
Grafting of a Single Donor Myofibre Promotes
Hypertrophy in Dystrophic Mouse Muscle
Luisa Boldrin*, Jennifer E. Morgan

The Dubowitz Neuromuscular Centre, UCL Institute of Child Health, London, United Kingdom

Abstract

Skeletal muscle has a remarkable capability of regeneration following injury. Satellite cells, the principal muscle stem cells,
are responsible for this process. However, this regenerative capacity is reduced in muscular dystrophies or in old age: in
both these situations, there is a net loss of muscle fibres. Promoting skeletal muscle muscle hypertrophy could therefore
have potential applications for treating muscular dystrophies or sarcopenia. Here, we observed that muscles of dystrophic
mdx nude host mice that had been acutely injured by myotoxin and grafted with a single myofibre derived from a normal
donor mouse exhibited increased muscle area. Transplantation experiments revealed that the hypertrophic effect is
mediated by the grafted fibre and does not require either an imposed injury to the host muscle, or the contribution of
donor cells to the host muscle. These results suggest the presence of a crucial cross-talk between the donor fibre and the
host muscle environment.
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Introduction

Regeneration of skeletal muscle is primarily mediated by the

resident adult muscle stem cells [1–3]. Satellite cells are the

principal muscle stem cells and the main source of muscle fibres

(myofibres). In adult muscle, they are quiescent cells, located in

niches between the basal lamina and sarcolemma of each fibre.

However, following muscle injury, they become activated,

proliferate and differentiate to repair or replace myofibres and

by self-renewing they functionally reconstitute the muscle stem

cell pool [4,5]. Evidence of their enormous in vivo potential is

given by the capacity of the few satellite cells associated with a

single fibre [6], or a few hundred satellite cells isolated from

fibres, to efficiently repair and regenerate host fibres after

grafting in murine recipient muscles [6–9]. However, donor-

derived muscle regeneration can be efficient only if the host

satellite cell niche is preserved with concomitant functional

impairment of the host satellite cells [9].

Moreover, muscle regeneration is highly dependent on the

pathological status and age of the muscle environment. In

advanced stages of neuromuscular degenerative disorders, for

example in Duchenne muscular dystrophy (DMD), skeletal

muscle becomes substituted by fibrotic, connective and adipose

tissue, which hampers muscle regeneration [10,11]. In the

naturally-occurring genetic and biochemical homologue of

DMD, the mdx mouse, exacerbation of the pathology produces

similar tissue degeneration [12]. Muscle function is impaired

within aged skeletal muscle where a concomitant gradual loss

(sarcopenia) of muscle fibres and replacement of muscle with

fibrotic tissue cause muscle atrophy and weakness, all features of

aged muscle [13]. Moreover, wasting muscle syndrome

(cachexia) is seen in patients with cancer, AIDS, and other

severe chronic disorders [14].

A therapeutic intervention that specifically modulates skeletal

muscle hypertrophy would potentially provide benefit to all these

conditions. Restoration and improvement of muscle mass have

been reported in muscles of mice in which IGF-1 was specifically

overexpressed, making hypertrophic myofibres that were able to

elude age-related muscle atrophy [15]. Myostatin, a protein that

negatively-regulates muscle mass, also appears to be a crucial

regulator of muscle mass, as mutations in its gene cause muscle

hypertrophy [16–22]. Blocking the myostatin pathway has been

suggested as a potential way of intervention, since systemic

delivery of myostatin antagonists [23], or inhibitors, induces

muscle growth [24–26].

The role of satellite cells in adult muscle maintenance, as opposed

to regeneration, has been controversial [27–30], but recent data have

highlighted a subpopulation of satellite cells responsible for muscle

growth and routine maintenance [8]. How their contribution is

triggered and regulated remains to be investigated. Interestingly,

signals responsible for muscle growth may originate from the fibre

itself [31,32]. Shedding light on this key process is of fundamental

importance in order to prevent muscle atrophy.

Here, starting from our experimental observation that engraft-

ment of single fibres in myotoxin-injured muscles causes an

increase in the size of the grafted muscles, we have further

explored this phenomenon. We found that grafting of a single fibre

is able to trigger a hypertrophic muscle effect even in uninjured

mdx mouse muscles and the presence of the fibre itself is an

essential requirement for this effect.
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Figure 1. Single myofibres grafted into BaCl2-treated host muscles give rise to no donor-derived muscle formation but cause
muscle hypertrophy. Single fibres (SF) isolated from a 3F-nlacZ-2E donor mouse were grafted into TA muscles that had been either irradiated 3
days before (n = 6) (A-I), or that had been BaCl2-injected three days before (n = 10) (A-II); as a control, DMEM was injected into untreated TA muscles
(n = 10) (A-III). Donor-derived myofibres (identified by dystrophin expression and incorporation of X-gal positive myonuclei 4 weeks after grafting)
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Materials and Methods

Host Mice and Muscle Injury
Breeding of mice and experimental procedures were carried out

in the Biological Services Unit of University College London,

Institute of Child Health, in accordance with the Animals

(Scientific Procedures) Act 1986. Experiments were performed

under Home Office licence.

Three-week-old mdx nude mice [33] were anaesthetised with

hypnorm and hypnovel to irradiate their hindlimbs with 18Gy (at

dose rate of 0.72Gy/minute) or isoflurane to inject 25 ml of 1.2%

barium chloride (BaCl2) (Sigma, UK) into their tibialis anterior (TA)

muscles. When single fibres were grafted in irradiated muscles,

10 ml of Notechis scutatus notexin (10 mg/ml) were injected into host

muscles immediately prior to grafting one single fibre per muscle,

to increase the incidence of donor satellite cell engraftment [6]. As

analgesic after BaCl2 or notexin injections, vetergesic (50 mg/kg)

was injected subcutaneously into the mice. As controls, either

25 ml of phosphate buffered saline (PBS) or 25 ml of Dulbecco’s

modified Eagle’s medium (DMEM) (Invitrogen) was injected, as

indicated in the experimental design.

Donor Mouse Models
Adult (2–3 months old) genetically modified 3F-nlacZ-2E and b-

actin-Cre:R26NZG (obtained from crossing a homozygote male

b-actin-Cre (FVB/N-Tg(ACTB-cre)2Mrt/J) -a kind gift from

Massimo Signore, UCL- with an homozygote female R26NZG

(Gt(ROSA)26Sortm1(CAG-lacZ,-EGFP)Glh) (The Jackson Labo-

ratory, USA)) mice were used as donors. b-galactosidase (b-gal) is

expressed in all myonuclei in 3F-nlacZ-2E mice [34] and

ubiquitously in all nuclei of b-actin-Cre:R26NZG mice [35,36].

These two models allow us to identify either myonuclei alone, or

all nuclei (including those outside myofibres) of donor origin,

within grafted muscles.

Donor Fibre and Satellite Cell Preparation
Extensor digitorum longus (EDL) muscles were isolated from donor

mice as previously described [37,38]. Briefly, after mice were killed

by cervical dislocation, EDL muscles were carefully isolated from

tendon to tendon under microscopic observation and digested in

2% collagenase type I (Sigma)/DMEM at 35uC for 70 minutes.

Muscle fibres could then be easily separated under a stereo

microscope by using heat-polished, pulled glass Pasteur pipettes.

Fibres were serially washed to eliminate debris and other muscle

components and only intact, clean myofibres were carefully

selected. Some fibres were carefully transferred in a plate in

DMEM and kept at 37uC for less than an hour before 4 ml of

DMEM containing one fibre were grafted into the middle part of

each host muscle by means of fine glass needle. In the experiments

where satellite cells, rather than isolated fibres, were grafted, an

aliquot of the fibre preparation was triturated to release satellite

cells [7,38,39] and approximately 4 ml of DMEM-containing 400

of these cells was grafted into TA muscles of host mice by means of

fine glass needle [7,40]. Host mice were grafted 3 days after muscle

injury and muscles were removed for analysis 4 weeks after

grafting.

Analyses of Grafted Muscles
At the time of harvesting, muscles were frozen in isopentane

chilled in liquid nitrogen. Seven mm serial transverse cryosections

were cut throughout the entire muscle. When grafted with donor

single fibres or satellite cells, the presence of donor nuclei was

evaluated by X-gal staining. Transverse sections serial to those

containing X-gal stained nuclei were immunostained with P7

dystrophin antibody [41] and counterstained with 49,6-diamidino-

2-phenylindole (DAPI) fluorescent dye (Sigma, UK). The expres-

sion of myosin 3F-nLacZ-2E by dystrophin-positive fibres is

evidence that the group of fibres was of donor origin [6,7], rather

than being host (revertant) [42,43] fibres. Quantification of donor-

derived nuclei and fibres was performed in the section with the

highest number of donor-derived dystrophin-positive fibres [6,7].

Analyses of muscle cross section area (CSA), number and

myofibre area were performed on cryo-sections that had been

stained with polyclonal laminin antibody (Sigma, UK) or with

haematoxylin and eosin (H&E) [44]. Serial transverse sections

were cut throughout the entire muscle and the largest transverse

section was selected for analysis. Multiple images, captured at 106
magnification, from the selected section were assembled to give an

image of the entire section and this was used for quantification of

CSA and number and area of myofibres.

Image Capture and Quantitative Analyses
Fluorescence and brightfield images were captured using a Zeiss

Axiophoto microscope (Carl Zeiss, UK) and MetaMorph image

capture software (MetaMorph software, USA).

Digitalization of images and quantification were performed with

ImageJ (rsbweb.nih.gov/ij). Graph and figures were assembled

using Photoshop CS2 software.

Statistical Analyses
Results are reported as mean 6 SEM from an appropriate

number of samples, as detailed in the figure legends. Student’s t-

test and Chi-squared test were performed using GraphPad

software to determine statistical significance.

Results

Single Donor Myofibres Grafted into BaCl2-treated Host
Muscles do not Contribute to Muscle Regeneration, but
do Cause Muscle Hypertrophy

As pre-modulation of host muscle is needed to promote donor

satellite cell engraftment [45], and a single donor myofibre grafted

in pre-irradiated host muscles generated donor-derived muscle [6],

we wished to test if a different muscle modulation - BaCl2 that

induces muscle degeneration and regeneration - could promote

donor myofibre-mediated engraftment to the same extent. Tibialis

anterior (TA) muscles of mdx nude recipient mice were injected as

detailed in the experimental plan in Figure 1A. Donor-derived

fibres were found in muscles pre-treated by either BaCl2 or

irradiation and grafted with an isolated fibre. However, whilst

donor-derived muscle fibres (ranging from 2 to 88) were found in

50% of the irradiated muscles, only 4 donor-derived fibres were

found in 1 out of 10 host muscles that had been pre-treated with

were clearly observed in pre-irradiated grafted muscles (I), but to a trivial extent in BaCl2-injured grafted muscles (II) (B), as shown by representative
pictures of dystrophin positive fibres with donor-derived myonuclei X-gal stained in serial sections (C and D respectively for I and II). H&E staining of
whole transverse-sections from the largest middle part of grafted TA muscles highlighted the difference in size between muscles in I (E) and II (F). This
difference was quantified in (G) showing that the cross-sectional area (CSA) of BaCl2-injured and SF-grafted muscles (II) was significantly bigger than
in I and III. The number of fibres was not increased in II compared to control, but a loss of fibres was detected in I (H). Size bar = 100 mm. *p,0.05;
***p,0.0001.
doi:10.1371/journal.pone.0054599.g001
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BaCl2 (Figure 1B, C, D). The hematoxilin and eosin (H&E)

histological analyses revealed that, despite the negligible contri-

bution to donor-derived muscle formation, the cross-sectional area

(CSA) of muscles grafted following BaCl2 with one isolated fibre

was larger than the CSA of muscles grafted after irradiation with

an isolated fibre (Figure 1E, F, G). This is due to the progressive

loss of host myofibres following irradiation (Figure 1H) [46].

Furthermore, the BaCl2-injected and grafted muscles were

significantly greater in weight than the non-injured DMEM-

injected muscles (Figure 1G). We found no obvious differences in

the extent of fibrosis or adipogenesis in mouse muscles treated in

the different ways. As we did not find a difference in the number of

fibres between BaCl2-injured muscles injected with a myofibre in

DMEM and non-injured muscles injected with DMEM alone

(Figure 1H), we conclude that the donor fibre does not contribute

Figure 2. Injection of BaCl2 does not cause muscle hypertrophy. Mdx nude mice (n = 4) had their right TA injected with BaCl2 and the left TA
with PBS. Laminin-stained transverse sections showed no difference in size between muscles treated in these ways (A). Weights of the muscles were
comparable (B) as was the CSA (C). The number of fibres was not significantly different (D) and the distribution of the fibre size was similar (E) (Chi-
squared test, p = 0.2261). Size bar = 100 mm.
doi:10.1371/journal.pone.0054599.g002
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Figure 3. A single donor myofibre injected into recipient mouse muscles promotes muscle hypertrophy. Single fibres were grafted in
mdx nude mouse muscles that had either been injured 3 days previously with BaCl2 (n = 6) (A-I), or were non-injured (n = 6) (A-II). As a control, DMEM
was injected in muscles similarly injured (n = 5) (A-III) or uninjured (n = 5) (A-IV). Representative laminin-stained transverse muscle sections clearly
showed that muscles grafted with single fibres (B-I and –II) were macroscopically larger than muscles injected with DMEM (B-III and –IV). This
difference was also evident in the weights of the muscles (C). The mean CSA was significantly bigger in muscles in group I compared to III and II
compared to IV (D). The number of fibres was not significantly different in any of the cases (E) whilst the distribution of the fibres was changed in
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to muscle regeneration in in BaCl2-treated muscles, but it induces

a hypertrophic effect.

BaCl2 is not the Cause of Muscle Hypertrophy
To ascertain if BaCl2 alone caused muscle hypertrophy, the

right TA of mdx nude mice was injected with BaCl2 and the left TA

with PBS. Transverse sections of BaCl2-injured and PBS-injected

TA muscles were similar in size (Figure 2A). This lack of difference

was confirmed by a similar weight of muscles treated with either

BaCl2 or an equal volume of PBS (Figure 2B), a comparable CSA

(Figure 2C) and a similar fibre number and distribution of the fibre

sizes (Figure 2D and E). From these results, we conclude that

BaCl2 alone does not promote muscle hypertrophy.

A Single Donor Myofibre Promotes Muscle Hypertrophy
when Injected in Recipient Mouse Muscles

To identify the cause of the observed muscle hypertrophy, a

series of experiments was performed (Figure 3A), in which either a

single myofibre isolated from a 3F-nlacZ-2E mouse, or DMEM

alone was grafted into either BaCl2 pre-injured muscles (Figure 3A

I, III), or in untreated muscles (Figure 3A II, IV). From a first

macroscopic comparison of laminin-stained cryosections, it was

evident that muscles grafted with single fibres were bigger than

those injected with DMEM (Figure 3B). Moreover, single fibre-

grafted muscles were significantly heavier compared to DMEM-

injected muscles, despite the absence of donor-derived muscle

(Figure 3C). CSAs of pre-injured single fibre-grafted muscles were

significantly increased compare to BaCl2 pre-injured and DMEM-

injected muscles and a similar difference was observed without

pre-injuring the muscle (Figure 3D). The number of fibres in the

analysed muscles was comparable (Figure 3E) for all the

conditions, but the frequency of the fibre size distribution was

significantly different, with fewer small fibres and more fibres of

larger calibre in muscles injected with a donor fibre (Figure 3F).

We therefore conclude that the hypertrophic effect is induced by

the injected donor single myofibres, even without pre-injury of the

recipient muscles.

The Hypertrophic Effect is Mediated by the Donor Fibre
Rather than Donor Satellite Cells

As an isolated donor myofibre, bearing its complement of

approximately 7 satellite cells [6], grafted into host muscle was

able to mediate muscle hypertrophy, we wished to see whether

satellite cells removed from their fibre were also capable of causing

this effect. We therefore designed a series of experiments where

either single fibres, or freshly-stripped satellite cells, were isolated

from b-actin-Cre:R26NZG donor mice and grafted into BaCl2-

treated host mouse muscles. This enabled us to determine whether

donor cells had given rise to cells other than skeletal muscle fibres

or satellite cells, which might be promoting the host muscle

hypertrophy. As a positive control, satellite cells were grafted in

pre-irradiated muscles [45] and, as a negative control, BaCl2-

injured muscles were injected with DMEM (Figure 4A). Quanti-

fication of donor-derived muscle and donor-derived nuclei inside

and outside myofibres showed that, as expected, fibre formation

derived from donor satellite cells was robust in pre-irradiated

muscles (58625 myofibres of donor origin, 83645 donor-derived

myonuclei), with a minority of donor-derived nuclei outside the

basal lamina of donor-derived myofibres (1166) (Figure 4B, C-III,

D-III). BaCl2-injured and single fibre-grafted muscles not only

contained no donor-derived muscle, as previously found

(Figure 1B), but also no donor-derived cells outside the basal

lamina (Figure 4B). Similarly, satellite cells grafted in BaCl2-

injured muscles formed few donor-derived fibres (464) and the

presence of donor-derived nuclei inside and outside the fibres was

rare (161 and 261 respectively) (Figure 4B, C-II, D-II). BaCl2–

treated muscles injected with single fibres rather than those

injected with satellite cells were significantly heavier than either

BaCl2–treated muscles injected with DMEM, or muscles irradi-

ated and grafted with satellite cells (Figure 4E). The significant

increase in CSA in BaCl2–treated muscles injected with single

fibres mirrored this difference (Figure 4F). Since the total number

of fibres in BaCl2 pre-injured single fibre-grafted muscles was not

significantly increased (Figure 3E and Figure 4G), we conclude

that the grafted donor fibre plays a pivotal role in promoting the

hypertrophic effect in host muscles.

Discussion

Evidence that a single grafted donor myofibre can dramatically

change host skeletal muscle by contributing robustly to skeletal

muscle regeneration came from experiments employing the same

in vivo system as we used here – fibres from donor genetically-

modified wild type mice grafted into pre-irradiated muscles of

dystrophin-deficient mdx nude mice [6]. Further studies showed

that modulation of the host muscle environment is an important

requirement for successful donor satellite cell engraftment: not

only does the host niche need to be preserved, but also endogenous

satellite cells have to be impaired [45]. Such modulation, achieved

by irradiating host muscles, permits aged host muscle to be

regenerated by donor satellite cells as well as young host muscle

[7,47]. Myotoxins, such as BaCl2, notexin and cardiotoxin, have

been widely used to cause muscle injury [48,49]. These destroy

myofibres, but myofibre basal lamina, satellite cells, nerves and

blood vessels are preserved [48]. In response to the muscle injury,

endogenous satellite cells activate, proliferate, migrate and either

repair injured fibres, or regenerate new fibres [50,51]; thus the

contribution of transplanted donor cells in competition with

efficient host-mediated muscle regeneration is negligible [45].

Among the myotoxins we tested, BaCl2 was the only one, when

injected 3 days before cell grafting, that promoted significantly

more donor-derived muscle formation than in the non-treated host

muscles, even though donor muscle formation was 10 times less

than in the irradiated grafted muscles [45]. We were therefore

interested to see the effect of BaCl2 on grafted single fibres, bearing

their complement of satellite cells.

We clearly show that, in our model system, donor muscle

formation derived from isolated donor myofibres grafted into in

BaCl2-injured host mdx nude muscles is rare and insignificant.

However, although they do not give rise to either muscle fibres, or

other cell types, within BaCl2-treated host muscles, a donor single

fibre stimulated host muscle hypertrophy. The number of fibres

has not increased, but the diameter of the fibres has, leading to a

significant increase in muscle weight. The effect of the grafted

isolated fibre on the host muscle is therefore hypertrophy, not

hyperplasia, as it is an increase in fibre size rather than number.

Intriguingly, this donor fibre-mediated hypertrophic effect

occurred without pre-injury of the host muscle with BaCl2,

indicating that non-treated mdx nude muscles, which would be

muscles injected with single fibres (F) (Chi-squared test: p,0.0001 both when distribution I was compared to III and distribution II was compared to
IV). Size bar = 100 mm. *p,0.05.
doi:10.1371/journal.pone.0054599.g003
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Figure 4. A donor fibre is required for the hypertrophic effect. BaCl2-injured muscles were grafted 3 days later with single fibres (n = 8) (A2I),
satellite cells (n = 6) (A2II), or DMEM (n = 6) (A2IV); as a control, irradiated muscles were grafted 3 days later with satellite cells (n = 6) (A2III). As fibres
and satellite cells were obtained from b-actin-Cre:R26NZG donor mice (n = 2), their in vivo survival and integration in the recipient host muscles
outside myofibres could also be determined. This was quantified alongside the presence of donor-derived dystrophin positive fibres (B). As shown by
representative pictures, X-gal positive donor-derived nuclei were found in both BaCl2-injured (II) and irradiated (III) cell-grafted muscles, inside or
nearby the donor-derived dystrophin positive myofibres (C and D respectively). Weights of muscles grafted with fibres (I) were significantly greater
than muscles injected with BaCl2 and DMEM (IV) or irradiated and cell grafted host muscles (III) (E). This increase in size was mirrored by the increased
CSA (F), whilst the total number of fibres was not significantly different from the control (IV) (G). Size bar = 100 mm. *p,0.05; **p,0.01; ***p,0.0001.
doi:10.1371/journal.pone.0054599.g004
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undergoing some degeneration and regeneration [52–54], are also

susceptible to this effect. Interestingly, this hypertrophic effect

cannot be recapitulated by satellite cells freshly removed from their

niche. We speculate that either the donor fibre itself, or

components of the satellite cell niche on the donor fibre [45],

can signal to the host muscle to evoke its hypertrophy. This is

probably a rapid response triggered by the grafting of the fibre, as

it occurs even when there is no evidence of survival of either the

donor fibre, or the progeny of its satellite cells, 4 weeks after

grafting. This could happen in many ways. The crucial pathway

that regulates muscle hypertrophy is initiated by binding of IGF1

to the IGF receptor, which then induces activation of Akt/mTOR:

this pathway not only leads to inhibition of proteolytic degrada-

tion, but also to stimulation of new protein synthesis [55].

However, it has been shown that hypertrophy through Akt/

mTOR activation can also be induced independently of activation

of IGF receptor: for example, during muscle regeneration,

overexpression of Wnt7a, which is a member of the Wnt gene

family [56], generates increased number of larger myofibres,

inducing expansion of satellite cells, which, when quiescent,

express the Wnt7a receptor [57]. This stimulation of hypertrophic

myofibre growth is triggered even with minimal induction of

regeneration after injection of recombinant Wnt7a factor, through

a non-canonical anabolic signalling pathway [58].

Our results show that, even in the presence of a minimal injury

created by the needle during single fibre engraftment, the

hypertrophic effect is initiated by the donor fibre, but does not

occur if medium without a fibre is injected. In addition, the

pathway controlling muscle regeneration could be differentially

regulated in dystrophic compared to non-dystrophic muscles. We

therefore hypothesize that a donor wild type fibre exposes the

dystrophic host muscle to growth stimuli that are not normally

present within dystrophic muscle: for example, calcineurin

signalling, that mediates muscle hypertrophy [59], is aberrant in

mdx muscles, but, if overexpressed, can ameliorate their regener-

ation [60].

Our findings have some similarities, but also some differences,

to previous work that concluded that isolated fibres grafted into

injured mouse muscle have a hypertrophic effect, but that donor

satellite cells contributed robustly to muscle fibre regeneration

[61]. Similar to our findings, Hall et al. found that neither injury,

nor myofiber transplantation alone increases muscle mass. In

contrast to our findings, they concluded that the increase in muscle

mass was donor satellite cell mediated, as they found, again in

stark contrast to our findings, that grafted isolated fibres

contributed to robust regeneration within injured host muscles.

These discrepancies may be explained by differences in experi-

mental procedures between the two studies. In the experiments

that Hall et al. performed, single fibres were grafted after 3–4

hours of incubation in medium containing 15% horse serum at

,6% O2 in the presence of 1.5 nM fibroblast growth factor–2 for

4 to 5 hours. Isolated fibres were then transferred into 40 ml of

1.2% BaCl2 and fibres were injected in a volume of 70 ml of 1.2%

BaCl2 into each host muscle. Hall et al. transplanted 5 donor

myofibres per host muscle and used GFP as a marker of muscle

and satellite cells of donor origin, whereas we grafted one freshly-

isolated fibre per host muscle and used dystrophin and either

myosin 3F-nlacZ-2E or b-actin-Cre:R26NZG as markers of either

muscle fibres or nuclei of donor origin. Hall et al used non-

dystrophic, non-immunodeficient host mice (C57Bl/6xDBA2),

whereas we used dystrophin deficient, immunodeficient hosts (mdx

nude) whose muscles had been injured by injection of 25 ml of

1.2% BaCl2 3 days previously.

Our results show that a wild type donor fibre can stimulate the

hypertrophic growth of mdx muscle without making any direct

contribution to the host muscle tissue. How this happens and from

which compartment of the fibre the paracrine signalling originates

are questions for future investigation. However, that such a simple

procedure -merely grafting an isolated muscle fibre- promotes

hypertrophy in a dystrophic muscle could have future therapeutic

implications.
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