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Albuminuria is associated with too few glomeruli and

too much testosterone
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Normally, the glomerular filtration barrier almost completely
excludes circulating albumin from entering the urine. Genetic
variation and both pre- and postnatal environmental factors
may affect albuminuria in humans. Here we determine
whether glomerular gene expression in mouse strains with
naturally occurring variations in albuminuria would allow
identification of proteins deregulated in relatively ‘leaky’
glomeruli. Albuminuria increased in female B6 to male B6 to
female FVB/N to male FVB/N mice, whereas the number of
glomeruli/kidney was the exact opposite. Testosterone
administration led to increased albuminuria in female B6 but
not female FVB/N mice. A common set of 39 genes, many
expressed in podocytes, were significantly differentially
expressed in each of the four comparisons: male versus
female B6 mice, male versus female FVB/N mice, male FVB/N
versus male B6 mice, and female FVB/N versus female B6
mice. The transcripts encoded proteins involved in oxidation/
reduction reactions, ion transport, and enzymes involved in
detoxification. These proteins may represent novel
biomarkers and even therapeutic targets for early kidney and
cardiovascular disease.
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Normally, macromolecules such as albumin are almost
completely excluded from entering the filtrate by the
glomerular filtration barrier consisting of endothelia, podo-
cytes, and glomerular basement membrane.! Major barrier
disruptions, as occur in individuals with mutations of slit
diaphragm genes, cause massive protein leakage.>® More
moderate albumin excretion above the normal range, or
‘microalbuminuria’ (30-300mg per 24h), may also be
clinically important, as may variations within the so-called
normal range. In individuals with diabetes mellitus,
microalbuminuria generally precedes, and may predict
progression to nephropathy.* Indeed, filtered proteins, or
bound molecules, may be tubulotoxic.” Microalbuminuria is
an independent risk factor for cardiovascular mortality and
morbidity not only in individuals with diabetes mellitus or
systemic hypertension but also in the general population.? This
association may be explained by increased albuminuria being
just one manifestation of a generalized microvascular distur-
bance.®

In normotensive US adolescents, albumin excretion rate is
higher in blacks than in whites.? In US adults, the prevalence
of microalbuminuria is greater in non-Hispanic blacks and
Mexican Americans as compared with non-Hispanic whites.!?
The importance of genetic background in determining
albuminuria is supported by observations of inbred ‘normal’
mice.!! Tsaih et al.!! examined mice at advanced ages of 12-24
months, reporting up to a 100-fold difference of albuminuria
between strains. Within certain strains (for example, A/,
C57BL/10], and FVB/N]J), males excreted more albumin than
females, whereas the opposite held in other strains (for
example, BUB/Bn] and SJL/J). In healthy adults in the
Netherlands, men had a higher average urinary albumin
excretion rate than women (10 vs. 8 mg per 24h), and the
prevalence of microalbuminuria was twofold higher in
males, even after controlling for smoking, hypercholesterole-
mia, and obesity.12 In nondiabetic white UK adults, men
had a higher albumin excretion rate than women; micro-
albuminuria in men was associated with short stature,
whereas hypertension positively correlated with albumin
excretion rate in women.!?
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Figure 1| Albuminuria in B6 and FVB/N mice. Overnight (a, c) albumin excretion and (b, d) albumin-to-creatinine ratios were evaluated in
(a, b) 18-week-old and (c, d) 13-week-old adult mice. Data were log transformed before analysis and are presented as geometric means
and confidence interval. There was a significant increase in urinary albumin in male (M) and female (F) FVB/N mice compared with sex-matched
B6 animals. Within each strain, males had elevated albuminuria versus females (**P<0.01, ***P<0.001 between groups).

The antenatal environment to which an individual is
exposed may influence urinary albuminuria. Adults gestated
during the Dutch famine in World War II had an increased
risk of microalbuminuria.'* Possibly, maternal undernu-
trition led to birth of individuals whose kidneys contained
fewer nephrons than normal and subsequent compensatory
changes would have resulted in loss of filtration barrier
functionality.'>!¢ Indeed, rodent embryos exposed to mater-
nal low-protein diet form kidneys with fewer glomeruli than
normal.!” Interestingly, within the general human population
there exists considerable variation in the numbers of glome-
ruli per kidney,'® with normotensives having about 1-2x10°
glomeruli per kidney and adults with essential hypertension
having approximately 0.5-1x10° glomeruli per kidney.

The above evidence is consistent with the contentions that
genetic background and sex modify albumin excretion rate.
We speculated such variations in albuminuria would relate to
alterations in glomerular biology and/or numbers. We
hypothesized that studying mice with naturally occurring
variations in albuminuria would allow us to identify genes
deregulated in ‘leaky’ glomeruli.

RESULTS

Urinary albumin excretion in B6 and FVB/N mice

The urinary albumin excretion rate in adult (18 weeks old)
female and male FVB/NHanHsd (FVB/N) mice was, on
average, eightfold more than age- and sex-matched C57BL/
6JOlaHsd (B6) mice (Figure la). Within each strain, males
had increased albumin excretion rates than females (twofold
elevations in both B6 and FVB/N strains; Figure 1a). The
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same patterns were apparent when albumin/creatinine
concentration was measured (Figure 1b). Albumin excretion
rates (Figure 1c) and albumin/creatinine (Figure 1d) were
quantified in separate sets of mice aged 13 weeks, with the
same patterns noted between the strains and sexes. There
were no significant differences in albuminuria between mice
of the same sex and strain at 13 versus 18 weeks.

Glomerular gene expression in vivo

Eighteen-week-old mice were perfused with magnetic beads
that accumulate in glomerular capillaries (Figure 2a). Magne-
tically isolated glomeruli usually consisted of the tuft alone,
although others also contained a capsule (Figure 2b). mRNA
integrity was preserved in isolated glomeruli (Figure 2c). For
each group, we undertook three sets of RNA microarrays,
each from a separate mouse. We identified a common set of
39 genes significantly differentially expressed in each of the
comparisons: female FVB/N versus female B6 mice; male
FVB/N versus male B6 mice; male versus female B6 mice; and
male versus female FVB/N mice. Expression levels of 34
transcripts positively correlated with albuminuria (Table 1),
whereas levels of five others negatively correlated with
albuminuria (Table 2). Several upregulated transcripts coded
for proteins involved in oxidation/reduction reactions (Aass,
Aldhill, Cyp4al2a, Hsd3b2, and Ldhd) or ion transport
(Slc22a2, Slc22a6, Slc5a8, and Slcolal). Other upregulated
transcripts included: Acy3 and Tst, coding for enzymes
involved in detoxification; Treh, an enzyme hydrolyzing
trehalose; Agpl, coding for aquaporin-1; and Hpn, coding
for hepsin, a serine protease. Downregulated transcripts
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Figure 2 |Isolation of glomeruli and real-time PCR for selected genes. (a) Glomeruli (g) were isolated by perfusion of magnetic beads
(arrows) that accumulated in the glomerular vessels. (b) Isolated glomeruli retain intact morphology with the majority simply comprising the
tuft (left panel) whereas on occasions the tuft was surrounded by Bowman’s capsule (arrows, right panel); (c) RNA integrity was preserved.
FU, fluorescence units. Real-time quantitative reverse transcriptase-PCRs (qPCRs) for (d) Acy3, (e) Cyp4ai2a, (f) Treh, and (g) Hsd3b2; transcripts
positively correlating with albuminuria in array analyses. gPCRs for (h) PIn and (i) Trf, transcripts negatively correlating with albuminuria in array
analyses. F, female; M, male. Hypoxanthine-guanine phosphoribosyltransferase (hprt) was used as a housekeeping gene. Fold changes in
expression are expressed relative to B6 female mice where average expression was given an arbitrary value of 1 (a=P<0.05, b=P<0.01,
and c=P<0.001 compared with B6 female mice; d =P<0.01 compared with B6 male mice; e =P<0.001 compared with B6 male mice;
f=P<0.001 compared with FVB/N female mice, n=4 in each group). Bar in a is 50 um and in b is 20 um. Data were log transformed before

analysis and are presented as geometric means and confidence interval.

included: Trf, encoding transferrin; Cldnll, coding for the
tight junction protein claudin 11; and Pln, encoding
phospholamban, a membrane protein that regulates the
calcium ion pump in muscle. Real-time quantitative reverse
transcriptasePCR  (qPCR) was performed for selected
upregulated (Acy3, Cyp4al2a, Hsd3b2, and Treh) and down-
regulated (Pln and Trf) transcripts using independent
samples. These results (Figure 2d-) concurred with the
directions indicated by the microarray. In the case of Hsd3b2,
changes were seen between strains but not sex; this may be
because of the microarray probes also detecting Hsd3b3 and
Hsd3b6 that may contribute to the differences seen between
male and female mice. Note that the relative fold change in
the levels of any particular transcript as assessed by the array
and qPCR analyses did not necessarily exactly correspond
to the numerical fold change in albuminuria documented
between sexes and also between strains.
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Relation of candidate genes to mouse albuminuria loci

We compared the location of these genes with published
genetic analyses of albuminuria loci in mice and rats.!® Acy3,
Cyp4al2a, and Hsd3b2 were found to be within the
confidence intervals of mouse and rat quantitative tract loci
(QTLs) for albuminuria. We also interrogated the array data
with respect to candidate genes previously implicated in
albuminuria using a genome-wide association approach,
namely Aspa, Atic, Cyp24al, Fdn4, Fnl, Mbp, Myo16, Negrl,
OIfr381, OIfr389, OIfr392, Prdm5, Ripk2, Spata22, Trpvl,
Trpv3, and Zfp236.11 There was no significant effect of sex on
the expression levels of these genes. However, in FVB/N
versus B6 glomeruli of either sex, we found decreased
transcript levels of: Negrl (19.3- and 4.0-fold in males and
females, respectively, P<0.01), encoding a cell adhesion
molecule; Prdm5 (2-fold in both sexes, P<0.01), encoding a
transcription factor; and TrpvI (10.7- and 2.3-fold in male
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Table 1| Genes significantly upregulated in glomeruli by both strain and sex

Fold change com-
pared with B6 female

Mouse chromo- Human
somal location chromosomal P-
(chromosome location B6 FVB/N FVB/N P-value value
Probe set Gene symbol Gene title (Chr):Mb) (Chr:Mb) male female male (sex) (strain)
1450947_at 2610528J11Rik RIKEN ¢cDNA 2610528J11 gene 4:118.5 1:43.7 25 20 68 0.017 0.012
1431904 _at 4933427G17Rik RIKEN cDNA 4933427G17 gene 7:121.0 NA 48 28 8.0 0.024 0.045
1423523 _at Aass Aminoadipate-semialdehyde synthase 6:23.1 7:121.7 30 16 6.8 0.013 0.043
1448539_a_at Acy3 Aspartoacylase (aminoacylase) 3 19:4.0 11:67.4 48 1.7 12.8 0.001 0.009
1424400_a_at Aldh1l1 Aldehyde dehydrogenase 1 family, member L1 6:90.5 3:125.8 27 20 6.1  0.041 0.042
1416203_at Agp1 Aquaporin 1 6:55.3 7:30.9 2.1 2.6 6.8 0.032 0.003
1418914_s_at Bhmt2 Betaine-homocysteine methyltransferase 2 13:93.7 5:78.4 29 20 93 0.045 0.037
1451625_a_at C8g Complement component 8, y polypeptide 2:25.5 9:139.8 27 25 9.5 0.020 0.006
1418976_s_at Cideb Cell death-inducing DNA fragmentation factor, o 14:55.8 14:24.8 22 16 6.8 0.013 0.012
subunit-like effector B
1424811_at Cml5 Camello-like 5 6:85.8 2:73.9 108 64 657 0.030 0.019
1423701_at Coasy Coenzyme A synthase 11:101.1 17:40.7 21 17 6.5 0.037 0.029
1424352_at Cyp4al2a Cytochrome P450, family 4, subfamily a, poly- 4:115.3 1:47.4 286 22 359.8 0.003 0.022
peptide 12a
1428738 _a_at  D14Ertd449e/// EN- DNA segment, Chr 14, ERATO Doi 449, 14:26.1 10:81.8 16 16 6.8 0.035 0.013
SMUSG00000072676 expressed/// predicted gene, EN-
SMUSG00000072676
1417393_a_at Fam132a Family with sequence similarity 132, member A 4:156.0 1:1.2 15 16 34 0.023 0.005
(also known as Cl1qdc2)
1417422_at Gnmt Glycine N-methyltransferase 17:46.8 6:42.9 30 23 89 0.037 0.024
1420712_a_at Hpn Hepsin 7:31.1 19:35.5 20 1.6 64 0.033 0.025
1460232_s_at  Hsd3b2/// Hsd3b3/// Hydroxy-o-5-steroid dehydrogenase, 3 f- and 3:98.7 1:120.0 44 45 11.5  0.025 0.005
Hsd3b6 steroid o-isomerase 2/// hydroxy-o0-5-steroid de-
hydrogenase, 3 f- and steroid o-isomerase 3///
hydroxy-o-5-steroid dehydrogenase, 3 beta- and
steroid d-isomerase 6
1428614 _at Ldhd Lactate dehydrogenase D 8:111.6 16:75.1 50 18 154  0.002 0.008
1419504 _at LOC100047046/// Similar to monoacylglycerol O-acyltransferase 1:78.5 2:2235 83 6.0 69.4  0.005 0.002
Mogat1 1/// monoacylglycerol O-acyltransferase 1
1419520_at Nat8 N-acetyltransferase 8 6:85.8 2:739 3.2 2.6 233 0.008 0.003
1455490_at Pigr Polymeric immunoglobin receptor, 1:130.8 1:207.1 39 24 255  0.004 0.003
1419117_at Slc22a2 Solute carrier family 22 (organic cation trans- 17:12.6 6:160.6 25 18 9.0 0.029 0.023
porter), member 2
1417072_at Slc22a6 Solute carrier family 22 (organic anion transpor- 19:8.6 11:62.7 3.7 1.7 16.8 0.020 0.046
ter), member 6
1425606_at Slc5a8 Solute carrier family 5 (iodide transporter), 10:88.9 12:101.5 38 15 153  0.008 0.027
member 8
1436667_at Slc6a20b Solute carrier family 6, member 20b 9:123.6 3:45.8 21 21 6.5 0.036 0.009
1449301_at Slc7ai13 Solute carrier family 7, (cationic amino acid 4:19.8 8:87.2 2240 39 1267.6 <0.001 0.005
transporter, y + system) member 13
1420379_at Slcolal Solute carrier organic anion transporter family, 6:141.9 12214 360 34 567.4 <0.001 0.002
member 1al
1449409_at Sult1c2 Sulfotransferase family, cytosolic, 1C, member 2 17:53.8 2:108.9 1.5 25 59 0.036 0.001
1451528_at Tmem82 Transmembrane protein 82 4:141.6 1:16.1 1.7 1.7 6.7 0.036 0.009
1430889_a_at Tpmt Thiopurine methyltransferase 13:47.0 6:18.1 21 18 13.7  0.020 0.007
1449430_a_at Treh Trehalase (brush-border membrane glycoprotein) 9:44.7 11:1185 34 36 419  0.008 0.001
1448609_at Tst Thiosulfate sulfurtransferase, mitochondrial 15:78.4 22:37.4 22 21 73 0.015 0.004
1451373_at Ugt3al UDP glycosyltransferases 3 family, polypeptide A1 15:9.3 5:36.0 31 19 137 0.028 0.022
1460244 _at Upb1 Ureidopropionase, 5 10:75.4 22:249 1.8 16 52 0.048 0.030

All genes were significantly altered by both strain and gender (P<0.05), followed the direction of albuminuria in the four groups assessed, and varied by >1.5-fold in
individual comparisons between different sexes in both B6 and FVB/N mice and between mice of the same sex but from different strains. Fold changes are presented
relative to B6 female mice (given a value of 1) that had the lowest albumin excretion rate. NA, not available.

Table 2| Genes significantly downregulated in glomeruli by both strain and sex

Fold change compared

with B6 female

Mouse chromosomal Human chromosomal B6 FVB/N FVB/N P-value P-value
Probe set Gene symbol Gene title location location male female male (sex) (strain)
1445938 _at  5930427L02Rik RIKEN cDNA 5930427L02 NA NA -19 —15 —294 0.049 0.017

gene

1416003_at Cldn11 Claudin 11 3:31.1 3:170.1 —26 —22 —15.5 0.036 0.009
1450952_at Pin Phospholamban 10:53.3 6:118.9 —15 —-16 —4.7 0.010 0.002
1425546_a_at Trf Transferrin 9:103.2 3:1335 —-18 —15 —34 0.046 0.042
1446477 _at Zfp622 Zinc-finger protein 622 15:26.0 5:16.5 —-20 —21 —34 0.023 0.004

All genes were significantly altered by both strain and gender (P<0.05), followed the direction of albuminuria in the four groups assessed, and varied by > 1.5-fold in
individual comparisons between different sexes in both B6 and FVB/N mice and between mice of the same sex but from different strains. Fold changes are presented
relative to B6 female mice (given a value of 1) that had the lowest albumin excretion rate. NA, not available.
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Figure 3 | Expression of candidate genes in cultured podocytes. (a, b) RNA was collected from undifferentiated (Undiff) and differentiated
(Diff) podocytes and PCR performed for all annotated genes found to be differentially expressed in the microarray analysis. Positive
controls (+ ve) of reactions consisted of mouse whole kidney RNA. Negative controls (— ve) consisted of reactions without cDNA template.
Panel a comprises genes that were found to be expressed in cultured podocytes and panel b comprises transcripts that were not detected
using this methodology. Representative pictures of phalloidin-stained undifferentiated (c) and differentiated (d) podocytes showing the
extensive process formation characteristic of the in vivo podocyte phenotype. (c, d) Bar =50 um.

and female mice, respectively, P<0.05), encoding the
vanilloid receptor-1 ion channel.

Glomerular expression of candidate molecules

Assessed by reverse transcriptasePCR (RT-PCR) (Figure 3a),
over half of the set of transcripts identified by the array
were expressed in a podocyte line,?” whereas others were not
detected in the same cells (Figure 3b). Using protein lysates
from isolated glomeruli, we undertook semiquantitative
western blotting for CYP4A12A, a cytochrome P450, and
aspartocyclase 3 (ACY3), respectively the proteins encoded by
Cyp4al2a and Acy3. Reliable signals for HSD3B2 could not be
obtained with available antibodies. Levels of CYP4A12A and
ACY3 appeared markedly and reproducibly greatest in FVB/
N males; lesser levels of these proteins were detected in B6
male glomeruli but they were barely detectable or undetect-
able in female glomeruli of either strain (Figure 4a).
Immunohistochemistry of FVB/N male kidneys demon-
strated CYP4A12A (Figure 4c—£) and HSD3B2 (Figure 4g-)
in the glomeruli; with some of the signal in podocytes as
evidenced by double labeling with podoplanin. Furthermore,
CYP4A12A was detected in western blots of both undiffer-
entiated and differentiated cultured podocytes (Figure 4b). In
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tissue sections, ACY3 was predominantly immunolocalized
in parietal glomerular epithelia, with a faint signal in
glomerular tufts (Figure 4k-n); we did not detect ACY3 in
western blots of cultured podocytes.

Blood pressure, glomerular histology, and expression levels
of other glomerular genes

Systolic and diastolic blood pressures were similar in male
B6, male FVB/N, and female FVB/N mice, with female B6
mice tending to have higher pressures (Figure 5a and b).
Glomerular histology was similar in the groups and sclerotic
glomeruli were rare (Figure 5c-h). We interrogated micro-
array data, comparing transcript levels of genes implicated in
the biology of podocytes (Actn4, Fatl, Nckl, Nck2, Nphsl,
Nphs2, Podxl, Synpo, Trpc6, and Wtl), endothelia (Angl,
Ang2, Ang3, Pecaml, Tiel, Tie2, Vegfa, and Vegfr2), and
glomerular basement membrane (Agrn, Coldal-5, Fnl,
Hspg2, Lamal, Lama5, Lambl, Lamb2, and Lamcl). There
was no significant effect of sex on their expression levels.
However, in FVB/N versus B6 glomeruli of either sex, levels
of the following transcripts were altered: Col4al (decreased
1.4-fold; P<0.05), Nphs2 (decreased 2-fold; P<0.001), Podxl

Kidney International (2013) 83, 1118-1129
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Figure 4 | Expression of candidate proteins in glomeruli. (a) Protein lysates from isolated glomeruli (n =3 kidneys from each group) were
used to immunoblot for CYP4A12A and ACY3. Levels of CYP4A12A and ACY3 appeared markedly and reproducibly greatest in FVB/N
males; lesser levels of these proteins were detected in B6 male (M) glomeruli but they were barely detectable or undetectable in female

(F) glomeruli of either strain; glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used as a housekeeping gene to assess loading.

(b) Protein isolates from both undifferentiated (Undiff) and differentiated (Diff) podocytes contained CYP4A12A protein. Using
immunohistochemistry, CYP4A12A was immunodetected in the glomeruli of tissue sections obtained from FVB/N male kidneys; some

of the signal was found in podocytes as evidenced by double labeling with podoplanin (c-f, arrows). HSDS3B2 was also detected in the
podocytes of the glomeruli (g, arrows). ACY3 was predominately immunolocalized to parietal glomerular epithelia, with a faint signal

observed in glomerular tufts (k-n). (c-n) Bars =20 um.

(decreased 2-3-fold; P<0.01), and Synpo (decreased 2-fold;
P<0.01).

Testosterone administration in female mice

Sustanon 250, comprising testosterone esters, was adminis-
tered to 5-week-old B6 and FVB/N females. At the start of the
experiment, FVB/N tended to have higher excretion rates
than B6 mice (185 vs. 8+2pg per 18h respectively,
P=0.07, n=12 in each group). When evaluated at 9 weeks
of age, Sustanon-exposed female B6 mice had increased
serum testosterone than vehicle-administered controls
(Figure 6a) and higher kidney/body weight ratios
(Figure 6b). Compared with vehicle-treated mice, the Susta-
non-exposed group had increases in albumin excretion rate

Kidney International (2013) 83, 1118-1129

(373 +71%, P<0.01; Figure 6c) and albumin/creatinine
ratios (312+87%, P<0.05; Figure 6d) but glomerular
histology was similar (Figure 6e-g). Sustanon administration
was associated with a 7-fold upregulation of Acy3 and a 1072-
fold upregulation of Cyp4al2a (n=4 in each group, P<0.05
in both cases). In vitro, addition of Sustanon to differentiat-
ing podocytes for 48h caused significant elevation of
Cyp4al2a transcripts (Figure 6h), with a tendency
(P=0.09) for Acy3 levels to increase (Figure 6i). Sustanon
administration to female FVB/N mice led to elevated serum
testosterone levels (19+3 wvs. placebo 0.7 0.1 ng/ml,
P<0.001, n=6 in each group) and increased kidney/body
weight ratios (1.3+0.1 vs. vehicle alone 0.9+0.1x10 %,
P<0.001), but no significant effect on albuminuria.
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Figure 5| Blood pressure and glomerular histology in 18-week-old B6 and FVB/N mice. (a) Systolic and (b) diastolic blood pressure was
not positively associated with alterations in albuminuria, with the only differences found between B6 female (F) and male (M) mice, with the
former having elevated pressures. Blinded analysis of glomerular histology revealed that there were no differences between (c) B6 female, (d)
B6 male, (e) FVB/N female, and (f) FVB/N male mice; (g) quantification is shown. *P<0.05, n=5 for blood pressure analysis and n=3 for
glomerular analysis in each group. (c-f) Bars =30 um. All data are presented as means and s.e.m.

We considered the fact that exogenous testosterone
increased albuminuria in B6 but not FVB/N females might
be explained if the latter had higher endogenous testosterone
levels. However, in 18-week-old mice there were no
differences in testosterone levels between sex-matched
animals of either the FVB/N or the B6 strain (B6 females,
0.5+ 0.1; FVB/N females 0.4 +£0.1; B6 males 5.1 +1.8; and
FVB/N males 7.2 + 3.4 ng/ml, n=9 in each group).

Glomerular numbers in male and female FVB/N and B6 mice
We measured glomerular numbers/kidney in male and female
18-week-old B6 and FVB/N mice. Here, it should be noted
that mouse glomerulogenesis starts a week before birth and
continues through the first postnatal week; no new glomeruli
can form after this period because the nephrogenic zone
disappears.?! Across the strains and sexes, the numbers of
glomeruli (whether expressed as the total/kidney, or factored
for either kidney or body weight) was inversely correlated with
albuminuria. Therefore, glomerular numbers were: female
B6>male B6>female>FVB/N>male FVB/N, whereas the
degree of albuminuria was the exact opposite (Figure 7a—).

DISCUSSION

Albuminuria is often quantified as urinary albumin/creati-
nine concentrations but up to one half of urinary creatinine
in mice is derived from tubular secretion, and this contribution
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may vary between sexes.”> Therefore, to compare

albuminuria between sexes, a more robust measure might
be to measure the absolute amount of albumin excreted per
unit time. We found that, as assessed by either parameter, a
characteristic and reproducible level of urinary albumin
excretion had been established by early adulthood for each of
the four groups of healthy mice. Specifically, we found
increasing albuminuria in female B6 <male B6 < female FVB/
N <male FVB/N mice. Considering that a human is ~ 2000
times heavier than a mouse, the albumin excretion rate range
between female B6 and male FVB/N mice ( ~ 15-150 ng/day)
is similar to the range for human microalbuminuria
(30-300 mg/day). Hence, our models may have relevance to
humans with modestly elevated albuminuria.

Proximal tubules endocytose filtered macromolecules.??
Although this will modify the amount of albumin in the final
urine, we reasoned that because the glomerular filtration
barrier is the main player in determining albuminuria, then
the degree of albuminuria should reflect glomerular biology
changes. Within whole glomeruli in vivo, across both strains
and sexes, we identified reproducible changes in gene
expression correlating with albuminuria. Most of these trans-
cripts were also detected in cultured podocytes; perhaps those
that were not would be expressed by other tuft cells such as
endothelia and/or mesangial cells. Alternatively, some of
them, such as genes encoding transporters, might have been

Kidney International (2013) 83, 1118-1129
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Figure 6 | Administration of testosterone to female B6 mice. Sustanon-250 injection for 4 weeks in 5-week-old B6 mice (n =6 in each group)
led to a significant increase in (a) serum testosterone, (b) kidney/body weight, (c) albumin excretion rate, and (d) albumin/creatinine ratio.
Despite these changes, blinded analysis of glomerular histology showed that there was no difference between B6 female mice injected with
either (e) phosphate-buffered saline (PBS) or (f) Sustanon (SUS); (g) quantification is shown. (h) Stimulation of mouse podocytes in vitro (n=3 in
each group) with Sustanon-250 led to a significant increase in Cyp4a12a mRNA levels; hypoxanthine-guanine phosphoribosyltransferase (hprt)
was used as a housekeeping gene. (i) Acy3 mRNA tended to be elevated following Sustanon-250 exposure but this was not significant
*P<0.05, ¥**P<0.01; ***P<0.001 between groups. (e, f) Bars =30 um. All data are presented as means and s.e.m. except ¢ and d that were log
transformed before analysis and are presented as geometric means and confidence interval.
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Figure 7 | Glomerular counts in B6 and FVB/N 18-week-old mice. (a) A reduction in glomerular number was observed in male (M) mice
compared with strain-matched females (F); in addition, FVB/N had significantly lower number of glomeruli compared with sex-matched B6
mice. Similar changes were calculated when either (b) kidney or (c) body weight of the mice was taken into account (*P<0.05, **P<0.01;
***¥P<0.001 between groups, n==6 in each group). All data are presented as means and s.e.m.

expressed by Bowman’s capsule epithelia observed, adhering
to tufts in some isolated glomeruli.

Cyp4al2a encodes a cytochrome P450 involved in
degradation of long-chain fatty acids.* For arachidonic
acid, this yields 20-hydroxyeicosatetraenoic acid, implicated
in pathogenesis of systemic hypertension.?”> Thus, a possible
explanation for differences in albuminuria between mouse
sexes and strains were variations of systemic blood pressure,
assuming higher pressures would increase hydrostatic
pressure within glomerular capillaries and/or trigger physi-
cal damage, manifested for example by glomerulosclerosis.!>

Kidney International (2013) 83, 1118-1129

We found no evidence for a positive relation between albumi-
nuria and blood pressure or glomerular dysmorphology.
High glucose elevates CYP4A protein and 20-hydroxyeicosa-
tetraenoic acid in podocytes, the effects ameliorated by
pharmacological CYP4A inhibition.?® In diabetic nephro-
pathy mice, glomerular CYP4A is elevated, and blockade of
this pathway attenuates albuminuria.?®

Hsd3b2 encodes 3-B-hydroxysteroid dehydrogenase, es-
sential for steroid synthesis.”” Hsd3b2 and related steroi-
dogenic transcripts are expressed in fetal kidneys, although
their specific localization was unreported.”® Pezzi et al.?®
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speculated that low levels of the encoded proteins might
produce local, intrarenal effects. HSD3B2 modulates biosyn-
thesis of glucocorticoids that themselves alter glomerular
biology.?’ Isolated glomeruli express the glucocorticoid
receptor,®® and here glucocorticoid exposure has antiapo-
ptotic and anti-inflammatory effects.>*> In contrast, high-
dose glucocorticoids in normal adult mice cause proteinuria,
mesangial expansion, and glomerulosclerosis,®* and exposure
to developing murine kidneys retards organ growth® and
glomerulogenesis.>

Acy3 encodes aspartoacylase 3, implicated in detoxifying
xenobiotics*® and metal ion binding.>” ACY3 is upregulated
during mycophenolate mofetil treatment of a collagen-40:3-
deficient renal fibrosis model.*® The enzyme binds cobalt and
nickel’” and, notably, anionic glycosaminoglycans in the
glomerular basement membrane also bind divalent cations.*”
Pushkin et al3® reported expression of the protein in
proximal tubules; in this study, we found that ACY3 was
present in parietal glomerular epithelia. In cultured podo-
cytes, RT-PCR detected Acy3 transcripts but the encoded
protein was not detectable on western blotting. As demon-
strated in Figure 2, a subset of harvested glomeruli have a
Bowman’s capsule, and thus the most likely interpretation is
that the association of levels of Acy3 transcripts with
albuminuria may predominantly reflect a secondary effect
of ultrafiltered protein on parietal epithelia.

Our study indicated that male sex was associated with
elevated albuminuria, and hence we hypothesized that
androgens would increase albumin excretion. Testosterone
administered to B6 females did so, accompanied by
upregulated glomerular Acy3 and Cyp4al2a transcripts; levels
of the latter also increased in testosterone-exposed cultured
podocytes. Indeed, Muller et al?* demonstrated that, in
whole kidneys, Cyp4al2a transcript and protein levels in
males exceeded those in females, and administration of
testosterone increased the levels. They showed differences in
expression between males of different strains correlating with
the capacity of renal microsomes to hydroxylate arachidonic
acid.?* Supporting the contention that sex steroids affect
expression of transcripts implicated in albuminuria, five
genes identified in the array contain predicted androgen
response elements (Aass, Aqpl, D14Ertd449e, Fam132a, and
Slc22a6). The testosterone receptor has been shown to be
expressed in isolated glomeruli*’ and cultured podocytes,*!
and hence these cells may be a direct target for sex steroids.
Furthermore, incubation of cultured podocytes with
testosterone increases apoptosis, which can be abolished by
androgen receptor blockade.*! In wvivo, testosterone
supplementation to ovariectomized B6 wild-type mice
increases albuminuria, glomerulosclerosis, and podocyte
apoptosis.*®*! Hsd3b2 is also essential for biosynthesis of
testosterone?® and perhaps increased levels of Hsd3b2 within
glomeruli increase local testosterone concentrations, with
detrimental effects.

Sustanon increased albuminuria in B6 females but not in
FVB/N females. From our microarray, we did not find
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changes in glomerular transcript levels of the androgen
receptor between FVB/N and B6 mice of either sex. Another
possible explanation for sex differences in albuminuria would
be that estrogen is protective. Indeed, 14 of the genes
implicated in our array analyses contain predicted estrogen
response elements (Acy3, Aqpl, Cideb, DI14Ertd449e, Gnmt,
Pigr, Slc5a8, Slc6a20b, Slc7al3, Slcolal, Sultlc2, Tmem82,
Tpmt, and Zfp622). Estrogen receptors are expressed on
podocytes**? and estradiol attenuates podocyte apoptosis
induced by puromycin or testosterone.**? Furthermore,
mice lacking estrogen receptor-o. develop albuminuria and
glomerulosclerosis.*>*!  Although circulating estrogen was
not measured in this study, estrogen receptor 1 was increased
in FVB/N versus B6 glomeruli (by 3.5- and 1.9-fold in male
and females, P<0.01). If estrogen effects were to be higher in
FVB/N than B6 glomeruli, this may explain why the filtration
barrier of FVB/N female animals was resistant to Sustanon-
250 administration.

Our experiments using Sustanon were only partially
consistent with the contention that androgens enhance
albuminuria. Furthermore, male FVB/N mice had elevated
albuminuria versus male B6 mice, although both had similar
circulating testosterone levels. Therefore, we sought a
different explanation for the variation in albuminuria
between sexes and strains. Strikingly, numbers of glomeruli/
kidney for the four experimental groups showed exactly the
inverse pattern to the degree of albuminuria. It should be
noted that we used acid dissociation!” rather than a ‘gold
standard’ sterology method*® to assess glomerular numbers.
However, the dissociation technique should allow valid
relative comparisons between numbers of glomeruli/kidney
between the groups studied, none of which had anatomically
deranged or sclerotic kidneys. Recurrent observations have
shown that low glomerular numbers per kidney correlate
with systemic hypertension in white subjects,'®44 but we did
not observe an inverse relationship between blood pressure
and glomerular counts in this study.

A glomerular deficiency could potentially lead to glomer-
ular hyperfiltration that may cause microalbuminuria
associated with activation of the renin-angiotensin sys-
tem.!>#  Although we found no positive correlation of
albuminuria with systemic blood pressure in FVB/N
compared with B6 mice, we noted increased glomerular
transcript levels of Acel (4.8-fold in males and 1.8-fold in
females, P =0.02) and Ace2 (2.6-fold in males and 1.6-fold in
females, P=0.02) suggesting that renin-angiotensin system
may be enhanced in the FVB/N strain of mice. There
was no evidence of glomerular structural changes
between sex- or strain-matched male and female B6 and
FVB/N mice. However, there were some changes in the
mRNA expression of several glomerular genes with loss of
podocyte genes Nphs2, Podxl, Synpo, and the basement
membrane gene Col4al. These differences indicate that
the molecular make-up of the filtration barrier may differ
between FVB/N and B6 mice that potentially could lead to
albuminuria.

Kidney International (2013) 83, 1118-1129
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We have demonstrated that low numbers of glomeruli and
testosterone are potential mechanisms leading to albuminur-
ia in mice. Several unsuspected genes have been identified
that correlate with albuminuria, but further studies are
needed to demonstrate whether these changes are simply
reactions to albuminuria or may drive glomerular pathobiol-
ogy. Some of these genes may also influence glomerulogen-
esis, although none have yet been functionally implicated in
kidney development per se. Several of the genes coding for
transcripts highlighted in this study are located within the
mapped intervals for albuminuria QTL in mice and rats. For
example, Cyp4al2a lies within the interval of an albuminuria
QTL found in a cross between C57BL/6] and A/J*® and a
cross between C57BL/6] and NZM.*” Acy3 is located within
albuminuria QTL found in crosses between C57BL/6] and
A/] mice*® and between MWF and SHR rats.*8 Mogat] maps
within the albuminuria QTL found in a cross between MWF
and SHR rats*® and both Hsd3b2 and Mogat] map within
albuminuria QTL found from a cross between SS and SHR
rats.*® However, it is important to note that the QTL intervals
are large and contain hundreds of genes. Expression analysis
in the kidney for the above-mentioned genes in these mouse
and rat strains would be necessary to establish whether these
could be candidate genes for the QTL. Most interestingly, the
human homolog of Nat8 has been associated with estimated
glomerular filtration rate in several human genome-wide
association studies.®®! Furthermore, Juhanson et al.?
resequenced the NAT8 promoter and suggested that
polymorphisms therein determined systolic blood pressure
and glomerular filtration rate. Proteins encoded by these
transcripts could be novel biomarkers and therapeutic targets
for early kidney and vascular disease.

MATERIALS AND METHODS

Assessment of B6 and FVB/N mice

Reagents were obtained from Sigma Chemical Company (Gilling-
ham, Dorset, UK) unless stated. C57BL/6JOlaHsd and FVB/
NHanHsd male and female mice (Harlan, Oxfordshire, UK) were
provided with Teklad 18% protein rodent diet (Harlan) and water
ad libitium and used in protocols approved by the UK Home Office.
Urine was collected from 13- and 18-week-old mice by housing
them individually in metabolic cages for 18 h. Albumin concentra-
tions were measured by enzyme-linked immunosorbent assay
(Bethyl Laboratories, Montgomery, TX). Urinary creatinine con-
centrations were assessed by a commercially available assay
(Cusabio, Newark, DE). At 18 weeks, systolic blood pressure was
assessed using a noninvasive blood pressure system (Kent Scientific,
Torrington, CT?3); measurements were taken in duplicate at the
same time on subsequent days after animals had been trained every
day for the prior two weeks. Mice were then killed and body and
kidney weights measured. Blood was collected and testosterone
levels assessed using a commercially available assay (Alpha
Diagnostic International, San Antonio, TX4).

Microarray analysis of isolated glomeruli

Eighteen-week-old male and female B6 and FVB/N mice (n=3 in
each group) were anesthetized and perfused with 1x10® Dynabeads
(Invitrogen, Paisley, UK) through the left ventricle of the heart.?

Kidney International (2013) 83, 1118-1129

Kidneys were removed, decapsulated, minced, and digested,> and
the glomeruli containing Dynabeads were gathered by a magnetic
particle concentrator and RNA prepared using RNeasy kit (Qiagen,
Crawley, UK). RNA quality was assessed on the Bioanalyser 2100
(Agilent Technologies, Palo Alto, CA); subsequent cDNA and ¢cRNA
synthesis was performed and hybridized to mouse MOE430 2.0
GeneChips. Functional categories for genes were assigned using the
Database for Annotation, Visualization and Integrated Discovery
software (http://david.abcc.ncifcrf.gov). For transcripts up- or
downregulated with albuminuria, we used the ClustalW tool
(http://www.ebi.ac.uk/Tools/clustalw/index.html) to determine whe-
ther the 1000 bp upstream of the transcription start site, in addition
to either the complete 5 -untranslated region or the first exon of the
5'-untranslated region when this is split over several exons,
contained sequences with at least 75% homology to the consensus
sequence of the androgen response element (AGAACAnnnTGT
TCT)> or estrogen response element (AGGTCAnnnTGACCT).>”
We compared our data with prior studies that have identified QTLs
related to albumin excretion in the mouse'® and candidate genes
implicated in albuminuria using a genome-wide association
approach.!!

Quantitative real-time PCR

Independent glomerular extracts were obtained from 18-week-old
male and female B6 and FVB/N mice (n=4 in each group) for
qPCR. ¢DNA was prepared and 1pg used to examine Acy3,
Cyp4al2a, Hsd3b2, Pln, Treh, and Trf using previously described
methods,”® with Hprt as a housekeeping gene. All measurements
were performed in duplicate; primer details are available on request.

Western blotting of isolated glomeruli

Protein was extracted from isolated glomeruli using radioimmuno-
precipitation assay buffer, quantified using bicinchoninic acid
protein assay kit (Thermo Scientific, Rockford, IL) and 10 pg sepa-
rated on a 4-15% Mini-Protean gel and transferred to a
nitrocellulose membrane (Bio-Rad, Hemel Hempstead, UK). Blots
were probed with either rabbit anti-ACY3 (Abcam, Cambridge, UK)
or rabbit anti-CYP4A12A.** Appropriate secondary antibodies
were used and blots visualized using chemiluminescence. To
confirm loading, blots were stripped and reprobed with mouse
anti-glyceraldehyde 3-phosphate dehydrogenase (Abcam).

Histological analysis and assessment of glomerular numbers
Kidneys were fixed in 4% paraformaldehyde, embedded, and 5 pm
sections were then cut for staining with periodic acid-Schiff reagent.
A total of 50 glomeruli were scored by a blinded observer using the
following system: 0, normal glomerular structure; 1, glomeruli with
mesangial expansion but some capillary loops still observed; and 2,
sclerotic glomeruli with no capillary loops; an average score was
obtained for each kidney. Immunohistochemistry was performed in
FVB/N male mice as described®® for ACY3 and CYP4AI12A using
the primary antibodies above and rabbit anti-HSD3B2; double
labeling for these proteins was performed with either guinea-pig
anti-nephrin (Progen, Heidelberg, Germany) or hamster anti-
podoplanin antibodies (Abcam). Negative controls consisted of
omission of primary antibodies or substitution with preimmune
serum. Glomerular number was assessed from one kidney of 18-
week-old male and female B6 and FVB/N mice using the acid
digestion method.”
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Sustanon administration

Five-week-old female B6 and FVB/N mice were administered either
10pul of phosphate-buffered saline or Sustanon-250 (Organon
Laboratories, Hoddesdon, UK) intramuscularly every 2 weeks
(n==6 in each group). After 4 weeks, overnight urine was collected
and blood obtained to assess systemic testosterone levels. Animals
were killed following Dynabead perfusion; half a kidney was
embedded in 4% paraformaldehyde and the remaining material used
to extract glomerular RNA for qPCR to examine Cyp4al2a and Acy3.

Cell culture

Podocytes isolated from 10-week-old H-2K"-tsAJ58 mice?0 were
cultured as described®® and induced to differentiate for 7 days; at
this time point, they formed extensive processes. Using TRI Reagent,
1 mg of RNA was isolated from proliferating and differentiating
podocytes and cDNA prepared for RT-PCR of the genes identified in
the microarray analysis. In addition, 30 pg of protein was extracted
and western blotting performed for CYP4A12A and ACY3. Some
cells were also plated onto chamber slides for phalloidin staining to
visualize actin filaments. In other experiments, podocytes differ-
entiated for 7 days were exposed to Sustanon-250 (250 pg/ml) for
either 24 or 48 h and qPCR performed for Cyp4al2a and Acy3.

Statistical methods

Microarray. Signal values for transcripts on the Affyme-
trix array were calculated using the MAS 5.0 algorithm to
generate .chp files that were exported to GeneSpring 9.0
(Agilent Technologies, Wokingham, Berkshire, UK) for
further analysis. The MAS 5.0-generated values were log,
transformed, normalized to the median within each array
(to control for array loading), and these values were then
baseline transformed to the median value of each transcript.
Transcripts were filtered to exclude genes whose expression
did not reach a threshold value for reliable detection (based
on the relaxed Affymetrix MAS 5.0 probability of detection;
P<0.1) in at least 1 of the 12 chips assessed. To determine
genes modified by strain and sex, a two-way analysis of
variance analysis was performed. Transcripts that were shown
to be significantly altered by both strain and sex (P<0.05
after applying the Benjamini and Hochberg false discovery
multiple testing correction®') were used in subsequent
analysis. We then examined expression levels in female
FVB/N versus female B6 mice, male FVB/N versus male B6
mice, male versus female B6 mice, and male versus female
FVB/N mice, and genes were excluded if mean normalized
expression levels did not vary by >1.5-fold in all of these
individual comparisons. Genes were also excluded if
expression levels did not follow the degree of albuminuria
observed in the four groups assessed. Expression differences
are presented relative to B6 female mice (given a relative
value of 1) that had the lowest albumin excretion rate.

Other statistical analyses. Blood pressure, glomerular
histology, and number and qPCR were presented as
mean * s.e.m. and assessed by one-way analysis of variance
with least significant difference correction. In experiments
where testosterone administration was provided to female
mice, the vehicle versus treated animals were assessed using
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unpaired two-tailed r-tests. In cases where the data were not
normally distributed (albuminuria and some of the qPCR
analysis; Figure 2d-i), the results were log transformed and
presented as geometric mean (£95% confidence intervals)
and then analyzed by one-way analysis of variance with
least significant difference correction. Significance was
accepted at P<0.05.
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