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Abstract 

Prostate cancer is a major international health problem with a large and rising incidence in many 

parts of the world. Transrectal ultrasound (TRUS) imaging is used routinely to guide surgical 

procedures, such as needle biopsy and a number of minimally-invasive therapies, but its limited 

ability to visualise prostate cancer is widely recognised. Magnetic resonance (MR) imaging 

techniques, on the other hand, have recently been developed that can provide clinically useful 

diagnostic information. Registration (or alignment) of MR and TRUS images during TRUS-guided 

surgical interventions potentially provides a cost-effective approach to augment TRUS images 

with clinically useful, MR-derived information (for example, tumour location, shape and size). 

This thesis describes a deformable image registration framework that enables automatic and/or 

semi-automatic alignment of MR and 3D TRUS images of the prostate gland. The method 

combines two technical developments in the field:  First, a method for constructing patient-

specific statistical shape models of prostate motion/deformation, based on learning from finite 

element simulations of gland motion using geometric data from a preoperative MR image, is 

proposed. Second, a novel “model-to-image” registration framework is developed to register 

this statistical shape model automatically to an intraoperative TRUS image. This registration 

approach is implemented using a novel model-to-image vector alignment (MIVA) algorithm, 

which maximises the likelihood of a particular instance of a statistical shape model given a 

voxel-intensity-based feature vector that represents an estimate of the surface normal vectors 

at the boundary of the organ in question. 

Using real patient data, the MR-TRUS registration accuracy of the new algorithm is validated 

using intra-prostatic anatomical landmarks. A rigorous and extensive validation analysis is also 

provided for assessing the image registration experiments. The final target registration error 

after performing 100 MR–TRUS registrations for each patient have a median of 2.40 mm, 

meaning that over 93% registrations may successfully hit the target representing a clinically 

significant lesion. The implemented registration algorithms took less than 30 seconds and 2 

minutes for manually defined point- and normal vector features, respectively. The thesis 

concludes with a summary of potential applications and future research directions. 
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Chapter 1 Background - Prostate Cancer and Imaging 

1.1 Anatomy of Prostate 

 

Figure 1.1 Gross anatomy of prostate gland 

 
Figure 1.2 The zonal anatomy of prostate gland 

The prostate gland is an organ located between urinary bladder and rectum and is only found in 

men. The main function of the prostate gland is to secrete a slightly acidic prostatic fluid, that 

constitutes 50-70% of the volume of the semen (Huggins et al. 1942). It surrounds the urethra 

and is located on the midline in humans (see Figure 1.1). The prostate gland comprises different 

zones (McNeal et al. 1988): the peripheral zone, the central zone, the transition zone and the 

anterior fibro-muscular zone (see Figure 1.2). The seminal vesicles and vasa deferens are paired 

structures on either side of the midline just above the prostate. These extend cranially to the 

prostate and posteriorly to the bladder, and provide important spatial indication relative to the 

prostate gland (Halpern et al. 2002). These structures together form a relatively well-defined 
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anatomical overview of prostate gland that is visible in medical images, particularly MR images. 

More details of the imaging-related anatomy are discussed in Section 1.3. 

Although interpretations from imaging methods, such as MR, correspond to the anatomical 

description, the precise anatomy of prostate, in particular, local zones within the gland, may not 

be visualised with all conventional imaging techniques. For example, in ultrasound images, inner 

gland and outer gland are used to describe the two parts of the prostate within surgical capsule 

and outside of the surgical capsule. The inner gland contains periurethral tissue and transition 

zone, while the outer gland is comprised of central- and peripheral zones. Therefore, it could be 

confusing to the untrained eye in the way that the inner- and outer glands are wrongly 

considered sometimes as central- and peripheral zones, respectively. 

1.2 Prostate Cancer 

Prostate cancer is a major health problem internationally, but in particular, in countries in the 

Western World. The USA, Australia, New Zealand, and Western and Northern Europe (including 

the UK), have experienced large and rising incidences of prostate cancer. The latest available 

statistics indicated that prostate cancer is the second most common cause of death among men, 

after lung cancer in the UK. It accounts for around 13% of male deaths from cancer, 10,721 in 

2010 (General Register Office for Scotland 2010;Northern Ireland Statistics and Research Agency 

2010;Office for National Statistics Mortality Statistics 2011). In the USA, it is estimated that, in 

2012, there were 241,740 new cases of prostate cancer and 28,170 deaths caused by prostate 

cancer (National Cancer Institute 2012). Furthermore, in several parts of Asia, a changing 

demography of prostate cancer has been observed, towards significantly rising incidence rate, 

which is exemplified by data from Singapore and Japan (Sim et al. 2005). 

1.2.1 Prostate Cancer Diagnosis 

Due to the limitations of the non-invasive diagnosis methods, histopathological analysis of tissue 

samples remains the gold standard for detection and staging of prostate cancer (Djavan et al. 

2007). The clinical method for acquiring tissue samples is needle biopsy. In this procedure, a 

number of biopsy needles penetrate either the perineum or the rectal wall in order to reach the 

prostate gland. The transrectal biopsy usually is performed “freehand” with the patient in the 

lateral position and the needle attached to the probe using a needle guide (see Figure 1.3), 

whereas transperineal biopsy is usually performed with the patient in the lithotomy position. In 
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this case, needles are inserted using a template grid attached to a rigid support device, which 

also holds the ultrasound probe (see Figure 1.4). Template-guided, transperineal biopsy, in 

which more than twenty samples are usually collected, although more invasive, has been 

proposed to provide a better diagnostic ability due to its ability to map cancer with accuracy. 

(Ahmed et al. 2011;Barzell et al. 2007).  

 
Figure 1.3 An illustration of a TRUS-guided freehand biopsy 

 
Figure 1.4 An illustration of a TRUS-guided template biopsy, where the biopsy needle goes through the template that 
is parallel to the patient’s perinea. The template, illustrated as a block attached to the TRUS probe, provides relative 
location information. 

All prostate biopsy procedures are performed under the guidance of transrectal ultrasound 

(TRUS). The proximity of the prostate to the rectal wall means that TRUS is an effective method 

for guiding prostate biopsy (as well as other minimally-invasive interventional procedures). TRUS 

provides real-time images of the prostate gland and the surrounding soft tissue, as well as the 

surgical instruments (see Figure 1.5). 
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Figure 1.5 Example of a 2D B-mode TRUS image (left) and slices of a 3D TRUS volume (right) 

Combined with other clinical factors, such as prostate-specific antigen (PSA) level, age and 

imaging findings, such as X-ray, magnetic resonance imaging (MRI), computed tomography (CT), 

positron emission tomography (PET), clinicians are able to detect, grade and stage the prostate 

cancer.  

Recently, there has been increasing interest in imaging methods for diagnosing of prostate 

cancer, in particular, multi-parametric MRI (e.g. a combination of diffusion-weighted-, dynamic 

enhanced- and t2-weighted sequences), MR and ultrasound elastography, ultrasound imaging 

with micro-bubble contrast agents and radio frequency (RF) ultrasound image analysis. These 

developments are discussed in the Section 1.3. 

1.2.2 Prostate Cancer Treatment 

Prostate cancer has been found to respond to different treatment options. Which treatments 

should be recommended to a particular patient remains an open question (Heidenreich et al. 

2008;Wilt et al. 2008). From a historical point of view, androgen (hormonal) therapy, radical 

prostatectomy surgery, radiation therapy (external beam or brachytherapy by implanting 

radioactive seeds), cytotoxic chemotherapy (Denmeade et al. 2002) and active surveillance 

(Klotz 2005) have all been adopted in clinical practice, especially for localised cancer. 

Importantly, thanks to the improvements of diagnostic techniques and the PSA screening, the 

prostate cancer may be detected at an early stage when it is still confined to the prostate and is 

potentially curable by surgery and/or whole gland radiation therapy (Denmeade et al. 2002). In 

addition to curative treatment, good palliative treatment is also important for patient welfare in 

the advanced stages (Tompson et al. 2007). 
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A major limitation of radical prostatectomy and other “whole gland” treatments is the risk of 

serious side-effects, such as incontinence, impotence and damage to the rectum. More recently, 

a number of alternative minimally-invasive therapies have emerged. For example, high-dose-

rate brachytherapy, high intensity focused ultrasound (HIFU), cryotherapy, intensity-modulated 

radiotherapy and photodynamic therapy (Aus 2006;Marberger et al. 2008). Many of these 

techniques are well-suited to partial treatment of localised lesions, a surgical procedure widely 

known as focal therapy, which has been shown to reduce such complications, e.g. (Hambrock et 

al. 2010). It is important to note that, especially for the purpose of this thesis, focal therapies 

require guidance due to the need for precise targeting (van de Ven et al. 2011). 

1.3 Prostate Cancer Imaging 

Modern methods for the diagnosis, staging and treatment of prostate cancer rely heavily on 

medical imaging. Imaging techniques, such as high resolution multi-parametric MRI, potentially 

allow detection of the pathological changes for diagnosis and staging the cancer and 

visualisation of the gland zonal anatomy inside prostate and the surrounding anatomical 

structures. Most conventional imaging methods, such as ultrasound, CT and MR have been used 

for imaging the prostate gland. Other techniques, such as PET scan, have also been proposed 

(Schmid et al. 2005). In the following sections, developments of these imaging approaches are 

discussed. 

1.3.1 Ultrasound Imaging 

B-mode ultrasound imaging of the prostate can be performed via transabdominal, transrectal or 

transperineal approaches. The urethra provides the most important sonographic landmark 

within the prostate gland. From the bladder the urethra enters the prostate at the base of the 

gland, which is clearly visible in ultrasound images. The apex of the gland is also visible in 

ultrasound and defines the inferior margin of the gland (Halpern 2006). See Figure 1.5 as an 

example. The inner- and outer glands (as described in Section 1.1) correspond precisely to two 

counterpart structures in ultrasound (Halpern 2006;Halpern et al. 2002).   

Unfortunately, a significant portion of prostate cancers are isoechoic with the surrounding 

prostate tissue, which means that little difference can be seen between lesions and healthy 

tissues in ultrasound images. Although some echogenic lesions may be observed, a great overlap 
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between benign and malignant lesions causes a very poor sensitivity to detect cancer via B-

mode ultrasound imaging (Cochlin et al. 2010;Halpern et al. 2002).  

However, by analysing the raw radio frequency data used to form conventional B-mode images, 

some studies suggest that an improved likelihood of the locations of potentially significant 

lesions may be computed using recently proposed computer algorithms (Aarnink et al. 1998). 

Such algorithms seek to quantify pathological changes in prostatic tissue so that high risk foci 

may be differentiated. Some commercially available techniques are already being included as 

part of clinical trials to assess the practical sensitivity in patients, e.g. (Aarnink et al. 

1998;Braeckman et al. 2008). The ability to detect the prostate cancers using other ultrasound 

modes, such as colour and power Doppler, has not been demonstrated convincingly. 

Furthermore, the use of micro-bubble contrast agents has demonstrated increased sensitivity 

and tumour detection rate compared with conventional B-mode ultrasound (Halpern et al. 

2005;Yang et al. 2008). Ultrasound-based tissue characterisation and elastography have also 

been the subjects of recent attention (Braeckman et al. 2008;Moradi et al. 2009;Zhang et al. 

2008). To date, most of these methods still require further development and/or evaluation to 

determine the validity and translation into clinical practice. 

In current clinical practice, the most important role for B-mode ultrasound remains the guidance 

of surgical procedures, including brachytherapy, cryotherapy, intensity-modulated radiotherapy, 

high-intensity focused ultrasound (HIFU) and photodynamic therapy (Loch et al. 2007). 

Compared to other image guidance methods, ultrasound has several advantages, including 

safety (it is a non-ionising imaging approach), and the fact that it is simple to perform, widely 

accessible, portable, and inexpensive.  

Recent developments in 3D TRUS provide a method for accurate localisation of targeted regions. 

A 3D volume may be reconstructed from a series of B-mode slices and this approach is 

commonly applied in prostate needle biospy, brachytherapy system (Wei et al. 2005). There are 

different available methods for reconstructing 3D ultrasound images, including those that 

employ a stepper with the traditional 2D ultrasound probe to acquire a stack of 2D B-mode 

slices which are assumed to be parallel to each others; or orientated in a 'fan shape' if the probe 

is rotated about its long axis. A motor may also be integrated to automate the translational 

motion (e.g. Sonablate© probe, US HIFU, LLC, NC) or rotational motion, for a side-firing probe 

and an end-firing probe less in a second, respectively. Figure 1.5 shows an example TRUS slice 
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(left) and a reconstructed 3D volume (right). Other applications, including therapeutic 

procedures such as HIFU therapy and radiation therapy, currently being guided by 2D system 

potentially may benefit by 3D TRUS. 

1.3.2 Magnetic Resonance Imaging 

Prostate MR images provide rich anatomical information. On T1-weighted sequences, the signal 

intensity of the prostate is uniform and is difficult to distinguish from skeletal muscle. Neither 

the zonal anatomy nor the adjacent major anatomical structures, such as rectum and seminal 

vesicles, can be clearly visualised. However, T2-weighted sequences allow clear differentiation 

of the internal anatomy of the prostate gland. For instance, the peripheral zone has high signal 

intensity while some parts of the central zone are low. Figure 1.6 shows an example of T2-

weighted MR prostate image in transverse and sagittal views.     

 
Figure 1.6 Example slices of a T2 MR image of prostate. Left: the transverse view and, right: the sagittal view 

The use of MR imaging is relatively new as a diagnostic tool in prostate cancer, but it has 

attracted a great of amount research interest due to its increasing availability and the ability to 

identify local, small, yet clinically significant tumour inside prostate. MR is now widely 

considered to be the most promising imaging modality for non-invasive identification of 

prostate cancer.  

A systematic review of this technique reports a sensitivity of between 60% and 96% for 

localising prostate cancer using T2-weighted MR imaging when performed with an endorectal 

coil (Kirkham et al. 2006). A prospective multicenter study, conducted by the American College 

of Radiology Imaging Network and published since the review of Kirkham et al., reports an area 
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under the ROC curve of between 0.58 and 0.63 for the sextant localisation of peripheral zone 

cancer using T2-weighted MR imaging alone with a 1.5T pelvic phased-array coil (Weinreb et al. 

2009). Although this study found no significant difference between standard MR imaging and 

MR spectroscopy in terms of cancer localisation accuracy, several other studies in the literature 

have convincingly demonstrated that imaging at higher field strengths (in particular, 3T) and/or 

the addition of one or more functional MR imaging techniques, such as dynamic contrast 

enhanced (DCE), diffusion-weighed (DW) imaging or MR spectroscopy - “multi-parametric MR” - 

can significantly improve detection accuracy (Ahmed et al. 2012;Futterer 2007;Futterer et al. 

2007;Kirkham et al. 2006;Ravizzini et al. 2009;Villers et al. 2006;Villers et al. 2009).  

Presently, the specificity of MR imaging for localising prostate cancer is not sufficiently high to 

replace needle biopsy as the gold standard test for prostate cancers and therefore histological 

verification is still required. Nevertheless, MR imaging has emerged as a powerful clinical tool 

for identifying “suspicious regions” within the prostate gland. Once localised, MR-visible lesions 

can be targeted during biopsy, given the availability of sufficiently accurate image guidance 

technology using an interventional MR or an MR-US fusion (Pinto et al. 2011). Furthermore, the 

detailed information on the 3D spatial distribution of disease, the presence or absence of 

extracapsular extension, involvement of the seminal vesicles, and patient-specific pelvic 

anatomy provided by MR imaging, combined with localised histological information provided by 

targeted biopsy, are powerful tools for clinical management and subsequent therapy planning 

(Ahmed et al. 2009).  

1.3.3 Other Imaging Modalities 

Because of the limited soft tissue contrast, CT has poor performance for diagnosing prostate 

cancer (Turkbey et al. 2009b). However, CT is the conventional modality for radiotherapy 

planning due to its ability to measure electron density and visualise bony anatomy. It is also 

useful to provide relative spatial information in a number of procedures (see Section 1.2.2). PET 

imaging has the ability to localise tumour by monitoring metabolic changes with appropriate 

agent, but is limited by low spatial resolution. The reliability and accuracy of this technique is 

still under investigation. Other imaging methods have also been applied to the prostate, 

including single photon emission computed tomography (SPECT), but these are still under 

development to provide better sensitivity and specificity (Turkbey et al. 2009a). However, these 
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image modalities are not considered further in this thesis, but the interested reader is referred 

to the survey by Turkbey et al. (2009a). 

1.4 Image-guided Prostate Interventions 

Recently, there has been growing clinical interest in targeted therapy strategies in which only 

part of the prostate gland containing the tumour is treated in order to minimise the damage to 

nearby vulnerable structures, such as nerves (Ahmed et al. 2007;Ahmed et al. 2008;Eggener et 

al. 2007;Scardino et al. 2008). The principal motivation for such approaches is the potential for a 

reduced risk of side-effects compared with traditional “whole-gland” interventions. 

Implementing focal or tissue-sparing therapies is, however, highly problematic since they rely 

critically on the availability of an accurate method for disease localisation as well as precise 

(image-guided) delivery technology. The current gold standard for cancer localisation is 

transperineal template-guided saturation biopsy mapping in which 20-100 tissue samples are 

collected systematically at 5mm intervals using a template grid under TRUS guidance (Onik et al. 

2008;Pinkstaff et al. 2005). This technique is significantly more invasive compared to freehand 

transrectal biopsy, which is used routinely for diagnostic purposes, but it is usually performed 

under general anaesthesia to minimise patient discomfort and distress (Pinkstaff et al. 2005). 

Biopsy-verified, MR-based disease localisation using MR-targeted biopsy, on the other hand, 

potentially offers a less invasive alternative without compromising accuracy since fewer samples 

are required (Schouten et al. 2012). In patients with localised disease, the same MR-targeted 

approach can be applied to deliver minimally-invasive interventions using a treatment plan 

based on information derived from MR images and co-registered biopsy results (Pinto et al. 

2011). 

One approach to MR-targeting is to perform such procedures in an MR scanner (Makni et al. 

2009;Pondman et al. 2008;Tempany et al. 2008). However, this solution is technically 

demanding and requires special-purpose, MR-compatible equipment and instruments. 

Moreover, despite the fact that MR imaging facilities are undoubtedly becoming more widely 

available in hospitals, it remains a high cost solution that is currently practical only in a relatively 

small number of specialist centres. Access to patient is much easier within open MR scanners, 

designed specifically for interventional procedures, but the image quality is generally too poor 

to reliably distinguish tumour. Therefore, diagnostic quality MR images must first be obtained 

using a (closed) diagnostic scanner and registered to the (low quality) images obtained during 



Chapter 1 Background - Prostate Cancer and Imaging 1.5 Thesis Aims 

~ 10 ~ 
 

the procedure. It is possible to perform interventions within a diagnostic MR scanner. This is 

technically difficult given the limited access to patient, and image acquisition is slow compared 

with TRUS imaging, meaning that true real-time guidance is currently not possible.  

As illustrated in Figures 1.3 and 1.4, both freehand biopsy and template-guided biopsy employ 

TRUS for guidance. The patient is in a lateral position on a surgical table for the TRUS-guided 

procedures. The TRUS probe is inserted via the patient’s anus, through the rectum and is placed 

under the gland. A saline-filled balloon cover the probe on top of the transducer will help 

provide a reasonable difference in acoustic impedance between soft tissues. Due to the 

isoechoic nature of prostate cancer, the possibility of allowing the physician to relate other 

(preoperative or intraoperative) information and to bring the preoperative plan in the 

intervention, in particular, using 3D TRUS (see Section 1.3.1) is the focus of this thesis.  

A practical and relatively low-cost solution that motivates the work of this thesis is to use TRUS 

as the primary guidance modality, but to register MR images obtained prior to a procedure, 

possibly together with a co-registered surgical plan, to TRUS images obtained during a 

procedure (Kaplan et al. 2002). The surgical plan may define intended biopsy sample locations 

or the size, shape and position of a region of tissue encompassing a tumour, including a surgical 

margin. This approach has the advantage that the standard TRUS real-time guidance platform, 

which is familiar to practicing radiologists and urologists, is preserved. However, soft tissue 

motion on the order of several millimetres can occur between MR and TRUS imaging (Byrne 

2005). Therefore, it is highly desirable that the registration method compensates for this effect 

to achieve the highest possible accuracy. Prostate motion can arise from a number of causes, 

including bladder filling, rectal wall motion, changes in patient position (e.g. supine versus 

lithotomy), placement of an endorectal coil during MR imaging, and from the placement of the 

TRUS probe. A second requirement is that the registration procedure should be as fast as 

possible and avoid significant user-interaction to minimise the disruption to the clinical 

procedure. 

1.5 Thesis Aims 

Data fusion between information obtained from different imaging modalities is enabled by 

multi-modality image registration, e.g. spatial alignment between MR and US images. Chapter 2 

provides a detailed overview of this technique. However, current clinical procedures of such 
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image-guided minimally-invasive prostate interventions, including targeted biopsy and focal 

therapies, do not contain the component of computer-assisted image registration. The image 

registration described in this thesis may introduce two additional steps, preoperative planning 

and intraoperative registration: Before a procedure, planning is essential for any focal therapy 

or targeted biopsy, therefore the added (registration-required) planning, such as identifying the 

location of the lesion and possible manual segmentation of a preoperative image (see Section 

3.2.1), is expected to be minimal; During the procedure, clinicians usually perform a “cognitive” 

registration between a preoperative surgical plan with the guidance images, whereas utilising 

the image registration usually requires certain manual interactions, mainly, identifying 

anatomical landmarks (see Section 4.2.1.1) and initialisation (see Section 4.2.3). A recent 

feasibility study (Dickinson et al. 2013) suggested that introducing such an extra registration 

step would not affect adversely the current workflow of preoperative- or intraoperative 

procedure. 

The main aim of this thesis is to develop novel methods in image-guided prostate interventions 

for the purpose of data fusion to improve accuracy, efficiency and robustness of these clinical 

procedures. This includes 1) investigating and modelling the motion of prostate gland between 

the preoperative MR imaging to the intraoperative TRUS imaging; 2) developing a novel non-

rigid registration algorithm to compensate such a motion; and 3) validating the MR-to-TRUS 

registration method using real patient data. 

The main contributions of the thesis are the development and the evaluation of an advanced yet 

practical registration algorithm. This proposed algorithm adopts a novel motion modelling 

approach described in Chapter 3, and a novel model-to-image registration method, described in 

Chapter 4, for registering the prostate MR and ultrasound images. Chapter 5 provides rigorous 

validation methods to access each component of the algorithm whilst the Chapter 6 mainly 

presents the quantitative results from experiments using real patient data. The detailed 

contributions and further discussions are outlined in Chapter 7. 
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Chapter 2 Medical Image Registration: A Review 

2.1 Overview 

In general, image registration is the process of aligning images such that corresponding features 

are related mathematically (Hill et al. 2001). Images might be acquired at different times, from 

different patients, and/or by different imaging modalities. In the simplest case of pair-wise 

registration, the two input images are usually referred to as source image and target image. A 

spatial transformation is applied to the source image so that it is transformed into the space of 

the target image and the source and target images “match”. The parameter to estimate how 

good the “match” is often termed similarity measure. If the spatial transformation is explicitly 

defined as a function of some parameters, the optimisation problem to find these parameters is 

usually referred to a parametric registration. This is the main type of image registration 

considered in this thesis. This type of image registration is usually posed as an optimisation 

problem where the aim is to find an optimum transformation, governed by a set of optimised 

parameters, which maximises the similarity measures. The similarity measure (to maximise) is 

equivalent to an objective function (to minimise), whose value is often considered as an error or 

distance in the field.  

Symbolically, the parametric image registration problem may be represented as follows: Using 

the notation adopted by Hill et al. (Hill et al. 2001), image registration is defined more formally 

as the problem of finding the spatial transformation  , defined as: 

                    (2.1) 

where,   , and   , are positions (position vectors) from image A and B, respectively. The 

position vectors are represented by the spatial co-ordinates in 2D or 3D, and the goal of 

registering two images is to best align corresponding locations1 using image intensities or 

features,            , where the image intensity/feature   (or  ) is a function of spatial 

location   , and    is the domain over which the intensities/features representing image   (or 

 ) are sampled.  

                                                           
1
 The term corresponding features may have different meanings besides locations, corresponding location is used in 

this thesis to distinguish between the feature used in feature registration 
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However, corresponding locations are usually unknown or unclear directly from intensities.  In 

medical images, this correspondence is related to physical entities of interest in the real world, 

e.g. patient information in medical images. It is a similar problem discussed in “Feature 

Correspondence” in Section 2.2.2.3. For the purpose of image registration, a similarity measure 

is defined as a function of      ,       and   to quantifying the goodness of the alignment:  

                              (2.2) 

Assuming a parametric transformation     , numerical optimisation therefore can be used to 

find the transformation parameters, contained in vector  , that maximises the similarity 

measure: 

                                       (2.3) 

Numerous clinical applications have been identified that benefit from the use of image 

registration, but this thesis focuses on statistical analysis of inter- and intra-patient pathology 

and surgical plan delivery in image-guided interventions. A review of the applied image 

registration is beyond the scope of this report. However, a particular field of interest, image-

guided interventions, is discussed in the later sections.  

It is because of different imaging procedures, subjects (e.g. different patients, organs and 

regions of interest), modalities, and even different operators, that medical images are different 

from case to case and, therefore, require trained clinicians to interpret. A universally applicable 

method or framework for registering medical images has not been proposed (assuming it exists) 

for all the tasks encountered in real clinical situations between pairs of image data of interest. 

Nonetheless, for instance, a framework (Rueckert et al. 1999) has been successfully applied to a 

class of scenarios where an image registration method is required for purposes of data fusion. 

Following the methodology proposed in this framework, to devise a registration procedure for a 

particular problem, one should follow these steps: 1) choose a transformation type; 2) define a 

similarity measure to represent the goal; and 3) solve the optimisation problem. This three stage 

approach to registration has been adopted by many researchers working in this field, especially 

in the context of medical images (Hajnal et al. 2001;Hill et al. 2001;Holden 2008). 
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Intensity- versus Feature based Registration 

Various definitions have been adopted in the literature for intensity- or feature-based 

registration which can be used for distinguishing between them. Nevertheless, popular 

classification criteria are that intensity methods use the raw image data, whereas feature-based 

methods use a processed version of the raw image data (possibly incorporating information 

from other sources to perform the processing) to indentify and extract features of interest, such 

as intensity “edges”, “ridges” or anatomical landmarks. Using these definitions, several review 

authors classified existing methods into different categories (Hill et al. 2001;Maintz et al. 

1998;Zitova et al. 2003). In some literature (Goshtasby 2005), the features, such as corners, lines, 

curves, templates, regions, and patches, were defined explicitly and extracted exclusively for 

registration.  

For the purpose of this thesis, using   to denote for both spatial and intensity transformations, 

intensity- and feature-based registrations may be unified using the following relation:  

                             (2.4) 

where an image voxel now is considered as a four dimensional feature - the scalar intensity 

value plus the three location co-ordinates. This similarity measure is a function of two images 

and the transformation  . In intensity-based registration, interpolation is adopted to account 

for the transformation of the intensities. This is one of the core assumptions in intensity-based 

registration. In feature-based registration, the transformation of the feature values becomes 

non-trivial mainly due to the sparse and irregular distribution of feature locations. This is 

probably why the most popular feature remains simple point feature, which assumes that it is 

sufficient to replace the intensity with a binary value for a subset of all voxel locations. The 

sparseness of the point feature registration leads to, in general, a method that is less robust yet 

extremely fast due to the small amount data that needs to be processed. There are some 

alternative methods working in the middle-ground, e.g. (Cachier et al. 2002;Feldmar et al. 

1997;Ourselin et al. 2000). These techniques are discussed further in Sections 2.2 and 2.4. 

In practice, however, there seems to be a clear line between conventional intensity- and 

feature-based registrations based on differences in the objective functions and optimisation 

strategies. For example, completely different objective functions and optimisation strategies 

were employed between registering breast MR images (Rueckert et al. 1999) and registering 
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bone images (Barratt et al. 2008), respectively. In this thesis, it is argued that one logical 

classification of medical image registration methods is to consider intensity-based registration 

as a special case of feature-based registration, where the image intensities are features. In this 

sense, image features in medical image registration have slightly different meaning than those 

defined in conventional image processing literature, which are defined generally as a 

distinguishing primitive characteristics of an image (Gonzalez et al. 2008).   

However, it is noteworthy that there is not one universal definition for each of these approaches, 

so that the classification of some methods as either intensity- or feature-based is not 

straightforward. Increasingly, there are a number of approaches that combine both techniques 

to produce superior registration performance than either one can achieve alone, e.g. (Cachier et 

al. 2001;Papademetris et al. 2004). Because the intensity-based method is generally an 

automatic method and may use all the available information contained in both images, it is 

often tested first. However, some multi-modality registration problems are challenging as the 

physics underlying the image acquisition of different imaging modalities can differ significantly 

and may not be correlated. In such cases, intensity-based methods can fail. 

For the purpose of reviewing existing technologies, the following Sections 2.2 and 2.3 will focus 

on traditional methods considering the feature- and intensity-based methods, respectively.  

2.2 Feature-based Registration 

2.2.1 Feature Extraction  

As determining a spatial transformation is the primary goal in image registration, features 

usually consist of spatial co-ordinates that represent geometric primitives. By distinguishing the 

additional dimension of feature data, this thesis proposes that the features are classified as 

point (binary), scalar and vector-valued multi-dimensional features. In such a classification, the 

vector-valued feature is a unified representation of image information, i.e. a point is a scalar 

with binary value and the scalar feature is a special case of a vector-valued feature. 

2.2.1.1 Point Features 

Manually identified point landmarks have been widely applied in medical image registration 

tasks. In particular, for a transformation with limited degrees of freedom (DOFs) (e.g. a rigid-

body transformation), a reasonable amount of interactive effort has been acceptable to 
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establish a low dimensional transformation between fiducial landmarks for many applications 

(Hajnal et al. 2001).   

In the medical image registration literature, point features have been developed extensively 

because they are straightforward to understand, extract and process. The iterative closest point 

(ICP) algorithm (Besl et al. 1992) and its variants have been proposed for rigid alignment 

between two un-ordered sets of points. The central idea is to update the point correspondence 

and the transformation alternately until convergence. To improve the robustness of the method, 

the assumption of deterministic correspondence (closest point) has been improved by 

introducing probabilistic generalisations, such as soft assignment (Gold et al. 1998) or a 

Gaussian mixture model (GMM). On the other hand, robust point matching (RPM) (Chui et al. 

2000;Chui et al. 2002) has been proposed and employs thin-plate-splines (TPS) to account for 

the non-rigid transformations. Finally, coherent point drift (CPD) has been recently proposed as 

a generalised framework for non-rigid point sets registration (Myronenko et al. 

2006;Myronenko et al. 2010). Closed-form solutions are available for updating the 

transformation parameters in all the above mentioned algorithms, such as Procrustes analysis in 

the rigid case (Hill et al. 2001). These methods are discussed in detailed in Section 2.4.1. 

In the ICP, RPM and CPD methods, the features are sets of points with 2D or 3D co-ordinates 

representing spatial locations and automatic point feature extraction methods become 

attractive to reduce the level of user interaction required which introduces human error and is 

time-consuming. Most standard point detection methods are related to differential operators 

based edge detectors. For instance, the Canny edge detector (Canny 1986) is an approximation 

of the first order differential operator, gradient. Furthermore, second-order derivatives of the 

intensity capture the rate of change in the intensity gradient. Thus, in the ideal continuous case, 

detection of zero-crossings in the second derivative captures local maxima in gradient.  

Furthermore, differential structures of an image provide rich information about local features. 

These local feature characteristics may be further analysed by eigen-decomposition of the 

Hessian matrix (via scale-space approaches) to enhance certain structures of interest, such as 

edges, ridges and locally tube-like structures (Frangi et al. 1998;Lorenz et al. 1997;Sato et al. 

1997). 
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These computational operators should be able to provide useful point features by some further 

binary classifications, for example by a simple thresholding. 

2.2.1.2 Scalar-valued Features 

One special example of a scalar feature is the weighted geometrical (point) feature 

(Giannopoulos et al. 2002;Maurer, Jr. et al. 1996). The interpretation of the weight in this case 

can be related to the relative importance, and/or the uncertainty of each individual point: the 

larger the weight, the greater the influence of the associated point, as well as less flexibility 

provided by this particular feature in the matching process. Often, the weights can be 

normalised to sum up to a unit such that it can be interpreted as membership values, or in a 

probabilistic setting, by membership probabilities (discussed further in Section 2.4).  

For the weighted point features, a summary measure, such as the sum, average or RMS of 

weighted distances, can form the objective function. It is however not a most general case. A 

more interesting scenario is when a general function of co-ordinates and a scalar value are 

considered collectively. Image intensities can therefore be regarded as an additional dimension 

such that every independent voxel in a 3D image becomes a 4D feature. The work of (Feldmar et 

al. 1997) proposes an extension to the ICP algorithm to use such a 4D feature for registering 

brain and heart images. 

2.2.1.3 Directional and other Vector-valued Image Features 

In the work (Feldmar et al. 1997) mentioned in the previous section, a higher dimensional 

feature – for example 7D feature which include intensities and directional gradients are used – is 

adopted to represent 3D images. From the “conventional” point of view, the use of directional 

gradients is incorporated into the similarity measures, independently proposed as normalised 

vector information (NVI) (Zhuang et al. 2005) and as a normalised gradient field (NGF) (Haber et 

al. 2006).  

Arguably more relevant applications of vector-valued features have been found in the 

application of registration of diffusion tensor images: a diffusion tensor can be reconstructed to 

form three directional vectors (eigenvectors) which represent MR signals to indicate the 

principal directions of water diffusion (Alexander et al. 2001;Alexander et al. 2000). 
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2.2.2 Spatial Transformation Models 

The transformation between two images is not necessarily interpreted as a spatial 

transformation defined in physical space. For example, consider the problem registering two 

images from different patients. There is clearly no defined motion: in this case, one might have 

to resort to homological features to define the registration problem (Crum et al. 2003), which 

should be dependent on biological definition, the application or the purpose of the analysis.  

  (in Eq. 2.4) is defined as a “more complete” transformation applied to both locations and 

associated intensities (in Page R5, (Hill et al. 2001)). Interpolation sampling strategy can be 

applied to solve this problem of transforming intensities, so intensity value would be available 

for sampling at any given location in the transformed space. Therefore, in this case,   simply 

reduces to   (in Eqs. 2.2 and 2.3). However, this relies on the assumption that the intensity 

transformation is independent of the spatial transformation. For example, ultrasound images 

change intensities when the transducer is moved due to its directional dependent imaging 

(Wachinger et al. 2009). In this case, conventional interpolation and sampling methods, such as 

linear interpolation, are arguably inadequate. However, if necessary, some adjustment when 

estimating similarity measures may be useful. One example of such an adjustment is introduced 

in Section 4.2.1.1 to distinguish image features depending on whether they are aligned with 

ultrasound wave direction. 

Nonetheless, in the case of registration for image guidance application, the images to be 

registered are usually from the same patient and differ primarily due to the gross patient motion, 

the tissue deformation and/or the change of modality. These different types of spatial 

transformations are primarily considered in the following subsections. In this thesis, depending 

on whether an explicit case-specific method to construct the transformation is being used, non-

rigid transformations are considered as general-purpose- and case-specific ones. 

2.2.2.1 General-purpose Transformation Models 

Rigid Transformations 

The rigid- or rigid-body transformation is the simplest transformation model, which describes a 

combination of a translation and a rotation. It is useful in general because these transformations 

very often occur between different images, for example, due to patient- or (pose-dependent) 

imaging sensor motion. The rigid transformation is a well constrained transformation model, 
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which leads to a limited search space for any optimisation algorithm and direct (i.e. closed-form) 

solutions, under certain conditions.  

Rigid transformation may be expressed as follows: 

                        (2.5) 

where    and    are two 3-dimensional position vectors, containing 3 elements to representing 

the spatial co-ordinates (of points or of pixels/voxels).   is a translation vector             
 .   

is the      rotation matrix, constructed by 3 rotation angles. For instance,   is defined in 3D as: 

   

   
            

           

   

           

   
            

   
            
           

   
   (2.6) 

where              are Euler angles representing the rotation about  -,  - and  -axis, 

respectively. This is not a unique formulation as it depends on the order of these matrices 

multiplied and the direction of rotation. Therefore, the constrained   matrix is preferred to 

generally represent rotation, subject to             , where,   is the identity matrix and 

    is the determinant of the rotation matrix. An isotropic scaling factor   may be included to 

extend the rigid transformation as follows: 

                         (2.7) 

More generally, an affine transformation describes a group of transformations preserving 

straight lines, including scaling, shearing, reflection and rigid transformations. It can be defined 

as: 

                            (2.8) 

where   is an “unconstrained”      matrix. Due to similar properties in representation, with 

higher DOFs (up to 12 with additional 3 DOF from translation  ), the affine transformation is 

sometimes referred as a generalised rigid transformation (Audette et al. 2000) In most cases, 

image re-positioning, scaling and/or distortion can be approximated by an affine transformation. 

Because rigid- and affine transformations are of great importance both in medical image 

registration  (Audette et al. 2000;Hill et al. 2001;Maintz et al. 1998), and also for pose estimation 

in computer vision, e.g. (Haralick et al. 1989), analytical solutions have been studied extensively. 
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One such a solution is to solve the least squares problem with or without different constraints 

(Hill et al. 2001;Myronenko et al. 2010), i.e. to maximise:  

                 

  
             (2.9) 

where      is the Euclidean norm of the difference between two points, also known as L2 norm, 

and N is the number of pairs of corresponding points. Different p-norms have also been 

proposed to improve registration robustness and/or speed (Jian et al. 2005).  

In general, if a well-defined objective function (similarity measure) is specified, the optimum 

rigid- or affine transformation may be found using a standard, general-purpose optimiser (e.g. 

gradient descent, discussed in Section 2.3.3). 

Non-rigid Transformations 

Non-rigid (higher dimensional) transformations have been introduced to model the deformable 

change on non-rigid object (such as human soft tissue) or other having DOF larger than the 

rigid/affine transformation (Crum et al. 2003;Hawkes et al. 2005;Hill et al. 2001). General-

purpose, non-rigid models have been proposed for modelling transformations with higher DOFs.  

An example of the first attempts to extend non-rigid transformations is to assume a global 

polynomial function exists relating source and target locations (Audette et al. 2000). However, 

this mathematically simple formulation, which can be solved by least-squares minimisation, has 

some severe drawbacks including lack of local modelling ability, difficulty in determining the 

model complexity, and unexpected distortion (e.g. due to high sensitivity to noise). 

A better behaved transformation results from the use of splines as an interpolation function 

(Audette et al. 2000;Hill et al. 2001;Holden 2008). The term “spline” usually refers to a 

piecewise polynomial (parametric) curve. Thin-plate-splines (TPS) (Bookstein 1989) and B-

splines (Rueckert et al. 1999) have been widely used for medical image registration problems. By 

assuming that displacement is a function of co-ordinates,                  , the radial 

basis function may take the general form: 

                          (2.10) 

where               
 
   and                     

 
  are sums of   polynomial 

functions and   kernel functions, respectively. The coefficients    and    can be computed by 
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linear least-squares, although usually only a set of co-ordinates of point locations are used in the 

fitting process. These landmarks may be used in feature registration or grid points in free-form 

deformation (FFD), which is one example of a non-rigid transformation model. Many other non-

rigid models are reported in literature, for example those are based on physical assumptions, 

such as elastic body (Davis et al. 1997), motion coherency (Myronenko et al. 2006)), and those 

are motivated by mathematical convenience (e.g. polynomials). The purpose of all of these 

models is to approximate tissue deformations principally encountered in the real world.   

There are also scenarios where two types of transformations are used together, either 

simultaneously (Wang et al. 2000) or sequentially (Schnabel et al. 2001). In fact, the latter has 

become increasingly important in the area of image-guided intervention, where a rigid 

transformation is used first followed by a non-rigid transformation (Schnabel et al. 2001). It also 

should be noted that in the work by Wang et al. (Wang et al. 2000), the statistical shape model 

(which itself can be viewed as a case-specific transformation model, described in Section 2.2.2.3) 

was used as a prior to constrain the physical deformation instead of a direct, general-purpose 

parametric model. 

A general review and more in-depth discussions of non-rigid transformation models may be 

found in a review paper (Holden 2008). Although equally important, non-parametric 

transformations are not considered here as, from an algorithmic point of view, they involve 

significantly different strategy to solve the registration problem. Examples of non-parametric 

transformations include elastic- (Broit 1981), optical flow-, diffusion- (Thirion 1998), and fluid-

based methods (Christensen et al. 1996;Thirion 1998). Unified approaches to treat this class of 

transformations are proposed by Cahill et al. (Cahill et al. 2009) and Melbourne et al. 

(Melbourne et al. 2010).  

Summary of General-purpose Transformation Models 

Both rigid and non-rigid transformations introduced in this section are general-purpose models, 

which may or may not be based on physical models. To cope with real-world applications, one 

usually has to choose a model and tune the parameters controlling the behaviour of the 

transformation model. This inevitably includes, for instance, a trade-off between rigidity versus 

flexibility and smoothness versus geometric accuracy. These are not always easy tasks: for 

example, it is desirable that a transformation model has a global constraining ability so that 

missing data from the local area would not affect the overall approximation. But this global 
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ability usually comes at the expense of local behaviour not being modelled adequately. This is 

exemplified by some of the spline-based methods, such as approximating thin-plate-splines 

(Bookstein 1989) and elastic-body-splines (Davis et al. 1997), in which the parameters control 

certain smoothness in a global fashion without taking into account the inhomogeneous 

behaviour of real human tissue.  

Two main alternative approaches to general-purpose transformation models have emerged: 

First, physics-based models which aim to describe the real world as accurately as possible, for 

example, classical theories of mechanics can be applied to model complex nonlinear and 

inhomogeneous soft tissue behaviour (Carter et al. 2005); Second, learnt data can be used to 

describe transformation model by adopting statistical learning methods. The statistical shape 

model popularised by Cootes et al. (Cootes et al. 1995) is a good example of this (see Section 

3.1.2). 

The role of the non-rigid (deformable) modelling in medical image registration is of great 

importance, since it provides a physically plausible and well-constrained transformation model, 

resulting in a reduced parameter search space and potentially a faster and more robust 

numerical optimisation. In general, modelling enables better controlled registration by 

employing physical or empirical rules. The biomechanical modelling and the statistical shape 

modelling are the deformable modelling approaches investigated in this thesis. These are 

discussed in more details in the following sections.  

2.2.2.2 Biomechanical Modelling 

In medical image computing, biomechanical modelling usually refers to applying the principles 

of classical mechanics to model interactions between internal and externally applied forces and 

the motion of organs. Medical images provide a rich source of information for this kind of 

modelling. For instance, methods to model mechanical behaviour of brain tissue have been 

developed, e.g. (Joldes et al. 2012). 

A key original contribution in the application of biomechanical modelling for image registration 

during prostate interventions is the work by Bharatha et al. (Bharatha et al. 2001), where 1.5T 

MR images were registered with 0.5T intraoperative images using a biomechanical model. The 

displacement field between two images was computed by solving the finite element (FE) 

equations, after building a FE mesh representation of the prostate gland from a segmentation of 
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the source image. The boundary condition of surface displacement, derived from a surface-

based registration method, was applied. More recent analysis using this approach is described in 

Section 5.4.3. 

Finite element analysis (FEA) provides a widely-used numerical framework for solving both 

traditional mechanical problems and emerging biomechanical problems that arise from the 

study of complex biological systems. Biomechanical modelling using FEA has been proposed by a 

number of authors as a means of predicting organ motion and soft-tissue deformation 

(Alterovitz et al. 2006;Bharatha et al. 2001;Crouch et al. 2007;Hensel et al. 2007). It is probably 

the most popular and best developed method. The basic steps involved in FEA-based 

biomechanical modelling are: 

1) Set up a geometrical representation of target organ and surrounding tissues of interest; 

2) Assign estimated material properties for the tissues of interest; 

3) Set the boundary conditions for a particular scenario, such as the displacement of an organ 

surface; and 

4) Solve a system of equations for unknowns of interest, such as displacements, numerically. 

The results represent a complete displacement field across the model. Other mechanical 

properties, such as strain or stress field also can be computed, although in the field of medical 

image computing the usefulness of estimating these parameters is still under investigation. The 

displacement field, on the other hand, is directly related to the spatial transformation which is 

of most interest in image registration tasks and is a common output of this type of analysis 

(Carter et al. 2005). The biomechanical formulation of the problem provides a framework to 

compute physically plausible deformations that provide a useful constraint for image 

registration.  

The rest of this section outlines some features and practical aspects of the FEA used in image 

registration.  

Finite Element Analysis and Meshing 

The FEA methods share one essential characteristic: the discretisation of a continuous, complex 

domain into a large, finite number of simple geometric elements, e.g. triangles/rectangles in 2D, 
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or tetrahedrons/hexahedrons for 3D domains. Discretisation in this way allows mechanical 

principles to be applied on each element, resulting in a large scale system of partial differential 

equations and integral equations, which, for real-world biomedical applications, are also defined 

for a (e.g. geometrically) complex domain. 

Commercially available software packages include ABAQUS (ABAQUS Inc., Rhode Island, USA) 

and ANSYS (ANSYS Europe Ltd., Oxfordshire, UK). For research purposes, open source codes are 

also available in MATLAB (e.g. (Balmes et al. 2010)), C++ (e.g.(Hecht 2009)) and CUDA (Taylor et 

al. 2008). 

The first step in FEA is meshing, which some practitioners might argue is the most crucial task in 

the analysis. In 3D, there are relatively robust methods to automatically generate a tetrahedral 

mesh, such as Delaunay triangulation employed in ANSYS. Hexahedral elements are more 

difficult to generate for irregular domains, which are common for biological structures. One 

reason for this is that a region of interest usually has complex topology so that a structured (or 

mapped) hexahedral mesh cannot be directly mapped to it. On the other hand, linear 

tetrahedral elements are vulnerable to so-called ‘locking’ when the material is assumed to be 

almost incompressible. Locking refers to an excessive stiffness of the mesh that results in 

smaller interpolated displacements than that would actually occur. Numerical methods have 

been proposed to overcome this problem (Bonet et al. 1998;Joldes et al. 2009). More complex 

element shapes include higher order elements in which additional nodes are located at positions 

other than vertices. These may be considered to trade computational expense for accuracy.  A 

review of the finite element mesh generation can be found in the paper by Ho-Le (Ho-Le 2001). 

In practice, volumetric meshes are generated typically from a geometric representation of a 

surface, such as a distance function (Per-Olof et al. 2006) or a  surface mesh. The latter provides 

a simple, discrete representation, which can be converted to most other representations. 

Therefore, the conversion of triangulated meshes is a popular approach and is supported by 

most solid meshing algorithms. For instance, to represent a closed surface, spherical harmonic 

surface representation can be sampled into a triangular surface mesh (Zacharopoulos 2005). 

Alternative methods exist, which have been designed specifically for surface meshing, e.g. (CGAL 

2009). 
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Boundary Conditions and Material Properties 

Boundary conditions (BCs) - which are also termed “loadings” in some fields of engineering - can 

be specified in forms of body displacements, velocities, accelerations, and forces and pressures 

(externally applied and/or due to gravity). However, tissue displacement is the type mostly 

applied for medical applications, largely because it is usually directly measurable from image 

data. Gravity is also considered in cases where it applies a significant load on organs that causes 

deformation (Carter et al. 2008). In the context of medical image registration, BCs are commonly 

estimated in two ways: first, by measuring a displacement between two corresponding points 

identified in images obtained at different time-points; and second, using the derivative of a 

similarity measure as a surrogate for applied force (Modat et al. 2010).  

The mechanical behaviour of biological tissue under load is complicated, so certain 

simplifications and assumptions are made when assigning tissue material properties, which 

govern the relationship between stress and strain. An interesting argument is that for 

applications in image-guided interventions, computational speed is more important than the 

accuracy of the simulations (Hajnal et al. 2001). The general rule is that the more complex the 

analysis approach and the more detailed model, the greater the computational expense, but the 

more accurately model the real-world biomechanical behaviours. A relevant debate in the field 

is whether accurate material properties (in general, accurate constitute models) are required for 

modelling of human tissue deformation. In the prostate gland, some investigation work (Chi et 

al. 2006) and (Hu et al. 2008a) report errors of 4.5mm and 1.82mm (approximately 47% of total 

simulated displacement), respectively. These suggested that material properties should be 

estimated accurately. Whilst recent developments in computational hardware and parallel 

computing techniques have significantly reduced the computational burden of FEA, an accurate 

and complex (therefore realistic) material model, is believed generally desirable. The level of the 

complexity and accuracy, which depends on the application, is one topic of investigation in this 

thesis (see Section 3.2.5). 

Displacement BCs can be computed for each node by either an explicit or an implicit solver, 

depending on the type of analysis (Zienkiewicz et al. 2000), and interpolated through the 

meshed region. The resulting deformation field computed from FEA over the regions of interest 

then serves as a transformation model for image registration. There are two different schemes 

to adopt the biomechanical analysis for image registration task, as outlined below:  
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The first approach involves direct estimation of both boundary conditions and material 

properties. In this case, the results of FEA are the solution to the registration problem, while the 

transformation parameters are obtained implicitly to when solving the FE equations. For 

instance, the surface normal direction to the target surface was used to set the boundary 

conditions and empirical material properties assigned for breast tissues in a study by Carter et al. 

which aimed to register prone and supine MR images of the breast (Carter et al. 2008).  

The second scheme adopts a more image-specific (but potentially less realistic) similarity 

measure, such as mutual information. The FE equations are then updated iteratively using a 

synthetic force derived from the derivatives of this similarity measure so that the similarity 

measure is maximised at the end of iterations (Modat et al. 2010). A more direct approach 

performs one or more complete FE simulations in each iteration within a registration 

optimisation scheme, which includes boundary conditions and material properties as free 

parameters (Alterovitz et al. 2006).  

The first scheme is largely subject to the prescribed BCs, and estimating these may be a 

challenging feature registration problem in itself (see the comparison study of (Crouch et al. 

2007) for another example of this approach). Furthermore, the sensitivity to material properties 

remains an important consideration. The second method, on the other hand, is a natural 

extension of the intensity-based registration framework (outlined in Section 2.3) in which the 

registration is posed as an optimisation problem. It is however much more computational 

demanding in practice and may be potentially impractical for large scale 3D problems. 

2.2.2.3 Statistical Shape Modelling 

Another major class of transformation models employs statistical approaches. The basic idea is 

to analyse representative training data statistically in order to “learn” the transformation, which 

could then be used in the image registration. This type of transformation usually is specifically 

built for the object(s) of interest and the learnt transformation usually is not generalisable to 

other applications or other objects (organs) in the same patient.  

One highly popular example of this approach is the statistical shape model (SSM) (Heimann et al. 

2009), which was first proposed as a means of image segmentation (Cootes et al. 1995). A SSM 

describes the shape changes across a number of training samples, which are captured and 

parameterised by principal component analysis (PCA) which enables dimensionality reduction. 
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Therefore, a low-dimensional shape model may be combined with a basic rigid transformation 

to form a non-rigid transformation model with relatively small number of parameters. Other 

established alternative statistical approaches,  such as factor analysis and linear regression 

(P.D.Sozou et al. 1994), have also been investigated and applied in a very similar fashion. 

Although a number of variations to original SSM have been proposed, the construction of all 

SSMs shares a three-stage scheme: shape representation, feature correspondence, and 

dimensionality reduction. These stages are discussed bellow. 

Shape Representation 

Arguably the simplest representation of a 3D shape is a point cloud, which is the basis of the 

point distribution model (PDM) (Cootes et al. 1995;Heimann et al. 2009). Sets of points are 

usually sampled from the surface of the object of interest. A complete representation of shape 

requires adequate point density (sampling frequency).  

A different strategy is to represent a volumetric region of interest (ROI), where points can be 

easily sampled not only on the surface but also from locations inside of the ROI. An example of 

such a representation is the medial representation, such as M-reps proposed by Pizer et al. 

(Pizer et al. 2003), which have been applied to model organs including the prostate gland (Dam 

et al. 2008). Splines, such as non-uniform rational B-splines (NURBS) are also widely used to 

represent shape. NURBS have been used to re-sample the prostate gland surface (Wu et al. 

2000;Wu et al. 2003). Spherical harmonics (SH) are another example of parametric model which 

represents closed surfaces. The use of spherical harmonics to represent the prostate gland was 

reported by Tutar et al. (Tutar et al. 2006).  

It is noteworthy that, in principle, conventional linear statistical analysis, such as PCA-based SSM, 

can be applied to any parametric models (such as NURBS and SH) when the mapped parameter 

space has statistical significance; In other words, linear SSM can be applied on any parameters 

of the shape representation, such as the parameters of NURBS and SH, regardless the form of 

the representation. However, the resulting model is no longer linear due to the non-linearity 

introduced by the parametric form; and the resulting model may not be able to capture the 

most variance of the training data with fewer parameters (which is a goal of PCA-based SSM). 

This is probably the reason why most parametric shape representations (instead of being used 

directly in the statistical analysis) are mainly useful for point cloud sampling, visualisation and 

establishing the point correspondence. 
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Feature Correspondence  

To enable a classical multivariate statistical analysis, multi-dimensional features representing 

training data need to share an identical multivariate space, meaning that not only the entire 

multivariate space but also all subspaces, in which the features are sampled, should be the same. 

However, sampling methods generally do not guarantee that the features from different shape 

data have common subspaces. For example, for each shape represented by the PDM, the co-

ordinates of all the points are assembled in nth data vector       
    

      
   

 , where   is 

the number of points and   
             is the 3D co-ordinate vector for jth (     ) point. 

The jth point co-ordinates may be sampled from an arbitrary location, which has little relevance 

to the one sampled from another shape data, while the number of points  , may also be 

different. This presents a feature correspondence problem, which samples or re-samples the 

shape features so the resulting data vectors become corresponding features, i.e. share the 

common subspaces. 

The correspondence between two images, or the same object represented by two images, 

might be defined according to homology (Crum et al. 2003), which indicates anatomically the 

same locations in most image registration applications. However, without expert knowledge, 

homological correspondence is rarely available for medical images. In particular, a ubiquitous 

point-to-point correspondence is very difficult to establish in certain circumstances. For instance, 

between the prostate gland shown in respective MR and ultrasound images, only the surface of 

the gland and very limited number of landmarks, such as points at the apex and base, can be 

defined reliably as corresponding landmarks, while the point-to-point correspondence on the 

rest of the surface remains unclear. From an algorithmic point of view, finding surface 

correspondence is equivalent to surface registration (Heimann et al. 2009). It turns out that 

most medical image registration tasks are equivalent to finding correspondence to enable all 

kinds of analysis, including data fusion and classical multivariate statistics analysis. Moreover, 

intensity-based image registrations, which establish voxel correspondence, have become one 

practical method for finding correspondence used in statistical analysis (Rueckert et al. 2010). 

A valid question is that, if the correspondence can be found, why build an SSM-based 

transformation for registration? The answer is twofold: Firstly, it is usually possible to establish 

the correspondence between images of the same type from the same modality, but establishing 

correspondence between multimodal data is generally much more challenging. Secondly, for 
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certain applications, such as registration during image-guided interventions, processing time is 

very restricted, and an SSM-driven registration is usually more efficient (thanks to 

dimensionality reduction and the linearity of most adopted models) compared with 

correspondence-finding methods. It also separates the entire procedure in two stages, 

preoperative and intraoperative stages, therefore allows more time, potentially including for 

user interaction, to access and to process preoperative data, from which the transformation is 

learnt prior to the procedure.  

Different criteria have been developed for surface-based registration, depending on the surface 

representation adopted. A review on methods to find correspondence using different surface 

representations is given in Heimann et al. (Heimann et al. 2009). 

Dimensionality Reduction  

PCA remains the most popular method to construct a statistical shape models in the field of 

medical image computing (Heimann et al. 2009). PCA was originally proposed by Pearson 

(Pearson 1901) as a general purpose method of representing physical, statistical, and biological 

data in linear, orthogonal and low-dimensional spaces. 

Assuming an   -dimensional data vector    (defined in the previous subsection), a      

matrix containing all   vectors can be defined as               . Given the assumption of 

linearity in the transformation,   can be expressed as a linear combination of basis (or 

component) vectors, onto which the data can be projected, and a bias vector  , representing a 

constant offset. Collecting together the basis vectors into a matrix   gives         , where, 

               is a      matrix      containing     -dimensional basis vectors; 

               is an     matrix containing vector signals (or scores) corresponding to 

each of the data; and,   is an   -dimensional constant vector.  

Another two assumptions, ranked variance and orthogonality, are made in order to solve the 

change-of-basis problem in an efficient way: Firstly, the variances are assumed to associate with 

the importance of the basis (component); and, secondly, the new basis vectors or principal 

components are assumed to be orthogonal. In this case, eigen-decomposition can be used to 

diagonalise the covariance matrix, giving the variances in each of the orthogonal component: 

 
 

 
                   (2.11) 
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where   is a diagonal matrix containing eigenvalues indicating associated variances, each of 

which corresponds to the eigenvectors in                . Rearranging Eq. (2.11), gives: 

                    (2.12) 

where        is the full coefficient matrix, and    is the mean vector obtained from an 

average of the data in  . The eigenvalues then are sorted in descending order and only the first 

  preserved. Usually,    . The corresponding eigenvectors now form                to 

obtain the approximated reconstruction: 

                      (2.13) 

where        are the coefficients associated with the first   principal components. 

Once correspondence is established, the shape training data can be assembled into the matrix  .  

The resulting shape model is then: 

                   (2.14) 

If   contains the previously rigidly-aligned 3D co-ordinates of the shape nodes, the model is 

commonly referred as a PDM. 

In the eigen-decomposition above, the operation of diagonalisation of the covariance matrix 

involves the underlying assumption of independence between components when these 

components are orthogonal. Strictly speaking, this assumption holds only when the first- and 

second-order moment statistics - i.e. the mean and variance, respectively - are sufficient to 

characterise the data distribution (for instance, if the data follows a Gaussian distribution). But 

in general, removing second-order dependencies is insufficient at revealing all structure within 

the data (Shlens 2009). This leads to one of the limitations of the PCA-based SSM.  

To include higher-order statistics of the data and achieve better modelling ability, the first 

assumption to break is that of orthogonality. Principal factor analysis (PFA) provides a 

decomposition into easily interpretable modes, while still being a linear technique that performs 

dimensionality reduction (Ballester et al. 2005). However, closed-form solutions are no longer 

available for this case, so an iterative approach is required. Another approach is to break the 

original assumption of linearity. For example, kernel methods can be used to transform the 
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original data to another nonlinear basis when performing PCA, resulting in so-called kernel PCA 

(Ballester et al. 2005;Rathi et al. 2006;Scholkopf et al. 1998). Alternative linear or nonlinear 

projection was also proposed, by which the projected data have mutual statistically 

independent components. Independent component analysis (ICA) (Hyvarinen et al. 2009) can be 

employed to eliminate the requirement of Gaussian distribution of the data. 

It is noteworthy that it is not necessary for data to follow a multivariate Gaussian distribution 

(Jolliffe 2002). The Gaussian assumption is only prerequisite if: 1) some inference is made that 

assumes that the PCA outputs, new components and variance, are Gaussian; and 2) the data is 

de-correlated significantly as a result of the matrix diagonalisation (Shlens 2009). 

The Application of Shape Models  

A shape model provides a mathematically convenient representation of shape space from which 

plausible shapes can be sampled. There are broadly two approaches for applying an SSM in 

image segmentation, registration and other related tasks: from a statistical point of view, the 

inferences of an SSM can be made such that: 1) unknown parameters can be estimated where 

the SSM captures a distribution of shapes. In this case, the coefficients contained in   are of 

interest and the problem reduces to a classical parameter estimation problem; and 2) another 

function, usually defined as a probability density function (PDF), is constrained within a Bayesian 

framework whereas the SSM serves as a prior. For example, a log-prior is usually used to 

regularise some other transformation model. 

In the first approach, the parameters of the SSM are of interest and the model behaves like 

other transformation models, such as rigid or spline-based ones. In this case, an objective 

function and/or its derivative are evaluated for a set of parameter values. The second approach 

requires a probabilistic formulation or a combined energy function in which a general-purpose 

transformation is usually added to the regularisation term to penalise shapes with lower (prior) 

probability. For both of the above cases, the objective function should be defined with respect 

to the shape representation. 

There are numerous medical image related applications of SSMs (Cootes et al. 1993;Cosio 

2008;Dam et al. 2008;Ding et al. 2007;Mohamed et al. 2002;Thompson et al. 2008). The reader 

is referred to the review paper (Heimann et al. 2009) for a comprehensive list. 
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2.2.2.4 Combined Biomechanical-Statistical Modelling 

Biomechanical modelling has been shown to be a promising development in medical image 

analysis (see discussion in the previous section). Theories and practices have been inherited 

from classical mechanics to model/simulate the motion of biological organ systems and, more 

generally, physical manifestations of physiological changes such as the electromechanics of the 

heart, the development of vascular diseases, and injury and response due to ablative therapy. 

Typically, a patient-specific geometric model is built from medical images; boundary conditions 

and constraints (for example, displacement of some known regions) are then estimated and 

specified; finally, numerical methods, such as FEA, are applied to compute a change in state of 

the model that will, for instance, correspond to a change in shape. However, varying patient 

anatomy, unknown and difficult to measure boundary conditions, and the complexity of the 

biomechanical behaviour of soft tissue make the analysis challenging in practice. For example, 

although models of complex soft tissue behaviour have been successfully developed and 

implemented, they are rarely used in practice, largely because such models are computationally 

expensive, which makes applying them to solve problems of the size and complexity 

encountered in medical applications problematic. Considerations of computational cost are 

particularly relevant for time-critical applications, such as image-guided interventions. 

Furthermore, uncertainties in the parameters which characterise the model, such as mechanical 

stiffness, can overwhelm the requirement for exactness of any particular parameter. In other 

words, some models are too sensitive to errors in the input parameters and, in most cases, it is 

impractical to reduce parameter uncertainty, for example by implementing an elaborate 

method for measuring patient-specific parameters in vivo.  

Given these challenges, statistical approaches to handle model parameter uncertainty have 

emerged. One example, applied in the field of image-guided interventions (described in detail in 

the remainder of this thesis) is to perform simulations of organ shape changes that are likely to 

occur during the intervention before the intervention takes place. The pre-computed 

simulations employ all the information available at that time, such as anatomical information 

from preoperative imaging, and estimated parameter values, which are assumed to lie within 

range that reflects the known intra- and/or inter-subject uncertainty in parameter values. Even 

if that uncertainty is poorly defined or poorly understood, it is still possible to assign parameter 

values that reflect this uncertainty (but at the cost of more simulations). Therefore, rather than 

being used to compute an exact solution given a set of boundary conditions as in classical 
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biomechanical modelling, a biomechanical model can instead be used to produce a set of 

physically plausible solutions when the boundary conditions are poorly understood, difficult to 

estimate and/or subject to significant uncertainty. This space of solutions can then be 

summarised using statistics, for example, by re-parameterisation and dimensionality reduction 

using an SSM. In this way, a model can be built that captures prior biomechanical information 

and such a model may be optimised during an intervention as more information becomes 

available. This approach is sometimes referred as a combined statistical-biomechanical model 

(SBM) (Davatzikos et al. 2001). 

SBMs confer several advantages: Firstly, they can be built using only the information of interest, 

such as the motion of a particular organ. Certain information, such as interactions with 

surrounding structures, may be required to perform biomechanical simulations, but is not 

interesting from a specific application point of view. The dimensionality of the resulting model, 

which may be a marginalised one (i.e. a model representing marginal probability of the original) 

with only variance of interest being efficiently covered, can be reduced to a much greater extent 

compared to conventional dimensionality reduction methods, which achieve a lower 

dimensional representation by excluding only variance due to random noise. Secondly, the 

model may be re-parameterised into a new space using significantly fewer parameters and 

possibly also with less correlation between parameters. This property is particularly helpful 

when these parameters are to be optimised numerically. Thirdly, the deformation/motion being 

defined not only on the surface but also throughout the solid 3D space of the whole region of 

interest, SBMs also provide a statistical framework for managing information at different stages, 

such as comparing different sources of information to measure the usefulness for surgical 

guidance. For instance, a patient’s age and the size of an organ may or may not affect the 

deformation during a surgical procedure. By including this quantitative information in the SBM 

building, statistical analysis may identify the correlation between these variables and model 

parameters in order to explore any underlying connections and to better control the future 

application. 

A major contribution of this thesis is the development of methodology to build and apply an 

SBM for image-guided prostate interventions. Details of the SBM developed for this purpose will 

be discussed in the later chapters. 
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2.2.3 Optimisation 

Given a transformation model and an objective function (i.e. similarity measure), the 

registration problem becomes a numerical optimisation problem. In principle, a general-purpose 

optimiser can be used to solve the problem and estimate the optimal parameter values that 

maximise or minimise the objective function. In practice, numerical optimisation schemes vary 

in terms of convergence properties, speed and robustness, which are dependent on the 

application and the algorithm employed. General-purpose optimisers will be considered in 

Section 2.3.3. 

Special cases also exist, for example, where pixel/voxel correspondence between images is 

known and both the transformation and the similarity measures can be linearised. For this case, 

least squares methods may be used to solve the registration problem directly without explicit 

iteration (Golub et al. 1996). A great amount of work has been done for this case, which was 

discussed in Section 2.2.2 in the context of formulating spatial transformations. More 

importantly, these methods serve as building blocks for solving the more complicated problems 

where one or more of the conditions specified above is not satisfied. 

Another approach to optimise the objective function is based on (or inspired by) the expectation 

maximisation (EM) algorithms (Bishop 2006;Dempster et al. 1977), where the objective function 

is formulated as a likelihood function. EM algorithms have superior convergence properties 

compared to alternative optimisation approaches. This technique will be discussed in depth in 

Sections 2.4.1 and 4.2.2. 

2.3 Intensity-based Registration 

For the purposes of this thesis, also discussed in Section 2.1, intensity-based image registration 

is characterised as a registration method that uses directly the image intensity information to 

align images without any distinguishable intermediate steps to extract image features. 

From a conventional perspective, intensity-based registration is posed as an optimisation 

problem where the objective function, determined by an image similarity measure, is a function 

of the transformed source image intensities, the target image intensities, and the free 

parameters of the transformation model to optimise (Hill et al. 2001). Therefore, the three 

components of intensity-based registration are the transformation model, the chosen similarity 

measure, and the numerical optimisation algorithm. This is analogous to the key components of 
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feature-based registration summarised in Section 2.2, but with the similarity measure being a 

function of intensity rather than general representations of extracted features. 

The registration framework adopted in this thesis is generally described as feature-based 

registration, for which the intensity-based approach is a special case (see discussion in Section 

2.1). The aims of this section are as follows: 1) to provide an overview of the area of intensity-

based image registration; 2) to outline the key features of intensity-based registration so that 

the challenges of applying the intensity-based methods in the domain of image-guided 

interventions, especially for multi-modality data fusion, can be identified; and 3) to review some 

of the methods that share the same technical approaches to solve different registration 

problems. 

2.3.1 Spatial Transformation 

The general-purpose transformation models, introduced in Section 2.2.2.1, are also applicable 

for intensity-based image registration. Rigid- and affine transformations can be parameterised 

by a homogeneous matrix with up to twelve degrees of freedom. The obvious limitation of rigid 

transformation models is their inability to represent soft tissue. Furthermore, the simplifying 

assumption of rigidity may impact upon the performance of the similarity measure. For instance 

(Rueckert et al. 1999) reported less accurate registration when rigidly registering breast images 

for which a larger deformation had been introduced between the images. This is probably 

because particular similarity measure has different local and global performances. Most general-

purpose, non-rigid transformation models introduced in Section 2.2.2.1 can also be applied in 

intensity-based registration schemes with the additional step of defining control points. Control 

points can be specified for each pixel/voxel in the image, a subset of pixel/voxels, or any 

arbitrary positions within an image domain. In the last two cases, interpolation is used to 

determine the pixels/voxel intensity value at any spatial location in the domain. As medical 

images are conventionally represented as a grid of discrete intensity samples, a natural 

representation of a non-rigid deformation field is as a displacement vector field defined over a 

Cartesian co-ordinate system. Building on early work in computer graphics, free-form 

deformation (FFD), in which a deformation is represented by repositioning a set of control 

points, has become popular in the medical imaging community. Most commonly, a spline-based 

transformation model is weighted by a set of control points that are distributed uniformly 

throughout the image domain. The control points effectively represent the deformation field in 
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the image, and the displacement at any point in the image space is found by interpolation and 

regularised by a spline. The B-spline is one popular choice (Rueckert et al. 1999). The Reader is 

again referred to the survey (Holden 2008) for a more detailed review of the literature. 

Other types of transformation model, including finite element models (see Section 2.2.2.2) and 

statistical shape models (see Section 2.2.2.3), can also be applied for an intensity-based 

registration. Examples include an iterative method to optimise boundary conditions and/or 

material properties of a biomechanical model (Alterovitz et al. 2006) and a statistical 

deformation model for segmentation (which essentially is equivalent to a registration problem) 

(Shen et al. 2003).  

2.3.2 Similarity Measures 

Historically, measuring the similarity between two images has developed from simple arithmetic 

and statistical comparison to information theory. The sum of squared differences (SSD) is a 

simple and widely-used metric that quantifies the overall difference in image intensities (Hajnal 

et al. 2001;Hajnal et al. 1995). Correlation-based techniques, such as normalised cross 

correlation (Lemieux et al. 1994) and the correlation ratio (Roche et al. 1998), have been derived 

using statistical modelling of image formation with random noise. Mutual information (MI) 

(Maes et al. 1997;Viola et al. 1997;Wells III et al. 1996) and normalised MI (Studholme et al. 

1999) were invented for image registration shortly after the entropy of the joint histogram 

between images was investigated (Hill et al. 1994). The generalised overlap measure for 

multiple- or fractional voxel labels was introduced for the purposes of analysis and validation of 

the registrations (Crum et al. 2005). Finally, the minimum description length (MDL) generalises 

most of the above metrics and has been applied successfully to a group of images (Marsland et 

al. 2008).  A comprehensive review of established registration techniques may be found in Pluim 

et al. (Pluim et al. 2003).  

A major difference with feature-based registration methods is that the intensity-based methods 

employ a similarity measure that is applied directly to intensity. In other words, the similarity 

measure is a simpler function of ubiquitous image intensity without considering explicitly the 

spatial information. Therefore, all available intensities are used to compute the objective 

function, which in general leads to a more robust method.  
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Furthermore, similarity measures between two images usually rely on the assumption that a 

block of intensity samples are available for both, which requires that the two images overlap. In 

practice, samples are usually directly from the positions at the voxel centres of one “reference” 

(target) image while the samples from another “floating” (source) image are interpolated from 

the same set of positions. This is a convenient framework to work with, which avoids the 

correspondence problem because the similarity measure can be computed for each pair of 

voxels at the same sampling location in source and target images. Interpolation is used to 

sample the intensity at required locations of a spatially transformed image. This implicitly solves 

for   (in Eq. 2.4) by assuming the interpolated intensities are not only the spatially transformed 

intensities but also the  -transformed ones. To explain the most popular choices of similarity 

measures in the literature, independent intensity samples within an image and dependence 

between samples from two images are usually assumed, so the dependent relationship can be 

quantified to measure how similar these two images are, given certain transformation. 

A major limitation, however, is that in practice such assumptions do not hold and, as a 

consequence, similarity measures may not always be applied successfully. This is particularly the 

case for multi-modal registrations, where different imaging modalities represent different 

physical properties of the human body which do not necessarily have any correlation or 

functional relationship. 

2.3.3 Optimisation 

Optimisation is a mathematical procedure to minimise or maximise an objective function of a 

set of unknown parameters in order to obtain the optimal values for the parameters of interest. 

As discussed, image registration is posed as an optimisation problem. 

In practice, the optimisation problem is complicated because the objective function (similarity 

measure) is nonlinear, has multiple local minima and, sometimes, is expensive to compute, 

largely due to the direct application of a similarity measure on intensities that represent 

complex physical organs. General-purpose optimisers are often employed. These optimisers for 

example use combinatory schemes to find local minimum iteratively. 

There are two general types of optimisation approach commonly used in image registration: 

derivative-free and derivative-based approaches, depending on whether the optimiser 

computes explicitly the derivatives of the objective function.  
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Derivative-free methods typically operate using a stochastic search scheme to iteratively find a 

lower or higher value of the objective function. Derivative-free methods can be applied to solve 

a variety of optimisation problems that are not well-suited for conventional derivative-based 

optimisation algorithms, including problems in which the objective function is discontinuous, 

non-differentiable, or highly nonlinear. Examples include the Golden Search method, quadratic 

approximation, genetic algorithms, pattern search, Powell’s method, and the Nelder-Mead 

simplex method (Venkataraman 2002;Yang et al. 2005).  

In addition to the non-linear nature of the image registration, with less computationally 

expensive interpolation and/or sampling methods, the objective function can become 

discontinuous and/or non-differentiable. Therefore, derivative-free optimisation approaches are 

the method of choice for these scenarios, and have been used in numerous studies in the 

literature, e.g. (Shao et al. 2006;Thompson et al. 2008;Wu et al. 2003). The results of these 

studies indicate that, with careful adjustment, these methods are effective for finding the 

optimum for a wide variety of clinical applications. 

On the other hand, derivative-based methods, such as steepest descent, Newton’s method, and 

Conjugate Gradient, typically use a Taylor expansion which approximates the objective function 

locally. In some applications, the vector-valued derivatives need to be re-computed iteratively. 

This takes up a large portion of the total computation time. Another drawback of most 

derivative-based method is that convergence to a global minimum is only guaranteed when 

initial parameter values are used that are sufficiently close to the optimum point, otherwise, 

behaviour can become erratic in highly nonlinear regions. This may mean that a good starting 

estimate for the registration is required in practice. To overcome such drawbacks, a number of 

adaptations have been described based on numerical approximations, such as the modified 

Newton or practical Newton methods (Nocedal et al. 1999;Venkataraman 2002).  

A common problem encountered by those working in the field is that derivative-based 

optimisation approaches are difficult to apply successfully without a clear understanding of the 

underlying optimisation algorithm. In particular, setting the algorithm options and parameters 

appropriately becomes critically important for many applications. An example is that the subject 

of this thesis is model-to-ultrasound registration, where the low signal-to-noise-ratio and 

artefacts present in ultrasound images is challenging. To the best of the author’s knowledge, a 

valid guideline for appropriate algorithm recommendations for image registration is currently 
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unavailable, particularly for multi-modality registration problems. Furthermore, robust 

optimisation is difficult to achieve without adopting a relatively large-scale optimisation scheme, 

which compromises computational efficiency. This is relevant because for most registration 

applications in image-guided surgical procedures, a fast implementation is highly desirable due 

the time-critical nature of such procedures. This motivates the modification of the sampling 

method and the similarity measure, described in Sections 2.3.1 and 2.3.2, so that the objective 

function has fewer discontinuities, fewer local minima, and a larger capture range (defined as 

the range of the parameters around the optimal values where no discontinuities or other local 

minima exist). These improvements potentially make the use of derivative-based optimisation 

method practical. 

In some cases, the derivatives of the objective function may be computed analytically, but 

numerical estimation, for example, using a finite differencing scheme, is more common in 

practice.  

Another type of derivative-based method is the classical solution to the linear least squares 

problem. This can be computed by setting to zero the derivatives of an over-determined system, 

described by a set of homogenous equations (Hill et al. 2001;Holden 2008), and solving 

efficiently using matrix inversion or decomposition.  

The trade-off between different optimisation processes is that, in practice, successful 

optimisation for medical image registration benefits from adopting a combination of the above 

techniques. For example, some gradient-based optimisation algorithms employ line search to 

reduce the number of the objective function evaluations along the negative gradient direction. 

As another example of combined approaches, an EM-like optimiser is introduced in the 

following section where either direct least squares or an alternative optimiser is used to 

compute the transformation parameters in the maximisation steps (see Section 2.4).  

2.3.4 Expectation Maximisation Methods 

The maximum likelihood (ML) problem is a well-known problem in mathematical statistics 

where the parameters of a certain distribution are estimated by maximising a likelihood 

function given a finite set of samples of the associated random variables (Hogg et al. 2005). 

Practical problems can be modelled using this framework so that the unknowns can be 

estimated by assuming a certain distribution of a random process, such as unknown intensities. 
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The assumption of identically and independently distributed (IID) variables is normally applied 

so that the likelihood function can be expressed as the product of the PDFs of known random 

variables.  

EM is an elegant algorithm to solve the ML problem (Dempster et al. 1977). Conceptually, the 

EM algorithm solves the ML problem by iterating two steps: an expectation step (E step) and a 

maximisation step (M step). In the E steps, the posterior probabilities of the latent variables are 

computed, whereas in the M steps the complete log-likelihood function, which is usually easier 

to deal with than the original likelihood function, is maximised to estimate the parameters.  

The EM algorithm is useful as an alternative method for general-purpose optimisation. And for 

cases where no explicit likelihood function is defined, EM-like methods have also been shown to 

be effective. For instance, it has been proposed (but without rigorous derivation) that block 

matching (Ourselin et al. 2000) can be implemented using this strategy for optimisation. 

Furthermore, the applicability can be improved when approximations are made; for example, 

hard assignment (Arindam et al. 2003) allows approximation using only nearby data in the E 

steps, rather than all the data as in soft assignment. Generalised EM (GEM) can be proven to 

converge when parameters in the M step are optimised sequentially rather than simultaneously 

(Neal et al. 1998). 

Two-step EM-like algorithms have also been proposed for registration applications (Cachier et al. 

2002;Feldmar et al. 1997). This approach will be discussed in detail in Section 2.4, but as an 

example when a finite mixture model (FMM) is employed, the E- and M steps iteratively 

estimate the correspondences and optimise the transformation, respectively. It is noteworthy 

that the correspondence and transformation can be modelled explicitly in an EM-like method. 

2.4 Probabilistic Formulation: Parameter Estimation 

By introducing the existence of a “scene”, the objective of image registration may be 

represented by certain joint PDF of source and target images. Therefore, the image registration 

problem becomes an ML problem where the distribution parameters to estimate are the 

parameters of the unknown spatial transformation model. Intensity-based registration is, 

therefore, unified using a ML approach (Roche et al. 2000) and importantly, several widely-used 

image similarity measures can be generalised as formulations of a likelihood function of one 

image given another.  
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However, conventional feature-based registration methods require further assumptions to be 

incorporated into this general framework. The interpolation method and the optimisation 

method, although described only briefly in the original paper by Roche et al. (Roche et al. 2000), 

are believed to be of great importance. A number of other studies have attempted to provide 

some type of unification (Cachier et al. 2002;Feldmar et al. 1997). It proves difficult probably 

because, as discussed in Section 2.1, the correspondence problem is handled implicitly in 

intensity-based registrations, thanks to regularly sampled image data. For the feature-based 

approach, on the other hand, it is much easier to define a likelihood function and to represent 

explicit feature-to-feature (e.g. point-to-point) correspondence, thus leading to a solution using 

an EM algorithm. 

The unified view incorporating conventional feature- and intensity-based registration methods 

potentially enables an alternative EM-like algorithm to be used to solve general registration 

problems. Such a unified framework may be advantageous because it may allow the benefits of 

intensity- and feature-based methods to be usefully combined. 

Point-based registration provides a good example to introduce parameter estimation, ML 

estimation, and EM algorithms in the context of medical image registration, and is discussed in 

the next section. A review of attempts to adapt such an approach to intensity-based registration 

is omitted from this discussion as it has less relevance to the work presented in this thesis. The 

interested readers are referred to (Cachier et al. 2002) or (Feldmar et al. 1997) for a detailed 

discussion of this approach. 

2.4.1 Point Feature Registration 

For the purposes of this discussion, a point registration problem is one in which a spatial 

transformation transforms one point set onto a second point set such that the two point sets 

are spatially aligned. Following the transformation, it is assumed that the point correspondence 

is unknown and is not necessarily one-to-one (for example, to reflect the case where one point 

set contains more points than the other). In real-world problems, noise will also be present and 

data may be missing. The transformation can be rigid or non-rigid, and the similarity measure 

between two point sets often (interestingly) converges to the Euclidean distances between 

corresponding points. 
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2.4.1.1 Correspondence and Distance between Point Features 

In Chui et al. (Chui et al. 2000;Chui et al. 2002), the relationship between point correspondence 

and registration transformation is described as a “chicken and egg” problem: either the 

correspondence or the transformation may be easy to estimate if the other is known. This 

discussion is based on the practical assumption that the Euclidean distance is a sufficient 

measure to obtain an acceptable transformation between two sets of points. While the features 

of interest are point sets, the distances between points become naturally a similarity measure, 

i.e. a measure of how well points are aligned. If the correspondence between points is known, a 

summary metric such as the average distance between corresponding points provides a suitable 

objective function. Analytical solutions have been proposed to estimate the rigid- (Umeyama 

1991) and non-rigid transformations (Bookstein 1989) with respect to a given set of point 

displacements.  

On the other hand, if the distances between point sets can be defined in a more general manner, 

the correspondence does not need to be considered separately. For instance, in the iterative 

closest point (ICP) algorithm, which will be discussed in more detail in the following subsections, 

the average distance between closest points can be regarded as an overall measure between 

point sets, whilst the closest points are the correspondent points from another point set (Besl et 

al. 1992). However, the transformation is usually more difficult to estimate directly due to the 

complexity of such a distance function, which is dependent on the determination of the closest 

points. The problem then becomes a numerical optimisation problem.  

The difference between traditional feature- and intensity-based registrations may also be 

understood in this viewpoint (described in the previous two paragraphs): the correspondence is 

assumed to be known (the same location) in intensity-based registration while the 

correspondence must be determined in feature-based registration. Several methods that adopt 

a unified view of correspondence and transformation within a single framework are reviewed 

below. 

2.4.1.2 Mixture Models and the EM Algorithm  

The finite mixture model has received increasing attention for feature-based registration and 

can be defined as: 

                   
            (2.15) 
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where the PDF    is expressed as a weighted sum of the component distribution     with 

parameters   .          are the so-called mixing parameters, satisfying    
 
     .  

According to ML theory, the unknown parameters can be estimated by maximising the log-

likelihood function, i.e: 

                            (2.16) 

Assuming N observation data is available and IID then: 

              
 
             (2.17) 

The ML solution has been investigated when the component PDF is a Gaussian function. Eq. 2.17 

then becomes a Gaussian mixture model (GMM). As no analytical solution exists for this ML 

problem, the EM approach has gained popularity. This algorithm can be used to solve this ML 

problem with guaranteed convergence and an efficient implementation. The basic idea of EM is 

as follows: 

1) Estimate the probability distribution of the unobserved data (latent variables   ) given 

parameters estimated in the previous step;  

2) Estimate the distribution parameters by maximising the posterior complete log-likelihood 

function (with known latent variables, estimated in previous step); and 

3) Repeat steps 1 and 2 with in an iterative scheme. 

A full derivation can be found in most text books on mathematical statistics (Bishop 2006;Hogg 

et al. 2005). The solutions for the ith iteration are given by (Bilmes 1997): 

In the E step, 

         
     

   
            

    

    
            

     
   

        (2.18) 

the computation of the posterior probabilities in the E step is sometimes called soft assignment. 

The probabilities of the latent variables represent estimated clustering, from which the data are 

“generated” (or being “correspondent to” in context of image registration). 

In the M step, the complete log-likelihood function becomes: 



Chapter 2 Medical Image Registration: A Review 2.4 Probabilistic Formulation: Parameter Estimation 

~ 44 ~ 
 

           

                  
     

   
 
                    

              
     

   
 
      (2.19) 

This expression is important as it becomes the new objective function during the M steps. In 

general,     can take any form of PDF (which contains the transformation function). The prime 

goal of image registration is to estimate the current unknown parameters of interest in     by 

solving this maximisation problem. The details of the solution will be explored shortly after     

takes a specific form introduced in the next section. 

Equating the derivatives of Eq. 2.19 with respect to the mixing parameters    to zero, we arrive 

at: 

   
 

 
          

     
            (2.20) 

If each of the clusters takes the form of a Gaussian PDF, analytical estimators for the mean and 

standard deviation in M steps exist (Bilmes 1997). These can be obtained by equating the 

corresponding derivatives of Eq. 2.19 to zeros. 

GMMs are a well-known clustering approach in statistical learning. The EM-GMM algorithm 

employs soft assignment has been compared to the hard assignment used in well known k-

means clustering method (Bishop 2006). An analogous relationship can be found between the 

GMM-based registration methods (discussed in the following section) and the ICP algorithm in 

the context of feature registration. 

2.4.1.3 ICP, RPM, CPD and RASM 

In this section, four popular methods in feature registration are summarised from an algorithmic 

point of view. The similarities between these methods are highlighted. 

The original ICP algorithm (Besl et al. 1992;Zhang 1994) can be summarised as follows: 
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Robust point matching (RPM) was first proposed by Chui et al. (Chui et al. 2002) as a non-rigid 

extension to the original point matching algorithm that featured soft assignment (Gold et al. 

1998) and outlier rejection (Gold et al. 1998;Rangarajan et al. 1996). The soft assignment has 

also been re-formulated as a result of GMM (Chui et al. 2000). The non-rigid transformation is a 

group of radial basis functions, with TPS being a popular choice in many implementations. 

However, the EM solution for the mixture model in RPM is only an approximation and some 

practical enhancements, such as slack variables to handle outliers, have been made to overcome 

the well-known problem that GMMs are prone to outliers. It has been argued that RPM provides 

only approximations of the objective function and is not a real probability approach as the GMM 

needs to be adapted to allow an effective solution (Myronenko et al. 2006;Myronenko et al. 

2010). The transformation can be estimated directly if other distance metric, such as the L2 

norm, between distributions of GMMs (Jian et al. 2005) is adopted. However, this again leads to 

an approximation without a clearly defined likelihood function. 

 

RPM Algorithm 

for (i=0; i<N; i++) 
{ 
    1. Find correspondence by computing soft assignment or from mixture model,  
            w.r.t. the previous estimated transformation. 

    2. Estimate (TPS-based non-rigid) transformation by least-squares on the kernel,  
            using known correspondence; 

3. Repeat until a convergence criterion, such as the change of the objective function, or the  
            maximum number of allowed iterations is reached. 
} 

ICP Algorithm 

for (i=0; i<N; i++) 
{ 
    1. Find correspondence by computing nearest point,   
            w.r.t. the previous estimated transformation. 

    2. Estimate the (rigid) transformation using adapted Procrustes analysis,  
            using the correspondence established in step 1; 

    3. Repeat until a convergence criterion or the maximum number of allowed iterations is  
            reached. 
} 
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The more recent coherent point drift (CPD) algorithm has been proposed (Myronenko et al. 

2010) to set up a framework for using mixture models in point-based registration tasks. Most of 

the work introduced above can be unified using this framework. This is a pure probabilistic 

framework where the posterior probabilities in the E step and the complete log-likelihood 

function in M steps are both derived analytically. The objective function is a mixture of Gaussian 

and uniform distribution to account for outliers explicitly.  Closed-form solutions for rigid and 

affine cases are provided while a variational solution to estimate the non-rigid, regularised 

transformation has also been derived (Myronenko et al. 2006;Myronenko et al. 2010).  

 

Following the RPM formulation, Abi-Nahed et al. (Abi-Nahed et al. 2006) proposes robust active 

shape models (RASM) algorithm where the TPS is replaced with an active shape model (ASM), 

equivalent to the PDM described in Section 2.2.2.3. The intermediate solutions for the RPM 

were adapted to form a new energy function as the objective function in the M steps, but 

neither constraints nor the solutions were provided in the paper. A more rigorously explained 

and intensively validated method is described by Luo et al. (Luo et al. 2001;Luo et al. 2003), but 

the resulting method is quite similar to original RPM.  

CPD Algorithm 

for (i=0; i<N; i++) 
{ 
    1. Find correspondence by computing posterior probabilities of mixture model,  
            wrt. the previous estimated transformation. 

    2. Estimate (Gaussian kernel-based) transformation by maximising the complete likelihood, 
            using known correspondence; 

    3. Repeat until a convergence criterion, such as the change of the likelihood function, or  
            the maximum number of allowed iterations is reached. 
} 
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It is worth noting that the EM algorithm was not adapted rigorously by some authors, including 

RPM and those methods incorporating the ASM described above. Since the EM algorithm has 

been applied successfully for both feature- and intensity-based registration, it is possible to 

formulate the objective function probabilistically in order to understand the problem in a more 

principled manner. The underlying reasoning is that (feature) correspondence is usually 

unknown but does need not to be determined explicitly. This situation can be posed as a latent 

variable problem, which usually can be solved by the EM algorithm (Bishop 2006).  

Some of the non-parametric methods based on regularising the displacement field may also be 

integrated within the generalised framework described above. In particular, the regulariser can 

be treated as a prior so that the problem becomes maximum a posterior (MAP) problem, which 

still can be solved by the EM algorithm with minor changes (Bishop 2006). 

2.4.2 Model-to-Image Registration 

At this point, it is worth distinguishing the model-to-image registration approach introduced in 

this thesis from alternative methods. Fundamentally, there is no particular difference between 

model-to-image registration and feature registration in terms of the underlying mathematical or 

physical principles. However, in practice, the method has been implemented so that the model 

typically contains prior information relevant to solving the registration and associated clinical 

problems – for example, the model may contain information on organ deformation and/or 

pathological/surgical information – whereas processing the target image is relatively simple, fast, 

automatic and unsupervised. This approach also enables computationally intensive processing 

to be focused on the source model. As another example, outliers usually need to be considered 

in the target image, but this may not be necessary for the source model. These features 

RASM Algorithm 

for (i=0; i<N; i++) 
{ 
    1. Find correspondence by computing soft assignment / mixture model,  
            wrt. the previous estimated transformation. 

    2. Estimate (linear shape-based) transformation by least-squares on shape space,  
            using known correspondence; 

    3. Repeat until a convergence criterion, such as the change of the objective function, or  
            the maximum number of allowed iterations is reached. 
} 
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constitute a significant difference when compared with general registration methods described 

in the literature.   

This thesis describes such a model-to-image registration algorithm, where a patient-specific 

prostate motion model, built from training organ shapes derived from preoperative MR (or 

TRUS) images, is registered automatically to intraoperative 3D TRUS images. This enables 

preoperative information of cancer location and extent to be transferred to TRUS images that 

are used routinely for guiding minimally-invasive surgical procedures for diagnosing and treating 

prostate cancer. 
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Chapter 3 Statistical Motion Modelling - a Transformation Model 

In order to register preoperative prostate magnetic resonance (MR) and intraoperative 

ultrasound images of the same patient, this thesis describes a model-to-image registration 

approach. The main motivation is that a physically plausible transformation model, which 

potentially provides useful constraints for the registration, is desirable for the registration 

because establishing an effective similarity measure is difficult between multi-modality images. 

In an ideal scenario, a similarity measure should provide an adequate measure of how good a 

transformation is so that fitted parameters with a higher value of similarity measure have a 

greater chance of representing a physically correct transformation. In this case, the objective 

function is considered well behaved and therefore should be easy to optimise. A well-

constrained transformation model would help limit the search space of the spatial 

transformation so a “not-so-good” similarity measure could still be effective to lead to a good 

registration. This will be discussed further in Chapter 4. 

This chapter describes details of building statistical motion models (SMMs) from prostate 

ultrasound and MR images. The proposed SMMs are learned from biomechanical simulations to 

provide such well-constrained transformation models. By constraining a registration algorithm 

(discussed in Chapter 4), these models are useful to be registered to intraoperative images. In 

the application of interest here, the aim is to provide fused TRUS and MR information during 

prostate interventions. The transformation model represents prior knowledge that 

approximates the real gland motion so that non-physical deformations can be avoided and the 

efficiency and robustness of the registration therefore are improved. Further discussion of the 

motivation of the proposed SMMs is provided in Section 2.2.2.4. 

3.1 Related Work 

3.1.1 Biomechanical Modelling 

Biomechanical modelling using FEA, described in Section 2.2.2.2, has been previously applied for 

predicting prostate gland motion (Bharatha et al. 2001;Crouch et al. 2007;Hensel et al. 2007). 

However, the conventional application of this method requires knowledge of boundary 

conditions and tissue material properties, which are very difficult to estimate accurately in vivo. 

The mechanical properties of tissue are known to vary significantly between patients and 

different tissue types. Such variations can introduce significant errors when average 
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experimental values are used to predict organ motion as part of a registration scheme. Chi et al., 

for example, report a registration error of up to 4.5mm due solely to a 30% uncertainty in 

material properties for a solid FE model of the prostate gland (Chi et al. 2006). Similar results 

have been observed in the experiments presented in Section 5.1. 

In most existing work, a mesh representing the gland is required, and the displacement of the 

surface of the prostate gland is estimated using a surface registration method. FEA then 

estimates the internal nodal displacements with respect to the surface displacement being 

loaded as the boundary conditions. Therefore, the gland motion predicted is subject to 1) the 

surface registration “driving” the FE model; and 2) the approximated constitutive model (i.e. 

material properties (Bharatha et al. 2001)). To date, there are a number of deformable 

registration methods described in the literature that have adopted this methodology. Some of 

these have been applied to the problem of registering MR images of the prostate acquired at 

different times, with and without using an endorectal coil (Alterovitz et al. 2006;Baowei et al. 

2003;Bharatha et al. 2001;du Bois et al. 2004).  

In a number of proposed methods (Alterovitz et al. 2006;Bharatha et al. 2001;Hensel et al. 2007), 

a biomechanical model is used to constrain the allowable deformations to be physically 

plausible. Crouch et al. (Crouch et al. 2007) describe a method for automatically generating a 

volumetric FE mesh of the prostate gland, together with appropriate boundary conditions, and 

validate the method for registration using CT images obtained with and without an endorectal 

MR imaging coil in place. They also address the effect of gland swelling following brachytherapy 

seed implantation. 

Another interesting attempt is to pose the unknown boundary conditions and material 

properties as unknown parameters in the image registration problem (also discussed in Section 

2.2.2.2). Numerical optimisation then is employed for optimal values to maximize the similarity 

measures between two sets of image data (Alterovitz et al. 2006). However, this study only 

reported results on 2D data. Further sensitivity studies of the optimised material properties and 

a larger patient study have not been reported. Difficulties might include: 1) that this is a typical 

ill-posed problem, where an adequate regulariser is usually difficult to find; and 2) that this 

approach demands substantial computational resources, which become impractical in 3D. 
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Recent developments in fast computational techniques for FE analysis utilise graphical 

processing units (GPUs), e.g. (Taylor et al. 2008), and make FEA methods more practical for 

simulating soft-tissue motion during surgical procedures but, in general, simulations are still 

challenging for time-critical image registration applications in which at least one FEA simulation 

is performed during each iteration of a numerical registration optimisation algorithm. 

3.1.2 Statistical Shape Modelling 

SSMs, described in Section 2.2.2.3, provide a low-dimensional description of variations in organ 

shape across a population and have been widely used for image segmentation tasks (Heimann 

et al. 2009). This modelling approach has been applied to segmentation of the prostate gland 

from CT (Dam et al. 2008), MR (Makni et al. 2009;Tsai et al. 2003;Tsai et al. 2004) and TRUS 

(Cosio 2008;Shen et al. 2003;Wu et al. 2000) images. The conventional approach to generating 

SSMs is to use shape information derived from a series of sample images which serve as training 

data. The same approach can be applied for constructing a statistical model of organ motion – 

an SMM – but replicating and imaging organ motion in vivo in order to generate a sufficiently 

large training dataset is often impractical or impossible. For instance, where a TRUS probe is the 

primary source of prostate motion from its “resting state” during a diagnostic MR scan, 

simulating this motion during MR imaging would be highly challenging, partly because 

replicating the lateral or lithotomy patient position adopted during TRUS-guided procedures 

inside an standard diagnostic MR scanner is usually not possible, and partly because performing 

multiple scans across the range of probe positions, orientations, and balloon diameters that may 

be encountered during TRUS-guided procedure would be time-consuming unless the patient 

position and probe insertion can be standardised in some way, which in practice is difficult to 

achieve. 

3.1.3 Combined Biomechanical-Statistical Modelling 

One computational solution to the above problem is to synthesise training data by using 

biomechanical modelling techniques to simulate organ motion (Davatzikos et al. 2001). This 

approach has the advantages that a large amount of training data can be generated easily and 

automatically, and that a wide range of deformations and boundary conditions that might be 

encountered in practice can be considered, without the need for standardising the conditions 

under which gland motion occurs. In addition, the approach is highly flexible since in principle it 

can be applied to any deformation that can be reasonably modelled. 
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Furthermore, combining statistical analysis techniques and biomechanical modelling overcomes 

these problems by enabling variability and uncertainty in tissue mechanical properties to be 

captured within an SMM by including variability in the training data. The application of 

multivariate statistical methods, such as PCA, further allows a low-dimensional (and therefore 

computationally efficient) model of organ motion to be produced, which is well-suited to 

registration applications. 

This approach, originally proposed by Davatzikos et al. (Davatzikos et al. 2001), was adopted by 

Mohamed et al. (Mohamed et al. 2002) to construct a statistical model of prostate motion due 

to differences in TRUS probe poses. In this proof-of-concept study, the deformations of patient-

specific FE models of prostate glands were simulated using varying boundary conditions 

determined by the position and orientation of the TRUS probe. In the earlier work of Alterovitz 

et al. (Alterovitz et al. 2006), material properties and external forces were estimated using 

optimisation of the FE model derived from 2D MR images to predict prostate motion. 

 
Figure 3.1 A flowchart for an overview of the modelling method 

Figure 3.1 provides a schematic overview of the model building process, the first one of the two 

stages of the algorithm developed in this thesis. This stage includes the following steps: 

a.i) For a TRUS-derived SMM that represents ultrasound-probe-induced prostate motion, a 

three-dimensional ultrasound image is acquired at the beginning of a procedure, usually before 



Chapter 3 Statistical Motion Modelling - a Transformation Model 3.1 Related Work 

~ 53 ~ 
 

the balloon is expanded. The balloon covered on the ultrasound probe contains saline to 

provide acoustic coupling. In practice, expanding the balloon and/or moving the probe upwards 

can further improve acoustic coupling and improve the image quality. However, the expansion 

of the balloon and the probe pressure are considered main sources of prostate gland motion. 

Alternatively, a T2-weighted MR image can be used to provide anatomical information for 

building an MR-derived SMM; 

a.ii) Build a patient-specific FE mesh of the prostate gland and surrounding anatomy (if visible) 

from the source image; 

a.iii) Perform a series of FEA simulations of gland motion using randomly sampled material 

properties and boundary conditions which correspond to different possible positions and 

orientations of the TRUS probe during the procedure; 

a.iv) Construct a TRUS-derived SMM by directly applying PCA to the predicted FE mesh node 

displacements. Alternatively, an MR-derived SMM is constructed followed by a rigid alignment 

(with respect to a reference mean) of the corresponding mesh node positions. 

The purpose of building a TRUS-derived SMM is threefold: 1) it is a better controlled situation, 

where only movement of the probe and very limited patient motion exist. These two are major 

causes of the deformation between a source image and the target intraoperative ultrasound 

image; 2) it is much more practical to validate the model by identifying visually traceable 

anatomical landmarks between ultrasound images than between MR and ultrasound images; 3) 

a TRUS-derived SMM is useful by itsself in a number of applications, where the intraoperative 

motion is the subject of interest.  

The differences between the TRUS-derived- and the MR-derived SMMs are: 1) some 

surrounding structures, such as pelvic bones and bladder, are partially invisible in TRUS image 

due to the limited field of view. Therefore, the full FE model for the SMM resorts to 

approximation of the patient-specific anatomy; and 2) the dimension reduction method (i.e. PCA 

here) is applied on displacements and node positions, respectively. However, a simplified 

geometric representation of the FE model is introduced and validated that makes the geometric 

differences trivial in real applications (see Section 3.2.5). 
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In this chapter, details of building a combined statistical-biomechanical model to estimate the 

patient-specific motion are described. They are referred as TRUS-derived SMM and MR-derived 

SMM for ultrasound and MR images, corresponding to whether the model is derived from TRUS 

or MR images, respectively. 

3.2. Finite Element Analysis 

3.2.1 Segmentation  

3.2.1.1 Segmentation of Prostate Gland in TRUS 

Each TRUS image slice was segmented using manual contouring with a graphical user interface 

(GUI) developed by the author using MATLAB (The Mathworks Inc., MA, USA). As illustrated in 

Figure 3.2, contours were defined for the prostate capsule surface and for the boundary that 

differentiates the periurethral tissue, central- and peripheral zones, based on visual differences 

in texture and intensity between the regions. This boundary separates the prostate into two 

regions, an inner gland and an outer gland (IG and OG, respectively), as shown in Figure 3.2. This 

is important for the FE modelling as it permits the two regions to be assigned different elastic 

properties, which reflects surgical and pathological experience that the peripheral zone is more 

compliant than the inner part of the prostate (Bharatha et al. 2001;Cochlin et al. 2010). Points 

defining the apex and base of the gland were also identified manually with the segmentation 

software. 

 
Figure 3.2 An example of a transverse TRUS image of the prostate with a manually segmented capsule contour (solid 
line) and the boundary between the inner gland and outer gland regions (dashed line), labelled IG and OG, 
respectively. The final surface meshes derived from the segmented contours are shown in the top right. 



Chapter 3 Statistical Motion Modelling - a Transformation Model 3.2. Finite Element Analysis 

~ 55 ~ 
 

The surface of the transrectal balloon is well defined in TRUS images. In this thesis, the balloon 

was segmented automatically (using the algorithm described below) and modelled as a cylinder, 

and was included in the FE model. The diameter and position of the cylinder in the reference 

TRUS images were used to set the reference diameter and position of the balloon in the FE 

model (see details in Section 3.2.4). 

The balloon segmentation process used was as follows: The point corresponding to the TRUS 

probe axis was determined as the intersection point of the extreme radial scan-lines at the 

edges of the sector image. To detect the balloon edge, TRUS image slices were first filtered using 

a median filter to suppress noise. A Canny filter with a high normalised threshold (0.4) was then 

used to find the edges of the balloon surface (see Figure 3.3a). To detect edges far away from 

the likely surface position of the balloon, only edge pixels within a predefined distance range 

relative to the probe axis were considered. For example, for the B-K ProFocus probe used in this 

work the range was set to 10-20mm perpendicular to the probe axis. A circle centred on the 

probe axis was then fitted in a least-squares sense to the extracted edge points within the range 

using a fitting algorithm (see Figure 3.3b). To ensure robustness, a simple outlier rejection 

scheme was included into the fitting algorithm in which 10% of the points with the largest 

distance from the fitted circle were removed automatically during each iteration until the root-

mean-square (RMS) point-to-surface distance errors fell below a threshold of 3 pixels. Using this 

method, the circle fitting converged within 5 iterations. Finally, a cylinder was fitted by 

averaging the centres and the radius of the detected circles. An example of reconstructed 

prostate (see Section 3.2.2) and balloon surface meshes is shown in Figure 3.4. 

 
Figure 3.3 (a) A TRUS image overlaid with a Canny edge map; (b) The fitted balloon surface (white solid curve), 
modelled as a circular arc centred at the intersection of the image plane, and the central axis of the TRUS probe 
(denoted by the black cross). The probe surface is indicated by the white dashed curve.  
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Figure 3.4 Three views of a triangulated prostate gland surface mesh and TRUS probe balloon segmented from 
parallel TRUS images. The balloon is modelled as a straight cylinder. 

In general, the pelvic bone and bladder are only partially visible in the limited TRUS field of view. 

Therefore, a generic pelvic model is used (see Figure 3.5) and the effect from the bladder is 

assumed to be negligible. This will be discussed further in Sections 3.2.3 and 3.2.4. 

 
Figure 3.5 A FE mesh of the prostate gland constructed from 3D TRUS data shown in relation to a generic surface 
model of the pelvic bone, in order to provide rigid constraints for FE simulations. The surrounding soft tissue is 
modelled as a homogeneous block. 
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3.2.1.2 Segmentation of Multiple Organs in MR 

 
Figure 3.6 An illustration the GUI used to segment multiple contours in an MR slice, a transverse slice through a T2-
weighted MR image of the prostate showing manually delineated contours used to segment the prostate gland, the 
rectum, the pelvis and the bladder.  

 

 

Figure 3.7 An illustration of the local TRUS probe co-ordinate system shown on a sagittal prostate MR image. The 
prostate gland, rectal wall, probe and bladder are shown in red, green, blue and yellow, respectively. The local 
reference co-ordinate system was defined with the z-axis orientated at 15 degree relative to the cranial-caudal axis. 

For the purposes of this thesis, diagnostic MR images were segmented by manually defining 

contours on transverse slices using the MATLAB GUI (see Figure 3.6). The segmentation process 

was time-consuming (typically taking 45 minutes per patient), but was the most accurate 

method available for segmenting pelvic anatomy. The outer surface of the prostate gland 
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capsule was segmented, and the gland itself divided into the central- and peripheral zones, 

which are usually clearly visible in T2-weighted MR images. The pelvic bone, the rectum, and the 

bladder at the base of the prostate were also segmented (see Figures 3.6, 3.7 and 3.8). 

 

Figure 3.8 An illustration of surface meshes obtained by segmenting an MR image. The TRUS probe (with sheath), 
approximated by a cylinder is shown in blue. The prostate gland, the pelvis, and the bladder are shown in red, grey 
and yellow, respectively. 

3.2.2 Finite Element Meshing 

3.2.2.1 Surface Meshing 

Comparing to other potential methods (discussed in Shape Representation, Section 2.2.2.3), 

spherical harmonic (SH) provides a compact parametric form that is well-suited to represent a 

smooth, start-shaped organ (Zacharopoulos 2005), such as prostate gland (Tutar et al. 2008). As 

shown in Figure 3.9, the prostate gland surface was represented by a SH surface fitted to the 

transverse contours. The contours are first converted into a binary volume. Surface points then 

are sampled from the binary image and fit an SH surface using the method that described by 

Tutar et al. (Tutar et al. 2008). To obtain a smooth and uniformly sampled surface, suitable for 

generating a high quality mesh for FEA, the following adaptive sampling scheme, similar to the 

one described in Zhou et al. (Zhou et al. 2004), was implemented.  The SH surface was first 

filtered in the frequency domain using a trapeziform low-pass function (Zhou et al. 2004) before 

being meshed into triangles by projecting a uniformly triangulated sphere template. Refinement 

of the triangulated mesh was performed by maximising the sum of a triangle quality measure 

over the surface using a quasi-Newton numerical optimisation algorithm, implemented in 

MATLAB (Zacharopoulos 2005). The smoothness of the final surface mesh is controlled by the 

degree of the SH, the coefficients of the filter, and the density of the mesh. Values for these 
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parameters were set experimentally such that the surface appeared smooth visually with the 

constraint that the maximum absolute distance (MAD) between the reconstructed surface and 

the original contour points was less than 1.0mm (Note that, as reported in Tutar et al. (Tutar et 

al. 2006), the maximum inter-observer error was found to be significantly greater than this 

value). Definition of the apex and base points was found to be important for producing a 

geometrically accurate surface. These were defined immediately adjacent to the available 

contours to maintain a topologically correct gland surface. An example of a smoothed SH 

representation of a prostate gland, reconstructed from TRUS contours, is illustrated in Figure 

3.9d.  

 
Figure 3.9 Reconstruction of a smooth, triangulated SH surface from manually drawn prostate contours: (a) original 
contours with apex and base points; (b) initial fitted SH surface; (c) filtered SH surface; and (d) surface in (c) following 
mesh refinement.  

As described in Section 1.1, a zonal structure of prostate gland that is visible in TRUS images is 

different from that in MR images. In this thesis, inner/outer gland and central/peripheral zone 

are considered for TRUS-derived- and MR-derived SMMs, respectively. For TRUS-derived SMM, 

the user-defined boundaries separating the inner- and outer glands regions (see Figure 3.2) 

were not smoothed and used simply to label tetrahedra of the FE mesh according to whether 

they lied within the inner or outer parts of the gland. This allows the assignment of different 

material properties for different regions (see Section 3.2.3). The segmentation obtained from 

MR image (see Figure 3.6) was used to separate central- and peripheral zones for MR-derived 

SMM. 

In a 3D FE analysis, surface meshing is not necessary but useful for the subsequent solid meshing 

as a surface mesh provides a simple, discrete and unambiguous representation of regions of 

interest, especially comparing to other representations, such as splines, point clouds and binary 

volumes.  
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3.2.2.2 Solid Meshing 

For TRUS-derived SMM, the tissue surrounding the prostate was modelled as a homogeneous 

block with dimensions 20×20×20 cm3 (see Figure 3.5) due to a limited field of view of TRUS 

images. These dimensions are large enough to contain a normal human lower pelvis region. For 

the MR-derived SMM, the surrounding tissue uses the MR image sections (see Figure 3.8) which 

adequately cover the same region. The surface meshes and the block structure were imported 

into a commercial FEA software package (ANSYS). A linear four-node tetrahedral FE mesh was 

then constructed automatically using trimmed parametric surfaces and Delaunay tessellation 

techniques provided by the software. Only the solid meshing tool of ANSYS was used in this 

work; although ANSYS is a general purpose FEA package, an alternative fast FE solver was 

employed to compute mesh node displacements, as described in Section 6.2.1. For each patient 

case, the mesh comprised approximately 35,000 – 100,000 elements. Volumetric regions 

corresponding to the inner prostate gland, the outer prostate gland, the rectal wall, and 

surrounding tissue were individually labelled and attributed with different material properties, 

as described in the next section.  

Using the refinement tool available in ANSYS, the region around the rectum was re-meshed to 

obtain high element density in this region. This enabled the TRUS probe – or more precisely, the 

fluid-filled sheath placed over the TRUS probe, approximated by a cylinder – to be modelled 

directly in each simulation without the need for re-meshing.  

There are other meshing tools available to generate the solid tetrahedron mesh in the field. For 

instance, Tetgen (Si 2006) is an open source tool to generate quality 3D meshes from surface 

meshes. On the other hand, a general purpose meshing method for structural meshes, such as 

four node hexahedrons, is still under active development (El-Hamalawi 2001). This practical 

consideration is the main motivation for adopting tetrahedron elements in this work.   

3.2.3 Material Properties 

In the literature on modelling biomechanical tissue motion, the tissue mechanical properties are 

typically assigned fixed values based on the results of ex vivo experiments. A few studies have 

attempted to determine the mechanical properties for prostate tissue (e.g.  (Krouskop et al. 

1998)). In related work by Bharatha et al. (Bharatha et al. 2001), linear material properties for 

the human brain were assumed for modelling prostate deformation. However, ex vivo 

properties are often poorly representative of the corresponding properties in vivo, and 
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accurately measuring in vivo mechanical properties is extremely difficult in practice. To the best 

of the author’s knowledge, such in vivo experiments for human prostate gland have not been 

reported. Furthermore, there is likely to be considerable variation in tissue properties between 

individuals, particularly for diseased tissue. To account for this, in this thesis, tissue material 

properties were included as variable parameters in the generation of training data for the 

prostate SMM. Given the variability and uncertainty associated with published material 

properties, sample values are sampled from a relatively wide range, consistent with the range 

normally applied for soft-tissue modelling (Carter et al. 2005). It is important to note, however, 

that the prediction of displacements in the FEA is only dependent on the ratio of elasticity 

moduli assigned to different compartments and not on their absolute values. The uniform 

ranges used in this thesis are given in Table 3.1.  

Description Parameter(s) Range Reference Value(s) DOF 

Balloon radius R [0.9R0,1.5R0]* R0* 1 

Balloon translation Tbx , Tby , Tbz [-5, 5] mm Tbx = Tby = Tbz = 0 mm 3 

Balloon rotation θbx , θby , θbz [-10, 10] ° θbx  = θby  = θbz = 0° 3 

Pelvis Scaling**** S [0.8, 1.2] S = 1 1 

Pelvis translation**** Tpx , Tpy , Tpz [-10, 10] mm Tpx = Tpy = Tpz = 0 mm 3 

Pelvis rotation**** θpx , θpy , θpz [-15, 15] ° θpx  = θpy  = θpz = 0° 3 

Shear modulus 
G1, G2, G4** [3.36, 76.9] kPa – 

4 
G3*** [3.36, 67.1] kPa 

Bulk modulus 
K1, K2, K4

 [8.33, 3.33x103] kPa – 
4 

K3*** [0.17, 3.33] GPa 

* R0 denotes the radius of the balloon measured from the source image. 
** The subscripts 1-4 correspond to the prostate central zone/inner gland (1), the peripheral zone/outer gland (2), the rectal wall (3), 
and the surrounding tissue (4), respectively. 
*** The rectal wall in contact with the balloon is assumed to be nearly incompressible. 
**** For the generic pelvic model used in TRUS-derived SMMs only. 
Table 3.1 Material properties and boundary conditions used for FE simulations. The ranges of the material properties 
and the boundary conditions have been assigned based on plausible values as well as on the observations. See 
detailed discussions in Sections 3.2.3 and 3.2.4. 

The element groups, which are modelled using different material properties and/or are assigned 

different types of nodal displacements, are referred as compartments. For MR-derived SMM, 

these compartments include the central- and peripheral zones of prostate gland, the rectum, 

the surrounding tissue, the pelvic bones and the TRUS probe. In the case of TRUS-derived SMM, 

the central zone and peripheral prostate zone are replaced by the inner gland and outer gland, 
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which are visible in the TRUS image, respectively. These different compartments are segmented 

as described in Section 3.2.1. In practice, elements within the same compartment of the FE 

model were labelled according to the corresponding tissue type. Different material property can 

then easily be assigned to the corresponding compartment. All the organs are assumed to be 

geometrically connected to the surrounding tissue. The pelvis provides a geometrically realistic, 

rigid constraint, which balances the driving force exerted by the movement of the TRUS probe. 

All the materials were assumed to be linear in initial work (Hu et al. 2008a;Hu et al. 2008b), and 

later were changed to be nonlinear (Hu et al. 2011a). In both cases, a nonlinear solver, such as 

the fully nonlinear total Lagrangian explicit finite element formulation (Taylor et al. 2008) used 

in this thesis, is essential, as a larger deformation breaks the linear assumption of geometry 

despite the linear material model. Because there is a lack of studies in the literature pointing to 

any particular model suitable for modelling prostate gland motion, a simple linear elastic model 

and a hyperelastic neo-Hookean model with two parameters were used. The neo-Hookean 

provides a relatively simple formulation to predict the nonlinear strain-stress behaviour of 

hyperelastic material undergoing large deformation (Zienkiewicz et al. 2000). Although exact 

behaviour of soft tissue is expected to be complex and nonlinear, it may be argued that the 

exact formulation of the material model is not important in this application where only the 

variance of the motion is of interest. 

3.2.4 Displacement Loadings 

Because forces, or equivalently pressures, are difficult to estimate from medical images (see 

discussions in Section 2.2.2.2), boundary conditions were specified by mesh node displacements 

on a subset of all the finite element nodes. Two sources of prostate deformation were 

considered: the expansion of the TRUS balloon and a change in the pose of the TRUS 

probe/balloon. Further boundary constraints were imposed on the pelvic bone surface so that 

the magnitude of these nodes had a displacement of zero. Slippages between organ surfaces 

and between the TRUS probe and rectal wall were not modelled. 

For the FE simulations, the expansion of the balloon was modelled by applying a radial 

displacement to the cylinder surface nodes. Since the position and orientation of the TRUS 

probe in the rectum is unknown before a procedure, the cylinder representing the balloon 

surface was also repositioned in each simulation by applying a rigid-body transformation, 

resulting in 6 additional DOFs. 
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For building TRUS-derived SMMs, in general, only a small part of the pelvic bone is visible in 

TRUS images and therefore it was not possible to determine the shape or location relative to the 

prostate of the pelvic bone for each patient. To approximate the boundary conditions at the 

pelvis surface, a surface model of an average male pelvis, derived from CT images and 

developed by Thompson et al. (Thompson et al. 2008), was used to fix the FE mesh node 

positions at the bone surface. The reference position and orientation of this model with respect 

to the prostate was calculated using the method described by John et al. (John et al. 2005) and 

Sung et al. (Sung et al. 2007). 

The uniform ranges of the boundary conditions used in this thesis are based on empirical values 

which can produce plausible scenarios and are summarised in Table 3.1. 

3.2.5 Simplified Finite Element Models 

As introduced in Section 3.1.3, the aim of the multiple FE simulations is to provide training data 

for later statistical analysis. In particular, building MR-derived SMMs requires patient-specific 

segmentation of multiple organs. Although a number of semi- and fully-automatic segmentation 

algorithm have been proposed, this section describes an alternative to the segmentation for 

reducing the burden of manual delineation and therefore making patient-specific SMM more 

clinically practical. Specifically, a geometrically simplified FE mesh, in which, some anatomical 

structures are replaced by equivalent structures with a simplified geometry, or omitted 

completely, is proposed. This strategy is inspired by the observation that since a PCA-based 

SMM trained using a set of deformed FE meshes captures the statistical variation in mesh node 

displacements, adopting a geometrically simplified mesh may not affect the characteristic 

parameters (i.e. the mean and variance of a Gaussian distribution) of this distribution 

significantly. Therefore, the accuracy of the final MR-derived SMM may not be compromised 

significantly by adopting a simplified mesh when generating the training data. Only the MR-

derived SMM is considered for this simplification in this thesis as an example. 

The change of material properties and/or boundary conditions is expected to affect significantly 

the individual simulation (also, see the results presented in Section 5.1). However, the impact of 

the simplified FE models is investigated by comparing the accuracy of MR-derived prostate 

SMMs built using different simplified FE mesh geometries with a reference model built from 

training data simulated using an FE mesh in which the geometry of the prostate, rectum, 

bladder and pelvic bone are all accurately defined. The details of these comparisons are 
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presented in the following sections. The results to assess the effect of the SMMs based on 

simplified geometries are presented in Section 6.2. 

For each patient, a fully-specified FE mesh was used to build a reference (control) SMM (see 

Figure 3.10 and 3.11). This fully-specified FE model was based on FE simulations that consider 

the prostate gland, pelvic bone, rectum, and bladder segmented fully from a MR scan as distinct, 

homogeneous structures, as shown in Figure 3.6. The corresponding SMM was generated by 

randomly assigning boundary conditions and elastic properties for each tissue type, and 

computing the subsequent deformations.  

 
Figure 3.10 An illustration of surface meshes of gland (red), bladder (yellow), rectum (green) and pelvis (grey).  

 
Figure 3.11 An illustration of TRUS probe (blue cylindrical structure) position relative to the prostate gland and the 
pelvis. 

SMMs based on FE simulation data were also built by reducing the number of soft-tissue 

compartments in the model (equivalent to assigning identical material properties to adjacent 

compartments in the fully-specified model) and/or simplifying the geometry of the pelvic bone. 
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Either of these simplifications directly reduces the amount of prerequisite segmentation 

required to build an SMM from FE simulations. 

Material Properties  

In the FE simulations, all soft tissues were assumed to behave as isotropic, elastic materials 

described by a neo-Hookean model (Zienkiewicz et al. 2000). Since the values of the elastic 

properties of each tissue type were assumed to be unknown, the material properties for each of 

the four soft-tissue compartments were assigned randomly sampled values within the 

physiological ranges given in Table 3.1. The usual condition of incompressibility (“equivalent” 

Poisson’s ratio = 0.5) was not assumed because it can be argued that this is not appropriate for 

organs such as the prostate, rectum and bladder, which are compressible due to gain and loss of 

blood and other fluids, as well as the presence of cavities.  

Material properties were assigned in two ways, depending on number of organs that need to be 

segmented as follows:  

MP1: In the first case, material properties are assigned independently to each of the segmented 

soft-tissue five regions – i.e., the rectal wall, the bladder, the central- and peripheral zones of 

the prostate gland, and the surrounding tissue (assumed to be homogeneous). 

MP2: In the second, simpler case, i) the prostate gland and ii) surrounding organs and tissue are 

treated as two single homogeneous materials. 

Boundary Conditions 

Two types of boundary conditions were considered in this thesis: the rigid constraint imposed by 

the pelvic bone and the position and orientation of the TRUS probe. In one configuration of the 

simplified FE model investigated in this thesis, the pelvic bone was approximated by three 

boundary planes, as shown in Figures 3.12 and 3.13. This choice of representation was 

motivated by the need for a clinically practical method for approximating the bony constraints 

within the pelvis. 
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Figure 3.12 An illustration of the three-plates-structure (grey plates) relative to the positions of prostate gland (red 
mesh) and TRUS probe (blue cylinder). 

 

 
Figure 3.13 illustration of the three-plates-structure (green lines) in the transverse MR slice and the distance 
measures dx and dy are also demonstrated. 

The positions of these planes for an individual patient were determined by measuring two 

distances, dx and dy, in the approximately mid-gland transverse plane of the MR image, as shown 

in Figure 3.13. Assuming that the prostate capsule has been segmented, dx is the average of the 

two distances measured along the left-right axis from centre of mass of the prostate gland to 

the nearest intersections with the axis on the left and right sides of the pelvis. Distance dy is the 

distance from the prostate centre of mass to the nearest point on the posterior side of the pubis 
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along the anterior-posterior axis. In this thesis, these distances were computed automatically 

using the segmentation of the pelvic bone, but, importantly, both can be easily measured 

without needing to segment the pelvis. The displacement at each mesh node of the pelvic bone, 

or alternatively the surrogate planes, was fixed to zero for all simulations. 

In the experiments described below, three different pelvic boundary conditions – referred to as 

BC1, BC2, and BC3 – were used. These are defined as follows: 

BC1: An anatomically realistic, patient-specific pelvic bone. This requires complete segmentation 

of the bone on MR. 

BC2: Three planes placed according the patient-specific measurements, as described above. This 

requires only simple measurements from an MR image. 

BC3: Three planes placed at fixed positions determined by the average measurement calculated 

for the remaining 6 patients in the test dataset. Setting this boundary condition only requires 

segmentation of the prostate capsule (in order to compute the centre of mass of the gland). 

As the driving force for the prostate motion, the size and 3D motion of the TRUS probe were 

specified in terms of the diameter of the water-filled sheath surrounding the probe, and the 

motion with respect to a local 3D co-ordinate system, defined with respect to an initial 

reference position (see details in Section 3.2.4).  

Simulation of Soft-tissue Motion  

Biomechanical simulations of TRUS-probe-induced prostate motion were performed to provide 

synthetic training data for the SMMs (see an example of such a simulation in Figure 3.14). The 

ranges of the assigned boundary conditions (BC1) and material properties (MP1) for the fully-

specified FE model are summarised in Table 3.1. 

To investigate the effect of using simplified FE models to generate the training data, different 

configurations of boundary conditions (BC1, BC2 and BC3) and material properties (MP1 and 

MP2) were compared, resulting in a total of 6 different SMMs for each patient. The tissue types, 

pelvic constraints, corresponding required segmentations and measurements are summarised in 

Table 3.2. The detailed experiments and results will be described in Section 6.2. 
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Figure 3.14 An illustration of displaced TRUS probe (green cylindrical structure) position relative to the deformed 
prostate gland using FE simulation (shown in green mesh) and the pelvis. 

 

Model 
Material 

Properties 
Pelvic Constraints 

Required Segmentation and 

Measurements 

SMM 1 All soft tissues Real Pelvis CZ, PZ*, bladder, rectum and pelvis 

SMM 2 All soft tissues 
Patient-specific 

plates 

CZ, PZ*, bladder, rectum and 

measurements** 

SMM 3 All soft tissues Generic plates CZ, PZ*, bladder and rectum 

SMM 4 Gland and ST*** Real Pelvis Gland and pelvis 

SMM 5 Gland and ST*** 
Patient-specific 

plates 

Gland and measurements** 

SMM 6 Gland and ST*** Generic plates Gland only 

* CZ and PZ – central zone and peripheral zone, respectively; 
** Measurements refer to the distance measurements to place the boundary planes described above; 
*** ST – surrounding tissue. 
Table 3.2 Summary of different configurations used in simulations 

3.2.6 Summary of Assumptions in Finite Element Analysis  

Prostate gland motion between MR and TRUS imaging sessions involves two transformations: 

firstly, there is a change in patient position due to the fact that MR imaging is performed in the 

supine position, whilst intraoperative TRUS is generally performed in the lithotomy position; 

secondly, there is a transformation due to the placement of the TRUS probe in the rectum. For 

simplicity, it was assumed that the first transformation is approximated by a rigid-body 
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transformation of the pelvis. Therefore, the position and orientation of the prostate apex-base 

axis relative to the anus and distal section of the rectum, adjacent to the prostate, remain 

unchanged. This enables the use of the geometry of the prostate (and other organs) segmented 

from an MR image as the initial (or resting) state for the finite element simulations. However, in 

reality, there is likely to be some tissue motion solely due to the change in patient position, 

which may change the orientation of the anus and rectum relative to the prostate.  

It is assumed that the shape change of the prostate gland due to the change from the supine to 

lithotomy position is sufficiently small to be captured by a model of prostate motion that only 

describes explicitly the deformation due to the manipulation of the TRUS probe. It is also 

assumed that the range of possible orientations of the TRUS probe, modelled in the FE 

simulations, is wide enough to capture changes in the relative orientation of the prostate and 

rectum/anus that may occur when there is a change in patient position.  

3.3 Statistical Motion Models 

3.3.1 Principal Component Analysis-based Statistical Motion Models 

The PCA-based dimension reduction method, described in Section 2.2.2.3, is applied on the 

displacements and node positions, for TRUS- and MR-derived models, respectively. 

3.3.1.1 TRUS-derived Statistical Motion Model 

Given   simulated gland deformations (here,      ), the 3D displacement of every node in 

the prostate gland mesh was calculated. The components of these displacements were 

combined with the balloon radius to form a vector   , defined (for the nth simulation) as 

      
    

      
     

       , where   is the number of gland mesh nodes and 

  
             is the 3D displacement vector for jth (     ) node.   is the additional 

variable indicating the radius of the balloon/probe used in this simulation. The principal modes 

of variation in random vector   are calculated by finding the eigenvectors of the covariance2 

matrix  , given by:   

  
 

   
                 

  
          (3.1) 

where 

                                                           
2
 Here,   is an unbiased estimator of the covariance matrix and is different than, but converges to (given 

large sample size), its definition in Eq. 2.11. 



Chapter 3 Statistical Motion Modelling - a Transformation Model 3.3 Statistical Motion Models 

~ 70 ~ 
 

       
 
   .            (3.2) 

In Eqs. 3.1 and 3.2,   is a diagonal scaling matrix in which the diagonal elements,   , are set to 

1/σk, where σk is the standard deviation over   values of the kth element of   ,         . 

Now, if    is the eigenvector corresponding to the ith largest eigenvalue of  , and    is the 

corresponding scalar weight, then the node co-ordinates of a deformed prostate mesh, 

contained in vector  , are given by: 

                 
 
                   (3.3) 

where    contains the node co-ordinates of the reference mesh (derived from the source image) 

and the reference balloon radius   . Figure 3.15 shows the shape of the deformed prostate 

mesh after varying    independently for      .  

 
Figure 3.15 Instantiated surface meshes after independently changing the weights corresponding to the first six 
principal components, PC1 - PC6. The left and right columns show the shapes after changing each weight to +/- 3s, 
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respectively, where s is the standard deviation of the weight over the training data. The middle column shows the 
mean shape for comparison. 

When       , a RMS reconstruction error for one training simulation can be defined as: 

   
 

       
     

           
 
      

 
     

           
 
           (3.4) 

where the notation           denotes the vector formed from the elements   through to   of 

vector. If     and     , evaluating   gives the RMS error in the gland node displacements, 

denoted by εgland. Similarly, we can define a reconstruction error, εR, for the balloon radius,  , by 

setting         . For each SMM,   was chosen such that the SMM covered at least 99.5% 

of variance in the training data and that εgland < 0.2mm and εR <
 0.2mm, computed over all 

training examples. 

3.3.1.2 MR-derived Statistical Motion Model 

In the case of building an SMM from MR images, i.e. an MR-derived SMM, the reference status 

would be less useful, as no such correspondent reference is available in target ultrasound 

images. Therefore, before extracting the principal components (Eq. 2.11), a rigid alignment was 

applied using Procrustes analysis (Umeyama 1991) to eliminate the variance due to change of 

pose in the model. In addition, the normal to the surface, at each of the control nodes, may be 

approximated from the triangulations. This additional information can be updated immediately 

after a change in shape and provides a useful representation of the shape for the registration 

algorithm presented in Chapter 4. Figure 3.16 shows the shapes of the deformed prostate mesh, 

with surface normal vectors computed using the triangulations, after varying    independently 

for      . 

Therefore, the resulting MR-derived SMM is mathematically identical to the one described in 

Section 2.2.2.3. This linear formulation will be revisited in Chapter 4 when it is put in use for a 

registration algorithm. 
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Figure 3.16 Changes in the shape of the first three modes of variation (PC1, PC2 and PC3) of a prostate SMM as a 
result of independently varying the corresponding weights. The normal vectors at the nodes of the triangulated 
surfaces, are used in the registration scheme and are indicated by arrows. (‘sigma’ is the standard deviation for each 
mode). 

3.3.2 The Use of the Statistical Motion Models 

The use of conventional SSMs has been summarised in Section 2.2.2.3. There is no fundamental 

difference between the original formulation and the MR-derived SMM. The difference in 

building, the synthetic training data and its simplified geometric FE model, would not affect the 

application of the resulting models. The variance is computed with respect to the mean shape 

which is computed by averaging the rigid-transformation-excluded node positions. Therefore, in 

the instantiation of the model, and possibly in later optimisation as well, an extra rigid 

component should be added to compensate for this. 

The TRUS-derived SMM, on the other hand, is built with respect to a reference, the ultrasound 

probe in this case. The variance learnt and summarised is of the displacements relative to the 

reference. The shape parameters, therefore, can be directly optimised to represent a plausible 

instance of the model. 

Both of the models are incorporated in registration algorithms which are introduced in Chapter 

4, where detailed applications for prostate image fusion are described.  
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Chapter 4 Model-to-Image Registration Algorithms 

4.1 Introduction 

Following the discussion in the beginning of Chapter 3, this chapter describes the detailed steps 

required to implement the image registration algorithms developed in this research.  

4.1.1 Summary of Prostate Image Registration Methods 

Following the discussion in Section 2.1, one of the underlying assumptions in intensity-based 

registration method is the existence of a valid intensity relationship between a pair of images. 

This is not always true, especially between multi-modality data. For instance, ultrasound 

imaging measures the tissue properties such as differences in acoustic impedance while a T2-

weighted MR imaging measures the differences in spin-spin relaxation time of different tissues. 

Therefore, it is difficult to find a valid similarity measure to correctly describe how well the 

ultrasound and MR images match. For example, the boundary between the central zone and the 

peripheral zone of the gland is visible in T2 MR but not in ultrasound. In contrast, a different 

surgical boundary, between inner gland and outer gland, is visible in ultrasound but not in MR 

images. In ultrasound and MR transverse slices, these two different boundaries appear similar: 

as lines separating the gland into upper and lower parts that have similar shapes. Unfortunately, 

based on the experience, no existing similarity measures could distinguish these boundaries. It is 

probably that significant yet uncorrelated differences in intensity pattern also exist in other 

regions. As a result, most similarity measures try to match these two different boundaries 

together given a general-purpose non-rigid transformation. 

It is argued in this thesis that the most reliable and possibly exclusive corresponding features 

between MR and ultrasound images are the surfaces of the prostate gland. It is clearly visible 

and extractable in both modalities. Other potential anatomical landmarks, such as the apex and 

base of the gland, are also valid, although they provide limited localisation information. 

Furthermore, corresponding point features can also be defined on the surface. The entire 

internal structure of the gland, however, may not be driven by the intensity information, but 

could be predicted by well constrained transformations that convey a plausible gland 

deformation. 

Therefore an explicit feature extraction step can inevitably be found in most proposed methods 

to register prostate MR and TRUS images. The surfaces have been found to be the only valid 
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features of interest for registration purposes. For instance, an automatic registration technique 

reported by Wu et al. (Wu et al. 2003) adopts a “marker-to-pixel” approach in which the 

prostate capsule surface (the “marker”), segmented from one 3D TRUS image, is rigidly 

registered to another TRUS image of the same patient using a novel similarity measure and a 

genetic algorithm optimisation scheme that aims to maximise the alignment between TRUS 

image gradient vectors and the surface normal vectors. Further work by Shao et al. (Shao et al. 

2006) investigated methods for registering the pubic arch in MR and TRUS images by comparing 

the similarity measure proposed by Wu et al. (2003) with alternative measures based on the 

average intensity across the surface, and on a modified surface intensity measure that takes 

advantage of the high intensity at the bone surface and anterior shadow artefact that is 

characteristic in TRUS images of the pubic arch. The latter measure was found to provide the 

most robust and accurate registrations of the pubic arch. Unfortunately, the registration error 

for the prostate gland itself is not reported. 

More recently, Xu et al. (Xu et al. 2008) describe a method for rigid MR-to-TRUS registration 

during freehand transrectal biopsy using an end-firing TRUS probe. Using CT imaging to identify 

needle tip locations, the accuracy of the system in localising the centres for target tumours 

within a prostate phantom was found to be 2.4 ± 1.2mm. A further evaluation of the registration 

accuracy based on the overlap between capsule contours drawn on 2D MR and TRUS images 

selected from 20 patient datasets yielded a 90 ± 7% overlap following registration. However, no 

data were provided on the accuracy of registering structures within the gland. It is also 

noteworthy that the system described in this study only compensates for motion during a 

procedure using TRUS-TRUS image registration initialised by electromagnetic tracking. An initial 

manual registration of the MR and TRUS images at the start of procedure is therefore required. 

Details of this initial registration step are unfortunately not provided.  

A further phantom-based MR-TRUS registration study was carried out by Narayanan et al. (2009). 

Using a multi-modality prostate phantom with embedded glass beads, which served as fiducial 

markers, they report a mean fiducial registration error of 3.06 ± 1.14 following non-rigid 

registration of MR and 3D TRUS images of the phantom. The registration was achieved by a 

deformable registration of the prostate surface, segmented from both the MR and TRUS images, 

followed by linear elastic warping of the gland volume using the surface point displacements as 

boundary conditions. 
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Singh et al. (Singh et al. 2008) describe a manual method for non-rigidly registering MR and 

TRUS images, but this requires significant user interaction during a procedure to place control 

points to align both the surface and structures inside the prostate. The problem of automatically 

registering MR images to TRUS images is challenging because of the intrinsic differences in grey-

level intensity characteristics between the two modalities, combined with the presence of 

artefacts (particularly in the TRUS images). In particular, standard intensity-based approaches, 

such as those based on maximising mutual information, often perform poorly since a 

probabilistic relationship between MR and ultrasound voxel intensities usually does not exist. 

Furthermore, when the transformation model is non-rigid, such approaches are computationally 

intensive and therefore typically require high-speed, special-purpose computer hardware and 

an optimised algorithmic implementation to make them practical for interventional applications. 

4.1.2 Model-to-image Registration Framework 

Early on in this research, it was recognised that the “marker-to-pixel” method, proposed by Wu 

et al. (Wu et al. 2003), has the most potential to extend to a fully automatic non-rigid 

registration method, given a well constrained transformation model. The reasons are 1) it uses 

the reliable surfaces to be aligned where the first one can be extracted in the preoperative 

image where there is more time available and fewer restrictions on user interactions; 2) the 

transformation model can be built to represent the transformation between corresponding 

features, the surfaces and/or its surface normal vectors. This approach is formalised as the 

‘model-to-image’ method presented in this thesis (also discussed in Section 2.4.2).  

However, though the surfaces are identified as corresponding features, more detailed point-to-

point correspondences remain unknown. The model-to-image registration problem therefore is 

converted into a feature registration problem, where the features are the surface points and/or 

surface normal vectors sampled from the gland. There are methods to formulate the feature 

registration problem as a probabilistic ML problem. An overview of this class of problems is 

reviewed in Section 2.4.1, where only the point features are considered. This chapter extends 

this method 1) to incorporate the SMM as a constrained transformation model; 2) to use the 

additional orientation vectors representing the surface normal. 

The detailed correspondence can be optimised with respect to the maximisation of a specifically 

designed similarity measure. For instance, the RMS of weighted distances between individual 

model feature and all the image features may be adopted, whereas the weighting of each image 
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feature can be calculated according to the distance between single image feature and single 

model feature. The most simplified solution is to use only the closest image feature, i.e. the 

weightings of others are set zeros. 

A general-purpose optimiser may be used to optimise this RMS distance, which is referred as to 

the direct optimisation approach in this thesis. On the other hand, if the similarity measure is 

defined as the likelihood function of a normalised PDF, the optimisation problem becomes an 

ML problem. The latter is referred to as the probabilistic approach in this thesis and may be 

solved via classic statistical methods, such as the EM algorithm introduced in Section 2.4.1.2. 

The distance between features, either the spatial locations or the surface normal orientations, is 

first extracted from the model (the surface of the TRUS-derived- or MR-derived SMM), which 

could be trivial as the model is usually of certain mathematically convenient representation, and 

extracted from the image, which requires fast and minimal human interaction in order to enable 

a rapid and efficient intraoperative procedure.  

DIRECT OPTIMISATION APPROACH 

PROBABILISTIC APPROACH 

Feature Extraction Spatial Location Only Spatial Location and Orientation 

Model Feature Sampled surface point locations Surface points & surface normal vectors 

Image Feature Manually 

defined 

points 

Voxels having 

high gradient 

magnitude 

Voxels having 

high sheetness 

response 

Voxels with gradient 

vectors 

Voxels with 

normal vectors 

of sheetness 

Table 4.1 Summary of the model-to-image registration framework and its implementations 

Table 4.1 summarises the framework of registration between a model and an image developed 

as part of this thesis. In theory, all the combinations, between different model-, image features 

and different optimisation procedures can be applied using SMMs or any other transformation 

model. This thesis describes two instances as the items shaded in black and gray in Table 4.1. 

The first implementation (black background) employs a TRUS-derived SMM using manually 

picked surface points from another TRUS image and a direct (general purpose) optimisation 

algorithm to assess the statistical model; the second (gray background) automatically extracts 

the image vector features from intraoperative TRUS image to align with the MR-derived model 

in order to solve the MR-to-TRUS image registration problem. 
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In the proposed probabilistic registration method, the prostate gland surface within the 

deformable model is fitted automatically and rapidly to a 3D TRUS volume, acquired during a 

surgical procedure, by minimising a novel vector-based similarity measure so that the best 

alignment between the surface normals of the model and estimated surface normals, 

determined from the TRUS volume, is achieved. The surface normals are estimated 

automatically from the TRUS image using a second-order Gaussian filter configured to enhance 

locally sheet-like structures (in particular, the prostate capsule surface). The use of the 

biomechanically-constrained TRUS-derived- or MR-derived SMM enables registration to be 

achieved rapidly, which is particularly important for time-critical applications such as image-

guided prostate cancer interventions. Furthermore, although only the capsule surface is aligned 

during the registration, the displacement of every voxel within the gland can be calculated as 

the model captures motion based on the displacement of every node in the FE mesh. This is 

particularly advantageous because the location of clinically important features, such as tumours, 

which are usually only visible in MR images, can be predicted within the TRUS volume. It also 

overcomes the problem of lack of corresponding intra-prostatic features visible in both MR and 

TRUS images, as discussed above. 

A schematic overview of the ‘model-to-image’ registration approach is shown in Figure 4.1. The 

model building process (shaded) is described in Chapter 3. The TRUS-derived- and MR-derived 

SMMs are specific examples of a preoperative model. During the intervention, the following 

steps are proposed in the registration algorithm (labelled b in Figure 4.1). This occurs during the 

intraoperative stage, where all computations are required to meet the time, interaction and 

computation restrictions.  

b.i)  Acquire a 3D TRUS volume; 

b.ii) Compute the TRUS image features; 

b.iii) Iteratively optimise the rigid-body and/or SMM shape parameters until the likelihood of a 

particular set of registration parameters given the feature vectors derived from the TRUS image, 

or other similarity measure, is maximised. 

b.iv) Compute the final displacement for each MR voxel inside the FE model and warp the MR 

image using these displacements. 
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Figure 4.1 A flowchart of the modelling method (shaded) and the registration method (clear) 

 

4.2 Model-to-image Registration Algorithms 

4.2.1 Direct Optimisation Approach 

The following approach solves the registration problem using a classic optimisation framework, 

where the transformation, parameterised by registration parameters, is optimised to maximise 

the similarity measure (i.e. the objective function; see Chapter 2). 

In the application of registering prostate images, the different image features extracted from 

TRUS images are discussed first. Similarity measures, in particular, a class of cosine functions 

between surface normal vectors are introduced. The use of an SMM as a transformation model 

(see Chapter 2) is then revisited in order to formalise the optimisation problem.  
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4.2.1.1 TRUS Image Features 

As listed in Table 4.1, three image features are considered in this work: points, image gradient 

and Hessian-based sheetness. The last two can be represented as either point or directional 

features depending on whether the orientation information is used. 

Manual Point Features 

 
Figure 4.2 A snapshot of the software for defining points on a 2D image slice 

 
Figure 4.3 An illustration of a spline fitted contour 
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Figure 4.4 Three views of defined contours in four sagittal views (solid contours), five transverse views (dotted 
contours) and sampled 25 target points (circle-knots) on each contour. 

In many circumstances, manually-defined points remain the most accurate and reliable features 

to identify the prostate capsule in TRUS data. In this case, typically 5-20 points on each 2D slice 

are identified at the position where the operator believes the surface of the prostate is located. 

Figure 4.2 illustrates the MATLAB GUI for defining such points. A cubic spline can be fitted to 

these points to form a closed contour in each slice. Evenly spaced points can then be sampled 

from the spline as illustrated in Figures 4.3 and 4.4. The re-sampled contour points form a point 

set that describes the surface.  

Image Gradients 

One of the most widely adopted image features is image gradients. Computing image gradients 

quantifies significant intensity change which characterises edge/boundary structures. For 

instance, the Canny edge detection is a discrete version of such extraction (Canny 1986). An 

intensity change in an ultrasound image is assumed to be the boundary between two different 

tissue types. Thresholding then can be applied to the magnitude of the gradients to identify the 

locations of such boundaries. Instead of the magnitude, it was found that the full derivatives, i.e. 

a three-dimensional vector, provide a better feature for registration. Gaussian derivatives with 

respect to a certain scale are used here to derive the image gradient. The Normalised gradient 

field (NGF) (Haber et al. 2006) was also found to effectively reduce the sensitivity to noise and 

provide a smooth cost function based on a cosine measure. The NGF is modified as follows to 

employ the derivative of the Gaussian        :  

                                            (4.1) 

where      
 

 
             
 

,                      ,      is a given image with a 3D 

co-ordinates vector  ,   denotes the gradient of a scalar function,    is the variance of the 
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Gaussian, and   is a small constant governed by an additional parameter   and number of 

voxels/pixels   in the image domain  . 

Therefore, a vector representation   of the possible gland surface in TRUS data can be formed. 

This is superior to the non-normalised gradient as it conveys pure geometric information which 

is sometimes more relevant for representing local regions (Haber et al. 2006). 

Hessian-based Sheetness Filtering  

A surface normal vector field,     , can be defined for the image in a similar form, where   is a 

3D position vector that defines a point in image space. In order to estimate   in this case, a 

multi-scale filtering technique based on second-order Gaussian derivatives was employed. In 

this method, the Hessian matrix is first computed at each voxel for a particular scale of the 

Gaussian operator. The relative magnitudes of the eigenvalues of the Hessian are then used to 

classify the local structures, and to enhance blob-, tubular- or sheet-like features in an image 

(Frangi et al. 1998). In this work, an extension of the sheet-like enhancement filter (Descoteaux 

et al. 2006) was developed to compensate for the non-uniform ultrasound image intensity 

characteristics found at the capsule boundaries due to artefacts arising from the variable angle 

between the true surface normal at the boundary and the ultrasound beam path. In particular, 

this effect is responsible for visible differences in the low boundary intensity on the lateral sides 

of the prostate gland compared to those on the inferior and superior sides of the gland. 

In the original formulation (Descoteaux et al. 2006), the filter response,       , is given by:   

               
  

 

           
  

 

            
  

 

         (4.2) 

where           ,                      and       
    

    
 . The eigenvalues of 

the Hessian,   ,    and   , are computed at point  , ordered according to the magnitude, i.e. 

              . For the TRUS volumes acquired for this thesis, the filter response was found 

to be insensitive to the scalar parameters,  ,   and  , and therefore these were set to the 

constant values   =   = 0.5 and          , as suggested by Descoteaux et al. (Descoteaux et 

al. 2006). For simplicity,        was computed for a single scale. It was found that a value of 

1mm for the width   (in all directions) of the Gaussian operator (used to compute the Hessian) 

enhances the capsule well in the ultrasound images processed in this work. 
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Figure 4.5 Example of the surface normal vector field estimated from a 3D TRUS image. (a) is a transverse slice 
through the TRUS volume. (b) and (e) show the same slice after applying the filter, fsheet and f

*
sheet, defined in Eqs. 4.2 

and 4.3, respectively. (c) and (f) shown the vector field, v, extracted using these filters, and (d) and (g) show zoomed-
in views of the regions indicated in (c) and (f). From inspection of (f), it can be seen that the TRUS beam compensation 
integrated in f

*
sheet results in a significant reduction of noise compared with (c). 

In order to take the direction of the ultrasound beam into account the modified filter is 

proposed as follows:  

      
     

     
               (4.3) 

where     is the 3D vector that defines the radial direction of TRUS beam and     is the 

eigenvector corresponding to the largest eigenvalue    of the Hessian, which is approximately 

aligned with the surface normal at the capsule boundary. Therefore, when the direction of the 

ultrasound beam is approximately perpendicular to the surface normal, the sensitivity of the 

feature vector field to noise is significantly reduced, as illustrated in Figure 4.5.    

Considering only filter responses within a predefined window, the final surface normal vector 

field is given by:  
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       (4.4) 

where the upper and lower limits of the window, within which the filter response is considered 

to be significant, are specified by scalars   and  , respectively. An example of the vector field   

computed for a TRUS volume is shown in Figure 4.5.  

4.2.1.2 Similarity Measures between Spatial and Directional Features 

Point Distance 

The spatial distance from the model surface to the target point is simplified by the closest point 

between densely sampled points (from the surface) to the closest target point. The target points 

can be the manually defined points, voxels having a large magnitude (e.g. of the gradient 

defined in Eq. 4.1) or voxels having a high sheetness response       
  , defined in Eq. 4.3, 

depending on the method used to extract the target features. Therefore, the overall similarity 

measure between two source (model) and target (image data) point sets,           and 

         , respectively, is given by the RMS of the Euclidean distances: 

     

 
  
 

  
  

 

 
    

     
  

          

 
 

 
    

     
  

          

 
 

   
     

     
  

        
     

  
           

      (4.5) 

where   
  is the closest point to point    from point set   , and   

  is the closest point to    from 

  . This RMS distance reflects the overall similarity measure between two point sets. If the one-

to-one correspondence is not known, several methods (as discussed in Section 2.4.1) could be 

used to minimise the distance, where the closest points are acting as temporarily corresponding 

points in order to iteratively compute an optimal transformation. 

Distance between Orientation Vectors 

The “distance” between directional vectors, which quantifies how well aligned they are, may be 

described using a cosine function. If the 180 degree opposite directions cannot be distinguished, 

i.e. in the case of bipolar directional data, the square cosine may be used. An extra power 

parameter   is introduced for weighting the alignment. The directional distance, or equivalently, 

the inverse similarity measure, is therefore defined as: 
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            (4.6) 

    
        

 
    

            
 
      

        (4.7) 

where    is the angle between the correspondent model and image directional data,    and   
 , 

defined at position  , respectively. The cosine value can be computed using the scalar product 

between the pair of normalised vectors: 

           
           (4.8) 

Figure 4.6 compares the proposed metric    (defined in Eq. 4.7) with conventional cosine 

metrics. The modified cosine metric is controlled by the power  . The smaller  , the less 

sensitive the similarity measure is to strong matches and vice versa. This is particularly useful 

when a certain amount of strong but false positive matches exist in real image data, and their 

contributions to the overall similarity measure need to be reduced. 

 
Figure 4.6 In the top row, three plots show the behaviour of cosine function and its variance. The remaining plots 
show the behaviour of modified cosine function as e changes. 
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However, the correspondence problem remains for the directional similarity measure. The 

spatially closest point for which the directional data is available may substitute for the true 

corresponding directional data. Alternatively, an interpolation sampling scheme may be adopted 

to compute the directional data at position  . This interpolation usually requires spatial 

information from nearby data, so the spatial data would be effectively considered in the overall 

directional distance calculation. Therefore, the goal of combining the spatial and directional 

information can be achieved at the price of a separate, possibly nonlinear interpolation method 

being necessary. The direct consequence of that would be that the computing of the 

transformation parameters becomes more complicated. Nevertheless, an iterative numerical 

optimisation scheme is able to optimise the transformation parameters.  

4.2.1.3 Shape Model-based Transformations 

Rigid Transformation 

First, the rigid or affine transformation, defined in Section 2.2.2.1, may be applied solely to 

compensate motion when the remaining non-rigid motion is negligible. The rigid transformation 

used in this thesis of spatial locations is given again by: 

                                    (4.9) 

where    is the spatial co-ordinate vector of a feature or voxel,     is the transformed co-

ordinates.        is the transformation parameter vector, i.e.  ,   and  , scaling, rotation matrix 

and translation vector, respectively. Additionally, the rigid transformation can be directly 

applied to the rotational vectors as follows: 

                                  (4.10) 

where    and     are the original and rigid-transformed orientation vectors, respectively. The 

isotropic scaling and the translation are invariant to the directional data.  

TRUS-derived SMM Transformation 

For the TRUS-derived SMM, the motion can be reconstructed by Eq. 3.3 (defined in Section 

3.3.1.1), where the shape parameters are the registration parameters. This transformation (Eq. 

3.3) is rewritten as: 

                                (4.11) 
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where the registration parameters      represent the weighting vector  , and the original 

model locations and the mean motion over training data are denoted by       
      

   
  

and   , respectively.        
       

    contains the transformed locations so that: 

                              (4.12) 

The transformed surface normal is also dependent on the spatial locations of the surface, which 

is represented discretely by a triangulation discussed in Section 3.2.1.2. A valid transformation 

of sparse directional data has not been developed with respect to a general non-rigid spatial 

transformation. Therefore, the transformed directional data for the SMM is denoted by: 

                         (4.13) 

In the case of the normal of a triangulated surface, this can be computed using the transformed 

vector     and updated triangulation. 

MR-derived SMM Transformation 

On the other hand, the MR-derived SMM has a slightly different form with respect to the rigidly 

aligned original model. Therefore,    is replaced by the vector-valued rigid transformation 

function,                            : 

           
          

                
                      

 
       (4.14) 

where the registration parameters      is now constituted by the shape parameters, the 

weighting vector  , and the rigid transformation parameters       . Individual transformed 

locations can again be extracted by Eq. 4.12.  

4.2.1.4 Optimisation Scheme 

The registration task may now be converted into an optimisation problem, by re-writing the 

optimisation as: 

                                   (4.15) 

and 

                                   (4.16) 
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for spatial point features and directional features, respectively. Alternatively, these two distance 

measures can be combined by a scalar weighting parameter     : 

                                                                (4.17) 

where   can be any transformation defined in the last section. There are also a number of 

choices for the optimisers as discussed in Section 2.3.3. 

To achieve a robust registration algorithm, a multi-resolution scheme is briefly described as 

follows: 

(1) Initialise the prostate surface model by aligning the apex and base; 

(2) Start with scale s = 2 mm,  

(3) Optimise the objective function based on a modified cosine measure with respect to the 

rigid transformation parameters; 

(4) Optimise the same objective function with respect to the rigid transformation parameters 

and shape parameters together; 

(5) Set s = s/2 and change the sampling rate accordingly; 

(6) If s > 0.5 mm (three levels of multi resolution scheme), go back to (3). 

Details of the initialisation in Step (1) are described in Section 4.2.3. The scale used in Steps (2), 

(5) and (6) is related to the standard deviation of Gaussian operator, described in Section 4.2.1.1. 

Figure 4.7 shows an example of the filtered images with a gradually decreasing scale used in the 

registration scheme. A rigid-only scheme can be implemented by leaving out the Step (4). 

 

Figure 4.7 Example slices of original image, filtered images with s=2mm, 1mm and 0.5mm, from left to right, 
respectively, used in the multi-resolution registration scheme.  



Chapter 4 Model-to-Image Registration Algorithms 4.2 Model-to-image Registration Algorithms 

~ 88 ~ 
 

4.2.2 A Probabilistic Approach 

4.2.2.1 Model-to-Image Noise Model 

A framework for modelling image noise is first introduced, with which the model-to-image (or 

equivalently geometry-to-image) similarity measure can be later formulated. Assuming at a 

random voxel,   is a signal measured from a given image  ;    is a measurement from model  ; 

n is random image noise, the additive relation may be defined symbolically as follows (Boncelet 

2005):  

                (4.18) 

                (4.19) 

                          (4.20) 

The probability of noise       , defined in Eq. 4.20, may be considered as the probability of the 

“difference” between an image signal and a model. The noise model also can be considered as a 

conditional probability of an image given a model:  

                                   (4.21) 

Now, assuming registration parameter  , a model-to-image registration problem could be 

formed as: 

                                                (4.22) 

Assuming all the voxels (image signals) are independent (Staib et al. 1992;Staib 1996), the 

following holds:   

                                (4.23) 

Further, assuming a generative (e.g. mixture3) distribution over the model         , with 

distribution parameter  , leads to: 

                                          (4.24) 

                                                           
3
 Mixture model is one (possibly the simplest) choice of generative models. More complex model may be considered 

according to the specific application in hand. This is the type used in this thesis and described in Section 2.4.1.2. 
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Then,   is substituted by a (transformed) model   , with a specific registration transformation 

 . Eq. 4.24 becomes: 

                                              (4.25) 

In this formulation, optimising the registration parameters is equivalent to maximising the 

likelihood of the model given the observed image signals, but could also be interpreted as 

maximising the joint probability of the image given the model, which is a mixture of the noise 

models.  

Intuitively, the probability of noise describes “how likely it is that this noise occurs”. This ought 

to be maximised in order to find an “optimal” model to best describe the image.  

4.2.2.2 The Maximum Likelihood Problem 

To ensure that the registration scheme proposed here is robust to noise in the estimated 

surface normal vector field,  , an approach similar to that described by Staib and Duncan (Staib 

et al. 1992) is adopted, since the model-to-image registration problem is equivalent to the 

boundary finding problem. In the framework proposed by Staib et al. (Staib et al. 1992), an 

image-extracted feature, such as the surface normal vector field in the context of this work 

(described in Section 4.2.1.1), may be considered to be a noise-corrupted version of the 

corresponding feature determined from a model. Hence, for the present problem,   may be 

assumed to be a noise-corrupted version of the surface normal vector field computed for the 

deformable model  , defined in Section 3.3.1.  

Now, the conditional probability that a surface normal vector      is measured at the voxel   

with co-ordinates                
          , given a particular SMM instance, defined by 

 , can be expressed as a probability mixture model:  

                                         
      (4.26) 

where   is an index to a point in the model space, with co-ordinates                
 
   

      ,    is a scalar parameter, which satisfies        and    and    are probability density 

functions that describe the multivariate Gaussian and bipolar Watson distributions (Watson 

1983), respectively. Explicitly,    is defined as: 
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                 (4.27) 

where    is considered as the distribution parameter, mean vector of the multivariate Gaussian, 

obtained from the model, together with the covariance matrix   , that models the spatial 

distribution of the data, the co-ordinates of the image features,   . In general, the further the 

feature of the image from the model point, the less likely this image feature was “generated” by 

the model point. Figure 4.8 shows the surfaces representing certain probability constants with 

an anisotropic covariance matrix. 

Here, a special class of an anisotropic Gaussian with two parameters is used where the 

covariance matrix,   , is defined by a set of orthogonal vectors    such that  

          
  

            (4.28) 

where       and       , represent the orientations of the ellipsoid surface of constant 

probability density. The two independent parameters,    and        , govern the extent of 

the capture range of the registration algorithm in the directions normal and tangential to the 

model surface, respectively. In the experiments described in this thesis,           . 

 
Figure 4.8 Plots of constant surfaces of Gaussian distributions with different values of d. 

The bipolar Watson distribution    is defined as follows: 

                
    

    
 

                   (4.29) 

where,   is a scalar concentration parameter. In Figure 4.9, the PDFs are plotted with respect to 

different values of  , and the colour scaled points with respect to the mean vector (red line 
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segment) indicate likelihood values of the sampled data. In 3D, the normalising constant,     , 

is defined by setting the integral of    over a sphere to unity, leading to: 

                
 

 
 
  

         (4.30) 

The concentration parameter   is varied depending on the level of noise in   and is set to a 

small value (            ) in order to weaken the contribution from strong local matches. In 

practice,      is computed by recursive integration. The parameter   is the angle between the 

surface normal vector   , computed at point   on the model surface, and the estimated normal 

vector   , computed at the voxel   in the image. 

 

Figure 4.9 Left: plot of PDFs of the bipolar Watson distributions with different values of the parameter k. right: the 
coloured points on a unit sphere to represent the bipolar Watson distribution (colour scale indicates the likelihood of 
the data). 

4.2.2.3 A Probabilistic Objective Function 

The purpose of the registration algorithm is to find the optimal registration parameters which 

maximise the joint probability of the noise function,    (in Eq. 4.26), given a particular model 

shape (specified by the shape parameters of the SMM) and pose (specified by the parameters of 

a rigid-body transformation). Therefore, assuming that the noise values at different voxels are 

independent, the following log-likelihood function is a suitable objective function for efficient 

numerical optimisation using the EM algorithm (Dempster et al. 1977): 

                                 
                        

 

                                         
        (4.31) 

where   indicates the surface normal features derived from the TRUS volume. A modified 

version of the standard EM algorithm was implemented using MATLAB, which iteratively 
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updates the registration parameters in order to maximise Eq. 4.31. Further details are provided 

in the following sections.  

4.2.2.4 An Adapted Expectation Maximisation Algorithm 

Rewriting Eq. 4.31, we have the objective log-likelihood function: 

 
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where I is the number of voxel-based image features and M is the number of sampled points on 

the deformable surface model. 

Therefore, the E steps are described as follows: 

The posterior probability of the latent variable, also known as membership probability or 

responsibility, is given by: 
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where the superscript m denotes the estimates in mth step of the EM algorithm (m = 0 at the 

start). Now, the expected complete-data log likelihood is: 
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           (4.34) 

The M steps are described as follows: 

M1. Surrogate maximum likelihood estimators (MLEs)  

As in the standard EM algorithm for a mixture density model (Bilmes 1997), if we let λm denote 

the Lagrange multiplier due to the constraint ∑ j h j = 1, the updated mixing parameter is 

calculated by differentiating Eq.4.34 with respect to hj, setting the resulting derivative to zero, 

and solving as follows: 
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To update the spatial parameters, we perform the procedure: 
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To estimate directional parameters subject to the constraint 1j

T

j uu , if we let λw denote the 

Lagrange multiplier due to the normalised vector constraint, we have: 
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Now, pre-multiplying by T

ju  gives: 
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It is shown by Figueiredo et al. (Figueiredo et al. 2006) that the MLE jû is the eigenvector 

associated with the largest eigenvalue of  
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M2. Registration parameters  

After the mixing, spatial and directional MLEs are updated. The registration parameters can be 

updated using a weighted least-squares scheme, as follows: 
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where Trigid is a rigid-body transformation applied to the spatial and directional vectors given 

the parameter vector, θrigid, which contains rotation and translation (note that the directional 

vectors are invariant to translation). Variable π is the smaller eigenvalue of the covariance 

matrix so that the lower bound of the anisotropic Gaussian was used to enable a simple 

Procrustes analysis. The rigid-body parameters were therefore computed based on singular 

value decomposition (Myronenko et al. 2010;Umeyama 1991). 

The shape parameters were updated using weighted least-squares (Luo et al. 2003). In this 

scheme, only the weighted sum of the squares of the residuals between rigid transformed 

locations and spatial MLEs were minimised: 
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where Tshape applies a shape transformation of spatial locations, given the shape parameters 

θshape according to Section 4.2.1.3. It is assumed that the contribution of the shape 

transformation to the log-likelihood function with respect to vector reorientation is negligible in 

this step. Finally, we update xj by )ˆ),ˆ,((TT 01

shaperigidrigidshape

m

jj
θθxx   and re-compute 1m

j
u  using 

the updated 1m

j
x  and the model surface triangulations. 
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Although a closed-form solution to find the registration parameters in the M steps may be 

possible, a numerical iterative scheme is a practical method for maximising the objective 

function. A similar approach was described by Ziyan et al. (Ziyan et al. 2008). However, a two 

step update, which employs an efficient least-squares method, was developed in this thesis. In 

practice, it was found that the updated parameters increased the value of the log-likelihood 

function before the registration stopping criterion, either by reaching a maximum number of 

iterations or a minimal change in the objective function. It should be noted that, in general, this 

approximation enables a fast implementation without guaranteeing convergence. Alternatively, 

an additional numerical optimiser could be executed after these updates in each M step to 

minimise the actual log-likelihood directly.  

The user-defined parameters in the registration scheme are the filter parameters a and b, and 

the similarity measure parameters ρ1 and k. Values for a and b were found by assessing the 

histogram of the filter responses on a case by case basis and manually setting the thresholds 

such that outlier features in the filtered image with low and high intensities were eliminated. 

These parameters were tuned for each of the TRUS scanners used in this work and remained 

fixed in the registration experiments. Excluding 10-30% of the lowest and highest intensities was 

found to produce visually optimal filtered images in which the gland surface was enhanced 

clearly.  

Parameters k and ρ1 were set to 0.1 and 3mm, respectively. The result of the registration 

algorithm was found to be insensitive to k for              and setting     was found to 

significantly reduce the influence of strong boundaries of the bladder, rectum and pubic arch 

(sometimes visible in the TRUS images) by weighting the similarity measure in favour of surface 

normal vectors that are not perfectly aligned. Similarly, the algorithm is relatively insensitive to 

the value of ρ1. This parameter determines the local search range for the algorithm, and was set 

to the average distance between surface node points.  

4.2.3 Initialisation 

Initialisation is important for image registration tasks. In particular, a multi-modal registration 

application, where two images have different co-ordinate systems, different orientations or 

scales representing an object of interest, requires initialisation to compensate for large 

translation, rotation and difference in positioning. Most registration algorithms find an optimal 
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solution near the initial search position, without the guarantee of finding a global minimum or 

maximum. Therefore, a separate initialisation stage is crucial for most cases. 

In the case of the prostate gland, two anatomical landmarks, apex and base, are generally 

available in both TRUS and MR images. However, given two pairs of correspondent points, it is 

not sufficient to approximate a rigid transformation. Therefore, the constraint that no rotation is 

permitted about the axis defined by these two points is required to enable the transformation 

calculated by aligning these two axes together. Note that, in this case, a general solution (e.g. 

Procrustes analysis) is under-determined so it could produce an arbitrary rotation about the axis 

depending on the adopted algorithm. However, a direct transformation can be calculated as 

follows: 1) first compute the displacement vector by aligning the centres of the line segments 

bounded by apex and base; 2) compute angle differences in x-y, x-z and y-z planes; 3) find the 

rotation matrix using any two of these angles such that neither is zero; 4) depending on the 

problem, compute the scaling factor along the aligned axis. An example using this initialisation is 

shown in Figure 4.10. This is the method used for all the experiments reported in this thesis 

although other methods exist that provide equivalent initialisation, such as the use of bounding 

boxes and/or manual alignment.  

 
Figure 4.10 Illustration of aligned surface models using a two point initialisation. 
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Chapter 5 Validation Methods 

Validation methodology plays a significant role in any medical image registration study. 

Assessing a registration method is difficult largely because the corresponding features should be 

independently selected to compute the validation error metric; the error computed on the 

features being used in the registration only reflects the performance of the optimisation 

algorithms. Some authors (Maintz et al. 1998) pointed out that the validation feature may be 

included in the registration if it is easy to obtain.  

In this chapter, sensitivity analysis of material properties and an SMM comparison method is 

described in Section 5.1 and Section 5.2, respectively. These validations help to assess the 

motion models described in Chapter 3. The point-feature-based registration and the 

probabilistic registration approach have been applied to TRUS-to-TRUS and MR-to-TRUS 

registration tasks, respectively. The details of these experiments will be described in Chapter 6. 

The methods used to assess the accuracy, robustness and other aspects of the registration 

algorithms performance are described in Sections 5.3 and 5.4. In particular, an error analysis 

based on the quantitative relationship between target registration error (TRE) and clinical 

significance is developed in Section 5.4.2. 

5.1 Sensitivity Analysis in Tissue Material Properties 

To investigate the effect of errors in tissue parameters on the predicted gland motion using FE 

model, a sensitivity analysis was carried out in which, for each of the 5 patient datasets, 100 

simulations were performed using varying values of the shear and bulk moduli (denoted by G 

and K, respectively) under identical boundary conditions. Three sets of simulations were 

performed using identical boundary conditions as follows: 

Test 1: Both G and K were sampled from the ranges given in Table 3.1; 

Test 2: Materials were assumed to be almost incompressible (K>>G); 

Test 3: The materials were assigned with one fixed degree of freedom in material parameters 

(i.e. the “equivalent” Young’s moduli, given by 9KG / (3K+G), were held constant throughout the 

simulations). 
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The difference between Test 1 and 2 and between Test 1 and 3 were compared directly by 

computing the relative displacements for each node. Tests 2 and 3 correspond to the 

assumptions applied commonly when predicting tissue displacements using FEA. This is a direct 

way to compute the difference between different configurations (material properties in this 

case) of the same FE model. The difference could reveal the significance of the sensitivity of the 

material property values to the simulated deformation. 

5.2 Comparison for the Simplified Motion Models 

The SMMs built using a simplified geometry (described in Section 3.2.5) are used in this section 

to introduce the comparison between different SMMs. The simplified models may be assessed 

without going through the whole registration process. A valid comparison should determine 

how much difference exists between the originally proposed SMM and the SMMs based on 

simplified geometric information. This section provides a framework to compare between 

different SMMs. The methodology may be extended to any other comparison between shape 

models. 

5.2.1 Statistical Model Fitting 

As explained in Sections 3.3.1 and 4.2.1.3, the SMM has the role of constraining the registration 

transformation that relates the SMM and the deformed prostate, represented by new image 

data (TRUS images in this case). The shape vector   can be thought of as containing the 

parameters of the SMM that are optimised to fit to the new data. In practice, these data can 

take a variety of forms, but in this case, a (surface) point representation was adopted, which can 

be derived from any other geometrical representation (for instance, by sampling from a surface).  

The ability of different SMMs to fit to new observed data described by the displacement vector 

   (which takes the same form as   ) was evaluated. In practice, however, tissue displacements 

are only measurable at a limited number of locations. For example, in medical images, the 

surface of a deformed organ is usually available whereas the entire volumetric displacement 

field over the field-of-view is not. The model fitting process can be posed as finding the vector    

which minimizes a fitness (objective) function that quantifies how well the SMM fits the target 

data represented by the node co-ordinate vector,          . Three different forms of          were 

considered, each of which requires a different method for finding   . The three different 

scenarios are considered in the following subsections. 
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5.2.1.1 Known Correspondence on Solid Nodes 

In a simplest case,          takes the same form as the training data, i.e. a vector containing of co-

ordinates of all the FE mesh nodes within the prostate gland. Fitting the SMM – equivalent to 

solving for   in Eq. 4.11 – then becomes a linear least squares problem with the following 

solution: 

                                                  (5.1) 

where                      is a vector that represents the displacements of the target data 

relative to the reference model. 

5.2.1.2 Known Correspondence on Surface Nodes 

In the present application, the very different appearance of MR and TRUS images results in a 

lack of common features being present within the prostate. This means that establishing the 

relative displacements of corresponding voxels across the gland is very challenging. However, it 

is possible to measure the location of the gland surface (capsule). For this reason, we also 

consider the second case where the observed data comprises only surface nodes, denoted by 

           . The length of the vector             is   , where   is the number of surface nodes. In 

this case,    can still be found via a linear least squares solution if    . When this condition is 

satisfied, the parameter vector of the fitted SMM is given by: 

     
                             (5.2) 

where the matrix   in Eq. 5.1 is replaced by the      matrix    and the vectors          and    

are replaced by the measured and mean surface displacement vectors,              and      , 

respectively. 

5.2.1.3 Unknown Correspondence 

In the more general case where the correspondence between points on the SMM and target 

surfaces is unknown, the problem of finding    can be posed as a non-linear numerical 

optimisation problem in which the Euclidean distance between the SMM and observed surface 

points are minimised, i.e. 

                                    (5.3) 
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where   is a vector-valued function that returns the distances between the surface of the 

prostate in the instantiation of the SMM, given the parameter vector  , and the corresponding 

target surface points.  

In this work, a MATLAB implementation of the standard Levenberg-Marquardt algorithm was 

used to solve Eq. 5.3.   was computed by calculating the distance between the each target node 

point and the nearest point in a densely sampled point set that represents the SMM prostate 

surface. To avoid over-fitting of the model to target data, resulting in highly implausible 

deformations,   was constrained during the optimisation so that                . This 

ensured that the values of the weights in   lie within three standard deviations (   ) of the 

mean value determined by the training data. Imposing this constraint was found to be especially 

useful when the target data is subject to noise or contains outliers.  

5.2.2 Performance Measures 

Three different quantitative performance measures, described below, were computed for the 

SMMs.  These were used as a basis for comparison between different SMMs. 

5.2.2.1 Model Compactness 

An important aspect of PCA-based SMMs is dimensionality reduction. The performance of this 

property may be represented by model compactness, the relative cumulative variance described 

by an SMM, defined as: 

     
   

   
   

   
 
   

           (5.4) 

where    is the ith eigenvalue of the covariance matrix of the training data,   is the number of 

all the nonzero eigenvalues. 

5.2.2.2 Generalisation Ability 

The generalisation ability of a model measures its ability to describe unseen data (Styner et al. 

2003). This is arguably the most important performance measure since it relates closely to the 

most common intended application of SMMs, i.e. capturing organ motion to provide prior 

information for registering to unseen data. The generalisation ability can be defined as the 

average error between a statistical shape model and unseen data (Styner et al. 2003).  A similar 

measure has also been derived in shape feature space (Jeong et al. 2008). 
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Here, a measure is defined as the RMS Euclidean distance between the node positions within 

the prostate gland of an instantiated SMM and the corresponding node positions of a ground 

truth deformed model. For the purposes of this work, the fully-specified FE model (SMM1 with 

MP1 and BC1 described in Section 3.2.5) was used to provide the ground truth tissue motion, 

assuming that this closely approximates the real tissue motion. When the RMS distance is 

computed on all nodes inside and on the surface of the prostate gland, this measure becomes 

analogous to the TRE, which is a widely adopted measure for evaluating the accuracy of image 

registration algorithms (Fitzpatrick et al. 1998).  

 
Figure 5.1 An overview of the leave-one-out method used to compare different SMMs by computing the 
generalisation ability with respect to a reference FE model as the ground truth. 

The following “leave-one-out” scheme, illustrated in Figure 5.1, was adopted to avoid bias in the 

generalisation ability: Firstly, one of the 500 training samples was selected at random. The SMM 

was then built using the remaining 499 samples to generate the ground truth dataset, based on 

a FE simulation using the most geometrically accurate mesh (i.e. SMM 1) for that particular 

patient. In this way, the 6 SMMs could be compared directly in terms of RMS distance error. 
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In addition, for each of 6 patients, a clinician identified a region of interest (ROI) on the MR 

images in which biopsy-verified cancer was present. The absolute distance errors of these 

tumour ROIs were also computed using the same leave-one-out scheme as described above. 

5.2.2.3 Specificity 

Model specificity is another useful measure, which indicates the degree to which deformations 

of an SMM are constrained. This is significant because it is desirable for the model to be robust 

to corrupted data, for instance due to image artefacts or noise. Furthermore, the model should 

be able to predict missing data.  

 
Figure 5.2 An overview of the leave-one-out methodology used to compare different SMMs by computing the 
specificity ability with respect to a deformed FE model as the ground truth. This figure complements with the Figure 
5.1 to describe the Leave-one-out schemes to compute generalisation ability and specificity. 

The framework, proposed by Styner et al. (2003) to quantify model specificity using Monte Carlo 

simulations, was adopted. Figure 5.2 show a schematic overview that describes the method 

used to compute SMM specificity. For each SMM, 500 instances were generated by setting each 

parameter    to a randomly selected value drawn from a zero-mean normal distribution with 

standard deviation   . The model specificity was computed as follows: First, for each 

instantiated SMM, the RMS distance between the nodes of this model and the corresponding 

nodes of each of the simulated FE meshes in the training dataset was computed. The specificity 
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was then defined as the smallest RMS distance, which may be interpreted as a measure of how 

closely the SMM approximates the geometrically closest sample in the training dataset. The 

absolute distances for the tumour ROIs were also computed as an error measure for specificities. 

5.3 Validation of TRUS-TRUS Registration 

5.3.1 Accuracy Validation 

To assess the effects of setting different degrees of freedom of motion on registration accuracy, 

three different TRUS-derived SMMs, denoted SMM1, SMM2 and SMM3, were constructed by 

varying the boundary conditions (summarised in Table 3.1) for each FE simulation: For SMM1, 

only the radius of the balloon, R, was varied between simulations (the pose of probe and pelvic 

model were fixed to their reference states). For SMM2, R and the position and orientation 

balloon/probe were varied between simulations (the size and position of the pelvis remained 

fixed). Hence, compared with SMM1, the training data for this model takes into account 

variation in the pose of the TRUS probe/balloon. Finally, in the simulations for SMM3, the pose 

and size of the CT-based pelvis model were varied in addition to the radius and pose of the TRUS 

balloon/probe.  

5.3.1.1 Surface Alignment 

Surface to point distance is a measure to assess registration accuracy. The alternative may be 

any other measurement to compute the volumetric overlap between registered ROIs. These are 

important accuracy measures for segmentation tasks. This type of measure also indicates the 

optimisation performance of the registration if it is based on surface alignment followed by 

prediction of the displacement field inside the surface, which is a common strategy in multi-

modality image registration, as discussed in Chapter 2. The surface alignment, however, does 

not reflect the overall accuracy of the registration, in which the primary goal is to predict a 

location of interest. Therefore the TRE is still required to assess the clinical usefulness of the 

registration algorithm and it is analogous to the relationship between fiducial localisation error 

(FLE) (Fitzpatrick et al. 1998) and TRE. Nevertheless, comparison between surface alignment and 

final TRE reveals the relationship between the optimisation performance and the validation of 

the methodological assumptions such as similarity measures and transformation models. 

The surface-to-surface distance may be simplified to a point-to-point distance, where the 

distance is approximated by the closest distance between densely sampled points on one or 
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both surfaces. This is similar to the distance metric used for point registration discussed in 

Section 4.2.1.2. 

To test the robustness of the registration algorithm used (described in Section 5.2.1.3) against 

different manually defined surface points and to simulate a clinically practical protocol for 

defining a sparse set of target points during a TRUS-guided procedure, each target TRUS volume 

was re-sliced in 4 sagittal and 5 transverse planes corresponding to different TRUS views that 

would be obtainable by rotating or translating a bi-planar, side-firing, TRUS probe. Such probes 

are widely used for guiding urological procedures involving the prostate and surrounding organs. 

Then, 6-10 surface points were defined manually in each slice using the MATLAB GUI described 

in Section 3.2.1. A closed cubic spline was fitted to these points and 25 evenly spaced points are 

sampled from each contour (see Figure 4.4). 

Point set Number of views used Number of target points used 
Transverse Views Sagittal Views 

PS1 Tr1 Tr2 Tr3 Tr4 Tr5 Sa1 Sa2 Sa3 Sa4 225 
PS2 Tr1 Tr2 Tr3 Tr4 Tr5 Sa2 Sa3 175 
PS3 Tr2 Tr4 Sa2 Sa3 100 
PS4 Tr3 -- 25 

Table 5.1 Combinations of TRUS views used for defining target points 

To evaluate the comparative accuracy of assuming no gland deformation, surfaces were 

additionally registered rigidly to the target point set using the well-known ICP algorithm, 

described in Section 2.4.1.3. To assess the robustness of the registration, given point data from a 

decreasing number of TRUS views (contours), all of the registrations were repeated using the 4 

subsets of the original 9 views specified in Table 5.1. 

5.3.1.2 Landmark-based Target Registration Error 

In contrast to MR-to-TRUS registration, where corresponding intraprostatic landmarks, visible in 

both imaging modalities, are relatively difficult to find, one advantage of using TRUS images as 

both the target and surrogate source images is that the displacement of many landmarks inside 

the gland can be measured. In this thesis, landmarks were defined as small, discrete echolucent 

or echogenic features, which correspond to small cysts and calcifications. For each patient, the 

3D co-ordinates of corresponding point landmarks were identified manually in the source and 

target TRUS volumes using the MATLAB GUI, which enabled the centre of each landmark to be 

located in three orthogonal views, as shown in the example in Figure 5.3.  
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The landmarks defined in the source image were then propagated into the target image space 

using the displacement field produced by the SMM following surface-based registration. The 

new landmark 3D co-ordinates were calculated by interpolating the displaced mesh node point 

positions using tetrahedral shape function (Zienkiewicz et al. 2000). In practice, if the 

tetrahedral mesh is adequately dense, other (potentially faster) interpolation methods would 

make little difference in accuracy. The target point-to-surface error and the TRE, defined as the 

RMS Euclidean distance between manually defined and propagated landmark pair in the target 

image space, were calculated for each registration. 

 
Figure 5.3 An example of an echogenic TRUS image feature, indicated by the arrow, used to evaluate registration 
accuracy. (a) and (b) illustrate the feature in 3 orthogonal views in the source and target images, respectively. The 
centre point of such features was defined manually. 

5.3.2 Comparison with Alternative Methods 

An alternative method for surface-driven deformable registration is to assume a simple elastic 

deformation within an organ (Bharatha et al. 2001;Haker et al. 2004). This is equivalent to 

performing a biomechanical simulation with boundary conditions specified by a force or 

displacement field at the surface. Typically, surface displacements are determined by an initial 

deformable registration of the source and target surfaces. In this work, elastic registrations were 

compared using surface displacements determined after first registering the surfaces using the 

RPM algorithm (in which the deformation is computed using thin-plate-splines) (Chui et al. 

2002), and the CPD algorithm (Myronenko et al. 2010). 

To ensure consistency with the SMM-based method, the FE model, derived from each source 

image (the un-deformed TRUS volume in this case) was used to compute the 3D displacement 
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field within the prostate gland. Biomechanical simulations were performed using the same non-

linear solver as described earlier. Given the lack of published data on the difference in material 

properties of the prostate zones, the prostate was considered to behave as a homogenous 

material and, G and K were set to the median values of the corresponding ranges (40.1kPa and 

1.67GPa, respectively) used to generate the SMM described above for both inner and outer 

compartments of the gland . 

5.4 Validation of TRUS-MR Registration 

5.4.1 Landmark-based Accuracy Validation 

To evaluate the performance of the proposed registration method, 100 MR-TRUS registrations 

were performed for each of eight patients. The model-to-image registration algorithm was 

implemented in MATLAB, and a quick and simple initialisation procedure was adopted in which 

two points at the apex and base of the gland were identified manually in the TRUS volume (see 

Section 4.2.3). Once registered, a dense displacement field (DDF) was computed from the final 

instance of the deformable FE mesh by interpolation.  

In order to simulate variability in the initialisation base and apex points and to investigate the 

robustness of the registration algorithm given different model starting positions, a random 

starting position was set before each registration by adding a random error ≤ 5mm, drawn from 

a uniform probability distribution, to each of the x-, y-, and z-components of the original, 

manually identified apex and base points. The accuracy of each registration was quantified by 

computing the final TRE between corresponding anatomical landmark points, identified in the 

MR and TRUS images, following registration. The 3D co-ordinates of landmarks, defined in an 

MR image, were then transformed into TRUS co-ordinates using the DDF. 

The landmarks used for estimating the TREs were identified manually by a urological surgeon 

with over five years experience in interpreting prostate ultrasound and MR images. For each 

prostate, the following three landmarks were defined in both the TRUS and MR volumes on 

three separate occasions: the point in the centre of the urethra as it enters and exits the 

prostate – i.e. at the base and apex of the gland – and the centre point where the ducts of the 

seminal vesicles emerge from the gland. In addition, the locations of the centres of small cysts 

and calcifications appearing inside the gland were identified, again on three separate occasions. 

In general, cysts appear as low-intensity (hypoechoic) features in the TRUS images and high-
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intensity regions in the MR, whereas calcifications appear with high intensity (hyperechoic) in 

the TRUS images and low intensity in the MR. All landmarks were defined by identifying the 

image co-ordinates in three orthogonal slices. The gold standard position for each landmark was 

found by averaging the co-ordinates defined on three separate occasions. 

For each pair of gold standard landmarks, the TRE was defined as the RMS Euclidean distance 

between the landmarks originally defined in TRUS co-ordinates and the location of the 

corresponding MR landmark following propagation into the TRUS space. MR images were also 

warped into the TRUS co-ordinate system using the DDF to allow visual assessment of the MR-

TRUS registration. 

To estimate the precision of localising individual landmarks, a landmark localisation error (LLE) 

was computed. For each landmark, the LLE was defined as the RMS distance between the gold 

standard (i.e. mean) landmark co-ordinates and each of the three landmark co-ordinates 

defined by the expert observer. 

5.4.2 Clinical Targeting Criteria 

Although real clinical workflow and processes are highly complex and case-dependent, 

quantifying the clinical relevant error is possible given some simplifying assumptions reflecting 

clinically important scenarios. For instance, adopting the widely used cut-off of 0.5 cm3 for 

clinically significant tumour volume, and assuming that the centre of clinically significant target 

tumours can be localised with negligible error, negligible needle deflection, and, for simplicity, a 

spherical and pathologically homogeneous tumour, a targeted tumour will be hit when the 

system targeting error is less than 4.92mm (equal to the radius of a 0.5cm3 sphere). Furthermore, 

assuming that the targeting error is normally distributed with variance    in each of the x-, y-, 

and z-components, the targeting error, defined as the distance between the true centre of the 

target tumour and a target point calculated by the image guidance system will follow a Maxwell-

Boltzmann probability distribution. Using the analysis described below, it gives analytical 

expression of the distribution of the distance, i.e. targeting error. 

Assuming that the errors, δx, δy, and δz, in each of the co-ordinates of a targeted point follow a 

normal distribution with zero mean and variance   , the distance error  , in hitting the target is 

given by: 
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The corresponding cumulative probability distribution is: 
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Now, the TRE, defined as the RMS value of  , is given by: 
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Integrating this expression by parts, we have: 
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Setting a desired hit rate of 90% for hitting a spherical tumour region with a radius of 4.92mm, 

the upper limit on  , denoted by     , is given by: 

                             
      

(5.10) 

Since   is monotonically increasing with   and monotonically decreasing with  , we obtain: 

                                     (5.11) 

Therefore, using the result from (5.9), the corresponding TRE threshold is       = 3.41mm. 

Given this distribution, the TRE, expressed as the RMS distance error, is equal to    , given a 

particular threshold on the (clinically significant) tumour hit-rate, it is possible to derive the 

corresponding TRE threshold which any specified hit-rate will be achieved.  
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5.4.3 Comparison with Alternative Registration 

As a comparison, the same model-based registration framework, with the same parameter 

settings, was used to rigidly register the original gland surface segmented from MR to the TRUS 

image, but where the step in which the shape parameters are estimated was omitted. Again, 

registrations were performed using the same random initialisations as used for the non-rigid 

registrations, and the TRE was computed by propagating the landmarks using the resulting rigid 

transformation. 

One useful property of an SMM, unlike general-purpose non-rigid (or elastic) transformations, is 

that it ensures that prostate gland deformations are highly constrained and incorporate prior 

knowledge on the range of deformations expected during a procedure. This feature is 

particularly important for robust registration to ultrasound images because the low signal-to-

noise ratio and artefacts associated with this modality. Alternative transformation models have 

been proposed, such as the linear-elastic volumetric warping methods used by Bhartha et al. 

(2001), Haker et al. (2004), and Narayanan et al. (2009). In these studies, a FE model was used 

directly to compute the image deformation field following a surface-based registration, which 

sets the boundary conditions at the surface of the gland. To compare other methods described 

in the literature with the approach proposed in this thesis, the accuracy of an alternative elastic 

registration algorithm is computed, in which the non-linear FE solver was used to determine the 

deformation field given surface displacements found by registering the MR-derived gland 

surface to the surface segmented manually from the TRUS image. 

In this experiment, the prostate gland surface of the FE mesh used to build the SMM was chosen 

as the source surface. This was then registered to a dense set of TRUS target surface points 

using the CPD algorithm (Myronenko et al., 2006; 2009). The values of G and K for the interior of 

the gland were set to 40.1kPa and 1.67GPa, respectively. These values are the average values of 

the corresponding ranges shown in Table 3.1. As with the SMM-based method, the solution 

provides a volumetric displacement field across the gland, which is used to propagate landmarks. 

As before, TREs were computed by measuring the distance between each propagated landmark 

and the corresponding landmark identified in the target TRUS image. 
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Chapter 6 Experiments and Results  

This chapter presents experimental results based on the evaluation methods introduced in 

Chapter 5. Experiments of material sensitivity analysis, model comparison and registration 

validations with associated quantitative and qualitative results are also presented in this chapter.  

6.1 Experiments and Results for Sensitivity Analysis in Material 

Property 

The data used in this analysis is the same as in the TRUS-to-TRUS experiment, with five patient 

data sets described in Section 6.3.1, and 100 simulations performed for each pair of images. 

Three tests, described in Section 5.1, were performed independently. 

The influence of allowing K and G to vary (Test 1), compared with assuming incompressibility 

(Test 2) and with one degree of freedom in material properties fixed (Test 3), is indicated by the 

results in Table 6.1. Overall, it can be seen that allowing K and G to vary results in a significant 

relative node displacement with respect to the reference cases.  

Patient Relative displacement (%) 

Difference between Test 1 and 2 Difference between Test 1 and 3 

Median 5th – 95th percentile Median 5th – 95th percentile 

1 11.9% 2.48 - 57.8% 5.94% 1.30 - 35.7% 

2 21.3% 4.87 - 102% 10.8% 2.35 - 49.0% 

3 15.9% 3.19 - 72.2% 6.96% 1.66 - 29.6% 

4 16.6% 3.39 - 71.1% 7.97% 1.39 - 36.4% 

5 18.1% 3.38 - 70.9% 6.99% 1.58 - 31.3% 
Table 6.1 Sensitivity of tissue displacements predicted by FE simulation due to changes in material properties 

This result provides a motivation for including variation in K and G in the SMM training 

simulations so that an SMM built using these data represents the full range of deformations that 

might be encountered in reality. 

6.2 Experiments and Results for Comparison of Statistical Motion 

Models 

6.2.1 Data 

T2-weighted MR images were acquired on 7 patients. The details of the acquisition of these 

images are provided in Section 6.4.1. Multiple organs were manually segmented as described in 

Section 3.2.1.2. These segmentations were used to generate the 6 different SMMs (five of which 
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were configured as a “simplified” model, as summarised in Table 3.2), and 500 FE simulations 

were performed for each model to provide training data. Each training sample was generated 

after randomly assigning material properties and boundary conditions based on the ranges 

given in Table 3.1. 

All 3000 simulations were performed using a C++ implementation of a fast, non-linear FE solver 

(Taylor et al. 2008) on a desktop PC with a 2.33GHz Intel® Core™ dual CPU processor, 3GB of 

RAM, and a 256 MB NVIDIA® GeForce™ 8600 GT graphics processing unit (GPU) installed. Mesh 

node displacements were computed using the GPU. A four-node formulation was adopted to 

overcome the volumetric locking problem (Bonet et al. 1998;Joldes et al. 2009). Using this 

method, the time taken to complete 500 simulations was approximately 140 minutes. For 

example, simulations took on average 16 seconds to compute the deformation of an FE model 

containing on average 45,000 elements. These simulations together with the segmentations 

formed the data required in the comparison study. 

6.2.2 Experiment and Result 

After computing the compactness, the leave-one-out schemes were performed to compute 

generalisation ability and specificity. The procedures were described in Section 5.2 and 

illustrated in Figures 5.1 and 5.2.  

6.2.2.1 Model Compactness 

 
Figure 6.1 Plot of the median compactness (with 95% confidence interval) for all of the SMMs as a function of the 
number of principal components (L). 

Total of 42 SMMs were generated for 7 patients using 6 different FE model configurations. 

Figure 6.1 shows the median and 95% confidence interval of the compactness, described in 
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Section 5.2.2.1, computed for different values of L (from 1 to 30). As can be seen from Figure 6.1, 

increasing the number of modes of variation of the SMM increases cumulative relative variance 

of the model compared with the training data, and the compactness converges to a value close 

to one for L>9. It was found that 99.5% of total tissue motion variance was captured for all of 

these models if L=12. This number was adopted when computing generalisation abilities and 

specificities presented below.  

6.2.2.2 Generalisation Ability 

The generalisation abilities, computed for each SMM, using the three model fitting methods 

described in Section 5.2.1 are plotted in Figure 6.2. There was found to be little difference 

between the accuracy of SMMs built using simplified FE models  (SMM 2-6) and the SMM based 

on the fully-specified FE model (SMM 1) in terms of generalisation ability, with the latter SMM 

yielding the highest accuracy. Similar results were obtained when only surfaces were used to 

register the models. By comparing the results in Figure 6.2, very little difference was found 

between using the surface node points and all internal gland node points when point 

correspondence was known. The errors were slightly larger in the more realistic case when only 

a surface is used for registration and the point correspondence between the SMM and target 

surface is unknown. 
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Figure 6.2 Generalisation abilities (described in Section 5.2.2.2) for 6 SMMs (summarised in Table 3.2) across 7 
patients, shown as the median RMSE and 95% confidence interval, for three different model fitting methods (see 
Section 5.2.1). 

Of the SMMs based on simplified FE models, SMM 4 was consistently found to be the most 

accurate. Since this model was based on an FE with anatomically realistic pelvic boundary 

conditions, this result suggests that that the model is sensitive to the geometry of the pelvis. 

However, the difference in median error between using an SMM based on a FE model with 

simplified pelvic boundary conditions and SMMs based on an FE model, which reflects the true 

anatomy of the pelvic bone, was small – between 0.1 and 0.2mm. Based on a review of the 
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relevant literature and discussion with collaborating clinicians, this level of error is acceptable 

for the MR-TRUS prostate registration application.  

Further inspection of Figure 6.2 reveals very little difference between the accuracy of the 

different SMMs that were based on FE models with planar pelvic boundary conditions (SMMs 2, 

3, 5 and 6). This result suggests that simply using the average positions from measurements 

made on a group of patients may be sufficient for the purposes of SMM generation. This insight 

naturally leads to a MR segmentation protocol in which only the prostate capsule would need to 

be segmented. 

 

 
Figure 6.3 Model specificities (described in Section 5.2.2.3) for 6 SMMs (summarised in Table 3.2) across 7 patients, 
shown as the median RMSE and 95% confidence intervals. 
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6.2.2.3 Model Specificity 

The model specificities are shown in Figure 6.3 compared with the generalisation ability, there 

was found to be a much smaller difference between the SMMs based on simplified FE models 

and the fully-specified SMM in terms of specificity.  

6.2.3 Discussion 

Combining biomechanical modelling and statistical shape modelling techniques to predict soft-

tissue motion overcomes the problem of needing to specify accurate values for tissue material 

properties and application-specific boundary conditions by taking into account variations in 

these properties. Such techniques are particularly useful for time-critical applications, such as 

image-guided surgery, since SMMs are linear models with far fewer parameters than the 

underlying biomechanical model and therefore can be instantiated very rapidly. 

However, the sensitivity of SMMs based on biomechanical simulations to the complexity of the 

biomechanical model is an important issue that has received very little attention in the 

literature. Conventional logic suggests that as accurate a biomechanical model as possible is 

desirable for this purpose, but often there is significant burden in creating such a model, 

particularly if a new model needs to be built for each new patient, as in this thesis. Since 

automatic, multi-organ segmentation tools are not widely available, this burden may have a 

significant impact on the clinical workflow required to use motion modelling techniques in 

clinical applications. 

Since uncertainty is inherently taken into account by the statistical modelling, it can be argued 

that the accuracy of the underlying biomechanical model is of relatively little importance 

compared to its ability to capture the typical variation in organ motion. The results of this thesis 

support this hypothesis, and suggest that it is possible to simplify the FE model used to generate 

training data considerably without a significant impact on the accuracy of the associated SMM. 

This is based on both acceptable results of generalisation abilities and specificities reported in 

this work. 

One limitation of this thesis is that a (fully-specified) FE model was used to compute the ground-

truth deformation, which may not necessarily reflect true tissue motion. However, the success 

of this approach for image registration in initial work (Hu et al. 2011a;Hu et al. 2008a) suggests 

that is a reasonable approximation for the TRUS-probe-induced motion of the prostate gland. 
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Moreover, using patients’ intraoperative data for validation could produce extra error due to 

registration method, which is beyond the scope of this comparison work, however, will be part 

of future investigation. It should be noted that the SMMs based on simplified geometry will not 

alter any of the procedures in using the previously proposed original SMMs.  

6.3 Experiments and Results for TRUS-TRUS Registration 

6.3.1 Data 

Three-dimensional TRUS images of the prostate were acquired for five patients undergoing a 

template-guided, transperineal biopsy, or HIFU ablation or photodynamic therapy (PDT) for 

treatment of prostate cancer. All patients were recruited to clinical research studies at 

University College London Hospital, London, UK, and gave written, informed consent to 

participate in studies that were approved by the local research ethics committee. In the case of 

biopsy and PDT, a set of parallel transverse B-mode ultrasound images was obtained using a B-K 

ProFocus scanner (B-K Medical, Berkshire, UK) and a mechanical stepper mechanism (Tayman 

Medical Inc., MO, USA) to translate the probe (B-K 8658T, 5-7.5MHz transducer) axially through 

the rectum. Images were captured at 2mm intervals and stored on the ultrasound scanner. In 

the case of HIFU therapy, 3D volumes were acquired automatically using a Sonablate® 500 

system (Focus Surgery, Inc., Indiana, USA). 

Two volumes were acquired for each patient at the start of the procedure: one with the balloon 

at minimal expansion, and the other after expanding the balloon by injecting saline with a 

syringe in order to deform the prostate gland. Expanding the balloon in this way simulates one 

source of motion of the prostate gland that typically occurs during the placement of a TRUS 

probe (or, equivalently, an endorectal MR imaging coil). The first volume was chosen as the 

source image for building the TRUS-derived SMM, whilst the second was used as the target 

image for accuracy evaluation. 

6.3.2 Experiment and Result 

6.3.2.1 Model Generalisation Ability 

The generalisation ability for each of the 15 models (3 models for each of 5 patients, described 

in Section 5.3.1) is plotted in Figure 6.4. As can be seen from the plot, the absolute value of RMS 

error in millimetres is numerically small, particularly when compared to the level of error 

obtained in the registration experiments, for instances, the results presented in Tables 6.3.  
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Figure 6.4 Generalisation ability for all the 15 SMMs generated in this thesis. The median and 5% - 95% percentiles are 
shown for each model. 

6.3.2.2 Registration Accuracy 

The target-point-to-surface distances following SMM-based and elastic/rigid registration 

algorithms are plotted in Figures 6.5 and 6.6, respectively. Comparing the results for the three 

SMMs presented in Figure 6.5, it can be seen that a better fit to the target points was obtained 

as the number of degrees of freedom included in the training data increased. There was, 

however, little difference between the errors for SMM2 and SMM3, indicating that including 

variability in the pose and size of the pelvic bone in the training FE model made little difference 

to the range of surface captured by the resulting SMM. In contrast, the point-to-surface errors 

are considerably higher for SMM1 compared with SMM2 and SMM3. This result suggests that 

introducing variability into the pose of the TRUS probe in the training data improves the ability 

of the SMM surface to fit the target points, even though the physical gland motion was due to 

an increase in balloon radius (modelled in the training data for SMM1). The most likely 

explanation for this is that some rotation of the gland may have occurred because of non-

uniform deformation of the balloon or patient motion that is equivalent to a change in the pose 

of the probe/balloon. 

Inspection of Figure 6.6 reveals that the CPD and RPM methods provide a better surface fit to 

the target points compared with the SMM-based and rigid registration methods, particularly 

when very few of points are used (point sets PS3 and PS4). This is due to the fact that the 

deformation permitted by the SMM is relatively constrained. Nevertheless, a point-to-surface 

distance within 3.5mm was achieved using all methods, including the rigid-registration.  
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Figure 6.5 Final target-point-to-surface distances after registering models SMM1, SMM2 and SMM3 to target point 
sets PS1-PS4 (shown from left to right) for 5 patients. 

 
Figure 6.6 Final target-point-to-surface distances following surface-based registration to target point sets PS1-PS4 
(from left to right) using the CPD, RPM and rigid ICP algorithms on 5 patient datasets. 

 
Figure 6.7 Example transverse slices through 3D TRUS images (Case 1). From top left: (a) Source image (balloon 
minimally expanded); (b) Target image (balloon maximally expanded); (c) Source image after warping using the 
interpolated displacement field  (shown as white arrows), generated by registering the SMM; (d)-(f) show subtraction 
images: (d) target – source (b – a); (e) target – warped source (b – c); (f) target – source after rigid registration. 
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Figure 6.7 shows example slices through the source TRUS volume before and after registration 

to the target volume using the SMM-based method. The original source image (Figure 6.7a) has 

been warped using the displacement field after interpolating to find the displacement at the 

centre of each voxel. The initial landmark TREs are summarized in Table 6.2. The mean (± 

standard deviation) TRE was 5.80 (± 0.66) mm for all 71 landmarks across 5 patients. The 

landmark-based TREs for the SMM-based method are plotted in Figure 6.8 and a summary of 

the numerical errors is provided in Table 6.3. Inspection of the results reveals that in all cases 

the lowest TREs were achieved by using the SMM2 and SMM3 to constrain the deformable 

surface registration. Furthermore, the largest TREs were obtained when registering the smallest 

number of target points (PS4). However, for larger point sets (PS1-PS3), the number of points 

had very little influence on the TRE. No registrations failed and all were completed within 30s on 

a PC with a 2.33GHz Intel® Core™ dual CPU processor and 3GB RAM.  

Case No. 1 2 3 4 5 All 

Number of landmarks 17 12 15 15 12 71 

Initial TRE (in mm) 6.48 5.24 5.17 5.58 6.54 5.80 ± 0.66 (Mean ± SD) 
Table 6.2 Initial landmark TREs 

Point Set Mean±SD TRE in mm 

SMM1 SMM2 SMM3 

PS1 2.34±0.22 1.63±0.21 1.68±0.23 

PS2 2.32±0.25 1.59±0.16 1.65±0.15 

PS3 2.36±0.22 1.69±0.14 1.69±0.18 

PS4 2.42±0.20 2.26±0.69 2.08±0.61 

All 2.36±0.21 1.79±0.44 1.77±0.37 
Table 6.3 Final TREs for SMM-based registrations 

 
Figure 6.8 TREs after registering models SMM1, SMM2 and SMM3 with four target point set (from left, PS1-PS4 – see 
Table 5.1) for each of the 5 patient cases. 
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TREs for the elastic and rigid registrations are shown in Figure 6.9 and Table 6.4. Notably, the 

results show that in most cases the rigid registration was more accurate than the elastic 

registration methods, although considerably less accurate than the SMM-based registration 

method, overall. Intuitively, these observations may be explained by the fact that the rigid 

registration is the most constrained, allowing no deformation of the prostate model, whereas 

since the elastic registration is subject to purely geometric constraints governed by the initial 

surface registration, physically implausible shape changes are possible. This is particularly the 

case when a small number of target points are used. An example is illustrated in Figure 6.10 

where although the fit to target points is typically very accurate, the shape of the deformed 

prostate surface is poorly representative of a real deformation. In a number of cases, this effect 

resulted in a failed registration due to an inability of the FE simulation to converge to a solution 

given poorly constrained boundary displacements. In contrast, the inherent shape constraints 

applied during SMM-based registrations avoid ill-posed boundary conditions, but permit 

physical deformations. This was verified by the fact that computing the Jacobian ratio at 

integration points of the tetrahedron elements following registration revealed no badly shaped 

elements (indicated by a negative or a large value >40).  

Therefore, one advantage of using an SMM-based scheme as proposed in this thesis is that it is 

still possible to successfully register the model surface to a relatively small number of target 

surface points without introducing implausible shape changes or compromising the registration 

accuracy. This property may be especially useful in interventional applications, where the time 

available to define target surface points is usually limited during a procedure. When performed 

manually, contouring the entire gland surface in target TRUS images is particularly time-

consuming, and this task may need to be repeated during the procedure. Therefore, the ability 

to register using sparse surface data reduces the need for automatic or semi-automatic 

segmentation tools, making the technique practical for interventional use. 

Point Set Mean±SD TRE mm (number of failed registrations) 

CPD RPM Rigid 

PS1 3.91±0.53 4.14±0.54 3.40±1.02 

PS2 3.89±0.51 4.48±0.54 (2) 3.34±0.96 

PS3 3.87±0.54 -- (5) 3.32±0.81 

PS4 -- (5) -- (5) 4.18±1.16 

All 3.89±0.49 (5) 4.27±0.53 (12) 3.56±0.99 
Table 6.4 Final TREs for elastic and rigid registration methods 
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Figure 6.9 TREs after elastic registration using point correspondence determined using the CPD and RPM surface-
based registration algorithms, compared with rigid-body registration using the ICP algorithm. Results are presented 
for the four target point sets (from left to right, PS1-PS4) for each of the 5 patient cases. The vertical dashed lines 
denote the cases where all of the registrations failed due to lack of convergence of the FE simulation. 

 
Figure 6.10 Example of registering a prostate gland surface to a small number of target points (shown as crosses) 
using an SMM (left, an SMM2 in this case) and the CPD method (right). Although a close fit to the target points is 
achieved in both cases, the CPD registration is relatively poorly constrained, leading to a physically implausible final 
shape. 

6.3.3 Discussion 

In Section 6.3.2, results were presented from a method that combines statistical motion 

modelling techniques with FEA to generate patient-specific, 3D deformable models of the 

prostate gland for use in a non-rigid image registration framework. The results indicate that the 

models have the desirable property that they deform in a physically plausible manner, but are 

sufficiently constrained to be registered rapidly and accurately using only a relatively small 

number of target surface points, for example, points identified from typical TRUS views.  

As in previous related studies, linear SMMs were generated using PCA. The validity of using such 

a linear model for the data collected in this thesis was verified by computing the generalisation 
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ability for each model. This metric, expressed as an RMS error in node displacement, was found 

to be very small with a median value < 0.1mm. Therefore, it can be concluded that the accuracy 

of the linear, PCA-based SMM adopted in this thesis is sufficient to represent TRUS-probe-

induced prostate deformations simulated by FE modelling with an acceptable error for this 

application. It is important to note that both high generalisation ability and high specificity (the 

ability to reject an implausible motion, see Section 5.2.2) are significant here, as this leads to a 

robust registration with respect to a sparse target data, as verified by the experiments. Such 

properties are key to successful motion models in the ultrasound-based registration tasks. For 

instance, as shown in Figure 6.8, the SMM2 and SMM3 produced significantly smaller 

registration errors than SMM1 except for the case of PS4. It is expected that the modelling 

accuracy would decrease when less information is provided. It appears that this is the point 

where the model provides most of its modelling ability to balance the demands of input 

information and maintain the acceptable registration accuracy, 

From the comparison study carried out in the previous section, the established alternative 

approach of adopting an elastic deformation, driven by a surface-based registration, was found 

to be both considerably less accurate and more robust than the SMM-based method, 

particularly when registering to a limited number of target points. 

A possible reason for the discrepancy between the accuracy of the elastic versus SMM-based 

method is that the former requires a priori assignment of tissue material properties within the 

gland, whereas the SMM-based method essentially learns deformations for a wide range of 

material properties. Given the known variability in tissue properties and the sensitivity of tissue 

displacements predicted by FE simulations to variation in these properties, this may be a 

significant limitation for elastic registration methods driven purely by surface displacements. 

The TRE of approximately 4.0 ± 0.5mm for the elastic registration methods, computed after 

registering patient TRUS data, is comparable with a TRE of 3.1 ± 1.4mm for a MR-to-TRUS 

registration of a phantom prostate reported by Narayanan et al. (Narayanan et al. 2009). 

Furthermore, the superior registration errors calculated for the SMM-based method (TRE ~1.6 ± 

0.2mm) compare favourably with errors recently reported for non-rigid MR-MR registration 

(Oguro et al. 2009). In that study, the mean fiducial registration error (FRE) – equivalent to the 

TRE metric adopted in this thesis – was 2.8 ± 1.8mm after registering preoperative 1.5T MR 

images of prostates of patients in the supine position to 0.5T interventional MR images acquired 
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during MR-guided brachytherapy with the patients in the lithotomy position. An intensity-based 

B-spline registration algorithm was used for this purpose, but it is difficult to see how this 

algorithm could be easily adapted to TRUS-MR image registration given the substantial 

differences in intensity characteristics typically found between these modalities. 

Recent advances in diagnostic MR imaging and robotic needle insertion (e.g. (Xu et al. 2010)), 

mean that high-accuracy image registration is of increasing importance in achieving precisely 

targeted prostate cancer biopsy and treatments. Although a registration based on an SMM can 

be executed rapidly, making it well-suited for time-critical applications, there is a significant 

additional time overhead associated with generating the SMM. It is important to note, however, 

that this task is completed prior to a procedure, when there is generally more time flexibility. It 

is envisaged that in practice a patient-specific surface model would most likely be based on a 

preoperative MR image, for an MR-derived SMM, segmented either by a radiologist or a 

surgeon (Hu et al. 2009;Hu et al. 2012). This process could be performed manually, but it is now 

feasible to speed-up this process significantly using any of a number of computer-aided MR 

segmentation tools recently reported in the literature (Makni et al. 2009;Martin et al. 2010). As 

shown in this thesis, the FE simulation and SMM construction steps are then fully automatic and 

require no further input from a clinical expert. 

In the experiments carried out for this thesis, TRUS-to-TRUS registration was adopted primarily 

to provide a well-controlled framework for validating the performance of TRUS-derived SMMs. 

However, it is possible that the method described here might be usefully applied for TRUS-TRUS 

registration, for example, if a preoperative 3D TRUS image is available, or as an intermediate 

step for multimodal image registration to account for gland motion during a procedure 

(Baumann et al. 2009). In this approach, new TRUS data is registered to an initial TRUS volume 

that has already been registered with a treatment/biopsy plan or image at the beginning of the 

procedure. Baumann et al. (Baumann et al. 2009) describe a fast, non-rigid intensity-based 

method for TRUS-to-TRUS registration, but it is unclear how well their approach is able to cope 

with progressive changes in ultrasound image intensity, for example due to needle injury or 

ablation during a procedure. As the model-based approach described here has been shown to 

be robust to sparse surface data, this method may have the advantage of being relatively 

insensitive to such changes. This issue will be investigated in future work. 
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The FE model and applied boundary conditions used to generate training data involved the 

following simplifying assumptions: firstly, it was assumed that the prostate gland can be 

modelled as a two-compartment structure, surrounded by homogeneous material. Also, 

tumours were not explicitly modelled as they were not directly visible in the TRUS data. Given 

the widely reported difference in stiffness between tumours and healthy soft-tissue this may 

limit the registration accuracy achievable, although it is likely that only large tumours (>1cc) 

would potentially have significant impact on simulated deformations. The effects of 

incorporating MR-derived information on tumours into the SMM are investigated in Section 6.4. 

Secondly, in this thesis only the relatively simple deformation case has been modelled where 

the balloon surrounding a TRUS probe is expanded and the probe itself is clamped to a stepping 

device. Nevertheless, this is an important source of motion during template-guided 

transperineal biopsy, HIFU therapy, and transperineal needle-based therapies, and successful 

compensation for this source of registration error represents a significant advance on the 

conventional assumption of rigid-body motion. The modelling framework described here could 

be readily adapted to model gland motion from transrectal biopsy, for example, by extending 

the ranges of probe positions and orientations modelled in the training data to reflect those that 

are likely to be encountered in practice, but this may necessitate a more complex contact FE 

model to model adequately prostate deformations as the probe/balloon slides over the rectal 

wall during these procedures. The training model could also be further extended to account for 

more complicated scenarios, such as changes in patient position between imaging sessions 

(Hirose et al. 2002). 

Since full information on the shape and relative location of the pelvic bone was not available 

from the TRUS images, a generalised pelvic model was used to constrain the prostate 

deformation. However, comparing the TRE results for SMM2 and SMM3 in Table 6.3 and Figure 

6.8 indicates that changing the dimensions and position of the pelvic bone in the FE model 

makes very little difference to the registration accuracy. A difference was found between the 

accuracy of SMM1 and SMM2/3, implying that modelling a simple TRUS balloon expansion alone 

(SMM1) achieved a less accurate registration compared with introducing additional variability in 

the pose of the TRUS probe/balloon, but this may be explained by the fact that although the 

physical deformation was caused by a balloon expansion, there may also have been additional 

tissue or patient motion, combined with some change in shape of the balloon itself, that is 

captured by SMM2 and SMM3. 
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A further important source of shape variation is due to differences in the manual segmentations 

produced by different observers. The impact of this variation was not investigated and remains 

the subject of future work. There is no fundamental reason, however, why this source of 

variation could not be included in the training data by building a model using prostate 

segmentations from multiple observers, or segmentations by the same observer on different 

occasions. 

Furthermore, although forces exerted by the bladder are known to influence the position of the 

prostate (Byrne 2005), the bladder was not included in the FE model since again information on 

its shape and location were unavailable from the TRUS images. It was therefore assumed that 

the influence of bladder motion was negligible within the timescale of the deformations 

considered. Simulating changes in prostate shape due to bladder filling might however be useful, 

particularly for lengthy procedures such as HIFU ablation. 

This work has adopted a constrained optimisation scheme that uses the diameter of the TRUS 

balloon to reduce the registration search space. Similarly, if the position and orientation of the 

TRUS probe can be estimated during a procedure – for example, by using a spatial tracking 

device – these measurements could also be used as a constraint, which may help in achieving 

real-time registration. 

6.4 Experiments and Results for MR-TRUS Registration 

6.4.1 Data 

6.4.1.1 Image Acquisition 

Like previously described experiments, all patient data used in this thesis was obtained from 

patients recruited to clinical research studies carried out at University College London Hospital. 

These studies were approved by the local research ethics committee, and all patients gave 

informed, written consent to participate. In this case, data from 8 patients with prostate cancer 

were used to validate the MR-TRUS registration method.  

T2-weighted MR images were acquired on all the patients using a Siemens 1.5T MR scanner and 

a pelvic phased-array coil with the patients in the supine position. The 3D MR volumes had an 

in-plane resolution of between 0.3 and 0.4 mm/pixel with a slice thickness of 3.0-3.3 mm. MR 
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scans were performed prior to template-guided, transperineal needle biopsy procedures (seven 

patients) or, for one case, a HIFU ablation as a treatment for localised prostate cancer.  

All procedures were performed under general anaesthesia and 3D TRUS images of the gland 

were acquired at the beginning of the procedure with the patient placed in the lithotomy 

position. The acquisition of these TRUS images is described in Section 6.3.1. 

6.4.1.2 Data Processing 

Following manual segmentation of the MR images and FE mesh generation, as outlined in 

Section 3.2.1.2, 500 biomechanical simulations were performed for each case using a nonlinear 

FE solver, described in Section 3.2 and Section 6.2.1. 

The deformed FE models resulting from these simulations were then used to build a patient-

specific MR-derived SMM for each case, as described in Section 3.3.1.2. The number of modes 

used in each SMM was determined by finding the value of L (see Eq. 3.3) that resulted in at least 

99% of the variance in the training data being described by the model. For the purposes of 

registration, a high-density, triangulated surface mesh was also created for each SMM.  

Each set of TRUS images was reconstructed into a volume with an isotropic voxel dimension of 

1mm. An implementation of the sheetness filter (see Section 4.2.1.1) was coded using MATLAB. 

In this algorithm, the Hessian was computed using a frequency domain approach based on the 

fast Fourier transform.  

6.4.2 Experiment and Result 

The mean ± SD generalisation ability, defined in Section 5.2.2.2 and calculated over all SMMs 

generated for 8 patient datasets, was 0.30 ± 0.09 mm. This low value indicates that a linear 

SMM was able to capture the simulated prostate motion predicted by the FE model adopted in 

this thesis. 

A summary of the initial and final landmark-based TREs for each patient case is given in Table 

6.5. The initial TREs were calculated following initialisation by rigid alignment of the apex-base 

axes, as described in Section 4.2.3. Histograms of the initial and final RMS TREs are shown in 

Figure 6.11; a summary of the numerical TREs for each case is given in Table 6.5. 
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Case 
No. 

L No. of  
Landmarks 

Initial RMS TRE 
(mm) 

Final RMS TRE  
(mm) 
(Rigid) 

Final RMS TRE 
(mm) 
(Deformable) 

Deformation 
(RMS AND) 
(mm) 

LLE mean ± SD (mm) 

Median 95% CL Median 95% 
CL 

Median 95% 
CL 

Rigid Non-
rigid 

MR Ultrasound 

1 13 5 9.42 11.39 9.47 12.13 2.68 7.21 8.23 3.04 1.53±1.23 1.90±2.17 
2 11 3 14.52 17.43 4.47 7.73 3.19 9.62 12.54 0.68 1.02±0.75 1.62±1.99 
3 11 3 6.29 9.62 3.14 6.09 1.69 5.38 6.00 1.73 2.99±1.21 1.25±0.43 
4 11 4 6.24 9.42 3.20 6.27 1.56 5.21 6.56 1.83 3.15±1.96 1.84±1.93 
5 10 5 9.32 11.14 9.54 12.33 2.60 6.84 3.29 2.96 4.63±2.94 1.89±2.36 
6 12 3 5.86 8.75 2.81 5.22 1.58 4.65 4.41 2.44 1.94±1.35 1.39±0.99 
7 11 4 8.84 11.65 10.38 13.72 2.92 7.49 4.01 2.84 1.20±0.63 1.16±0.68 
8 10 4 6.15 8.98 3.09 5.74 1.49 4.66 7.08 2.07 1.71±1.16 0.89±0.55 

All -- 31 8.13 15.02 5.11 12.05 2.40 6.19 7.32 2.19 2.35±1.92 1.53±1.52 

Table 6.5 TREs computed for registrations using the automatic rigid and deformable SMM-based method (Cases 1 to 7 
were template-guided biopsies and Case 8 was a HIFU ablation) The LLE and contributions of the magnitude of the 
rigid and non-rigid components of the non-rigid transformation (expressed as AND – see text) resulting from the 
deformable registrations are also given for each case. 

 
Figure 6.11 Histograms of the RMS TRE calculated before and after 800 registrations of MR-derived SMM and TRUS 
images (100 registrations per case). Top left: the initial TRE after manual rigid initialisation; Top right: the final TRE 
following registration using the automatic deformable SMM-based method; Bottom left: final TRE following 
automatic rigid registration of the SMM without allowing it to deform; Bottom right: relative change in TRE, 
expressed as a percentage reduction from initial to final TRE using the deformable registration method. 
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The overall median RMS TRE was 2.40 mm across the 8 patient cases using the deformable 

SMM-based method. The magnitudes of rigid and non-rigid components of the registration 

transformation were quantified by separately calculating the absolute node displacement (AND) 

for FE mesh nodes locations over the entire gland due to the rigid and shape transformations 

respectively. The results for each patient are also given in Table 6.5.  

Inspection of Figure 6.11 and Table 6.5 reveals that a significant improvement in TRE was 

achieved by including the deformable component in the registrations, especially for cases 1, 5, 

and 7. Overall, the median RMS TRE was improved from 5.11 mm, obtained using rigid 

registration, to 2.40 mm, obtained using the proposed deformable registration scheme. This 

finding highlights the importance taking into account deformation between MR and TRUS 

imaging to achieve the highest accuracy.  

The TREs computed for the surface-driven registration method are given in Tables 6.7 and 6.8. 

The median RMS TRE in this case was 5.4 mm. The result for this method compares with a mean 

TRE of 3.06 ± 1.41 for MR-to-TRUS registration of a phantom prostate reported by Narayanan et 

al. (2009). Comparing with the SMM-based method, although the surface fit was relatively good 

– the RMS point-to-surface distance ranged from 0.52 to 0.71mm – the TRE was approximately 

45% higher than the SMM-based method. It is also important to note that this method requires 

segmentation of the target TRUS surface and is dependent on the accuracy of this segmentation. 

In contrast, segmentation of the capsule in TRUS images is not required by the automatic model-

to-image technique proposed in this thesis. 

Furthermore, inspection of the LLEs given in Tables 6.5 and 6.6 reveals no obvious relationship 

between these two measures, but the LLE was found to be larger for MR images compared with 

TRUS images. This may be attributed to the lower resolution of the MR images, particularly 

between slices, which introduces greater uncertainty in localising landmarks.  

Landmark No. of  
Landmarks 

Initial RMS TRE 
(mm) 

Final RMS TRE 
(mm) 

LLE mean ± SD (mm) 

Median 95% CL Median 95% CL MR TRUS 

Apex 8 9.88 11.80 3.62 6.09 2.12±1.83 2.72±2.00 
Base 8 10.52 12.77 3.14 6.59 2.13±0.98 1.27±0.96 
JGSV* 8 7.77 10.35 3.01 5.49 2.69±1.93 1.59±1.38 
Cysts/Calcifications 7 5.83 7.22 1.92 3.74 2.49±2.97 0.39±0.25 

* JGSV denotes the junction between the gland and the seminal vesicles as described in Section 5.4.1. 

Table 6.6 TREs and LLEs calculated for registrations using the automatic SMM-based method, grouped according to 
the type of landmark.  
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Case No. Final RMS TRE (mm) MR-TRUS Surface distance (mm) 

Median 95% CL RMS 

1 3.62 4.33 0.68 
2 2.25 4.27 0.57 
3 5.71 7.04 0.59 
4 5.76 7.50 0.71 
5 10.03 10.55 0.61 
6 8.44 9.33 0.53 
7 3.48 4.59 0.52 
8 6.51 8.67 0.57 

All 5.45 9.95 0.60 
Table 6.7 TREs and LLEs calculated for surface-driven registrations. 

Landmark Final RMS TRE (mm) 

Median 95% CL 

Apex 5.72 7.55 
Base 6.68 7.62 
JGSV 4.59 5.81 
Cysts / Calcifications 7.77 9.22 

Table 6.8 TREs calculated for surface-driven registrations, grouped according to the type of landmark. 

 
Figure 6.12 Plots of the spatial distribution of TRE: Left, the TRE is plotted against the perpendicular distance from the 
TRUS probe axis in the anterior-posterior direction; right, the TRE is plotted against the perpendicular distance from 
the mid-gland transverse plane (positive distances are near to the apex and negative distances are near to the base). 
In both cases, the errors are plotted as a median (circle) of 100 registration trials for 8 patients. The error bars 
indicate the 5th and 95th percentiles. 
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The spatial distribution of the registration error has important implications for the clinical 

application of MR-TRUS registration, since the peripheral zone of the prostate gland is known to 

be the most common site harbouring cancer (McNeal, et al., 1988). To investigate the spatial 

distribution of the TREs within the prostate, the TREs were plotted i) versus the perpendicular 

distance from the TRUS probe axis in anterior-posterior direction, and ii) versus the 

perpendicular distance from the mid-gland transverse plane. The results, shown in Figure 6.12, 

reveal no obvious relationship between the TRE and the distance from the probe axis, 

suggesting that the errors independent of spatial location. However, inspection of the second 

plot in Figure 6.12 indicates that the TRE was found to be significantly larger near to the apex of 

the gland. This observation may be attributed to the difficulty associated with accurately 

segmenting the prostate in the transverse MR slices at the ends of the gland, and in identifying 

the apex landmark point in the TRUS images, as suggested by the relatively high LLE computed 

for this landmark (see Table 6.5). Figure 6.13 illustrates the results of warping MR and target 

TRUS images using the DDF computed from two example registrations. 

 

Figure 6.13 Examples of transverse (top row), coronal (middle row) and sagittal (bottom row) views through 
registered MR (left column) and TRUS (right column) volumes for Case 1 (left; biopsy case) and Case 8 (right; HIFU 
case). The MR volume has been warped using the dense displacement field calculated from the FE model. The arrows 
indicate landmarks which were well aligned following registration.  
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Following the discussion in Section 5.4.2, the TRE may be converted to a more clinically useful 

interpretation. For example, if a tumour hit-rate of 90% is set, the corresponding RMS TRE 

threshold is 3.41mm (see Section 5.4.2 and Figure 6.14). Figure 6.15 shows a graph of the 

percentage of the registrations performed in the experiments meeting a particular hit-rate for 

detecting a 0.5cc prostate tumour as a function of the hit-rate. Using this 90% hit-rate threshold, 

it is observed that over 93% of the registrations performed in this thesis met this criterion.  

 
Figure 6.14 Plot shows the TRE threshold as a function of the hit-rate. 

 
Figure 6.15 Plot shows a graph of the percentage of registrations meeting a particular hit-rate for detecting a 0.5cc 
prostate tumour as a function of the hit-rate.  

6.4.3 Discussion 

The potential for misclassification of clinically significant prostate cancer is a major problem with 

conventional transrectal biopsy schemes, and 5mm-grid-based saturation schemes have been 
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proposed to improve the detection of significant disease that would otherwise be missed by 

conventional methods (Epstein et al., 2005; Scattoni et al., 2007). MR-targeted biopsy offers an 

alternative approach with the potential benefit that the number of biopsy samples required to 

establish an accurate diagnosis is much lower than saturation schemes. The practical level of 

targeting accuracy necessary to make this approach clinically useful is as yet unknown and will 

depend on the tumour localisation accuracy of the MR imaging technique employed.  

An important practical feature of the proposed method is the simple two-point initialisation 

which provides the initial rigid-body transformation (described in Section 4.2.3). This step can be 

carried out quickly and easily in the clinical setting. The registration method was found to be 

robust to different starting positions, simulated by adding a random error to two manually-

defined starting points. However, it should be borne in mind that using a fixed level of error in 

this way for all cases does not result in equivalent initial TREs due to different sizes of prostate 

gland which means that the effect of introducing a random initialisation error on the initial TRE 

was greater for smaller glands than for larger glands.  

Another important development in the aspect of validation analysis (see Section 5.4.2) is the 

chance that a targeting system hit the target. This is related to the traditional TRE adopted by 

the image registration community. This calculation provides a crude estimate of system 

performance in a clinical context. However, in practice, tumours are neither spherical nor 

homogeneous, and additional sources of errors will be present. How the performance of an MR-

targeted biopsy system compares with conventional and saturation schemes under realistic 

conditions, together with the accuracy required to achieve disease control from ablative 

interventions, are beyond the scope of this thesis and are topics for future investigation.     
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Chapter 7 Conclusion and Future Work 

7.1 Contributions of this Thesis 

7.1.1 Primary Contributions 

Three main contributions are summarised in this thesis: 

Firstly, a framework for constructing combined statistical-biomechanical models has been 

developed and described in Chapter 3, which includes motion variance and variance in tissue 

mechanical properties. This framework can in principle be applied to other organs. Two models, 

derived from TRUS and MR images, have been described to constrain the prostate gland motion 

using anatomical information obtained from medical images. The performance of the models 

based on simplified geometric information – which could greatly reduce the effort required to 

construct the models – has been investigated and validated. 

Secondly, a normal-vector-based registration algorithm has been proposed that allows efficient 

estimation of registration parameters, based on a probabilistic formulation of a mixture of joint 

spatial and directional data to align two vector-valued features, and solved by an adapted EM 

algorithm. This is implemented using a novel model-to-image registration approach and is 

described in Chapter 4. 

Thirdly, the two techniques highlighted above have been applied successfully to register MR and 

TRUS images, acquired on patients undergoing biopsy and therapy, and a rigorous analysis of 

registration accuracy has been performed and presented in Chapters 5 and 6. At the time of 

submitting this thesis, registration software incorporating the innovations described above has 

been used to provide guidance for over 100 prostate biopsy and therapy procedures carried out 

as part of clinical studies at University College London Hospital. 

7.1.2 Supplementary Contributions 

During the work on the above contributions, some additional contributions have emerged: A 

clinically relevant error analysis has been reported to analyze the registrations based on a 

derivation of the distribution of “target hits” from the TRE (in Section 5.4.2);  second, as part of 

the work described in Chapter 4, a new image noise model was developed for image registration 

(in Section 4.2.2.1), which lays the foundation of the main contribution above; and finally, an 
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analytical solution of the EM algorithm for a mixture of joint Gaussian and Watson distributions 

is described in Section 4.2.2.4. 

7.2 Future Work 

7.2.1 Motion Modelling 

7.2.1.1 Organ Segmentation 

A significant limitation of the model-to-image approach adopted here is the prerequisite for a 

geometric anatomical model of the organs of interest. Preoperative anatomical models which 

incorporate a surgical plan are widely used in many other image-guided interventions, such as 

orthopaedic surgery, since they provide an intuitive and easy-to-interpret representation of 

anatomy and treatment strategy. In the work presented in this thesis, a patient-specific FE 

model based on a segmented MR image was chosen. Once an FE model is obtained, processing 

to predict deformation is a relatively straightforward task, which can be performed 

automatically, with little or no user-interaction. However, it is clear that the generation of a 

model of this kind adds significant time and complexity to the clinical workflow. In the present 

application, this task is not time-critical since it can be performed at any time between MR 

imaging and a procedure, which in practice is usually a period of days to weeks. From a clinical 

workflow perspective, the most significant part of the model generation is the segmentation of 

the MR image, especially if manual segmentation is employed, as in this thesis (the FE mesh 

generation, the FEA simulations, and the TRUS-/MR-SMM generation processes are 

computationally intensive, but completely automatic). Manual segmentation arguably provides 

the most accurate data for FE model building and FEA, but requires significant anatomical 

knowledge, user-interaction and is time-consuming. Consequently, manual MR segmentation 

may be difficult to justify in some centres, although it is envisaged that such a procedure could 

be accepted, for instance, as part of a high-accuracy treatment planning protocol for patients 

undergoing targeted therapy for localised prostate cancer, particularly in a clinical research 

setting. Nevertheless, alternative, semi- or fully-automatic techniques are highly desirable. 

Based on the present experience, the majority of the segmentation time is required to segment 

the pelvic bone, which has a complex geometry compared with that of the prostate. The 

simplified version of the MR-derived SMM has been compared with the original models and 

showed no significant difference, and hence that accurate segmentation of the pelvis is not 
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required. Compared with pelvis segmentation, segmenting the prostate alone is much less 

complicated and less time-consuming when performed manually. Nevertheless, this task would 

benefit from automatic segmentation, for example using the method described by Klein et al. 

(Klein et al. 2008). I am currently being involved in investigating statistical motion modelling 

techniques similar to those employed in this thesis to create generic, population-based models 

of the prostate gland, which could be used to automatically segment MR images using an 

adaptation of the model-to-image registration algorithm (see Section 7.2.1.3 below). 

7.2.1.2 Computational Expense for Biomechanical Simulations 

The computational burden of FEA simulations was reduced significantly by employing a 

parallelised, GPU-based implementation of the FEA solver, which meant that a single FE 

simulation could be performed within 20 seconds. To the best of my knowledge, this work is the 

first to report an image registration method that integrates the high-speed, GPU-based FE 

modelling with statistical shape modelling techniques to efficiently generate a physically-

constrained deformable organ model for registration during image-guided intervention 

applications. The use of a physically-constrained model has considerable advantages over 

alternative methods as it leads to a registration that is robust to noise in the target image, but 

flexible enough to permit significant deformation. 

7.2.1.3 Population-based Generic Modelling Approach 

Progress has been made on the topic of a generic population based modelling (Hu et al. 2011b) 

for addressing both the segmentation and computational issues. The basic idea is first to build a 

population-based generic motion model to describe both variance due to subject difference and 

variance due to individual motion; then, given limited patient specific information (for example 

in the form of a few simple measurements, such as pelvic size and apex-to-base distance), to 

extract subject (or patient)-specific motion model from the generic model; and finally, to 

constrain the transformation using this ‘fitted’ model in the registration task. 

In a published study, the feasibility of using a multilinear statistical shape model (MSSM) to 

predict patient-specific prostate gland motion was investigated (Hu et al. 2011b). An MSSM was 

trained using synthesized shape data, generated by modelling gland motion using a nonlinear 

finite-element model of the prostate and surrounding anatomy, which was in turn derived from 

an MR image for each patient. Once generated, the MSSM was used to predict the prostate 

motion for a new patient given unseen information on gland shape and size, derived from an 
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MR image. A set of deformed gland shapes, predicted by this model, was then used as training 

data for a linear SMM for the new patient, constructed using principal component analysis, 

which approximates the shape variation expected during a TRUS-guided surgical procedure for 

this particular patient. This approach showed promise by computing the error when using the 

final patient-specific SMM to model biomechanically simulated gland deformations for 14 

patient datasets. 

7.2.1.4 Gland Motion Analysis and Modelling 

In the FE simulations of gland deformation, for simplicity, changes in shape of the prostate gland 

that may occur due to a change in patient position between the MR and TRUS imaging sessions 

have not been explicitly accounted for. Hirose et al. (2002) comment that a change in gland 

shape due to the change from the supine to the lithotomy position may be an important factor 

in the changes observed in their study, but since supine MR images were acquired using an 

endorectal MR coil, whilst MR images with the patient in the lithotomy position were acquired 

with a rectal obturator in place, it is impossible to determine the contribution to the gland shape 

change of the change in patient position relative to the forces imposed by these devices.  

In the present research, it is assumed that any shape change due to the change in patient 

position is effectively modelled by considering a significantly wider range of TRUS probe poses 

than would be encountered in practice in the FE simulations. In this way, changes in the relative 

orientation of the anal-rectal and prostate (apex-base) axes due to a change in patient position 

are accounted for since the former governs the angle of insertion of the TRUS probe in the 

lithotomy position. 

However, since the contribution to the total prostate gland deformation of a change from the 

supine position to the lithotomy position has not been quantified, the assumption that the 

contribution is negligible is speculative and requires further verification. Such verification was 

outside the scope of the present studies and might be the subject of future work. Furthermore, 

there has been no evidence showing that this could not be extended to model other situations, 

such as the removal of an endorectal coil used in some MR imaging protocols, or freehand 

motion of an end-firing TRUS probe during transrectal biopsy.  
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7.2.2 Model-to-image Registration 

Based on the retrospective study described in this thesis and limited ongoing in vivo experience, 

the registration requires a relatively high quality target feature (e.g. organ surface boundary). 

However, the localisation of manual surface points is highly user dependent and the automatic 

image features are highly image quality dependent. The former approach needs the clinician 

follows the protocol to define the surface points carefully and in a number of slices (as discussed 

in Section 4.2.1.1), which could be time-consuming and/or requires extensive extra training, 

while the latter relies on having no significant artefacts and relatively high signal-to-noise ratio, 

which is difficult to maintain in practice and lacks measurable standards, especially for 

ultrasound data since ultrasound is widely recognised as a relatively challenging modality from 

the point-of-view of image registration.  

One of the advantages of formulating the probabilistic objective function as in Section 4.2.2 is 

that the algorithm can be adapted in a mathematically principled fashion. For instance, prior 

knowledge and explicit treatment of outliers in data can be included. The first can be formulated 

by extra pairs of corresponding points or other known correspondence. The use of such a prior 

knowledge has been demonstrated in a different application using vessel-based registration (Hu 

et al. 2010). The effect of outliers is included by different methods, uniform probability density 

function (Hu et al. 2010;Myronenko et al. 2010) and a slack variable with column-row 

normalisation procedure (Chui et al. 2002) and the presented work. Such a probabilistic 

formulation provides a measurable, tuneable and interpretable approach to include outliers 

explicitly, via the weighting parameter. This advance of the modelling should be included in the 

future development to address the above difficulties. 

Another possible extension to this algorithm is to identify outliers in the error distribution (see 

e.g. Figure 6.11), indicating less accurate registrations by including a feed-back loop system, so 

the low quality registrations will raise an alarm to the user. It is, in general, a difficult problem as 

no ground truth could be made available during the procedures. But many global constraints 

may be useful. For example, a limit may be set for magnitude of translation and rotation, since 

large translation or rotation is not expected after initial alignment, e.g. using a pair of apex and 

base points described in Section 4.2.3.   

From a more algorithmic point of view, the direct optimisation approach (in Section 4.2.1) is 

more general-purpose as different transformation models, similarity measures and/or 
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optimisers may be employed. However, the probabilistic approach (in Section 4.2.2) is more 

difficult to adapt because it requires a specific probability density function to describe the 

similarity between different model and image features. This can be more complex for other 

vector-valued features; it also requires an explicit transformation model for the feature vector, 

which, in general, is unknown or difficult to approximate. In contrast, the feature can be 

estimated based on the spatial transformation using any suitable numerical interpolation 

schemes in a direct optimisation approach. Nevertheless, the probabilistic approach is still 

worthwhile for a number of reasons besides the flexibility discussed above. In particular, the 

posterior probability in the EM algorithm (in Section 4.2.2.4) can be approximated by either 

truncated cluster density or hard assignment without losing accuracy, which directly results in 

an efficient implementation.  

7.2.3 Validation 

One potential limitation of the validation of this thesis is the small sample size. For instance, 

only data from five patients are recruited in the TRUS-to-TRUS registration study. To investigate 

the implications of this, a statistical power analysis was conducted on the conclusions drawn 

from the results. Using a two-sample, two-sided t-test with a significance level of 5%, and 

assuming a normally distributed error, the statistical power, 1-β (where β is the probability of 

type II error), was calculated for the hypotheses that the TRE corresponding to the registration 

based on SMM2 is lower than the TRE for any of the elastic or rigid registrations. The statistical 

power was >0.8 in all cases, suggesting that 5 patients provided adequate statistical power to 

detect the difference between the TRE of the proposed method and the alternatives.  

Furthermore, if a clinical error threshold of 4.92mm is assumed, equal to the radius of a 0.5cm3 

sphere representing an idealised tumour of clinically significant volume, a more clinically 

meaningful criterion becomes: Is the TRE less than 4.92mm? The statistical power was 

computed for this case by testing whether the mean TRE is significantly less than 4.92 mm, this 

time using a one-sample, two-sided t-test with a significance level of 5%. In this case, 1-β was 

1.0 for registrations based on SMM2, suggesting strong statistical power to support the 

hypothesis that the proposed method can achieve a clinically useful accuracy. In contrast, the 

statistical power corresponding to alternative methods was less than 0.6, indicating that 5 

patients may be insufficient to conclude that alternative methods did or did not achieve a 
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clinical useful level of accuracy. Therefore, further investigation is required using more patient 

datasets to evaluate properly the clinical utility of these alternative registration techniques. 

In conclusion, the accuracy reported in Chapter 6 is based on the assumptions that the data 

used in this thesis can well represent the population data, and the assumption of the normal 

distribution of the error. Both of these assumptions cannot be verified unless more data are 

used in the validation. As a future extension of the work conducted in this thesis, more data will 

be analysed to test and improve the modelling, registration and targeting approaches. 
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