
This article was downloaded by: [University College London]
On: 28 July 2014, At: 04:49
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered
office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Cryptologia
Publication details, including instructions for authors and
subscription information:
http://www.tandfonline.com/loi/ucry20

Low-Complexity Key Recovery Attacks
on GOST Block Cipher
Nicolas T. Courtois
Published online: 11 Jan 2013.

To cite this article: Nicolas T. Courtois (2013) Low-Complexity Key Recovery Attacks on GOST Block
Cipher, Cryptologia, 37:1, 1-10, DOI: 10.1080/01611194.2012.739587

To link to this article: http://dx.doi.org/10.1080/01611194.2012.739587

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the
“Content”) contained in the publications on our platform. Taylor & Francis, our agents,
and our licensors make no representations or warranties whatsoever as to the accuracy,
completeness, or suitability for any purpose of the Content. Versions of published Taylor
& Francis and Routledge Open articles and Taylor & Francis and Routledge Open Select
articles posted to institutional or subject repositories or any other third-party website are
without warranty from Taylor & Francis of any kind, either expressed or implied, including,
but not limited to, warranties of merchantability, fitness for a particular purpose, or non-
infringement. Any opinions and views expressed in this article are the opinions and views
of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of
the Content should not be relied upon and should be independently verified with primary
sources of information. Taylor & Francis shall not be liable for any losses, actions, claims,
proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or
howsoever caused arising directly or indirectly in connection with, in relation to or arising
out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Terms &
Conditions of access and use can be found at http://www.tandfonline.com/page/terms-
and-conditions

It is essential that you check the license status of any given Open and Open
Select article to confirm conditions of access and use.

http://www.tandfonline.com/loi/ucry20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/01611194.2012.739587
http://dx.doi.org/10.1080/01611194.2012.739587
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions

Low-Complexity Key Recovery Attacks on GOST
Block Cipher

NICOLAS T. COURTOIS

Abstract GOST is a well-known Russian government block cipher. Until 2010,
there was no attack on GOST used in encryption, cf. [9]. More recently, quite a
few distinct key recovery attacks on full GOST have been found: [1–4, 6, 7]. Most
of these attacks work by so-called ‘‘complexity reduction’’ [1]; they reduce the
problem of breaking the full 32-round GOST to an attack with 2,3,4 KP for 8
rounds of GOST. In this article, we develop an alternative last step for these
attacks. We present a new meet-in-the-middle attack for eight rounds, which is
faster than any previous attack. Then we present a guess-then-determine attack
with software using an SAT solver, which, for the same running time, requires
much less memory. As a result we are able to improve by a factor of up to 226

various attacks from [1, 3].

Keywords black-box reductions, block ciphers, key scheduling, low-data
complexity attacks, meet in the middle, Russian GOST cipher, SAT solvers,
self-similarity

1. The GOST Cipher

GOST [11] is a block cipher with a simple Feistel structure, 64-bit block size, 256-bit
keys, and 32 rounds. Each round contains a key addition modulo 232, a set of 8
bijective S-boxes on 4 bits, and a simple rotation by 11 positions.

Each round of GOST looks exactly the same except for the key k used:

ðL;RÞ ! ðR;L� fkðRÞÞ:

1.1. Key Schedule in GOST

The key structural property of GOST that makes it suitable for many cryptanalytic
attacks is its key scheduling (Table 1), [1–3, 7, 8, 11].

Only 32 bits of the whole key, a fairly small proportion, is used in one round. In
this article, we will concentrate on attacks on eight rounds of GOST, and for eight
rounds of GOST, the key bits are never used twice.

Address correspondence to Nicolas T. Courtois, Computer Science, Univeristy College
London, Gower Street, London WC1E 6BT, UK. E-mail: n.courtois@cs.ucl.ac.uk

Nicolas T. Courtois
This is an Open Access article distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestric-
ted use, distribution, and reproduction in any medium, provided the original work is properly
cited. The moral rights of the named author(s) have been asserted.

Cryptologia, 37:1–10, 2013
Published with license by Taylor & Francis
ISSN: 0161-1194 print
DOI: 10.1080/01611194.2012.739587

1

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 C

ol
le

ge
 L

on
do

n]
 a

t 0
4:

49
 2

8
Ju

ly
 2

01
4

1.2. Internal Connections

We number the inputs of the S-box Si for i¼ 1, 2,. . ., 8 by integers from 4iþ 1 to
4iþ 4 out of 1..32, and its outputs are numbered according to their final positions
after the rotation by 11 positions; for example, the inputs of S6 are 20, 21, 22, 23
and the outputs are 32, 1, 2, 3.

GOST has 32 identical rounds, such as one described in Figure 1. The rounds
differ only by the subsets of 32 key bits that they use.

On our picture below the ¢ denotes the addition modulo 232. In this picture, we
do NOT represent the final circular shift by 11 positions modulo 32, which occurs
in GOST after the S-boxes. It is represented in a different way, by numbering the
output bits of the S-boxes, to see directly where they are connected.

Given the key schedule in Figure 1, we have a complete description of GOST.
At the left margin of Figure 1, we also show S-box numbers in the next round,

which is very helpful, to see which bits are successfully determined in our attacks on
GOST. A more detailed explanation of how these bits depend in the next round on
the bits in the previous round will be developed below (Figure 2).

2. Predicting Carry Bits in GOST

In this section, we show certain basic facts studied in more detail in [2] concerning
the prediction of carry bits inside GOST, which we need in this article.

Table 1. Key schedule in GOST

Rounds 1 8 9 16
Keys k0k1k2k3k4k5k6k7 k0k1k2k3k4k5k6k7
Rounds 17 24 25 32
Keys k0k1k2k3k4k5k6k7 k7k6k5k4k3k2k1k0

Figure 1. One round of GOST and connections in the following round.

2 N. T. Courtois

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 C

ol
le

ge
 L

on
do

n]
 a

t 0
4:

49
 2

8
Ju

ly
 2

01
4

The key remark is that in many cases, the carry bits and output bits in subsequent
rounds of GOST can be computed with incomplete knowledge of all the key bits and
data bits on which this bit depends, in this and the previous round. In other cases, we
will simply consider both the case when the carry bit is 0 and when the carry bit is 1.

We have the following basic fact.
Fact 1. (Following [2]) The input a on four bits of any particular S-box in GOST

(for example the input of S6 in Figure 2) can be computed as a¼ xþ kþ
cmod 16, where k denotes the 4 key bits at this S-box; c is a single carry bit with
c¼ 1, x0 þ k0 þ c0 � 16, where x0 and k0 are the data and key at the previous
S-box; and c0 is the previous carry bit.

Assume that the attacker knows the outputs of only the two appropriate S-boxes
at the previous round r, and x0 (4 bits of the state two rounds earlier are also needed to
obtain x0). Let d, e be, respectively, the most significant bits of k0 and x0. Then we have:

If d¼ e¼ 1, we have c¼ 1 with probability 1 and we can compute a.
If d¼ e¼ 0, we have c¼ 0 with probability 1 and we can compute a.
If dþ e¼ 1, we have c¼ 0 or c¼ 1 and we get two possibilities for a.

On average, we obtain 2� 1=4� 1þ 1=2� 2¼ 1.5¼ 20.6 possibilities for a. These
possibilities for a are computed using only 5 bits of the key, the state of only two
S-boxes in the previous round, and only 5 bits coming from two rounds earlier.

Similarly, if we know the whole x0, there are only 1.25¼ 20.3 possibilities.

3. A Preliminary Question

We consider the following preliminary question.

Figure 2. Computation of the input of one S-box with a carry bit.

Low-Complexity GOST Key Recovery 3

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 C

ol
le

ge
 L

on
do

n]
 a

t 0
4:

49
 2

8
Ju

ly
 2

01
4

We assume that we know the 60 key bits in the first three rounds shown in
Figure 3: all key bits at S-boxes S1234567 in R1 (in round 1); All key bits at
S6781 in R2, plus just one highest ranking bit of S5 in R2, which we denote by a
special notation S15; all key bits at S123 at R3; and just three lower ranking bits
of S4 in R3, which we denote by S34. To simplify the notations, we call k

ð60Þ
123 this spe-

cific set of 60 key bits taken out of the 96 bits of k0, k1, k2 in R1-3.
We define U

ðiÞ
12�27 as the 16 state bits created after XORing with the outputs of

exactly S1234 after R3. We want to be able to compute these 16 bits or produce a
short list of possible values on 16 bits. Then it is easy to see the following fact.

Fact 2.Given the 60 key bits k
ð60Þ
123 and the plaintext for one sigle encryption, there

are on average about 21.3 possibilities to determine the 16 bits U
ðiÞ
12�27 after round 3.

Justification. The data bits 17-4 for S-boxes S5-8,1 enteringR2 can be computedwith
probability 1, and we know the highest ranking bit of S5 in R1. In terms of Fact 1
(Figure2),weare in the casewherex0 anddareknownandwecanenumerate1, sometimes
2,but anaveragenumberofonly20.3 of cases for the4-bit stateofS6 inR2. Ineachof these
20.3 cases, the further carries and whole state of S781 in R2 are known with certainty.

This gives only 20.3 possibilities for the 15 bits 1–15, which enter S1234 in the
next round R3, and there is no carry entering S1. With bit 16 being unknown, we
get 21.3 possibilities for the joint state of S1234 in R3. Overall, we obtain roughly
about only 21.3 possibilities for U

ðiÞ
12�27 in one single encryption.

4. A Meet-in-the-Middle (MITM) Attack on 8 Rounds of GOST

Our attack has three stages, which are shown in Figure 4. We present simultaneously
two versions of the attack: with D¼ 3=D¼ 4 KP, respectively. We have 3�16=4�16
bits in the middle which gives respectively 48=64 bits.

Figure 3. A preliminary question with 60 key bits and 16 output bits.

4 N. T. Courtois

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 C

ol
le

ge
 L

on
do

n]
 a

t 0
4:

49
 2

8
Ju

ly
 2

01
4

4.1. Stage 1: An MITM Phase for Seven Rounds

We consider the situation as on the left-most pane of Figure 4, which is perfectly
symmetric with 60 key bits k

ð60Þ
123 in the first three rounds, 16 bits in the

middle U
ðiÞ
12-27, and another 60 key bits k

ð60Þ
567 in the last three rounds. We proceed

as follows:

1. We apply Fact 2 three or four times for each encryption. Given k
ð60Þ
123 and the three

plaintexts, we can enumerate, on average, roughly but not exactly, about
260þD�(1.3)� 263.9=265.2 possibilities for the 48=64 bits in the middle in the two
cases, D¼ 3=4, respectively.

2. This is about 263.9-48¼ 215.9 or 265.2-64¼ 21.2 keys per each middle value on 48=64
bits. We store this data in a hash table sorted by these 48=64 middle bits.

3. The same sort of table is computed for rounds 567 backwards.
4. This computation requires a maximum of twice 265=32 GOST computations, as

that most of the time we just need to compute about one round of GOST (other
computations are amortized and require less key bits). Overall we need about 261

GOST computations and about 268 bytes of memory for both tables.
5. We fix 48=64 bits in the middle.
6. Now for 3 KP, in time of about 248þ15.9þ15.9¼ 279.8 CPU clocks, which is only

about 271 GOST computations, and with memory of about 268 bytes, we can enu-
merate also 279.8 possible keys on 120 bits together with the middle values U

ð1-3Þ
12-27.

This enumeration is very fast because for each value in the middle, we can freely
combine arbitrary pairs from two lists.

7. For 4 KP, in time of about 264þ1.2þ1.2¼ 266.4 CPU clocks, which is only about 257

GOST computations, and with memory of about 269 bytes, we can enumerate
also 266.4 possible keys on 120 bits together with the middle values U

ð1-4Þ
12-27.

4.2. Stage 2: Extension with More Key Bits

We consider 32 more key bits, as in the middle pane of Figure 4. We want to avoid
guessing these key bits in one go, which would increase time complexity by 232.

Figure 4. An attack with 60þ 60þ 32þ 32 key bits for 7þ 1 rounds.

Low-Complexity GOST Key Recovery 5

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 C

ol
le

ge
 L

on
do

n]
 a

t 0
4:

49
 2

8
Ju

ly
 2

01
4

1. We start with the enumeration of 279.8=266.4 cases with keys on 120 bits we have
obtained above, and in each case, we will do additional steps:

k
ð60Þ
123 ; k

ð60Þ
567 ;U

ð1::3Þ
12�27:

2. First we look at the output of S6 (4 bits 32,1-3) in round 4. The output of S6 in
R2 and R6 is already known in each of our 279.8=266.4 cases. Therefore, the state
of S6 in R4 can be determined instantly in each case, and therefore, the input of
S6 in R4 can be obtained also in maybe about 4 CPU clocks per case.

3. We also know all data bits at S5 and S6 in R4. Accordingly, the key at S6 in R4
depends now on only 1 bit, the carry bit coming from S5. If for each encryption
we knew 5 key bits, the key at S6 the higher ranking bit at S5, following Fact 1,
we would have 20.3 possibilities for this (already known) input of S6 in R4.
Instead of checking 25 cases, we can directly compute with very small precom-
puted table and using maybe another 4 CPU clocks, an average expected
number of 25�4þ0.3¼ 21.3 keys on 5 bits, which are the only possible keys in each
of the 279.8=266.4 cases.

4. These propositions for the 5 key bits above must have an intersection for the
three or four encryptions. For 3 KP, the probability that one fixed 5-bit key
is in the intersection is about 23(1.3�5)¼ 2�11.1. The probability that the inter-
section is non-empty is about 25�11.1� 2�6.1. For 4 KP, the probability that
the intersection is non-empty is 25þ4(1.3�5)� 2�9.8.

5. Thus in overall time of about (4þ 4)279.8, or about (4þ 4)266.4 CPU clocks,
which is only about 274=261 GOST computations, we can obtain a list of
279.8�6.1¼ 273.7=of 266.4�9.8¼ 256.6 cases with keys on 120þ 5 bits and 48=64
middle bits. This is the dominant step in Stage 2 of the attack. The following
steps will require less time.

6. Quite importantly, in each of these 273.7=256.6 cases, the state of S6 in R4, and
therefore the carry bit entering S7 at R4, are already known. We guess 3 more
key bits: the 3 lower bits for S7 in R4. We know the carry entering, and given
that the data bit 28 is absent, we obtain 21 possibilities for the output of S7 in
R4, which is also already known in each of the 273.6=256.6 cases. This is in each of
the three=four encryptions. Accordingly, for 3 KP, we have 273.7þ3 � (1�4)¼ 264.7

cases with keys on 120þ 5þ 3 bits. For 4 KP we get 256.6þ4 � (1�4)¼ 244.6 cases.
The running time is about 273.7þ3=256.6þ4 CPU clocks, which is only about
263=252 GOST computations and can be neglected.

7. Now we guess 5 more bits in each of the rounds R246: one higher bit of S3 and
four bits at S4. This allows one to compute the state of S4 in R246 and verify if the
XOR of the three outputs of S4 in these rounds is confirmed, which happens with
probability 2�4. For 3 KP, we enumerate about 264.7þ15�3�4¼ 267.7 possible keys
on 143¼ 120þ 5þ 3þ 15 bits. For 4 KP, we enumerate about 244.6þ15�4�4¼ 243.6

possible keys on 143 bits. The running time of about 264.7þ15=244.6þ15 CPU clocks
can again be neglected.

8. Now we guess 3 more bits at S5 in each of the rounds R246. We can then obtain
the state of S5 and check if the the XOR of the three outputs of S5 is confirmed
with success probability 2�4. Moreover, we can now also compute the carry
entering S6, which was previously guessed three times in each encryption in
rounds 2, 4, and 6. We can then reject all the cases where the guess was incorrect,
and our previous guess was true with probability 20.3. Thus, we can gain a factor

6 N. T. Courtois

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 C

ol
le

ge
 L

on
do

n]
 a

t 0
4:

49
 2

8
Ju

ly
 2

01
4

of 2D�3�0.3 with D¼ 3=4. Thus, in time of about 267.7þ9=243.6þ9 CPU clocks, we
can enumerate the following number of cases with keys on 152¼ 120þ 5þ
3þ 12þ 9 bits. For 3 KP we have 267.7þ9�3�(4þ0.9)¼ 262.0 possible keys on 152
bits. For 4 KP we have 243.6þ9�4�(4þ0.3)¼ 233.0 possible keys on 152 bits. The time
can again be neglected compared to the dominating 274=261 GOST computa-
tions. We can now summarize the whole attack, Stage 1 and Stage 2.

9. For 3 KP, in time of about 274 GOST computations, and with 268 bytes of mem-
ory, we can enumerate 262 cases with keys on 152 key bits and 48 middle bits.

10. For 4 KP, overall time of about 261 GOST computations, and with 269 bytes
of memory, we can enumerate 233 cases with keys on 152 key bits and 64 middle
bits.

4.3. Stage 3: An Extension to Eight Rounds

In order to extend this attack to eight rounds, we proceed as follows:

1. We work on eight rounds of GOST and 4 KP. It will be viewed as alternatively
1þ 7 and 7þ 1 rounds (Figure 4).

2. First we guess the 32 key bits in the last round.
3. Then we apply the whole enumeration of Stage 1þ 2 above for the seven rounds.

We obtain, with the total overall running time of about 232þ74=232þ61 GOST
computations, and with 268=269 bytes of memory, an enumeration of about
232þ62=232þ33 cases with 32þ 152¼ 184 bits of the key.

4. It is easy to see that if we do the same in the decomposition 1þ 7 rounds, we also
obtain about 232þ62=232þ33 cases on 184 key bits.

5. The two sets of 294=265 cases have 122 key bits in common, which can be used to
join the two distributions.

6. Very few key bits are not used in our attack; these are the 5 most significant bits
in rounds 4 and 5.

7. For 3 KP, each enumeration contains only 294 keys on 122 bits. Given any 122
common key bits chosen at random, it is present in one enumeration only with
probability 294�122¼ 2�28, and in the intersection, we will find only 294�28¼ 266

keys on 246 bits. We expect to get 266 cases with keys on 246 bits, and the remain-
ing 10 key bits can be determined instantly in each case, because most bits inside
the cipher are known. We check every solution with the 3 KP available. And we
expect to obtain an enumeration of exactly 264 cases with 256 key bits.

8. For 4 KP, each enumeration contains only 265 keys on 122 bits. In the intersec-
tion, we expect find at most one key on 246 bits, the right key.

We summarize our two results:
Fact 3. Given 3 KP for eight rounds of GOST, the full 256-bit key can be found

in time of about 2107 GOST computations and 268 bytes of memory.
Fact 4. Given 4 KP for eight rounds of GOST, the full 256-bit key can be found

in time of about 294 GOST computations and 269 bytes of memory.
We can compare this to the results claimed in the original 2011 version of [1]:

2120 for 3 KP and also for 4 KP. The second result is particularly significant, 226

times faster than in [1]. However, the software attack mentioned in [1] requires only
negligible memory. It is possible to believe that 2120 and negligible memory can be as
costly as 294 time and 269 memory.

Low-Complexity GOST Key Recovery 7

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 C

ol
le

ge
 L

on
do

n]
 a

t 0
4:

49
 2

8
Ju

ly
 2

01
4

Can we get the best of both worlds, 294 time and negligible memory? Very
surprisingly, we are now going to show how to achieve just that by another attack,
a pure software attack with an SAT solver.

5. An SAT Solver Attack for 4 KP with the Same Complexity and
Much Less Memory

We have the following result.
Fact 5. Given 4 KP for eight rounds of GOST, the full 256-bit key can be found

in time of about 294 GOST computations and negligible memory.
Justification. We proceed as follows.

1. We use the encoding of GOST described in [5].
2. We use a guess-then-determine approach with a highly non-trivial set of bits that

are guessed; the other bits are determined by software.
3. We use the following specific set of 68 bits, which is built following the same pat-

tern as exploited in our MITM attacks. The bits used are: 0-15,51-55,64-
66,128-130,179-183,192-207,224-231,244-255.

4. We convert our problem to a native SAT problem with native XORs such as
accepted by CryptoMiniSat 2.92. software [10].

5. We run the software 268 times for all possible assignments of the 68 bits with a
timeout of 400 seconds.

6. Computer simulations show that if the 68 bits are correct, the SAT solver will
output the correct key with probability about 50%.

7. Overall, it is NOT necessary to run all the 268 cases for 400 seconds. This is
because a proportion of 1-2�5 of cases terminates automatically with UNSAT
within 2 seconds average time, which is 223 GOST encryptions.

8. Assuming that all other cases run for 400 seconds (some still terminate earlier),
our conservative estimate of the attack time is 268þ23þ 268þ31�5� 294 GOST
computations.

6. Application to Full 32-Round GOST

Following [1, 3], the problem of breaking the full 32-round GOST can be reduced to
a low-data complexity attack on eight rounds. In this article we propose a plug-in
replacement last step for these numerous recent attacks [1, 3]. It improves the
running time of [3], and in Table 2, we give six other attacks from [1], which are
substantially improved in this article. The first two are single key attacks, and the
other can be applied to a diverse population of keys generated at random.

All these attacks on GOST can be compared in a meaningful way as follows. We
consider the cost of recovering one full 32-round GOST key with 256-bit keys
generated at random, including the time to examine all the other (nonweak) keys.
The fastest known single key attack on GOST requires 2179 GOST encryptions
per key with 264 KP [2]. In comparison, our attacks with multiple keys can achieve
less. We see that as the population of different GOST keys and overall data require-
ments grow in the multiple key setting, the cost of one key decreases in a spectacular
way, down to 159 and even 120-bit security level, surprisingly low for a 256-bit mili-
tary-grade cipher and government standard.

8 N. T. Courtois

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 C

ol
le

ge
 L

on
do

n]
 a

t 0
4:

49
 2

8
Ju

ly
 2

01
4

About the Author

Nicolas T. Courtois is a cryptologist and a Senior Lecturer at University College
London. He was born in Poland, received his PhD from the Paris 6 University,
and then he worked as a cryptographic engineer for the French smart card industry.
He is a highly influential code-breaker with more than 50 regular publications and
more than 4000 citations. He has pioneered or=and achieved significant results in
all of the following areas of cryptography: design and analysis of new public key
cryptosystems (Sflash, Quartz, HFE), generalized linear cryptanalysis of block
ciphers (Crypto 2004), cryptanalysis of LFSR-based stream ciphers with and without
additional memory (Eurocrypt 2003, Crypto 2004, ICISC 2004), efficient algorithms
for solving systems of multivariate equations (Eurocrypt 2000), innovative attacks
on block ciphers (Asiacrypt 2001, AES’4), alternatives to Gröbner bases algorithms
(Asiacrypt 2001, FSE 2012), low-data complexity cryptanalysis of block ciphers with
SAT Solvers (IMA 2007), self-similarity attacks on block ciphers with black-box
reductions (FSE 2008,Cryptologia 2012), advanced differential attacks (SECRYPT
2009), and importantly, in security analysis of major industrial standards and real-
life cryptographic algorithms used by hundreds of hundreds of millions of people
every day (E0 cipher in Bluetooth, automobile cipher KeeLoq, MiFare Classic
Crypto-1 in contactless smart cards).

Table 2. Improved attacks on GOST compared to previous results in [1]; in data
complexity figures, [A]CC=P means [Adaptive] Chosen Ciphertext=Plaintext attacks

Various attacks with complexity reduction from 2011 [1]
New cf. [1]

Reduction steps
Reduction

2
Reduction

3
Family

2
Family

2
Family

3
Family
8.1

Reference in [1]:
Key size 256 256 256 256 256 256
Key density d 20 2�0.7 2�32 2�32 2�64 2�98

From (data 32R) 232 KP 264 KP 232 CC 232 ACC 264 KP 232 CP
Obtained (for 8R) 3 KP 3 KP 3 KP 4 KP 4 KP 3 KP
Valid w. prob. 2�128 2�96 2�64 2�64 2�1 20

Previous 2011
results in [1]
Time to break 8R 2120 2120 2120 2120 2120

Attack time 32R 2248 2216 2184 2184 2121

Memory bytes small 267 small 267 267

Cost of 1 key, if 2248 2217 2226 2226 2185

key diversity � 20 20.7 232 264 264

Improvement to [1]
(this article)
Time to break 8R 2107 2107 2107 294 294 2107

Attack time 32R 2235 2203 2171 2158 295 2107

Memory bytes 268 268 268 267 267 268

Cost of 1 key, if 2235 2204 2203 2190 2159 2120

key diversity � 20 20.7 232 264 264 298

Data x keys 232 265 264 296 2128 2130

Low-Complexity GOST Key Recovery 9

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 C

ol
le

ge
 L

on
do

n]
 a

t 0
4:

49
 2

8
Ju

ly
 2

01
4

References

1. Courtois, N. 2010–2012. Algebraic Complexity Reduction and Cryptanalysis of GOST.
Preprint. http://eprint.iacr.org/2011/626 (accessed 1 December 2012).

2. Courtois, N. 2012. An Improved Differential Attack on Full GOST. Cryptology ePrint
Archive, Report 2012=138. 15 March. http://eprint.iacr.org/2012/138 (accessed 11
December 2012).

3. Courtois, N. 2012. ‘‘Security Evaluation of GOST 28147–89 In View of International
Standardisation,’’ Cryptologia, 36(1):2–13.

4. Courtois, N. and M. Misztal. 2011. First Differential Attack On Full 32-Round GOST.
In: ICICS 11, LNCS 7043, Springer, pp. 216–227.

5. Courtois, N. T., D. Hulme, and T. Mourouzis. 2012. Solving Circuit Optimisation
Problems in Cryptography and Cryptanalysis. In (informal) Proceedings of SHARCS
2012 Workshop, pp. 179–191, http://2012.sharcs.org/record.pdf (accessed 18 March
2012).

6. Dinur, I., O. Dunkelman, and A. Shamir. 2012. Improved Attacks on Full GOST. FSE,
LNCS 7549, pp. 9–28.

7. Isobe, T. 2011. A Single-Key Attack on the Full GOST Block Cipher. In: FSE 2011,
LNCS 6733, Springer, pp. 290–305.

8. Kara, O. 2008. Reflection Cryptanalysis of Some Ciphers. In: Indocrypt 2008, LNCS 5365,
pp. 294–307.

9. Poschmann, A., S. Ling, and H. Wang. 2010. 256 Bit Standardized Crypto for 650 GE
GOST Revisited. In: CHES 2010, LNCS 6225, pp. 219–233.

10. Sörensson, N., N. Eén, and M. Soos. CryptoMiniSat 2.92, an open-source SAT solver
package based on earlier MiniSat software. http://www.msoos.org/cryptominisat2/
(accessed 22 January 2012).

11. Zabotin, I. A., G. P. Glazkov, and V. B. Isaeva. 1989. Cryptographic Protection for
Information Processing Systems. Government Standard of the USSR, GOST 28147-89,
Government Committee of the USSR for Standards.

10 N. T. Courtois

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 C

ol
le

ge
 L

on
do

n]
 a

t 0
4:

49
 2

8
Ju

ly
 2

01
4

