
June 4, 2015 7:19 WSPC/INSTRUCTION FILE Burman˙final˙Paper01-
14-168

Mathematical Models and Methods in Applied Sciences
c© World Scientific Publishing Company

Error estimates for forward Euler shock capturing finite element

approximations of the one dimensional Burgers’ equation

Erik Burman

Department of Mathematics,

University College London, Gower Street, London,

UK–WC1E 6BT,
e.burman@ucl.ac.uk

Received (Day Month Year)

Revised (Day Month Year)

Communicated by (xxxxxxxxxx)

We propose an error analysis for a shock capturing finite element method for the Burgers’
equation using the duality theory due to Tadmor. The estimates use a one sided Lipschitz

stability (Lip+-stability) estimate on the discrete solution and are obtained in a weak

norm, but thanks to a total variation a priori bound on the discrete solution and an
interpolation inequality, error estimates in Lp-norms (1 ≤ p <∞) are deduced. Both first

order artificial viscosity and a nonlinear shock capturing term that formally is of second

order are considered. For the discretization in time we use the forward Euler method.
In the numerical section we verify the convergence order of the nonlinear scheme using

the forward Euler method and a second order strong stability preserving Runge-Kutta

method. We also study the Lip+-stability property numerically and give some examples
of when it holds strictly and when it is violated.
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1. Introduction

There exists a vast litterature on the design and convergence of numerical meth-

ods for nonlinear scalar conservation laws dating back to the seminal work of

Krushkov.22 Error estimates are typically obtained using entropy stability and the

so-called variable doubling technique. Asymptotic results have also been obtained

using entropy stability and compensated compactness. Different numerical methods

have been considered. For work on finite difference methods we refer to Refs. 22,

23, 12, 13, 26, 11, 14, 24, finite volume methods to Refs. 9, 10, 4, finite element

methods to Refs.20, 21, 6, 28 and finally spectral methods to Refs. 25, 31, 5, 16.

For an introduction to these techniques we refer to the review article by Cockburn8

or the one by Tadmor.32

The aim of this work is to analyse a shock capturing finite element method
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proposed by the author2 using the framework developed by Nessyahu and Tadmor26

which in its turn draws from the stability analysis of Tadmor.30 This appears not

to have been proposed earlier, which is curious since similar duality techniques

were proposed later for a posteriori error estimation for finite element methods

using duality.21,19 The key argument of the analysis is to use a duality argument

to get continuous dependence on initial data for the adjoint perturbation equation

of the Burgers’ equation in the Lip-norm. This leads to error estimates in the Lip′-

norm, i.e. the norm associated to the dual of the space of Lipschitz-continuous

functions. The dual stability estimate crucially relies on the stability properties of

the numerical method, in particular that the discrete solution satisfies the Oleinik

E-condition,29 which corresponds to a one sided Lipschitz condition. To prove error

estimates the finite element residual must also be a priori bounded by initial data

which typically requires a bound in the BV-norm. Estimates in general Lp-norms

may then be recovered using interpolation between the Lip′-norm and the BV-norm.

We will discuss how a nonlinear shock capturing finite element method can be

designed so that the resulting method allows for both a posteriori and a priori error

estimates derived using the framework proposed by Nessyahu and Tadmor. Our

analysis uses the following three main ingredients,

– one sided Lipschitz stability estimates for the finite element methods,

– a priori stability estimates on a linearized dual problem derived by

Tadmor,30

– Galerkin orthogonality and approximability.

For the case of the nonlinear viscosity proposed in Ref. 2 it is not possible to

impose Oleinik’s E-condition at every time step, so some growth of the discrete

positive gradient is inevitable. Here we prove a BV bound for the fully discrete

case using nonlinear viscosity and then suggest a slightly modified form of the

viscosity, which allows us to prove Lip+-stability. The key idea is to smooth the

viscosity in a neighbourhood of the maximum gradient. Some numerical results

using the nonlinear scheme showing its sharp resolution of non-smooth solutions and

(global) high order convergence for smooth solutions are given. We also investigate

numerically what conditions are necessary on the time-step in order for the discrete

solution computed using the nonlinear viscosity to be Lip+-stable. Below we will

let C denote a generic constant that may change at each appearance, but which is

always independent of h. We will also use the notation a . b for a ≤ Cb.
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2. The Burgers’ equation

Consider the model case of the Burgers’ equation on the space-time domain Q :=

R× I, where I = (0, T ).

∂tu+ ∂x
u2

2
= 0 in Q

u(x, 0) = u0(x) for x ∈ R.

(2.1)

Assume that u0 has compact support and bounded variation. It is well known

that the equation (2.1) admits a unique entropy solution that satisfies Oleinik’s

E-condition:

u(x+ h, t)− u(x, t)

h
<
E

t
for some E > 0 and ∀x ∈ R, ∀h > 0. (2.2)

Indeed the classical entropy condition and (2.2) are known to be equivalent. The

entropy solution is known to satisfy a maximum principle on the form:

ess sup(x,t)∈Q|u(x, t)| ≤ ess supx∈R|u0(x)|. (2.3)

Oleinik’s E-condition is also equivalent to the satisfaction of a one sided Lipschitz

condition of the solution, more precisely the following a priori estimate is known to

hold,30

‖u(·, t)‖Lip+ ≤
1

‖u0‖−1
Lip+ + t

where

‖u(·, t)‖Lip+ := ess supx6=y

(
u(x, t)− u(y, t)

x− y

)
+

.

We also recall the Lip-seminorm and the associated dual seminorm,

‖u‖Lip := ess supx 6=y

∣∣∣∣u(x)− u(y)

x− y

∣∣∣∣ ,
‖u‖Lip′ := sup

v∈Lip,‖v‖Lip=1

(u− ū, v), ū :=

∫
R
u dx.

The associated function spaces will be denoted by Lip and Lip′. We will also use

the norm of bounded variation that we define as

‖u‖BV := ‖u‖L1(R) +BV (u),

where

BV (u) := sup

{∫
R
u∂xφ dx : φ ∈ C1

c (R), ‖φ‖L∞(R) = 1

}
.

Recall that for functions in W 1,1(R) there holds ‖u‖W 1,1(R) = ‖u‖BV .
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3. Artificial viscosity finite element method

We denote the computational nodes by xi := i h, i ∈ Z, defining the elements

Ki := [xi, xi+1], i ∈ Z, and the standard, piecewise linear and continuous, nodal

basis functions {vi}∞i=−∞, such that vi(xj) = δij , with δij the Kronecker delta. The

finite element space is given by

Vh :=

{∑
i∈Z

uivi, where ui ∈ R

}
.

We define the standard L2 inner product on X ⊂ R by

(vh, wh)X :=

∫
X

vhwh dx.

The discrete form corresponding to mass-lumping reads

(vh, wh)h :=

∞∑
i=−∞

vh(xi)wh(xi)h.

The associated norms are defined by ‖v‖X := (v, v)
1
2

X , for all v ∈ L2(X), if X

coincides with R the subscript is dropped, and ‖vh‖h := (vh, vh)
1
2

h for all vh ∈ Vh.

Note that, by norm equivalence on discrete spaces, for all vh ∈ Vh

‖vh‖h . ‖vh‖ . ‖vh‖h.

Using the above notation the artificial viscosity finite element space semi-

discretization of (2.1) reads, given u0 ∈ BV (R) ∩ Lip+(R), with compact support,

find uh(t) ∈ Vh such that uh(0) = πBV u0, where πBV is a special interpolation

operator to be defined, and

(∂tuh, vh)h +

(
∂x
u2
h

2
, vh

)
+ (ν̂∂xuh, ∂xvh) = 0, for all vh ∈ Vh and t > 0, (3.1)

where we propose two different forms of ν̂:

(1) first order artificial viscosity:

ν̂(uh) := h
1

2
‖uh‖L∞(R); (3.2)

(2) nonlinear weakly consistent artificial viscosity:

ν̂(uh) = ν0(uh) (3.3)

with

ν0(uh)|Ki
:= h

1

2
‖uh‖L∞(R) max

k∈{i,i+1}
|φk| (3.4)

where

φk :=
[[∂xuh]]|xk

2{{|∂xuh|}}|xk

, (when {{|∂xuh|}}|xk
6= 0, otherwise φk := 0)
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where we have introduced the jump of the gradient over node xk

[[∂xuh]]|xk
:= ∂xuh|Kk

− ∂xuh|Kk−1

and the average of |∂xuh|,{{|∂xuh|}}|xk
:= 1

2 (|∂xuh|Kk
+ |∂xuh|Kk−1

), where

|∂xuh|Kk
:= |∂xuh|Kk

|.

In this paper we only consider time discretization using the forward Euler method.

However, since we show that the forward Euler scheme is total variation diminish-

ing for either of the two artificial viscosities proposed above, we know that strong

stability preserving Runge-Kutta methods will inherit this property15 and we will

investigate the performance of a second order Runge-Kutta scheme in the numeri-

cal section. To define the fully discrete scheme we introduce the discrete time levels

0 = t0 < t1 < . . . < tN = T , with time-step kn = tn − tn−1, n = 1, . . . , N . We

denote the time intervals Ij := (tj , tj+1) and the space time slabs Qj := R × Ij .
Using the above notation the artificial viscosity finite element space discretization

and explicit Euler discretization in time of (2.1) reads, given u0 ∈ Lip+(R) find

unh ∈ Vh such that uh(0) = πBV u0 and

(k−1
n (unh − un−1

h ), vh)h +

(
∂x

(un−1
h )2

2
, vh

)
+ (ν̂(un−1

h )∂xu
n−1
h , ∂xvh) = 0,

for all vh ∈ Vh and n = 1, . . . , N. (3.5)

For simplicity we will below assume that the time step is constant for all n. We end

this section by defining26,1 πBV and proving some key properties of this interpolant.

Definition 3.1. (BV-stable interpolant, πBV ) Let

πBV u :=
∑
i∈Z

ūivi where ūi = h−1

∫ xi+
h
2

xi−h
2

u dx.

The propertes of the interpolant are collected in the following Lemma.

Lemma 3.1. Assume that u ∈ BV . Then there holds

‖πBV u‖BV ≤ ‖u‖BV and ‖u− πBV u‖L1(R) . h‖u‖BV , (3.6)

(u− πBV u, v) . h2‖u‖BV ‖v‖Lip, ∀v ∈ Lip and ‖πBV u‖Lip+ ≤ ‖u‖Lip+ . (3.7)

Proof. For the proof of (3.6) see Ref. 1. The first inequality of (3.7) follows by first

observing that since nodal quadrature integrates piecewise linear functions exactly

and πBV u(xi) = ūi there holds for all elements K∫
K

(π0u− πBV u) dx = 0,
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where π0u is defined by π0u|
(xi−

h
2 ,xi+

h
2 )

= ūi. Therefore

(u− πBV u, v) = (u− π0u, v − π0v) +
∑
i

(π0u− πBV u, v − v(xi))Ki

. h(‖u− π0u‖L1(R) + ‖u− πBV u‖L1(R))‖v‖Lip. (3.8)

and the result follows from the L1-estimate (3.6). For the second inequality of (3.7)

we see that

‖πBV u‖Lip+ = sup
x∈R

∂xπBV u = sup
i
h−2

(∫ xi+1+h/2

xi+1−h/2
u dx−

∫ xi+h/2

xi−h/2
u dx

)

= sup
i
h−1

∫ xi+h/2

xi−h/2

u(x+ h)− u(x)

h
dx ≤ sup

i
h−1

∫ xi+h/2

xi−h/2
‖u‖Lip+ dx = ‖u‖Lip+ .

4. Application of the theory of Nessyahu-Tadmor

We follow the abstract framework proposed in Section 4.2 of Ref. 32. We first recall

the adjoint equation associated to the perturbation equation associated to (2.1) and

(3.1)

−∂tϕ− a(u, uh)∂xϕ = 0 in Q

ϕ(·, T ) = ψ in R

a(u, uh) =
u+ uh

2

(4.1)

and the following stability estimate.30

Proposition 4.1. Consider the linear transport equation (4.1) with Lipschitz con-

tinuous final time data. We assume that for n ≥ 0 the discrete solution unh

(1) satisfies Un . U0, with Un := ‖unh‖L∞(R);

(2) satisfies the one sided Lipschitz condition

Dn := sup
x∈R
‖∂xunh‖ = ‖unh‖Lip+ ≤ m(tn), m(tn) ∈ L1[0, tn]. (4.2)

Then for t > 0 there exists a unique Lipschitz continuous solution ϕ(x, t) such

that the following estimate holds

‖ϕ(·, t)‖Lip ≤ ‖ψ(·)‖Lip · eM(t), M(t) ≡
∫ t

0

m(τ)dτ, t > 0.

Observe that since the Lip-seminorm is equivalent to the W 1,∞-seminorm in

one dimension, it follows from Proposition 4.1 and equation (4.1) that

‖∂tϕ(·, t)‖L∞(R) . U0‖ψ(·)‖Lip · eM(t), t > 0. (4.3)

We can then prove the result,
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Proposition 4.2. Let u be the entropy solution of (2.1) and uh the solution of

(3.1) with 0 ≤ ν̂h ≤ ChUn . Assume that uh satisfies assumption 2. of Proposition

4.1 and in addition

‖uh(·, tn)‖BV . ‖uh(·, 0)‖BV , n ≥ 1, (4.4)

where the constant C is independent of n and h.

Then there holds

‖(uh − u)(·, T )‖Lip′ . η(uh) (4.5)

with

η(uh) := ‖πBV u0 − u0‖Lip′ + h‖∂tuh +
1

2
∂x(uh)2‖L1(Q)

+ ‖ν̂∂xuh‖L1(Q) + h2‖∂x∂tuh‖L1(Q)

+ k(‖∂tuh +
1

2
∂x(uh)2‖L1(Q) + ‖∂tuh‖L1(Q)) . h+ k, (4.6)

where

uh(x, t)|Ij := ujh(x), ∂tuh|Ij := k−1(uj+1
h (x)− ujh(x)).

The error in Lp-norm satisfies the bound

‖(uh − u)(·, T )‖Lp(R) . η(uh)
1
2p . (h+ k)

1
2p . (4.7)

Proof. This result follows using the techniques from Theorem 4.1 and Corollary

4.1 of Ref. 32 adapted to the finite element framework. We give full details below

for completeness.

First observe that by the definition of (4.1) there holds with e = uh − u,

(e(·, T ), ψ) = (uh(·, 0), ϕ(·, 0)) +

N−1∑
i=0

(ui+1
h − uih, ϕ(·, ti+1))

− (u(·, T ), ψ) + (u, ∂tϕ)Q −
((

u2
h

2
− u2

2

)
, ∂xϕ

)
Q

= (e(·, 0), ϕ(·, 0)) + (∂tuh + ∂x

(
u2
h

2

)
, ϕ)Q +

N−1∑
i=0

(∂tuh, ϕ(·, ti+1)− ϕ)Qi .

Applying Galerkin orthogonality with the nodal interpolant of ϕ(x, t), defined to

be constant in time over each time interval Ij as follows,

Ihϕ|Ij := Ihϕ(·, tj)
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we have

(e(·, T ), ψ) = (e(·, 0), ϕ(·, 0)) + (∂tuh + ∂x

(
u2
h

2

)
, ϕ− Ihϕ)Q

− (ν̂(uh)∂xuh, ∂xIhϕ)Q +

∫
Q

(∂tuhIhϕ− (Ih(∂tuhIhϕ)) dx

+

N−1∑
i=0

(∂tuh, ϕ(·, ti+1)− ϕ)Qi
.

For the last term in the right hand side observe that

N−1∑
i=0

(∂tuh, ϕ(·, ti+1)− ϕ)Qi
=

N−1∑
i=0

(∂tuh,

∫ ti+1

t

∂sϕ(·, s) ds)Qi

≤ k‖∂tuh‖L1(Q)‖∂tϕ‖L∞(Q)

using a similar approach in time and standard interpolation in space we also have

the following bound on the interpolation error

‖ϕ− Ihϕ‖L∞(Q) = sup
j
‖ϕ− Ihϕ‖L∞(Qj)

. sup
j
‖ϕ− ϕ(·, tj)‖L∞(Qj) + sup

j
‖ϕ(·, tj)− Ihϕ‖L∞(R)

. k‖∂tϕ‖L∞(Q) + h sup
t∈[0,T ]

‖ϕ(·, t)‖Lip.

Using these upper bounds, Hölders inequality and ‖∂xIhϕ‖L∞(R) ≤ ‖ϕ‖Lip we ob-

tain

(e(·, T ), ψ) . (‖πBV u− u0‖Lip′ + h‖∂tuh + ∂x

(
u2
h

2

)
‖L1(Q)

+ ‖ν̂(uh)∂xuh‖L1(Q) + h2‖∂x∂tuh‖L1(Q)) sup
t∈[0,T ]

‖ϕ(·, t)‖Lip

+ k(‖∂tuh + ∂x

(
u2
h

2

)
‖L1(Q) + ‖∂tuh‖L1(Q))‖∂tϕ‖L∞(Q).

Note that a uniform upper bound on a(u, uh) holds since Un ≤ BV (unh). It then

follows from Proposition 4.1 that by taking the supremum over all ψ such that

‖ψ‖Lip = 1

‖e(·, T )‖Lip′ . eM(T )
[
‖πBV u0 − u0‖Lip′ + h‖∂tuh + ∂x

(
u2
h

2

)
‖L1(Q)

+ ‖ν̂(uh)∂xuh‖L1(Q) + h2‖∂x∂tuh‖L1(Q)

)
+ k
(
‖∂tuh + ∂x

(
u2
h

2

)
‖L1(Q) + ‖∂tuh‖L1(Q)

)]
,
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which proves (4.5). The a priori bound on the residual is a consequence of the left

inequality of (3.7) and the BV-stability of unh, ‖unh‖BV . ‖u0‖BV . It follows that

for all t > 0

‖∂tuh‖L1(R) . h
∑
i

|∂tuh(xi)| .
(
‖1

2
∂xu

2
h‖L1(R) + ‖h−1ν̂∂xuh‖L1(R)

)
. U0‖∂xuh‖L1(R) . U0‖u0‖BV (4.8)

and therefore ‖∂tuh‖L1(Q) . U0T‖u0‖BV and

‖∂tuh + ∂x

(
u2
h

2

)
‖L1(Q) . (‖∂tuh‖L1(Q) + U0‖∂xuh‖L1(Q)) . ‖u0‖BV .

Note that using an inverse inequality and the upper bound on ν̂(uh) there holds

h‖∂x∂tuh‖L1(Q) + h−1‖ν̂∂xuh‖L1(Q) . ‖∂tuh‖L1(Q) + U0‖∂xuh‖L1(Q) . T‖u0‖BV

and (4.6) follows.

The Lp-error estimate finally is a consequence of a Gagliardo-Nirenberg inequal-

ity valid in one space dimension,27

‖∂jxu‖Lp(R) . ‖∂mx u‖αLr(R)‖u‖
1−α
Lq(R) (4.9)

where

1

p
= j +

(
1

r
−m

)
α+

1− α
q

.

To apply (4.9) let E be a function with compact support such that ∂xE = e − ē,
where e = πBV u− uh. Then observe that

‖E‖L1(R) = sup
v∈Lip
‖v‖Lip=1

(E, ∂xv) = sup
v∈Lip
‖v‖Lip=1

(e− ē, v) = ‖e‖Lip′ .

It follows that taking j = r = q = s = 1 and m = 2 in (4.9) we get, with

(1− α) = (2p)−1

‖e‖Lp(R) = ‖∂xE‖Lp(Ω) . ‖∂xxE‖αL1(R)‖E‖
1−α
L1(R) . ‖∂xe‖

α
L1(R)‖e‖

1
2p

Lip′ .

The estimate follows in the standard fashion by applying the above bounds and the

corresponding Lp-interpolation error estimate1 for πBV in the right hand side of

‖u− uh‖Lp(R) ≤ ‖e‖Lp(R) + ‖πBV u− u‖Lp(R).

The error estimate (4.7) now follows from (4.5), (4.6) and the a priori control (4.4)

and the fact that u and uh both are bounded in BV .

It is possible to use interpolation to derive error estimates in stronger norms as

well.26
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Remark 4.1. We observe that since the following a priori estimate is known for

the exact solution

‖u(·, t)‖Lip+ ≤
1

‖u0‖−1
Lip+ + t

and assuming that a similar form will be satisfied for the discrete solution

‖uh(·, t)‖Lip+ ≤
1

‖u0‖−1
Lip+ + σt

, 0 < σ ≤ 1

then the perturbation growth in time will be bounded by the factor

eM(t) = eσ
−1 loge(1+‖u0‖Lip+σt) = (1 + ‖u0‖Lip+σt)1/σ.

Remark 4.2. It may be noted that assumption 2. of Proposition 4.1, implies that

uh, with compact support, is bounded in the BV -norm since

0 =

∫
R
∂xu

n
h dx =

∫
R
(∂xu

n
h)+ dx+

∫
R

(∂xu
n
h)− dx

and hence ∫
R
(∂xuh)+ dx = −

∫
R

(∂xu
n
h)− dx.

Then∫
R
|∂xunh| dx = 2

∫
R

(∂xu
n
h)+ dx ≤ 2meas(supp(∂xu

n
h)) sup

x∈R
∂xu

n
h(x)

≤ 2meas(supp(∂xu
n
h))m(t).

However the constant in the above estimate depends on the measure of the support

of unh that can be difficult to quantify for artificial viscosity methods. In the following

we will give independent proofs for the two properties.

5. Stability estimates for the forward Euler shock capturing

scheme

It follows from the above analysis that we only need to prove that the numerical

scheme satisfies the assumptions of Propositions 4.1 and 4.2. This amount to proving

the Lip+-stability and the BV-stability of the discrete solution. The former result

is the stronger one and as we shall see below, we can prove the latter result for cases

where we do not manage to prove the former. One may prove that if the solution

of (3.5) is BV-stable, then the sequence of finite element approximations converges

to the unique entropy solution of Burgers’ equation.2

We will first consider the first order scheme obtained using the viscosity (3.2)

and prove that the solution is Lip+-stable and BV -stable. Then we will consider the

scheme using the nonlinear viscosity (3.3). In this case we will first prove that the

solution is BV -stable, extending the results of Ref. 2 to the fully discrete case. For

the Lip+-stability on the other hand it is easy to show that the maximum derivative
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can grow from one time-step to the next. Drawing from the analysis of the space

semi-discretized case,3 where a modification of (3.4) was introduced ensuring the

Lip+-stability, we then propose a modified form of the artificial viscosity that is

regularized locally in the neighbourhood of local maxima in the first derivative.

This is a natural extension of the argument to the fully discrete case and for this

perturbed shock-capturing term we prove the Lip+-stability. In all cases we will

evaluate the integrals of (3.5) and analyse the method as a finite difference scheme.

In particular we will use the two forms given in the following Lemma. To avoid

overloading the notation we sometimes drop the superscript n−1 in the derivations

below.

Lemma 5.1. Let uh be the solution of (3.5). Then the following relations hold

(1) difference scheme for uni := unh(xi):

uni = un−1
i − h−1k(ν̂(un−1

h )|Ki−1
+ ûi−)∂xu

n−1
h |Ki−1

+ h−1k(ν̂(un−1
h )|Ki − ûi+)∂xu

n−1
h |Ki , (5.1)

where

ûi− :=

∫
Ki−1

un−1
h vi dx, ûi+ :=

∫
Ki

un−1
h vi dx;

(2) difference scheme for ∂xu
n
h|Ki

:

∂xu
n
h|Ki = ∂xu

n−1
h |Ki + kh−2(T1(un−1

h ) + T2(un−1
h )), (5.2)

where

T1(uh) := −1

6
h2(∂xuh|Ki−1)2 − 2

3
h2(∂xuh|Ki)

2 − 1

6
h2(∂xuh|Ki+1)2

− 1

2
huh(xi)(∂xuh|Ki − ∂xuh|Ki−1)− 1

2
huh(xi+1)(∂xuh|Ki+1 − ∂xuh|Ki)

T2(uh) := (ν̂(uh)∂xuh)|Ki−1
− 2(ν̂(uh)∂xuh)|Ki

+ (ν̂(uh)∂xuh|Ki+1
).

Proof. Let vi denote the nodal basis function associated to node xi. By testing

(3.5) with vi we obtain by inspection

(k−1(unh − un−1
h ), vi)h = k−1(uni − un−1

i )∫
R
un−1
h ∂xu

n−1
h vi dx = ûi−∂xu

n−1
h |Ki−1

+ ûi+∂xu
n−1
h |Ki

(5.3)

where

ûi− :=

∫
Ki−1

un−1
h vi dx, ûi+ :=

∫
Ki

un−1
h vi dx.

For future reference we introduce the notation

uni := unh(xi), ûi := ûi− + ûi+. (5.4)
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For the artificial viscosity term we have∫
R
ν̂(un−1

h )∂xu
n−1
h ∂xvi dx = (ν̂(un−1

h ))∂xu
n−1
h |Ki−1

− (ν̂(un−1
h ))∂xu

n−1
h |Ki

. (5.5)

Applying (5.3) and (5.5) in the formulation (3.5) we may write,

uni = ui−h−1k(ν̂(uh)|Ki−1 + ûi−)∂xuh|Ki−1 +h−1k(ν̂(uh)|Ki − ûi+)∂xuh|Ki . (5.6)

To prove the second relation we may test (3.5) with h−1(vi+1 − vi) to obtain

∂xu
n
h|Ki = ∂xuh|Ki −

1

h2

∫ xi+2

xi−1

uh∂xuh(vi+1 − vi) dx︸ ︷︷ ︸
T1

− 1

h2

∫ xi+2

xi−1

ν̂∂xuh∂x(vi+1 − vi) dx︸ ︷︷ ︸
T2

= ∂xuh|Ki +
1

h2
(T1(uh) + T2(uh)).

Decomposing the integrals T1 and T2 on the contributions from vi and vi+1 we have

after integration

T1(uh) = −1

6
h2(∂xuh|Ki−1

)2 − 2

3
h2(∂xuh|Ki

)2 − 1

6
h2(∂xuh|Ki+1

)2

− 1

2
huh(xi)(∂xuh|Ki

− ∂xuh|Ki−1
)− 1

2
huh(xi+1)(∂xuh|Ki+1

− ∂xuh|Ki
)

and

T2 = −
∫ xi+2

xi−1

ν̂∂xuh∂x(vi+1 − vi) dx

= (ν̂(uh)∂xuh)|Ki−1
− 2(ν̂(uh)∂xuh)|Ki

+ (ν̂(uh)∂xuh|Ki+1
).

To prove that the schemes are monotonicity preserving and total variation di-

minishing we will use Harten’s positivity criterion that we here recall on a form

suitable for our purpose.

Theorem 5.1. (Harten’s positivity criterion) If the scheme (3.5) may be written

on the form

unh(xi) = un−1
h (xi)− Ci−1h∂xu

n−1
h |Ki−1 +Dih∂xu

n−1
h |Ki (5.7)

with the coefficients Ci and Di satisfying

Ci−1 ≥ 0, Di ≥ 0 and Ci +Di ≤ 1 (5.8)

then the scheme is total variation diminishing and satisfies maxi u
n
i ≤ maxi u

0
i .

Proof. For a proof we refer to Refs. 17, 18.
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5.1. First order schemes

We will first consider the artificial viscosity method obtained using the definition

(3.2) in (3.5).

Proposition 5.1. Let uh be the solution of (3.1) using the linear viscosity (3.2).

Then, if the CFL condition k ≤ Coh/Un−1, with Co = 1
2 is satisfied, the following

bounds hold for the discrete solution unh, n ≥ 0,

Un ≤ U0, BV (unh) ≤ BV (u0) (5.9)

‖unh‖Lip+ ≤
1

‖u0‖−1
Lip+ + 1

3 tn
. (5.10)

Proof. First we will apply Theorem 5.1, to prove equation (5.9). Compare equation

(5.1) with (5.7) and identify

Ci−1 := h−2k
(
ν(un−1

h )|Ki−1
+ ûi−

)
and Di := h−2k

(
ν(un−1

h )|Ki
− ûi+

)
.

It follows from the definition of the viscosity, (3.2), that under the CFL condition

k ≤ 1
2h/Un−1 there holds for all j,

0 ≤ h−2k

(
1

2
hUn−1 + ûi−

)
= Ci−1 ≤ h−1kUn−1 ≤

1

2
,

0 ≤ h−2k

(
1

2
hUn−1 − ûi+

)
= Di ≤ h−1kUn−1 ≤

1

2

and we conclude that all inequalities of (5.8) are satisfied, proving (5.9). Turning

to (5.10) this time we consider equation (5.2) and note that since ν̂(uh) is constant

on R we have

(T1(uh) + T2(uh)) = (ν̂(uh) +
1

2
huh(xi))(∂xuh|Ki−1 − ∂xuh|Ki)

+ (ν̂(uh)− 1

2
huh(xi+1))(∂xuh|Ki+1

− ∂xuh|Ki
)

− 1

6
h2(∂xuh|Ki−1

)2 − 2

3
h2(∂xuh|Ki

)2 − 1

6
h2(∂xuh|Ki+1

)2

It follows that (5.2) may be written

∂xu
n
h|Ki

= (1− ci − di)∂xun−1
h |Ki

+ ci∂xu
n−1
h |Ki−1

+ di∂xu
n−1
h |Ki+1

− 1

6
k(∂xu

n−1
h |Ki−1

)2 − 2

3
k(∂xu

n−1
h |Ki

)2 − 1

6
k(∂xu

n−1
h |Ki+1

)2

with (by the defintion of ν̂) 0 ≤ ci = kh−2(ν̂(uh) + 1
2huh(xi)) and 0 ≤ di =

kh−2(ν̂(uh)− 1
2huh(xi)). Under the CFL-condition we get

ci + di = 2kh−2ν̂(uh) ≤ 1

2
.
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As a consequence

Dn ≤ (1− k

3
Dn−1)Dn−1.

We now show that using induction on this expression one arrives at the bound

Dn ≤
D0

1 +D0tn/3
.

First observe that since 1− x ≤ 1/(1 + x) there holds

D1 ≤ (1− k

3
D0)D0 ≤

D0

1 +D0k/3
.

Then assume that Dn ≤ D0/(1 +D0nk/3) and observe that

Dn+1 ≤ (1− k

3
Dn)Dn ≤

Dn

1 +Dnk/3
≤ D0

(1 +Dnk/3) (1 +D0nk/3)

≤︸︷︷︸
since Dn ≤ D0

D0

(1 +D0k/3) (1 +D0nk/3)
≤ D0

(1 +D0(n+ 1)k/3 +D2
0nk

2/9)

≤ D0

(1 +D0(n+ 1)k/3)
.

This bound and the Lip+ stability of πBV , (3.7) proves (5.10).

5.2. The nonlinear shock-capturing method

In the nonlinear case Lip+-stability was proved in the space semi-discretized case,

provided the nonlinear viscosity was modified close to local maxima of the gradient.3

The perturbed viscosity was defined by

ν̂(un−1
h )|Ki

:= ν0(un−1
h )|Ki

+
1

2
ξ(uh)(ν0(un−1

h )|Ki−1
+ ν0(un−1

h )|Ki+1
). (5.11)

where ξ denotes a correction factor, taking the value 1 in cells where the gradient

takes a local maximum and zero elsewhere. It is not straightforward to make these

ideas carry over to the fully discrete case. The reason for this is that the corrective

factor ξ acts instantaneously to counter any growth in the positive gradient. In the

fully discrete case the factor can only change at each time level so the Lip+-stability

can be violated at time level n in cells where the gradient is large, but not a local

maximum, at time level n − 1. This problem arises where the nonlinear viscosity

switches off abrutly and can be cured by smoothing the viscosity locally as we shall

see below.

In this section we will first prove that the approximation obtained with the

scheme using the unperturbed nonlinear viscosity satisfies the BV-estimate neces-

sary for convergence and then we will extend the ideas of perturbing the viscosity

close to local maxima to the fully discrete case and prove that we can obtain Lip+-

stability.
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Proposition 5.2. (BV-bound for the nonlinear shock-capturing) Let unh be the so-

lution of (3.1) computed under the CFL-condition k ≤ 1
4hU

−1
n−1 and using the non-

linear viscosity (3.3). Then the following bounds hold:

Un ≤ U0, BV (unh) ≤ BV (u0). (5.12)

Proof. To prove that the scheme is TVD we will use Harten’s positivity criterion.

Starting from (5.1), assume that ûi ≤ 0 and add and subtract ûi−∂xuh|Ki in the

right hand side of equation (5.1) to obtain

uni = ui − h−1k((ν̂(uh)|Ki−1 + ûi−)∂xuh|Ki−1 − ûi−∂xuh|Ki)

+ h−1k((ν̂(uh)|Ki
− ûi+)∂xuh|Ki

− ûi−∂xuh|Ki
)

= ui − h−1k(ν̂(uh)|Ki−1
∂xuh|Ki−1

− ûi−[[∂xuh]]|xi
)

+ h−1k(ν̂(uh)|Ki
− ûi)∂xuh|Ki

.

Using now that

ûi−[[∂xuh]]|xi
= 2ûi−φi(uh){|∂xuh|}xi

= ûi−φi(uh)(|∂xuh|Ki
|+ |∂xuh|Ki−1

|)

we may write, with the notation si := sign(∂xuh|Ki
)

uni = ui − h−1k(ν̂(uh)|Ki−1
− ûi−φi(uh)si−1)∂xuh|Ki−1

+ h−1k(ν̂(uh)|Ki
− ûi − ûi−φi(uh)si)∂xuh|Ki

.

We then identify the coefficients

Ci−1 = h−2k(ν̂(uh)|Ki−1
− ûi−φisi−1)

and

Di = h−2k(ν̂(uh)|Ki
− ûi − ûi−φisi).

By the definition of ν̂(uh) we see that

(ν̂(uh)|Ki−1
− ûi−φi(uh)si) ≥

1

2
(Un−1 − ‖uh‖L∞(Ki−1)) max

k∈{j−1,j}
|φk|h ≥ 0 (5.13)

and

(ν̂(uh)|Ki
+ ûi−φi(uh)si) ≥

1

2
(Un−1 − ‖uh‖L∞(Ki−1)) max

k∈{j,j+1}
|φk|h ≥ 0 (5.14)

It then follows that Ci−1 ≥ 0 and, since we assumed that ûi < 0, Di ≥ 0. To

see that the condition Ci +Di ≤ 1 may be satisfied we write

Ci +Di ≤ h−2k(2ν̂(uh)|Ki
+ 3h‖uh‖L∞(Ki−1∪Ki)) ≤ 4kh−1Un−1. (5.15)

Hence the desired bound holds under the CFL-condition

k ≤ 1

4
hU−1

n−1.

The case when ûi ≥ 0 is similar, but this time ûi+∂xuh|Ki−1 is added and subtracted

instead.
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The difficulty in proving the Lip+-stability for the nonlinar shock-capturing

stems from the strong variations in the viscosity coefficient that may appear if the

solution abruptly changes from rough to smooth. These fluctuations may translate

into oscillations of the gradient that violates the Lip+-condition. The nonlinear

indicator function ξ that prohibited growth of gradient does not work in the fully

discrete case due to its instantaneous effect. Only under a strengthened CFL does

the correction eliminate spurious gradient oscillations. This effect will be explained

in the analysis below and illustrated in the numerical section. To obtain a fully

discrete, Lip+-stable, scheme we propose a method that uses a regularized version of

the nonlinear viscosity. As a substitute for the instantaneous action of the nonlinear

perturbation ξ(uh) we categorise the elements in one part where the gradient is so

big that time discretization can result in a violation of the Lip+ stability over

one time step and another part where a moderate growth in the gradient can be

permitted. The solution in the part where a violation is possible is then computed

using a regularized viscosity coefficient that is a natural generalization of ξ to the

fully discrete case.

Recall that Dn := supi ∂xu
n
h|Ki

and fix 0 < δ < 1. Then define

Kξ=1 := {Ki : ∂xu
n
h|Ki/Dn > δ} (5.16)

and Kξ=0 := {Ki 6∈ Kξ=1}. We propose the following generalization of the definition

of the viscosity ν̂.

Definition 5.1. Let ν̂(uh)|Ki
be defined depending on the solution uh in the neigh-

bourhood of element Ki according to:

- Ki ∈ Kξ=0. Then ν̂(uh)|Ki
= ν0(uh)|Ki

- Ki ∈ Kξ=1. For each connected subset of elements K ∈ Kξ=1 let K1, ...,KM ,

M ≥ 1, denote the elements in K. Let K0 and KM+1 denote the left and right

neighbours of the interval ∪Mi=1Ki. Define the locally regularized viscosity by

νS(uh)Ki
, i = 1, ...,M such that

−νS |Ki−1
+ 2νS |Ki

− νS |Ki+1
= 2ν0|Ki

(5.17)

with the boundary conditions νS |K0 = ν0|K0 , νS |KM+1
= ν0|KM+1

. Then define:

ν̂(uh)|Ki
:= min

{
3

2
Un−1h, νS |Ki

}
.

First observe that the condition in point two leads to an implicit defintion of

the viscosity, a linear system has to be solved for every connected interval in Kξ=1.

Since the left hand side of (5.17) is an M-matrix and the right hand side is positive,

there holds ν̂ ≥ 0. Also note that the method is still formally of second order away

from local extrema. However, point 2 of Definition 5.1 above also shows that in

certain situations the first order artificial viscosity can extend into the smooth part

of the domain, possibly making the order of convergence degenerate. The actual
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performance of this method will depend on the choice of δ and of the distribution

of the elements in Kξ=1.

Remark 5.1. To see the relation to the semi-discretized case, consider an isolated

element Ki in Kξ=1, and such that ν̂(un−1
h )|Ki

< 3
2Un−1h. In this case there holds

ν̂Ki = ν0|Ki +
1

2
(ν0|Ki−1 + ν0|Ki+1). (5.18)

We see that (5.18) coincides with the definition of (5.11), with ξ|Ki
= 1.

Proposition 5.3. Let uh be the solution of (3.5) computed under the CFL-

condition k ≤ 1
6hU

−1
n−1 and with ν̂ from Definition 5.1 above. Then there holds

Un ≤ U0, BV (unh) ≤ BV (u0). (5.19)

Proof. The proof is equivalent to that of Proposition 5.2. Using that this time

ν0|Ki ≤ ν̂|Ki ≤ 3/2Un−1h, showing that ν̂ is sufficiently large for (5.13) and (5.14)

to hold. Condition (5.15) then holds under the strengthened CFL-condition.

Theorem 5.2. Let unh be the solution of (3.5) with ν̂ given in Definition 5.1 and

computed under the CFL-condition

kn ≤ Co hU−1
n−1, Co =

1

4
(1− δ)

where δ is the parameter introduced in (5.16). Then there holds

‖unh‖Lip+ ≤
1

‖u0‖−1
Lip+ + 2tn

3

.

Proof. Consider an element Ki, we must consider the two possibilities Ki ∈ Kξ=0

and Ki ∈ Kξ=1 separately. We evaluate the right hand side of (5.2) in each case.

Let si := sign(∂xu
n−1
h |Ki

).

• Ki ∈ Kξ=0. First consider the case si < 0. Then at least one of uh(xi) ≥ 0 and

uh(xi+1) ≤ 0 must be true. For simplicity assume that the latter case holds.

Starting from (5.2) we may write,

∂xu
n
h|Ki = −1

6
k(∂xuh|Ki−1)2 − 2

3
k(∂xuh|Ki)

2 − 1

6
k(∂xuh|Ki+1)2

+

(
1− 1

2
kh−1uh(xi) +

1

2
kh−1uh(xi+1)− 2kh−2ν̂|Ki

)
∂xuh|Ki

+ kh−2

(
ν̂|Ki−1

+
1

2
huh(xi)

)
∂xuh|Ki−1

+ kh−2

(
ν̂|Ki+1 −

1

2
huh(xi+1)

)
∂xuh|Ki+1 .
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We now use that

1

2
huh(xi)∂xuh|Ki−1

= −1

2
huh(xi)φisi−1∂xuh|Ki−1

+
1

2
huh(xi)(1− siφi)∂xuh|Ki

(5.20)

to obtain

∂xu
n
h|Ki = −1

6
k(∂xuh|Ki−1)2 − 2

3
k(∂xuh|Ki)

2 − 1

6
k(∂xuh|Ki+1)2

+

(
1− 1

2
kh−1(uh(xi)(2− siφi) + uh(xi+1))− 2kh−2ν̂|Ki

)
︸ ︷︷ ︸

bi

∂xu
n−1
h |Ki

+ kh−2

(
ν̂|Ki−1

− 1

2
huh(xi)φisi−1

)
︸ ︷︷ ︸

ci

∂xu
n−1
h |Ki−1

+ kh−2

(
ν̂|Ki+1

− 1

2
huh(xi+1)

)
︸ ︷︷ ︸

di

∂xu
n−1
h |Ki+1

.

It follows from the definition of ν̂ and Co that bi ≥ 1 − 5
2Co ≥ 0, 0 ≤ ci ≤

2Co and 0 ≤ di ≤ 2Co. We assume the worst case ∂xu
n−1
h |Ki−1

≥ 0 and

∂xu
n−1
h |Ki+1

≥ 0 to obtain the upper bound

∂xu
n
h|Ki

≤ −1

6
k(∂xu

n−1
h |Ki−1

)2 − 1

6
k(∂xu

n−1
h |Ki+1

)2

+ 2Co(∂xu
n−1
h |Ki−1 + ∂xu

n−1
h |Ki+1) ≤ Dn−1 −

1

3
kD2

n−1,

where we have used the inequality (??).

Now we turn to the case si ≥ 0. First assume that ν̂|Ki−1
< 1

2Un−1h and

ν̂|Ki+1
< 1

2Un−1h , We may then use the relation

∂xuh|Ki−1 − ∂xuh|Ki = −φisi−1(∂xuh|Ki−1 − ∂xuh|Ki)− φi(si−1 + si)∂xuh|Ki

(5.21)
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and similarly for ∂xuh|Ki+1
, in (5.2) to obtain

kh−2(T1 + T2) = −1

6
k(∂xuh|Ki−1

)2 − 2

3
k(∂xuh|Ki

)2 − 1

6
k(∂xuh|Ki+1

)2

+ kh−2(ν̂(uh)|Ki−1 −
1

2
uh(xi)hφisi−1)︸ ︷︷ ︸

ci

(∂xuh|Ki−1 − ∂xuh|Ki)

+ kh−2(ν̂(uh)|Ki+1
− 1

2
uh(xi+1)hφi+1si+1)︸ ︷︷ ︸

di

(∂xuh|Ki+1
− ∂xuh|Ki

)

+ kh−2(ν̂(uh)|Ki−1 − 2ν̂(uh)|Ki + ν̂(uh)|Ki+1)∂xuh|Ki

− 1

2
uh(xi)kh

−1(si−1 + si)φi∂xuh|Ki

− 1

2
uh(xi+1)kh−1(si+1 + si)φi+1∂xuh|Ki . (5.22)

If either ν̂(uh)|Ki−1
or ν̂(uh)|Ki+1

is larger than 1
2hUn−1 then it is not necessary

to introduce the φ factor in the corresponding factor ci or di. By the assumption

on ν̂ and under the CFL condition we have 0 ≤ ci ≤ 2Co and 0 ≤ di ≤ 2Co,

with the maximum values taken if ν̂|Ki−1
or ν̂|Ki+1

takes the maximum value
3
2Un−1h.

We proceed to bound the last three terms of (5.22). Under the CFL-condition

and assuming ν̂|Ki−1 ≤ 1
2hUn−1 and ν̂|Ki+1 ≤ 1

2hUn−1 we obtain the bound

kh−2(ν̂(uh)|Ki−1
− 2ν̂(uh)|Ki

+ ν̂(uh)|Ki+1
)∂xuh|Ki

− 1

2
uh(xi)kh

−1(si−1 + si)φi∂xuh|Ki

− 1

2
uh(xi+1)kh−1(si+1 + si)φi+1∂xuh|Ki

≤ 3Co∂xuh|Ki
.

It is easy to see that the same inequality holds if one or both of ν̂(uh)|Ki−1

and ν̂(uh)|Ki+1
are larger than 1

2hUn−1, since then the corresponding terms

including the φ factors are omitted. It follows that

∂xu
n
h|Ki

≤ −1

6
k(∂xu

n−1
h |Ki−1

)2 − 2

3
k(∂xu

n−1
h |Ki

)2 − 1

6
k(∂xu

n−1
h |Ki+1

)2

+ (1− ci − di + 3Co)∂xu
n−1
h |Ki

+ ci∂xu
n−1
h |Ki−1

+ di∂xu
n−1
h |Ki+1

≤ ∂xun−1
h |Ki

+ 4CoDn−1 −
1

3
kD2

n−1

where we once again used the inequality (??). Using now the defintion of Co

and of Kξ=0 we have

∂xu
n
h|Ki

≤ δDn−1 + (1− δ)Dn−1 −
1

3
kD2

n−1 ≤ Dn−1 −
1

3
kD2

n−1.

• Ki ∈ Kξ=1. Observe that in this case by definition ∂xuh|Ki > 0. First assume

that ν̂h(uh)|Ki
< 3

2hUn−1 and 0 ≤ uh(xi) ≤ uh(xi+1) then we consider again
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equation (5.2), and use (5.20) in the second term of T1 to obtain

kh−2(T1 + T2) = −1

6
k(∂xuh|Ki−1

)2 − 2

3
k(∂xuh|Ki

)2 − 1

6
k(∂xuh|Ki+1

)2

+ kh−2(ν̂(uh)|Ki−1
+

1

2
uh(xi))︸ ︷︷ ︸

ci

(∂xuh|Ki−1
− ∂xuh|Ki

)

+ kh−2(ν̂(uh)|Ki+1
− 1

2
uh(xi+1)hφi+1si+1)︸ ︷︷ ︸

di

(∂xuh|Ki+1
− ∂xuh|Ki

)

+ kh−2(ν̂(uh)|Ki−1
− 2ν̂(uh)|Ki

+ ν̂(uh)|Ki+1
)∂xuh|Ki

− 1

2
uh(xi+1)kh−1(si+1 + si)φi+1∂xuh|Ki

. (5.23)

This time 0 ≤ ci ≤ 2Co by the sign of uh(xi) and 0 ≤ di ≤ 2Co and ci + di ≤
4Co < 1 as in the previous case. Note that by equation (5.17) we have

ν̂(uh)|Ki−1
− 2ν̂(uh)|Ki

+ ν̂(uh)|Ki+1
− 1

2
uh(xi)kh(si+1 + si)φi+1

≤ νS |Ki−1
− 2νS |Ki

+ νS |Ki+1
+ uh(xi)kh|φi+1|
= −2ν0 + uh(xi)kh|φi+1| ≤ 0.

Therefore we may this time conclude that

∂xu
n
h|Ki

≤ (1− ci − di)∂xun−1
h |Ki

+ ci∂xu
n−1
h |Ki−1

+ di∂xu
n−1
h |Ki+1

− 1

6
k(∂xu

n−1
h |Ki−1

)2 − 2

3
k(∂xu

n−1
h |Ki

)2 − 1

6
k(∂xu

n−1
h |Ki+1

)2

≤ Dn−1 −
(

2

3
δ2 +

1

3

)
kD2

n−1.

The case uh(xi) ≤ uh(xi+1) ≤ 0 is equivalent, but this time the ci factor will

have the φi perturbation and di will be positive using only the sign of uh(xi+1).

Finally we need to consider the configuration where there is a sonic point in

Ki, i.e. uh(xi) ≤ 0 and uh(xi+1) ≥ 0. Assume that ∂xuh|Ki−1
< 0 then there

is a local minimum in xi and therefore ν̂|Ki−1 ≥ 1
2Un−1h. This means that ci

is positive and the result follows as before. If on the other hand ∂xuh|Ki−1
> 0

we use that

kh−2(ν̂(uh)|Ki−1
+

1

2
uh(xi))(∂xuh|Ki−1

− ∂xuh|Ki
)

≤ kh−2(ν̂(uh)|Ki−1
+

1

2
uh(xi+1))(∂xuh|Ki−1

− ∂xuh|Ki
)

+
1

2
k(∂xuh|Ki

)2 − 1

2
k∂xuh|Ki

∂xuh|Ki−1
.

In the first line of the right hand side we see that we have reverted back to the

situation of a positive convective velocity so this part can be treated as before.
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The first term in the last line can be absorbed by the second term of T1 and

the second term is negative so it may be dropped. We conclude that

∂xu
n
h|Ki

≤ (1− 1

3
kDn−1)Dn−1.

Now consider the case ν̂|Ki
= 3

2Un−1h, then we must consider three different

cases depending on the neighbouring elements.

(1) Ki−1, Ki+1 ∈ Kξ=1. Then observe that by the definition of (5.17) there

holds 3
4Un−1h ≤ ν̂|Ki±1

≤ 3
2Un−1h. We start from (5.2) and write

kh−2(T1 + T2) = −1

6
k(∂xuh|Ki+1)2 − 2

3
k(∂xuh|Ki)

2 − 1

6
k(∂xuh|Ki−1)2

+ kh−2(ν̂(uh)|Ki−1 +
1

2
uh(xi)h)︸ ︷︷ ︸

ci

(∂xuh|Ki−1 − ∂xuh|Ki)

+ kh−2(ν̂(uh)|Ki+1
− 1

2
uh(xi+1)h)︸ ︷︷ ︸

di

(∂xuh|Ki+1
− ∂xuh|Ki

)

+ kh−2(ν̂(uh)|Ki−1
− 2ν̂(uh)|Ki

+ ν̂(uh)|Ki+1
)∂xuh|Ki

.

As before 0 ≤ ci, di ≤ 2Co, ci+di < 1. Thanks to the cut off at 3/2Un−1h

we see that ν̂(uh)|Ki−1
− 2ν̂(uh)|Ki

+ ν̂(uh)|Ki+1
≤ 0.

(2) Ki−1 ∈ Kξ=1, Ki+1 ∈ Kξ=0. In this case note that 3
4Un−1h ≤ ν̂|Ki−1 ≤

3
2Un−1h. Then considering equation (5.23) we observe once again 0 ≤ ci ≤
2Co (using the bounds on ν̂(uh)|Ki−1), 0 ≤ di ≤ 2Co (using the definition

of ν̂(uh)|Ki+1
), ci + di < 1 and we may conclude by observing that by the

bounds on the viscosity ν̂ in the elements we have

ν̂(uh)|Ki−1 − 2ν̂(uh)|Ki + ν̂(uh)|Ki+1 −
1

2
uh(xi)h(si+1 + si)φi+1

≤ −Un−1h+ |uh(xi)|h|φi+1| ≤ 0. (5.24)

(3) Ki−1 ∈ Kξ=0, Ki+1 ∈ Kξ=1. We proceed as in point 2), but with the φi
contribution in the factor ci. Then 0 ≤ ci ≤ Co and since 3

4Un−1h ≤
ν̂|Ki+1

≤ 3
2Un−1h we also have 0 ≤ di ≤ 2Co and under the condition on

Co, ci + di < 1. Finally we observe as in 2) that ν̂(uh)|Ki−1 − 2ν̂(uh)|Ki +

ν̂(uh)|Ki+1
≤ −Un−1h and therefore the equivalent of (5.24) holds.

Using the same arguments as in the proof of (5.10) we have

Dn ≤
(

1− k

3
Dn−1

)
Dn−1

in all three cases.

The result once again follows by induction over Dn.
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Remark 5.2. It should be noted that several aspects of the above regularization

could be modified in order to minimize ν̂. For instance the right hand side (5.17)

could be modified, making it zero if the last term in (5.23) is negative. The present

form was chosen in order to convey the idea with all the desireable results, without

having to consider too many special cases.

Remark 5.3. The order of the method depends on the interaction between the

space and time discretization. To obtain a first order scheme we may use a fixed

δ and take kn = 1
4hUn−1(1 − δ). Since δ does not go to zero with h, the artificial

viscosity may remain O(h) in a subset of R that does not go to zero when reducing

the mesh size. A higher order scheme is obtained by chosing δ = (1 − hs), s > 0.

Then the measure of the set Kξ=1 will go to zero and the CFL condition will be

strengthened to kn = 1
4Un−1h

1+s, making the time discretization error higher order

as well.

6. Numerical examples

In this section we will illustrate the practical implications of the above analysis.

First we consider two model problems, one with smooth initial data and one with

rough data and verify that the nonlinear shock capturing method has global second

order convergence for the smoth solution and first order convergence for the rough

solution. We then turn to the question of the Lip+-stability of the methods and

give some examples of violations of Lip+-stability and also show how to improve

the behavior. In the study below we will consider three different methods:

(1) the forward Euler method with the artificial viscosity (3.3) (“method I” below);

(2) the forward Euler method with the artificial viscosity (3.3) and the local cor-

rection (5.11) acting only in cells with local maxima of the gradient (“method

II” below);

(3) an SSP second order Runge-Kutta method, i.e. Heun’s method (“method III”

below).

6.1. Convergence studies

We first consider a problem with smooth initial data

u0 =
1

2
(cos(πx) + 1)

on the interval (−1, 1). We compute the solution at T = 0.5, before shock formation

and solve for the exact solution on a mesh with 6400 mesh points using fixed point

iteration. The initial data and the final solutions are given in Figure 1. First we

consider time discretization using method I and the following relation between the

time and space discretization parameters, k = h2. In Table 1 errors in several

different norms are presented on four consecutive meshes. Instead of reporting the
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Fig. 1. Left smooth initial condition; right solution at T = 0.5

N ‖u− uh‖L1(R) ‖u− uh‖L2(R) |‖u− uh‖|−1 (∼ H−1(R))

100 2.5 · 10−3 3.6 · 10−3 3.0 · 10−4

200 6.7 · 10−4 (1.9) 1.0 · 10−3 (1.8) 7.0 · 10−5 (2.1)

400 1.8 · 10−4 (1.9) 3.0 · 10−4 (1.7) 1.7 · 10−5 (2.0)

800 4.6 · 10−5 (2.0) 8.9 · 10−5 (1.8) 4.2 · 10−6 (2.0)

Table 1. smooth solution, forward Euler in time, k = h2

Lip′-norm, we give the the errors in the following weak norm related to H−1,

|‖u‖|2−1 := ‖∇ũ‖2 + ‖ũ‖2, where ũ solves − ∂xxũ+ ũ = u, ũ(−1) = ũ(1) = 0.

Experimental convergence rates are given in parenthesis. We observe second order

convergence in the L1-norm and in the |‖·‖|−1 norm. The convergence in the L2-norm

is slightly below second order, but should be compared with the O(h
3
2 ) convergence

that is expected for stabilized finite element methods.

Now we consider a problem with non-smooth solution. The initial data and

final time exact solution is given in Figure 2. We compute the solution at T = 0.5

when the shock has formed. The exact solution is computed using the method of

characteristics on a mesh with 12800 elements. We present tables with the same

errors as in the previous cases in Table 2. We observe first order convergence for

the L1-error and the H−1-norm error and 1/2-order convergence in the L2-norm.

We then consider the same computations using method III, under the CFL-

condition k = 1
4h. The corresponding results are presented in Tables 3 and 4, the

conclusions are similar as in the previous case. Not in any case were any violations

of the maximum principle observed.

6.2. Investigation of Lip+ stability

We now consider the initial data given by the left plot of figure 2 and solve until

T = 1. First we consider the forward Euler methods under the CFL-condition

k = 1
4h, which is the limit value of Proposition (5.12). We study the relative violation

of the Lip+-stability by reporting the time evolution of λn = Dn/ supx ∂xu(x, tn),

which should be one for a strictly Lip+ stable method. The results for method I
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Fig. 2. Left nonsmooth initial condition; right solution at T = 0.5

N ‖u− uh‖L1(R) ‖u− uh‖L2(R) |‖u− uh‖|−1 (∼ H−1(R))

100 0.036 0.071 6.4 · 10−3

200 0.018 (1.0) 0.049 (0.5) 3.2 · 10−3 (1.0)

400 9.4 · 10−3 (0.9) 0.034 (0.5) 1.6 · 10−3 (1.0)

800 4.7 · 10−3 (1.0) 0.023 (0.6) 7.9 · 10−4 (1.0)

Table 2. nonsmooth solution, forward Euler in time, k = h2

N ‖u− uh‖L1(R) ‖u− uh‖L2(R) |‖u− uh‖|−1 (∼ H−1(R))

100 2.6 · 10−3 3.7 · 10−3 9.7 · 10−4

200 6.9 · 10−4 (1.9) 1.0 · 10−3 (1.9) 2.3 · 10−4 (2.0)

400 1.8 · 10−4 (1.9) 3.0 · 10−4 (1.7) 5.6 · 10−5 (2.0)

800 4.7 · 10−5 (1.9) 8.9 · 10−5 (1.8) 1.4 · 10−5 (2.0)

Table 3. smooth solution, 2nd order Runge-Kutta in time, k = 1
4
h

are presented in the left plot of Figure 3. The three curves correspond to varying

h. From top to bottom, h = 2400−1, h = 1200−1 and h = 400−1. It is clearly

visible that the Lip+-stability deteriorates under mesh refinement. In the right plot

of Figure 3, we give the same curves for method II. Similar results as for method I

are observed. Since the chosen CFL-condition corresponds to δ = 0 it is optimistic

to assume that regularization in one cell would be enough , indeed Kξ=1 contains

N ‖u− uh‖L1(R) ‖u− uh‖L2(R) |‖u− uh‖|−1 (∼ H−1(R))

100 3.6 · 10−2 7.2 · 10−2 1.6 · 10−2

200 1.8 · 10−2 (1.0) 4.9 · 10−2 (0.6) 8.0 · 10−3 (1.0)

400 9.2 · 10−3 (1.0) 3.3 · 10−2 (0.6) 4.0 · 10−3 (1.0)

800 4.6 · 10−3 (1.0) 2.3 · 10−2 (0.5) 2.0 · 10−3 (1.0)

Table 4. nonsmooth solution, 2nd order Runge-Kutta in time, k = 1
4
h



June 4, 2015 7:19 WSPC/INSTRUCTION FILE Burman˙final˙Paper01-
14-168

Error estimates for SC-FEM for Burgers’ equation 25

0 0.2 0.4 0.6 0.8 1
0.5

1

1.5

2

2.5

3

3.5

0 0.2 0.4 0.6 0.8 1
0.5

1

1.5

2

2.5

3

3.5

Fig. 3. Time evolution of the relative Lip+ violation λn, k = 1
4
h, left plot: method I; right: method

II. Upper curve: h = 2400−1; middle curve h = 1200−1; lower curve h = 400−1 (dotted).

all elements with positive gradient. Therefore in the left plot of Figure 4 we report

the same quantity computed with h = 2400−1 and the strengthened CFL-condition

k = 1
4h

1.25, corresponding to δ = 1−h
1
4 , both for methods I and II. We see that the

strengthened CFL-condition reduces the perturbations of the gradient in both cases.

However only for method II is the solution Lip+-stable. Numerical experiences not

reported here showed that under the CFL-condition k = h2 used in the convergence

study in the previous section also method I was completely Lip+-stable.

We then considered the same computation using method III, k = 1
4h. The time

evolution of λn is reported in Figure 4, right plot. This time the upper curve is

h = 400−1 (dotted), the middle curve h = 1200−1 and the bottom curve h = 2400−1,

so we see that in this case the Lip+ stability improves under mesh refinement.

To illustrate the instability qualitatively we present the upper section of the

rarefaction wave at T = 1, computed under the hyperbolic CFL-condition k = 1
4h

in Figure 5 using method I (left plot) and method III (right plot). The spurious

oscillations created by the singularity at the crest of the rarefaction are clearly seen

in the left plot, but not present in the right. Even more striking are the plots in

Figure 6, showing the gradient in the rarefaction wave for the same computation,

using method I (left plot) and method III (right plot).

7. Conclusion

We have studied some shock capturing finite element methods using the framework

for error estimation introduced by Nessyahu and Tadmor. We proved that a finite

element method using standard first order artifical viscosity and lumped mass for

the time derivative satisfies the necessary stability conditions for the error estimates.

We then showed that nonlinear shock capturing leads to BV-stable approximations

when discretized using the forward Euler method in time and therefore also for
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Fig. 4. Left: Time evolution of the relative Lip+ violation, λn, h = 2400−1, k = 1
4
h1.25. Upper

curve: method I; lower curve: method II. Right: Time evolution of the relative Lip+ violation, λn
k = 1

4
h, method III. Upper curve: h = 400−1 (dotted); middle curve h = 1200−1; lower curve

h = 2400−1.
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Fig. 5. Zoom of the solution in the rarefaction for k = 1
4
h, h = 2400−1. Left: method I. Right:

method III.

strong stability preserving Runge-Kutta methods. To prove a priori stability esti-

mates that are sufficient for the error analysis to hold also in the case of nonlinear

shock-capturing we introduced a modified viscosity coefficient, regularized closed

to local maxima of the gradient. Some of the unproven conjectures were verified

numerically, in particular the global high order of the nonlinear scheme applied to

smooth solutions.
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Fig. 6. Zoom of the gradient in the rarefaction for k = 1
4
h, h = 2400−1. Left: method I. Right:

method III.

The numerical investigations showed that the SSP Runge-Kutta method has

excellent Lip+-stability properties without any additional modification of the non-

linear viscosity (3.4) and that the Lip+ stability of the forward Euler method was

substantially improved provided the CFL-condition was strengthened.
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