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Large-amplitude capillary waves on fluid sheets are computed in the presence of a
uniform electric field acting in a direction parallel to the undisturbed configuration.
The fluid is taken to be inviscid, incompressible and non-conducting. Travelling waves
of arbitrary amplitudes and wavelengths are calculated and the effect of the electric
field is studied. The solutions found generalize the exact symmetric solutions of
Kinnersley (1976) to include electric fields, for which no exact solutions have been
found. Long-wave nonlinear waves are also constructed using asymptotic methods.
The asymptotic solutions are compared with the full computations as the wavelength
increases, and agreement is found to be excellent.

1. Introduction
Liquid films arise in many diverse physical applications including cooling systems,

coating processes and combustion, as well as biological applications. The fundamental
problem of the stability and nonlinear states of such systems is of interest since the
dynamics can enhance quantities such as heat or mass transfer coefficients. Heat
transfer enhancement was found by Miyara (1999) who studied theoretically the
heat transfer coefficient through a falling film that supports travelling waves. It was
found that interfacial waves enhance heat transfer by film thinning and convection
effects. Additional evidence of this can be found in other related work, for example,
Shmerler & Mudawar (1987) and the more recent experimental study of Al-Sibai,
Leefken, Renz (2002) (see references therein also).

Here we consider the dynamics of two-dimensional free liquid films in the presence
of an electric field. A related problem involves normal electric fields to control heat
transfer in devices incorporating perfectly conducting film flow on inclined planes –
see Gonzalez & Castellanos (1996). There have been numerous theoretical studies
of the linear stability of electrified liquid films. The case of two conducting or non-
conducting fluids of infinite extent separated by a sharp interface has been considered
by Melcher & Schwarz (1968). They consider a constant electric field applied in the
plane of the undisturbed interface and study the linear stability of viscous and inviscid
fluids. The presence of the electric field produces a dispersive regularization of short
waves; similar findings are reported by El-Sayed (1999) who considers the linear
stability problem in the presence of an air stream outside the sheet, hence allowing
Kelvin–Helmholtz instability also. Melcher & Schwarz (1968) also point out that the
electric field produces a net force due to polarization, which tends to displace the
interface from its flat configuration.
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In this work we consider a unbounded two-dimensional fluid sheet which initially
has uniform thickness and is surrounded by an ambient passive fluid. We assume that
the effects of gravity are negligible, a condition that is satisfied when the Bond number,
ρgd2/σ , is small, where ρ is the fluid density, g the acceleration due to gravity, 2d the
undisturbed sheet thickness and σ the surface tension coefficient – this condition can
be expected to hold for a thin layer and/or large surface tension. An electric field
acts in the plane of the sheet driven by a constant potential difference. For nonlinear
interfacial deformations we must solve for the hydrodynamics inside the sheet and for
the voltage potential inside and outside the sheet, the latter region extending laterally
to infinity. The fluid and electric fields are coupled through the Maxwell stresses which
modify the hydrodynamic stresses at the interface – Jackson (1963). This constitutes
a nonlinear problem that must in general be addressed numerically. We commence
our study of this free boundary problem by considering travelling wave solutions of
arbitrary amplitude and wavelength. We restrict our attention to symmetric waves. A
study of antisymmetric waves will be presented in Papageorgiou & Vanden-Broeck
(2004).

The formation of waves on liquid layers when surface tension acts has been the
subject of numerous investigations. Crapper (1957) studied two-dimensional capillary
waves in deep water and found a class of exact travelling wave solutions for which the
interface can be a single or multi-valued function. Crapper’s analysis was extended by
Kinnersley (1976) to the case of fluid layers and exact capillary waves are found for
both symmetric and asymmetric elevations (since the problem is inviscid, the symmet-
ric solutions also represent the flow over a solid substrate). Further exact solutions
were recently found by Crowdy (1999). When gravity is also present exact solutions
are not possible. In the absence of surface tension, there exists a vast literature devoted
to the study of nonlinear gravity waves starting from the work of Stokes (1847) and
the more recent studies of Schwartz (1974) and Longuet-Higgins (1975) among others.
Gravity–capillary waves in irrotational fluids have been computed numerically by a
number of authors including Schwartz & Vanden-Broeck (1979), Chen & Saffman
(1979), Hogan (1980) and Hunter & Vanden-Broeck (1983), while calculations in the
presence of vorticity are reported in Kang & Vanden-Broeck (2000).

Long-wave models have been used to develop nonlinear evolution equations for
the sheet (see for example Erneux & Davis 1993 for viscous flows with Van der Waals
forces; Ida & Miksis 1998a, b for derivation in non-flat geometries; Ida & Miksis
1996 and Vaynblat, Lister & Witelski 2001 for computations of the two-dimensional
evolution equations). Of particular interest to the present study is the inviscid problem.
The long-wave evolution equations can be deduced directly from those of Erneux &
Davis (1993) by dropping viscous and van der Waals forces and keeping surface ten-
sion. This system was derived independently by Matsuuchi (1974, 1976) at about the
same time that the exact solutions of Kinnersley (1976) were given. Matsuuchi also
constructed nonlinear travelling wave solutions which are the long-wave analogues
of the exact Kinnersley waves. Stability of the travelling waves is considered by
Matsuuchi (1976), and modulational instability is predicted and confirmed numeri-
cally. The long-wave inviscid problem has also been studied more recently and more
extensively by Mehring & Sirignano (1999) who also allow sinuous modes in their
evolution equations. Numerical solutions of the long-wave system are compared with
solutions of the Euler equations by the vortex blob method, and good agreement is
found. These authors also report calculations that lead to rupture but the pinching
solutions are not studied in detail. It is interesting that the inviscid long-wave model
with surface tension is also suggested by Pugh & Shelley (1998) in the context of
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vortex sheet roll-up. These authors study the singularity formation in detail and con-
struct similarity solutions guided by the calculations.

The inclusion of an electric field into the long-wave models for inviscid and
viscous sheets (including Van der Waals forces) was recently accomplished by Tilley,
Petropoulos & Papageorgiou (2001) and Savettaseranee et al. (2003), respectively. The
electric field exerts Maxwell stresses at the interface due to the difference in dielectric
properties inside and outside the sheet. Using matched asymptotic expansions, Tilley
et al. (2001) show that the electric field modifies the evolution system described above,
by adding a non-local term to the Bernoulli equation proportional to the Hilbert trans-
form of the leading-order sheet curvature. The authors study this system numerically
and construct travelling wave solutions and study their stability. They also study the
initial value problem in order to evaluate the effects of the electric field on the rupture
solutions of Pugh & Shelley (1998). It is found that the electric field delays the time of
rupture but does not affect the singularity structure, to leading order. In the case of
viscous films with Van der Waals forces, it is predicted analytically and confirmed
numerically that a large enough electric field will prevent rupture events which would
otherwise be present (see Savettaseranee et al. 2003 for details).

The full problem when an electric field acts has not been studied. In the present
work we make no approximations for the competing length scales and address the
problem of capillary waves driven by an electric field parallel to the fluid layer. The
internal and external electric fields are fully accounted for, as is the incompressible
irrotational fluid motion inside the sheet. We use boundary integral methods to
construct travelling waves of arbitrary amplitudes and periods and study the effects
of the physical parameters on these waves. At large wavelengths, an asymptotic
theory is developed starting from the boundary integral formulation and the results
of Tilley et al. (2001) are recovered. The asymptotic and exact solutions are compared
and agreement is found to be excellent even for waves which are not too long. We
can conclude, therefore, that the stability results of the nonlinear travelling waves
constructed by Tilley et al. (2001) extend to the fully nonlinear ones computed here.
Note that the flat state is linearly temporally stable for this problem and our interest
is in the construction of fully nonlinear travelling waves.

The article is organized as follows. Section 2 describes the governing equations and
gives the exact dimensionless problem. Section 3 reformulates the problem in terms
of integral equations and § 4 contains the asymptotic analysis in the limit of long
waves. Section 5 presents numerical solutions for a range of physical parameters and
comparisons between asymptotic and computed solutions. Section 6 is devoted to
concluding remarks.

2. Governing equations
Consider an inviscid, incompressible and irrotational flow in a liquid layer of

undisturbed thickness 2d which is bounded symmetrically by free surfaces at y = ± S,
say (see figure 1). Surface tension with coefficient σ acts at the interfaces and gravity is
ignored (the latter assumption holds if the Bond number, (ρgd2)/σ � 1). An applied
uniform electric field given by E0 = (V0/2L)i , also acts, where V0 is the characteristic
voltage drop over a characteristic distance L. We introduce dimensional fluid and
voltage potentials φ and V (1,2) respectively; the field equations are Laplace’s equation

∇2φ(x, y; t) = 0, (2.1)

∇2V (1,2)(x, y; t) = 0, (2.2)
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Figure 1. Schematic of the problem. The undisturbed layer has thickness 2d and region 2
extends to infinity.

where in what follows superscripts 1, 2 respectively denote the regions bounded by and
outside of the moving interfaces (see figure 1). The electric fields are E(1,2) = ∇V (1,2).

Symmetric solutions about the centreline y =0, are considered, which yield the
boundary conditions φy = V (1)

y =0. As |y| → ∞, ∂V (2)/∂x → V0/(2L). We note that for
inviscid flows the symmetry condition describes symmetric liquid layer flows or flow
over a flat solid surface. When electric fields parallel to the undisturbed sheet are
imposed, however, the presence of a solid substrate changes the undisturbed field
lines and results in a different problem. Here we study the liquid layer problem.

The boundary conditions at the free surface y = S (only half the domain is con-
sidered) are the kinematic condition, continuity of normal stresses, and the continuity
of the normal component of the displacement field (ε E) and tangential components
of the electric field. These are, at y = S(x, t),

St + φxSx − φy = 0 (2.3)

[n · T · n]12 = σ div n, (2.4)

[ε E · n]12 = 0, (2.5)

[E · t]12 = 0, (2.6)

where [·]12 denotes the jump in the quantity as the interface is crossed from the fluid
region, the vectors n, t are the outward-pointing normal and tangent to the interface
respectively, and the stress tensor T is given by

Tij = −pδij + Eij , (2.7)

Eij = ε
(
EiEj − 1

2
|E|2δij

)
.
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The first term in (2.7) is the inviscid hydrodynamic contribution and the second term
arises from interfacial electric field stresses given by the Maxwell stress tensor (see
Jackson 1963, Chap. 6). The parameters ε1, ε2 are the dielectric constants in regions
1 and 2 respectively.

The momentum equations can be integrated to yield a Bernoulli equation at
the interface. The pressure in region 2 is ambient and equal to a constant, and on
elimination of the pressure jump across the interface from (2.4), we arrive at the follow-
ing Bernoulli boundary condition:

ρ1

(
φt + 1

2
|∇φ|2

)
+

1

1 + S2
x

{
S2

x [E11]
1
2 − 2Sx[E12]

1
2 + [E22]

1
2

}
=

σSxx(
1 + S2

x

)3/2
+ Kp. (2.8)

The Maxwell stresses appearing in (2.8) are given by

E11 =
ε

2

(
V 2

x − V 2
y

)
, E12 = εVxVy, E22 =

ε

2

(
V 2

y − V 2
x

)
, (2.9)

and superscripts 1 and 2 are implied where appropriate in (2.9). For the undisturbed
state (φ = 0, S = d), the constant Kp = 1

8
V 2

0 (ε2 − ε1). This constant is related to the
polarization pressure induced on fluid interfaces by the electric field (see Melcher &
Schwarz 1968), and can be eliminated by differentiation of (2.8) with respect to x, for
example.

2.1. Dimensionless equations

The equations and boundary conditions are made dimensionless using an outer length
scale L to measure distances:

x = Lx ′, y = Ly ′, S = LS ′, t =

√
ρ1L3

σ
t ′, φ =

√
σL

ρ1

φ′, V = V0V
′. (2.10)

We substitute (2.10) into the governing equations (2.1)–(2.2) and interfacial condi-
tions (2.3)–(2.6), and drop the primes. With this choice of reference scales the un-
disturbed interface is located at y = d/L = d̄ . The fluid and voltage potentials satisfy
the Laplace equations

φxx + φyy = 0, (2.11)

V (1,2)
xx + V (1,2)

yy = 0. (2.12)

The kinematic, Bernoulli and continuity of the normal displacement field and tangen-
tial electric field boundary conditions, evaluated at y = S(x, t), become

St + φxSx − φy = 0, (2.13)

φt + 1
2

(
φ2

x + φ2
y

)
+

Eb

1 + S2
x

{
1
2
S2

x [M11]
1
2 − 2Sx[M12]

1
2 + 1

2
[M22]

1
2

}
=

Sxx

(1 + S2
x )

3/2
+ K̄p,

(2.14)

ε̄
(
V (1)

y − SxV
(1)
x

)
= V (2)

y − SxV
(2)
x , (2.15)

V (1)
x + SxV

(1)
y = V (2)

x + SxV
(2)
y , (2.16)

where ε̄ = ε1/ε2 is the ratio of permittivities and the parameter Eb = (ε2V
2
0 )/(σL) is

the ratio of the electrically induced pressure to capillary forces; we call this an electric
capillary number. For the undisturbed state, K̄p = 1

8
Eb(1 − ε̄). The stress components
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in (2.14) are given by

M(1,2)
11 =

{
ε

ε2

[
V 2

x − V 2
y

]}(1,2)

, (2.17)

M(1,2)
12 =

{
ε

ε2

VxVy

}(1,2)

, (2.18)

M(1,2)
22 =

{
ε

ε2

[
−V 2

x + V 2
y

]}(1,2)

. (2.19)

2.2. Linear theory

An exact solution of the dimensionless problem is S = d̄ , u = 0 and V = x/2. Lineariza-
tion of the system (2.11)–(2.16) about this state (the Bernoulli equation is differentiated
with respect to x first), and application of the symmetry conditions at y =0 gives the
following elementary solutions for the perturbation fluid and voltage potentials:

φ(x, y, t; k) = C cosh(ky) sin(kx − ωt), (2.20)

V (1)(x, y, t) = A cosh(ky) sin(kx − ωt), (2.21)

V (2)(x, y, t) = B exp(−|ky|) sin(kx − ωt), (2.22)

S(x, t) = D cos(kx − ωt). (2.23)

Using these solutions in the linearized kinematic, Bernoulli and electric field boundary
conditions at the undisturbed level S = d̄ , gives four homogeneous equations for the
constants A, B, C, D. This leads to the eigenrelation

ω2 =
Eb(1 − ε̄)2

4

k3 tanh kd̄

ε̄k tanh kd̄ + |k|
+ k3 tanh kd̄. (2.24)

In the absence of an electric field, Eb =0, we recover the linear dispersion relation
for capillary waves on a fluid layer. Note that (2.24) can be used to anticipate the
appropriate dispersion relation of the long-wave theory. As d̄ → 0 (2.24) gives

ω2 =
Eb(1 − ε̄)2

4
d̄k2|k| + d̄k4, (2.25)

which is equivalent to the dispersion relation (4.29) (using ω2 = k2c2) of the canonical
long-wave evolution equations derived in § 4 using formal asymptotic methods.

3. Reformulation as integral equations
We consider a train of waves of wavelength λ travelling at a constant velocity c in a

two-fluid system. Precise definitions of c and the thickness will be given later. We
choose a frame of reference in which the flow is steady and we introduce Cartesian
coordinates with the x-axis parallel to the line of symmetry and the origin at the
centreline. The line of symmetry is then at y =0. We describe the free surface para-
metrically by x = X(s) and y = Y (s) where s is the arclength. Therefore

X′2(s) + Y ′2(s) = 1. (3.1)

We choose x = s = 0 at a crest and we express X(s) and Y (s) in terms of X′(s) and
Y ′(s) as

X(s) =

∫ s

0

X′(r) dr, (3.2)
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Y (s) = α +

∫ s

0

Y ′(r) dr. (3.3)

Here α is the ordinate of the crests.
Next we rewrite (2.14) in the new frame of reference as

1
2

(
φ2

x + φ2
y

)
+

Eb

1 + S2
x

{
1
2
S2

x [M11]
1
2 − 2Sx[M12]

1
2 + 1

2
[M22]

1
2

}
= Y ′′(s)X′(s) − X′′(s)Y ′(s) + B (3.4)

where B is a constant to be found as part of the solution.
The horizontal and vertical components, u and v, of the velocity in fluid 1 are given

by

u =
∂φ

∂x
, (3.5)

v =
∂φ

∂y
. (3.6)

We define the depth as the ordinate of the mean level of the interface. Therefore,
we impose ∫ b

0

Y (s)X′(s) ds = d̄. (3.7)

Here b is the length of a wavelength of the interface.
We also define the velocity c as the average horizontal velocity at a constant level

of y within the fluid. Thus we write

c =
1

λ

∫ λ

0

u dx (3.8)

where y is constant. The irrotationality of the flow in region 1 implies that the value
of c is independent of the constant level of y chosen provided it is in fluid 1. The
irrotationality of the flow implies also that (3.8) can be rewritten as

c =
1

λ

∫ b

0

(uX′(s) + vY ′(s)) ds. (3.9)

As y → ∞, V (2)
x approaches 1/2. Since V (2) satisfies Laplace’s equation, we have∫ b

0

(
V (2)

x X′(s) + V (2)
y Y ′(s)

)
ds =

∫ λ

0

V (2)
x dx (3.10)

where the integral on the right-hand side is taken at a constant y. Taking the limit as
this constant approaches infinity we obtain

1

2
=

1

λ

∫ b

0

(
V (2)

x X′(s) + V (2)
y Y ′(s)

)
ds. (3.11)

We map the fluid in region 1 within −λ/2 < x < λ/2 from the (z = x + iy)-plane
into the interior of an annular region of the ζ -plane by the transformation

ζ = exp(−2iπz/λ). (3.12)

We seek the complex velocity W = u − iv as an analytic function of ζ . Since W is
periodic in x with period λ, it gives rise to a single-valued analytic function of ζ .
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The boundaries of the annular region consist of the free surface and its image in the
bottom. We apply Cauchy’s integral equation formula to the function W = u − iv in
the annular region of the ζ -plane. This yields

W (ζ ) = − 1

πi

∮
C0

W (µ)

µ − ζ
dµ (3.13)

where ζ is on the free surface and C0 denotes the boundaries of the annular region.
The integral in (3.13) is a Cauchy-principal value.

Let β = 2π/λ, V1 = u(s)X′(s)+v(s)Y ′(s), V2 = u(s)Y ′(s) − v(s)X′(s), Y± = Y (r) ± Y (s),
and X± = X(r) ± X(s). Then taking the real part of (3.13) yields, after some algebra,

λ

2
u(r) =

∫ b/2

0

V1(1 − eβY− cos(βX+)) − V2(e
βY− sin(βX+))

1 + e2βY− − 2eβY− cos(βX+)
ds

+

∫ b/2

0

V1(1 − eβY− cos(βX−)) + V2(e
βY− sin(βX−))

1 + e2βY− − 2eβY− cos(βX−)
ds

−
∫ b/2

0

V1(1 − eβY+ cos(βX−)) − V2(e
βY+ sin(βX−))

1 + e2βY+ − 2eβY+ cos(βX−)
ds

−
∫ b/2

0

V1(1 − eβY+ cos(βX+)) + V2(e
βY+ sin(βX+))

1 + e2βY+ − 2eβY+ cos(βX+)
ds. (3.14)

Similarly we use the fact that V (1)
x − iV (2)

y is an analytic function of z satisfying

V (1)
y = 0 on y =0 to derive the integral equation

λ

2
V (1)

x (r) =

∫ b/2

0

A1(1 − eβY− cos(βX+)) − A2(e
βY− sin(βX+))

1 + e2βY− − 2eβY− cos(βX+)
ds

+

∫ b/2

0

A1(1 − eβY− cos(βX−)) + A2(e
βY− sin(βX−))

1 + e2βY− − 2eβY− cos(βX−)
ds

−
∫ b/2

0

A1(1 − eβY+ cos(βX−)) − A2(e
βY+ sin(βX−))

1 + e2βY+ − 2eβY+ cos(βX−)
ds

−
∫ b/2

0

A1(1 − eβY+ cos(βX+)) + A2(e
βY+ sin(βX+))

1 + e2βY+ − 2eβY+ cos(βX+)
ds. (3.15)

Here A1 = V (1)
x (s)X′(s) + V (1)

y (s)Y ′(s) and A2 = V (1)
x (s)Y ′(s) − V (1)

y (s)X′(s)
Next we map the fluid in region 2 within a wavelength −λ/2 <x < λ/2 from the

z-plane into the interior of the unit circle by the transformation

ζ = exp(2iπz/λ). (3.16)

Applying the Cauchy integral formula to the function V (2)
x − iV (2)

y in the ζ -plane we
obtain

V (2)
x (t) =

2

λ
Im

∫ b

0

[
V (2)

x − iV (2)
y

]
[iX′(s) − Y ′(s)]

1 − exp(2iπ/λ)(X(t) − X(s)) − 2π/λ(Y (t) − Y (s)))
ds

+
2

λ
Im

∫ b

0

[
V (2)

x + iV (2)
y

]
[iX′(s) + Y ′(s)]

1 − exp(2iπ/λ(X(t) + X(s)) − 2π/λ(Y (t) − Y (s)))
ds (3.17)

where Im denotes the imaginary part.
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We now use (2.15) and (2.16) to express V (1)
x and V (1)

y in terms of V (2)
x and V (2)

y as

V (1)
x =

1

1 + S2
x

[
V (2)

y

(
Sx − Sx

ε̄

)
+ V (2)

x

(
1 +

S2
x

ε̄

)]
, (3.18)

V (1)
y =

1

1 + S2
x

[
V (2)

y

(
S2

x +
1

ε̄

)
+ V (2)

x

(
Sx − Sx

ε̄

)]
. (3.19)

Finally the kinematic boundary condition on the interface gives

uY ′(s) − vX′(s) = 0. (3.20)

There are different ways to define the amplitude h. One way is to define it as the
height between crests and troughs, i.e.

h = Y (0) − Y
(

1
2
b
)
. (3.21)

Another way is to define it as the L2 norm of Y − d̄ , i.e.

h =

[∫ b

0

[Y (s) − d̄]2X′(s) ds

]1/2

. (3.22)

The first one is used in the description of the results.
This completes the reformulation of the problem as a system of integro–differential

equations. We seek six functions X′(s), Y ′(s), u, v, V (2)
x , V (2)

y and three parameters α,
B and b satisfying (3.2), (3.3), (3.4), (3.14), (3.15), (3.17), (3.18), (3.19) (3.20), (3.21)
(or (3.22)). These equations are solved numerically in § 5 but before doing this we
develop the solution in the limit of long waves.

4. Asymptotic nonlinear long-wave solutions
In what follows we analyse the problem when the thickness of the fluid layer is small

compared with the length of the wave. In terms of the non-dimensional equations
introduced earlier, this limit can be studied by the introduction of a small parameter
δ, say, such that the free surface is given by

S(x, t) = δS̃(x, t). (4.1)

Physically, δ is the ratio of the dimensional mean layer thickness to the length of the
waves. An asymptotic solution is sought in this limit starting from the exact integral
formulation and boundary conditions. An alternative way, which utilizes the scaled
equations and uses order-of-magnitude arguments along with matched asymptotic
expansions to derive the leading-order solution, can be found in Tilley et al. (2001)
(see also Savettaseranee et al. 2003 for the viscous problem). We retain the time-
dependence in order to compare with the analysis of Tilley et al. (2001). Another
difference between the present analysis and that of Tilley et al. (2001) is that L is used
to non-dimensionalize lengths instead of d . The asymptotic scalings are consequently
different but the final evolution equations are identical. The former approach is more
natural in making comparisons with the numerical solutions of the full problem when
λ� 1.

We introduce a stretched normal coordinate in region 1:

Region 1: x unchanged, y = δζ, (4.2)

Region 2: x unchanged, y unchanged, (4.3)
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with ζ an order-one variable. The electric potentials for small δ expand as follows:

V (1) = 1
2
x + δṼ (1)(x, ζ, t) + O(δ3), (4.4)

V (2) = 1
2
x + δṼ (2)(x, y, t) + O(δ3). (4.5)

Note that the expansions proceed in δ2 due to the form of the scaled equation for the
voltage in region 1 which is

V (1)
xx +

1

δ2
V

(1)
ζ ζ = 0. (4.6)

Substitution of (4.4) into (4.6) and use of the symmetry condition V
(1)
ζ (x, 0, t) = 0,

gives

Ṽ (1) = Ṽ
(1)
0 (x, t). (4.7)

This result implies that V (1)
y = O(δ2) in region 1, an estimate which is used next.

We proceed by applying the transformations (4.2) and (4.3) and substituting
the expansions (4.4)–(4.5) into the voltage boundary conditions (2.15) and (2.16).
In doing this we evaluate at ζ = S̃ for quantities relating to region 1 (note that
∂/∂y → (1/δ)(∂/∂ζ ) in region 1), and y = δS̃ for quantities evaluated using region 2
variables – vertical derivatives remain of order one in region 2. We obtain

ε̄
[
O(δ2) − δS̃x

(
1
2

+ O(δ)
)]

=
[
δṼ (2)

y − δS̃x

(
1
2

+ O(δ)
)]

y=δS̃
, (4.8)

1
2

+ δṼ
(1)
0x + O(δ2) =

[
1
2

+ δṼ (2)
x + O(δ2)

]
y=δS̃

. (4.9)

In the limit δ → 0 we replace the leading-order terms from the right-hand sides of
(4.8) and (4.9) by evaluation at y =0. This assumes that ∇Ṽ (2)(x, 0, t) =O(1), which
is confirmed a posteriori. The following relations are then obtained:

Ṽ (2)
y

∣∣
y=0

= 1
2
(1 − ε)S̃x, (4.10)

Ṽ (2)
x

∣∣
y=0

= Ṽ
(1)
0x . (4.11)

The leading-order boundary conditions are needed in the Bernoulli equation (2.14)
which is considered next. The fluid potential φ in region 1 satisfies the scaled Laplace
equation

φxx +
1

δ2
φζζ = 0. (4.12)

The expansion is

φ = φ0 + δ2φ1 + . . . , (4.13)

and the solutions follow as

φ0 = φ0(x, t), (4.14)

φ1ζ = −ζφ0xx. (4.15)

In deriving these solutions we have used symmetry at ζ =0. Inspection of the Bernoulli
equation (2.14) and the expressions (2.17)–(2.19) for the electric stresses suggests that
M22 dominates in the limit δ � 1; introducing the scalings (4.2) and (4.3) with the
expansions (4.4)–(4.5) gives

[M22]
1
2 = ε̄

[
− 1

4
− δṼ

(1)
0x + . . .

]
ζ=S̃

−
[
− 1

4
− δṼ (2)

x + . . .
]
y=δS̃

. (4.16)
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Using condition (4.11) above, and selecting the largest terms in (4.16) gives

[M22]
1
2 = δ(1 − ε̄)

[
Ṽ (2)

x

]
y=0

+ 1
4
(1 − ε̄) + . . . . (4.17)

We note that even though the constant term is larger, it does not play a role since the
Bernoulli equation is differentiated with respect to x to obtain the desired evolution
equation. The evolution equation is found by considering the largest terms in (2.14),
noting that we are evaluating at S = δS̃ and all fluid potential terms are calculated
using region 1 variables. The resulting expression, after a differentiation with respect
to x, becomes

φ0xt + φ0xφ0xx + 1
2
δ(1 − ε̄)

[
Ṽ (2)

xx

]
y=0

= δS̃xxx. (4.18)

Equation (4.18) contains a non-local contribution due to the electric field in the
potential region above the fluid layer. The remaining task is to calculate this in terms
of the interface position.

One way to accomplish this is to note that the function Ṽ (2)
x − iṼ (2)

y is an analytic
function of the complex variable z = x + iy. We apply Cauchy’s theorem also to the
analytic function Ṽ (2)

xx − iṼ (2)
yx on a contour bounding region 2 (it is easier to consider

−∞ <x < ∞ in this and apply periodicity at the end). The contour is rectangular
with its upper part located at y = Y0, and as Y0 → ∞ the contribution to the integral
tends to zero since Ṽ (2)

xx − iṼ (2)
yx → 0 there. In addition, the contributions from the two

vertical parts of the contour cancel and evaluating as y → 0 gives

Ṽ (2)
xx (x, 0) − iṼ (2)

yx (x, 0) =
1

iπ
PV

∫ ∞

−∞

Ṽ (2)
xx (x

′, 0) − iṼ (2)
yx (x

′, 0)

x ′ − x
dx ′. (4.19)

Take the real part of this expression and differentiate (4.10) with respect to x to
eliminate Ṽ (2)

xy (x, 0); this gives

[
Ṽ (2)

xx

]
y=0

= 1
2
(1 − ε̄)

[
1

π
PV

∫ ∞

−∞

S̃x ′x ′

x − x ′ dx ′
]

≡ 1
2
(1 − ε̄)H(S̃xx), (4.20)

where H(·) is the Hilbert transform operator. We note that for periodic functions the
Hilbert transform becomes

H(S̃xx) = −PV

∫ 1/2

−1/2

cot(π(x − x ′))S̃x ′x ′ dx ′. (4.21)

This is the appropriate form in the present study. The leading-order Bernoulli equation
becomes, then,

φ0xt + φ0xφ0xx − 1
4
δEb(1 − ε̄)2H(S̃xx) = δS̃xxx. (4.22)

A second evolution equation follows from the kinematic condition (2.13). Using the
scalings and leading-order solutions found here, this becomes

S̃t + φ0xS̃x + φ0xxS̃ = 0. (4.23)

Re-writing equations (4.22) and (4.23) in terms of the unscaled variables (see (4.1)),
we obtain

φ0xt + φ0xφ0xx − 1
4
Eb(1 − ε̄)2H(Sxx) = Sxxx, (4.24)

St + φ0xSx + φ0xxS = 0. (4.25)

It remains to cast the equations into the computational format of our arbitrary
amplitude calculations. This is achieved by looking for steady states and introducing
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a uniform stream of speed c. Writing

φ0 = cx + φ,
∂

∂t
≡ 0, (4.26)

gives the system

cφxx + φxφxx − 1
4
(1 − ε̄)2EbH(Sxx) = Sxxx, (4.27)

cSx + Sxφx + Sφxx = 0. (4.28)

Equations (4.27)–(4.28) are solved numerically in § 5 and results are compared with
the full simulations as the wavelength λ is increased.

We close this section by giving the wave speed c for the linear theory of the system
(4.27) and (4.28). Linearizing about the exact solution (φ, S) = (0, d̄) and using the
properties of the Hilbert transform, it is easy to calculate that linear sine waves of
wavenumber k travel with speeds

c2 = d̄k2 + 1
4
d̄Eb(1 − ε̄)2|k|. (4.29)

This dispersion relation is used to check the numerical work that follows.

5. Numerical method
5.1. Fully nonlinear problem

In this section we outline the numerical method used to solve the system of integro–
differential equations derived in § 3.

We define equally spaced mesh points over the interval [0, 1
2
b] by the formulae

sI =
b

2(N − 1)
(I − 1), I = 1, . . . , N, (5.1)

sI+1/2 =
(sI+1 + sI )

2
, I = 1, . . . , N − 1. (5.2)

We also introduce the 6N unknowns X′
I = X′(sI ), Y ′

I = Y ′(sI ), uI = u(sI ), vI = v(sI ),
V I

x =V (2)
x (sI ) and V I

y = V (2)
y (sI ).

We satisfy (3.1), (3.4) and (3.20) at the mesh points (5.1). This leads to 3N equa-
tions. 2N − 4 equations are obtained by satisfying (3.14) at the mesh points (5.2),
I = 1, . . . , N − 2 and (3.15) at the mesh points (5.2), I = 2, . . . , N − 1. The integrals
in (3.14) and (3.15) are approximated by the trapezoidal rule with a summation over
the mesh points (5.1). The symmetry of the quadrature and of the discretization
enables us to evaluate the Cauchy principal values as if they were ordinary
integrals. Similarly we satisfy (3.15) at the mesh points (5.1), I = 1, . . . , N − 2 with
a summation over the mesh points (5.2). Seven more equations are obtained by
setting v1 = vN = V 1

y = V N
y = 0, X(n) = 0.5 and by imposing (3.11) and (3.7). One more

equation is given by (3.21) or (3.22) with h prescribed. The last equation expresses
V N

y in terms of V I
y , I =N − 4, . . . , N − 1 by a four-point extrapolation formula. This

gives a system of 6N +3 nonlinear algebraic equations for the 6N + 3 unknowns B , c,
α and X′

I , Y
′
I , uI , vI , V

I
x , V I

y , I = 1, . . . , N . This system is solved by Newton’s method.

5.2. Long-wave approximation

We now solve the system (4.27)–(4.28) by a numerical method similar to that of § 5.1.
We introduce the mesh points

XI =
λ(I − 1)

2(N − 1)
, I = 1, . . . , N, (5.3)
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XI+1/2 =
XI+1 + XI

2
, I = 1, . . . , N − 1, (5.4)

and the unknowns

φ′
I = φx(XI ), S ′

I = Sx(XI ), I = 1, . . . , N. (5.5)

Next we evaluate φx , φxx , Sxxx , Sx at the mesh points (5.4) and Sxx at the mesh
points (5.3) by four-point difference formulae. We evaluate S(XI+1/2) by integrating
S ′

I numerically with the condition S(0) = α.
We obtain 2N − 3 equations by satisfying (4.27) at the mesh points (5.4), I = 1, . . . ,

N − 1 and (4.28) at the mesh points (5.4), I = 1, . . . , N − 2. As in § 5.1 the Cauchy
principal value in (4.27) is evaluated by the trapezoidal rule with a summmation over
the mesh points (5.3). Two more equations are given by S ′

1 = S ′
N = 0. The last three

equations are obtained by imposing

1

λ

∫ λ/2

0

S dx =
d̄

2
, (5.6)

1

λ

∫ λ/2

0

φx dx =
λ

2
, (5.7)

and by fixing the amplitude h by the equation

S(X1) − S(XN ) = h. (5.8)

This yields a system of 2N + 2 equations for the 2N + 2 unknowns (5.5), α and c0.
This system is solved by Newton’s method.

6. Discussion of the results
We used the numerical schemes described in § 5 to compute solutions for various

values of λ, h, ε̄ and Eb. We also assume, without loss of generality, that d̄ = 1. Most
of the results presented were obtained with N = 100. We repeated the calculations
with larger and smaller values of N and checked that all the results presented are
independent of N within graphical accuracy.

When ε̄ = 1, (2.15) and (2.16) imply V (1)
x = V (2)

x and V (1)
y = V (2)

y . It then follows that
the last term on the left-hand side of (2.14) vanishes and the problem reduces to the
capillary waves (without electric fields) considered by Crapper (1957) and Kinnersley
(1976). A typical profile in this case and for h = 0.5, is shown in figure 2 (solid
curve). Since the wavelength is relatively small compared to the thickness of the layer
(λ= 2π/5), this solution is close to the infinite-depth results of Crapper (1957). The
profile is clearly nonlinear with a sharp trough and a rounded crest. As the amplitude
is further increased the profile approaches a limiting configuration with a trapped
bubble at its trough (not shown here). The other profiles in figure 2 show the influence
of the relative permittivity of the fluid on waves produced for a fixed applied electric
field. Here Eb =3 and h = 0.5. As ε̄ decreases below 1, that is the permittivity of
the fluid layer is smaller than that of the surrounding medium, the profiles become
steeper. As ε̄ increases above 1, the profiles become closer to linear sine waves and
the electric field suppresses the wave steepness seen in its absence.

In figure 3, we present computed values of c versus Eb for λ= 4π, 12π and 20π. The
value of the relative permittivity is set to ε̄ = 1.5 and the amplitude of the travelling
waves is taken to be h = 0.1. Figure 3 consists of a pair of lines for each of the
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Figure 2. Shapes of nonlinear travelling waves for different relative permittivities. The electric
capillary number is Eb =3, the wave amplitude is h = 0.5, λ=2π/5 and the dimensionless
thickness is 2 (i.e. d̄ = 1). Solid line, ε̄ = 1; dashed line, ε̄ = 0.075; dotted line, ε̄ = 4.
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Figure 3. Travelling wave speed c versus the electric capillary number Eb . h = 0.1, ε̄ = 1.5,
d̄ = 1. Dashed curves are weakly nonlinear results and solid curves are fully nonlinear. The
wavelength λ is given for each set of results.
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Figure 4. Travelling wave speed c versus wave amplitude h. Eb = 3, λ= 12π, ε̄ = 1.5, d̄ = 1.
Top curves, long-wave model. Lower curves, fully nonlinear problem.

wavelengths 4π, 12π and 20π, respectively. In each group, the solid line represents the
fully nonlinear results obtained by using the scheme of § 5.1 whereas the broken line
shows the results according to the asymptotic model of § 4 and calculated using the
scheme of § 5.2. It can be seen that agreement between the fully nonlinear calculations
and those based on the long-wave model becomes increasingly better as λ increases
(large λ corresponds to small δ which is necessary for the validity of the asymptotic
equations). The ratio of the absolute errors of the asymptotic and fully nonlinear
speeds for the cases λ= 20π and 12π is 0.5 within an error of 6% or less for the
whole range of values of Eb represented in figure 3. These results indicate that the
long-wave model is very good for wavelengths larger than about 10π.

In figure 4, we present values of the wave speed c versus the wave amplitude h

for a fixed electric capillary number Eb =3 and wavelength λ= 12π. The value of
the relative permittivity is ε̄ = 1.5. Results are shown for both the weakly nonlinear
problem based on the equations derived in § 4, and calculations using the fully
nonlinear equations and the computational methods described here. The upper solid
curve corresponds to the weakly nonlinear solution, whereas the lower solid curve
is the fully nonlinear solution. The dotted curves represent the wave speed which is
obtained in the linear regime with the wavenumber fixed to the value k = 2π/λ= 1

6
,

chosen for the computations. The linear speed for the long-wave model has been
given in equation (4.29) and the straight line follows by substituting k = 1

6
, Eb =3

and ε̄ = 1.5 in this expression (the result is a straight line because linear theory is
independent of the amplitude). The analogous dotted curve that depicts the linear
speed of the full problem is calculated using the dispersion relation (2.24) with d̄ = 1,
and substituting the appropriate values as above, noting that the wave speed c = ω/k.
We note that the two curves are different and this is to be expected because the
wavenumber k = 1

6
used in the numerical experiments is finite. As k is reduced, the

linear theories of the full problem and the weakly nonlinear problem asymptote to
the same value of c which is given in equation (4.29). Owing to the algebraic decay
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rates to this limit we have not followed this further. Note also that these results serve
as an additional check on the accuracy of our numerical work.

7. Conclusions
In this article we have studied nonlinear interfacial waves of arbitrary amplitude

and wavelength on electrified liquid layers. The electric field acts in a direction
parallel to the undisturbed layer and we have included the effects of surface tension.
Travelling waves have been constructed using boundary integral techniques and the
results compared with those of an asymptotic long-wave theory. The long-wave theory
is carried out using the integral equation formulation of the problem and results in
two coupled evolution equations. These were also derived by Tilley et al. (2001) using
different matched asymptotics methods and a different rescaling; the present rescaling
is more natural in the sense that the long-wave results can be compared directly with
the full numerical calculations. Such comparisons are made extensively here, with
the finding that agreement between the two is excellent if the wavelength of the full
calculations is sufficiently long. For example, when the relative permittivity ε̄ = 1.5
and the wave amplitude is 0.1, the travelling wave speeds of the full calculations agree
very well with those of the long wave ones for all Eb (a measure of the imposed field)
studied in a range between 3 and 30, when the wavelength is larger than about 10π
(this corresponds to an aspect ratio of about 0.03).

Our results show that the electric field can have a pronounced effect on the shapes
and speeds of interfacial waves. We have established numerically that, all else being the
same, when the relative permittivity ε̄ becomes larger than 1 (that is the permittivity in
fluid region 1 is larger than that of the surrounding medium), the nonlinear waves lose
their steepness and resemble sine waves. At the same time the wave speed increases.
On the other hand, when ε̄ < 1 (region 2 has larger permittivity than region 1), the
waves steepen relative to the zero electric field case, and the wave speed decreases.
These results are summarized in figures 2 and 3 – note that Eb and ε̄ appear indepen-
dently in the equations even though the Maxwell stress contribution proportional
to Eb(1 − ε̄)2 appears to be the controlling parameter. Figure 3 also shows that
the electric field can be used to control the speed of the nonlinear waves since the
latter has been established from our numerical work to be a monotonically increasing
function of the former.

Considering real physical systems, we see that the scenario predicted for ε̄ > 1 is
probably the most appropriate for our problem. Values of dielectric constants have
been given in the experimental study of Burcham & Saville (2000) who study liquid
bridge formation when an axial field acts in the absence of gravity. The surrounding
phase is a gas (sulphur hexafluoride) while the bridge fluid is a certain oil (see table 1
of Burcham & Saville 2000). In all those systems, the value of ε̄ ranges from 2.74
for the highest viscosity fluid (a silicon oil 12 M) to 5.24 for the lowest viscosity fluid
(castor oil/eugenol). Two-phase liquid–liquid systems can be used that have values of
ε̄ < 1 (for example silicon oil 1 M surrounded by a less viscous castor oil/eugenol –
see table 1 of Burcham & Saville (2000)) which gives ε̄ = 0.53. Our theory needs to
be modified in this case, however, to take into account the fluid dynamics of the
surrounding phase. This is the subject of future research.

The work undertaken here is two-dimensional and restricted to waves which are
symmetric with respect to the centreline. In the absence of electric fields, the work
of Kinnersley (1976) shows that there are in addition antisymmetric waves (see
also Taylor 1959 for a linear theory). The linear theory for antisymmetric waves
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follows that of § 2.2 and leads to (2.24) with the tanh replaced by coth. We are now
investigating the possible existence of antisymmetric waves in the presence of electric
fields, see Papageorgiou & Vanden-Broeck (2004).

It is also of interest to consider three-dimensional extensions and in particular
axisymmetric systems which can be found in experiments. Axisymmetric capillary
waves were considered by Vanden-Broeck, Miloh & Spivack (1998) and inclusion of
axial electric fields in those flows is the subject of ongoing work.
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