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A POSTERIORI ERROR ESTIMATION FOR INTERIOR PENALTY
FINITE ELEMENT APPROXIMATIONS OF THE

ADVECTION-REACTION EQUATION∗
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Abstract. In this note we consider residual-based a posteriori error estimation for finite element
approximations of the transport equation. For the discretization we use piecewise affine continuous
or discontinuous finite elements and symmetric stabilization of interior penalty type. The lowest
order discontinuous Galerkin method using piecewise constant approximation is included as a special
case. The key elements in the analysis are a saturation assumption and an approximation result for
interpolation between discrete spaces.
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1. Introduction. A posteriori error estimation and adaptivity for finite element
approximations of elliptic problems has been an active research field for a long time
[2] and is now reaching maturity [26]. These results are fully satisfactory only in cases
where the second order elliptic operator dominates. Indeed, the a posteriori error
estimates that have been proposed for the elliptic problem degenerate for advection–
diffusion-type problems when the advection becomes dominant. When the hyperbolic
character of the problem becomes important, interior and outflow layers form, causing
local large gradients in the solution. In this regime the standard Galerkin method is
unstable, and various stabilized methods have been proposed.

An early attempt to derive a posteriori error estimates in the advection-dominated
regime was proposed by Eriksson and Johnson in [16], using regularization and duality
techniques. Improved energy norm techniques were then proposed by Verfürth in [31],
where semirobust estimates were obtained. Extensions of these ideas to some different
methods were proposed in [5, 23, 27, 15, 33]. However, when the advection dominates,
estimates based on the ideas of [31] fail. More recently Verfürth [32] and Sangalli [29]
have proposed different norms for the a posteriori error estimation that allow for
robust estimators; however, these approaches are not yet completely satisfactory: in
the one case the norm is too weak, and in the other the analysis is only valid in the
one-dimensional case.

In this paper we will consider the extreme case of the advection-reaction problem
for our a posteriori error estimates. This can be seen as the first step to robust
a posteriori error estimation for advection-diffusion equations, handling the difficult
advection dominated case separately, but is also an interesting problem in its own
right.

The case of the advection-reaction equation is less studied than the advection-
diffusion equation. This is mainly due to the fact that whereas the elliptic problem
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has some smoothing properties, the transport equation does not. This lack of smooth-
ing and the nonsymmetry of the problem is what makes standard techniques using
coercivity suboptimal. If the error is measured in weaker norms, some results may
be obtained, but for most cases these weak norms do not measure the quantities of
interest and are difficult to use with adaptivity. Another possibility is to use duality
techniques to derive a posteriori error estimates. However, then the solution of a
continuous dual problem must be analyzed or approximated. For work using duality
techniques or nonstandard norms, see Süli et al. [30, 22].

None of the above cited works, however, yields results comparable to those ob-
tained by the a priori error analysis for the transport equation; in particular they
do not use the stability properties of the method that are crucial to obtain optimal
convergence order.

The aim of the present note is to exploit these stability properties of interior
penalty finite element methods to obtain improved estimates. The idea is to derive a
posteriori error estimates in the same weighted norms that are used for the a priori
error analysis for stabilized methods, without making any assumptions on the regular-
ity of the exact solution. When finite element spaces of globally continuous functions
are used, this norm is given by

‖v‖2h,0,Ξ := ‖vh‖2L2(Ω) + ‖β
1
2
n vh‖2L2(∂Ω) + Ξ‖h̃

1
2β ·∇vh‖2L2(Ω),

where Ω denotes the computational domain with boundary ∂Ω, h denotes the mesh-
size, and β the transport velocity vector field. When Ξ = 1, this corresponds to the
h-weighted graph norm and for Ξ = 0 it reduces to the L2-norm. The lack of smooth-
ing that usually leads to a seemingly unsolvable interpolation problem is circumvented
by the introduction of a saturation hypothesis that allows us to consider only the in-
terpolation error between two discrete spaces. The a posteriori error estimates we
propose are optimal both in the graph norm and the L2-norm, provided the satura-
tion assumption holds. We prove global upper bounds and local lower bounds. The
key ingredients of our analysis is the inf-sup stability of the interior penalty method,
the saturation assumption, and an interpolation estimate between discrete spaces.

The saturation assumption has been extensively used in a posteriori error esti-
mation; see [3, 7, 34, 4, 1]. It is typically needed where the standard techniques for
a posteriori error estimation based on coercivity or smoothing fail, either due to an
indefinite problem or nonconforming approximation. Of special interest in our case is
the reference [7] where the saturation assumption is introduced, due to the use of the
anisotropic H(div,Ω)-norm and lack of regularity of the exact solution. In a similar
fashion as in [7] we introduce an anisotropic mesh-dependent norm and estimate the
discrete error in this norm. In our case continuity of the bilinear form is guaranteed
thanks only to the presence of the stabilizing terms that gives inf-sup control of the
h-weighted streamline derivative. Therefore, the estimators that we propose herein
are invalid for the standard Galerkin method, and numerical experiments show that,
without stabilization, they fail to produce appropriate adaptive meshes even in cases
where the exact solution is smooth. For elliptic problems, the saturation assumption
can be proved to be equivalent with resolving the problem data on the computational
mesh [13].

The analysis presented here is valid both in the case of continuous, piecewise
affine approximations (using the continuous interior penalty method (CIP) [14, 11, 8])
and discontinuous, piecewise affine or constant approximations (the discontinuous
Galerkin (DG) method DG0, DG1 [28, 25]). In all these cases stability is obtained
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using interior penalty: in the CIP case the gradient jumps over element faces are
penalized, and in the DG case, the jumps of the solution. A salient feature of the
analysis in the case of discontinuous approximation is that it does not use comparison
with a continuous approximation. We also use our estimate in the framework of
goal-oriented a posteriori error estimation to derive a duality-based estimate that is
rigorous and computable, up to the constant from the saturation assumption. The
upshot here is that the residual of the finite element solution of the dual problem is
used in the estimator.

2. The problem setting. Let Ω be a polygon in R2 with outer normal n. We
consider the following advection-reaction equation:

Find u : Ω→ R such that

(2.1)

{
β·∇u+ µu = f,

u|∂Ω− = g,

where f ∈ L2(Ω), g ∈ L2(∂Ω−), the vector field β is chosen in [Lip(Ω)]2, and µ ∈ R,
µ > 0. Assume that µ − 1

2∇·β ≥ µ0 > 0 and that infx∈Ω |β| ≥ c > 0. The inflow
boundary is defined by ∂Ω± = {x ∈ ∂Ω; ±β(x)·n(x) > 0}. Define

W = {w ∈ L2(Ω); β·∇w ∈ L2(Ω)},

and observe that functions in W have traces in L2(∂Ω;β·n). The problem (2.1) is
well posed in W (see [17]).

2.1. Definitions. Let Th be a conforming subdivision of Ω ⊂ R2 into non-
overlapping triangles. For an element T ∈ Th, hT denotes its diameter. Set h =
maxT∈Th hT , and let h̃ be the function such that h̃|T = hT . Assume that the family
of meshes {Th}h>0 is shape-regular, i.e., there exists cT such that for all h > 0 and
for all T ∈ Th

hT

ρT
≤ cT ,

where ρT denotes the largest inscribed ball in T . Let Fi denote the set of interior
faces of Th, i.e., the set of faces that are not included in the boundary ∂Ω, let Fe

denote the faces that are included in ∂Ω, and define Fh = Fi∪Fe. For a face F ∈ Fh,
hF denotes its length, and let hF be the function such that hF |F = hF . We will also
use the set of faces in the neighborhood of a triangle FT = {F : F̄ ∩ T̄ += ∅}.

The scalar product on a subset X ⊂ Ω will be denoted (u, v)X =
∫
X uv dx on

the elements (u, v)Th =
∑

T∈Th

∫
T uv dx and on the faces of the mesh (u, v)Fh =

∑
F∈Fh

∫
F uv ds, with the corresponding norms ‖u‖X = (u, u)

1
2
X , ‖u‖Th = (u, u)

1
2
Th
,

and ‖u‖Fh = (u, u)
1
2
Fh

. For s ≥ 0, let Hs(Th) be the space of elementwise Sobolev
Hs–functions, and denote its norm by ‖ · ‖Hs(Th).

For v ∈ H2(Th) and an interior face F = T1 ∩ T2 ∈ Fi, where T1 and T2 are
two distinct elements of Th with respective outer normals n1 and n2, also define
∆F := T1∪T2 and ∆T := ∪F∈∂T∆F . Define the jump of the normal component of the
gradient by [∇v]|F = ∇v|T1 ·n1 +∇v|T2 ·n2 and the jump of the tangential component
of the gradient by [∇v]τ = ∇v|T1 ×n1 +∇v|T2 ×n2. Similarly, for v ∈ H1(Th), define
the jump [v]|F = v|T1n1 + v|T2n2 and the average {v}|F = 1

2 (v|T1 + v|T2). On outer
faces F = ∂T ∩ ∂Ω, with normal nE pointing out from Ω, the vector valued jump
and the scalar average are defined as [v]|F = v|TnE and {v}|F = v|T , respectively.
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On each triangle we define β∞,T := ‖β‖L∞(T ), βinf,T := minx∈T |β|, and on each face
β∞,F := ‖β‖L∞(F ), βn = |β · nF |, and eβ = β|β|−1. By β̄T we denote the average
value of β|T over the element T . We will assume that the variation of β is bounded
so that ∃c1, c2 > 0 such that β∞,T ≤ c1βinf,T and β∞,T ≤ c2|β̄T |. By the Lipschitz
continuity of β, we deduce that |β(x1)− β(x2)| ≤ LβhT for all x1, x2 ∈ T .

3. The interior penalty finite element formulation. Let

V k
h = {v : v|T ∈ Pk(T ), ∀T ∈ Th}, k ∈ {0, 1} and V C

h = V 1
h ∩ C0(Ω̄).

The analysis is the same for continuous and discontinuous approximations, and the
two cases will not be distinguished unless necessary. Indeed we will use the generic
space Wh which may be chosen as either one of V 0

h , V
1
h , or V

C
h . The interior penalty

method then takes the following form: find uh ∈ Wh such that

(3.1) ah(uh, vh) =

∫

Th

fvhdx+

∫

∂Ω−
βngvhds ∀vh ∈ Wh.

Where the form ah(·, ·) is given by ah(v, w) := a(v, w) +
∑1

i=0 γij
i
h(v, w), with the

bilinear forms a(·, ·) and j(·, ·) defined by

a(v, w) :=
(
µv, w

)
Th

+ (β·∇v, w)Th + ([v], {βv})Fi∪∂Ω− ,

(3.2) j0h(v, w) := (βn[v], [w])Fi , j1h(v, w) := (h2
Fβn|eβ · n|[∇v], [∇w])Fi .

Here γ0 and γ1 denote positive parameters. When discontinuous approximation is
being used, one may take γ1 = 0, and we will assume this is the case below. We will
assume that γ0 := 1

2 , corresponding to the standard upwind flux.

3.0.1. Technical results. For the analysis, we need the following results of
finite element analysis. For a proof, see a standard textbook such as [17] or [12].

Lemma 3.1 (trace inequality). Let v|T ∈ H1(T ); then

(3.3) ‖v‖∂T ≤ CT (h
− 1

2
T ‖v‖T + h

1
2
T ‖∇v‖T ).

Lemma 3.2 (inverse inequality). Let v|T ∈ Pk(T ), k ≥ 0; then

(3.4) ‖∇v‖T ≤ CIh
−1
T ‖v‖T .

In this paper c > 0 denotes a generic constant that can change at each occurrence.
c is independent of the meshsize h̃, but not necessarily of γ1, CT , CI , or the mesh
regularity.

3.1. A priori analysis. Optimal a priori error estimates have been derived for
the formulation (3.1). Typically, such estimates are obtained in the triple norm,

(3.5) ‖vh‖2h,γ,Ξ := µ0‖vh‖2Th
+

1

2
‖β

1
2
n [vh]‖2Fh

+ Ξ‖h̃ 1
2 |β| 12 eβ ·∇vh‖2Th

+ γ1j
1
h(vh, vh),

Ξ ∈ {0, 1}.

Following [11, 18, 9] we may show the following inf-sup condition that gives control
of the h-weighted graph norm (under suitable conditions on the variation of β).
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Theorem 3.3 (stability). For all vh ∈ Wh there holds

(3.6) ‖vh‖h,γ,Ξ ≤ cγ sup
wh∈Wh

ah(vh, wh)

‖wh‖h,γ,Ξ
.

Using the stability given by the inf-sup condition of (3.6) in combination with the
consistency of the method (3.1) and the approximation properties of the space Wh,
the following a priori error estimate is obtained.

Lemma 3.4. Let u be the solution of problem (2.1) and uh the solution of problem
(3.1); then there holds

(3.7) ‖u− uh‖h,0,Ξ + γ
1
2
1 j

1
h(uh, uh)

1
2 ≤ chs− 1

2 ‖u‖Hs(Ω),

where s = min{k + 1, r} for u ∈ Hr(Ω) and r ≥ 1.
Remark 1. The case µ = 0 and ∇ · β = 0 may also be treated. Indeed for these

stabilized methods control of the L2-norm of the solution may be recovered from the
streamline derivative using a suitably chosen weight function. This has been proven
for the DG method in [20] and may be proven for the CIP method by adapting the
analysis of [10].

4. A posteriori error analysis. Denote by Th a uniform refinement of Th with
local meshsize h̃ = h̃/2 and corresponding finite element spaceWh such thatWh ⊂ Wh.

For a T ∈ Th, we will denote by F ◦
T
the set of faces of triangles in Th such that

◦
F ⊂

◦
T ,

i.e., the subgrid faces, the faces in Fh that are not included in a face in Fh. We
assume that there exists cρ > 0 such that for all faces F ∈ F ◦

T
and for all {Th}h there

holds |β̄T · nF | ≥ cρ|β̄T |. Note that this condition depends on the subdivision. It is
easy to see that in two space dimensions there is always one subdivision of each T
such that the condition on β̄ holds true. For instance, compare the two subdivisions
in Figure 1. If |β̄T · n| = 0 for some face in one of the subdivisions, it will be larger
than zero on all faces in the other, since no two interior faces are parallel between the
two types of refinements. It follows that the constant cρ depends only on the shape
regularity constant cT of the mesh family. A consequence of this assumption is that
∃c > 0, depending only on cT such that |β̄×n| ≤ c|β̄ ·n| on the subgrid faces. Finally,
let uh ∈ Wh satisfy

(4.1) ah(uh, vh) =

∫

Th

fvh dx+

∫

∂Ω−
βngvh ds ∀vh ∈ Wh.

(a) Local subdivision Type I (b) Local subdivision Type II

Fig. 1. Two different types of subgrids. |β̄ ·n| can not vanish on one (interior) face in both the
Type I and the Type II subdivisions simultaneously.
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We assume that the following saturation assumption holds uniformly on the family
of meshes {Th}h:

[SA] There exists δ < 1 such that ‖u− uh‖h,0,Ξ ≤ δ‖u− uh‖h,0,Ξ.

Note that the subscript h is the same on both sides of the equality, meaning that
the saturation is assumed to hold for the error in the streamline derivative without
weight. This means that for Ξ = 1 there must hold

‖β ·∇(u− uh)‖Th ≤ δ‖β ·∇(u− uh)‖Th .

Remark 2. Clearly, by (3.7) [SA] is expected to hold for smooth u, i.e., r ≥ 1.
For irregular solutions with interior layers, the saturation assumption may fail for
the streamline derivative, but is expected to hold for the L2-norm of the error on
the interior and the boundary of Ω. Then the analysis proposed below gives an a
posteriori error estimate with Ξ = 0. Note that in this case, for the DG method
the norm also includes the jumps of the discrete solution over element faces. These
can not trivially be bounded by the L2-norm. To show that it is not unreasonable
to believe that saturation in the L2-norm implies saturation also for the jumps, we
here sketch a simple argument showing that convergence of the error in L2-norm must
imply convergence of the stabilization, regardless of the regularity of the underlying
solution. For simplicity, we assume that g = 0. It follows by taking vh = uh in
(3.1) that for both the method using discontinuous approximation and the one using
continuous approximation there holds

µ0‖uh‖2Ω +
1

2
‖β

1
2
n uh‖2∂Ω +

1∑

i=0

γij
i(uh, uh) ≤ (f, uh),

and hence

µ0‖uh‖Ω +
1

2
‖β

1
2
n uh‖∂Ω ≤ ‖f‖Ω.

Similarly, there holds for the continuous problem (2.1)

µ0‖u‖2Ω +
1

2
‖β

1
2
n u‖2∂Ω ≤ (f, u), and hence µ0‖u‖Ω +

1

2
‖β

1
2
n u‖∂Ω ≤ ‖f‖Ω.

Taking the difference of the two inequalities and using the inverse triangle inequality
yields

1∑

i=0

ji(uh, uh) ≤ (f, uh − u) + µ0(‖u‖2Ω − ‖uh‖2Ω) +
1

2
(‖β

1
2
n u‖2∂Ω − ‖β

1
2
n uh‖2∂Ω)

= (f, uh − u) + µ0(‖u‖Ω + ‖uh‖Ω)(‖u‖Ω − ‖uh‖Ω)

+
1

2
(‖β

1
2
n u‖∂Ω + ‖β

1
2
n uh‖∂Ω)(‖β

1
2
n u‖∂Ω − ‖β

1
2
n uh‖∂Ω)

≤ c‖f‖Ω(‖uh − u‖Ω + ‖β
1
2
n (uh − u)‖∂Ω).

(4.2)

It follows that if we have convergence of the error in the L2-norm (on the volume and
on the boundary), the stabilization terms must converge at least with a rate that is
the square root of that of the L2-norm, even in the presence of sharp layers.
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4.1. Upper bounds. First, we need a result on interpolation between discrete
spaces in the following auxilliary norm:

(4.3) ‖wh‖2h,∗ :=
∑

T∈Th

max{µ0,β∞,Th
−1
T }‖wh‖2T+‖β

1
2
∞,F {wh}‖2Fh

+
1∑

i=0

γij
i
h(wh, wh).

Lemma 4.1. Let vh ∈ Wh, and let vh = ikhvh ∈ Wh, where ikh denotes the standard
(elementwise) Lagrange interpolant when Wh = V C

h and the L2-projection onto V k
h

when Wh = V k
h . There holds

(4.4) ‖vh − vh‖h,∗ ≤ c‖vh‖h,0,k.

Proof. First note that µ0‖vh − vh‖2T ≤ cµ0‖vh‖2T , so we can assume that the max
is taken by β∞,Th

−1
T . Using the trace inequality (3.3) and the inverse inequality (3.4),

we obtain

(4.5)
∑

F∈Fh

‖β
1
2
∞,F {vh−vh}‖2F+

1∑

i=0

γij
i
h(vh−vh, vh−vh) ≤ c

∑

T∈Th

β∞,Th
−1
T ‖vh−vh‖2T .

The following local interpolation estimate on T ∈ Th may be proved using norm
equivalence on the reference element and scaling (see [7] for details):

β∞,Th
−1
T ‖vh − vh‖2T ≤ cβ∞,Th

−1
T

∑

F̃∈F◦
T

(
‖h

3
2

F̃
[∇vh]‖2F̃ + ‖h

1
2

F̃
[vh]‖2F̃

)
.

By the assumptions on β and the subgrid mesh, we have β∞,T ≤ c|β̄T · n| on each
face in F ◦

T
. It then follows, since |β̄T − β|T | ≤ Lβh, that

β∞,Th
−1
T ‖h

1
2

F̃
[vh]‖2F̃ ≤ c‖|β̄T · n| 12 [vh]‖2F̃ ≤ c(‖β

1
2
n [vh]‖2F̃ + Lβ‖vh‖2T ).

For the term with the gradient jumps we note that, using the equality

β̄T ·∇uh = β̄T · n∇uh · n+ β̄T × n ·∇uh × n

and since β̄T is constant on the triangle T , we may write

β∞,Th
− 1

2
T ‖h

3
2

F̃
[∇vh]‖2F̃ ≤ c‖hF̃ |β̄ · n| 12 [∇vh]‖2F̃

≤ c

|β̄|
‖hT [β̄ ·∇vh]‖2F̃ + c‖hT |β̄ × n|[∇vh]τ‖2F̃

≤ c(‖h
1
2
T |β|

1
2 eβ ·∇vh‖2T + ‖β

1
2
n [vh]‖2F̃ + Lβ‖vh‖2T ).

In the last inequality we have also used the inverse inequality hF ‖[∇vh]τ‖F ≤ c‖[vh]‖F
and the bound |β̄ × n| ≤ c|β̄ · n|. We conclude by summing over T ∈ Th.

Lemma 4.2 (Galerkin orthogonality). Let uh be the solution of (4.1) in Wh and
uh be the solution of (3.1) in Wh; then, in case k = 0,

ah(uh − uh, vh) = 0 ∀vh ∈ Wh,

and, in case k = 1,

ah(uh − uh, vh) = −γ1
3

4
j1h(uh, vh) ∀vh ∈ Wh.
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Proof. The argument is standard in the case k = 0, since in that case ah(·, ·) is
independent of h. For k = 1 observe that by definition there holds

(4.6) j1h(uh, vh) =
1

4
j1h(uh, vh) ∀uh ∈ Wh and ∀vh ∈ Wh.

It follows that

ah(uh − uh, vh) = ah(uh, vh)− ah(uh, vh) + γ1j
1
h(uh, vh)− γ1j

1
h(uh, vh).

The claim now follows by (3.1), (4.1), and (4.6).
Theorem 4.3 (a posteriori error estimate). If assumption [SA] holds for some

Ξ ∈ {0, 1} (if k = 0, then Ξ = 0), then there exists a constant cδ independent of h,
but not δ or the local mesh geometry such that

‖u− uh‖2h,0,Ξ ≤ cδ
∑

T∈Th

(
η21,T + η22,T + η23,T + η24,T

)
=: η(uh)

2,

where η1,T = α1,T ‖f − β · ∇uh − µuh‖T , η2,T = α2‖β
1
2
n [uh]‖∂T\∂Ω, η3,T =

(1 − α2)γ
1
2
1 ‖β

1
2
n |eβ · nT |

1
2 hT̃ [∇uh]‖∂T\∂Ω, and η4,T = ‖β

1
2
n (uh − g)‖∂Ω−∩∂T , where

α1,T = min {µ− 1
2

0 , h
1
2
Tβ

− 1
2

∞,T )}, α2 = 1 for Wh = V k
h and α2 = 0 for Wh = V C

h .
Proof. Using [SA] we get the bound

‖u− uh‖h,0,Ξ ≤ ‖u− uh‖h,0,Ξ + ‖uh − uh‖h,0,Ξ ≤ δ‖u− uh‖h,0,Ξ + ‖uh − uh‖h,0,Ξ.

Consequently, ‖u − uh‖h,0,Ξ ≤ 2
1
2 (1 − δ)−1‖uh − uh‖h,0,Ξ ≤ c‖uh − uh‖h,γ,Ξ. By

Theorem 3.3, a uniform inf-sup condition holds in Wh for ‖uh − uh‖h,γ,Ξ:

(4.7) ‖uh − uh‖h,γ,Ξ ≤ cγ sup
vh∈Wh

ah(uh − uh, vh)

‖vh‖h,γ,Ξ
.

By Galerkin orthogonality and Lemma 4.2,

ah(uh − uh, vh) = ah(uh − uh, vh − ikhvh) + k 3
4γ1j

1
h(uh, i

k
hvh) = I + II,

where ikhvh ∈ Wh is defined in Lemma 4.1. Now (3.1) is used to eliminate the uh in
the left slot of ah(·, ·). The error is bounded by the residual of uh weighted with the
discrete error vh − ikhvh:

I = ah(uh − uh, vh − ikhvh) = (f, vh − ikhvh)Th + (βng, vh − ikhvh)∂Ω−

− ah(uh, vh − ikhvh)

= (f − β ·∇uh − µuh, vh − ikhvh)Th + (βn(g − uh), vh − ikhvh)∂Ω−(4.8)

− ([uh], {β(vh − ikhvh)})Fi − γ0j
0
h(uh, vh − ikhvh)− γ1j

1
h(uh, vh − ikhvh).

For the weakly consistent jump term, note that (4.6) allows us exchange the subscripts
h and h:

II =
3

4
γ1j

1
h(uh, i

k
hvh) =

3

4
γ1(j

1
h(uh, i

k
hvh − vh) + j1h(uh, vh))

≤ 3

2
γ1j

1
h(uh, uh)

1
2 (j1h(i

k
hvh − vh, i

k
hvh − vh)

1
2 + j1h(vh, vh)

1
2 ).

(4.9)
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Now observe that by (4.8) and the Cauchy–Schwarz inequality

(4.10) |(f, vh − ikhvh)Th + (βng, vh − ikhvh)∂Ω− − ah(uh, vh − ikhvh)|

≤
(

∑

T∈Th

4∑

i=1

η2i,T

) 1
2

‖vh − ikhvh‖h,∗.

Apply Lemma 4.1 in the right-hand side of (4.10):

‖vh − ikhvh‖h,∗ ≤ c‖vh‖h,γ,Ξ,

and in the remaining weakly consistent contribution in the right-hand side of (4.9):

γ1j
1
h(i

k
hvh − vh, i

k
hvh − vh) ≤ ‖vh − ikhvh‖h,∗ ≤ c‖vh‖h,γ,Ξ.

The result follows by dividing by ‖vh‖h,γ,Ξ.
This estimate is optimal for smooth solutions. For u ∈ Hr(Ω), r ≥ 1, and with

s = min{k + 1, r}, η(uh) ≤ chs− 1
2 ‖u‖Hs(Ω) is easily shown using (3.7).

A possibly sharper estimate can be obtained if one makes use of the orthogonality
of the fine to coarse projection in the case of the DG method or uses the global L2-
projection and its orthogonality (instead of the Lagrange interpolant) for the CIP
method. We collect these results in two corollaries.

Corollary 4.4. Under the same assumptions as in Theorem 4.3, when k = 0, 1,
and discontinuous approximation is used, the volume estimator η1,T may be replaced
by

η∗1,T = α1,T (‖f − ikhf‖T + c‖(β − ikhβ) ·∇uh‖T ).

Proof. In the error representation, clearly by the orthogonality of the projection
ikh we have

(f − β ·∇uh − µuh, vh − ikhvh)Th = (f − ikhf − β ·∇uh + ikhβ ·∇uh, vh − ikhvh)Th ,

where µuh vanishes, since here µ ∈ R. The result follows as in the proof of Theorem
4.3, noting that, for k = 1,

‖β ·∇uh − i1h(β ·∇uh)‖T ≤ ‖(β − i1hβ) ·∇uh‖T + ‖i1hβ ·∇uh − i1h(β ·∇uh)‖T
= ‖(β − i1hβ) ·∇uh‖T + ‖i1h(i1hβ ·∇uh − (β ·∇uh))‖T
≤ c‖(β − i1hβ) ·∇uh‖T .

A similar result holds for the CIP method. However, in this case, due to the
continuous approximation space used, the proof needs stronger restrictions on the
variations of the data and the mesh, since we need stability in weighted norm of the
global L2-projection πh : L2(Ω) → V C

h . In particular we assume that the estimate

(4.11) ‖πh(vh − ikhvh)‖h,∗ ≤ c‖vh − ikhvh‖h,∗

holds. This can be proven using the techniques of [6], provided the local variation of
the mesh parameter and the velocity is sufficiently small. We will also use a quasi
interpolant based on nodal local averages iOh : V 1

h → V C
h , defined in each node xi as

(iOh v)(xi) =
1

ni

∑

T :T∩xi )=0

v|T (xi),

where ni denotes the cardinality of the set {T : T ∩ xi += 0}.
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Corollary 4.5. Under the same assumptions as in Theorem 4.3 and assuming
that (4.11) holds, when continuous approximation is used, the volume estimator η1,T
may be replaced by

η∗1,T = α1,T

(
‖f − fh‖T + c‖(β − i1hβ) ·∇uh‖T + c

∑

F∈FT

‖hT̃ [i
1
hβ ·∇uh]‖F\∂Ω

)
,

where fh denotes some suitable approximation of f in Wh.
Proof. This time we proceed as in the proof of Theorem 4.3, but we use πhvh

instead of the nodal interpolant. As before, we may then use orthogonality of the
L2-projection to write

(4.12) (f − β ·∇uh − µuh, vh − πhvh)Th

= (f − fh − (β − i1hβ) ·∇uh + (i1hβ) ·∇uh − iOh ((i
1
hβ) ·∇uh), vh − πhvh)Th .

We now use the following discrete interpolation estimate (see [8]):

‖h
1
2
T ((i

1
hβ) ·∇uh − iOh ((i

1
hβ) ·∇uh))‖T ≤ c

∑

F∈Fh(∆T )

‖hT̃ [(i
1
hβ) ·∇uh]‖F\∂Ω

and conclude in the same fashion as in Theorem 4.3, noting that by (4.11)

‖vh − πhvh‖h,∗ ≤ ‖vh − i1hvh‖h,∗ + ‖πh(vh − i1hvh)‖h,∗ ≤ (1 + c)‖vh − i1hvh‖h,∗.

4.2. Lower bounds. We now prove that the estimator also is a lower bound
of the local error. Indeed, when Ξ = 1, the estimators are upper bounded by the
error and some terms measuring oscillation of data. In the case of the DG method,
the constants in the lower bounds depend only on the size of ∇ · β. For the CIP
method, the stabilization introduces an additional coupling between the convection
and reaction terms, and robustness is only obtained for small enough hT .

Lemma 4.6 (lower bounds). The following lower bounds hold for the estimators
of Theorem 4.3:

(4.13) η1,T ≤ c(‖h 1
2 |β| 12 eβ ·∇(u − uh)‖T + cµ‖µ

1
2
0 (u − uh)‖T ),

(4.14) η2,T + η4,T ≤ c‖β
1
2
n [u− uh]‖∂T ,

and for hT < β∞,T

η3,T ≤ c
(
‖h 1

2 |β| 12 eβ ·∇(u − uh)‖∆T + cµ‖µ
1
2
0 (u − uh)‖∆T

)

+ cβ
− 1

2
∞,T

(
‖h 1

2 (f − fh)‖∆T

+ ‖h̃ 1
2 (β − i1hβ) ·∇uh‖∆T + ‖h̃ 3

2 |∇(β − i1hβ)|∇uh‖∆T

)
,

(4.15)

where fh denotes some suitable discrete representation of f and cµ = µ

µ
1
2
0

.

Proof. The proof of the bound (4.13) follows by using the equation in the estimator

η1,T = α1,T ‖f − β ·∇uh − µuh‖T ≤ α1,T (‖β ·∇(u − uh)‖T + ‖µ(u− uh)‖T ).

For the first term, we may assume that the min in α1,T is taken for β
− 1

2
∞,Th

1
2
T , and it

follows that

α1,T ‖β ·∇(u− uh)‖T ≤ ‖h
1
2
T |β|

1
2 eβ ·∇(u − uh)‖T .
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For the second term, assume that the min is taken for µ
− 1

2
0 , note that

‖µ(u− uh)‖T ≤
(

µ

µ
1
2
0

)
‖µ

1
2
0 (u− uh)‖T ,

and choose cµ ≥ µ

µ
1
2
0

. The second bound (4.14) follows by definition. To prove (4.15),

first note that, since βn|eβ · n| = β2
n|β|−1 and Wh = V C

h , we have

η23,T = γ
1
2
1 ‖βn|β|−

1
2 hT [∇uh]‖2∂T\∂Ω ≤ γ1β

−1
inf,T

∫

∂T\∂Ω
β2
nh

2
T [∇uh]

2ds.

Now we add and subtract the Lagrange interpolant of the velocity field i1hβ:

η23,T ≤ cβ−1
inf,T

∫

∂T\∂Ω

(
h2
T |i1hβ · n|2[∇uh]

2 + h2
T |(β − i1hβ) · n|2[∇uh]

2
)
ds = I + II.

Consider the terms I and II. For I, note that since i1hβ, uh, fh ∈ C0(Ω̄), there holds
|i1hβ · n|2[∇uh]2 = [µuh + i1hβ · ∇uh − fh]2, and as a consequence, again using (3.3)
and (3.4),

I = cβ−1
inf,Tγ1

∫

∂T\∂Ω
h2
T [µuh + i1hβ ·∇uh − fh]

2ds

≤ cβ−1
inf,T ‖h

1
2
T (µuh + (i1hβ) ·∇uh − fh)‖2∆T

≤ cβ−1
∞,T ‖h

1
2
T (µuh + β ·∇uh − f)‖2∆T

+ cβ−1
∞,T ‖h

1
2
T (β − i1hβ) ·∇uh‖2∆T

+ 2cβ−1
∞,T ‖h

1
2
T (f − fh)‖2∆T

.

The upper bound of I now follows after applying the bound for η1,T to the first term
in the right-hand side and the assumed upper bound on hT . For the term II, we use
a trace inequality

II ≤ C2
T (‖h̃

1
2 (β − i1hβ) ·∇uh‖2L2(∆T ) + ‖h̃ 3

2 |∇(β − i1hβ)|∇uh‖2L2(∆T )).

Remark 3. Using the stability estimate (3.6) and the inverse inequality (3.4), one
may prove that the oscillation term coming from the transport term is at worst O(h

1
2 )

and hence is no worse than the oscillation term for f .

4.2.1. Lower bounds when Ξ = 0. If the exact solution contains sharp layers,
the saturation assumption may fail for the streamline derivative. This is illustrated
in the numerical section. A possibility then is to consider the residual estimator as an
upper bound for ‖u−uh‖h,0,0, implying that we control only the L2-norm of the error
on the domain and its boundary for CIP. For DG, we also control the internal jumps.
In this case, however, the above derived lower bounds fail, since we have eliminated
the error in the streamline derivative in the left-hand side, but it is still present in
the right-hand side. Indeed at first sight it is does not seem possible to upper bound
η1,T of Theorem 4.3 by ‖u− uh‖h,0,0.

In this section we will therefore sketch how we still may prove a global lower bound
for the case of the estimator of Corollaries 4.4 and 4.5. Indeed in this case the volume
estimator η1 instead takes the form of data oscillation and penalty terms. Since the
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jumps of the solution for the DG method are an error quantity in ‖u−uh‖h,0,0, we have
the desired lower bound immediately in this case. On the other hand, the internal
jumps are also part of the a posteriori error bound, and hence this lower bound may
seem artificial and of little use. However, for both continuous and discontinuous
approximations, we may now use the bound (4.2) to upper bound the penalty term
by the L2-norms of the error only. This last step, however, introduces a gap that
prevents full optimality. Indeed the L2-norm may at worst converge at double the
rate of the estimator, without violating the lower bound.

Lemma 4.7. Consider the DG method with k = 0, 1. Then the following lower
bound holds:

∑

T∈Th

((η∗1,T )
2 + η22,T ) ≤ c(Osc(f,β) + ‖β

1
2
n [uh]‖2Fi

),

where

Osc(f,β) =
∑

T∈Th

α2
1,T

(
‖f − fh‖2T + ‖(β − i1hβ)∇uh‖2T

)
.

Moreover,
∑

T∈Th

((η∗1,T )
2 + η22,T ) ≤ Osc(f,β) + c‖f‖Ω(‖u− uh‖Ω + ‖β

1
2
n (u − uh)‖∂Ω).

Proof. The first upper bound holds by definition. The second follows from the
energy inequality (4.2).

Lemma 4.8. Consider the CIP method. Then the following lower bound holds:
∑

T∈Th

((η∗1,T )
2 + η23,T ) ≤ Osc(f,β) + c‖f‖Ω(‖u− uh‖Ω + ‖β

1
2
n (u − uh)‖∂Ω),

where

Osc(f,β) =
∑

T∈Th

α2
1,T

(
‖f − fh‖2T + ‖(β − i1hβ)∇uh‖2T + hT ‖|∇(β − i1hβ)|∇uh‖2T

)
.

Proof. It is straightforward to show that

η∗1,T ≤ α1,T

(
‖f − fh‖T + ‖(β − i1hβ)∇uh‖T + hT ‖|∇(β − i1hβ)|∇uh‖T

)

+ c
∑

F∈FT

‖hFβ
1
2
n |eβ · n| 12 [∇uh]‖F\∂Ω.

We conclude by taking the square of η∗1,T , summing over the triangles in Th, and
applying the estimate (4.2), for the continuous approximation, to bound the penalty
term.

4.3. Summary of upper and lower a posteriori bounds. Let us here briefly
summarize what results can be expected for different types of solutions.

1. Smooth solutions (possibly with smooth but steep internal layers):
When the adaptive algorithm has resolved the internal layers, the saturation
assumption [SA] is expected to hold with Ξ = 1. Then applying the analysis
above we have the upper and lower bounds

‖u− uh‖h,0,1 ≤ η(uh) ≤ c‖u− uh‖h,0,1,

where the lower bound may be written on local form.
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2. Nonsmooth solutions:
In the case of nonsmooth solutions, i.e., solutions that have only the minimal
regularity, it is only reasonable to assume saturation for the L2-norm. Thanks
to (4.2) we may assume saturation also for the jumps. We then have the
following global upper and lower bounds:

‖u− uh‖h,0,0 ≤ η(uh) ≤ c(‖u− uh‖
1
2
Ω + ‖βn(u− uh)‖

1
2
∂Ω).

Note that this time there is a gap between the upper and lower bounds.
Indeed the estimator can be proven to converge only at half the order of
the L2-norm. This is because the estimator also includes the jumps of the
solution or of the gradient. These can only be proven to converge at a lower
rate than the L2-norm of the error. If this estimate is sharp, the gap will
lead to a nonuniform efficiency index. This is not observed in our numerical
experiments.

Remark 4 (the role of crosswind diffusion). It is known that the addition of
some weakly consistent crosswind diffusion introduces additional smoothing and can
improve local estimates (see [10]). In the above analysis the addition of crosswind
diffusion changes the assumptions needed. Indeed if we choose βn := β∞,F in the
penalty terms, then the assumption cρ|β̄T | ≤ |β̄T · n| on all faces in the subgrid
can be lifted when using continuous approximation or the low order discontinuous
approximation. In this case the right-hand side of (4.5) is immediately bounded by
the penalty term. On the other hand, the crosswind part of the error estimator
does not allow for an optimal lower bound, since it cannot be upper bounded by
‖u− uh‖h,0,Ξ. It can only be upper bounded using (4.2).

4.4. Goal-oriented a posteriori error estimation. In many cases a posteri-
ori error estimates of functionals of the error are of interest. In this section we will
focus on linear error functionals on the form

Λ(u− uh) =

∫

Th

(u− uh)Ψdx+

∫

∂Ω+

β · n(u− uh)ψds,

where Ψ and ψ are some user-specified functions defining the quantity of interest. We
will here outline how a duality argument may be used to obtain rigorous a posteri-
ori error bounds under the saturation assumption [SA] with Ξ = 0. The constant
from the saturation assumption enters this estimate explicitly. Recall that in the dual
weighted residual method it is assumed that the local norms of certain derivatives
of the dual problem may be accurately approximated, which make a saturation as-
sumption enter implicitly (see, i.e., [22]). In the analysis we propose below, [SA] is
applied to a dual solution ϕ and its finite element solution ϕh. If the goal function is
some average with smooth weight, the dual solution will be smooth, implying that the
saturation assumption is satisfied. Note that the convergence rates of the estimates
proposed below are completely independent of the regularity of u. Indeed the rate
of convergence will depend only on the smoothness of ϕ and hence on Ψ, the error
quantity. First, we will present the fundamental duality property that holds, thanks
to the dual consistency of the methods considered. Then we will use this dual consis-
tency and show an a priori error estimate in the dual norm of H1 that does not need
regularity of u. Finally, we will derive the goal-oriented a posteriori error estimate.

To this aim we introduce the following dual problem:

(4.16)
(µ−∇ · β)ϕ − β ·∇ϕ = Ψ in Ω,

ϕ|∂Ω+ = ψ.
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The variational formulation of this problem is as follows: Find ϕ ∈ W such that
a(v,ϕ) = Λ(v) for all v ∈ W . The finite element approximation is given by the
following: Find ϕh ∈ Wh such that

(4.17) ah(vh,ϕh) = Λ(vh) ∀vh ∈ Wh.

For the interior penalty method (3.1), the following duality relation holds.
Lemma 4.9 (duality). Let u, uh, ϕ, and ϕh be the solutions of (2.1), (3.1),

(4.16), and (4.17), respectively. Then there holds

(4.18) Λ(u− uh) =

∫

Th

(ϕ− ϕh)fdx+

∫

∂Ω−
βn(ϕ− ϕh)gds.

Proof. Using the linearity of the functionals and the definitions of the problems
(2.1), (3.1), (4.16), and (4.17) we have

Λ(u− uh) = a(u,ϕ)− ah(uh,ϕh) =

∫

Th

(ϕ− ϕh)fdx+

∫

∂Ω−
βn(ϕ− ϕh)gds.

Lemma 4.10 (a priori error estimate in a dual norm). Assume that f ∈ L2(Ω)

and β
1
2
n g ∈ L2(∂Ω−); then there holds

‖u− uh‖(H1(Ω))′ := sup
Ψ∈H1(Ω)

‖Ψ‖H1(Ω) )=0

|(u− uh,Ψ)Ω|
‖Ψ‖H1(Ω)

≤ c
(
‖f‖2Th

+ ‖β
1
2
n g‖2∂Ω−

) 1
2

h
1
2 ,

with c independent of u and h, but not of the mesh regularity.
Proof. By (4.18) with ψ = 0 we may write

|(u− uh,Ψ)Ω| ≤
(
‖f‖2Th

+ ‖β
1
2
n g‖2∂Ω−

) 1
2
(
‖ϕ− ϕh‖2Th

+ ‖β
1
2
n (ϕ− ϕh)‖2∂Ω−

) 1
2

.

It follows from the a priori error estimate (3.7) that

(
‖ϕ− ϕh‖2Th

+ ‖β
1
2
n (ϕ− ϕh)‖2∂Ω−

) 1
2 ≤ ch

1
2 ‖ϕ‖H1(Ω).

We conclude by applying the following regularity estimate ‖ϕ‖H1(Ω) ≤ c‖Ψ‖H1(Ω)

(see [19, 24]), dividing with ‖Ψ‖H1(Ω), and taking the supremum over all nonzero Ψ
in H1(Ω).

Theorem 4.11 (a posteriori estimate for linear functionals). Let Ψ ∈ L2(Ω)

and β
1
2
nψ ∈ L2(∂Ω+). Assume that the saturation assumption [SA], with Ξ = 0, is

satisfied for the dual solution ϕ and its approximation ϕh. Then there holds

|Λ(u− uh)| ≤ cf,g,δ

{
∑

T∈Th

(
η21,T + η22,T + η23,T + η24,T

)
} 1

2

,

where η1,T = α1,T ‖Ψ+ β ·∇ϕh − (µ −∇ · β)ϕh‖T , η2,T = α2‖β
1
2
n [ϕh]‖∂T\∂Ω, η3,T =

(1 − α2)γ
1
2
1 ‖β

1
2
n |eβ · nT |

1
2 hT [∇ϕh]‖∂T\∂Ω, and η4,T = ‖β

1
2
n (ϕh − ψ)‖∂Ω+∩∂T , with the

weights α1,T = min {µ− 1
2 , h

1
2
Tβ

− 1
2

∞,T )}, α2 = 1 for Wh = V k
h and α2 = 0 for Wh = V C

h .
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Proof. First apply a Cauchy–Schwarz inequality to the right-hand side of (4.18)
to obtain

|Λ(u− uh)| ≤
(
‖f‖2Th

+ ‖β
1
2
n g‖2∂Ω−

) 1
2

×
(
‖ϕ− ϕh‖2Th

+ ‖β
1
2
n (ϕ− ϕh)‖2∂Ω−

) 1
2

.

(4.19)

Now use Theorem 4.3, with Ξ = 0, to derive an upper bound of the dual approximation
error in the right-hand side of (4.19).

Remark 5. Upper bounds of the type given in Corollaries 4.4 and 4.5 may be
derived for the goal-oriented case as well.

5. Numerical example. In this section we will present some numerical expe-
riences using the a posteriori error estimate of Theorem 4.3. We will apply both
the DG method and the CIP method to a problem with known solution. A simple
adaptive algorithm is proposed, and computations are performed both on uniformly
refined unstructured meshes and on adaptive meshes. For all the computations, we
have used the finite element package FreeFem++ [21].

First, we introduce the model problem chosen for the study. Define the domain
by Ω := {(x, y) ∈ (0, 1) × (0, 1)}. Consider the problem of seeking u : Ω → R such
that

{
µu+ β·∇u = 0 in Ω,

u = g on ∂Ω−,

with

β(x, y) =

(
y + 1
−x

)
1√

x2 + (y + 1)2
, µ = 0.1,

and g(x, y) chosen so that the exact solution writes

u(x, y) = e
µ
√

x2+(y+1)2 arcsin( y+1√
x2+(y+1)2

)
arctan

(√
x2 + (y + 1)2 − 1.5

ε

)
.

The method (3.1) was used with
• DG0, Wh = V 0

h , γ0 = 0.5, and γ1 = 0;
• DG1, Wh = V 1

h , γ0 = 0.5, and γ1 = 0;
• CIP, Wh = V C

h , γ0 = 0, and γ1 = 0.01.
To test how well the estimators work with adaptive refinement, we implemented a
simple adaptive algorithm: all elements are refined for which η2T ≥ 0.5maxT∈Th η2T ,
where η2T :=

∑4
i=1 η

2
i,T .

We present results on two problems with different stiffness of the layer. In the
first case we choose ε = 0.01. Here the layer is fully resolved under refinement, and
the methods are optimally convergent. In the second case we take ε = 10−8, and the
layer is never resolved on the scales considered here. Indeed in the second case the
solution can be considered discontinuous on the meshsizes used.
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(a) Initial mesh (b) Adapted mesh, ε = 0.01 (c) Contour lines, CIP, ε =
0.01

Fig. 2. Some figures illustrating the problem setup.

Table 5.1
Symbols used to distinguish the different methods in the graphics.

Method Adaptive Uniform
CIP ! filled !
DG0 ! filled !

DG1 ! filled !
Galerkin ◦ never used

Table 5.2
Guide to line types used to indicate different error quantities.

Error quantity ‖ikhu− uh‖Ω ‖β
1
2
n [ikhu− uh]‖Fh

‖h
1
2 β

1
2
n eβ ·∇(u− uh)‖Ω η(uh)

Line type dotted dash-dot dashed full

The initial mesh, an adapted mesh, and the contourlines of a solution are pre-
sented in Figure 2; the initial meshsize is h̃ ≈ 0.1.

In the a posteriori error estimate Theorem 4.3, we have set the constant cδ = 1
in all the cases considered. The efficiency index is defined by

ξeff =
η(uh)

‖u− uh‖h,0,Ξ
.

In view of Remark 1 we have taken µ0 = 1 in ‖u − uh‖h,0,Ξ. To study when the
saturation assumption is satisfied, we have also performed computations on unstruc-
tured but uniformly refined meshes in both cases. In the smooth case the saturation
assumption holds for the quantity ‖u − uh‖h,0,1, but in the nonsmooth case it fails
for the error in the streamline derivative. In that case we have used Ξ = 0 in the
computation of the efficiency index. In all graphics the error quantities or efficency
indices have been plotted against the number of degrees of freedom N . Explications
to the symbols in the graphics are given in Tables 5.1 and 5.2.

5.1. Smooth case, ε = 0.01. In this case the problem exhibits a sharp layer,
which can be completely resolved with a reasonable number of degrees of freedom. To-
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0.1

1

(a) L2-error for solution using adaptive
standard Galerkin (’o’) vs. uniform or
adaptive CIP (’!’)

100 1000 10000 100000 1x106

0.00001

0.0001

0.001

0.01

0.1

1

(b) Convergence in L2-norm of the meth-
ods

100 1000 10000 100000 1x106

1

(c) Comparison of efficiency indices ε = 10−2

Fig. 3. Errors and efficiencies for smooth solutions, ε = 0.01. See Tables 5.1 and 5.2 for a
key to the graphics. All quantities are plotted against the number of degrees of freedom N . The full
line without markers has slope N−1, which is the optimal convergence in the L2-norm for smooth
problems.

show that stabilization is necessary even in this case, we first run the adaptive algo-
rithm using the standard Galerkin method (i.e., (3.1) with Wh = V C

h and γ1 = 0)
and compare with the CIP method using either uniform refinement or adaptive refine-
ment. In Figure 3(a) we see that the standard Galerkin method with adaptivity does
not manage to match the CIP method using uniform refinement. In Figure 3(b) we
plot the error in the L2-norm for the three stabilized methods considered, both using
adaptive refinement and using uniform refinement. The adaptive CIP method needs
the least number of degrees of freedom to arrive at a certain precision. In Figures
4 and 5 we give the convergence of the error estimator and all the error quantities
for uniform and adaptive refinement for all three methods. For reference, we give
the slope of optimal convergence N−1/2 for DG0 and N−1 for DG1 and CIP, where
N denotes the number of degrees of freedom in the computation. These orders are
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100 1000 10000 100000 1x106

0.00001

0.0001

0.001

0.01

0.1

1

(b) DG1, uniform ref., ε = 0.01
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(c) CIP, uniform ref., ε = 0.01

Fig. 4. Convergence under uniform refinement, ε = 0.01. See Tables 5.1 and 5.2 for a key to
the graphics. All quantities are plotted against the number of degrees of freedom N . The full line
without markers represents the slope N−1/2 for DG0 and N−1 for DG1 and CIP .

indicated in the graphics with full lines with ×-symbols at the endpoints, both in the
cases of uniform and adaptive refinement. DG0 only reaches its optimal convergence
at the end of the adaptive refinement.

When ε = 0.01 and the problem is solved using uniform refinement, there is a
plateau during which convergence is rather poor and the optimal convergence rate
is obtained only as the layer is resolved. This can be seen in Figure 4(b) for DG1
and 4(c) for CIP. DG0 never reaches the asymptotic range when uniform refinement
is used. Some discrete errors show superconvergence on uniformly refined meshes,
probably because the finite element approximation is compared to the interpolant
of the exact soution. Note in particular the superconvergence of the error in the
streamline derivative for the CIP method when the meshes enter the asymptotic
range. In the adaptive case, Figure 5, the plateau due to underresolution is no longer
visible and both DG1, and CIP has optimal convergence in the L2-norm already on
the coarsest meshes.
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(a) DG0, adaptive ref., ε = 0.01
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(b) DG1, adaptive ref., ε = 0.01
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(c) CIP, adaptive ref., ε = 0.01

Fig. 5. Convergence under adaptive refinement, ε = 0.01. See Tables 5.1 and 5.2 for a key to
the graphics. All quantities are plotted against the number of degrees of freedom N . The full line
without markers represents the slope N−1/2 for DG0 and N−1 for DG1 and CIP .

The efficiency indices (with Ξ = 1) are given in Figure 3(c). The DG1 method us-
ing adaptive refinement has an efficiency index very close to 1 and DG0 with adaptive
refinement also seems to converge to 1. The CIP method with adaptive refinement
has an efficiency index of around 1.5. The strong growth of the efficiency index when
using uniform refinement is due to the above-mentioned superconvergence.

5.2. Discontinuous case, ε = 10−8. Here the layer is so stiff that it is never
resolved and can be considered as a discontinuity. Moreover, using uniform refinement,
we show in Figure 6(a) that the saturation assumption [SA] is not satisfied for the
error in the streamline derivative, neither for the CIP method nor for the DG1 method.
Therefore, we consider only the a posteriori error estimate of Theorem 4.3 in the case
Ξ = 0, and we compute the efficiency index using Ξ = 0. Although the estimator
fails to capture the error in the streamline derivative, it does a good job of prediciting
the convergence of the error in the L2-norm in the interior and on the boundary,
as can be seen in the efficiency indices of Figure 6(c). In Figure 6(b) we compare
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Fig. 6. Errors and efficiencies, ε = 10−8. See Tables 5.1 and 5.2 for a key to the graphics.

the error in the L2-norm for the different methods. In Figures 7 and 8 we give
the values of the estimator η(uh) and the error quantities for all three methods ((a)
DG0; (b) DG1; (c) CIP), both using uniform and adaptive refinement. The adaptive
algorithm gives the order O(N− 1

3 ) when using the DG1 method and the CIP method,
but only O(N− 1

5 ) for DG0. These orders are indicated in the graphics with full
lines with ×-symbols at the endpoints, both in the cases of uniform and adaptive
refinement.

6. Conclusion. In this paper we have derived a posteriori error estimates under
a saturation assumption using an h-weighted graph norm. In the case where the
saturation assumption holds for the graph norm, optimal upper and lower bounds are
proven. For discontinuous solutions, numerical investigations show that the saturation
assumption may fail for the error in the streamline derivative. In this case we proved
upper and lower bounds for the L2-error only.
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Fig. 7. Convergence under uniform refinement, ε = 10−8. See Tables 5.1 and 5.2 for a key to
the graphics. All quantities are plotted against the number of degrees of freedom N . The full line
without markers represents the slope N−1/5 for DG0 and N−1/3 for DG1 and CIP .

We then proved a goal-oriented a posteriori error estimate that is easily com-
putable. In this case the saturation assumption must hold for the dual problem and
introduces an unknown constant. Note that in this case the convergence of the es-
timator depends only on the regularity of the dual problem. If the data of the dual
problem are smooth, indicating that the goal quantity is some average, the finite el-
ement solution of the dual problem is expected to have optimal convergence. This
gives some more evidence that average quantities are easier to compute than norms
of the error. Indeed averages are no more difficult to compute for very irregular u
than for regular ones.

We have studied the performance of the above estimator numerically on a model
problem and have found excellent agreement between the computed and estimated
error.
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Fig. 8. Convergence under adaptive refinement, ε = 10−8. See Table 5.1 and 5.2 for a key to
the graphics. All quantities are plotted against the number of degrees of freedom N . The full line
without dots represents the slope N−1/5 for DG0 and N−1/3 for DG1 and CIP .

All the results use the control of ‖h̃ 1
2β · ∇uh‖Th in a crucial way. Numeri-

cally, we give evidence that if this control is lacking, i.e., when using a standard
Galerkin method, the above derived estimator fails to produce a reliable adaptive
algorithm.

REFERENCES

[1] B. Achchab, S. Achchab, and A. Agouzal, Some remarks about the hierarchical a posteriori
error estimate, Numer. Methods Partial Differential Equations, 20 (2004), pp. 919–932.
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[22] P. Houston, R. Rannacher, and E. Süli, A posteriori error analysis for stabilised finite
element approximations of transport problems, Comput. Methods Appl. Mech. Engrg., 190
(2000), pp. 1483–1508.

[23] G. Kunert, A posteriori error estimation for convection dominated problems on anisotropic
meshes, Math. Methods Appl. Sci., 26 (2003), pp. 589–617.

[24] P. D. Lax and R. S. Phillips, Local boundary conditions for dissipative symmetric linear
differential operators, Comm. Pure Appl. Math., 13 (1960), pp. 427–455.

[25] P. Lesaint and P.-A. Raviart, On a finite element method for solving the neutron transport
equation, in Mathematical Aspects of Finite Elements in Partial Differential Equations
(Proc. Symposium, Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1974) Publication
33, Math. Res. Center, Univ. of Wisconsin-Madison, Academic Press, New York, 1974,
pp. 89–123.

[26] K. Mekchay and R. H. Nochetto, Convergence of adaptive finite element methods for general
second order linear elliptic PDEs, SIAM J. Numer. Anal., 43 (2005), pp. 1803–1827.

[27] G. Rapin and G. Lube, A stabilized scheme for the Lagrange multiplier method for advection-
diffusion equations, Math. Models Methods Appl. Sci., 14 (2004), pp. 1035–1060.

[28] W.H. Reed and T.R. Hill, Triangular mesh methods for the neutron transport equation,
Technical report LA-UR-73-479, Los Alamos Scientific Laboratory, Los Alamos, NM, 1973.

[29] G. Sangalli, Robust a posteriori estimator for advection-diffusion-reaction problems, Math.
Comp., 77 (2008), pp. 41–70.
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