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The problem of irrotational inviscid incompressible free-surface flow is examined in
the limit of small Froude number. Since this is a singular perturbation, singularities
in the flow field (or its analytic continuation) such as stagnation points, or corners in
submerged objects or on rough beds, lead to a divergent asymptotic expansion, with
associated Stokes lines. Recent techniques in exponential asymptotics are employed
to observe the switching on of exponentially small gravity waves across these Stokes
lines.

As a concrete example, the flow over a step is considered. It is found that there
are three possible parameter regimes, depending on whether the dimensionless step
height is small, of the same order, or large compared to the square of the Froude
number. Asymptotic results are derived in each case, and compared with numerical
simulations of the full nonlinear problem. The agreement is remarkably good, even at
relatively large Froude number. This is in contrast to the alternative analytical theory
of small step height, which is accurate only for very small steps.

1. Introduction
Free-surface flows over rough surfaces or submerged bodies have been studied

for over a century. Early work includes that of Kelvin (1886), who considered the
stationary wave pattern caused by finite elevations or depressions in the bed of a
stream, and Lamb (1913), who found the two-dimensional velocity potential due to a
fixed circular cylinder in a uniform stream, under the assumption that the cylinder is
small and the free-surface conditions are linearized.

Several authors have used singularities to model both finite and infinite bodies
moving in a free stream, for example Havelock (1927) and Gazdar (1973). Dean
(1948) and Ursell (1950) consider a wave incident on a fixed submerged circular
cylinder, using a linearized theory of small disturbances. Wilmott (1987) applies the
technique of matched asymptotic expansions to the motion of a small body beneath
a free surface. All these works rely on a linearization of the free-surface conditions,
either in an ad hoc fashion, or due to the disturbing body being small in comparison
to its distance from the free surface.

With the advent of the computer, it became possible to retain the full nonlinear
free-surface condition using numerical simulation. For example, von Kerczek &
Salvesen (1977) consider numerically the generation of waves on the surface of a
stream by an imposed pressure distribution on the surface. Forbes & Schwartz (1982)
consider flow over a semi-circular bump in the bed of a stream of finite depth
using a Joukowski transformation on the potential plane to reduce the problem to
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an integro-differential equation. Analytical results are given in the linear case, and
numerical results presented using the full nonlinear boundary condition. This work
was generalized to a system of two superposed fluids and to an arbitrary topography
of the bottom by Belward & Forbes (1993) and Dias & Vanden-Broeck (2004). In a
similar vein, King & Bloor (1987) consider the flow over a step by again formulating
the problem as a nonlinear integro-differential equation. Analytical results are given
for small step height, and numerical results presented for arbitrary steps. This was
generalized to flow over a submerged body in King & Bloor (1989), and to flow over
an arbitrary bed topography in King & Bloor (1990). A numerical method involving
isolated sources located outside the flow domain is used to compute potential flows
over submerged cylinders in Scullen & Tuck (1995). Ploughing flows, in which a
uniform stream is split by a semi-infinite obstacle are studied numerically in Tuck &
Vanden-Broeck (1998). Various nonlinear free-surface flows generated by submerged
sources and sinks were calculated numerically by Tuck & Vanden-Broeck (1984),
Forbes & Hocking (1990), and Vanden-Broeck & Keller (1997). These flows model
selective withdrawal from reservoirs.

Supercritical flows (in which the Froude number is greater than unity) of a finite-
depth fluid with a mat or distributed sink are considered by Koerber & Forbes (1998,
1999, respectively).

In three dimensions, Tuck & Scullen (2002) compared full numerical simulations
both with an ad hoc linearization of the free-surface condition, and with a consistent
thin ship approximation, for submerged spheroids.

In all these works, analytic results are available when the disturbance to the free
stream is small, but for more general situations, a numerical simulation is required.
In this paper, we aim to extend our knowledge of the generation of gravity waves
by a rough bottom or submerged object in a free stream by considering a different
asymptotic limit in which analytical progress can be made. Specifically, we consider
an arbitrary flow geometry in the limit of small Froude number. In this limit, the
dominance of gravity means that the free surface is again flat to leading order, even
though the disturbance to the flow by the object is great.

The problem is a singular perturbation problem, and we would therefore expect the
formal asymptotic series developed in powers of the Froude number to be divergent.
This divergence is associated with the presence of an exponentially small correction
to the algebraic expansion, which appears ‘beyond all orders’ (Dingle 1973).

Kruskal & Segur (1991) observed that in nonlinear ordinary differential equations,
the divergence is caused by a singularity in the analytic continuation of the leading-
order solution, near which the formal asymptotic series breaks down. They formulate
an inner problem in the vicinity of the singularity, and find that its solution contains
a decaying exponential in the far field, in addition to the terms which match with
the algebraic series. This exponential is matched to a solution of the linearized
equation away from the singularity to obtain the exponentially small, beyond all
orders correction. Kruskal & Segur (1991) solve the inner problem numerically
(observing the exponential along a ray on which the algebraic terms vanished), but
other authors have since observed that the far field of the inner solution can be
Borel-summed to obtain the exponential to be matched to the outer solution (see, for
example, Combescot et al. 1988; Hakim 1991).

A similar method is formulated in Chapman, King & Adams (1998), Chapman
(1999) and Chapman & Vanden-Broeck (2002), where the algebraic asymptotic
expansion (away from the singularity) is optimally truncated (that is, truncated
at its least term), which results in an exponentially small error between the truncated
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series and the exact solution. This allows the exponentially small corrections to be
observed switching on across Stokes lines by smoothing the Stokes discontinuity,
and is a generalization of the smoothing of Stokes discontinuities in linear ordinary
differential equations discovered by Berry (1989).

The exponentially small correction terms which appear in the present problem
correspond to gravity waves on the free surface of exponentially small amplitude. We
will develop a procedure to determine the region of the free surface they occupy, as
well as their magnitude, for general flow geometries. We note that exponentially small
gravity–capillary waves have been studied in the context of the Korteweg–de Vries
equation in Akylas & Yang (1995), Byatt-Smith (1991), Grimshaw & Joshi (1995)
and Pomeau, Ramani & Grammaticos (1988).

The rest of the paper is organized as follows. In § 2, we formulate the problem
mathematically. In § § 3 and 4, we apply the procedure developed in Chapman et al.
(1998). In § 3, we naively expand the solution as a formal power series in the Froude
number and find the form of the late terms in this series. This enables us, in § 4, to
truncate the algebraic series optimally, and to observe the subdominant exponentials
being switched on across Stokes lines.

In § 5, we consider as a test problem the flow over a step, considered previously
by King & Bloor (1987). The analytical results in King & Bloor (1987) are for small
step height, but we find that the small-step-height limit of our result does not agree
with the small-Froude-number limit of their result: the two limits do not commute.
In Appendix A, we apply our procedure to the limiting problem of small step height
(thus applying the limits in reverse order), and show that it agrees with the result of
King & Bloor (1987). In Appendix B, we consider the canonical scaling in which the
Froude number and step height both tend to zero at the appropriate rate.

In § 6, we compare the results of § 5, Appendix B and King & Bloor (1987) with a
direct numerical simulation of the full problem. We find that a uniform approximation
generated from the results of § 5 and Appendix B is remarkably accurate, even
for relatively large Froude numbers. This is in contrast to the small-step-height
approximation, which is good only for very small steps (at moderate Froude numbers).

Finally, in § 7, we present our conclusions.

2. Formulation of the problem
We consider a general steady, incompressible, irrotational, inviscid flow in the

presence of gravity with small Froude number. The fluid velocity u = (u, v) = ∇φ,
where the velocity potential φ satisfies

∇2φ = 0.

On all boundaries we have the kinematic condition

∂φ

∂n
= 0,

while on the free boundary we also have the dynamic condition, which from Bernoulli’s
equation is

ε
(

1
2
|∇φ|2 − 1

2

)
+ y = 0 (2.1)

where ε =U 2/gL is the square of the Froude number, and we have non-dimen-
sionalized the fluid velocity ∇φ with the flow at infinity, U , and length with a typical
length L which will depend upon the exact geometry being considered. For flow in a
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channel, L will be a typical channel depth, while for flow over a submerged object, L

will be the depth of the object.
As usual, we define the complex potential by w = φ + iψ , where ψ is the stream-

function (with ψ chosen to be zero on the free boundary), and we let z = x +iy. Since
w is then an analytic function of z, the map z → w is a conformal transformation of
the flow region to a region of the potential plane.

It is convenient to work in terms of the complex velocity dw/dz = u − iv, which
may be written as qe−iθ , where θ is the angle the streamlines make with the x-axis.
Then

dx

ds
= cos θ,

dy

ds
= sin θ,

where s is arclength, so that differentiating (2.1) gives

εq
dq

ds
= −sin θ, (2.2)

on the free boundary. Noting that

dq

ds
=

dq

dφ

∂φ

∂s
= q

dq

dφ

in the potential plane this is

εq2 dq

dφ
= −sin θ. (2.3)

A second transformation w → ζ is often used to map the flow region in the potential
plane to the upper half-ζ -plane. Then the analyticity of qe−iθ in the upper half-plane
implies

log q = − 1

π
−
∫ ∞

−∞

θ(ξ ′) dξ ′

ξ ′ − ξ
, (2.4)

where ζ = ξ + iη.
Now in the course of our analysis we will need to complexify the free boundary,

i.e. complexify x, y, s, φ, q and θ . Since we are dealing with complex variables z, ζ

and w anyway this can lead to some confusion. The complexification of φ is simply
w, that of ξ is simply ζ . The only difference between the complexified free boundary
and the flow region is that on the complexified free boundary q and θ are not real,
even though qe−iθ is still equal to dw/dz.

Analytically continuing (2.4) into the upper half-ξ -plane gives

log q − iθ = − 1

π

∫ ∞

−∞

θ(ζ ′) dζ ′

ζ ′ − ζ
, (2.5)

where we have replaced ξ by ζ to avoid confusion. Similarly, we will write (2.3) for
complex φ by replacing φ by w so that

εq2 dq

dw
= −sin θ. (2.6)

Thus our problem is (2.5) and (2.6), together with the conformal map w → ζ which
depends on the geometry of the particular problem we are considering. We can
perform much of our analysis without knowing the precise form of this map. Thus,
in the next two sections we leave it unspecified, so that the results are applicable to
a general flow problem. Then, in § 5, we apply these results to the particular example
of flow over a step.
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3. Asymptotic expansion for small Froude number
We will solve (2.5) and (2.6) asymptotically as ε → 0, with the particular goal of

identifying the exponentially small terms beyond all orders, which correspond to the
gravity waves on the free surface. The procedure developed in Chapman et al. (1998)
is as follows. The first step is to determine the algebraic expansion in powers of ε.
The presence of exponentially small correction terms means that this expansion is
divergent, and so must be truncated. If we truncate it after N terms, where N is fixed,
then the error is O(εN ) as ε → 0. However, if we truncate it at its least term (that
is, we truncate it optimally), then the error is exponentially small in ε (note that the
number of terms in the optimal truncation depends on ε, so that N increases as ε

decreases). By examining the behaviour of the remainder after optimal truncation, we
are able to observe directly exponentially small correction terms being switched on
across Stokes lines.

Because the number of terms in the optimally truncated series increases as ε

decreases, to determine the optimal truncation point and the remainder after optimal
truncation we do not need to know the full asymptotic expansion in powers of ε, but
only the late terms in the expansion, that is, the coefficient of εn for large n.

3.1. Late terms in the regular asymptotic expansion

We expand in powers of ε as

θ =

∞∑
n=0

εnθn, q =

∞∑
n=0

εnqn. (3.1)

Then, at leading order,

θ0 = 0 on the free boundary, (3.2)

log q0 = − 1

π
−
∫ ∞

−∞

θ0(ξ
′) dξ ′

ξ ′ − ξ
. (3.3)

Note that the integral in (3.3) corresponds to integrating over the boundary of the
fluid domain, and will therefore contain sections corresponding to fixed boundaries
(on which θ is known), and a section corresponding to the free boundary (on which
(3.2) holds); typically the free boundary will correspond to 0<ξ < ∞ (see § 5, and in
particular equation (5.2), for example). At first order, we have

q2
0

dq0

dw
= −θ1 on the free boundary, (3.4)

q1

q0

− iθ1 = − 1

π

∫ ∞

−∞

θ1(ζ
′) dζ ′

ζ ′ − ζ
, (3.5)

where we have replaced (2.4) with (2.5), and in general

q2
0

dqn−1

dw
+ 2q0q1

dqn−2

dw
+ 2q0qn−1

dq0

dw
+ · · · = −θn cos θ0 + θ1θn−1 sin θ0 + · · · (n � 3),

(3.6)
qn

q0

− qn−1q1

q2
0

+ · · · − iθn = − 1

π

∫ ∞

−∞

θn(ζ
′) dζ ′

ζ ′ − ζ
(n � 2). (3.7)

The terms on the left-hand side of (3.6) come from expanding the product of three
series q2dq/dw, those on the right-hand side of (3.6) come from expanding −sin θ ,
while those on the left-hand side of (3.7) come from expanding log q . In each case,
we have listed the terms which we will see are dominant for large n, since as we have
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said, in order to truncate the series (3.1) optimally we need to know the behaviour of
the late terms in the expansion. Thus, we aim to solve (3.6) and (3.7) in the limit as
n → ∞.

Now in the leading-order problem, q0 may have singularities as a function of w

(through the conformal map ζ ). However, all higher-order problems are linear and
can therefore introduce no new singularities in q . Thus, the singular points of qn(w)
must be the same as those of q0(w) for all n. The singular perturbation in (2.6) means
that to determine each successive term in the expansion we differentiate the previous
term. Thus, if qn has a singularity of the form 1/(w − w0)

n, then qn+1 will have a
singularity of the form n/(w − w0)

n+1. Therefore, as n → ∞, we expect the asymptotic
expansions (3.1) to exhibit factorial/power divergence, so that we make the ansatz

θn ∼ Θ
(n + γ )

χn+γ
, qn ∼ Q
(n + γ )

χn+γ
as n → ∞, (3.8)

where Θ , Q, χ and γ may be functions of w, but are independent of n. This is
similar to a WKBJ ansatz, with χ the phase, and Θ and Q the amplitudes. We will
find that the terms on the left-hand side of (3.7) exponentially dominate those on the
right-hand side for large n, so that

θn ∼ − iqn

q0

+
iq1qn−1

q2
0

+ · · · as n → ∞, (3.9)

or equivalently

qn ∼ iq0θn + iθn−1q1 + · · · as n → ∞. (3.10)

Then at leading order as n → ∞ in (3.6), using (3.10) and the ansatz (3.8) we have

iq3
0

dχ

dw
= 1, (3.11)

so that

χ = −i

∫
dw

q3
0

. (3.12)

Now, since the singularities of qn must be the same as those of q0, χ must vanish at
one of these singularities, at w = w0 say. Then

χ = −i

∫ w

w0

dw

q3
0

. (3.13)

Proceeding to the next order in n in (3.6) we find γ= constant, and then at the next
order

q2
0Q

′ − 2q0q1Qχ ′ + 2q0q
′
0Q = − iq1Q

q2
0

(3.14)

where ′ ≡ d/dw, i.e.

Q′

Q
= −2q ′

0

q0

− 3iq1

q4
0

by (3.11). Hence

log Q = −2 log q0 − 3i

∫
q1

q4
0

dw + constant,
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i.e.

Q =
Λ

q2
0

exp

(
−3i

∫ w

w∗

q1

q4
0

dw

)
, (3.15)

where the endpoint of the integration is fixed at w∗, which may be chosen arbitrarily
providing the resulting integral exists (this may preclude choosing w∗ = w0, which
would be the most natural choice otherwise); changing the endpoint of the integration
simply changes the value of the constant Λ. By (3.9) and (3.8), the amplitude function
for the late terms in θ is given by

Θ = −Λi

q3
0

exp

(
−3i

∫ w

w∗

q1

q4
0

dw

)
. (3.16)

Thus, we have determined the late terms in the expansion of θ and q , up to the (as
yet) arbitrary constants γ and Λ. To summarize, we have

θn ∼ − iΛ

q3
0

exp

(
−3i

∫ w

w∗

q1

q4
0

dw

)

(n + γ )

χn+γ
, qn ∼ Λ

q2
0

exp

(
−3i

∫ w

w∗

q1

q4
0

dw

)

(n + γ )

χn+γ
,

(3.17)

with χ given by (3.13). To determine γ , we must examine the order of the singularity
in θ0 and q0 as w → w0, and make sure it is consistent with (3.17), which we will do
in § 3.2. To determine Λ, we must match with an inner region in the vicinity of w0,
which we will do in § 3.3.

To do this matching we need to know the behaviour of (3.17) as w → w0, which we
now determine. We have

q1 = iq0θ1 − q0

π

∫ ∞

−∞

θ1(ξ
′) dξ ′

ξ ′ − ξ

= −iq3
0

dq0

dw
− q0

π

∫ ∞

−∞

θ1(ξ
′) dξ ′

ξ ′ − ξ

Hence,

exp

(
−3i

∫ w

w∗

q1

q4
0

dw

)
= exp

(
−3

∫ w

w∗

q ′
0

q0

dw

)
× exp

(
3i

∫ w

w∗

1

πq3
0

∫ ∞

−∞

θ1(ξ
′) dξ ′

ξ ′ − ξ
dw

)

=
q3

0 (w
∗)

q3
0 (w)

× exp

(
3i

∫ w

w∗

1

πq3
0

∫ ∞

−∞

θ1(ξ
′) dξ ′

ξ ′ − ξ
dw

)
,

since q0 → 1 as w → −∞. Thus, as n → ∞ and w → w0,

θn ∼ − iΛC

q6
0


(n + γ )

χn+γ
, qn ∼ ΛC

q5
0


(n + γ )

χn+γ
, (3.18)

where

C = q3
0 (w

∗) exp

(
3i

∫ w0

w∗

1

πq3
0

∫ ∞

−∞

θ1(ξ
′) dξ ′

ξ ′ − ξ
dw

)
. (3.19)

3.2. Inner limit of q0

To determine γ , we must examine the order of the singularity in q0 as w → w0. This
will depend on the type of singularity in the flow field. Typical singularities include
stagnation points, sources, sinks and flow around the corner of an obstacle.

For stagnation points and flow around corners, locally in the vicinity of the
singularity we have w − w0 = const × (z − z0)

k for some k 	= 1. For a stagnation point
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generically k = 2, whereas for flow around a corner k = π/β where β is the interior
(i.e. in the fluid) angle of the corner. Then, for the corresponding singularity on the
analytic continuation of the free boundary

dw

dz
= q0e

−iθ0 = q0 = const × (z − z0)
k−1 = const × (w − w0)

(k−1)/k, (3.20)

remembering that θ0 = 0. Thus, q0 ∼ c(w − w0)
α where α =(k − 1)/k and c is constant,

and we have

χ ∼ − i(w − w0)
1−3α

c3(1 − 3α)
. (3.21)

Remembering that we need χ to vanish at w = w0, we see that we require α < 1/3.
Only those singularities with α < 1/3 will generate Stokes lines and their associated
exponentially small correction terms. In particular, this means that Stokes lines (and
gravity waves) are not generated by stagnation points, and will only be generated by
corners with in-the-fluid angles greater than 2π/3 (unlike the case of capillary waves
studied in Chapman & Vanden-Broeck 2002). At singularities with α � 1/3, the phase
χ → ∞. Although not generated by such singularities (which correspond to the point
at infinity in the standard examples from second-order linear ordinary differential
equations) Stokes lines will often end at them; they are discussed in more detail in
Chapman & King (2003).

Now, for the asymptotic behaviour (3.21) to be consistent with (3.18) we require
that

(1 − 3α)γ + 5α = −α,

i.e.

γ = − 6α

1 − 3α
. (3.22)

Finally, the alternative to w − w0 being a power of z locally is to have w −
w0 = const × log(z − z0), corresponding to a source or sink. In that case,

dw

dz
= q0 exp(−iθ0) = q0 = const × (z − z0)

−1 = const × exp(−(w − w0)),

and there is no singularity in q0.

3.3. Inner expansion in the vicinity of the complex singularity

To determine Λ, we must match with an inner solution in the vicinity of the singularity
in the complex plane. Now in the vicinity of the complex singularity w0, log q − iθ is
equal to the (regular) expansion of the right-hand side of (2.5), which is evaluated
on the real axis, and therefore involves the outer expansion of q and θ , away from
the singularity. However, we know that inserting the expansions for q and θ into the
right-hand side simply gives the outer expansion of log q − iθ . The right-hand side
of this equation in the inner region is therefore simply the inner limit of log q − iθ .
Hence, since θ0 = 0 and

q0 ∼ c(w − w0)
α,

in the vicinity of w0, we have

qe−iθ = c(w − w0)
α + · · · , (3.23)

εq2 dq

dw
= −sin θ. (3.24)
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Motivated by (3.21) we define the inner variable η by w = w0 + ε1/(1−3α)η (remembering
that α < 1/3), and set q = εα/(1−3α)cηαq̄ . Then, using (3.23) in (3.24) gives

2ic3q̄2

(
αη3α−1q̄ + η3α dq̄

dη

)
= −q̄ +

1

q̄
, (3.25)

Writing

z =
iη1−3α

c3(1 − 3α)

gives

− 2αq̄3

z(1 − 3α)
− 2q̄2 dq̄

dz
= −q̄ +

1

q̄
, (3.26)

To determine Λ we must match the inner limit of (3.18) with the outer limit of (3.26).
The easiest way to do this is to write φ = q̄2 giving

− 2αφ2

z(1 − 3α)
− φ

dφ

dz
= −φ + 1. (3.27)

We expand φ as z → ∞ as

φ =

∞∑
n=0

(−1)nφn

zn
,

where

φ0 = 1, (3.28)

φn =

n−1∑
m=0

(
m − 2α

1 − 3α

)
φmφn−m−1. (3.29)

Now the outer limit of the nth term in the inner expansion of q2

∼ c2η2αε2α/(1−3α)φn

zn
, (3.30)

while the inner limit of the nth term in the outer expansion

∼ 2εnq0qn ∼ 2ΛCεn
(n + γ )

q4
0χ

n+γ

∼ 2ΛC
(n + γ )c3γ −4(1 − 3α)γ η2αε2α/(1−3α)

eiπγ /2(−z)n
. (3.31)

Matching (3.30) with (3.31) gives

Λ =
c6−3γ eiπγ /2

2C(1 − 3α)γ
lim
n→∞

φn


(n + γ )
. (3.32)

4. Stokes line smoothing
Having determined the late terms of the divergent asymptotic expansion we are

in a position to identify the exponentially small terms switched on across Stokes
lines. We keep the analysis here brief since the details are very similar to calculations
which have appeared elsewhere (Chapman et al. 1998; Chapman 1999; Chapman &
Vanden-Broeck 2002).



308 S. J. Chapman and J.-M. Vanden-Broeck

We begin by truncating the expansion after N terms, so that

θ =

N−1∑
n=0

εnθn + RN, q =

N−1∑
n=0

εnqn + SN.

Then the remainders SN and RN satisfy

SN

q0

− εq1SN

q2
0

− εNq1qN−1

q2
0

+ · · · = iRN, (4.1)

εq2
0S

′
N + 2εq0q

′
0SN + 2ε2q0q1S

′
N + 2ε2q0q

′
1SN + ε2q1q

′
0SN + εNθN + · · · = RN + · · ·

(4.2)

where the omitted terms are lower order as N → ∞ and ε → 0. The homogeneous
versions of these equations have a solution

RN ∼ Θe−χ/ε, SN ∼ Qe−χ/ε, (4.3)

corresponding to gravity waves on the free surface. Following Dingle (1973) we expect
there to be Stokes lines whenever successive terms in the expansions of θ and q have
the same phase, i.e. when χ is real and positive. We will show that a multiple of (4.3)
is switched on across these Stokes lines. We define the Stokes multiplier A by setting

SN = AQe−χ/ε.

Then, using (4.1) in (4.2) and noting (3.11) and (3.14), gives

εq3
0

dA

dw
Qe−χ/ε ∼ iεNqN,

as ε → 0 and N → ∞. Changing variable to write A as a function of χ instead of w,
and using the expression (3.17) for qN gives

dA

dχ
=

εN−1eχ/ε
(N + γ )

χN+γ
. (4.4)

Now the right-hand side of (4.4) is minimal for N ∼ |χ |/ε, corresponding to the
optimal truncation point. Hence we let N = |χ |/ε + ρ, where ρ is bounded as ε → 0.
Then, since N is a function of |χ | only, following Chapman et al. (1998) we write
χ= reiϑ and write

d

dχ
= − ie−iϑ

r

d

dϑ
.

Then, as ε → 0, using Stirling’s approximation of the 
-function,

dA

dϑ
∼ i

√
2πr exp(iϑ)εN+γ exp(r exp(iϑ)/ε) exp(−N − γ )(N + γ )N+γ −1/2

ε1+γ rN+γ exp(i(N + γ )ϑ)
,

∼ i
√

2πr1/2 exp(iϑ) exp(r exp(iϑ)/ε) exp(−r/ε − ρ − γ )

ε1/2+γ exp(i(r/ε + ρ + γ )ϑ)

(
1 +

ε(ρ + γ )

r

)r/ε+ρ+γ

,

∼ i
√

2πr1/2 exp(iϑ) exp(r exp(iϑ)/ε) exp(−r/ε)

ε1/2+γ exp(iϑ(r/ε + ρ + γ ))
.

Now, the right-hand side is exponentially small except near ϑ = 0, which is the Stokes
line. Thus there is a rapid variation in A at this point, corresponding to the switching
on of our subdominant exponential. To examine this transition we introduce the local
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scaling ϑ = δϑ̄ , giving

dA

dϑ̄
∼ i

√
2πr1/2δ exp(−rδ2ϑ̄2/(2ε))

ε1/2+γ
.

We see that the correct scaling is δ = ε1/2, giving

dA

dϑ̄
∼ i

√
2πr1/2 exp(−rϑ̄2/2)

εγ
.

Hence

A = A0 +

√
2π i

εγ

∫ ϑ
√

r

−∞
exp(−t2/2) dt.

Matching with the outer solution away from the Stokes line we find there is a jump
in A given by

A(ϑ = 0−) − A(ϑ = 0+) =
2πi

εγ
. (4.5)

Thus, by optimally truncating the expansion in powers of ε and examining the
equation for the remainder, we have been able to observe directly subdominant
exponentials being switched on across Stokes lines.

To summarize, the Stokes lines are the lines on which χ is real and positive, and
across these Stokes lines an exponentially small correction term to the optimally
truncated algebraic expansion of q is switched on, which is

2πi

εγ
Q exp(−χ/ε). (4.6)

Since Rn ∼ −iSn/q0 by (4.1) this means that, using (3.17), the corresponding
exponentially small correction term in θ is

2πi

εγ
Θ exp(−χ/ε). (4.7)

For each singularity in the upper half-plane, there will be a corresponding singularity
in the lower half-plane for which the exponentially small correction terms are the
complex conjugates of (4.6), (4.7). Thus, for real ξ (i.e. on the real free surface), the
correction term is equal to twice the real part of (4.6), (4.7). Since χ is complex, these
exponentials are oscillatory, i.e. they correspond to gravity waves on the free surface.

Let us now examine the implications of the analysis of the preceeding two sections
on a concrete example, namely the flow over a step.

5. Example: flow over a step
As a concrete example to illustrate the ideas we have introduced, we consider the

flow over a step as shown in figure 1. This problem was previously analysed by King &
Bloor (1987), who found the height of the waves on the free surface analytically in
the limit of small step height for arbitrary Froude number. Our analysis is applicable
in the complementary regime of arbitrary step height but small Froude number, and
it is interesting to compare the two approximations.

If the flow at −∞ is uniform of speed U , and the height of the channel at −∞ is h, we
non-dimensionalize velocity with U and length with h/π, so that the streamfunction
varies from zero on the free surface to −π on the channel bottom. Then ε = πU 2/gh.
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Figure 1. Flow over a step. (a) z-plane; (b) ζ -plane.
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Figure 2. Streamlines for flow over a step at zero Froude number (ε = 0), with a = 1, b = 2.

The only part of the analysis in § § 3 and 4 which depends on the particular geometry
under consideration is the map w → ζ from the potential plane to the upper-half-ζ -
plane. For the case of flow over a step, this map is ζ = e−w . If we write the equations
in terms of ζ we have

εq2ζ
dq

dζ
= sin θ, (5.1)

log q = 1
2
log

(
ζ + b

ζ + a

)
− 1

π
−
∫ ∞

0

θ(ζ ′) dζ ′

ζ ′ − ζ
, (5.2)

where 0 <a <b and the free boundary corresponds to 0 <ζ < ∞; −a and −b are the
images of the corners of the step C and B in the ζ -plane. The leading-order solution
is

θ0 = 0, q0 =

(
ζ + b

ζ + a

)1/2

, (5.3)

so that the non-dimensional step height is π(1 − (a/b)1/2), to leading order. The
corresponding streamlines for the case a =1, b = 2 are shown in figure 2.

The singularities of q0 lie at ζ = −b and ζ= −a, i.e. at the corners of the step. Since
the singularity at ζ= −b corresponds to an interior angle less than 2π/3, it does not
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Figure 3. Stokes lines for flow over a step, with a = 1, b = 2.

generate any Stokes lines. Thus, the important singularity is that at ζ= −a, giving

χ = −i

∫ w

w0

dw

q3
0

= i

∫ ζ

−a

(
ζ + a

ζ + b

)3/2
dζ

ζ
. (5.4)

The Stokes lines, corresponding to χ real and positive, are shown in figure 3 for the
case a = 1, b = 2, for which χ can be evaluated explicitly as

χ = −i

√
1 + ζ

2 + ζ
+ 2i sinh−1

√
1 + ζ − i√

2
tanh−1

√
2(1 + ζ )

2 + ζ
.

There is one Stokes line which meets the free boundary, across which exponentially
small gravity waves will be turned on. To determine the amplitude of the gravity
waves switched on across this Stokes line we must evaluate γ , c and C so that we
can determine Λ. As ζ → −a,

q0 ∼ (b − a)1/2

(ζ + a)1/2
, w ∼ − log a − iπ +

ζ + a

a
,

so that w0 = − log a − iπ and

q0 ∼ (b − a)1/2

a1/2(w − w0)1/2
.

Hence,

α = − 1
2
, c =

(b − a)1/2

a1/2
,

and, from (3.22),

γ = 6
5
.

To determine C in (3.19) we must evaluate q1. We have

q2
0ζ

dq0

dζ
= θ1,

q1

q0

= − 1

π
−
∫ ∞

0

θ1(ζ
′) dζ ′

ζ ′ − ζ
,
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so that

C = q3
0 (ζ

∗) exp

(
−3i

∫ −a

ζ ∗

1

πq3
0

∫ ∞

0

θ1(ζ
′) dζ ′

ζ ′ − ζ

dζ

ζ

)
, (5.5)

where w∗ = − log ζ ∗. For the amplitude of gravity waves, it is the modulus of C which
is important. Noting that for real ζ

Im

(
1

π

∫ ∞

0

θ1(ζ
′) dζ ′

ζ ′ − ζ

)
=

{
0 ζ < 0,

θ1 ζ > 0,

we find

Re

(
−3i

∫ −a

ζ ∗

1

ζq3
0π

∫ ∞

0

θ1(ζ
′) dζ ′

ζ ′ − ζ
dζ

)
= 3

∫ 0

ζ ∗

1

q0

dq0

dζ
dζ +

3

q0(0)3

∫ ∞

0

θ1(ζ
′) dζ ′

ζ ′

= 3 log q0(0) − 3 log q0(ζ
∗) +

3

q0(0)3

∫ ∞

0

θ1(ζ
′) dζ ′

ζ ′ , (5.6)

where the first integral is from ζ > 0 and the second is due to the pole at the origin.
Now ∫ ∞

0

θ1(ζ
′) dζ ′

ζ ′ =

∫ ∞

0

q2
0

dq0

dζ
dζ =

[
q3

0

3

]∞

0

= 1
3
(1 − q0(0)3).

Thus,

Re

(
−3i

∫ −a

ζ ∗

1

ζq3
0π

∫ ∞

0

θ1(ζ
′) dζ ′

ζ ′ − ζ
dζ

)
= 3 log q0(0) − 3 log q0(ζ

∗) +
1

q3
0 (0)

− 1. (5.7)

Hence, combining (5.5) and (5.7), and using (5.3), we have

|C| =
b3/2

a3/2
exp

(
a3/2

b3/2
− 1

)
. (5.8)

We are now in a position to determine |Λ|. Iterating (3.29) to large values of n, we
find

lim
n→∞

φn


(n + γ )
≈ 0.389364.

Hence, from (3.32),

ΛC ≈ 0.389364 e3iπ/5

2(5/2)6/5

(
b

a
− 1

)6/5

≈ 0.065 e3iπ/5

(
b

a
− 1

)6/5

, (5.9)

so that

|Λ| ≈ 0.065

(
b

a
− 1

)6/5 (a

b

)3/2

exp

(
1 − a3/2

b3/2

)
. (5.10)

From (4.7) and (3.16), the exponentially small correction term to the truncated
expansion of θ which is switched on across the Stokes line is

θexp =
2π

εγ

Λ

q3
0

exp

(
−3i

∫ w

w∗

q1

q4
0

dw

)
exp(−χ/ε) + complex conjugate

=
4π

ε6/5

|Λ|
q3

0

exp(−Re(χ)/ε) cos

(
−3

∫ w

w∗

q1

q4
0

dw − Im(χ)

ε
+ arg(Λ)

)
. (5.11)
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The real part of χ comes from the pole at the origin of ζ , giving Re(χ) = a3/2b−3/2π.
Now, as x → ∞, we have

ζ → 0, q0 →
(

b

a

)1/2

, w ∼ x

(
b

a

)1/2

, χ ∼ −iw
(a

b

)3/2

∼ −ix
(a

b

)
.

Thus, as x → ∞, using (5.3) and (5.10) in (5.11),

θexp ∼ 0.82

ε6/5

(
b

a
− 1

)6/5 (a

b

)3

exp

(
1 − a3/2

b3/2
− πa3/2

εb3/2

)

× cos

(
−3

∫ w

w∗

q1

q4
0

dw +
xa

εb
+ constant

)
. (5.12)

Since the equation of the free surface is

dy

dx
= tan θ ∼ θ

for small θ , this correction term to θ gives a corresponding exponentially small
oscillation in the height of the free surface

yexp ∼ 0.82

ε1/5

(
b

a
− 1

)6/5 (a

b

)2

exp

(
1 − a3/2

b3/2
− πa3/2

εb3/2

)

× sin

(
−3

∫ w

w∗

q1

q4
0

dw +
xa

εb
+ constant

)
.

Thus, the amplitude of the gravity waves on the free surface at infinity is

H ∼ 0.82

ε1/5

(
b

a
− 1

)6/5 (a

b

)2

exp

(
1 − a3/2

b3/2
− πa3/2

εb3/2

)
. (5.13)

Although (5.13) is asymptotically correct for small ε, it is not as good an approxi-
mation as (5.12). When we integrate θ to obtain y we effectively divide by the
wavenumber of the waves. Rather than using the asymptotic value for the wave-
number of a/εb, which may not be so accurate when εb is not too small (as in our
examples), we can simply use the exact value for the wavenumber of small-amplitude
waves at infinity, given by 1/εq2

∞ where

a1/2

b1/2
− 1

q∞
=

ε

2π

(
q2

∞ − 1
)
; (5.14)

we do this when we compare the asymptotic solution to a full numerical solution in
§ 6. Note that for sufficiently large b, (5.14) has no solution, indicating that for such
steps, the waves at infinity are not small, but of order one amplitude.

Before we compare (5.12) to a numerical simulation, we first compare our result
for an arbitrary step height at small Froude number with that of a small step at
arbitrary Froude number, a result due to King & Bloor (1987). In the limit of small
step height, the images in the ζ -plane of the top and bottom of the step are close
together. Thus, b = a(1 + δ), δ � 1. In this case, the problem can be linearized in δ at
arbitrary Froude number, and the amplitude of the gravity waves generated is given
by King & Bloor (1987) as (in our scaling)

H ∼ πδε

cosh k(ε − sech2k)
, (5.15)
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where k is the positive root of

εk = tanh k.

As ε → 0, k ∼ 1/ε and the amplitude of the gravity waves is

H ∼ 2πδe−π/ε. (5.16)

Now, if we write b = a(1 + δ) in (5.13) and take the limit as δ → 0, we find that the
amplitude of gravity waves is approximately

H ∼ 0.82 ε−1/5δ6/5e−π/ε. (5.17)

This clearly does not agree with (5.16), and we can see why by looking at (5.13).
It is clear from looking at the exponential that there is a distinguished limit when
δ =O(ε); the limits δ → 0 and ε → 0 do not commute. In Appendix A, we consider
the limit in which δ � ε, so that we first linearize the equations in δ, and then perform
our beyond-all-orders analysis. In this limit, we retrieve the result (5.16) of King &
Bloor (1987). In Appendix B we examine the distinguished limit δ = O(ε).

Finally, we comment on the corresponding results for a step down rather than a
step up. In fact, our results do not depend on the direction of the flow, and could
equally well be applied to flow from right to left down the same step. The Stokes line
analysis tells us the jump in the amplitude of the waves as we cross the Stokes line;
it does not say which side the waves are present. To determine the position of the
waves, we applied the radiation condition so that there were no waves arriving from
infinity, that is, the waves are present downstream.

Thus, if we reverse the flow, we would find waves present at minus infinity rather
than plus infinity. Expression (5.11) still holds, but now is evaluated as x → −∞, where

ζ → ∞, q0 → 1, w ∼ x, χ ∼ −iw ∼ −ix.

Thus, as x → −∞,

θexp ∼ 0.82

ε6/5

(
b

a
− 1

)6/5 (a

b

)3/2

exp

(
1 − a3/2

b3/2
− πa3/2

εb3/2

)

× cos

(
−3

∫ w

w∗

q1

q4
0

dw + x + constant

)
,

giving the amplitude of the gravity waves on the free surface at minus infinity as

H ∼ 0.82

ε1/5

(
b

a
− 1

)6/5 (a

b

)3/2

exp

(
1 − a3/2

b3/2
− πa3/2

εb3/2

)
. (5.18)

Alternatively, we can observe that the situation considered previously corresponds to
a step down rather than a step up if 0 < b < a rather than 0 <a <b. The important
singularity is still ζ = −a, and the same methodology can be employed. Now, however,
care must be taken when evaluating some of the integrals. For example, in evaluating
the real part of χ as ζ → ∞ from (5.4) we do not now want to integrate along the real
axis in the region −a < ζ < −b where the argument of the root is negative. Instead
we integrate to minus infinity, and then round in a large cirular arc to arrive at plus
infinity. Thus, the real part of χ arises from the pole at infinity in this case, rather
than the pole at zero.
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6. Numerical results
In this section we describe a boundary-integral-equation method to compute fully

nonlinear solutions for the flow over a step. The numerical procedure is similar to
that used by King & Bloor (1987), Tuck & Vanden-Broeck (1998) and Chapman &
Vanden-Broeck (2002).

We truncate the domain to [X−, X+], and introduce the equally spaced points in φ

φI = X− +

(
I − 1

N − 1

)
(X+ − X−) (I = 1, . . . , N) (6.1)

and the corresponding unknowns

θI = θ[ζ (φI )] (I = 1, . . . , N) (6.2)

where ζ = e−φ .
Writing τ = logq , we evaluate the values τM

I of τ [ζ (φ)] at the midpoints

φM
I =

φI + φI+1

2
(I = 1, . . . , N − 1), (6.3)

by applying the trapezoidal rule to the integral in (5.2) with a summation over the
mesh points φI . The use of equally spaced points and of midpoints enables us to
neglect the singularity of the Cauchy principal value without losing accuracy.

The values of θ at the midpoints are evaluated in terms of the unknowns (6.2)
by interpolation formulae. Next, the values of y at the midpoints are obtained by
integrating the identity

∂y

∂φ
= e−τ sin θ (6.4)

by the trapezoidal rule with the condition y(φ1) = 0. Next we satisfy Bernoulli’s
equation

ε

(
q2

2
− 1

2

)
+ y = 0 (6.5)

at the midpoints φM
I . For given values of a, b and ε, this gives a system of N − 1

nonlinear algebraic equations for the N unknowns, (6.2). The last equation imposes
the radiation condition by requiring θ1 = 0. This forces the free surface to be flat and
waveless as x → −∞. The system of N equations with N unknowns is solved by the
Newton method.

There are two sources of error in the computations, namely the values X− and
X+ at which the domain is truncated and the number of mesh points N . For given
values of X− and X+, we run the program for increasing values of N until the results
are independent of N within graphical accuracy. We then repeat the procedure for
larger values of X− and X+ until the results are also independent of X− and X+.
Most of the results below could be calculated with N =1300, X− = −12 and X+ = 4.
Note that, although the truncation error is K δφ2, with δφ2 about 10−4, we are able
to calculate accurately the amplitude of gravity waves which are much smaller than
10−4. This is because for small amplitude waves, the constant K is also very small.

The results of the numerical simulations are shown in figures 4–8. In figure 4, we
show an example of the profile of the free surface, illustrating the waves generated
by the step. In figure 5, we show the logarithm of the amplitude of the wavetrain
at infinity as a function of b, for ε = 0.04π (corresponding to a Froude number of
0.35). The asymptotic results for b − a =O(1) (equation (5.12)) and b − a = O(ε)
(equation (B 16)) are shown, along with a uniform approximation generated by adding
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Figure 4. The numerically calculated free surface for a = 1, b =2.2 and ε = 0.3,
corresponding to a Froude number of 0.548.
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Figure 5. The natural logarithm of the amplitude of the wavetrain at infinity as a function
of b, for a = 1 and ε = 0.04π, corresponding to a Froude number of 0.35. The dotted curve is
the linearized theory of King & Bloor with b − a � ε (equation (5.15)), the long dashed line
is the outer approximation with b − a = O(1) (equation (5.12)), and the dashed curve is the
asymptotic approximation when b − a = O(ε) (equation (B 16)). The solid curve is the uniform
approximation generated from these last two. The points are the numerical simulation.
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Figure 6. As for figure 5, but ε=0.1π and the Froude number is 0.56.
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Figure 7. As for figure 5, but ε = 0.3 and the Froude number is 0.548.
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Figure 8. The natural logarithm of the amplitude of the wave train at infinity as a function
of ε, for a = 1 and b = 1.8. The long dashed line is the outer approximation with b − a = O(1)
(equation (5.12)), and the solid curve is the uniform approximation. The points are the
numerical simulation.

the logarithms of these two results and subtracting the overlap. Also shown is the
linearized small-step result of King & Bloor (1987) (equation (5.15)). The points are
the numerical simulations. We see that the outer approximation is very good, and the
uniform approximation even better, whereas the small-step approximation is good
only for b very close to a, when the waves are extremely small.

In figure 6, we show the results for ε = 0.1π, corresponding to a Froude number of
0.56. In this case, because the Froude number is not that small, we see that there is a
large difference between the outer approximation with b − a = O(1) and the uniform
approximation. However, the uniform approximation is still close to the numerical
results. Even for this relatively large Froude number, the small-step approximation is
good only for b very close to a.

In figure 7, we show the results for ε = 0.3, corresponding to a Froude number of
0.548, the same as that used in figure 4. Even though the waves are not small, the
asymptotic approximation is still good.

Finally, in figure 8, we show the logarithm of the amplitude of the wavetrain at
infinity as a function of ε, for a = 1 and b = 1.8. Here we can see that as ε is increased,
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the error in the outer approximation with b − a = O(1) gradually increases. However,
the uniform approximation is still showing no signs of divergence, even at ε = 0.4,
corresponding to a Froude number of 0.63.

Note that the logarithms in figures 5–8 are all natural logarithms, so that while the
amplitude of the waves is exponentially small in ε, and is numerically very small for
small Froude number, the asymptotic results provide a good approximation even for
Froude numbers in the range 0.5–0.7, with corresponding wave amplitudes around
0.08. As illustrated in figure 4, such amplitudes are not particularly small, so that our
results may have practical as well as theoretical significance.

7. Conclusion
We have examined the problem of irrotational inviscid incompressible free-surface

flows in the limit of small Froude number. We find that singularities in the
complexification of the surface velocity result in a divergent asymptotic expansion
in powers of the Froude number. Such singularities correspond to stagnation
points or corners in submerged objects or on rough beds. The divergence of the
asymptotic expansion is associated with Stokes phenomenon. By optimally truncating
the expansion, we are able to observe exponentially small gravity waves generated
across Stokes lines.

As an example of the application of our theory, we considered the flow over a
step previously considered by King & Bloor (1987). We found that there were, in
fact, three possible parameter regimes, depending on whether the dimensionless step
height was small, of the same order, or large compared to the square of the Froude
number.

Although the amplitude of the waves we predict is exponentially small in the
Froude number and therefore numerically very small for small Froude numbers,
numerical simulations of the full nonlinear problem show that our asymptotic results
are accurate even for quite large Froude numbers, for which the amplitude of the
waves is around 0.08, and is significant. This is in contrast to the linearized theory of
small step height, which is accurate only for very small steps.

Appendix A. Small step height
In this section, we consider the limit in which δ � ε, so that we first linearize the

equations in δ, and then perform our beyond-all-orders analysis. In this limit, we
should retrieve the result (5.16) of King & Bloor (1987). In the following section, we
examine the distinguished limit in which δ =O(ε).

With b = a(1 + δ), δ � 1 we expand

q = 1 + δq ′ + · · · ,
θ = δθ ′ + · · · ,

to give, to leading order in δ (dropping the primes)

εζ
dq

dζ
= θ, (A 1)

q =
1

2(ζ + a)
− 1

π
−
∫ ∞

0

θ(ζ ′) dζ ′

ζ ′ − ζ

=
1

2(ζ + a)
+ iθ − 1

π

∫ ∞

0

θ(ζ ′) dζ ′

ζ ′ − ζ
, (A 2)
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where we indent under the pole in the integral in (A 2) so that we can analytically
continue ζ to the upper half-plane. We now very briefly repeat the analysis of § 3 on
the new equations (A 1)–(A 2). Expanding

θ =

∞∑
n=0

εnθn, q =

∞∑
n=0

εnqn,

the leading-order solution is

θ0 = 0, q0 =
1

2(ζ + a)
, (A 3)

while at O(εn)

ζ
dqn−1

dζ
= θn, (A 4)

qn = iθn − 1

π

∫ ∞

0

θn(ζ
′) dζ ′

ζ ′ − ζ
. (A 5)

With the ansatz (3.8), the final integral in (A 5) is exponentially subdominant, so that
(A 5) gives

qn ∼ iθn as n → ∞. (A 6)

Then (A 4) gives, to leading order in n as n → ∞,

ζ
dχ

dζ
= i,

so that

χ = i log(−ζ/a), (A 7)

where we have used the fact that χ(−a) = 0. At the next order in n, we find

dQ

dζ
= 0,

so that Q = constant = Λ, say. Now, as ζ → −a,

q0 ∼ a

2(ζ + a)
, χ ∼ − i(ζ + a)

a
.

For this to be consistent with (3.8) we require γ = 1. Thus the late terms are given by

θn ∼ −iΛ

(n + 1)

χn+1
, qn ∼ Λ


(n + 1)

χn+1
. (A 8)

To determine the constant Λ we match with an inner expansion near ζ = −a.

A.1. Inner expansion

In the vicinity of ζ = −a we have

q − iθ ∼ a

2(ζ + a)
,

εζ
dq

dζ
= θ.
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We define the inner coordinate as ζ + a = iaεη, and set q = −iq̄/2ε. Then, to leading
order in ε,

dq̄

dη
+ q̄ =

1

η
.

Hence,

q̄ = e−η

∫ η

−∞

es

s
ds.

As η → ∞

q̄ ∼
∞∑

n=0


(n + 1)

ηn+1
, (A 9)

so that

q ∼ − i

2ε

∞∑
n=0


(n + 1)

ηn+1
, (A 10)

The inner limit of the outer expansion (A 8) is

εnqn ∼ Λ

(n + 1)εn

χn+1

= Λ
(n + 1)εn

(
a

−i(ζ + a)

)n+1

=
Λ
(n + 1)

εηn+1
. (A 11)

Matching (A 11) and (A 10) we find

Λ = − i

2
.

A.2. Stokes lines and gravity waves

There are Stokes lines whenever χ is real and positive, corresponding to |ζ | = a or
Re(w) = −log a. Thus, there is a Stokes line which cuts the real free boundary at
φ = −log a. Across this Stokes line, a calculation identical to that of § 4 shows that
the exponentially small correction term

θexp =
2πi

εγ
Θe−χ/ε + complex conjugate

= −2π

ε
e−π/ε sin

(
log(ζ/a)

ε

)

=
2π

ε
e−π/ε sin

(
φ

ε
+

log a

ε

)

=
2π

ε
e−π/ε sin

(
x

ε
+

log a

ε

)

is switched on, since φ = x to leading order in δ. The corresponding exponentially
small correction to the height of the free surface is given by integrating with respect
to x as

yexp = −2π e−π/ε cos

(
x

ε
+

log a

ε

)
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Thus, the amplitude of gravity waves on the free surface is

H ∼ 2πδe−π/ε,

in agreement with (5.16).

Appendix B. Canonical scaling
We saw in the previous section that there is a distinguished limit when δ = O(ε).

This corresponds to both corners of the step being in the inner region of § A.1. In
this section, we consider the beyond-all-orders analysis with this canonical scaling.
The results here will bridge the gap between the order-one step analysis of § 5, and
the small-step analysis of Appendix A.

B.1. Outer region

We set δ = βε. Then the outer problem is

εq2ζ
dq

dζ
= sin θ, (B 1)

log q = 1
2
log

(
ζ + a + εβa

ζ + a

)
− 1

π
−
∫ ∞

0

θ(ζ ′) dζ ′

ζ ′ − ζ
(B 2)

= 1
2
log

(
1 +

εβa

ζ + a

)
− 1

π
−
∫ ∞

0

θ(ζ ′) dζ ′

ζ ′ − ζ
. (B 3)

As usual, we expand q and θ in powers of ε,

q =

∞∑
n=0

εnqn, θ =

∞∑
n=0

εnθn.

At leading order, we find θ0 = 0, q0 = 1, whereas at O(ε) we find

θ1 = 0, q1 =
βa

2(ζ + a)
. (B 4)

In general, we have

ζ
dqn−1

dζ
+ 2ζq1

dqn−2

dζ
+ · · · = θn + · · · (n � 3), (B 5)

qn − qn−1q1 + · · · − iθn = − (−1)nβnan

2n(ζ + a)n
− 1

π

∫ ∞

−∞

θn(ζ
′) dζ ′

ζ ′ − ζ
(n � 2). (B 6)

As n → ∞, we expect the asymptotic expansions to exhibit factorial/power divergence
as before, so that we make the ansatz

θn ∼ Θ
(n + γ )

χn+γ
, qn ∼ Q
(n + γ )

χn+γ
. (B 7)

The terms on the right-hand side of (B 6) are all exponentially small as n → ∞ by
comparison to those on the left. Thus we find,

qn ∼ iθn + qn−1q1 + · · · ,

so that using (B 7) in (B 5) gives, to leading order as n → ∞,

dχ

dζ
=

i

ζ
.
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Thus,

χ = i log(−ζ/a), (B 8)

where we have used the fact that χ(−a) = 0. At the next order in n, we find

ζ
dQ

dζ
− 2ζq1

dχ

dζ
Q = iq1Q,

i.e.

ζ
dQ

dζ
= 3iq1Q =

3iaβQ

2(ζ + a)
,

so that

Q = Λ

(
ζ

ζ + a

)3iβ/2

.

To determine γ we need to examine the order of the singularity in qn as ζ → −a to
make sure that (B 7) is consistent with (B 4). As ζ → −a, we have

qn ∼ Λ

(
−a

ζ + a

)3iβ/2

(n + γ )

(−i(ζ + a)/a)n+γ
.

For this to be consistent with (B 4), we must have γ = −3iβ/2. To determine Λ, we
need to consider an inner region in the vicinity of the singularity at ζ = −a.

B.2. Inner region

With the inner scaling ζ + a = εiaz we have, at leading order,

iq2 dq

dz
= sin θ, (B 9)

qe−iθ =

(
z − iβ

z

)1/2

. (B 10)

Thus,

−2q2 dq

dz
= q

(
z

z − iβ

)1/2

− 1

q

(
z − iβ

z

)1/2

.

We let φ = q2, giving

−φ
dφ

dz

(
1 − iβ

z

)1/2

= φ − 1 +
iβ

z
.

We expand φ as z → ∞ as

φ =

∞∑
n=0

φn

zn
.

Then, ( ∞∑
n=0

φn

zn

) ( ∞∑
n=1

nφn

zn+1

) ( ∞∑
n=0

cn

zn

)
=

∞∑
n=0

φn

zn
− 1 +

iβ

z
,

where

cn =

(3/2)(−iβ)n


(3/2 − n)n!
,

so that

φ0 = 1, (B 11)
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φ1 = −iβ, (B 12)

φn =

n−1∑
m=0

n−m−1∑
k=0

kφmφkcn−m−k−1 (n � 2). (B 13)

Now the outer limit of the nth term in the inner expansion of q2

∼φn

zn
,

while the inner limit of the nth term in the outer expansion of q2

∼2εnq0qn ∼ 2Λe−3πβ/4 
(n − 3iβ/2)

zn
.

Matching gives

Λ =
e3πβ/4

2
lim
n→∞

φn


(n − 3iβ/2)
. (B 14)

B.3. Stokes lines and gravity waves

There is a Stokes line where χ is real and positive, i.e. where |ζ | = a, or Re(w) = −log a.
Thus, there is a Stokes line which cuts the real free boundary at φ = −log a.

An analysis identical to that of § 4 shows that across this Stokes line, the exponen-
tially small correction term

θexp ∼ 2πi

εγ
Θ e−χ/ε + complex conjugate

= 2πΛ

(
εζ

ζ + a

)3iβ/2

e−π/εe−i log(ζ/a)/ε + complex conjugate

= 4π|Λ| e−π/ε cos

(
− log(ζ/a)

ε
+ arg(Λ) +

3β

2
log

(
εζ

ζ + a

))

= 4π|Λ| e−π/ε cos

(
φ

ε
+

log a

ε
+ arg(Λ) − 3βφ

2
+

3β

2
log

(
ε

e−φ + a

))
(B 15)

is switched on. Since φ = x to leading order, the corresponding exponentially small
correction to the height of the free surface is given by

yexp ∼ 4π|Λ|ε e−π/ε sin

(
φ

ε
+

log a

ε
+ arg(Λ) − 3βφ

2
+

3β

2
log

(
ε

e−φ + a

))
.

Thus, the amplitude of the gravity waves at infinity in this case is

H ∼ 4π|Λ|ε e−π/ε. (B 16)

This result provides a smooth transition between the δ =O(1) case considered in § 5
and the δ � ε case considered in Appendix A.

Let us check that (B 16) matches with (5.13) as β → ∞ and with (5.16) as β → 0. To
match with (5.16) we require that |Λ(β)| ∼ β/2 as β → 0; figure 9 shows that this is
indeed the case.

The b = O(1) result (5.13) written in terms of β is

H ∼ 0.82

ε1/5
(βε)6/5 exp

(
−π

ε

(
1

1 + βε

)3/2
)

∼ 0.82εβ6/5 exp

(
−π

ε
+

3βπ

2

)
.
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Figure 9. The function |Λ(β)| (solid curve). As β → 0, |Λ| ∼ β/2 (dashed curve).
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Figure 10. The natural logarithm of |Λ(β)| (solid curve). As β → ∞,
|Λ| ∼ 0.82/(4π)β6/5e3βπ/2. The natural logarithm of this function is shown as a dashed curve.
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Figure 11. The function |Λ(β)| divided by its asymptotic limit 0.82/(4π)β6/5e3βπ/2. As β → ∞
the curve should tend to unity.

For this to match with (B 16) we require that

Λ(β) ∼ 0.82

4π
β6/5e3βπ/2

as β → ∞. The matching is illustrated in figures 10 and 11. We note that the
convergence as β → ∞ is slow. This explains why, as we saw in § 6, a uniform
approximation generated from the b = O(1) and b = O(ε) results does much better
than the b = O(1) approximation for moderate Froude numbers.
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