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Abstract 

Vascular endothelial growth factor A (VEGF-A) is a validated therapeutic target in a number 

of angiogenic- and vascular permeability-related pathologies, including certain cancers and 

potentially blinding diseases such as age-related macular degeneration and diabetic 

retinopathy. We and others have shown that VEGF-A also plays an important role in 

neuronal development and neuroprotection, including in the neural retina. Antagonism of 

VEGF-A function might therefore present a risk to neuronal survival as a significant side 

effect. Here we demonstrate that VEGF-A acts directly on retinal ganglion cells (RGCs) to 

promote survival. VEGFR-2 signalling via the PI3K/Akt pathway was required for the 

survival response in isolated RGCs. These results were confirmed in animal models of 

staurosporine-induced RGC death and experimental hypertensive glaucoma. Importantly, we 

observed that VEGF-A blockade significantly exacerbated neuronal cell death in the 

hypertensive glaucoma model. Our findings highlight the need to better define the risks 

associated with use of VEGF-A antagonists in the ocular setting. 
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Introduction 

VEGF-A was initially identified as a vascular permeability factor and endothelial cell 

mitogen. Since then, it has been shown to have numerous roles outside the vasculature, 

perhaps most significantly in the nervous system. Neurons express VEGFR-1 and VEGFR-2, 

and are able to respond to VEGF-A 
1
.  Furthermore, neuropilins, which are important 

receptors for neuronal development and function, are also co-receptors for the heparin-

binding VEGF164 and VEGF188 isoforms 
2
. Studies have revealed neuro-developmental, 

neurotrophic and neuroprotective roles for VEGF-A in a variety of nervous tissues. In vitro, 

VEGF-A can protect neurons against hypoxia, glutamate excitotoxicity, and deprivation of 

serum, oxygen or glucose 
3-5

, as well as mediate neuronal migration, axonal outgrowth and 

Schwann cell proliferation 
6, 7

. In vivo, VEGF-A can rescue retinal neurons following optic 

nerve axotomy 
8
, protect neural tissues through hypoxic-preconditioning in ischaemia-

reperfusion injury 
9
, improve function in rodent models of amyotrophic lateral sclerosis 

10
 and 

cerebral ischaemia 
11

, and mediate neuroprotection during development via the co-receptor 

neuropilins 
12

. VEGF-A appears to exert these effects directly on neuronal cells, 

independently of its vascular actions, and may even be important for maintenance of neuronal 

circuitry 
13

.  

 

A better understanding of VEGF-A’s roles in the nervous system is critical, given that 

antagonism of VEGF-A function is used as a therapeutic strategy for numerous pathologies, 

including various types of cancer, choroidal neovascularization associated with age-related 

macular degeneration, and macular oedema associated with diabetes mellitus and retinal vein 

occlusion 
14, 15

. This therapeutic strategy is also being explored for additional conditions in 

which vascular growth and permeability are important, such as neovascular glaucoma and 

fibrotic complications of glaucoma filtration surgery 
16

. Given the functional and protective 
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roles of VEGF-A in the nervous system, these treatments might have unexpected side effects 

on neural function, particularly in the eye. 

 

With this in mind, we sought to explore the mechanism by which VEGF-A exerts its 

neuroprotective effects.  We first determined if VEGF-A can act directly on isolated RGCs. 

Having established that VEGF-A directly prevents RGC apoptosis via VEGFR-2 and 

phosphoinositide-3-kinase (PI3K)/Akt signalling, we used two different animal models to 

study RGC death in vivo. Our findings suggest a neuroprotective role for VEGF-A in models 

of acute toxicity and hypertensive glaucoma, and highlight the need for rigorous assessment 

of the long-term impact of VEGF-A inhibition on retinal neurons. 

 

 Methods 

Animals 

All animals were obtained from Harlan Laboratories and used according to Home Office 

guidelines. 

 

RGC isolation and culture 

We used an immunomagnetic cell separation protocol based on Sappington et al.. (2006) 
17

, 

with modifications. Retinas from postnatal day 1 Sprague-Dawley rats were dissociated as 

previously described. To ensure purity of RGCs, we removed macrophages first. The pellet 

was resuspended in Dulbecco’s Modified Essential Media (DMEM; Invitrogen) with rabbit 

anti-rat-macrophage antiserum (1:100, Accurate Chemical, Westbury, NJ). The solution was 

then incubated with goat anti-rabbit secondary conjugated to magnetic microbeads, and 

separated using an autoMACS (Miltenyi Biotec, Germany). The negative fraction was 

incubated with mouse anti-rat Thy1.1 antibody (1:125, BD Pharmingen, San Diego, CA, 
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followed by secondary rat anti-mouse IgG1 antibody conjugated to magnetic beads (Miltenyi 

Biotec). AutoMACS separation was carried out, leaving Thy1.1 positive RGCs, which are 

reported to comprise 93% of Thy1.1-positive cells in the retina
18

. 

Prior to seeding, culture vessels were coated with poly-d-lysine (0.01 mg/ml; Sigma-Aldrich, 

Dorset, UK), and laminin (0.01 mg/ml; Roche Applied Science, UK). Cells were seeded in 4-

well plates (Nunc, Roskilde, Denmark) on 13 mm glass coverslips at 2.5x10
4
 cells/well, and 

5x10
5
 cells/well on 12-well plates for real-time PCR. Cells were grown in serum-free 

Neurobasal-A medium as previously described 
17

, and maintained at 37°C in 5% CO2. 

Because RGCs require growth factors to survive, it was necessary to dissect protective 

properties of VEGF-A from those offered by growth factors already present. Cells received 

full medium at day in vitro (DIV) 0 and DIV 1, then no further medium until treatment on 

DIV 5. This ensured sufficient cells survived for assays without masking the beneficial 

effects of VEGF-A by other neuroprotectants. Mouse VEGF164, VEGF120 (R&D Systems, 

Abingdon, UK), VEGF-E (Isolate D1701 with His tag, CRV007, Cell Sciences, Canton, 

MA), PlGF-1 and PlGF-2 (Peprotech, London, UK), at 2.5 nM final concentration, were 

added in Neurobasal-A on DIV 5, 24 hours before toxicity treatment. These were added in 

media minus supplements or growth factors to media covering the monolayer, as removal of 

all survival factors was too damaging. For H2O2 treatment, cell culture medium was removed, 

and 500 µl 10 µM H2O2 +/- VEGF receptor (VEGFR) ligands in Neurobasal-A was added for 

5 hours. Due to staurosporine (SSP) potency, it was necessary to add this onto media already 

present. SSP (1 µM) +/- VEGFR ligands were added for 24 hours in Neurobasal-A. The PI3K 

inhibitors LY-294,002 (0.1-10 µM) and wortmannin (0.3-30 nM) were added 10 minutes 

prior to VEGFR agonist pre-treatment in Neurobasal-A. Pan-caspase inhibitors Z-VAD-Fmk 

and Q-VD-Oph, used individually or in combination, were added simultaneously with H2O2 
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or SSP at 100 µM. Equivalent concentrations of dimethyl sulphoxide (DMSO) were included 

as controls for SSP, PI3K and caspase inhibitor experiments. 

 

Cell survival assay 

Cell survival was determined using calcein AM dye to quantify viable cells remaining 

following treatments, based on previously published methods
19

. Calcein AM is a cell 

permeable, fluorogenic esterase substrate, which is hydrolysed by intracellular esterases in 

living cells and converted into the fluorescent product calcein. We photographed 3 random 

non-overlapping fields of each well, on duplicate coverslips at 10x magnification using a 

BX51 epifluorescence microscope with a Retiga SRV camera (QImaging, BC, Canada). At 

least 200 cells were counted per N, using an automated cell counting programme (Image Pro 

Plus 6.2, Media Cybernetics, San Diego, CA). Survival rate was expressed as a percentage of 

the total number of cells in control wells at each time point. 

 

Real-time PCR 

For in vitro real-time PCR, cells received full media, plus or minus 2.5 nM VEGF164 or 

PlGF-1, at DIV 1, -2 and -5. At DIV 7, total RNA was isolated using the RNEasy kit 

(Qiagen, Sussex, UK). For in vivo studies, eyes were stored in RNAlater (Invitrogen) until 

RNA was extracted. Real-time PCR was conducted using the Taq-Man Gene Expression 

Assay (Applied Biosystems, Warrington, UK). To detect expression of the target gene, the 

following assays were used: VEGF (Rn00582935_m1), VEGFR-2 (Rn00564986_m1), 

VEGFR-1 (RN00570815_m1), and β-actin (RN00667869_m1). Expression levels of target 

genes were determined by the relative quantification method using β-actin as an endogenous 

control.  
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TUNEL staining 

The terminal deoxynucleotidyl transferase-mediated dUTP nick-labelling (TUNEL) assay 

quantified apoptotic cells in vitro and in whole mount retinas, according to manufacturer’s 

instructions (Promega, Southampton UK). For RGCs in vitro, cells were fixed in 4% 

paraformaldehyde (PFA) for 15 minutes, permeabilised with 0.2% Triton X-100 in PBS (T-

PBS), before the TUNEL reaction. Coverslips were mounted on glass slides, and images of 6 

non-overlapping fields taken from duplicate coverslips at 10x magnification using an 

Olympus BX51 microscope (Essex, UK) with Retiga SRV camera (QImaging, BC, Canada). 

4’,6-diamidino-2-phenylindole (DAPI)- and TUNEL-positive cells were counted; minimum 

of 500 cells/coverslip. The number of TUNEL-positive cells was subtracted from DAPI-

positive cells to give TUNEL-negative (non-apoptosing) cells, and averaged per field. Each N 

represents independent cell separations. 

For whole mounts, animals were CO2 asphyxiated, then eyes fixed in 4% PFA. Retinas were 

permeabilised in 3% T-PBS for 2 hours. The TUNEL protocol was carried out, then retinas 

washed in 0.3% T-PBS with 5 µM DAPI then flat-mounted in Vectashield (Vector 

Laboratories, Peterborough, UK). To quantify TUNEL-positive neurons, we used a Zeiss 700 

confocal microscope (Zeiss, Oberkochen, Germany), taking 10 µm z-stacks through the 

ganglion cell layer (GCL) at 20x magnification. Morphological criteria discriminated non-

neuronal (endothelial and glial) from neuronal cells. We took 3 images on each of the 4 

petals; close to the optic nerve, the middle, and periphery of the retina, giving 12 images per 

whole mount and sampling circa 7000 cells. Areas were selected using only DAPI, and 

investigators masked to treatment groups.  

 

Acute toxicity model 
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Male 10-week-old C57/Bl6 mice were anaesthetised with 100 mg/kg ketamine and 0.5 mg/kg 

xylazine, and pupils dilated with 2.5% phenylephrine hydrochloride and 1.0% tropicamide 

(Bausch and Lomb, Surrey, UK). For pre-treatment, bilateral intravitreal injections of 4 pmol 

VEGF120 or PBS vehicle were administered in 1 µl volume prior to injecting SSP or vehicle. 

Mice recovered for 24 hours after initial injection, then 1 nmol SSP or 10% DMSO vehicle 

+/- wortmannin in 1 µl was administered intravitreally. Animals were sacrificed 24 hours 

later by CO2 asphyxiation. Eyes were enucleated and fixed in 4% PFA for 4 hours for 

staining. Investigators were masked to treatment groups until analysis was complete.  

 

Ocular Hypertension Model 

Experimental glaucoma was induced by elevating intraocular pressure (IOP) via injection of 

paramagnetic microspheres into the anterior chamber, based on Samsel et al.. (2011)
20

. 

Briefly, 250-300g female ex-breeder Brown Norway rats were housed for one week in a 

constant low-light environment (40-60 lux) to minimise diurnal fluctuations in IOP. Rats 

were anaesthetised with 37.5mg/kg ketamine and 0.25mg/kg medetomidine hydrochloride, 

and a toroidal magnet (Supermagnete, Germany) placed around the eye, before 25 µl of a 

solution containing 30 mg/ml 8 µm magnetic microspheres (Bangs Laboratories, Fisher, IN) 

in Hanks balanced salt solution was injected into the anterior chamber. The magnet drew the 

beads into the iridocorneal angle, to impede aqueous drainage from the trabecular meshwork. 

Right eyes acted as unoperated controls. IOP measurements were taken in awake animals 

before bead injection, then every 2-3 days using a TonoLab rebound tonometer (Tiolat, Oy, 

Finland). IOP was taken as the mean of 5 readings. To investigate VEGF-A neuroprotection, 

20 pmol of VEGF120, VEGFR-2 Fc chimera (R&D Systems, Abingdon, UK), IgG or vehicle 

controls were injected intravitreally on days 3 and 10 post induction. Animals were sacrificed 
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on day 17 post induction, eyes enucleated and fixed in 4% PFA overnight for TUNEL. All 

experiments were carried out masked. 

 

Immunostaining 

For RGC cultures, cells were fixed in 4% PFA, and blocked with 5% normal goat serum in 

0.1% T-PBS for 2 hours. Primary antibodies were rabbit anti-Thy1 (1:200, Santa Cruz, Santa 

Cruz, CA), rabbit anti-βIII-tubulin (1:500, Abcam, Cambridge, UK), rabbit anti-VEGFR-2 

(1:200, Abcam), goat anti-VEGFR1 (1:100, Santa Cruz), rabbit anti-phospho-Akt (1:200, 

Cell Signaling, Beverly, MA), and rabbit anti-active caspase-3 (1:250, R&D Systems). 

Specificity for VEGFR-2 was confirmed using blocking peptide (Abcam). Secondary 

antibodies were goat anti-rabbit or donkey anti-goat conjugated to Alexa Fluor 488 or 594, 

used at a 1:500 dilution for VEGFR staining and 1:200 dilution for all other experiments. 

Coverslips were mounted on glass slides in ProLong Gold with DAPI (Invitrogen).  

 

For retinal whole-mounts, animals were sacrificed and retinae prepared as for TUNEL 

staining. The tissue was blocked for 2 hours in 5% donkey serum, 0.3% T-PBS before 

primary antibodies were applied overnight. Secondary antibodies were added for 2 hours in 

0.3% T-PBS. After secondary incubation, the tissue was rinsed in 0.3% T-PBS plus 5 µM 

DAPI then flat-mounted in Vectashield (Vector Laboratories, Peterborough, UK). Primary 

antibodies used were rabbit anti-phospho-Akt (1:500, Cell Signaling), and goat anti-Brn3a 

(1:200, Santa Cruz); secondary antibodies were donkey anti-rabbit conjugated to Alexa Fluor 

633 and donkey anti-goat conjugated to Alexa Fluor 594 (1:1000, Invitrogen). Fluorescein-

conjugated Griffonia simplicifolla isolectin B4 (1:400 Vector Laboratories, Peterborough, 

UK) stained blood vessels. Controls were no primary antibody and relevant IgG isotypes. 

Images of cells and retinas were taken on a Zeiss 700 confocal microscope. 
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Optic nerve sections 

Optic nerves were fixed overnight in Karnovsky’s solution at 4⁰C. Specimens were 

osmicated for 2 hrs in 1% (w/v) osmium tetroxide, then dehydrated in 100% ethanol. Optic 

nerves were then incubated in propylene oxide (PO) for 30 minutes and placed in a 50:50 

mixture of PO:araldite overnight. This solution was changed to 100% araldite and cured 

overnight at 60⁰C. Semithin sections (0.75µm) were cut and stained with 1% toluidine 

blue/borax (TB) in 50% ethanol prior to examination by light microscopy. For quantification, 

3 non-overlapping images were taken at 63 x magnification, in the centre, midway and 

periphery of the optic nerve, using Olympus BX51 microscope (Essex, UK) with Retiga 

2000R camera (QImaging, BC, Canada). Non-viable/dying axons with TB accumulated were 

counted in two sections per optic nerve, averaged per section, then expressed as dying axons 

per mm
2
. At least 3 optic nerves were quantified per treatment group. 

 

 

Statistical analysis 

Statistical analyses were done using Graphpad Prism (Graphpad Software, La Jolla, CA). In 

all instances one-way ANOVA with Newman-Keul’s post-hoc test was used, except for RGC 

cultures, when ANOVA with repeated measures was used. To analyse real-time PCR results, 

Ct values were normalised to β-actin and statistics done on ΔCt values. Results are mean ± 

SEM unless stated, with each N representing an individual cell culture separation or retina; N 

was at least 3 for each statistical analysis. A P value of less than 0.05 was considered 

significant.  

 

Results 
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Characterization of primary RGC cultures  

We have previously demonstrated VEGF-A can protect retinal neurons from death induced 

by ischemia-reperfusion injury 
9
. Since this in vivo model involves potential indirect effects 

of blood flow and paracrine-mediated protection from endothelial or other retinal cell types, 

we used primary RGC cultures to probe the mechanisms of VEGF-A-mediated 

neuroprotection. RGCs were used as relatively homogenous cultures can be obtained in 

comparison to other retinal neurons, and they are relevant to many retinal pathologies 
21

. We 

confirmed purity of our primary RGC cultures by immunostaining for the RGC marker Thy-1 

and neuron-specific βIII-tubulin. At day in vitro (DIV) 5, RGC cultures were > 95% positive 

for both markers (Supplemental Figure 1). The cells formed dense networks of neurites and 

were capable of surviving for weeks in culture.   

Expression and function of VEGF receptors in cultured RGCs 

In vivo, RGCs express both VEGF-A and its receptors 
1
. Using RT-qPCR, we demonstrated 

that VEGFR expression was maintained in our cultured RGCs. VEGFR-2 was the most 

abundant receptor, with relative levels 17-fold higher than those of VEGFR-1 (P < 0.001; 

Supplemental Figure S2A). When compared with primary rat brain microvascular endothelial 

cells in culture (kindly donated by Dr. Patric Turowski); a cell type known to express 

functional VEGF receptors, the relative levels of VEGFR-2 were 5-fold higher and VEGFR-1 

4-fold lower in RGCs, and ratios of VEGFR-2 to VEGFR-1 were approximately 17:1 in 

RGCs and 1:1 in endothelial cells (Supplemental Figure S2A). VEGFR-2 staining in RGCs 

was predominantly perinuclear (Figure 1B).   

To determine if the receptors for VEGF-A are functional in cultured RGCs, we treated cells 

with VEGF-A isoforms VEGF120 and VEGF164; VEGFR-1-specific PlGF-1 and PlGF-2; 
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and VEGF-E, which is specific for VEGFR-2. VEGF164 induced a 2-fold increase in 

VEGFR-2 expression (P < 0.001; Figure 1A), which was accompanied by increased VEGFR-

2 immunostaining, particularly along the neurites and perinuclear region (Figure 2B). 

Increased immunostaining was also observed with VEGF120 and VEGF-E treatments (Figure 

1B). VEGFR-1 expression rose approximately 1.6-fold (P < 0.01) after VEGF164 treatment 

(Figure 1A). PlGF-1 did not significantly modify mRNA expression of either VEGF receptor 

(Figure 1A), nor was the qualitative immunostaining pattern altered for PlGF-1 or PlGF-2 

(Figure 1B). Together these data demonstrate that cultured RGCs express VEGFR-2, and that 

receptors are functional. 

RGC responses to cell death agents 

To assess the neuroprotective properties of VEGF-A, it was necessary to identify agents that 

effectively induce RGC death in culture. We evaluated nine conditions described in the 

literature 
3, 4, 22-28

 for inducing RGC death (Table S1). RGCs in culture were surprisingly 

resilient; agents that induce receptor-mediated apoptosis, including tumor necrosis factor α, 

Fas ligand, and interleukin-1β, failed to cause RGC death following 24 hours to 5 days of 

treatment. Excitotoxic ligands N-methyl-D-aspartate (NMDA), 2-amino-3-(5-methyl-3oxo-

1,2-oxazol-4-yl) propanoic acid (AMPA) and glutamate also failed to cause significant cell 

death, even with 5 days of  500 μM ligand. However, RGCs in culture have previously been 

shown to be invulnerable to NMDA-mediated cell death 
29

. Even hypoxia for up to 24 hours 

did not induce significant cell death (1% O2) (Table S1). 

Conditions that did cause significant RGC death were growth factor withdrawal and exposure 

to paraquat, SSP or H2O2 (Table S1). From these, H2O2, used to model oxidative stress in 

vitro, and SSP, a non-specific protein kinase inhibitor that broadly activates cellular death 
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pathways 
30

, were chosen as they were optimal for our assays. Both induced consistent, dose-

dependent RGC death (P < 0.05). 

VEGF-A protects RGCs via VEGFR-2, independent of neuropilins 

To examine VEGF-mediated effects on RGC survival, cultures were pre-treated with VEGF 

family ligands with different binding properties for VEGFR-1, VEGFR-2, and neuropilins. 

RGCs were pre-treated at DIV 5 for 24 hours with media supplemented with the agonists 

(final concentration 2.5 nM), followed by addition of 10 μM H2O2 for 5 hours, or SSP for 24 

hours. Of the different VEGFR ligands tested, VEGF164 (P < 0.01), VEGF120 (P < 0.05) 

and VEGF-E (P < 0.01) all increased RGC survival by approximately 50% (Figure 2A). In 

contrast PlGF-1 and PlGF-2 did not protect against H2O2-mediated cell death. A similar 

pattern emerged for SSP treatment. SSP at 1 μM induced approximately 25% death of RGCs, 

which was completely reversed by 24 hour pre-treatment with VEGF164, VEGF120 or 

VEGF-E (all P < 0.001). Again, both PlGF-1 and -2 failed to offer detectable protection.  

These data indicate that VEGFR-2 is required for protection of RGCs, consistent with our 

findings in vivo 
9
. It appeared that the heparin-binding domain of VEGF-A was not essential, 

since the VEGF120 isoform and VEGF-E that lack this domain, rescued cells with similar 

potency to heparin-binding VEGF164. These data further suggest that neuropilin receptors 

are not required for protection, since VEGF120 and VEGF-E, which exhibit little or no 

binding to neuropilin-1 and -2 
2, 31, 32

 were protective, whereas PlGF-2, which binds to both 

neuropilins, did not enhance survival. We decided to use VEGF120 in subsequent 

experiments, as this isoform produced consistent protection (Figure 2A) and induces fewer 

adverse effects upon intravitreal injection in vivo 
9
. 

VEGF-A is able to protect against apoptotic, caspase-dependent cell death 
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We sought to characterise the mechanism of VEGF-A-mediated neuroprotection in further 

detail. TUNEL staining was used to define whether cell death was associated with DNA 

fragmentation, commonly associated with apoptosis. Inhibitors and immunostaining were 

also used to determine if modulation of caspase signalling was associated with VEGF-A-

mediated neuroprotection. TUNEL staining revealed that H2O2 treatment significantly 

reduced viable (TUNEL-negative) cell number by 42% relative to control (P < 0.001), and 

that VEGF120 dose-dependently augmented survival compared to control – by 31% at 2.5 

nM (P < 0.05) and 50% at 5.0 nM (P < 0.05) (Figure 2B). These effects were also observed 

with SSP treatment, for which VEGF120 exposure significantly reduced cell death (P < 0.05 

compared to SSP alone). 

Caspase activation is an early step in the initiation of apoptosis. To determine the role of 

caspases in H2O2- and SSP-mediated RGC death, two different caspase inhibitors, Z-VAD-

Fmk and Q-VD-Oph, were used. These inhibitors have differential affinities for individual 

caspases; they therefore must be used in combination to fully differentiate between caspase-

dependent and caspase-independent death 
33

. Both Z-VAD-Fmk and Q-VD-Oph significantly 

increased the percentage of viable RGCs, from 39% to 72% and 68%, respectively (both P < 

0.01), and to 63% (P < 0.05) when combined (Figure 2C). Findings were similar for SSP-

induced cell death (Figure 2C). 

Since caspase activity and DNA fragmentation are involved in H2O2- and SSP-induced RGC 

death, we sought to determine if VEGF-A’s neuroprotective effects involve modulation of 

caspase activation. Immunostaining confirmed an increase in activated caspase 3 levels in the 

presence of H2O2, and pre-treatment of cells with VEGF120 markedly reduced the amount of 

activated caspase 3 (Figure 2D). Taken together, these data suggest that H2O2 and SSP 

initiate apoptotic, caspase-dependent death in RGCs, and that VEGF-A signalling via 

VEGFR-2 inhibits caspase-3 activation to promote RGC survival. 
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PI3K/Akt signalling pathways mediate VEGF-A neuroprotection in vitro  

The PI3K/Akt signalling pathway is involved in numerous cellular functions, and has been 

identified as central for survival of many cell types, including neurons 
5
. To determine if 

VEGF-A mediates neuroprotection via PI3K/Akt in RGCs, we first explored the activation 

status of Akt in cultured cells. In the presence of H2O2, RGC phospho-Akt levels were 

reduced, an effect prevented by VEGF120 pre-treatment (Figure 3C). Furthermore, pre-

treatment of RGCs with the PI3K inhibitor LY294,002 blocked VEGF120-induced Akt 

phosphorylation. These data indicate that Akt signalling is activated during VEGF120-

mediated protection of RGCs. 

To confirm that VEGF-A acts via the PI3K/Akt signalling axis, cells were exposed to PI3K 

inhibitors during VEGF120 pre-treatment and the effects on neuroprotection monitored. 

LY294,002 and wortmannin alone did not induce RGC death (Supplemental Figure S3A + 

B). When added to RGCs immediately preceding VEGF120, LY294,002 dose-dependently 

abolished VEGF120’s survival-enhancing properties against H2O2 (P < 0.05; Figure 3A). 

Similar results were obtained with wortmannin (P < 0.05). When the corresponding 

experiments were conducted using SSP, attenuation of VEGF120 protection was observed at 

the highest inhibitor doses tested (P < 0.05) (Figure 3B).  

VEGF-A protects RGCs in an in vivo acute toxicity model via PI3-kinase dependent pathways 

Using primary cell culture we have illustrated the direct neuroprotective function of VEGF-A 

using RGCs and implicated signalling pathways involved. To examine the applicability of 

these findings in vivo, acute toxin-induced retinal cell death was initiated by intravitreal 

injection of SSP. Mice were pre-treated with an intravitreal injection of 4 pmol VEGF-A or 

vehicle for 24 hours before receiving 1 nmol SSP or vehicle for a further 24 hours. Injection 

of SSP significantly increased the number of TUNEL-positive cells in the GCL (68.9 ± 16.8 
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cells per retina), compared to saline-injected (12.3 ± 3.3 cells per retina; P < 0.01) or DMSO 

vehicle controls (6.0 ± 1.2 cells per retina; P < 0.001) (Figure 4A, C). VEGF120 pre-

treatment significantly protected against SSP-induced toxicity, reducing apoptotic nuclei by 

57% compared to vehicle control (29.8 ± 6.4 cells per retina; P < 0.01). To explore if VEGF-

A-mediated neuroprotection is mediated by PI3K signalling in vivo, the PI3K inhibitor 

wortmannin was injected simultaneously with SSP, following VEGF120 pre-treatment. 

Wortmannin alone did not increase RGC apoptosis compared to controls (Supplemental 

Figure S3C), but it fully reversed the protective effects of VEGF120 against SSP toxicity 

(21.79 ± 4.2 vs. 53.29 ± 9.1 cells per retina; P < 0.05) (Figure 4B), suggesting a fundamental 

role for PI3K in VEGF-A-mediated neuroprotection.  

VEGF-A protects against RGC death in an ocular hypertension model 

The protective effect of VEGF-A was also explored in an in vivo model of experimental 

glaucoma, in which RGC death was induced by mechanically increasing IOP. In patients with 

ocular hypertensive glaucoma, elevated IOP caused by obstruction of aqueous outflow is a 

key risk factor in the disease pathophysiology 
34

. Animal models have been developed to 

mimic blockage of the trabecular meshwork, including using magnetic microspheres drawn 

into the iridocorneal angle to reduce outflow 
20

. This model was used here to validate the 

neuroprotective properties of VEGF-A in rats.  

Injection of magnetic beads into the anterior chamber triggered a significant and prolonged 

rise in IOP. Mean IOP averaged over the full length of the experiment for control, non-bead-

injected eyes was 19.8 ± 0.6 mmHg, compared to 43.3 ± 3.3 mmHg for bead-injected eyes (P 

< 0.001, Figure 5A). Peak IOP was 22.8 ± 0.6 mmHg for control eyes vs. 55.2 ± 3.5 mmHg 

for bead-injected (P < 0.001).  Intravitreal injection of VEGF120 did not affect IOP in bead-
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injected eyes (Figure 5A); mean and peak IOP were all similar for VEGF120- and vehicle-

injected eyes. 

To investigate if expression of endogenous VEGF-A and its receptors were altered following 

IOP elevation, retinas were analysed by RT-QPCR. No change in mRNA levels for VEGF-A 

(Figure 5B), VEGFR-2 or VEGFR-1 (Supplemental Figure S4) was detected between control 

and retinae from hypertensive eyes.   

Cell death in the GCL was assessed using TUNEL staining, which has been shown to 

increase in patients with glaucoma 
35, 36

, and correlates with RGC loss and optic nerve 

degeneration in animal glaucoma models 
37-39

. In eyes where magnetic beads were injected, 

but pressure did not rise (due to incomplete blockage of iridocorneal angle), numbers of 

TUNEL positive cells were not significantly different to non-bead-injected control (Figure 

5C). These eyes were excluded from our studies. In eyes where IOP increased following 

microspheres injection, there was a significant elevation in TUNEL-positive apoptotic nuclei 

in the GCL, which is mostly composed of RGCs as reported previously 
20, 40

. The number of 

apoptotic nuclei increased by approximately 16-fold, from 1.9 ± 0.5 to 31.0 ± 10.0 cells per 

retina (P < 0.01; Figure 5C) confirming that high IOP leads to apoptosis of RGCs. Treatment 

with intravitreal injection of 20 pmol VEGF120 on days 3 and 10 following glaucoma 

induction reduced apoptotic cell counts by 77% (P < 0.01), from 31.0 ± 10.0 to 7.0 ± 1.6 cells 

per retina (Figure 5D, F), indicating that VEGF120 protects retinal neurons against apoptotic 

cell death in experimental glaucoma. Furthermore, we observed extensive damage to the 

optic nerve in histologically stained transverse sections from hypertensive eyes. There were 

approximately 20-fold more degenerating axons in animals with high IOP, from 0.6 ± 0.3 to 

12.4 ± 2.8 axons per mm
2
 optic nerve (P < 0.01). This damage was reduced by 63% (P < 

0.05) to 4.6 ± 0.94 axons per mm
2
 optic nerve in eyes treated with intravitreal VEGF120 

(Figure 5E, G).  
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To determine if VEGF-A affects PI3K/Akt signalling during neuroprotection in vivo, we 

stained whole mount retinae from the ocular hypertension model for phospho-Akt. 

Immunostaining revealed barely detectable levels of phospho-Akt in control and PBS-treated 

glaucomatous retinae (Figure 6H). In response to VEGF120 injection, phospho-Akt 

immunoreactivity in glaucomatous retinae increased considerably, particularly in the cell 

cytoplasm, suggesting that the PI3K/Akt pathway is involved in mediating VEGF120 

protection in this model.  

VEGF neutralisation exacerbates cell death in ocular hypertension model 

Finally, to probe the role of endogenous VEGF-A on RGC survival in our experimental 

hypertensive glaucoma model, soluble human VEGFR-2/Fc chimera (sVEGFR-2) was 

injected intravitreally to neutralise endogenous VEGF-A. Injection of sVEGFR-2 and human 

IgG control did not influence IOP, when compared to control PBS bead-injected hypertensive 

eyes (Figure 6A). However, a comparison of cell death in IgG- and sVEGFR-2-treated 

hypertensive eyes revealed that TUNEL-positive apoptotic cells markedly increased as a 

result of VEGF neutralisation. Apoptosis in the GCL of the retina was significantly elevated 

by approximately 3.5-fold above IgG treatment, from 22.0 ± 7.4 to 79.2 ± 26.5 cells per 

retina (P < 0.01) (Figure 6B, C), indicating that neutralisation of endogenous VEGF-A 

further exacerbates neuronal death in this model.   

 

Discussion 

VEGF-A has long been identified as a critical survival factor for endothelium 
41

, but this role 

has been significantly expanded over recent years to involve other cell types, including those 

in both the peripheral and central nervous system. In the retina, VEGF-A has been shown to 

reduce retinal neuron loss 
9, 42

, findings that have led to discussion about the long-term 
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neuronal risk of VEGF-A antagonists 
43

, which are being widely used to treat various ocular 

conditions 
14

. In this study, we have used several approaches to determine the mechanistic 

basis of VEGF-A’s neuroprotective effects, both in vitro and in vivo. Our findings highlight 

the need to further define risks that may be associated with inhibition of VEGF-A in ocular 

conditions. 

 

In our isolated RGC model, the neuroprotective effects of VEGF-A were mediated by 

VEGFR-2. This finding is consistent with other published data, including in vitro models 

using hypoxia or serum withdrawal 
4, 44

, oxidative stress 
45

 and glutamate toxicity 
22

, plus in 

vivo models, such as optic nerve transection 
8
. A number of studies have suggested that 

neuropilin-1 may be involved in VEGF-A mediated neuroprotection 
46

, particularly during 

embryonic development 
12

, but it has not yet been established in the adult. Given that 

VEGF164, VEGF120 and VEGF-E had comparable neuroprotective potency in our study, 

despite the fact that VEGF-E does not bind and VEGF120 interacts very weakly if at all with 

neuropilin-1, and that the neuropilin ligand PlGF-2 was not neuroprotective, neuropilin-1 

may not be necessary for VEGF-A-mediated neuroprotection. 

In terms of mechanisms downstream of VEGFR-2, several pathways have been shown to 

initiate survival in neuronal tissues. Outside the ocular setting, MEK/MAPK/ERK 
47

, protein 

kinase A 
4
, and PI3K/Akt 

5
, alone or acting together, have been shown to mediate 

neuroprotection. In the retina, PI3K/Akt alone 
9
 and dual activation of PI3K/Akt and ERK-

1/2 
8
 were shown to enhance survival. We showed that H2O2 and SSP triggered RGC death in 

vitro that was caspase-dependent and accompanied by DNA fragmentation, and therefore 

likely due to apoptosis. VEGF-A-mediated cell rescue was prevented by the PI3K inhibitors 

LY-294,002 and wortmannin, which was validated using wortmannin in the SSP-induced 

neuronal cell death model in vivo. These PI3K inhibitors have been reported to have off-
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target effects
48

 however, so future experiments could confirm specificity using cell-specific 

VEGFR-2 phosphorylation site mutant mice, to prevent PI3K signal transduction following 

VEGFR-2 activation, and also RGC-selective inducible VEGFR2 inactivation model to 

confirm the role of VEGFR2 in this pathway. Nevertheless, phospho-Akt staining in the 

experimental glaucoma model corroborated the results from RGC cultures and further 

strengthens the case for involvement of PI3K/Akt signalling. 

Importantly, our studies using the ocular hypertension model of glaucoma demonstrate that 

VEGF-A signalling is a critical part of the endogenous response to neural damage. 

Administration of a VEGFR-2 soluble receptor significantly increased the number of 

TUNEL-positive cells in the GCL during ocular hypertension. We have previously shown 

that VEGF-A acts as an endogenous neuroprotective factor as part of the adaptive response to 

acute (1hr) ischemia 
9
. In our experimental glaucoma model, there was no change in VEGF-A 

or VEGF receptor levels, yet the data demonstrate that VEGF-A is required for neuronal 

survival during a relatively prolonged insult (> 2 week) to retinal neurons. Taken together, 

these data suggest that VEGF-A may play a constitutive role in RGC neuroprotection. These 

data are also consistent with those of previous studies, in which VEGF-A depletion via 

intravitreal or systemic injection of a neutralizing antibody, or adenoviral transfection of 

soluble VEGFR-1, did not affect normal adult vasculature but did lead to enhanced apoptosis 

of neurons of the inner and outer retina 
9, 42

.  

Do the data from animal models of acute and chronic retinal disease suggest there is a risk to 

the human retina exposed to VEGF-A antagonists? At a minimum, our findings suggest that 

risks to glaucoma patients may need to be more systematically and rigorously assessed. It 

was recently reported based on full-field electroretinogram results that VEGF neutralization 

with bevacizumab regressed neovascularisation, but also reduced photoreceptor function in 

patients with neovascular glaucoma 
49

. Furthermore, a study observing 49 patients with AMD 
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found that in eyes treated with ranibizumab, nerve fibre layer thickness was significantly 

reduced after one year of treatment, whereas untreated control eyes displayed no change 
50

. 

However, determining the risk profile in glaucoma as well as in the broader retinal disease 

population is challenging. First, clinical evidence suggests that 25-35% of RGCs must be lost 

before there is a significant impact on visual acuity 
51

, so subclinical retinal neuron death 

could occur in patients being treated with VEGF-A antagonists. Even if loss of visual acuity 

is noted in patients, this could be attributed to the natural course of diseases such as 

neovascular age-related macular degeneration, diabetes mellitus and glaucoma 
21, 52, 53

. Given 

the enormous scale of these diseases and potential increasing use of VEGF antagonists in all 

of them, even a small effect would be very significant.   

 

Lastly, though focused on inherited disease, experimental analyses suggest that the rate of 

neurodegeneration in rodents could be as much as two orders of magnitude greater than in 

humans, and is related to maximum lifespan potential 
54

. Therefore, short-term rodent 

experiments may exaggerate the acute risks, and long-term monitoring of patients may be 

required. Of note is the SEVEN-UP study, a small-scale (63 patients) follow-up study of 

patients with exudative age-related macular degeneration. Despite initial success in 

ranibizumab-treated patients in the first 24 months, after 7-8 years of follow-up and 

intermittent treatment, 37% of eyes had acuities of 20/200 or worse, with many patients 

exhibiting geographic atrophy 
55

. These data are currently the longest available follow-up of 

patients treated with VEGF-A antagonists, and need to be expanded upon before strong 

conclusions can be made.  

 

Given the remarkable impact of anti-VEGF strategies on near-term patient outcomes, one 

strategy for managing a potential trade-off between the positive vascular outcomes and 
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longer-term neuronal risk may be to develop combination treatments for neovascular 

conditions that include neuroprotectants. Further elucidation of the details downstream of 

VEGF-A receptor activation could be critical in the development of a more holistic strategy 

for preserving the proper function of retinal neurons.   
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Figure Legends 

 

Figure 1. Primary RGC cultures express VEGF-A and its receptors. A) Real-time QPCR 

analysis of VEGFR-2, VEGFR-1 and VEGF-A. Relative expression levels of VEGFR-1 and -

2 were significantly elevated following VEGF164 treatment in comparison to control, 

whereas PlGF had no effect. In contrast, VEGF-A RNA levels were slightly attenuated with 

VEGF164 supplementation, and enhanced in response to PlGF-1. **P < 0.01, ***P < 0.001, 

N = 6. Data = mean +/- SD. B) Immunolabelling of VEGFR-2 (green) and βIII-tubulin (red) 

in RGCs cultured in control medium or with 2.5 nM PlGF-1, PlGF-2, VEGF120, VEGF164 

or VEGF- E for 5 days at 63x magnification. VEGFR-2 immunoreactivity increased 

following VEGF120, VEGF164 or VEGF-E supplementation, with punctate staining 

observed both perinuclearly and on neurites. In contrast, VEGFR-2 expression did not 

increase and remained perinuclear in control and PlGF-1 and -2-treated RGCs. Data Scale bar 

= 10 μm. 

 

Figure 2. VEGF-A protects against apoptotic, caspase-dependent death via VEGFR-2, 

independent of neuropilins. A) RGCs at DIV 5 were pre-treated for 24 hours with media +/- 

VEGF120, VEGF164, VEGF-E, PlGF-1 or PlGF-2 (2.5 nM). H2O2 (10 µM, left panel) was 

added to the cells for 5 hours, and SSP (1 μM, right panel) for 24 hours. VEGF164, 
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VEGF120 and VEGF-E all increased survival of the cultures, whereas neither PlGF-1 nor 

PlGF-2 prevented RGC death. *P < 0.05, **P < 0.01, ***P < 0.001, N = 5-6.  B) Cells were 

treated with H2O2 (left panel) or SSP (right panel) and TUNEL-stained. Percentage of 

TUNEL-negative, viable RGCs increased following pre-treatment with 2.5 nM and 5.0 nM 

VEGF120. *P < 0.05, **P < 0.01, N = 8. Data = mean +/- SEM. C) RGCs were incubated 

with pan-caspase inhibitors Z-VAD-Fmk and Q-VD-Oph prior to H2O2 or SSP exposure. 

Caspase inhibitors largely abolished the toxic response, both independently and combined. *P 

< 0.05, **P < 0.01, N = 4-8.  D) Immunocytochemistry for active caspase-3 (green) showed 

increased staining in cells treated with H2O2 (middle panel, note condensed caspase-3 

staining around apoptotic nuclei), which was reduced following VEGF120 pre-treatment 

(right panel). Cells were counterstained with βIII-tubulin (red) and DAPI (blue). 

Magnification = 20x. Scale bar = 10 μm. 

 

Figure 3. Neuroprotection by VEGF120 is PI3K/Akt-mediated. A and B) Increasing 

concentrations of PI3K inhibitors LY294,002 (left panel) and wortmannin (right panel) were 

added to RGCs immediately prior to VEGF120 pre-treatment, before H2O2 (A) or SSP (B) 

was added to kill the cells. Both LY294,002 and wortmannin dose-dependently abolished the 

protective effect of VEGF120. *P < 0.05, N = 5-6. Data = mean +/- SEM. C) 

Immunocytochemistry revealed cytoplasmic expression of phospho-Akt (green) in control 

cultures, which was reduced following H2O2 exposure. In cells rescued with VEGF120, pAkt 

reactivity was similar to control, and was reduced with LY294,002 treatment. Cells were 

counterstained with βIII-tubulin (red) and DAPI (blue).  Magnification = 63x. Scale bars = 10 

μm. 
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Figure 4. VEGF120 protects against SSP-induced retinal cell death in vivo via the PI3K/Akt 

pathway.  A) VEGF120 protects against SSP-induced cell death in the mouse retina. DMSO 

vehicle did not increase the number of TUNEL positive cells above PBS vehicle control (N = 

6-8), whereas SSP elevated apoptotic nucleus counts by approximately 5.5-fold (P < 0.01, N 

= 12). Pretreatment with VEGF120 protected against SSP toxicity, reducing TUNEL-positive 

cells by 57%. **P < 0.01, N = 10.  B) Treatment with 1 nmol of the PI3-kinase inhibitor 

wortmannin reversed VEGF120-mediated neuroprotection (P < 0.05; N = 14). Note: 

PBS/SSP data in this figure was taken from the experiment shown in Figure 2A.  Data = 

mean +/- SEM. C) Representative images of PBS/PBS- (left), PBS/SSP- (middle) and 

VEGF120/SSP- (right) injected retinas, stained for DAPI (blue) and TUNEL (green; shown 

with arrows). Magnification = 20x. Scale bar = 50 µm. 

 

Figure 5. VEGF120 protects RGCs against apoptosis in experimental hypertensive 

glaucoma, with a corresponding increase in phospho-Akt. A) Bead injection triggers a 

significant increase in IOP, in both PBS- and VEGF120-bead-injected (B) compared to 

control, non-bead-injected (NB) rat eyes (P < 0.001, N = 10).  B) VEGF mRNA remained at 

control levels in bead-injected eyes (N = 4).  C) A significant rise in TUNEL-positive nuclei 

in the GCL was observed for bead-injected eyes with an increase in IOP, but not for bead-

injected eyes where pressure did not rise (N = 5-7). *, P < 0.05.  D) In PBS bead injected 

eyes (B) apoptotic cell number rose 16-fold (P < 0.01; N = 8) above control (NB), but was 

markedly reduced by 77% in eyes treated with 20 pmol VEGF120 (N = 8). Data = mean +/- 

SEM. **, P < 0.01.  E)  VEGF120 also protected against optic nerve damage. Extensive 

damage was found to the optic nerve in histologically stained transverse sections from 

hypertensive eyes, as determined by toluidine blue (TB) staining of semithin sectioned nerve 

segments. Approximately 20-fold more degenerating axons were found in animals with high 
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IOP, from 0.6 ± 0.3 to 12.4 ± 2.8 axons per mm
2
 optic nerve (P < 0.01). This was reduced by 

63% (P < 0.05) to 4.6 ± 0.94 axons per mm
2
 optic nerve in eyes treated with intravitreal 

VEGF120 (Figure 5E).  Data = mean +/- SEM. *, P < 0.05, **, P < 0.01. N = 3-5. F) 

Representative images of control (left), PBS bead-injected (middle) and VEGF120 bead-

injected (right) retinae stained for DAPI (blue) and TUNEL (green), showing that VEGF120 

treatment reduces TUNEL staining (arrows) to near-control levels. Magnification = 20x. 

Scale bar = 50 µm. G) Representative images of optic nerve staining, showing an increase in 

TB accumulation from control (left), in animals with high IOP (middle), which was reduced 

with VEGF120 administration (right). Arrows denote degenerating axons. Magnification = 

63x Scale bars = 50μm. H) Representative images of whole-mount staining for phospho-Akt 

(pAkt - red). In control (left) eyes pAkt was barely detectable within the GCL, indicating Akt 

is not constitutively phosphorylated in RGCs.  This staining pattern was also observed in PBS 

bead injected (middle) groups. However in VEGF120 (right) treated eyes, strong pAkt 

immunoreactivity was observed around Brn-3a (green) positive RGCs, as well as vessels 

stained with isolectin B4 (white). These images confirm VEGF120 stimulates pAkt 

signalling, in correlation with its neuroprotective activity. Magnification = 63x Scale bars = 

10μm  

 

Figure 6. Anti-VEGF treatment exacerbates neuronal injury in experimental hypertensive 

glaucoma. A) Bead injection triggers a significant increase in IOP over time, in both IgG- and 

sVEGFR-2-bead-injected (B) eyes compared to control, non-bead-injected (NB) rat eyes (P < 

0.001, N = 8).  B) sVEGFR-2 initiated a large rise in TUNEL positive cells in the GCL, 

above contralateral non-bead injected (NB) (N = 6-9)  and IgG vehicle (N = 6-7) groups. 

Endogenous VEGF-A is therefore neuroprotective under conditions where ocular 

hypertension provokes neuronal damage. **, P < 0.01. Data = mean +/- SEM. C) 
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Representative images of control (left), IgG bead-injected (middle) and sVEGFR-2 bead-

injected (right) retinae stained for DAPI (blue) and TUNEL (green; shown with arrows). 

Magnification = 20x. Scale bar = 50 µm. 
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