between body proportions and having both

parents born in Bolivia compared with at least on parent born in

Bolivia. Another study in northern Chile that used surnames as

a proxy for ancestry reported inconsistent results concerning

relative sitting height and lower limb length [58–60].

In general, the limited data available and migration history

suggests that highland populations tend to show a lower level of

European and other admixture, although many residents of shanty

towns such as Pampas de San Juan de Miraflores are migrants or

the recent descendants of migrants from the Andean highlands

[48]. The available genetic evidence suggests a degree of

Figure 2. Site differences in estimated marginal means for length z scores from the ANCOVA analyses, demonstrating greater
contrasts in total limb and zeugopod lengths, intermediate differences in autopod lengths, and the smallest site differences in
head-trunk height.
doi:10.1371/journal.pone.0051795.g002
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admixture is probable in both study populations, but that both

populations are likely to be predominantly indigenous South

American in origin. While any differences in admixture levels

cannot currently be quantified they most likely exert relatively

minor influence on the results in light of a likely relatively low level

of admixture and the fact that Asian and European populations

are not thought to differ greatly in terms of lower limb/trunk

proportions [57], although this is an important area for future

investigation.

The detailed physiological basis of the relationship between

relatively shorter lower limbs and elevated risk of adult chronic

disease is still emerging, but it has been suggested that the early

growth environment may influence both body proportions and

metabolic characteristics which subsequently impact on chronic

disease risk. For example, a number of studies suggest that

relatively shorter lower limbs act an index of metabolic capacity,

and mothers who are shorter, and especially those with relatively

shorter lower limbs, show a reduced tolerance of obesity and

a greater propensity to develop gestational diabetes [61–62].

It should be noted that not all studies report an association

between relative total lower limb length and childhood exposure to

stress or adult disease risk [63–65]. This could reflect differential

response rates of pubertal timing and early growth to environ-

mental improvement [66] or in some cases variability in study

design, and requires additional investigation. Our study could not

consider whether observed differences in body proportions were

maintained into adulthood, or whether later catch-up growth may

have modified earlier patterns. A prolonged growth period with

a slow, reduced adolescent growth spurt has been documented in

highland Andean [67–69] and other populations [70–72] exposed

to nutritional and other stress. While differences in pubertal timing

and variable body proportions during puberty may have existed

between the highland and lowland populations included in this

study, the same pattern of site differences was observed across the

age groups included, pubertal children comprised only a small

proportion of the dataset, and analysis of the data excluding

children aged over 9 years did not alter the patterns observed (data

not shown).

The present study was unable to address whether differences in

body proportions exist from birth, although the results indicated

differences from 6 months of age onwards. Data on body

proportions in Andean neonates [43,73] are sparse and provide

contradictory results. Previous studies of inter-population differ-

ences in relative lower limb length at birth [4,74–75] have

generally suffered from a lack of statistical testing and correction

for potentially confounding factors, and it should also be recalled

that both maternal nutrition and genetic factors could contribute

to any patterns observed among newborns.

The pattern of growth restriction described here could reflect

the growth rate of different tissues at the time of stress exposure

(i.e. variation in the timing of critical growth periods among organs

[76]), or may be an active response with an adaptive, functional

basis that prioritises growth in certain anatomical components.

Both scenarios were proposed by Barker and colleagues as

potential mechanisms underlying the thrifty phenotype hypothesis

[22–23], but the present study was unable to address this question

directly. It is often assumed that total lower limb length is more

sensitive to early childhood growth disruption than head-trunk

height due to the faster postnatal growth rate of the former [77–

78]. As adult brain size is achieved by around age 6 years, head

circumference may appear to be spared in the current analysis

because it is exposed to stress for a shorter period than total limb

length and head-trunk height, which grow far more rapidly and for

longer after birth [54].

To provide some initial insight into the relationship between

growth rate and sensitivity to stress, a cross-sectional estimate of

the annual growth rates of different anatomical regions was

calculated from the present dataset using the median measure-

ments at different ages generated by the LMS model. Figure 3

shows that the pattern of estimated growth rates in different body

components does not reflect variation in their sensitivity to growth

disruption, since the feet are growing fast in infancy but do not

appear to be especially sensitive to stress at this time. These data

offer preliminary evidence that differential sensitivity of limb

segments to environmental stress is not merely a function of

relative growth rate. However, alternative explanations are that

a relationship between growth rate and sensitivity to growth

disruption is established through stress exposure at an earlier age

than that included in the present study, or that there are more

active mechanisms which alter nutrient provision to different

organs under stress conditions.

Studies using animal models suggest that active redirection of

blood flow towards the brain and away from the peripheral

circulation in response to hypoxia and poor nutrition may account

for the brain-sparing effect [5,79–82]. Nonetheless, our results

suggest that circulatory effects do not fully explain altered patterns

of size in different parts of the body under stress conditions.

Detailed investigation of the relationship between the timing of

stress exposure and the pattern of altered growth is needed to

clarify the relationship between variation in growth rate, the

timing of stress exposure, and growth disruption.

The results presented here in relation to head-trunk height and

total limb, zeugopod and autopod lengths do not support the distal

blood flow or temperature adaptation models. However, the

thrifty phenotype hypothesis offers a more ‘ultimate’ explanation

for the observed pattern, while the distal blood flow model

represents a more ‘proximate’ explanation for observed patterns of

body proportions. The two may not be mutually exclusive,

particularly for example if the stylopod and zeugopod are

compared. The study did not explore differences in stylopod

length, and future work might suggest the operation of elements of

both models in determining stylopod, zeugopod and autopod

proportions.

Whilst our data suggest the differential sensitivity of specific

body regions to environmental perturbations of growth, they also

indicate that data on body proportions could be used more

extensively to assess growth disturbance. The tibia showed the

greatest population differences, supporting the use of its length (or

knee height) as a particularly sensitive environmental marker [83],

and our results also suggest that the ulna is almost equally sensitive

to environmental stress. Given their ease of measurement and

freedom from the influence of body fatness (in contrast with

estimated total lower limb length [44,83]), tibia and ulna lengths

may be particularly informative indicators of childhood environ-

ment for future studies.

In summary, our data suggest heterogeneity in the sensitivity of

different anatomical regions to stress exposure during growth.

Adjusting out the variance due to head circumference, lengths of

the zeugopod (ulna and tibia) show greatest differences between

sites and so may be most sensitive to stress, while autopod (hand

and foot) lengths show smaller differences and so may be relatively

protected. Similarly head-trunk height and especially head

circumference also appear to be relatively protected from the

impacts of stress exposure on growth compared with the limbs.

The results do not support the distal blood flow model or

temperature adaptation, and therefore support the thrifty pheno-

type hypothesis, suggesting that this hypothesis could be extended

to explain trade-offs in relative limb growth. We suggest ulna
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length may, like tibia length, offer an additional marker of early-

life stress exposure in this population. Further work is required to

establish the extent to which different environmental factors affect

body proportions and whether our findings extend to other

populations.

Materials and Methods

Ethics Statement
Participation was voluntary and the study was conducted

according to accepted international ethical standards for research

involving human subjects (Declaration of Helsinki) [84]. The study

was approved by the Institutional Ethics Committee of the

Universidad Peruana Cayetano Heredia (Lima, Peru), and by the

Ayacucho Region Health Directorate (Dirección Régional de

Salud Ayacucho, DIRESA). Written informed consent was

obtained from a parent (or legal guardian) by signature or

fingerprint where parents were not literate, after the study had

been explained in full to them and to the participant in age-

appropriate terms. Participants aged 6 years or over also gave their

assent, either in written or verbal form where not literate.

Study Sample
The lowland study population was from the peri-urban

community of Pampas de San Juan de Miraflores in Lima

(latitude 212.0, longitude 277.0), a well-established but un-

planned settlement of generally low socioeconomic status [85–86].

The highland populations were from various small, relatively

isolated rural agropastoral communities in the Vinchos and

Santillana Districts of Ayacucho Region located at 3,100–

4,400 m altitude (latitude 213.2, longitude 274.2 for Ayacucho

city, Figure 1). A convenience sample of 447 children aged

between 6 months and 14 years were selected focusing on children

of the following ages in years (range for each group indicated in

brackets): 1 (0.5–2), 2 (2–3.5), 4 (3.5–4.5), 6 (5.5–6.5), 8 (7.5–8.5),

10 (9.5–10.5), 14 (13.5–14.5). Date of birth was confirmed from

official birth or identification documents, or school records. Only

one child per household was included who was born and raised in

the study region and was known not to be suffering from any

chronic medical condition that might affect their growth (aside

from chronic general nutritional problems).

Methods
Stature and head-trunk height (sitting height) were measured to

the nearest mm following standard protocols with participants

dressed in light clothes without shoes [87–89]. For children below

2 years of age, recumbent length and crown-rump length were

measured rather than stature and sitting height respectively using

a Rollameter (Raven Equipment Ltd., Dunmow, UK) as is

standard practice [90]. In participants over 2 years of age, stature

was measured with a Seca Leicester Height Measure following

standard procedures [87–88]. Total lower limb length was

calculated by subtracting head-trunk height from stature (or

recumbent length in those aged less than 2 years). Humerus length

was measured from the lateral border of the acromion to the

inferior extent of the olecranon (elbow flexed at 90 degrees), while

ulna length was taken from the olecranon to the head of the styloid

process [87]. Humerus and ulna lengths were summed to give total

upper limb length. Hand length was measured with palm upwards,

fingers and palm fully extended and hand flat. The measurement

was made from the level of the ulna styloid to the greatest

extension of the middle finger perpendicular to the long axis of the

hand [87]. Tibia length was measured from the medial tibial

plateau to the end of the medial malleolus and foot length was

Figure 3. Cross-sectional estimate of percent annual growth rate of limb segments and head-trunk height by age. Growth rates
calculated from LMS model median values for 3 months either side of age stated for female participants. ‘% annual growth rate’ refers to the
estimated percentage increase in raw measurements over a year based on the median measurement at the start of the 6 month period over which
the rate is calculated. Male data demonstrate the same pattern (not shown). Measurements are lengths, apart from ‘head circ.’ which is head
circumference.
doi:10.1371/journal.pone.0051795.g003
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measured as the maximum length parallel to the long axis of the

foot with the participant seated and the foot resting lightly on the

ground [91]. All limb segment lengths were measured with large

sliding callipers to the nearest mm. Head circumference was

measured to the nearest mm with a non-stretch, flexible 10 mm-

wide measuring tape (Chasmors, London, UK) following standard

procedures [87–89]. One observer (EP) took all measurements.

Anthropometric variables were converted to z scores for the

combined highland and lowland dataset according by the LMS

method [92–93] using LMS Chartmaker Light version 2.43 [94].

This converts anthropometric measurements to their relative

position in the data distribution for their sex and age, and thus

allows pooling of data from children of different ages in analyses.

Briefly, the LMS method employs a penalised maximum likeli-

hood method to fit smoothed centile curves to reference data on

measurements in relation to a covariate such as age. The method

summarises the changing distribution of the data in relation to the

covariate by fitting smoothed curves to the skewness (using Box-

Cox transformation, l or L), the median (m or M) coefficient of

variation (s or S) as cubic splines by non-linear regression, thus

producing overall smoothed reference centiles [94]. The extent of

smoothing necessary is expressed as equivalent degrees of freedom

[92–94]. This method has been widely applied in the construction

of growth reference centiles for stature, body mass and other

measurements [95–98].

Differences between the two sites in the size of different

anthropometric measurements were tested using ANCOVA of the

z scores as described in the Introduction. ANCOVA was selected

rather than MANCOVA since the dependent variables violate

assumptions regarding multicollinearity required for MANCOVA

[99]. This is unsurprising since they are closely related and some

measurements are components of others (e.g. zeugopod length is

part of total limb length). For the ANCOVA, homogeneity of

variances was tested using Levene’s statistic, and found to be

significant only for tibia length z score (p = 0.04). A recommended

solution to the problem of significant heterogeneity of variances in

ANCOVA is to apply a more conservative definition of statistical

significance (e.g. p = 0.025 rather than 0.05) in the analyses [99],

but as all site differences were significant at p,0.001 this has no

effect on the interpretation of the results. We also ensured that

data met requirements for a normal distribution, linearity,

homogeneity of regression and multicollinearity prior to analysis

following Tabachnick and Fidell [99]. Statistical analyses were

conducted using SPSS 17.0 for Windows.
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