
Applications of Probabilistic Inference to
Planning & Reinforcement Learning

Thomas Furmston

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of the

University of London.

Department of Computer Science

University College London

2012

Declaration

I, Thomas John Fairfax Furmston confirm that the work presented in this thesis is my own.

Where information has been derived from other sources, I confirm that this has been indi-

cated in the thesis.

Abstract

Optimal control is a profound and fascinating subject that regularly attracts interest from numerous scien-

tific disciplines, including both pure and applied Mathematics, Computer Science, Artificial Intelligence,

Psychology, Neuroscience and Economics. In 1960 Rudolf Kalman discovered that there exists a dual-

ity between the problems of filtering and optimal control in linear systems [84]. This is now regarded

as a seminal piece of work and it has since motivated a large amount of research into the discovery of

similar dualities between optimal control and statistical inference. This is especially true of recent years

where there has been much research into recasting problems of optimal control into problems of statis-

tical/approximate inference. Broadly speaking this is the perspective that we take in this work and in

particular we present various applications of methods from the fields of statistical/approximate inference

to optimal control, planning and Reinforcement Learning. Some of the methods would be more accu-

rately described to originate from other fields of research, such as the dual decomposition techniques

used in chapter(5) which originate from convex optimisation. However, the original motivation for the

application of these techniques was from the field of approximate inference. The study of dualities be-

tween optimal control and statistical inference has been a subject of research for over 50 years and we

do not claim to encompass the entire subject. Instead, we present what we consider to be a range of

interesting and novel applications from this field of research.

Acknowledgements

I would like to thank my supervisor David Barber for all the time he has spent assisting in my research

and the many times he has pointed me on the right track throughout the course of my Ph.D. I would

also like to thank him for the huge amount of leeway he has allowed me in the topics and directions

of research I have taken during my time at University College London. I would also like to thank my

wife who has been very supportive throughout. I’m sure I can’t have been easy to live with at certain

points through my Ph.D. and I’m grateful for the patience she has shown in such times. I would also like

to thank Edward Challis, Chris Bracegirdle, Guy Lever, David Silver, Nicolas Hees, Arthur Guez and

Steffen Grunewalder for interesting and fruitful discussions. I would also like to thank Nikos Vlassis

for helpful discussions regarding my work with dual decomposition techniques and for highlighting a

relevant reference in the area of finite horizon Markov Decision Processes. I would like to thank Stephen

Hailes for the patience he has shown while I complete this thesis. Finally I would like to thank the

Engineering and Physical Research Council (EPSRC) for the funding scholarship and the opportunity to

study for my Ph.D. at such a remarkable research centre in Machine Learning.

Contents

1 Introduction 11

1.1 Introduction . 11

1.2 Markov Decision Processes . 13

1.2.1 Discrete Time Control . 14

1.2.2 Continuous Time Control . 17

1.3 Dynamic Programming . 19

1.3.1 Discrete Time Control . 20

1.3.2 Continuous Time Control . 28

1.3.3 Linear-Quadratic Control . 29

1.3.4 Summary . 32

1.4 Partially Observable Markov Decision Processes . 33

1.4.1 Blind Controllers . 34

1.4.2 Memoryless Controllers . 34

1.4.3 Finite State Controllers . 35

1.5 Decentralised Transition Independent Markov Decision Processes 36

1.6 Summary . 37

2 Parametric Policy Search Methods : Introduction 38

2.1 Introduction . 38

2.2 Steepest Gradient Ascent . 40

2.3 Natural Gradient Ascent . 44

2.4 Expectation Maximisation . 45

3 Parametric Policy Search Methods : Search Direction Evaluation 50

3.1 Introduction . 50

3.2 Model-Based Evaluation Techniques . 52

3.2.1 Forward-Backward Inference . 55

3.2.2 Rauch-Tung-Striebel Inference . 60

3.3 Model-Free Evaluation Techniques . 77

3.4 Experiments . 82

3.5 Discussion . 87

Contents 6

4 Parametric Policy Search Methods : Search Direction Analysis 90

4.1 Search Direction Analysis . 91

4.1.1 Natural Gradient Ascent . 94

4.1.2 Expectation Maximisation . 95

4.1.3 Summary . 98

4.2 An Approximate Newton Method . 98

4.2.1 Properties of the Approximate Newton Methods 98

4.2.2 Convergence Analysis . 108

4.2.3 Summary . 109

4.3 Experiments . 111

4.3.1 Non-Linear System . 118

4.4 Discussion . 120

5 Dual Decomposition for Planning with Non-Markovian Policies 121

5.1 Introduction . 121

5.2 Markovian Policies & Dynamic Programming . 122

5.3 Dual Decomposition . 124

5.4 Dual Decomposition of a Stationary Policy Finite Horizon Markov Decision Processes . 128

5.4.1 Naive Dual Decomposition . 129

5.4.2 Dynamic Dual Decomposition . 129

5.4.3 The Slave Problem . 130

5.4.4 The Master Problem . 131

5.4.5 Algorithm Overview . 131

5.5 Experiments . 133

5.5.1 Rolling-Horizon Comparison . 134

5.5.2 Policy-Search Comparison . 134

5.6 Discussion . 139

6 Variational Reinforcement Learning 141

6.1 Introduction . 141

6.2 Bayesian Reinforcement Learning . 142

6.3 Variational Reinforcement Learning . 145

6.4 Approximate Variational Reinforcement Learning . 147

6.4.1 Variational Bayes . 148

6.4.2 Expectation Propagation . 150

6.4.3 Stochastic Expectation Maximisation . 151

6.5 Experiments . 152

6.5.1 Incorporation of Uncertainty . 152

6.5.2 On-Line Learning . 153

Contents 7

6.6 Discussion . 157

Conclusion 159

A Rates of Convergence 173

B An Analysis for the Application of Expectation Maximisation to Markov Decision Processes175

C Newton Inference Recursions 179

D Expectation Maximisation with Deterministic Policies 185

List of Figures

1.1 A Graphical Illustration of a Typical Markov Decision Process Maze Problem. 15

1.2 An Influence Diagram Representation of an Unconstrained Finite Horizon Markov De-

cision Process. 16

1.3 A Graphical Illustration of Dynamic Programming. 20

1.4 An Influence Diagram Representation of an Unconstrained Finite Horizon Blind Controller. 34

1.5 An Influence Diagram Representation of an Unconstrained Finite Horizon Memoryless

Controller. 35

1.6 An Influence Diagram Representation of an Unconstrained Finite Horizon Finite State

Controller. 36

3.1 A Factor Graph Representation of the Reward Weighted Trajectory Distribution. 53

3.2 Dynamic Bayesian Network Representation of the Reward Weighted Trajectory Distri-

bution and the Hidden Markov Model . 54

3.3 Finite Horizon Reward Weighted Trajectory Distribution Split into Rauch-Tung-Striebel

State-Action Value Functions. 61

3.4 Neighbourhood Graph of a System Network Factored Markov Decision Process. 72

3.5 A Factor Graph Representation of the Reward Weighted Trajectory Distribution in a

Discrete High-Dimensional Markov Decision Process. 74

3.6 A Dynamic Bayesian Network Representation of the Lotka-Volterra System. 84

3.7 A Graphical Depiction of the 3-link Rigid Manipulator. 86

3.8 Finite Horizon Q-Inference Model-Based Results to the Lotka-Volterra System and 3-

Link Rigid Manipulator. 87

3.9 Infinite Horizon Q-Inference Model-Based Results to the Lotka-Volterra System. 88

4.1 A Graphical Illustration of the Scaling of Quadratic Functions. 92

4.2 Empirical Illustration of the Affine Invariance of the Approximate Newton Method . . . 105

4.3 Graphical Illustration of the Game of Tetris . 112

4.4 Results of the Tetris Experiment . 113

4.5 Linear System Experiments . 115

4.6 Linear System Experiments . 117

4.7 Model-Free Non-Linear System Experiment . 118

List of Figures 9

4.8 Step Size Training in Model-Free Non-Linear System Experiment 119

5.1 Influence Diagram Representations of the Finite Horizon Markov Decision Process with

a Non-Stationary and a Stationary Policy . 123

5.2 A Graphical Illustration of the Sub-Gradient of a Function. 128

5.3 Rolling-Horizon Experiment . 135

5.4 Dual Decomposition Experiment for the Chain Problem 136

5.5 Dual Decomposition Experiment for the Mountain Car Problem 137

5.6 Dual Decomposition Results of the Puddle World Problem 138

6.1 A Factor Graph Representation of the Variational Distribution in the EM-Algorithm for

Bayesian Reinforcement Learning. 149

6.2 Incorporation of Uncertainty Experiment. 153

6.3 Results of the Variational Reinforcement Learning Experiment 155

6.4 Results of the Variational Reinforcement Learning Experiment 156

A.1 A Graphical Illustration of the Differing Behaviour of Linear, Super-linear, Sub-linear

and Quadratic Convergence. 174

B.1 An Illustrative Example of the Convergence Properties of the EM-algorithm 177

B.2 An Illustrative Example of the Policy Update in the EM-algorithm 178

D.1 Maze Considered in the Deterministic Policy Expectation Maximisation Algorithm . . . 186

D.2 Results of the Deterministic Policy Expectation Maximisation Experiment 187

D.3 Example of ‘Anti-Freeze’ Procedure Applied to a Maximum Likelihood Problem 188

D.4 Example of ‘Anti-Freeze’ Procedure Applied to a Single Time-Point Utility Maximisa-

tion Problem . 189

D.5 Maze and Results of the Expectation Maximisation ‘Anti-Freeze’ Experiment for

Markov Decision Processes . 190

List of Tables

4.1 Iteration Counts of the 3-Link Manipulator Experiment. 116

6.1 Run-Times of On-Line Learning Experiment. 158

Chapter 1

Introduction

1.1 Introduction
Broadly speaking the problems of optimal control, planning and reinforcement learning are concerned

with the optimisation of sequential decision making processes. Another way of stating this, which is per-

haps more accurate in the case of optimal control, is as the problem of optimising the dynamics of a given

system, w.r.t. a control variable or functional, so that the state of the system is brought to some desired

state at an optimal cost. There are numerous real-world problems that can be cast in such a framework

and examples include: Optimal play in games such as chess, backgammon and go; The optimisation of

financial portfolios to maximise the expected return of the portfolio; Network management, which in,

for example, urban traffic networks consists of minimising the amount of congestion in the network; The

optimal control of physical systems, such as robotic equipment, to perform some mechanical task at a

minimal cost to the system. These are but a few of the vast range of possible applications and this, as well

the mathematical intricacies of the subject, has led to a vast amount of research in this area, especially in

the last 60 years.

Optimal control is primarily concerned with the optimisation of systems that are continuous in both

in time and space and, as elegantly argued in [159], can be dated back to 1697 with Bernoulli’s solution

to the brachystochrone problem1. Optimal control has since matured greatly, from Lagrange’s derivation

of the Euler-Lagrange equations and the birth of the calculus of variations (a branch of mathematics in

its own right) up until the twentieth century with the introduction of Pontryagin’s Maximum principal

[127] and Bellman’s dynamic programming [22]. Planning, which we consider as the discrete time

counterpart to optimal control, is a younger subject, but it is one that has come into prominence in the

last 60 years, especially since the advent of the computer. Due to the discrete time formalism of planning

the solutions techniques are necessarily iterative in nature and the advent of the computer has allowed the

implementation of solution techniques that would have been tedious or impossible to compute otherwise.

Additionally, the advent of the computer has brought to prominence the study of problems that are most

naturally formalised in the planning framework, such as games like chess and backgammon. While
1The brachystochrone problem can be stated as follows: If in a vertical plane two points A and B are given, then it is required

to specify the orbit AMB of the movable point M , along which it, starting from A, and under the influence of its own weight,
arrives atB in the shortest possible time. The solution of the brachystochrone problem is given by a cycloid, which is a curve that
is described by a point P on a circle that rolls on an axis in such a way that P passes through first A and then B. See [159] for
details on Bernoulli’s solution and a detailed introduction to the Maximum principal.

1.1. Introduction 12

there is no equivalent to the maximum principal in the planning framework the dynamic programming

paradigm is easily transferable and is, in fact, one of the cornerstones of the subject. However, while

dynamic programming provides a theoretical basis for planning and optimal control it has several well-

known limitations, which include the curse of dimensionality, the restriction that the environment is

Markovian and the requirement for a model of the environment.

The curse of dimensionality is a core computational bottleneck of dynamic programming, where

the computational complexity scales exponentially in the dimension of the environment. This restricts

the exact application of dynamic programming to relatively small problems and alternative optimisation

methods are required for larger, more realistic environments. This has led to the introduction of other

solution techniques, such as approximate dynamic programming methods [26, 41] and policy-search

methods [182, 40, 162, 19, 83], which include gradient-based methods. While, on the most basic level

at least, the application of gradient-based methods to Markov Decision Processes is relatively easy,

there are the invariable difficulties of applying these methods to complicated large scale environments

over a possibly infinite planning horizon. These issues include the poor scaling of the gradient, where

the magnitude of change in the objective function varies dramatically along different components of

the gradient, which necessitates the application of more sophisticated methods, such as Expectation

Maximisation [44] and natural gradient ascent [6, 3, 5, 4]. An additional issue is the actual evaluation

of the gradient, or similar terms in methods such as Expectation Maximisation, which, due to issues

such as non-linearities in the system dynamics or the high dimensions of the environment, is generally

intractable. These and other difficulties, along with the the strong performance of these policy-search

methods in real-world applications, have led to a large amount of research in this area and we shall

consider these methods in detail in chapter(2). In particular we shall consider both the problem of

scaling and of inference and propose some novel methods to both problems.

In most models considered in the literature the reward function and dynamics of the system are

assumed to be Markovian, i.e. the rewards and transitions are only dependent on the current state of the

environment and not all previous states of the environment. This assumption is made for computational

reasons and the optimisation problems quickly becomes intractable when this condition fails to hold.

While a strong assumption it is still possible to model complex dynamics under this framework and so is

often accepted in practice. Another condition that is necessary for the application of dynamic program-

ming is that the conditioning set of the controller, that is the variables upon which an action are decided,

forms a separator set between the current action variable and the previous states of the environment.

When this condition fails to hold dynamic programming is inapplicable and the optimisation problem

necessarily becomes significantly more difficult in general. This second restriction fails to hold in many

models of interest, such as those introduced in sections(1.5 & 1.4), and alternative optimisation tech-

niques are required. In chapter(5) we shall consider one such model (namely a finite horizon Markov

Decision Process with a stationary policy) and apply dual decomposition techniques, which originate

from convex optimisation, to enable the application of dynamic programming to a relaxed form of the

original planning problem. We shall also briefly suggest some possible extensions to other planning

1.2. Markov Decision Processes 13

models where, similarly, dynamic programming is inapplicable, leaving the explicit construction of such

extensions as a point of future research.

Both optimal control and planning consider a model of the environment to be known and when this

is not the case the controller optimisation problem is known as reinforcement learning.2 Typical planning

algorithms, such as dynamic programming, require a model of the environment and so in the reinforce-

ment learning framework it is not possible to directly apply dynamic programming, or other planning

techniques. One solution is to create a model of the environment from any available data and then per-

form dynamic programming, or some other form of planning, using this model. There are situations

where this approach is either undesirable, perhaps because the construction of the model is expensive, or

simply not possible due to issues of system identification. When this is the case reinforcement learning

methods focus on optimising the controller in an on-line manner, while directly interacting with the en-

vironment. These methods often attempt to estimate the quantities of interest in dynamic programming,

such as the value function, directly through the use of samples and without explicit construction of a

model. Prominent examples include Q-learning [179], SARSA [139] and temporal difference learning

[160]. A general high-level overview is given in e.g. [163]. We shall generally consider planning in this

work, but we shall consider a Bayesian form of reinforcement learning in chapter(6). More specifically

we shall optimise the controller w.r.t. a Bayesian objective that incorporates uncertainty in the model by

simultaneously accounting for all possible models of the environment (that are within the support of the

posterior) given the environmental data.

In this chapter we shall introduce the various models that we shall consider during the course of

this work, while also providing an in depth overview of dynamic programming. The organisation of the

chapter shall be as follows: In section(1.2) we shall introduce Markov Decision Processes, which are

the core model for fully observable environments, in both discrete and continuous time; In section(1.3)

we shall introduce dynamic programming for some of the standard formulations of the Markov Decision

Process, as well as providing a summary of the strengths and weaknesses of dynamic programming;

In section(1.4) we shall introduce a richer class of planning models, known generally as Partially Ob-

servable Markov Decision Processes, that can model more complex environments and are necessarily

harder to optimise; In section(1.5) we shall introduce decentralised transition independent Markov De-

cision Processes, which are a popular model for multi-agent systems where there are restrictions on the

communication between the agents; Finally, in section(1.6) we shall summarise the chapter.

1.2 Markov Decision Processes
In this section we describe the planning and control frameworks for environments that are fully observ-

able and Markovian, which are generally referred to as Markov Decision Processes. In section(1.2.1) we

shall introduce the discrete time framework, while in section(1.2.2) we shall introduce the continuous

time counterpart.

2There are alternative, closely related, forms of reinforcement learning that are more interested in different issues, such as the
learning mechanisms of animals or humans. Our interest in reinforcement learning is solely from the optimisation perspective and
we don’t detail these other forms of reinforcement learning.

1.2. Markov Decision Processes 14

1.2.1 Discrete Time Control

The discrete time Markov Decision Process3 (MDP) is a very general mathematical framework with

which to model optimal control problems. The generality and flexibility of the MDP framework has led

to it being one the most widely used and successful frameworks for discrete time control, being success-

fully applied to an almost ubiquitous range of problems, from robotics [124, 94, 93, 124, 168, 166, 138,

43], games [61, 60, 152, 164, 144, 174], finance [18] and network management [136, 71]. Informally

an MDP considers the optimality of an agent’s controlled movements through a given environment. The

agent is able to direct its movements around the environment (within the restriction of the agent’s dy-

namics and the physical constraints of the environment) by selecting an action at each time point. At

each time point the agent receives a scalar reward that usually depends on the agents current position

in the environment and the action it just performed. The aim of the MDP framework is to optimise the

agent’s behaviour so that it can expect to receive the maximal amount of reward during its trajectory

through the environment. The MDP framework is very general and allows for a large range possibilities

in the modelling of the control problem; including discrete and continuous environments (or a mixture of

the two) as well as various ways to model the planning horizon, such finite, episodic or infinite horizons.

The main constraint of the MDP framework is that the transitions of the agent evolve in a Markovian

manner, a point which will be made more precise shortly. We now give an intuitive example of an MDP,

along with some of the modelling possibilities, before proceeding to a more formal definition.

Example 1. Consider the problem of optimising the behaviour of an agent that is located within a

maze environment. An example maze environment is given in fig(1.1), where the walls of the maze are

depicted by the black lines. In such a problem the state space could either be modelled continuously or

in a discrete manner. In an MDP the agent makes its decision based on its current state, which in this

example corresponds to its current position in the maze. The possible actions that the agent can perform

depends on how the environment is modelled: in a continuous model a reasonable range of actions is to

move in any direction in the 360◦ range; where as in a discrete model a reasonable range of actions is

a discrete set of directions, such as {up, down, left, right}. A typical objective is to train the the agent

to move from the beginning of the maze, denoted by start, to the end of the maze, denoted by finish, in

the fastest possible time. A possible reward function that would achieve a global optimum at this desired

behaviour would be to give the agent a positive reward upon completing the maze, while receiving a

zero reward at all other time points. There are several immediate possibilities to modelling the planning

horizon; two examples are a finite horizon or an infinite horizon episodic environment, where the agent

is replaced at the start of the maze every time it completes the maze.

Formally an MDP is described by the tuple {S,A, H, p1, p, π,R}, where S and A are sets known

respectively as the state and action space, H ∈ N is the planning horizon and {p1, p, π,R} are functions

that take the following form

3We shall generally use the simpler terminology Markov Decision Process when it is clear that we are considering the discrete
time framework.

1.2. Markov Decision Processes 15

Start Finish

Figure 1.1: A graphical illustration of a typical MDP maze problem, where the walls are depicted by the
solid black lines and the initial and end positions are appropriately labeled. A possible trajectory of the
agent through the maze is depicted by the arrows.

p1(s) : S → [0, 1], initial state distribution,

p(s′|s,a) : S2 ×A → [0, 1], transition dynamics,

π(a|s) : A× S → [0, 1], policy,

R(s,a) : S ×A → R, reward function.

In general the state and action spaces can be arbitrary sets, but we restrict our attention to either

discrete sets or subsets of Rn, where n ∈ N. When S and A are discrete then the distributions p1(·)

and p(·|a, s), (a, s) ∈ A × S, are constrained to the |S|-simplex, while for each s ∈ S the distribution

π(·|s) is constrained to the |A|-simplex. A similar situation holds in the continuous case where these

(conditional) distributions are assumed properly defined. A common choice of transition dynamics and

policy is a Gaussian with a mean that is a function of the conditioning variables. It is also assumed that

the reward function is bounded. We use boldface notation to represent a vector and also use the notation

z = (s,a) to denote an state-action pair.

Given an MDP the trajectory of the agent is determined by the following recursive procedure:

Given the agent’s state, st, at a given time-point, t ∈ NH , an action is selected according to the policy,

at ∼ π(·|st = s); The agent will then transition to a new state according to the transition dynamics,

st+1 ∼ p(·|at, st); This process is iterated sequentially through all of the time-points in the planning

horizon, where the state of the initial time-point is determined by the initial state distribution s1 ∼ p1(·).

The reward of the trajectory can be obtained in conjunction to calculating a trajectory of the agent;

Given the current state-action pair (st,at) the reward at the current time-point is obtained from the

reward function R(st,at). An influence diagram representation [151] of the MDP framework for a

finite planning horizon and non-stationary rewards and policies is given in fig(1.2).

As mentioned earlier the objective of the MDP framework is to maximise the amount of reward the

agent can expect to receive during the course of the planning horizon. As the general MDP framework

1.2. Markov Decision Processes 16

π1 π2 π3 πH

s1 s2 s3 sH

R1 R2 R3 RH

a1 a2 a3 aH

Figure 1.2: An influence diagram representation of an unconstrained finite horizon H MDP. In influence
diagram notation circular nodes represent random variables, square nodes represent decision variables
and diamond nodes represent (possibly stochastic) functions. The black point nodes, in this case the
π’s, represent the functions to be maximised. The dashed arrows are used to highlight the possibility of
intermediate nodes not shown in the diagram.

allows for stochastic transition dynamics, policies and initial state distribution the most logical objec-

tive function is the total expected reward of the agent, where the expectation is taken over all possible

trajectories. Given a policy, π, the total expected reward is given by

U(π) =

H∑
t=1

Ept(s,a|π)

[
R(s,a)

]
, (1.1)

where the notation pt(s,a|π) is used to represent the marginal p(st,at|π) of the joint state-action tra-

jectory distribution

p(s1:H ,a1:H |π) = p(aH |sH , π)

{H−1∏
t=1

p(st+1|st,at)p(at|st, π)

}
p1(s1). (1.2)

Under the assumption of a bounded reward function it follows that the objective function (1.1)

is bounded for finite planning horizons. This is not necessarily the case when the planning horizon

is infinite and the objective function has to be altered to ensure boundedness. The two most popular

methods of handling infinite planning horizon are the discounted rewards and average rewards. In the

discounted rewards setting the reward received at a time point is scaled down in such a way to ensure

boundedness of the objective function, where the amount of scaling depends on the time point. More

precisely a scalar factor, γ ∈ [0, 1), known as the discount factor, is introduced and the reward received

at time t is scaled by γt−1. Including the introduction of this discount factor the objective function now

takes the form

U(π) =

∞∑
t=1

Ept(s,a|π)

[
γt−1R(s,a)

]
. (1.3)

1.2. Markov Decision Processes 17

It is simple to see, through the use of a geometric progression, that if |R(s,a)| ≤M then the discounted

reward objective function satisfies the bound

−M
1− γ

≤
∞∑
t=1

Ept(s,a|π)

[
γt−1R(s,a)

]
≤ M

1− γ
.

In the average rewards framework the objective function takes the form

U(π) = lim
H→∞

1

H

H∑
t=1

Ept(s,a|π)

[
R(s,a)

]
. (1.4)

In the average rewards framework it is assumed that the Markov chain induced by any policy is er-

godic, see e.g. [69]. Under this assumption for any given policy there is a unique stationary state-action

distribution, denoted by p(s,a;π), and (1.4) can be written in the equivalent form

U(π) = Ep(s,a|π)

[
R(s,a)

]
.

It is clear that under the assumption of a bounded reward the objective function for the average reward

framework is well defined and bounded.

It is worth noting that (1.1, 1.3 & 1.4) are not the only reasonable objective functions for the MDP

framework. In particular these objective functions are, what is commonly referred to as, risk-insensitive.

In other words they only take into account the expected reward and not any sort of volatility, or risk, of

the reward. Other variants of the MDP framework have been constructed to take into account certain

measures of risk, such as the variance of the total expected reward. A typical example is the objective

function,

Uλrs (π) = Ep(s1:H ,a1:H |π)

[
expλ

H∑
t=1

R(st,at)

]
, (1.5)

where λ is the risk-sensitive parameter. Up to first order variation in λ we have

λ−1 logUλrs (π) = Ep(s1:H ,a1:H |π)

[H∑
t=1

R(st,at)

]
+ λVar

[H∑
t=1

R(st,at)

]
+O(λ2),

so that, intuitively, λ > 0 encourages risk-averse behaviour, while λ < 0 encourages risk-seeking

behaviour. We don’t consider any such objective in this work, see e.g. [31] for more details on risk-

sensitive control, but mention it simply to highlight the generality of the MDP framework.

1.2.2 Continuous Time Control

Having detailed some of the standard frameworks for discrete time Markov Decision Processes we now

detail the the continuous time counterparts. In continuous time control the time index is usually denoted

by a real-valued variable, t ∈ R. The control system is considered between some initial time point, t0

and a final time point, tf , which can be infinite. Invariably with the transition from discrete to continuous

1.2. Markov Decision Processes 18

time the transition dynamics are now described by a set of (possibly stochastic) differential equations,

ds = b(s(t),a(t))dt+ dξ, (1.6)

where s, b, dξ and ds are n-dimensional vectors and a is an m-dimensional vector which defines the

control. The term b(s(t),a(t))dt describes the deterministic part of the transition dynamics, and is

usually referred to as the drift component. The stochasticity of the differential equation comes from

the term dξ, which follows a Wiener process and is known as the diffusion component. Deterministic

systems are retrieved by letting the diffusion process tend to zero. More details on stochastic differential

equations can be found in e.g. [122].

There are various possibilities on the formulation of the control problem in continuous time. The

simplest possibility, and the one that will be considered here, is a fixed finite horizon in an unconstrained

state space. Other possibilities include control until exit from a closed region of the state space, or control

with a constraint on the state, either at the final time point or throughout the trajectory, see e.g. [52].

In the simplest case of control in an unconstrained state space with a finite planning horizon the

optimal control problem is to find the control a(t), t ∈ [t0, tf), that minimises the total expected cost,

U(s0, t0,a(t0 → tf)) = Ep(s(t0→tf)|a(t0→tf),s(0)=s0)

[
φ(s(tf)) +

∫ tf

t0

dtf(s(t),a(t), t)

]
,

where the expectation is taken over all possible trajectories that pass through the state s0 at time t0. The

functions φ and f are known as the terminal and intermediate cost functions, respectively. In determin-

istic optimal control this expectation vanishes as all the mass is placed on a single trajectory. We now

detail a simple example, based on an example in [52], to illustrate these ideas.

Example 2. Consider the production planning of a factory producing n commodities. Using the notation

xi(t), ui(t) and di(t) to respectively denote the inventory, production and demand levels of stock i at

time t. As we are considering the fully observable case the demand levels are assumed to be known to

the planner. The rate of change of the inventory level is given by the differential equation

d

dt
s(t) = a(t)− d(t).

Given an initial inventory level, s(t0), the control problem is to optimise the production rate to minimise

∫ tf

t0

s>(t)As(t) + a>(t)Ba(t)dt+ φ(s(tf)),

where A and C are positive diagonal matrices that correspond to the storage and production costs

respectively, while φ is the terminal cost function.

At the moment there are no constraints on the state or action space, which is obviously unrealistic

in such a problem. For example, the inventory levels should be restricted to be non-negative as it is not

possible for a factory to store a negative amount of a commodity. Additionally there are constraints on

1.3. Dynamic Programming 19

the amount of commodities that a factory can produce per time unit, which is usually expressed through

the constraint

c>a ≤ 1,

for a given constant vector c � 0.

1.3 Dynamic Programming
Having introduced both discrete and continuous time MDPs we now give a detailed discussion of dy-

namic programming, which was introduced by Richard Bellman [22], and is one of the cornerstones

of optimal control and planning. Dynamic programming is very powerful tool and yet on an intuitive

level it is amazingly simple. Fundamentally it is based on idea that, given the current state of the envi-

ronment, the optimal action is independent of any past actions and instead only dependent on possible

future actions and their effects. This idea is summarised by Bellman’s principal of optimality [22]

Principle of Optimality: An optimal policy has the property that whatever the current state

and current decision are, the remaining decisions must constitute an optimal policy with

regard to the state resulting from the current decision.

To obtain an intuitive understanding of the dynamic programming principal we now give an informal

description of its application to the maze problem in example(1).

Example 3. In this example we consider a discrete version of the maze problem where there are 25

states and 4 actions, which correspond to moving right, left, up and down. The initial state is s = 1,

the goal state is s = 21, see fig(1.3a), and the transition dynamics are deterministic. We consider the

problem where the agent continues to move around the maze indefinitely until it reaches the goal state.

The objective is to get the agent to the goal state in the shortest amount of time and this corresponds to

a shortest path problem. Dynamic programming iterates backward in time and, as we are considering a

shortest path problem, the state of the penultimate time-point is given by state s = 22. Given this state

the optimal action is clearly to move upwards to the goal state, which is depicted in fig(1.3b). In the next

iteration the agent must either be in state s = 22 or s = 23, but as the optimal action in state s = 22

is to move upwards the agent must be in s = 23. The possible next states are s = 22, 23 or 24 and due

to the previous iterations of dynamic programming it is clear that the optimal action is to move upwards

to state s = 22. This process is iterated backward in time until the optimal policy for the entire maze is

obtained. We depict the sixth iteration of this process in fig(1.3d) and the final optimal policy is given in

fig(1.3e). Note that dynamic programming gives the optimal policy for all states, even those states that

will not be visited under the optimal policy. This is an aspect of dynamic programming, where the policy

obtained is optimal for all possible initial state distributions.

Unsurprisingly the dynamic programming solutions of the discrete and continuous time problems

are fundamentally different: In discrete time problems dynamic programming leads to either a recursive

update equation or a set of fixed point equations, depending on whether the planning horizon is finite or

1.3. Dynamic Programming 20

(a) A Maze Shortest Path
Problem.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

(b) First Iteration of Dynamic
Programming.

(c) Second Iteration of Dynamic
Programming.

(d) Sixth Iteration of Dynamic
Programming.

(e) Optimal Policy.

Figure 1.3: A graphical illustration of dynamic on a shortest path maze problem. (a) A graphical depic-
tion of the Maze, with the state numbers given, where the initial and goal states given by 1 and 21. (b)
The first iteration of dynamic programming gives the optimal policy for state s = 22, which is to move
upwards to the final state. (c) The second iteration of dynamic programming gives the optimal policy
for state s = 23, which again is to move upwards. (d & e) Dynamic programming continues to iterate
backwards in time, with the sixth iteration given in (d) and the final policy given in (e).

infinite respectively; In continuous time problems the dynamic programming principal leads to a non-

linear partial differential equation. We now detail the dynamic programming framework for these two

cases in the next two sections.

1.3.1 Discrete Time Control

In this section we will discuss the dynamic programming paradigm for some of the standard models for

the discrete time MDP framework, in particular the finite planning horizon and the discounted infinite

planning horizon. There are several other models which will not be considered here, such as average re-

ward over an infinite planning horizon, or infinite horizon problems with periodic rewards and transition

dynamics, see e.g. [24]. To avoid obfuscating the overall simplicity of dynamic programming we ignore

some of the more technical issues, such as issues of measurability.

Finite Planning Horizon

In the case where H <∞ the MDP optimisation problem over π1:H takes the form

max
π1:H

U(π1:H) = max
π1:H

H∑
t=1

Ept(s,a;π1:t)

[
Rt(s, a)

]
. (1.7)

Now before proceeding to the actual optimisation problem we introduce a function that will play a key

role in finite horizon dynamic programming, the value function, also sometimes known as the optimal

1.3. Dynamic Programming 21

value function. Given a point t1 in the planning horizon the value function at time t1 is defined as

V ∗t1(s′) = max
πt1:H

H∑
t=t1

Ept(s,a;π1:t)

[
Rt(s, a)

∣∣st1 =s′
]
. (1.8)

As can be seen from the definition the value function gives the optimal amount of reward the agent can

expect to receive, from the current time point onwards, given that it is currently in state s′ at time t1. Due

to the Markovian structure of the transition dynamics (1.2) the optimal value function can be written in

the form

V ∗t1(s′) = max
πt1:H

H∑
t=t1

Ept(s,a|st1=s′;πt1:t)

[
Rt(s, a)

]
,

and is easily seen to be independent of the policy at earlier time points. Additionally, between successive

time points the optimal value function satisfies the recursive relation

V ∗t1(s) = max
πt1

{
Eπt1 (a|s)

[
Rt1(s, a) + Ep(s′|s,a)

[
V ∗t1+1(s′)

]]}
. (1.9)

This recursion can be shown as follows,

V ∗t1(s) = max
πt1

{
Ept1 (s,a|st1=s;πt1:t)

[
Rt1(s, a)

]
+ max
πt1+1:H

H∑
t=t1+1

Ept(s′,a′|st1=s;πt1:t)

[
Rt(s

′, a′)

]}
,

= max
πt1

{
Ept1 (s,a|st1=s;πt1:t)

[
Rt1(s, a)

]
+ Ept1+1(s′|st1=s,at1=a;πt1:t)

[
V ∗t1+1(s′)

]}
,

= max
πt1

{
Eπt1 (a|s)

[
Rt1(s, a) + Ep(s′|s,a)

[
V ∗t1+1(s′)

]]}
.

The first line uses the definition of the value function along with the independence of the first term to

future polices, which allows the maximisation over future policies to be pulled through the summation.

The second line conditions on the state-action pair at time t1 and uses the definition of the value function

at time t1 + 1. The final line uses the Markovian dynamics, which gives

pt1(s, a|st1 = s;πt1:t) = πt1(a|s), pt1+1(s′|st1 = s, at1 = a;πt1:t) = p(s′|s, a)πt1(a|s).

The recursive formulae (1.9) forms the core of the dynamic programming principal for finite horizon

problems and is known as the Bellman equation, or finite horizon Bellman equation. The fact that for

each given state the policy is a distribution over A means that the maximum of (1.9) occurs when the

policy is deterministic4 and takes the form5

π∗t1(a|s) =

1 if a = argmax

a∈A

{
Rt1(s, a) + Ep(s′|s,a)

[
V ∗t1+1(s′)

]}
,

0 otherwise.

4It is possible that there can be multiple optimal actions, in which case the policy can be stochastic. For simplicity of notation
we assume that the optimum is always unique and the optimal policy is deterministic.

5In the case of continuous state-action spaces this distribution doesn’t exist as there is no well defined distribution on a subset
of the Euclidean space that has all of its mass on a single point. In this case one should really drop the notion of optimal policy
and instead consider the optimal controller, i.e. the optimal action, but it is retained here for simplicity of exposition.

1.3. Dynamic Programming 22

π∗H(a|s) =

{
1 if a = argmax

a∈A
RH(a, s)

0 otherwise.

V ∗H(s) = Eπ∗H(a|s)

[
RH(s, a)

]
for t = H − 1, . . . , 1 do

π∗t (a|s) =

 1 if a = argmax
a∈A

Rt(s, a) + Ep(s′|s,a)

[
V ∗t+1(s′)

]
0 otherwise.

V ∗t (s) = Eπ∗t (a|s)
[
Rt(a, s) + Ep(s′|s,a)

[
V ∗t+1(s′)

]]
end for

Algorithm 1.1: Dynamic Programming algorithm for finite horizon MDPs with non-stationary policy.

The Bellman equation can now be written in the form

V ∗t1(s) = max
a∈A

{
Rt1(s, a) + Ep(s′|s,a)

[
V ∗t1+1(s′)

]}
. (1.10)

The Bellman equation allows one to recursively calculate the value function backwards in time. It re-

mains to obtain a formulae for the value function at the final time point, which is required at the start of

these recursions. This is simple and can be immediately obtained from (1.8), which gives

V ∗H(s) = max
πH

EπH(a|s)

[
RH(s, a)

]
= max

a∈A
RH(a, s). (1.11)

Hence the value functions can be calculated in linear time w.r.t. the planning horizon: the recursion

begins at the final time point with (1.11) and then recurses backwards in time using (1.10).

Having introduced the value function and the Bellman equation we now return to the original opti-

misation problem. We first observe that the objective function (1.7) can be written in terms of the value

function corresponding to the initial time point as follows

max
π1:H

U(π1:H) = max
π1:H

H∑
t=1

Ept(s,a;π1:t)

[
Rt(s, a)

]
= Ep1(s)

[
V ∗1 (s)

]
.

Hence, to calculate the maximal value of U(π1:H) it suffices to calculate the value function of the initial

time point, which is most naturally done through the Bellman equation. As well as providing the maximal

value of U(π1:H) the value functions also provide the point at which the maximum is achieved, i.e. the

optimal policy. This completes the dynamic programming solution to the finite horizon MDP problem

and is summarised in algorithm(1.1).

Discounted Infinite Planning Horizon

While in finite horizons the dynamic programming paradigm results in the system of recursive equations

(1.10) it is quite different in an infinite planning horizon with discounted rewards, where instead a fixed

1.3. Dynamic Programming 23

point equation is obtained. The optimal controller is then obtained through the solution of this fixed point

equation, which is done using either the theory of contraction mappings, and in particular the contraction

mapping fixed point theorem, or linear programming. In this section we detail the derivation of this fixed

point equation, known as the discounted reward Bellman equation, along with its various solutions. First,

however, we introduce the idea of a value function in the discounted rewards framework.

We saw that when the planning horizon was finite the value function depended explicitly on time,

or more specifically on the amount of time left in the planning horizon. In the infinite horizon setting

this no longer makes sense because, regardless of the current time point, there will always be an infinite

number of time steps remaining. So instead of a value function corresponding to each time point there

will be a single, stationary, value function defined for all time points simultaneously. With this in mind

the optimal value function for discounted rewards framework is defined as

V ∗(s′) = max
π

∞∑
t=1

Ept(s,a;π)

[
γt−1R(s, a)

∣∣s1 =s′
]
. (1.12)

Similarly, given a policy π the corresponding value function is defined as

V π(s′) =

∞∑
t=1

Ept(s,a;π)

[
γt−1R(s, a)

∣∣s1 =s′
]
. (1.13)

We note that in (1.12) and (1.13) the summation begins at t = 1, which should be taken to mean the

summation from the current time point onwards rather than the from the initial time point.

While dynamic programming in finite horizon problems centres around the set of recursive equa-

tions (1.10) in the discounted rewards problem it centres around a fixed point equation. The derivation

is more protracted in the case of an infinite horizon with discounted rewards and we omit the details, but

see e.g. [24], and the fixed-point equation takes the form

V ∗(s) = max
a∈A

{
R(s, a) + γEp(s′|s,a)

[
V ∗(s′)

]}
, (1.14)

where an analogous equation holds for V π . The fixed point equation (1.14) is known as the discounted

reward Bellman equation, or simply the Bellman equation when the context is obvious. By writing the

discounted reward objective function (1.3) in terms of the optimal value function

max
π

U(π) = max
π

∞∑
t=1

Ept(s,a;π)

[
γt−1R(s, a)

]
= Ep1(s)

[
V ∗(s)

]
,

it is clear that solving the original planning problem is equivalent to solving (1.14), which is usually done

either through the use of contraction mappings or by linear programming. Before proceeding to these

solutions we give a brief description of the theory of contraction mappings.

Intuitively a contraction mapping is a function with property that the distance between any two

points in the domain is greater than the distance between the image of those points, where distance is

measured by some given metric. A nice property of contraction mappings, known as the contraction

1.3. Dynamic Programming 24

mapping fixed point theorem, is that the iterative application of a contraction mapping will lead (in the

limit) to a unique fixed point. Contraction mapping methods solve the Bellman equation by defining

a suitable contraction mapping on functions over S such that the optimal value function is the fixed

point of the contraction mapping. The optimal value function, and hence the optimal controller, is then

obtained by iterative use of this contraction mapping. We now makes these ideas more formal.

Given a set S we denote the set of all bounded real-valued functions on S by B(S). Note that the

presence of the discount factor ensures that V ∗ ∈ B(S) and also that the value function V π ∈ B(S) for

any given policy, π. By introducing the supremum norm ‖ · ‖ : B(S)→ R, i.e.

‖V ‖ = sup
s∈S
|V (s)|,

the pair (B(S), ‖·‖) becomes a Banach space, i.e. a complete normed vector space. The formal definition

of a contraction mapping is as follows:

Definition. Given a Banach space (B(S), ‖ ·‖) a mapping T : B(S)→ B(S) is said to be a contraction

mapping if there exists γ ∈ [0, 1) s.t.

‖T (V)− T (V ′)‖ ≤ γ‖V − V ′‖, ∀ V, V ′ ∈ B(S).

As can be seen from this definition a contraction mapping reduces the distance between points in B(S),

where the distance is measured by the metric ‖ · ‖. We now state the contraction mapping fixed point

theorem, the proof of which can be found in standard analysis textbooks [130], which forms the basis for

solving the Bellman equation via contraction mappings.

Contraction Mapping Fixed Point Theorem. If T : B(S) → B(S) is a contraction mapping then

there exists a unique fixed point of T , i.e. there exists a unique function V ∗(s) ∈ B(S) s.t.

T (V ∗) = V ∗.

Additionally, for any T ∈ B(S)

lim
k→∞

‖T k(V)− V ∗‖ = 0,

T k denotes k successive compositions of the function T . In other words T k(V) converges uniformly to

V ∗.

To solve the Bellman equation through the contraction mapping fixed point theorem we now need

to define a suitable contraction mapping that has the optimal value function as its fixed point. Looking

at the structure of the Bellman equation an immediate candidate for such a contraction mapping is the

following.

Definition. Given a function V : S → R then the optimal Bellman operator, T ∗ : B(S)→ B(S), is

1.3. Dynamic Programming 25

defined by

T ∗V (s) = max
a∈A

R(a, s) + γEp(·|s,a)

[
V (s′)

].
A proof that T ∗ is a contraction mapping and that its fixed point is the optimal value function can be

found in e.g. [24]. The two most prominent methods which use this contraction mapping are value

iteration [22] and policy iteration [80]. There are more complicated hybrid versions of these algorithms,

like modified policy iteration [131], that are designed for improved convergence but we don’t detail them

here.

Value Iteration

As the name suggests value iteration works in the space of value functions. Starting at an arbitrary

initial value function, V1, value iteration generates a sequence of value functions, {Vk}k∈N, through

repeated application of the optimal Bellman operator, i.e. Vk+1 = T ∗Vk. Provided that V1 ∈ B(S) then

it is immediate that this sequence will converge to V ∗. In practice it can be difficult to determine the

convergence of value iteration and typically one performs iterations until either a predefined number of

iterations have been completed or until a given stopping criterion is satisfied. For example one could

continue performing iterations until the Bellman residual

max
s∈S

∣∣∣∣Vk+1(s)− Vk(s)

∣∣∣∣
is below some threshold, ε′ = ε(1 − γ)/2γ. Once the iterations have been completed the final policy is

obtained

πkfinal(a|s) =

1 if a = argmax

a∈A

[
R(a, s) + γEp(·|s,a)Vkfinal(s

′)

]
0 otherwise.

where Vkfinal is the value function at the final iteration. The advantage of using the Bellman residual as a

convergence criterion is that the final policy will be ε-optimal [24], i.e. the total expected reward of the

policy will be within ε of the optimum. A summary of value iteration is given in algorithm(1.2).

The computational complexity of value iteration is equal to the number of iterations necessary

for optimality times the cost of performing each iteration. It is clear to see that one iteration of value

iteration requires O(S2A) operations. In general there is no guarantee that the value function will

converge in a finite number of iterations but it can be shown that the associated policy will converge in

a finite number of iterations [24]. In fact this result can be strengthened to convergence occurring in a

polynomial number of iterations [172].

Policy Iteration

As previously noted value iteration works in the space of value functions. A common alternative is

policy iteration which works directly in the policy space. Starting at some initial policy, π1, policy

1.3. Dynamic Programming 26

Initialise an arbitrary initial value function V ∈ B(S).

repeat

for s ∈ S do
V (s) = maxa∈A

{
R(a, s) + γEp(s′|s,a) [V (s′)]

}
end for

until convergence

Obtain optimal policy using the formulae

π∗(a|s) =

 1 if a = argmax
a∈A

[
R(a, s) + γEp(·|s,a)V (s′)

]
0 otherwise.

Algorithm 1.2: Value Iteration Algorithm for Infinite Horizon MDPs with Discounted Rewards.

iteration alternates between policy evaluation and policy improvement until convergence. During policy

evaluation the value function corresponding to the current policy, i.e. V πk , is calculated. This can be

done in one of two ways: either by solving the system of linear equations

V πk(s) = Eπk(a|s)

[
R(s, a) + γEp(s′|s,a)

[
V πk(s′)

]]
, (1.15)

or by successive applications of the operator Tπk

V πki+1(s) = TπkV
πk
i (s) = Eπk(a|s)

[
R(s, a) + γEp(s′|s,a)

[
V πki (s′)

]]
,

to some initial estimate of the value function. It is easy to show that Tπk is a contraction mapping with

a fixed point at V πk , again see [24], so that

V π
k

≈ TNπkV
πk

1 ,

for arbitrary V π
k

1 ∈ B(S) and sufficiently large N ∈ N. During the policy improvement stage the policy

is updated through the application of the optimal Bellman operator to the value function of the current

policy, i.e.

πk+1(a|s) =

1 if a = argmax

a∈A

[
R(a, s) + γEp(·|s,a)

[
Vπk(s′)

]]
0 otherwise.

A summary of the policy iteration algorithm is given in algorithm(1.3).

The computational complexity of policy iteration depends on three terms, the cost of policy evalua-

tion, the cost of policy improvement and number of iterations required for optimality. If policy evaluation

is done by solving the linear system (1.15) then the complexity will in general be O(S3), although this

can be reduced if the linear system is sparse or has a certain structure. Alternatively, if the policy is

1.3. Dynamic Programming 27

Initialise an arbitrary initial policy π1 and set iteration count k = 1.

repeat

Evaluate policy by either solving the system of linear equations (1.15) or by iteratively applying
the contraction mapping Tπk on an approximate value function until convergence to the fixed point
Vπk .

Improve policy using the formulae

πk+1(a|s) =

 1 if a = argmax
a∈A

[
R(a, s) + γEp(·|s,a)

[
Vπk(s′)

]]
0 otherwise.

Set k ← k + 1.
until convergence of policy

Algorithm 1.3: Policy Iteration Algorithm for Infinite Horizon MDPs with Discounted Rewards.

evaluated through iterative use of the contraction mapping Tπ then the run-time is O(NS2A), where N

is the number of iterations of Tπ performed. It is clear that policy improvement can be performed in

O(AS2) operations. An immediate upper bound on the number of iterations required by policy iteration

can be obtained by observing that there are AS distinct deterministic stationary policies and an iteration

of policy improvement strictly doesn’t decrease the value of the policy. This means that at most an expo-

nential number of policy improvement steps are required to obtain optimality. It is too complex to detail

here but this bound can be actually reduced to a polynomial bound, see e.g. [108] for an overview.

Linear Programming

When the state-action space is discrete there is an alternative to the contraction mapping methods, which

it is solve the Bellman equation through linear programming [45]. Associating a positive scalar, µ(s) ≥

0, with each state, s ∈ S, the primal version of the linear program takes the form

min
µ

∑
s∈S

µ(s)V (s)

s.t. V (s) ≥ R(s, a) + γ
∑
s′∈S

p(s′|s, a)V (s′), (s, a) ∈ S ×A,

while the dual formulation takes the form

max
λ

∑
a∈A,s∈S

λ(a, s)R(a, s)

s.t. µ(j) =
∑
a∈A

λ(a, j)− γ
∑

a∈A,s∈S
λ(a, s)p(j|a, s), ∀j ∈ S,

where λ are Lagrange multipliers, which are introduced to enforce the Bellman equation constraint, and

are constrained to be positive.

Observe that the primal problem has |S| variables and |A|× |S| constraints, while the dual problem

has |A| × |S| variables and |S| constraints. Linear programs are solvable in polynomial time [89, 86] so

1.3. Dynamic Programming 28

this formulation provides a polynomial time algorithm (in S and A) to solve the MDP problem. How-

ever, when the linear programming solution was first introduced linear program solvers were slow in

practice, even for moderately sized MDP problems, and therefore didn’t enjoy the popularity of the con-

traction mapping methods. The speed of these methods has improved vastly with the advancement of

linear program methods, such as interior point methods [32], but contraction mapping methods (or ap-

proximations thereof) still dominate the literature. One area where the linear programming formulation

has enjoyed greater success than contraction mapping methods is in its elegant handling of constraints,

see e.g. [2]. It has also enjoyed some success in the approximate dynamic programming literature, with

the natural extension of this linear program to approximate linear programs [41].

1.3.2 Continuous Time Control

As in the discrete time framework the dynamic programming solution techniques will involve the optimal

value function, which in this case is defined as

V (s, t) = min
a(t→tf)

U(s, t,a(t→ tf)).

As in the discrete time framework the optimal value function satisfies a recursive formulae relating the

functions at different time-points. Consider two time-points t,t′ ∈ [t0, tf), s.t. t ≤ t′, then the optimal

value function V (s, t) can be written in the form

V (s, t) = min
a(t→t′)

Ep(s(t→t′)|a(t→t′))

[∫ tf

t0

dtf(s(t),a(t), t) + V (s(t′), t′)

]
. (1.16)

This recursive formulae for V (s, t) follows easily by using the linearity of integration, pulling through

the minimisation and then using the definition of the optimal value function.

Considering the time-point t′ = t+dt and calculating the Taylor expansion of V (s(t′), t′) around t,

which is done to first order in dt and second order in ds due to standard Ito calculus and ignoring higher

order terms, gives

V (s(t′), t′) = Ep(s(t→t′)|a(t→t′),s(t)=s)

[
V (s, t) + ∂tV (s, t)dt

+ (∂sV (s, t))>ds+
1

2
Tr(∂2

sV (s, t)ds2)

]
.

Using the definitions of the transition dynamics (1.6) and noise process this Taylor expansion can be

rewritten in the form

V (s(t′), t′) = V (s, t) + ∂tV (s, t)dt+ (∂sV (s, t))>b(s(t),a(t))dt+
1

2
Tr(∂2

sV (s, t)ν(s,a, t))dt.

Substituting this Taylor expansion into the recursive formulae (1.16), dividing by dt and taking the limit

dt→ 0, gives

−∂tV (s, t) = min
s

(
f0(s,a, t) + b(s(t),a(t))>∂sV (s, t) +

1

2
Tr(ν(s,a, t)∂2

sV (s, t))

)
. (1.17)

1.3. Dynamic Programming 29

This partial differential equation is known as the Stochastic Hamilton-Jacobi-Bellman (HJB) equation,

with boundary condition V (s, tf) = φ(s), and forms the basis of dynamic programming stochastic

optimal control in continuous time. The stochastic partial differential equation (1.17) is non-linear and,

in general, very difficult to solve.

1.3.3 Linear-Quadratic Control

In the discrete time formulation it appears that dynamic programming is completely intractable as it is

necessary to both store the value function and to perform a global optimisation over the action space,

both of which will, in general, be intractable. Additionally, we saw in section(1.3.2) that in continuous

time problems the optimal control problem can be solved through the HJB equation, which is generally

difficult to solve. This, in general, makes the dynamic programming solution to continuous (space)

systems intractable. There is, however, one important exception and this is the class of linear-quadratic

control (LQC) problems. There are various formulations of LQC, such as discrete or continuous time, or

deterministic or stochastic dynamics, but for simplicity we shall consider discrete time and deterministic

transitions, where the derivations for the other formulations can be found in e.g. [156]. A system is said

to be linear-quadratic if the transition dynamics are linear and the cost function is quadratic, i.e.

st+1 = Φtst + Λtat (transition dynamics)

f(s,a, t) =

s
a

> Qt Mt

M>t Rt

s
a

 (intermediate costs)

φ(s) = s>φHs (terminal costs)

where Φt, Λt, Mt, Qt, Rt and φH are all matrices of the appropriate dimensions. As the transition

dynamics are deterministic it is no longer necessary to take the expectation over the trajectory and the

objective function takes the form

U(u1:H−1) =
1

2
s>HφHsH +

1

2

H−1∑
t=1

st
at

> Qt Mt

M>t Rt

st
at

 .
As before a dynamic programming solution is obtained by iterating backwards from the final time-point

to the initial time-point. Suppose that the control from a∗H−1(sH−1) to a∗t+1(st+1) has been optimised

and that it now remains to optimise a1:t. Making the assumption that the maximisation problem takes

the form

max
u1:H−1

U(u1:H−1) = max
u1:t

1

2
s>t+1Pt+1st+1 +

1

2

t∑
τ=1

sτ
aτ

> Qτ Mτ

M>τ Rτ

sτ
aτ

, (1.18)

where Pt+1 is a positive definite matrix, for which a recursive update will be detailed shortly. Similar to

1.3. Dynamic Programming 30

section(1.3.1) the only terms in (1.18) that depend on at are

Qt(st+1, st,at) =
1

2
s>t+1Pt+1st+1 +

1

2

st
at

> Qt Mt

M>t Rt

st
at

 . (1.19)

The fact that the transition dynamics are deterministic and linear means that this can be rewritten into

the form

Qt(st,at) =
1

2

st
at

> Φ>t Pt+1Φt Φ>t Pt+1Λt

Λ>t Pt+1Φt Λ>t Pt+1Λt

st
at

+
1

2

st
at

> Qt Mt

M>t Rt

st
at

 . (1.20)

As (1.20) is quadratic in at it can be optimised directly and results in the optimal control law, which is

linear in s,

a∗t (st) = −(Rt + Λ>t Pt+1Λt)
−1(M>t + Λ>t Pt+1Φt)st, (1.21)

= −Ctst, (1.22)

where Ct is known as the gain matrix and, as it is independent of st, can be calculated off-line.

To complete the derivation it remains to calculate the recursive update of the matrices {Pt}Ht=2 and

to show that the assumption made in (1.18) holds. Substituting the optimal control (1.21) into (1.20)

gives

Qt(st) = s>t

Qt + Φ>t Pt+1Φt − (Mt + Φ>t Pt+1Λt)(Rt + Λ>t Pt+1Λt)
−1(Mt + Φ>t Pt+1Λt)

st.
It can now be seen that the maximisation over ut in (1.18) leads to

max
u1:H−1

U(u1:H−1) = max
u1:t−1

1

2
s>t Ptst +

1

2

t−1∑
τ=1

sτ
aτ

> Qτ Mτ

M>τ Rτ

sτ
aτ

,

where

Pt = Qt + Φ>t Pt+1Φt − (Mt + Φ>t Pt+1Λt)(Rt + Λ>t Pt+1Λt)
−1(Mt + Φ>t Pt+1Λt).

This justifies the assumption that was made in (1.18) and also provides the update equation for the

matrices {Pt}Ht=2, where

PH = φH .

A summary of the LQ-control algorithm for discrete finite planning horizons and deterministic transition

dynamics given in algorithm(1.4).

Two of the main problems with applying dynamic programming to continuous state-action problems

1.3. Dynamic Programming 31

PH = φH

for t = H − 1, . . . , 1 do

Calculate gain matrix, Ct,

Ct = (Rt + Λ>t Pt+1Λt)
−1(Mt + Λ>t Pt+1Φt).

Calculate value function, Pt

Pt = Qt + Φ>t Pt+1Φt − (Mt + Φ>t Pt+1Λt)(Rt + Λ>t Pt+1Λt)
−1(Mt + Φ>t Pt+1Λt).

end for

At any time-point, t, the optimal control is given by

a∗t = −Ctst.

Algorithm 1.4: Dynamic Programming algorithm for deterministic Linear-Quadratic MDPs with a dis-
crete finite horizon.

are finding the optimal control for each given state and representing the value function. It can now be seen

that neither of these issues arise in linear-quadratic problems. Firstly the optimal control can be found for

all states simultaneously and results in a linear controller that is defined through the gain matrix (1.22).

Secondly, substitution of the optimal linear controller into the objective function maintains the quadratic

nature of the objective function, which results in value functions that are quadratic in the state variable.

The constraints of linear dynamics and quadratic costs is obviously very restrictive in practice and

extensions to more general frameworks is an area of active research. Recent examples include the itera-

tive Linear-Quadratic Gaussian (iLQG) algorithm [166] and the approximate inference control (AICO)

algorithm [168]. At each iteration of the iLQG algorithm a second order approximation of the cost

function around the maximum a posteriori estimate of the trajectory, given the current controller, is cal-

culated. This approximate cost function is then optimised using typical linear-quadratic control and this

process is iterated until convergence. In the AICO algorithm applies approximate inference techniques,

in particular Expectation Propagation [115], to a probability distribution that is closely related, but not

equivalent, to the original cost function. Another approach is the so-called path integral control, see e.g.

[76] and follow up papers. In this case the transition dynamics are assumed to be linear w.r.t. the control

and of an arbitrary form w.r.t. the state. Similarly the cost is assumed to be quadratic w.r.t. the control

and of an arbitrary form w.r.t. the state. Under this form of the transition dynamics and reward function

it is possible to solve the HJB equation in the control, which leads to a non-linear partial differential

equation. To remove this non-linearity [76] consider, under suitable assumptions, a particular transform

which results in a linear partial differential equation that can be solved through various methods, such as

sampling techniques.

1.3. Dynamic Programming 32

1.3.4 Summary

While dynamic programming can be used to optimise discrete time MDPs (with either a finite planning

horizon and non-stationary policy or an infinite planning horizon and a stationary policy) it has some se-

vere limitations that restrict its application to either relatively small discrete domains or linear-quadratic

control. Firstly, at each stage of dynamic programming it is necessary to iterate through the entire state

space, either to find an optimal action or to update the value function. While this is feasible in small

discrete problems it is prohibitively expensive in large environments, or unfeasible in non-linear contin-

uous systems. Additionally, the number of states in a discrete environments increases exponentially in

terms of the dimension of the state space. This means that computational complexity of dynamic pro-

gramming scales exponentially in terms of the dimension of the problem, which is commonly referred

to as the curse of dimensionality.

An additional issue concerns the application of dynamic programming to continuous control prob-

lems with either non-linear transition dynamics or non-quadratic costs. As the transition dynamics and

reward function of continuous systems can be highly non-linear this results in a highly complex, non-

convex, value functions. This makes the representation of the value function, through e.g. non-linear

regression or function approximation techniques, a complex problem. The curse of dimensionality is

again an issue here and the complexity of any such representation of the value scales exponentially in

the dimension of the state space. Furthermore, dynamic programming also requires performing a global

optimisation over the action space, which due to the non-convexity of the value function, will be an

intractable problem in complex continuous systems.

It was noted in (1.3.1) and (1.3.2) that the derivation of dynamic programming requires that the

transition dynamics are Markovian. It is also required that the conditioning set of the policy forms a

separator set between the current action variable and the previous portion of the trajectory, and when

a policy satisfies this property it is said to Markovian. This requirement of a Markovian policy is es-

sential to the derivation of dynamic programming as it allows the maximisation to be pulled through

the expectation in the Bellman equation, see e.g. the derivation of (1.9). Unfortunately, this restriction

of dynamic programming to Markovian policies is severe and only holds for a few, albeit important,

models. Some important models where this property doesn’t hold include blind controllers, memoryless

controllers and finite state controllers, which are typical models for partially observable environments

and shall be introduced in section(1.4). In such models it is necessary to consider alternative optimisa-

tion techniques such as Expectation Maximisation or gradient-based methods, which shall be discussed

in detail in chapter(2), branch and bound techniques [75, 110], sequential quadratic programs [7] and

local search methods [128, 150]. An additional model where dynamic programming is also inapplica-

ble is the decentralised transition independent Markov Decision Process, which is a standard model for

multi-agent systems and shall be introduced in section(1.5). Typically these models are optimised either

through Expectation Maximisation, gradient-based methods or multi-linear programming [126].

A final major issue with dynamic programming, already touched upon in section(1.1), is a need for

a complete model of the environment. This is an important issue as the creation of a model is in itself a

1.4. Partially Observable Markov Decision Processes 33

difficult and complex task for many complex control systems. Additionally, any errors in the model may

have an adverse affect on any controller that is obtained through the model. This is especially important

in algorithms such as dynamic programming, where the highly non-linear max-operator in the Bellman

equation makes the algorithm sensitive to minor flaws in the model.

1.4 Partially Observable Markov Decision Processes
While the Markov Decision Process is a very general model it assumes that the agent has complete

knowledge of the environment when making its decisions, which can be an unrealistic assumption in

many applications. To illustrate the point let us reconsider the maze problem considered in example(1).

When we considered this example from the MDP perspective we assumed that the agent was always

aware of its current state, i.e. its position in the maze. Obviously this is a major assumption in the

model that wouldn’t always hold true in real life; For example the agent might instead have access

only to limited local representations of the maze, e.g. the surrounding wall configurations, or it could

simply become confused and lose track of its position. Problems such as these, where the agent has

only incomplete knowledge of the current state of the environment, are known generally as partially

observable problems. The main model for partially observable environments is the Partially Observable

Markov Decision Process (POMDP).

As the agent has only partial knowledge of the environment it is typical to introduce a latent variable

to represent the agent’s memory, or belief. This latent variable, usually referred to as the belief, is used

to model the agent’s ‘belief’ of the true state of the environment, i.e. the agent’s understanding of the

true state of the environment. Again referring to example(1) this belief would in some way correspond

to the agent’s ideas about its position in the maze. There are various methods to model the agent’s belief,

and we shall consider several such methods shortly, but the underlying structure of the environment is

assumed to be the same regardless of the agent’s internal belief mechanism. In a POMDP this underlying

structure is given by the initial state distribution, transition dynamics, reward function and observation

process. The first three of the functions take the same form as in the MDP, i.e.

ps1(s) : S → [0, 1], initial state distribution,

p(s′|s,a) : S2 ×A → [0, 1], state transition dynamics,

R(a, s) : A× S → R, reward function.

Now, however, the agent doesn’t observe the state of the environment but instead some observation from

an observation space, O. The observation at each time point depends on the current state of the environ-

ment and follows a (possibly stochastic) observation process given by

p(o|s) : O × S → [0, 1], observation process.

The objective of the agent remains the same and consists of modelling its behaviour in such a manner

so as to maximise the total expected reward. The exact form of the objective function depends on the

1.4. Partially Observable Markov Decision Processes 34

π1 π2 π3 πH

s1 s2 s3 sH

R1 R2 R3 RH

a1 a2 a3 aH

Figure 1.4: An influence diagram representation of an unconstrained finite horizon H blind Controller.
The notation is the same as that of fig(1.2).

manner in which the agent’s belief is modelled, which also has a dramatic effect on the optimisation

process. We shall now consider the following different methods for modelling the agent’s belief: blind

controllers, memoryless controllers, finite state controllers. This list is not exhaustive and indeed it

doesn’t include the most general model for partially observable environments, also known as the par-

tially observable Markov Decision Processes, where the belief is modelled as a distribution over the

state space. This is the original formulation of planning under partial observability, see e.g. [82] for an

overview, but we do not consider this model in this work and so a description of the model is omitted.

1.4.1 Blind Controllers

A blind controller (BC) is the simplest model of a partially observable environment where the agent

is not only unaware of the current state, but also makes no observation of the environment and has no

internal belief mechanism. In other words the conditioning set of the policy is empty and the policy takes

the form π(a). In this simple framework the objective function takes the form

U(π) =

∞∑
t=1

Ept(s,a;π)

[
γt−1R(s,a)

]
,

where the trajectory distribution is given by

p(s1:H ,a1:H ;π) = p(aH ;π)

[H−1∏
t=1

p(st+1|st,at)p(at;π)

]
ps1(s1).

A influence diagram representation of the blind controller framework is given in fig(1.4).

1.4.2 Memoryless Controllers

A memoryless controller (MC) still has no internal belief mechanism, but its policy has an additional

level of complexity and decisions are now based on the current observation. In other words the condi-

1.4. Partially Observable Markov Decision Processes 35

π1 π2 π3 πH

s1 s2 s3 sH

o1 o2 o3 oH

R1 R2 R3 RH

a1 a2 a3 aH

Figure 1.5: An influence diagram representation of an unconstrained finite horizon memoryless con-
troller. Again the influence diagram notation is used, see fig(1.2). In this case the random variables are
states and observations, while the decision variables are the actions. The reward function can be seen to
have the same structure are in the MDP framework.

tioning set of the policy now consists of the observation and the policy takes the form π(a|o). In the

memoryless controller framework the objective function takes the form

U(π) =

∞∑
t=1

Ept(s,a;π)

[
γt−1R(s,a)

]
,

where the trajectory distribution is given by

p(s1:H ,a1:H ,o1:H ;π) = p(aH |oH ;π)p(oH |sH)

[H−1∏
t=1

p(st+1|st,at)p(at|ot;π)p(ot|st)
]
ps1(s1).

An influence diagram representation of the memoryless controller framework is given in fig(1.5).

1.4.3 Finite State Controllers

In a finite state controller (FSC) the agent’s belief is modelled using an auxiliary discrete variable b ∈ B,

where B is a discrete set. The agent’s belief at the initial time point is determined by the initial belief

distribution, ν(b), which is a parameter of the system. As the agent is unaware of the current state it

instead makes its decision based on the its current belief and the latest observation, i.e. π(a|b,o). The

agent then updates its belief, again based on the its current belief and the latest observation, η(b′|b,o),

and this is a parameter of the system which must be optimised. In summary we have the functions

ν(b) : B → [0, 1], initial belief distribution,

π(a|b,o) : A× B ×O → R, policy,

η(b′|b,o) : B2 ×O → [0, 1], belief transition dynamics.

These functions are parameters of the model to be optimised w.r.t. the objective function being used

in the model. We have given stationary versions of these function, but of course it is possible to use

1.5. Decentralised Transition Independent Markov Decision Processes 36

ν π1 π2 π3 πHλ1 λ2 λH

s1 s2 s3 sH

o1 o2 o3 oH

R1 R2 R3 RH

a1 a2 a3 aH

b1 b2 b3 bH

Figure 1.6: An influence diagram representation of an unconstrained finite horizon FSC. Again the influ-
ence diagram notation is used, see fig(1.2). In this case the random variables are states and observations,
while the decision variables are the beliefs and actions. The introduction of additional decision variables
leads to the introduction of extra functions that need to be optimised, i.e. the λ’s and ν. The reward
function can be seen to have the same structure are in the MDP framework.

non-stationary versions. As in the MDP model the objective function typically used is the total expected

reward, which now takes the form

U(ν, η, π) =

∞∑
t=1

Ept(s,a|ν,η,π)

[
γt−1R(s,a)

]
, (1.23)

where the trajectory distribution is given by

p(s1:H ,a1:H ,o1:H , b1:H |ν, η, π) = p(aH |bH ,oH ;π)p(oH |sH) (1.24)

×
[H−1∏
t=1

p(st+1|st,at)p(bt+1|bt,ot; η)p(at|bt,ot;π)p(ot|st)
]
ps1(s1)pb1(b1; ν).

A influence diagram representation of the FSC model is given in fig(1.6).

1.5 Decenteralised Transition Independent Markov Decision Processes

A final model that we shall consider at various points in this work is the Transition Independent Decenter-

alised Markov Decision Process (DEC-MDP). This is a model from the multi-agent planning literature,

see e.g. [126], that has received a lot of research interest in recent years. The model makes two primary

assumptions: (i) The transition dynamics of the agents are mutually independent; (ii) The actions of each

agent are based only upon its internal representation of the environment and there is no communication

between the agents. A typical example of a DEC-MDP is the mars rover problem, see e.g. [126], where

a group of planetary robots have to explore the surface of an unknown planet in an optimal manner.

The robots are so small in comparison to the search area the transition independence is a reasonable

assumption, while communication between the robots is extremely expensive and hence undesirable.

1.6. Summary 37

As in POMDPs there are various possibilities in the modelling of each agent’s policy, such as

finite state controllers, but for simplicity we consider a policy that is based on the agent’s current state.

Denoting the state-action pair of the ith agent by zi = (si,ai) the decentralised assumption means that

the collective policy of N agents takes the constrained form

p(a|s;π) =

N∏
n=1

πn(an|sn), (1.25)

which, due to the assumption of transition independence, means the trajectory distribution takes the form

p(s1:H ,a1:H ;π) =

N∏
n=1

p(sn1:H ,a
n
1:H ;πn).

To obtain cooperation between the agents a global reward function is defined and the DEC-MDP objec-

tive function takes the form

U(π) =

∞∑
t=1

E∏N
n=1 p(s

n
1:H ,a

n
1:H ;πn)

[
γt−1R(st,at)

]
.

As with many of the other models for partially observability the DEC-MDP cannot be optimised

through dynamic programming. A naive application of dynamic programming to this model would break

the independence constraint (1.25). Popular optimisation techniques for these models are the policy-

search methods of chapter(2), which only offer local optimality, or multi-linear programming methods

[126], which offer global optimality but are NP-hard to solve in general.

1.6 Summary
This chapter has provided a very brief overview of the various models, both in the fully and partially

observable environments, that we shall consider during the course of this work. There are models that

we have mentioned only in passing, such as the most general form of POMDP, and some models that we

have not mentioned at all, such as predictive state representations [109]. Additionally, we have provided

a detailed discussion of dynamic programming. This is not an exhaustive introduction into dynamic

programming, having omitted issues such as measurability or periodicity of transition dynamics, but it

is sufficient to lay the groundwork for the rest of this text. We have also highlight some of the more

prominent flaws in dynamic programming and in section(1.1) we touched upon the main contributions

of this work.

Chapter 2

Parametric Policy Search Methods :

Introduction

2.1 Introduction
Although dynamic programming is one of the cornerstones of planning and control it is infeasible to

implement in many cases of interest. One of the main difficulties in implementing dynamic progamming

is the curse of dimensionality, where the complexity of constructing the value function scales exponen-

tially in the dimension of the state-action space. Furthermore, the extension of dynamic programming

to non-linear systems is intractable in practice, where the non-linear dynamics perclude a closed form

representation of the value function and typically cause it to have a complex functional form. Addition-

ally it is not possible to apply dynamic programming to models with a non-Markovian policies, such as

POMDPs where the belief is modeled through a finite state controller. While there are numerous alter-

native optimisation methods, such as approximate dynamic programming methods [26] or Monte-Carlo

tree-search methods [95], we shall concentrate on parametric policy search methods in this chapter and

chapters(3 & 4). There are advantages and disadvantages to all of these different optimisation methods,

which we do not detail here, but parametric policy search methods are a popular approach and have been

successfully applied to a wide range of complex problems.

Policy search method is a general term used to describe MDP optimisation techniques that work

directly in the policy space. We use the term parametric policy search methods to include gradient-

based methods, such as steepest gradient ascent [66, 67, 134, 135, 19, 113, 162, 29, 99, 180, 68] and

natural gradient ascent [83, 123, 29, 13], along with Expectation Maximisation [40, 170, 171, 102, 176,

77, 94, 93, 57, 56], which is a bound optimisation technique from the Statistics literature [44]. In these

methods the policy is given some differentiable parametric representation, which results in the MDP

objective function being defined over the parameter space. The resulting objective function is then

directly optimsed, either by taking steps in a direction of ascent, w.r.t. the objective function, or by

optimising a lower-bound on the objective function. There are several immediate advantages to such

approaches, which include stability of the policy performance during the training process, which can

be important in on-line learning scenarios, as well as general convergence guarantees and the ease with

which these methods can be applied to other planning models.

2.1. Introduction 39

Like many iterative optimisation techniques, such as policy iteration, parametric policy search meth-

ods can be naturally considered as a two stage iterative procedure, alternating between an evaluation

stage and an improvement stage. In the evaluation stage, which is analogous to the policy evaluation

stage of policy iteration, the statistics necessary for a parameter update, such as the gradient of the

objective function, are calculated. Typically, when considering complex real world control and plan-

ning problems, this evaluation stage is an intractable problem and has led to much research into various

approximation techniques. Model-free stochastic approximations [113, 19] have been the methods of

choice since their introduction, along with their corresponding variance reduction [180, 68] and function

approximation techniques [162, 29, 99]. More recently there has been much research in model-based

inference methods [170, 77, 171, 169, 168, 167, 104, 102, 59] which are based on probabilistic inference

methods. In the improvement stage, which is analogous to the policy improvement stage of policy itera-

tion, the policy parameters are updated by taking a step in the parameter space, where the update depends

on the particular parametric policy search method. As we have just stated, in most MDPs of interest the

search direction, or the objective function, for that matter, cannot be evaluated exactly. These difficulties

cause problems in terms of the gradient-based algorithm that can be applied to such MDP objectives. In

particular we are restricted to methods that are applicable to non-concave optimisation problems where,

additionaly, neither the objective nor the search direction can be evaluated exactly. This precludes many

advanced optimisation techniques, such as non-linear conjugate-gradient [55] or quasi-Newton methods

[38, 53]. Stochastic versions of non-linear conjugate gradients and quasi-Newton methods exist, see e.g.

[147, 146], but they require certain restrictive properties to hold. For instance, stochastic quasi-Newton

methods require the objective to be strongly concave to ensure that the secant equation is satisfied. This

condition is not typically met in the MDP framework. Due to these issues the parametric policy search

methods typically considered in the literature are steepest gradient ascent, natural gradient ascent and

Expectation Maximisation.

In this work we present three theoretical contributions to this area of parametric policy search meth-

ods. The first contribution, which we shall consider in chapter(3), is a new family of model-based

techniques to perform the evaluation stage of parametric policy search methods. The second and third

contributions are related to the search direction of current parametric policy search methods and shall be

considered in chapter(4). The first of these two contributions is a novel analysis of the search directions

of current parametric policy search methods. In particular, we relate the search directions of natural

gradient ascent and Expectation Maximisation to a particular form of approximate Newton method. Mo-

tivated by this analysis we then make the third and final contribution in this area, the introduction of a

novel parametric policy search method. The method is analogous to the Gauss-Newton method [121] for

non-linear least squares problems, where only certain terms of the Hessian, rather than the entire Hessian

itself, are used when preconditioning the gradient.

We complete this chapter by providing the details of current parametric policy search techniques

necessary for an understanding of our contributions to this area of research. In particular in section(2.2)

we shall detail steepest gradient ascent, while in section(2.3) we shall detail natural gradient ascent and

2.2. Steepest Gradient Ascent 40

then we shall introduce Expectation Maximisation in section(2.4). As we are considering parametric

optimisation algorithms we shall assume that the policy is given some differentiable parametric form,

which we denote by π(·|·;w), where the parameter vector is denoted by w ∈ W and W is used to

denoted the parameter space. The following derivations of steepest gradient ascent, natural gradient

ascent and Expectation Maximisation are applicable, with appropriate minor alterations, to all three

frameworks considered in chapter(1), i.e. either a finite horizon or an infinite planning horizon with

either discounted or average rewards, but for notational ease we concern ourselves with the infinite

horizon framework with discounted rewards. Writing the objective function and trajectory distribution

directly in terms of the parameter vector then, for any w ∈ W , the objective function takes the form

U(w) =

∞∑
t=1

Ept(a,s;w)

[
γt−1R(a, s)

]
, (2.1)

where used the notation pt(a, s;w) to represent the marginal p(st = s,at = a;w) of the joint state-

action trajectory distribution

p(a1:H , s1:H ;w) = π(aH |sH ;w)

{H−1∏
t=1

p(st+1|at, st)π(at|st;w)

}
p1(s1), H ∈ N. (2.2)

Before we proceed to the derivation of the various parametric policy search algorithms we introduce

the following technical assumption on the policy parameterisation.

Assumption 1. For each t ∈ N, for each trajectory in the state-action space, z1:t, and for all w ∈ W

the derivative, ∇wp(z1:t;w), exists. Additionally, the components of ∇ log p(z1:t;w) are uniformly

bounded by some M ∈ R.

2.2 Steepest Gradient Ascent
In this section we introduce steepest gradient ascent for the Markov Decision Processes objective. The

derivation is based on the likelihood-ratio method [66, 67, 182, 19], which originates from the statistics

literature and is also commonly refered to as the log-trick. There is also an equivalent method that is

widely used to calculate the derivative of the log-marginal likelihood in latent variable models, such as

the Hidden Markov Model and the Linear Dynamical System, see e.g. [140, 15]. These techniques can

easily be extended to models where dynamic programming is inapplicable, and to highlight this point

we shall also briefly detail their application to POMDPs where the belief is modeled through a finite

state controller. The extension of these techniques to the other planning models introduced in chapter(1)

follows through similar arguments.

Steepest gradient ascent optimises (2.1) by taking steps in the parameter space in the direction of

the gradient of (2.1), i.e.

wnew = w + α∇wU(w), (2.3)

where α ∈ R+ is the step-length parameter. When the updates (2.3) are calculated exactly and the

step-length sequence is selected in an appropriate manner, e.g. through a line search satisfying the

2.2. Steepest Gradient Ascent 41

Wolfe conditions, then this procedure is globally convergent1 [121]. Similarly, in the stochastic setting

convergence (in probability) is guaranteed under certain technical conditions, such as using a step-size

sequence satisfying the Robbins-Monro conditions. See [103] for more details. As the state-action

occupancy marginals depend on the parameter vector in a highly non-linear manner there is no simple

closed form expression for the gradient of (2.1). As previously mentioned, however, it is possible to

calculate the gradient using iterative, message-passing type, procedures based on likelihood-ratio type

methods. We now formalise this point with the following theorem, which is generally known as the

policy gradient theorem [162].

Theorem 1. Suppose that the policy is given some differentiable parametric form, where the parameter

vector is given byw ∈ W . Provided that the reward function is uniformly bounded over the state-action

space and the policy parameterisation satisfies assumption(1) then the gradient of the objective function

for the infinite horizon discounted reward framework takes the following form,

∇wU(w) = Epγ(z;w)Q(z;w)

[
∇w log π(a|s;w)

]
, (2.4)

where we use the expectation notation E[·] to denote the integral/summation w.r.t. a non-negative func-

tion. The term pγ(z;w) is a geometric weighted average of state-action occupancy marginals given

by

pγ(z;w) =

∞∑
t=1

γt−1pt(z;w),

while the term Q(z;w) is referred to as the state-action value function and is equal to the total expected

future reward from the current time-point onwards, given the current state-action pair, z, and parameter

vector, w, i.e.

Q(z;w) =

∞∑
t=1

Ept(z′;w)

[
γt−1R(z′)

∣∣∣∣z1 = z

]
.

Proof. The first point of the proof is to note is that for any t ∈ N we have the following identity, often

referred to as the ‘log-trick’,

∇wp(z1:t;w) = p(z1:t;w)∇w log p(z1:t;w),

where this equality holds under assumption(1). Upon interchanging the order of integration and differ-

entiation the gradient takes the form

∇wU(w) =

∞∑
t=1

Ep(z1:t;w)

[
γt−1R(zt)∇w log p(z1:t;w)

]
.

Due to the Markovian structure of the trajectory distribution (2.2) this derivative can be written in the

1Here, as in [121], we use the term globally convergent to mean that the sequence, {‖∇U(wk)‖}k∈N, is guaranteed to satisfy
the limit limk→∞ ‖∇U(wk)‖ = 0, for any w ∈ W . This means that sequence generated by such a procedure is gauranteed to
converge to a stationary point of the objective function.

2.2. Steepest Gradient Ascent 42

equivalent form

∇wU(w) =

∞∑
t=1

t∑
τ=1

Ep(zτ ,zt;w)

[
γt−1R(zt)∇w log π(aτ |sτ ;w)

]
,

=

∞∑
τ=1

∞∑
t=τ

Ep(zτ ,zt;w)

[
γt−1R(zt)∇w log π(aτ |sτ ;w)

]
,

where the second line follows from the first through an interchange of the summations. The chain

structure of the trajectory distribution allows the expectation over the marginals of the two time-points

of the trajectory distribution to be written as follows

∇wU(w) =

∞∑
τ=1

Epτ (z;w)

[∞∑
t=τ

Ept(z′;w)

[
γt−1R(z′)

∣∣zτ = z

]
∇w log π(a|s;w)

]
, (2.5)

where we have used the notation pτ (z;w) ≡ p(zτ = z;w), for τ ∈ N. The summation over the inner

expectation in (2.5) can be seen to be equal to the state-action value function scaled by γτ−1 , i.e.

γτ−1Q(z;w) =

∞∑
t=τ

Ept(z′;w)

[
γt−1R(z′)

∣∣zτ = z

]
.

Inserting this form for this inner expectation into (2.5) gives

∇wU(w) =

∞∑
τ=1

Epτ (z;w)

[
γτ−1Q(z;w)∇w log π(a|s;w)

]
,

= Epγ(z;w)Q(z;w)

[
∇w log π(a|s;w)

]
,

where the second line follows from the definition of pγ(z;w). This completes the derivation of (2.4).

Although we are not going to provide the analagous derivations for the gradient of the finite horizon

and infinite horizon average reward frameworks it is useful to note the form of these gradients. In

particular we have the following two theorems.

Theorem 2. Suppose that the policy is given some differentiable parametric form, where the parameter

vector is given byw ∈ W . Provided that the reward function is uniformly bounded over the state-action

space and the policy parameterisation satisfies assumption(1) then the gradient of the objective function

for the finite horizon framework takes the following form,

∇wU(w) =

H∑
t=1

Ept(z;w)Qt(z;w)

[
∇w log π(a|s;w)

]
, (2.6)

where the termQt(z;w) is referred to as the state-action value function and is equal to the total expected

future reward from the tth time-point onwards, given that the state-action pair at the tth time-point is given

2.2. Steepest Gradient Ascent 43

z and parameter vector is w, i.e.

Qt(z;w) =

H∑
τ=t

Epτ (z′;w)

[
R(z′)

∣∣∣∣zt = z

]
.

Proof. The proof is analagous to the proof of theorem 1 and is omitted.

Theorem 3. Suppose that the policy is given some differentiable parametric form, where the parameter

vector is given by w ∈ W . Provided that the reward function is uniformly bounded over the state-

action space, the policy parameterisation satisfies assumption(1) and there exists a unique stationary

state-action occupancy distribution for each w ∈ W then the gradient of the objective function for the

infinite horizon average reward framework takes the following form,

∇wU(w) = Ep(z;w)Q(z;w)

[
∇w log π(a|s;w)

]
, (2.7)

where the term p(z;w) is the stationary state-action occupancy distribution induced by the policy pa-

rameters, w, i.e.

p(z;w) = lim
t→∞

pt(z;w),

while the term Q(z;w) is referred to as the state-action value function and is equal to the average ex-

pected reward from the current time-point onwards, given the current state-action pair, z, and parameter

vector, w, i.e.

Q(z;w) = lim
T→∞

1

T

T∑
t=1

Ept(z′;w)

[
R(z′)

∣∣∣∣z1 = z

]
.

Proof. The proof is analagous to the proof of theorem 1 and is omitted.

It can be seen from (2.4) that to calculate the gradient of (2.1) it is sufficient to calculate the ex-

pectation of the derivative of the log-policy, where the expectation is taken w.r.t. to the non-negative

function pγ(·;w)Q(·;w). In complex real world problems, such as difficult non-linear robotic manipu-

lation tasks, for example, the function pγ(·;w)Q(·;w) is highly complex and performing this expecta-

tion is intractable. This means that the expectation in (2.4) instead has to be approximated using various

techniques, such as sample-based methods. We do not give a detailed dicussion of such approximation

techniques here, instead delaying such a discussion to chapter(3), but there one point that is worth high-

lighting now. In particular, there is an interesting and important difference between the evaluation stage

of parametric policy search methods and the analagous evaluation stage in dynamic programming meth-

ods, such as policy iteration. To perform an update of the policy in a method such as policy iteration it

is necessary to calculate the value function over the entire state space. By contrast, in parametric policy

search algorithms it is necessary only to calculate the projection of the function pγ(·;w)Q(·;w) onto the

space spanned by ∇w log π(·|·;w). For example, in a problem with a continuous state-action space and

a linear controller, i.e. π(a|s;w) = N (a|Ks; Σ−1) where the policy parameters are given by w = K,

then it is necessary to calculate only the first two moments of the function pγ(·;w)Q(·;w) to perform a

parameter update.

2.3. Natural Gradient Ascent 44

In (2.4) we wrote the gradient as the expectation of the derivative of the log-policy, where the

expectation is taken w.r.t. to the non-negative function pγ(·;w)Q(·;w). Considering that this equation

could just as well have been written in the form

∇wU(w) = Epγ(z;w)

[
∇w log π(a|s;w)Q(z;w)

]
,

this choice of notation is in need of some justification. We do not have the necessary background in the

material to provide this justification at present, but we shall do so during the course of this chapter and

chapters(3 & 4).

Finite State Controllers

Although we derived steepest gradient ascent in terms of Markov Decision Processes it is easy to extend

these algorithms to other planning models. As an example let us consider a POMDP where the belief

is modeled with a finite state controller, where extensions to the other partially observable models in

sections(1.4 & 1.5) follow similarly. In this case we have that z = (a, s, b,o) and the controllers to be

optimised are the initial belief distribution, belief transition dynamics and the policy, where we denote

the parameters of these controllers by wν , wη and wπ respectively. As the derivations are essentially

the same as for MDPs we avoid going into the details and simply state the derivatives for infinite horizon

discounted rewards framework, which are as follows

∇wνU(wν ,wη,wπ) = Ep1(z;w)Q(z;w)

[
∇wν log ν(b;wν)

]
,

∇wηU(wν ,wη,wπ) = Epγ(z′,z;w)Q(z′;w)

[
∇wη log η(b′|b,o;wη)

]
,

∇wπU(wν ,wη,wπ) = Epγ(z;w)Q(z;w)

[
∇wπ log π(a|b,o;wπ)

]
,

where Q(z;w) is defined analogously to the state-action value function in Markov Decision Processes

and pγ(z′, z;w) =
∑∞
τ=1 γ

τpτ+1,τ (z′, z;w). It can be seen that these gradients are very similar in

nature to the gradient of the MDP objective, where they take the form of an expectation of the derivative

of the log-controller where the expectation is taken w.r.t. the function pγ(·;w)Q(·;w). In terms of the

evaluation stage of parametric policy search methods the function pγ(·;w)Q(·;w), and analagous terms,

again plays a central role. The specific functional form of these terms differ slightly in this model, due to

the differences in the trajectory distribution, but the role they play in these algorithms is analagous. More

details of parametric policy search methods for this model can be found in [170], where, in particular,

Expectation Maximisation is considered.

2.3 Natural Gradient Ascent
Natural gradient ascent is a gradinet-based optimisation algorithm that originated in the neural network

and blind source seperation literature [3, 4, 5, 6] and was introduced to help alleviate some of the negative

2.4. Expectation Maximisation 45

aspects of steepest gradient ascent. One of the main motivations for natural gradient ascent is that steepest

gradient ascent implicitly assumes that the parameter space has an Euclidean structure, a point that we

shall discuss in more detail in chapter(4), and it can be beneficial to instead consider the parameter

space as having a manifold structure. In the case of neural networks, for example, instead of measuring

the distance between two parameter vectors through the Euclidean norm it is possible to measure the

distance through some measure of difference between the neural networks that these two parameter

vector generate. In the case where the parameter vector defines a generative model a common choice of

norm is the (local) quadratic norm defined through the Fisher information of the generative model, i.e.

‖w‖2natural = w>G(w)w, (2.8)

where we denote the Fisher information matrix by G(w), for any w ∈ W . See e.g. [3, 4, 5, 6] for

more details and alternative examples. The application of natural gradient ascent to Markov Decision

Processes was introduced by [83] and in this case the parameter update takes the form

wk+1 = wk + αkG
−1(wk)∇wU(wk),

where G(w) is the Fisher information of the trjectory distribution. In the infinite horizon discounted

rewards framework the Fisher information matrix of the trajectory distribution takes the form

G(w) = Epγ(z;w)

[
∇w log p(z1:t;w)∇>w log p(z1:t;w)

]
, (2.9)

which, when the Fisher regularity conditions are satisfied, is equivalent to

G(w) = −Epγ(z;w)

[
∇w∇>w log p(z1:t;w)

]
.

The Fisher information takes a similar form in the finite horizon and infinite horizon average reward

frameworks. More details on the Fisher information matrix for Markov Decision Processes can be found

in [13]. At present this completes our description of natural gradient ascent, but further considerations

shall be made in chapter(4).

2.4 Expectation Maximisation

An alternative optimisation procedure that has recently been the centre of much research in the planning,

control and reinforcement learning communities is the EM-algorithm [40, 171, 170, 94, 93, 77, 57, 56].

This is an extremely powerful optimisation technique from the statistics and machine learning literature,

see e.g. [44, 107, 119], that has been successfully applied to a large number of problems. See [15]

for a general overview of some of the applications of the algorithm in the machine learning literature.

Among the strengths of the algorithm are its guarantee of improving the likelihood (or objective) at each

iteration, its often simple update equations and its generalisation to highly intractable models through

2.4. Expectation Maximisation 46

variational Bayes approximations2 [142]. To obtain an intuitive understanding of EM we consider a

simple example of a maximum likelihood problem. We then proceed to extend this derivation to Markov

Decision Processes.

Suppose we are given a probabilistic model p(y, z;w) of the random variables (y, z) that is param-

eterised by w. A typical problem in statistics is to optimise the model parameters given observations of

y but no observations of z, e.g. because these variables are latent or simply because they have been un-

observed during data collection. This problem is simply a maximum likelihood problem of the marginal

log-likelihood function log p(y;w). However, due to the structure of the objective

log p(y;w) = log

∫
dzp(y, z;w),

it will not be possible in general to obtain a closed form solution for the maximum of log p(y;w) and

an iterative solution is instead necessary. Assuming that it would be easy to optimise the complete log-

likelihood, log p(y, z;w), if all the data were available the EM-algorithm works by iteratively optimising

a lower bound on log p(y;w). This lower bound is not difficult to obtain and essentially relies on the

use of Jensen’s inequality. We start by noting that for any w,w′ ∈ W we have the equality

log p(y;w) = Ep(z|y;w′)

[
log p(y, z;w)

]
− Ep(z|y;w′)

[
log p(z|y;w)

]
. (2.10)

An application of Jensen’s inequality gives the bound

Ep(z|y;w′)

[
log p(z|y;w′)

]
≥ Ep(z|y;w′)

[
log p(z|y;w)

]
,

which again holds ∀w,w′ ∈ W . Using this bound in (2.10) gives the desired lower bound on the

objective function

log p(y;w) ≥ Ep(z|y;w′)

[
log p(y, z;w)

]
− Ep(z|y;w′)

[
log p(z|y;w′)

]
, (2.11)

which is commonly written in the form

log p(y;w) ≥ Q(w,w′) +Hentropy(w′,w′),

where Q(w,w′) = Ep(z|y;w′)

[
log p(y, z;w)

]
and Hentropy(w′,w′) is the entropy function applied to

the posterior distribution, p(z|y;w′). Note that both functions are written so that the first variable occurs

inside the expectation while the second variable defines the distribution w.r.t. which the expectation is

taken.

The EM-algorithm works by iteratively maximising the lower bound (2.11) in a coordinate-wise

manner w.r.t. w and w′. As we have assumed that the complete log-likelihood is easy to maximise we

can see that the optimisation of (2.11) w.r.t. w (whilst holding w′ fixed) will be easy provided that we

2The use of the variational Bayes approximation no longer guarantees an increase of the likelihood, but it does guarantee an
increase of a lower bound of the likelihood.

2.4. Expectation Maximisation 47

can calculate the necessary statistics of p(z|y;w′). The optimum of (2.11) w.r.t. w′ (this time holding

w fixed) occurs at the point w, which can be seen directly from (2.10). As the optimisation w.r.t. w′ is

trivial, in practice one considers only the parametersw and each iteration of the algorithm can essentially

be seen as a two step procedure;

E-step Compute the statistics of p(z|y;wk) necessary to perform an M-step, where wk are the param-

eter settings at the current iteration.

M-step Find the maximum w∗ of Q(w,wk) w.r.t. the first variable and set wk+1 = w∗.

An alternative but equivalent derivation that is perhaps more intuitive can be obtained through a

simple application of Bayes rule and the non-negativity of the Kullback-Leibler divergence. If we first

note that the posterior of z given y has the form

p(z|y;w) =
p(y|z;w)p(z;w)

p(y;w)
,

then we can see that the objective function actually occurs as the normalisation constant of this pos-

terior. Therefore by taking the Kullback-Leibler divergence between some distribution q (over Z) and

p(z|y;w) then we obtain the same lower bound (2.11). The distribution q is often referred to as the vari-

ational distribution. From this perspective we can see that optima w′ = w that occurred in the previous

derivation makes intuitive sense because it is the minimiser of the Kullback-Leibler divergence between

q(z) and p(z|y;w). Up to a second order expansion this is a local metric in the space of distributions

parameterised through w, see e.g. [37].

Although the maximisation of (2.1) has no immediate relation to the maximum likelihood problem

considered in the previous example it is clear that there is at least one major similarity. In particular, a

main source of intractability both optimisation problems occurs due to the integral operation in the ob-

jective function. It is therefore natural to extend the ideas of the EM-algorithm to the Markov Decision

Process framework. As noted previously, such an extension can be obtained by constructing a distribu-

tion, parameterised throughw ∈ W , such that the normalisation constant of this distribution is given by

U(w), for any givenw ∈ W . Given that we can assume w.l.o.g. that the reward function is non-negative

it is not difficult to construct such a distribution. In particular, we define the distribution as follows

p̂(z1:t, t;w) =
1

U(w)
γt−1R(zt)p(z1:t;w). (2.12)

It can easily be seen from (2.1) and (2.2) that the normalisation constant of this distribution is equal

to U(w). Taking the Kullback-Leibler divergence between the variational distribution q(z1:t, t) and

p̂(z1:t, t;w) gives the following lower bound on the logarithm of the objective function,

logU(w) ≥ Hentropy(q(z1:t, t)) + Eq(z1:t,t)
[

log γt−1R(zt)p(z1:t;w)

]
. (2.13)

An EM-algorithm is obtained from the bound in (2.13) by iterative coordinate-wise maximisation:

2.4. Expectation Maximisation 48

E-step For fixed wk find the best q(z1:t, t) that maximises the r.h.s. of (2.13), which for an uncon-

strained q(z1:t, t) gives q(z1:t, t) ≡ p̂(z1:t, t;wk). Then compute the statistics of p̂(z1:t, t;wk)

necessary to perform a parameter update.

M-step For fixed q(z1:t, t) find the bestw that maximises the r.h.s. of (2.13). Using similar arguments to

those in section(2.2) this be seen to be equivalent to maximising w.r.t. w the ‘energy’ contribution

Q(w,wk) = Epγ(z;wk)Q(z;wk)

[
log π(a|s;w)

]
. (2.14)

Note that Q is a two-parameter function, where the first parameter occurs inside the expectation and the

second parameter defines the ‘distribution’ w.r.t. the expectation is taken. We note that the functional

form of Q(w,wk) is one of the reasons why it is natural to chose to denote the gradient of (2.1) in

the form given in (2.4). The decoupling of the parameters in Q(w,wk) allows the maximisation over

w to be performed in many cases of interest. For example, when the log-policy is quadratic in w the

maximisation problems is equivalent to a least-squares problem and the optimum can be found through

solving a linear system of equations. When it is not possible to directly solve the maximisation of

Q(w,wk) w.r.t. w it is often possible to instead calculate the derivative ∇wQ(w,wk) and then take a

step in the parameter space using this as a search direction. Such a technique is known as a generalised

EM-algorithm [44] and although the lower bound (2.13) is no longer maximised at each iteration it is

easy to see that provided

Q(wk+1,wk) ≥ Q(wk,wk),

for each k ∈ N, it will still be increased. Under similar conditions to the EM-algorithm the generalised

EM-algorithm is guaranteed to converge to a local maxima [44]. Details on the exact form of the pa-

rameter update can be found in the literature for various systems, such as continuous systems [94, 77],

discrete systems [171] and partially observable and multi-agent systems [169, 102].

An issue with the EM-algorithm is that the rate of convergence of the algorithm can be prohibitively

slow in many cases. Theoretically the rate of convergence for the EM-algorithm can range from any-

where between quadratic to sub-linear depending on the eigenvalues of the Jacobian of the EM-operator

in the vicinity of a local optimum, see e.g. [44, 141] for more details. Typically it is difficult to categorise

the behaviour of these eigenvalues in terms of quantities of interest3, such as the structure of the reward

function, but it well-known that the EM-algorithm can be prohibitively slow in practice. Various authors

have attempted to increase the performance of the EM-algorithm in the case of Markov Decision Pro-

cesses, as well as similar planning models. Using the knowledge that the space of deterministic policies

is sufficient to obtain optimality in a Markov Decision Process [170, 171] restricted the policy space

of the EM-algorithm to deterministic policies, where the resulting algorithm is referred to as ‘greedy

EM-algorithm’. However, this ‘greedy EM-algorithm’ is not a true EM-algorithm, but instead a refor-
3While such a categorisation of the eigenvalues is difficult it is possible to analysis the behaviour of the policy update in terms

of the problem structure. In appendix(B) we provide some novel analysis of the EM-algorithm in this respect. For instance it
is possible to categorise the effect of a multi-modal reward function on the policy update of the EM-algorithm. This analysis
doesn’t include results pertaining to the rate of convergence of the EM-algorithm, but it does give an intuitive understanding of the
algorithm.

2.4. Expectation Maximisation 49

mulation of policy iteration. A more formally correct formulation of this EM-algorithm for deterministic

policies is detailed in appendix(D), but in practice it has been found that the EM-algorithm loses much

of its desirability in terms of robustness to local optima when this restriction to the policy search space is

made. Additionally this restriction to the space of deterministic policies can cause freezing of the param-

eter updates in deterministic, or close to deterministic, environments. Furthermore, this restriction to the

space of deterministic policies only makes sense in the case of fully observable environments and it is

not applicable to partially observable environments, where it is not necessarily true that optimal control

can be obtain from a deterministic controller. An alternative, motivated by the analysis in appendix(B),

would be to attempt to reshape the reward function so as to maintain the same optimums of the original

objective, but to obtain superior performance in the EM-algorithm. Similar methods have been consid-

ered previously, see e.g. [181], in relation to other optimisation algorithms with some success. Finally,

a heuristic that some authors consider is to use a softened greedy M-step, see e.g. [169, 102], which has

been used with some success.

Chapter 3

Parametric Policy Search Methods :

Search Direction Evaluation

3.1 Introduction
It was seen in chapter(2) that a core aspect of parametric policy search methods is the evaluation stage,

which corresponds to calculating the statistics necessary to perform a parameter update. In the case of

steepest gradient ascent, applied to the infinite planning horizon framework with discounted rewards,

this corresponds to calculating the following integral

∇wU(w) = Epγ(z;w)Q(z;w)

[
∇w log π(a|s;w)

]
,

with similar integrals being necessary in either the finite horizon or infinite horizon average reward

frameworks. Similar integrals are also necessary for both natural gradient ascent and Expectation Max-

imisation. In some instances it is possible to calculate these integrals exactly, for instance in a MDP

where the state-action space is discrete and sufficiently small that enumeration over the state-action

space is feasible. However, in the complex real world problems that are typically of interest to prac-

titioners, such as difficult robotic manipulation tasks, these integrals will be intractable. To obtain a

broader understanding of some of the possible sources of intractabilities we now discuss several possible

examples. Firstly, it may be the case that the state-action space is too large for enumeration over all state-

action pairs to be feasible. For instance, in the game of Tetris, which we shall consider in chapter(4),

there are approximately 7×2hw states, where h and w are the height and width of the board respectively.

In a typical game of Tetris, where the board is of height 20 and width 10, enumeration over the state-

action space in completely infeasible. Another example where such integrals are, in general, intractable

is in problems where the state-action space is continuous and the transition dynamics are non-linear. In

this case the function pγ(·;w)Q(·;w) is highly complex and, in general, has no closed form. This can

be seen from the observation that the calculation of the state-action occupancy marginals, pt(·;w), for

t ∈ N, is equivalent to a non-linear filtering problem, which is in itself an intractable problem and the

subject of much research in areas such as control and time-series analysis, see e.g. [156, 15, 49]. Given

that the function pγ(·;w)Q(·;w) requires knowledge of the state-action occupancy marginals it is clear

3.1. Introduction 51

that, in general, it is an intractable problem to the calculate this function when the transition dynamics

are non-linear. A final example where the inference necessary to perform a parameter update can be

intractable is in high-dimensional factored Markov Decision Processes. In the most general case the

complexity of representing/calculating either pγ(·;w) or Q(·;w) will scale exponentially in the number

of factors. Unless there is a particular, restrictive, form of sparsity in the level of interaction between the

different factors of the MDP, such as in DEC-MDPs considered section(1.5), then the induced tree-width

of the state-action occupancy marginals will become prohibitively large, for sufficiently large t ∈ N,

and this will make the inference intractable. In these last two examples we have seen that calculating

the state-action occupancy marginals is itself intractable. The same is also true of the state-action value

function, which is also generally intractable to calculate in both of these examples. Also note that for

similar reasons the evaluation of the objective function, for any given w ∈ W , is also intractable for the

three examples just considered.

We have seen that the evaluation stage of parametric policy search methods is typically an in-

tractable problem. As a result there has been much research into approximate solutions to per-

form the integrals necessary for a parameter update, including model-free sample-based methods

[66, 67, 134, 135, 19, 113, 39, 180, 68, 124], actor-critic methods [99, 98, 162, 28, 29] and model-

based message-passing methods [170, 171, 104, 102, 169, 77, 58, 59]. These various approximation

methods, along with my own research in this area, are the subject of the present chapter. As my re-

search in this area has focused on model-based message-passing techniques the most significant part of

the present chapter will necessarily be devoted to these methods. We note that this bias in the amount

of space devoted respectively to model-based and model-free methods is not in any way indicative of

a bias towards model-based methods in the literature. In fact, when parametric policy search methods

first came to prominence1, see e.g. [66, 67, 134, 135, 19, 113], there was a preference to perform in-

ference in a model-free sample-based manner. This preference towards model-free sample-based meth-

ods has persisted, with techniques such variance reduction [39, 180, 68, 124] and actor-critic methods

[99, 98, 162, 28, 29] being predominant. However, while sample-based methods are very general and

are still the prevalent method in parametric policy search methods they do suffer from various undesir-

able aspects, such as requiring an excessive amount of samples and suffering from large variance in the

estimates of the search direction. It is only more recently that there has been an upsurge of interest in

model-based inference routines, see e.g. [170, 171, 104, 102, 169, 77, 58, 59], which use methods from

probabilistic and approximate inference2 to obtain efficient inference routines to perform the integrals

necessary for a parameter update. A core aspect of probabilistic and approximate inference techniques

is in the calculation of marginals, or moments, of high-dimensional distributions, where many of the

techniques in this area exploit underlying sparsity in the (graphical structure of the) distribution to ob-

tain efficient and accurate inference routines. Many interesting and complex planning problems satisfy

similar sparsity properties during the evaluation stage of parametric policy search methods (a point we

1There are several approaches to calculating the gradient of the objective function for Markov Decision Processes, such as finite
differences or infinitesimal perturbation analysis, we focus exclusively on likelihood ratio methods.

2An introduction to probabilistic and approximate inference can be found in e.g. [178, 15].

3.2. Model-Based Evaluation Techniques 52

shall discuss in more detail in section(3.2)) and so it is of theoretical and practical interest to extend the

ideas of probabilistic and approximate inference to this field of research.

As previously mentioned, the novel theoretical contribution of this chapter is in the area of model-

based inference methods. We shall introduce current model-based inference routines in section(3.2),

where we shall also detail our novel contributions in this area. Firstly, we shall detail how model-based

methods are closely related to inference routines in latent variable time-series models, such as the Hidden

Markov Model [15]. In this respect all of the current model-based inference methods in literature can

be seen to be exclusively of the form of forward-backward algorithms, while the Rauch-Tung-Striebel

(RTS) smoother [133], which plays a prominent role in latent variable time-series models, has been

overlooked. The novel theoretical contribution of this chapter is the consideration of RTS smoothing

techniques to the evaluation stage of parametric policy search methods, where we shall find that this

simple reformulation has some interesting consequences that do not occur when applying RTS inference

techniques to latent variable time-series models. We shall also consider several particular classes of

planning problem where this form of inference is particularly well-suited, and where there are several

important and desirable advantages in comparison to forward-backward inference.

The rest of the chapter shall be organised as follows: In section(3.2) we shall consider model-

based inference techniques for the evaluation stage of parametric policy search algorithms, where

in section(3.2.1) we shall provide an overview of current forward-backward techniques and in

section(3.2.2) we shall introduce our novel family of RTS inference routines; For future reference we

shall introduce the prominent model-free sample-based inference methods in section(3.3); In section(3.4)

we shall perform various experiments comparing our RTS inference methods with the corresponding

forward-backward inference methods; Finally, in section(3.5) we shall provide an overview of the

contributions of this chapter.

3.2 Model-Based Evaluation Techniques
Before proceeding to the description of model-based inference routines we first reintroduce a concept

that was first introduced in section(2.4), during the derivation of Expectation Maximisation, but will

now prove useful notationally and will also as provide insights into the differences between forward-

backward and Rauch-Tung-Striebel inference methods. Recall that, as the reward can be assumed to be

non-negative, it is possible to introduce the following distribution

p̂(z1:t, t;w) =
1

U(w)
γt−1R(zt)p(z1:t;w). (3.1)

We also denote the unnormalised version of this distribution by p̃(z1:t, t;w), i.e. p̃(z1:t, t;w) =

γt−1R(zt)p(z1:t;w). For any, t ∈ N, the term p̃(z1:t, t;w) equals the probability of the trajectory

up until the tth time-point, given the parameter vector, weighted by the discounted reward received at the

tth time-point. For which reason we refer to (3.1) as the unnormalised reward weighted trajectory distri-

bution, or just the reward weighted trajectory distribution when the context is clear. In the finite horizon

framework we define the reward weighted trajectory distribution in an analogous manner, but the reward

3.2. Model-Based Evaluation Techniques 53

t = 1
p0

z1

R

t = 2
p0 P

z2z1

R

t = H
p0

z1

P P R
z2 zH

Figure 3.1: A factor graph representation of the reward weighted trajectory distribution.

function is now no longer discounted. The graphical structure of the reward weighted trajectory distri-

bution is given by a (possibly infinite) mixture of chain distributions, each corresponding to a different

time-point at which a reward is received. Note that each component of this mixture distribution contains

a different number of variables and such a distribution is generally known as a trans-dimensional distri-

bution. A factor graph representation of the reward weighted trajectory distribution is given in fig(3.1).

Additionally, the weight of each component in the normalised version of the reward weighted trajectory

distribution corresponds to the proportion of the total expected reward obtained at the time-point of the

current component, e.g. in the finite horizon case we have

p̂(t;w) =
Ept(z;w)

[
R(z)

]
U(w)

.

It is convenient to note that in the case of a finite planning horizon we have

p̃(z, τ, t;w) = pτ (z;w)Ept(z′;w)

[
R(z′)

∣∣∣∣zτ = z

]
,

where we have used the notation p̃(z, τ, t;w) ≡ p̃(zτ , t;w). An analogous equation holds in the infinite

horizon discounted rewards framework. In terms of the integrals necessary to perform a parameter update

it is not difficult to see that we can write the gradient in the form

∇wU(w) =

∞∑
t=1

∞∑
τ=t

Ep̃(z,τ,t;w)

[
∇w log π(a|s;w)

]
,

where the integrals necessary for the EM-algorithm and natural gradient ascent can be written in a similar

fashion. Having written these integrals in this manner it can now be seen that the evaluation stage of

parametric policy search methods is equivalent to performing inference (i.e. calculating the marginals)

of the reward weighted trajectory distribution, where these marginals are determined by the derivative of

the log-policy.

The observation that the evaluation stage of parametric policy search methods is equivalent

to inference in a graphical model has led to a recent surge in model-based inference techniques3

3This observation has also lead to some novel model-free inference techniques [176, 78, 79] but we do not discuss these here

3.2. Model-Based Evaluation Techniques 54

t = 1 z1

t = 2 z2z1

t = H z1 z2 zH

(a) Reward Weighted Trajectory Distribution

h1 h2 hH

v1 v2 vH

(b) Hidden Markov Model

Figure 3.2: (a) A dynamic Bayesian network representation of the reward weighted trajectory distribution
(b) A dynamic Bayesian network representation of the Hidden Markov Model.

[170, 169, 171, 104, 102, 77, 59]. These methods aim to use tools from probabilistic and approxi-

mate inference to obtain efficient inference routines that are either exact or approximate, typically by

exploiting certain aspects of the reward weighted trajectory distribution. An important example is when

the state-action space is high-dimensional and, due to some underlying sparsity structure in the problem,

the reward weighted trajectory distribution has a sparse graphical structure. There are numerous ap-

proximate inference techniques that exploit sparsity in the graphical structure of a distribution to obtain

accurate estimates of marginals. It is desirable, therefore, to extend these techniques to the evaluation

stage of parametric policy search algorithms. Additionally, this view of the evaluation stage as a problem

of probabilistic inference allows for various data modelling techniques from the time-series literature to

be employed, such as switching linear dynamical systems or infinite Hidden Markov Models.

In model-based inference the model of the environment is used directly to calculate the marginals

of the reward weighted trajectory distribution. Due to the Markov assumption and the temporal nature

of Markov Decision Processes the graphical structure of the reward weighted trajectory distribution has

close similarities to the graphical structure of latent variable time-series models, such as the Hidden

Markov Model. Recall that the structure of the reward weighted trajectory distribution is given by a

(possibly infinite) mixture of chain distributions, where each component of the mixture corresponds to

a point in the planning horizon. While the Hidden Markov Model does not have this mixture structure

it does have the chain structure that is present in each component of the reward weighted trajectory

distribution. The Hidden Markov Model also has a visible variable emitted from each hidden variable

in the chain, but these are not important to to our discussion. A factor graph representation of the

reward weighted trajectory distribution and the Hidden Markov Model is given in fig(3.2). From this

perspective the evaluation stage of parametric policy search algorithms, such as steepest gradient ascent

or Expectation Maximisation, can be seen to be equivalent to performing inference in a latent variable

time-series model, albeit one with a mixture structure over the points in the planning horizon. It is

important to note that, while the evaluation stage of parametric policy search algorithms has similarities

to inference routines in a latent variable time-series model, the actual form of the inference routines is

significantly different. This is due, in main, to the mixture structure of the reward weighted trajectory

distribution, which is absent in models such as the Hidden Markov Model. Additionally, the planning

as our focus is on model-based methods.

3.2. Model-Based Evaluation Techniques 55

horizon is often infinite in a Markov Decision Process, which is typically not the case in the Hidden

Markov Model. These are important points and necessarily they make the construction of efficient

inference routines markedly different. A final point of interest is that applying the procedures from

chapter(2) to the risk-sensitive objective (1.5) results in a reward weighted trajectory distribution where

this mixture structure is absent. In this case the structure of this distribution would be a single chain,

like the Hidden Markov Model. This is due to the fact that the reward structure of (1.5) is multiplicative

instead of additive, as it is in (2.1).

We now proceed to some current examples of evaluation methods that are based on ideas from

probabilistic inference, which can all be seen as forward-backward inference methods, before proceeding

to our new Rauch-Tung-Striebel type evaluation procedure.

3.2.1 Forward-Backward Inference

In typical applications of forward-backward methods, say in a Hidden Markov Model, the distribution

is chain structured and inference is performed by first passing a set of messages both forward and back-

ward in the chain. Given these sets of messages the marginals are obtained by combining the appropriate

forward and backward messages, see e.g. [15] for more details and the application of the methods to

Hidden Markov Models. As the structure of each component in the reward weighted trajectory distri-

bution is chain structured it is possible to apply forward-backward methods to each of the components

individually. While this naive application of forward-backward methods is possible it has undesirable

properties, for example the number of messages that need to be calculated scales quadratically w.r.t.

to the planning horizon, when the planning horizon is finite, and thus the complexity of the algorithm

scales quadratically with the planning horizon in this case. It was noted in [170] that when the transition

dynamics, policy and reward function are stationary it is only necessary to calculate a linear number

of messages, using the ‘time-to-go’ formulation of the message-passing routine. In [171] it is noted

that in discrete systems, where it is possible to enumerate over the state-action space, there is another

source of efficiency that comes from combining the backward messages from different components of

the reward weighted trajectory distribution. In [171] this observation is made solely w.r.t. Expectation

Maximisation, being referred to ‘incremental-EM’, but it is applicable to other similar parametric policy

search methods.

Markov Decision Processes

The simplest case to consider is the single variable Markov Decision Process where it is necessary to

calculate marginals of the form p̃(z, τ, t;w), for all t ∈ NH and τ ∈ Nt. This is the case considered

in [170, 171], again in terms of Expectation Maximisation, where it is assumed that it is possible to

enumerate over the state-action space. We highlight the forward-backward procedure for a finite planning

horizon, where details of the extension to an infinite planning horizon with discounted rewards can be

found in [170, 171].

Consider the case where the transition dynamics, policy and reward function are non-stationary

and forward-backward inference is performed along each component of the reward weighted trajectory

3.2. Model-Based Evaluation Techniques 56

distributions individually. As the policy is non-stationary we denote the parameters for the policy at the

tth time-point bywt. For the component corresponding to the tth time-point, t ∈ NH , there are t forward

messages and t backward messages, where these messages take the form

ατ (z, t;w) = pτ (z;w), βt(z, τ ;w) = Ept(z′;w)

[
Rt(a

′, s′)
∣∣zτ = z

]
.

The initial forward and backward messages of the component corresponding to the tth time-point take

the form

α1(z, t;w) = p1(s)p(a|s;w1), βt(z, t;w) = Rt(a, s).

These messages are then simultaneously propagated both forward and backward in the chain, where the

updates are respectively given by the equations

ατ+1(z′, t;w) =
∑
z∈Z

Pτ+1(z′|z;wτ+1)ατ (z, t;w),

βτ (z, t;w) =
∑
z′∈Z

Pτ+1(z′|z;wτ+1)βτ+1(z′, t;w),

and Pτ+1(z′|z;wτ+1) is the non-stationary state-action transition matrix given by

Pτ+1(z′|z;wτ+1) = p(a′|s′;wτ+1)p(s′|s,a).

Given the messages, ατ (z, t;w) and βτ (z, t;w), the ‘marginal’, p̃(z, τ, t;w), is given by

p̃(z, τ, t;w) = ατ (z, t;w)βτ (z, t;w). (3.2)

It can be seen that the forward messages are independent of the mixture component so that there are a

linear number of forward messages. We write ατ (z, t;w) ≡ ατ (z;w), for all t ∈ NH . In contrast the

backward messages are dependent on the mixture component and so the number of backward messages

that need to be calculated scales quadratically with the planning horizon. In terms of these forward-

backward messages the statistics necessary for a policy update take the form

H∑
τ=1

H∑
t=τ

p̃(z, τ, t;w) =

H∑
τ=1

H∑
t=τ

ατ (z, t;w)βτ (z, t;w),

=

H∑
τ=1

ατ (z;w)

H∑
t=τ

βτ (z, t;w).

Due to the quadratic number of backward messages that need to be calculated the complexity of this

algorithm is quadratic in the planning horizon. As noted in [170] when the reward function, transition

dynamics and policy are stationary it is only necessary to calculate a linear number of backward mes-

sages. This is because in this case the backward messages depend only on the difference in time, t− τ ,

or the ‘time-to-go’ as it is refereed to in [170], and so the same set of backward messages can be used in

3.2. Model-Based Evaluation Techniques 57

all components of the reward weighted trajectory distribution. Under the assumption that it is possible to

enumerate over the state-action space a linear time inference routine can be obtained for the policy eval-

uation problem, which is possible by constructing a recursive relation for the summation of backward

messages. The extension to an infinite planning horizon with discounted rewards using the ‘time-to-go’

argument is given in [170, 171].

The above procedure performs inference along the various components of (3.1) independently,

which is unnecessary under the assumption that it is possible to enumerate over the entire state-action

space. While it is still possible to obtain an efficient inference routine in this manner, using the ‘time-

to-go’ argument, it requires stationarity in the reward function, transition dynamics and policy. An

alternative, more general, inference procedure is given in [171]. Recall that the ‘marginal’, p̃(z, τ, t;w),

can be written in the form

p̃(z, τ, t;w) = p(z, τ ;w)Ep(z′,t;w)

[
Rt(z

′)

∣∣∣∣zτ = z

]
.

The forward and backward component of the marginal (3.2) correspond to p(z, τ ;w) and

Ep(z′,t;w)[R(z′)|zτ = z] respectively. As the statistic necessary for a parameter update takes the

form
H∑
τ=1

H∑
t=τ

p̃(z, τ, t;w) =

H∑
τ=1

p(z, τ ;w)

H∑
t=τ

Ep(z′,t;w)

[
Rt(z

′)

∣∣∣∣zτ = z

]
,

it can be seen that the summation of backward messages
∑H
t=τ βτ (z, t;w) is equivalent to the state-

action value function, Qτ (z;w). Therefore, under the assumption that it is possible to enumerate over

the state-action space, it is clear that the following recursive equation can be obtained for the summation

of backward messages

Qτ (z;w) = Rτ (z) +
∑
z′∈Z

Pτ+1(z′|z;w)Qτ+1(z′;w). (3.3)

In this formulation the extension to an infinite planning horizon with discounted rewards is trivial and di-

rectly corresponds to the Bellman equation over state-action value functions, where convergence is given

by the contraction mapping theorem. Additionally, it is clear that formulation doesn’t require the reward

function, transition dynamics and policy to be stationary in order to obtain an efficient inference routine,

unlike the ‘time-to-go’ argument. Written in this form it can be seen that standard formulations of the

gradient, such as (2.4), are written in a forward-backward form, and the state-action occupancy marginals

correspond to the forward term, while the state-action value function corresponds to the backward term.

Finally, we note that ordinarily in a forward-backward algorithm it is of interest to obtain the

marginals over the hidden variables and so the product of the forward-backward messages needs to

be normalised. If one were to normalise the marginal in (3.2) then one would obtain the state-action

marginal for the τ th time-point in the tth component of (3.1), i.e.

p̂(z, τ |t;w) =
1

Ep(z,t;w)

[
Rt(z)

]ατ (z, t;w)βτ (z, t;w).

3.2. Model-Based Evaluation Techniques 58

The marginal, p̂(z, τ, t;w), is obtained from the equation p̂(z, τ, t;w) = p̂(z, τ |t;w)p̂(t;w), where

p̂(t;w) is given by

p̂(t;w) =
Ep(z,t;w)

[
Rt(z)

]
U(w)

,

which can be seen from (3.1). In gradient-based algorithms it is only necessary to calculate the search

direction up to a positive scalar, the scalar being absorbed into the step-length, while in the EM-algorithm

the normalisation constant of (3.1) doesn’t affect the argmax of the function (2.14). As a result it is

possible to consider either the normalised or the unnormalised marginals in the parametric policy search

methods discussed in chapter(2).

This completes the description of the forward-backward routines in single variable Markov De-

cision Processes. In both formulations of these forward-backward algorithms it was necessary to be

able to enumerate over the state-action space in order to obtain an efficient inference routine. This

property allows the merging of backward messages, which effectively corresponds to performing in-

ference over multiple components of the reward weighted trajectory distribution simultaneously. This

property clearly doesn’t hold in all Markov Decision Processes. For instance, it doesn’t hold for any of

the Markov Decision Processes considered in section(3.1). Furthermore, it doesn’t hold in systems with

a continuous state-action space, where the transition dynamics and policy are linear. A model-based

forward-backward algorithm [77] has been constructed for such systems, but the inability to combine the

backward messages results in it having a quadratic run-time w.r.t. the finite planning horizon. In terms

of structured Markov Decision Processes [170, 171] suggest two possible methods to perform inference

in (3.1). The first method is to eliminate variables that are not in the separator cliques of the time-slices

in the trajectory distribution and then perform forward-backward inference over this reduced set of vari-

ables, while the second method is to apply the junction tree algorithm to the reward weighted trajectory

distribution. While these techniques have been successfully applied to several interesting domains, such

as a POMDP where the belief is modelled through a finite state controller [170, 171, 169], they have a

run-time that scales exponentially in the induced tree-width of the graphical model. We now consider

several different models where forward-backward inference has been successfully applied, after which

we shall detail our RTS inference paradigm.

Finite State Controllers

An additional example considered in [170, 171] is the POMDP where the agents’ belief is modeled

through a finite state controller. This model is interesting because it has been used to demonstrate the

possibility of using various data modelling techniques from the time-series literature to construct more

sophisticated policy structures. In [169] the technique of hierarchical Hidden Markov Models is used

to model the policy of a finite state controller with a hierarchical structure. Additionally, this example

is interesting because it illustrates the efficiency gains that are possible by performing inference over

the separator sets of the Markovian trajectory distribution. It can be seen in fig(1.6) that the state-belief

variables form a separator set between time-points of the trajectory distribution. It is therefore more

efficient to perform forward-backward inference in terms of the state-belief variables. The state-belief

3.2. Model-Based Evaluation Techniques 59

transition matrix can be calculated as follows

P (b′, s′|b, s;wπ,wν) =
∑
a∈A

∑
o∈O

p(s′|a, s)p(b′|b,o;wν)p(a|b,o;wπ)p(o|s),

while the initial messages take the form

α1(b, s;wη) = p0(b;wη)p0(s), βt(b, s, t;wπ) =
∑
a∈A

∑
o∈O

Rt(a, s)p(a|b,o;wπ)p(o|s).

As in the single variable Markov Decision Process these forward and backward messages are propagated

simultaneously, while the following recursion is easily obtainable

Qτ (b, s;wπ,wν) = βτ (b, s, τ ;wπ) +
∑
b′∈B

∑
s′∈S

Qτ+1(b′, s′;wπ,wν)P (b′, s′|b, s;wπ,wν),

where the term Qτ (b, s;wπ,wν) is analogous to the state-action value function.

Transition Independent Decenteralised Markov Decision Processes - Additive Sparsity

Another example where forward-backward inference has recently been applied is in transition indepen-

dent decentralised Markov Decision Processes [102, 101]. For the sake of simplicity we detail the simple

model introduced in section(1.5) but more complex models were also considered in [102], such as mod-

elling each agent’s belief through a finite state controller. Only Expectation Maximisation is considered

in [102, 101] but, as previously mentioned, the same inference routine is also applicable to steepest gra-

dient ascent and similar methods. Due to the transition independence and decentralised nature of the

policy4 these models have a natural sparsity structure in the trajectory distribution. Under the assump-

tion that the trajectory distribution of any individual agent is tractable the only source of intractability in

this model is the global reward function. This makes these models an ideal candidate for model-based

inference techniques and tractable inference routines will be possible provided that the reward function

exhibits a sufficient amount of sparsity.

In [102] a sparse additive structure is placed on the reward function, which is achieved by writing

the global reward function into a summation over local sparse reward functions. In particular suppose

there is some finite index set, F , such that the global reward function can be written in the form

R(z) =
∑
f∈F

Rf (zf),

where zf is the subset of the state-action variables corresponding to the agents in the domain of the local

reward function Rf . In this case the total expected reward takes the form

U(w) =

∞∑
t=1

Ep(zt;w)

[
γt−1

∑
f∈F

Rf (zft)

]
=
∑
f∈F

∞∑
t=1

Ep(zft ;w)

[
γt−1Rf (zft)

]
=
∑
f∈F

Uf (wf),

4Note that in terms of parametric policies the decentralised policy (1.25) is written in the form p(a|s;w) =∏N
n=1 π

n(an|sn;wn), where wn are the parameters of the nth agent.

3.2. Model-Based Evaluation Techniques 60

where we use Uf (wf) to denote the lower-dimensional MDP corresponding to local reward function

f . In terms of the reward weighted trajectory distribution this decomposition of the objective function

corresponds to a mixture distribution over local reward functions, i.e.

p̃(zf1:t, t, f ;w) = Rf (zft)p(zf1:t;w
f),

while the gradient of the objective w.r.t. the parameters of the ith agent takes the form

∇wiU(w) =
∑
f∈Fi

H∑
t=1

t∑
τ=1

Ep̃(zi,τ,t,f ;w)

[
∇w log p(ai|si;wi)

]
,

where Fi is the subset of local functions that have a dependence upon the ith agent. In terms of inference

this means that message-passing can be done over each of the local reward function mixture components

individually. In [102] it is assumed that each of the local functions contains a sufficiently small num-

ber of agents that exact inference in each of the local reward function mixture components is possible

using forward-backward inference. The forward-messages correspond to the state-action occupancy dis-

tributions, over subsets of the agents, while the (summation of) backward-messages correspond to the

state-action value functions of the lower dimensional MDPs.

3.2.2 Rauch-Tung-Striebel Inference

Forward-backward techniques have been successfully applied to some interesting planning models, see

e.g. [170, 171, 102, 104, 169, 77]. However, to obtain efficient inference routines with these forward-

backward techniques it is necessary to be able to combine the backward messages along the different

components of the reward weighted trajectory distribution. A good illustration of this point is given

by the model-based forward-backward algorithm for continuous systems in [77]. As the systems con-

sidered in [77] are continuous it is not possible to combine the backward messages, which results in

a forward-backward algorithm whose computational complexity scales quadratically with the (finite)

planning horizon. This limitation of forward-backward techniques has thus far restricted their (efficient)

application to models where it is either possible to enumerate over the state-action space [170, 171],

the components of the reward weighted distribution have a sufficiently small induced tree-width that the

junction tree algorithm is feasible [169], or the reward weighted trajectory distribution has a particular

form of sparsity s.t. it is only necessary to enumerate over subspaces of the state-action space [102]. As

an alternative we present an inference technique that is applicable to continuous and high-dimensional

systems, where it is either not possible to enumerate over the state-action space or the induced tree-width

of each component of the reward weighted trajectory distribution is prohibitively large. The underlying

idea of the inference procedure is analogous to performing Rauch-Tung-Striebel (RTS) smoothing [133]

on (3.1), for which reason we refer to this family of inference algorithms as RTS-inference. The deriva-

tion is complicated by the fact that (3.1) has a mixture structure over the points in the planning horizon,

which isn’t present in standard latent variable time-series models for which the RTS smoother was orig-

inally designed. As we shall see, however, it is possible to overcome this difficulty by exploiting the

3.2. Model-Based Evaluation Techniques 61

t = 1
p0

z1

R

+

t = 2
p0 P

z2z1

R

+ +

t = H
p0

z1 z2 zH
P P R

= = =︷ ︸︸ ︷
Qrts

1 (z1)
︷ ︸︸ ︷
Qrts

2 (z2)
︷ ︸︸ ︷
Qrts
H(zH)

Figure 3.3: An example of how the finite horizon reward weighted trajectory distribution (3.1) splits into
Rauch-Tung-Striebel state-action value functions.

special structure of (3.1) that allows inference to be performed over multiple mixture components si-

multaneously. An additional complication is the possibly infinite planning horizon, which we handle

through the derivation of an appropriate fixed-point equation.

We currently focus on finite planning horizons, where we shall detail the formulation for the infinite

horizon discounted rewards framework shortly. We first prove the following simple lemma which shows

that, conditioned on t ∈ NH and zτ+1, where τ ∈ Nt−1, the reward weighted trajectory distribution

over zτ is independent of t and is equal to the system reversal dynamics.

Lemma 1. Given any t ∈ NH and τ ∈ Nt−1 the unnormalised distribution p̃(zτ |zτ+1, t;w) is inde-

pendent of t and takes the form

p̃(zτ |zτ+1, t;w) = p(zτ |zτ+1;w) (3.4)

where p(zτ |zτ+1;w) is the marginal of the trajectory distribution (2.2).

Proof. For any given τ ∈ Nt the marginal of the reward weighted trajectory distribution p̃(zτ :t, t;w)

takes the form

p̃(zτ :t, t;w) = p(zτ ;w)

{ t−1∏
τ ′=τ

p(zτ ′+1|zτ ′ ;w)

}
R(zt),

As τ < t we have a similar expression for the marginal p̃(zτ+1:t, t;w). Using the Markovian structure

of the reward weighted trajectory distribution means that the conditional distribution takes the form

p̃(zτ |zτ+1, t;w) =
p(zτ ;w)p(zτ+1|zτ ;w)

p(zτ+1;w)
= p(zτ |zτ+1;w).

We now introduce a new set of state-action value functions, which we refer to as Rauch-Tung-

Striebel state-action value functions, or just RTS state-action value functions. These new state-action

value functions play a prominent role in the RTS-inference formulation and are similar to the standard

3.2. Model-Based Evaluation Techniques 62

state-action value function, with the exception of a prefactor of the state-action occupancy distribution.

In particular, for each τ ∈ NH we define the function

Qrts
τ (z;w) =

H∑
t=τ

p̃(z, τ, t;w) = pτ (z;w)Qfb
τ (z;w), (3.5)

where Qfb
τ (z;w) is the standard state-action value function. Note that the summation of z-marginals of

(3.1) that appears in the parameter update equation of parametric policy search methods can be written

in terms of these RTS state-action value functions as follows

H∑
t=1

t∑
τ=1

p̃(z, τ, t;w) =

H∑
τ=1

H∑
t=τ

p̃(z, τ, t;w) =

H∑
τ=1

Qrts
τ (z;w), (3.6)

so that an efficient calculation of these functions is sufficient to provide an efficient routine to calcu-

late the statistics necessary for a policy update. An illustration of how the marginals of the reward

weighted trajectory distribution can be written in terms of these RTS state-action value functions is given

in fig(3.3). To obtain an efficient method for the calculation of the RTS state-action value functions we

use lemma 1 to obtain the following recursive relationship.

Lemma 2. Given τ ∈ NH−1, the function Qrts
τ (z;w) satisfies

Qrts
τ (z;w) = p(z, τ ;w)R(z) +

∑
z′

p(zτ = z|zτ+1 = z′;w)Qrts
τ+1(z′;w). (3.7)

Proof. We start by rewriting the function Qrts
τ (z;w) as

Qrts
τ (z;w) = p̃(z, τ, τ ;w) +

H∑
t=τ+1

∑
z′

p̃(z, z′, τ, τ + 1, t;w), (3.8)

where we have introduced the z-variable of the next time-step, zτ+1. Now, by lemma 1, we have that

for each t ∈ {τ + 1, . . . ,H}

p̃(z, z′, τ, τ + 1, t;w) = p̃(zτ =z|zτ+1 =z′, t;w)p̃(zτ+1, t;w),

= p(zτ = z|zτ+1 = z′;w)p̃(zτ+1, t;w).

Substituting this into (3.8) we obtain

Qrts
τ (z;w) = p(z, τ ;w)R(z) +

∑
z′

p(zτ = z|zτ+1 = z′;w)

H∑
t=τ+1

p̃(z′, τ + 1, t;w),

where we have used the fact that p(zτ |zτ+1) depends only upon τ and not upon t. The result now

follows from the definition of Qrts
τ+1(z′;w).

The recursive equation (3.7) can be seen as a new form of Bellman equation. The standard Bellman

equation (3.3) is a backward equation in a forward-backward inference routine, while (3.7) can be seen

3.2. Model-Based Evaluation Techniques 63

as a forward-then-backward equation. It is now clear how to construct an efficient inference algorithm

for the calculation of the RTS state-action value functions using the recursive equation (3.7). Firstly, due

to the Markovian assumption, the trajectory distribution (2.2) is chain structured and all the z-marginals

can be calculated in linear time [178]. Given the marginals of the trajectory distribution the first term

in (3.7) is easy to calculate, which also means that Qrts
H(z;w) is easy to calculate because it takes the

simple form

Qrts
H(z;w) = p(z, H;w)R(z).

Once the functionQrts
H(z;w) has been calculated all of the remaining functions {Qrts

τ (z;w)}τ∈NH−1
can

be computed by repeated use of the recursion (3.7).

Before continuing we briefly highlight some important differences between performing inference in

terms of the RTS state-action value functions defined in (3.5) in comparison to the classical state-action

value functions from the planning literature. An important difference is the direction of the transition

dynamics in the two recursions (3.7) and (3.3), where in (3.7) the transition dynamics are going back-

wards in time, while in (3.3) the transition dynamics are going forward in time. This is a subtle but

important point and, as we shall see, it has some important consequences. For instance in continuous

systems it allows for the construction of recursions over the moments of the RTS state-action value

functions, as opposed to the functions themselves. We shall soon consider the RTS framework when

applied to linear dynamical systems with a possibly non-linear reward structure. The recursions over

the moments of the RTS state-action value functions result in an inference algorithm with a computa-

tional complexity that scales linearly w.r.t. the planning horizon, in the case of a finite planning horizon,

as opposed to the quadratic scaling of forward-backward inference in this model [77]. The change in

the direction of the transition dynamics is possible due to the prefactor of the state-action occupancy

distribution, showing that this prefactor actually plays an vital role in the derivation of (3.7). Another

important difference is the normalisation constant5 of the two forms of state-action value function and

their relation to the component weights of the reward weighted trajectory distribution. Note that we have∑
z Q

rts
τ (z;w) = p̃(t ≥ τ ;w), for each τ ∈ NH , so that the normalisation constant of the RTS state-

action value functions can be directly obtained from the component weights of the reward weighted tra-

jectory distribution. Given the forward messages, or approximations thereof, these component weights

are typically easy to calculate. This means that it is only necessary to calculate/approximate the RTS

state-action value functions up to a positive multiplicative constant. This is a useful property in, for

example, high-dimensional systems where inference in the reward weighted trajectory distribution is

intractable. In such cases it is sufficient to consider the distributions

Q̂rts
τ (z;w) ∝ Qrts

τ (z;w), τ ∈ NH ,

and these distributions can be directly approximated through various approximate inference techniques.

Shortly we shall consider such a high-dimensional discrete system where it is possible to use this

5By normalisation of a non-negative function, f(z), we mean the scalar Z =
∑

z f(z). It is assumed that f is not identically
zero so this term is always positive.

3.2. Model-Based Evaluation Techniques 64

property to construct a recursion over these distributions that is analogous to (3.7). In contrast the

normalisation constants of the standard state-action value functions have no relation to the component

weights of the reward weighted trajectory distribution, with the forward messages providing no informa-

tion about these functions. Therefore if one were to consider a corresponding set of distributions for the

standard state-action value functions, so as to apply the similar approximate inference routines, it would

be necessary to also approximate the normalisation constant. This would be an intractable problem in

general and so an additional set of approximations would be required using forward-backward infer-

ence. Before detailing the application of RTS-inference to various planning models we first formalise

the extension to the discounted infinite horizon framework.

Infinite Discounted Planning Horizons

To extend RTS-inference to the discounted infinite horizon framework we rely on the fact that, given the

system is stable, stationarity of the state-action occupancy distribution will be reached in a finite amount

of time. Given that stationarity is reached by the time-point τ̂ it is straightforward to show that for any

τ ≥ τ̂ we have the relation

Qrts
τ+1(z;w) = γQrts

τ (z;w). (3.9)

This relation can now be used to obtain a formulation for calculating the marginals overZ for the infinite

number of time-points of (3.1). Firstly we split the infinite summation in the parameter update function

into the terms before and after stationarity of the trajectory has been reached, i.e.

∞∑
t=1

Qrts
t (z;w) =

τ̂−1∑
t=1

Qrts
t (z;w) +

∞∑
t=τ̂

Qrts
t (z;w). (3.10)

The relation (3.9) suggests that from the τ̂ th time-point onwards the RTS state-action value functions are,

up to scaling, time-invariant. It is therefore natural to introduce a time-invariant RTS state-action value

function, Qrts(z;w), which is defined by Qrts(z;w) = γ1−τ̂Qrts
τ̂ (z;w). Note that by (3.9) we have

Qrts(z;w) = γ1−tQrts
t (z;w), for all t ≥ τ̂ , so that Qrts(z;w) is indeed independent of time and this

definition is well defined. The infinite summation that occurs (3.10) can now be performed analytically

as follows
∞∑
t=τ̂

Qrts
t (z;w) = Qrts(z;w)

∞∑
t=τ̂

γt−1 =
γ τ̂−1

1− γ
Qrts(z;w). (3.11)

To perform the summation in (3.10) it now remains to obtain an analytic solution to Qrts(z;w). This

solution is obtained from the following recursion, which almost immediately follows from the relations

(3.7) and (3.9) and the definition of Qrts(z;w),

Qrts(z;w) = p(z;w)R(z) + γ
∑
z′

←−p (z|z′)Qrts(z′;w), (3.12)

3.2. Model-Based Evaluation Techniques 65

Calculate Forward Messages: Iterate the forward-message recursion until the forward-messages
converge to the stationary distribution.

Calculate Stationary RTS state-action value function: Use the stationary occupancy distribution
and the stationary system reversal dynamics to calculate the stationary RTS state-action value function,
Qrts(z;w), using either (3.13) or the fixed-point equation (3.12).

Calculate Backward Messages: Use the recursive equation (3.7) to propagate the RTS state-action
value functions backwards in time Qrts

t (z;w), for t = τ̂ − 1, . . . , 1.

Algorithm 3.1: Infinite Horizon RTS-Inference

where p(z;w) is the stationary occupancy distribution and ←−p (z|z′) is the stationary system reversal

dynamics. An algebraic solution for Qrts(z;w) is obtained from (3.12) by observing that

Qrts = (I − γ
←−
P)−1µ, (3.13)

where µ is the point-wise product of the stationary occupancy distribution with the reward function.

An alternative solution to Qrts(z;w) can be obtained by iterating the fixed-point equation (3.12) until

convergence, which may be preferable in systems where the matrix inversion is expensive or infeasible.

Note that the presence of the discount factor in (3.12) makes this fixed-point equation a contraction map-

ping so that convergence to a unique fixed-point is guaranteed. The complete algorithm for calculating

the infinite number of marginals of (3.1) required for a parameter update is detailed in algorithm(3.1).

Continuous Models

In continuous problems it will generally only be possible to maintain an analytical model-based inference

procedure for linear systems with Gaussian noise. While a forward-backward inference procedure has

been derived for this model [77] it has a run-time that is quadratic in the planning horizon and is only

applicable to finite planning horizon problems. In this section we will detail the RTS-inference procedure

for this model, which has a run-time that is linear in the planning horizon. Additionally we provide a

analytical procedure for discounted infinite horizon problems, which has a run-time that is determined

by the eigenvalue of the state-action transition matrix with largest magnitude.

In a linear dynamical system the initial state distribution, transition dynamics and policy take the

form

p(s1) = N (s1|µ0,Σ0),

p(st+1|st,at) = N (st+1|Ast +Bat,Σ),

p(at|st;K,m, πσ) = N (at|Kst +m;πσ),

where all the matrices and vectors are assumed to be of appropriate size. Note that the mean of these

Gaussians is a linear combination of the conditioning variable, which maintains tractability. Under these

policies the quantities needed to perform a policy update are the first two moments of the RTS state-

3.2. Model-Based Evaluation Techniques 66

action value functions. In particular we need to calculate the terms

H∑
τ=1

EQrts
τ (z;w)

[
z
]
,

H∑
τ=1

EQrts
τ (z;w)

[
zz>

]
,

which, as we shall see, can be calculated in linear time.

On first sight it would appear that the reward function also has to have some restricted Gaussian

form in order to maintain tractability. However, as noted in [77], the objective function (2.1) is linear in

the reward function and so it is possible to handle arbitrarily complex reward structures through a linear

mixture of Gaussians. This means the reward function can take the form

R(z) =

J∑
j=1

wjN̄ (yj |Mz, Lj),

where N̄ denotes an unnormalised Gaussian. It is easy to see that the statistics required for the various

parametric policy search algorithms considered in chapter(2) can now be obtained by performing infer-

ence in the J mixtures independently. For this reason the rest of the derivation will assume only a single

component.

To perform RTS-inference one first calculates the forward-messages, i.e. the state-action marginals

of the trajectory distribution. As the policy is considered fixed during inference this is equivalent to a

LDS in the state-action space and so the forward-messages simply follow from standard LDS recursions

[15]. In particular if we denote the mean and covariance of the state-action marginal at time t by µt and

Σt respectively then we have the recursions

µt+1 = F (K)µt + m̄, Σt+1 = F (K)ΣtF (K)> + Σ̄, (3.14)

where

m̄ =

 0

m

 Σ̄ =

 Σ ΣK>

KΣ KΣK> + πσIna

 , F (K) =

 A B

KA KB

 ,
and the initial message takes the form

µ1 =

 µ0

Kµ0 +m

 , Σ1 =

 Σ0 Σ0K
′

KΣ0 KΣ0K
> + π2

σIna

 . (3.15)

Once the forward-messages have been calculated it is necessary to to calculate the statistics of the system

reversal dynamics, which are required to perform the RTS-inference recursions (3.7). As the system is

linear the reversal dynamics can be calculated using standard conditional Gaussian formulae, see e.g.

[15]. Given the statistics of the state-action marginals the system reversal dynamics are given by

p(zt|zt+1;w) = N (zt|
←−
G tzt+1 +←−mt,

←−
Σ t), (3.16)

3.2. Model-Based Evaluation Techniques 67

where
←−
G t,←−mt and

←−
Σ t are given by

←−
G t = ΣtF (K)>(F (K)ΣtF (K)> + Σ̄)−1,

←−mt = µt −Gt(F (K)µt + m̄),

←−
Σ t = Σt − ΣtF (K)>(F (K)ΣtF (K)> + Σ̄)F (K)Σt.

For convenience we will often write this distribution with the notation p(zt = z|zt+1 = z′;w) ≡
←−p t(z|z′;w). Additionally, to calculate the moments of the RTS state-action value functions it is neces-

sary to calculate expectations of the form

Ep(z,t;w)

[
R(z)z

]
, Ep(z,t;w)

[
R(z)zz>

]
.

As these are Gaussian integrals they are easy to calculate, but for completeness we give their explicit

form. Denoting these moments respectively as µRt and ΣRt , then we have

µRt = R(t)

(
µt + ΣtM

>((MΣtM
> + L)−1(y −Mµt))

)
,

ΣRt = R(t)

(
Σt − ΣtM

>(MΣtM
> + L)−1MΣt +R(t)−2µRt

(
µRt
)>)

,

where R(t) denotes the expected reward at tth time-point.

Finally, having calculated the forward-messages and the system reversal dynamics it is then possible

to obtain the first two moments of the RTS state-action value functions using (3.7). As zt depends on

zt+1 linearly in the reversal dynamics it means that the first two moments of Qrts
t (z;w) take the form

EQrts
t (z;w)

[
z
]

= Ep(z,t;w)

[
zR(z)

]
+ EQrts

t+1(z′;w)

[
E←−p t(z|z′;w)

[
z
]]
,

= Ep(z,t;w)

[
zR(z)

]
+ EQrts

t+1(z′;w)

[(←−
G tz

′ +←−mt

)]
.

and

EQrts
t (z;w)

[
zz>

]
= Ep(z,t;w)

[
zz>R(z)

]
+ EQrts

t+1(z′;w)

[
E←−p t(z|z′;w)

[
zz>

]]
,

= Ep(z,t;w)

[
zz>R(z)

]
+ EQrts

t+1(z′;w)

[(←−
G tz

′ +←−mt

)(←−
G tz

′ +←−mt

)>
+
←−
Σ t

]
.

The recursions for the first two moments of the RTS state-action value functions can now be immediately

read off these equations to give

µQt = µRt + Zt+1
←−mt +Gtµ

Q
t+1, (3.17)

ΣQ
t = ΣRt + Zt+1(

←−
Σ t +←−mt

←−m>t) +Gt(Σ
Q
t+1 + µQt+1

←−m>t +←−mt(µ
Q
t+1)>)G>t , (3.18)

3.2. Model-Based Evaluation Techniques 68

Calculate Forward Messages: Calculate the initial state-action marginal (3.15) and iterate the
forward-message recursions (3.14) up until the end of the planning horizon.

Calculate System Reversal Dynamics: Using the statistics of the forward-messages calculate the
system reversal dynamics (3.16).

Calculate Moments of RTS state-action value functions: Calculate the first two moments of the
RTS state-action value function at the final time-point and then use the recursive equations (3.17) &
(3.18) to calculate the first two moments of the remaining RTS state-action value functions.

Algorithm 3.2: Finite Horizon Inference of RTS state-action value functions in a Linear Dynamical
System

where we have used the notation Zt+1 =
∑H
τ=t+1R(t) as well as using the fact that

EQrts
t+1(z;w)

[
1
]

= Zt+1.

This completes the description of the RTS-inference procedure for this model in finite horizon problems.

A summary of the algorithm is given in algorithm(3.2).

To extend this algorithm to discounted infinite horizon problems it is necessary for the system to

converge to a stationary distribution, which requires the spectrum of F (K) to be contained within the

unit circle. We shall talk about this criterion shortly but for now we assume that this is the case. In this

situation one calculates the forward-messages in the same manner as in the finite horizon problem, now

however instead of terminating the iterations at the final time-point they should be terminated once the

messages have converged to stationary distribution. One then obtains the stationary system reversal dy-

namics, again using the standard Gaussian conditional formulae. Denoting the first and second moment

of Q(z) by µQ and ΣQ respectively, then applying the same techniques used to derive (3.17) and (3.18)

but now using the recursive equation (3.12) gives

µQ = µR + γ
(
Z←−m+GµQ

)
, (3.19)

ΣQ = ΣR + γ

(
Z(
←−
Σ +←−m←−m>) +G(ΣQ + µQ←−m> +←−m(µQ)>)G>

)
. (3.20)

One can either obtain the moments µQ and ΣQ either by solving the linear systems (provided this is

possible) or by iterative application of these equations to some initial estimate. As previously mentioned

these mapping are contraction mappings so that this iterative solution will be unique regardless of the

initial estimate. A summary of the infinite horizon algorithm is given in algorithm(3.3).

It is important to note some of the characteristics of the set of policy parameters that lead to a

state-action transition matrix with all of its eigenvalues lying within the unit circle. Not only is this

necessary for the infinite horizon recursions but it is also important in terms of numerical stability of finite

horizon problems. When the magnitude of any of the eigenvalues exceed unity the system will diverge

exponentially quickly and it will only be possible in practice to handle a limited planning horizon. It

is important to note that this is a property of the system and not the inference technique and as such is

3.2. Model-Based Evaluation Techniques 69

Calculate Forward Messages: Calculate the initial state-action marginal (3.15) and iterate the
forward-message recursions (3.14) up until convergence of the occupancy distribution.

Calculate System Reversal Dynamics: Using the statistics of the forward-messages calculate the
system reversal dynamics before and after convergence of the occupancy distribution.

Calculate Moments of Time-Invariant RTS state-action value function: Calculate the first two mo-
ments of the time-invariant RTS state-action value function, Qrts(z;w), using the recursive equations
(3.19) & (3.20). Additionally calculate the moments of

∑∞
t=τ̂ Q

rts
t (z;w) using the relation (3.11).

Calculate Moments of Time-Variant RTS state-action value functions: Using the statistics
of Qrts(z;w) calculate the first two moments of Qrts

τ̂ (z;w) through the relation Qrts(z;w) =
γ1−τ̂Qrts

τ̂ (z;w). Then propagate the moments of the RTS state-action value functions back for all
τ < τ̂ using the standard recursive equation (3.7).

Algorithm 3.3: Infinite Horizon Inference of RTS state-action value functions in a Linear Dynamical
System

true both of model-based and model-free algorithms. Obviously this set depends only upon K and is

characterised as follows

K =

{
K ∈ Rna×ns

∥∥∥∥ρ(F (K)) < 1

}
,

where ρ is the spectral radius operator. The first thing to note is that K is convex. Indeed suppose that

K1,K2 ∈ K, then given any λ ∈ [0, 1] we have

F (λK1 + (1− λ)K2) =

 A B(
λK1 + (1− λ)K2

)
A

(
λK1 + (1− λ)K2

)
B

 ,
= λ

 A B

K1A K1B

+ (1− λ)

 A B

K2A K2B

 ,
= λF (K1) + (1− λ)F (K2).

Since ρ(F (K1)) < 1 and ρ(F (K2)) < 1 it is easy to see that ρ(F (λK1 + (1− λ)K2)) < 1 and hence

λK1 + (1− λ)K2 ∈ K. The convexity of K is obviously a desirable property as it means that, provided

that the initial policy paramterisation is in K, it is possible (at least in theory) to reach any optima of the

objective function without leaving the set K, outside of which these algorithms will become numerically

unstable in large planning horizons. Another important characteristic of interest is the boundedness ofK.

Generally speaking this set will not be bounded as a bounded spectrum does not imply that the elements

of the matrix are bounded.

Another issue is obtaining uniform samples from K, which is important in terms of initialisation

of these algorithms. This is important because one could easily restrict oneself to a poor part of the

parameter space by sampling in a non-uniform manner, especially as these methods are local optimisation

techniques. Additionally, obtaining uniform samples is important for fair comparison of algorithms. It is

easy to imagine a situation where the performance of two algorithms differ in two parts of the parameters

space, so by using non-uniform samples it is easily possible that results could be unfairly biased. Two

3.2. Model-Based Evaluation Techniques 70

immediate possibilities are rejection sampling and Gibbs sampling, see e.g. [62]. In rejection sampling

one would first obtain a set K̃ ⊂ Rna×ns s.t. K ⊂ K̃ and from which it is easy to obtain uniform

samples. Given K̃ one then obtains uniform samples from K by first sampling from K̃ and then either

accepting or rejecting this sample depending on whether it is in K or not. Gibbs sampling is an iterative

process that would yield uniform samples upon convergence. At each iteration a uniform sample would

be taken for a small subset of the parameters of K, while keeping the others fixed. This process would

then be iterated, alternating the parameters held fixed, until the algorithm has converged to a uniform

distribution over K. The main idea is that by keeping all but a small subset of the parameters fixed

during each sampling stage it will be easier to obtain a characterisation of this subset of parameters. See

[62] for a more detailed description. Both of these sampling procedures require K to be bounded and

when this is not the case it is not possible to obtain uniform samples over K.

This completes the discussion of inference in linear systems with a reward structure described by a

mixture of Gaussians. It may appear at first sight that such systems are limited in their applicability due

to the constraint that the dynamics and policy are both linear. This is not true, however, and there are

several immediate methods that allow the modelling of non-linear systems. For example it is possible

to model a wide range of non-linear systems through a process known as feedback-linearisation, which

we shall discuss in further detail in section(4.3). Other possibilities are to take approaches similar to

either [166] or [168], which were detailed in section(1.3.3). For example one could use any number of

approximate inference routines, such as Expectation Propagation [115], to approximate the trajectory

distribution with a Gaussian, which could then be used in the RTS-inference recursions. Finally an in-

teresting avenue of possible future research is to model an original non-linear control problem through

a switching linear dynamical system. There has been a large amount of research on inference of such

systems in the statistics, machine learning and control literature [14, 63, 1], but there seem to have been

little attempt at optimal control through these models. While exact inference becomes intractable [15]

there are a large range of approximate inference techniques for these models, including VB approxi-

mations [63], Gaussian sum filtering [1] and expectation correction techniques [14]. These techniques

result in inference recursions that are closely related to standard LDS recursions and one can expect a

similar situation in the control setting. To the best of our knowledge such an approach has never been

undertaken and could be an interesting avenue of research.

Before proceeding to another model we consider the difficulty of performing model-based inference

in this model under the typical forward-backward paradigm. Suppose we wish to calculate the first

moment of p(z, t;w)Qfb
t (z;w), where Qfb

t (z;w) is the standard state-action value function, then it is

necessary to calculate the integral

Ep(z,t;w)

[
zQfb

t (z;w)

]
= Ep(z,t;w)

[
zR(z)

]
+ Ep(z,t;w)

[
zEp(z′|z;w)

[
Qfb
t+1(z′;w)

]]
. (3.21)

The first term on the r.h.s. of (3.21) is easy and is equivalent to the corresponding term in RTS-inference.

3.2. Model-Based Evaluation Techniques 71

The second term on the r.h.s. of (3.21) can be written in the equivalent form

Ep(z,t;w)

[
zEp(z′|z;w)

[
Qfb
t+1(z′;w)

]]
= EpQ(z,t;w)

[
z
]
,

where pQ(z, t;w) is given by

pQ(z, t;w) = p(z, t;w)Ep(z′|z;w)

[
Qfb
t+1(z′;w)

]
.

The unnormalised distribution pQ(z, t;w) is an unnormalised mixture of Gaussians with (H − t) com-

ponents, which can be seen from the definition of the state-action value function and the fact that the

system is linear Gaussian. Therefore, to calculate the expectation EpQ(z,t;w)

[
z
]

it is necessary to calcu-

late the expectation over each component of the mixture individually. This is equivalent to the procedure

that [77] perform and its run-time it quadratic in the planning horizon. Additionally, there is no easy

extension to infinite planning horizons, which would require calculating the expectation over an infinite

number of components in a infinite mixture of Gaussians. In contrast RTS-inference uses the linearity

of the system reversal dynamics to obtain a linear-time recursion for the calculation of the expectation

over all of the mixtures simultaneously. Additionally, the infinite horizon recursion (3.12) calculates the

expectation over an infinite number of mixtures and convergence is guaranteed through the contraction

mapping theorem.

High-Dimensional Transition-Dependent Markov Decision Processes

In this section we demonstrate RTS-inference in high-dimensional discrete systems where inference in

each component of the reward weighted trajectory distribution is intractable. We consider a specific

application, both for notational convenience and to motivate the our approach, but the arguments hold

in more general settings. At present we only highlight the general procedure and the advantages of

RTS-inference, leaving the explicit construction of particular approximate inference algorithms for these

systems as a point of future work. We restrict our attention to a finite planning horizon, where the exten-

sion to the discounted infinite horizon framework is possible through the fixed-point equation (3.12).

A popular class of Markov Decision Processes where inference in the reward weighted trajectory

distribution is intractable is the class of factored multi-agent systems , see e.g. [71, 73, 72]. A typical

example of such a system is an urban traffic network, where each agent corresponds to a traffic junction

in the network and the objective is to minimise congestion. In this class of MDPs the state-action vector

is given by

zt =
(
s1
t , ..., s

N
t , a

1
t , ..., a

N
t

)
.

where N is equal to the number of agents in the system and (si, ai) ∈ Si × Ai corresponds to the

state-action space of the ith agent. The transition dynamics are typically sparse in these systems because

each agent’s dynamics are affected by only a subset of the other agents, e.g. neighbouring junctions

in a traffic network. To formalise this idea slightly, while trying not to over complicate the point, we

3.2. Model-Based Evaluation Techniques 72

Agent 1

Agent 2Agent 5

Agent 3Agent 4

Figure 3.4: The neighbourhood graph of an example system network factored MDP.

define the neighbourhood graph to be a graph with N nodes, with each node corresponding to an agent

in the system. There is a directed edge from node i to node j if the transition dynamics of jth agent is

dependent on the state-action pair of the ith agent. An undirected edge is used for codependent agents.

An example of such a neighbourhood graph is given in fig(3.4), which is a computer network system and

each agent corresponds to a computer in the network. In this example the transition dynamics of the first

agent are dependent on its own state and the state of agents 2 & 5, i.e. p(s1
next|z) = p(s1

next|z1, z2, z5). A

final assumption that is typically made in these systems is that the reward function has a sparse additive

structure, e.g.

R(z) =

N∑
i=1

Ri(s
i, ai). (3.22)

In the example of a traffic network this reward function may correspond to the amount of congestion at

each junction in the network. For the remainder of this section we shall assume that the reward function

has the form given in (3.22).

In order to employ approximate inference routines we assume that there is some reasonable sparse

conditioning structure for the policies of the various agents. For example assume that there is a set of

functions {φi}i∈NN that map the state space to some lower-dimensional space s.t.

π(a|s) =

N∏
i=1

πi(ai|φi(s)).

In this example the actions along the various dimensions of the action space are independent given

the current state. This is not necessary and it is possible to model more sophisticated policies, but for

simplicity we consider this simple case. In these systems there is often a natural selection of {φi}i∈NN
in terms of the structure of the neighbourhood graph, e.g. φi(s) = sd, where sd is the vector of state

variables that are a distance less than d away from i in the neighbourhood graph.

Given the reward function (3.22) the reward weighted trajectory distribution (3.1) is now a mixture

over time-points and agents, i.e. p̂(z1:t, t, i;w) ∝ Ri(z
i
t)p(z1:t;w). A factor graph representation of

3.2. Model-Based Evaluation Techniques 73

(3.1) for the example factored MDP introduced in fig(3.4) is given in fig(3.5). We alter definition of an

RTS state-action value function accordingly

Qrts
τ (z;w) =

H∑
t=τ

N∑
i=1

p̃(z, τ, t, i;w),

where p̃(z, τ, t, i;w) = p̃(zτ , t, i;w). Note that the product structure in the policy means that in order

to update the policy, πi, it is necessary to calculate the term

H∑
τ=1

Qrts
τ (ai, φi(s);w),

so that it is only necessary to calculate marginals over small subsets of state-action variables. Addition-

ally, due to the sparsity properties of the problem class, each component of the reward weighted trajectory

distribution has a sparse graphical structure. Hence the policy evaluation stage of policy search methods

in these problems is amenable, at least in theory, to approximate inference techniques. However, the

construction of efficient inference algorithms is non-trivial due to the large number of components in

this mixture distributions, where there are NH components in this example.

As in continuous systems the first step in RTS-inference is to perform (approximate) inference on

the trajectory distribution to calculate the forward messages and the system reversal dynamics. Due to

the high dimensional state-action space and the transition dependence between the agents of the system

this inference will be intractable in general and so an approximate inference procedure is necessary, such

as belief propagation or the cluster variational method, see e.g. [100] or [85]. The Markovian structure

of the trajectory distribution suggests that a simple forward inference procedure is appropriate. Once the

forward messages and system reversal dynamics have been calculated/approximated it is necessary to

calculate the component weights in the reward weighted trajectory distribution, which in this example

correspond to the expected reward terms for each time-point in the planning horizon and each agent in

the system. Given the approximation to the trajectory distribution it is easy to calculate the expected

reward for each time-point and each agent because to the sparse reward structure (3.22). These expected

reward terms are important as they form the component weights in a mixture distribution that is central

to the inference. We define the following terms

Zi,τ = Ep(zi,τ ;w)

[
Ri(s

i, ai)

]
, ∀i ∈ NN , ∀τ ∈ NH ,

Zτ =
∑N
i=1 Ep(zi,τ ;w)

[
Ri(s

i, ai)

]
, ∀τ ∈ NH ,

Zτ→H =
∑H
t=τ

∑N
i=1 Ep(zi,t;w)

[
Ri(s

i, ai)

]
, ∀τ ∈ NH .

Note that these terms are closely connected to the various component weights in the reward weighted

trajectory distribution. For instance p̂(i, τ ;w) ∝ Zi,τ , while p̂(τ ;w) ∝ Zτ and p̂(t ≥ τ ;w) ∝ Zτ→H .

Given the approximation to the trajectory distribution, system reversal dynamics and the expected

3.2. Model-Based Evaluation Techniques 74

i = 1, t = 1

i = 1, t = 2

i = 1, t = τ

i = 1, t = H

z1
τ

z2
τ

z3
τ

z4
τ

z5
τ

z1
τ−1

z2
τ−1

z3
τ−1

z4
τ−1

z5
τ−1

z1
1

z2
1

z3
1

z4
1

z5
1

p0 P P P R

Figure 3.5: A factor graph representation of p̃(z1:τ , t, i;w) for the factored MDP considered in fig(3.4),
with a detailed illustration of the structure for the time-component, t = τ , and agent-component, i = 1,
given on the right of the figure.

reward terms it remains to approximate the RTS state-action value functions. As the normalisation

constants of these functions are known (note that Zτ→H =
∑
z Q

rts
τ (z;w), ∀τ ∈ NH) it is sufficient

to approximate these functions up to a positive scaling. It is therefore sufficient to approximate the

distributions

Q̂rts
τ (z;w) =

1

Zτ→H
Qrts
τ (z;w), (3.23)

which can be approximated through numerous approximate inference techniques. These distributions

are still complicated functions and to obtain an efficient inference routine we consider the following

recursion, which is the analogue of the recursion (3.7), over these distributions

Q̂rts
τ (z;w) =

1

Zτ→H

{
Zτqτ,1(z;w) + Zτ+1→Hqτ,2(z;w)

}
, (3.24)

where the distributions qτ,1(z;w) and qτ,2(z;w) take the form

qτ,1(z;w) = p̂(zτ = z|τ ;w), qτ,2(z;w) =
∑
z′

pτ←τ+1(z|z′;w)Q̂rts
τ+1(z′;w).

The first point to note is that qτ,1(z;w) and qτ,2(z;w) are both distributions. The first term is a distribu-

tion by definition, while the second term is a distribution due to the direction of the transition dynamics

in the term pτ←τ+1(z|z′;w) and the fact that Q̂rts
τ+1(z′;w) is a distribution. Written in this form it is

clear that Q̂rts
τ (z;w) is a two component mixture distribution, with the first component corresponding to

the expected reward of the current time-point and the second component corresponding to the total ex-

pected reward from future time-points. Additionally, the weights of the two components are known and

equal ZτZ−1
τ→H and Zτ+1→HZ

−1
τ→H respectively, where it is easy to see that Zτ + Zτ+1→H = Zτ→H .

Taking these points into account it is clear that (3.24) forms the basis for any of a number of approximate

inference routines. We have yet to construct any such an inference routines explicitly, and this is a point

3.2. Model-Based Evaluation Techniques 75

of future work, but even the most basic inference algorithms, such as belief propagation, are immediately

applicable.

As a motivational example consider the case where the RTS state-action functions are approximated

through distributions with a tractable graphical structure, where we denote the underlying graph by

G = (V, E). Approximate inference techniques of this form are known as structural mean field methods,

or variational Bayes approximations, see e.g. [143, 17]. The graphical structure is selected to maintain

tractability of the inference algorithm, while allowing complex correlations to be modelled into the state-

action function. Consider the case the underlying graphical structure is given by a tree where, denoting

the approximate state-action value function by Q̃rts
τ (z;w), we have

Q̃rts
τ (z;w) =

∏
s∈V

µτs (zs)
∏

(s,t)∈E

µτst(z
s, zt)

µτs (zs)µτt (zt)
, (3.25)

and {µτs}s∈V and {µτst}(s,t)∈E are the approximate singleton and pairwise marginals. One possibility

to model the RTS state-action value function in this manner would be to approximate qτ,1(z;w) and

qτ,2(z;w) with the same graphical structure, i.e.

q̃τ,i(z;w) =
∏
s∈V

µτ,is (zs)
∏

(s,t)∈E

µτ,ist (zs, zt)

µτ,is (zs)µτ,it (zt)
, i = 1, 2.

It then follows through (3.24) and matching of terms that the singleton and pairwise marginal terms of

Q̃rts
τ (z;w) can be calculated as follows

µτs (zs) =
1

Zτ→H

(
Zτµ

τ,1
s (zs) + Zτ+1→Hµ

τ,2
s (zs)

)
,

µτst(z
s, zt) =

1

Zτ→H

(
Zτµ

τ,1
s,t (z

s, zt) + Zτ+1→Hµ
τ,2
st (zs, zt)

)
,

where the consistency of the marginals {µτs , µτst}s∈V,(s,t)∈E follows from the consistency of the

marginals, {µτ,is , µτ,ist }
i=1,2
s∈V,(s,t)∈E . Due to the fact that the component weights of (3.24) are known

this procedure corresponds to first approximating Q̂rts
τ (z;w) through a two component mixture model,

where the component weights of the approximation are assumed to be known and equal to the component

weights of Q̂rts
τ (z;w) and each component is assumed to be tree-structured. The approximation (3.25)

is then obtained by marginalising over these two components under the assumption that the resulting

marginal is again tree-structured.

We now consider other possible methods of performing inference in (3.1) and highlight the advan-

tages of the RTS-inference paradigm. Firstly, consider the graphical structure of (3.1) and the naive

direct application of approximate inference routines. As previously mentioned (3.1) has a mixture dis-

tribution over time-components and agent-components. In these high-dimensional transition-dependent

factored MDPs each of these components will typically contain a large number of variables and infer-

ence in each component will be intractable. In such cases calculating the marginals of each component

will be intractable and direct application of forward-backward methods will be infeasible. Instead, a

3.2. Model-Based Evaluation Techniques 76

possibility is to directly apply any of a number of approximate inference algorithms to each of the com-

ponents individually. However, such an approach will be highly inefficient and will not exploit any of

the similarities between the structure of the components. Additionally, such a method will have a run-

time that is quadratic in the planning horizon with no clear extension to an infinite planning horizon.

An alternative approach for factored MDPs, suggested in [170, 171], is to use a variable elimination

procedure. However, variable elimination has a run-time that is exponential in the induced tree-width

of the graphical model, which makes such a procedure generally infeasible in these high-dimensional

transition-dependent factored MDPs.

Another possibility is to apply approximate inference techniques to the standard state-action value

function, which in terms of forward-backward algorithms corresponds to performing approximate infer-

ence on the summation of backward messages. In order to use approximate inference techniques one

would consider the normalised version of the standard state-action value function,

Q̂fb
τ (z;w) =

1

Z fb
τ

Qfb
τ (z;w), (3.26)

where Z fb
τ =

∑
z Q

fb
τ (z;w) is the normalisation constant. An important point to note is that, in contrast

to the RTS state-action value function, the normalisation constants {Z fb
τ }τ∈NH are not related to the

component weights of the reward weighted trajectory distribution and nor are they obtainable from the

forward messages. It is therefore also necessary to approximate these normalisation constants in this case

and so an additional level of approximation is required using forward-backward inference in comparison

to RTS-inference. This is a significant point as the terms that need to be estimated can be seen to be

equal to the normalisation constant of a non-trivial high-dimensional distribution, which is an intractable

problem in general. For example, in distributions from the exponential family the normalisation constant,

or the log-partition function, is a sufficient statistic of the distribution and is NP-hard to calculate in

general. Obtaining bounds or approximations of the log-partition function is a core aspect of much

approximate inference research, see e.g. [178] for an overview, and the estimation of the normalisation

constants {Z fb
τ }τ∈NH is a significant challenge. Note that these issues persist when writing Q̂fb

τ (z;w) in

the form of a recursive equation, analogous to (3.3), which would require approximating the weights of

the mixture components.

In summary there are two immediate advantages to RTS-inference over forward-backward infer-

ence in models of this form. Firstly, the fact that the normalisation constants of the RTS state-action

value functions can be directly obtained from the forward messages means that it is only necessary to

approximate these functions up to a positive scaling. This makes it sufficient to consider the distri-

butions, {Q̂rts
τ (z;w)}τ∈NH , which can be approximated through any number of approximate inference

techniques. The second advantage is that the direction of the transition dynamics in the RTS recursions

mean that it is possible to obtain a recursive equation (3.24) that has the form of a two component mixture

model, which allows for the efficient approximation of these distributions.

3.3. Model-Free Evaluation Techniques 77

Summary

This completes our description of the RTS-inference method for model-based inference techniques to

perform the integrals necessary for a parameter update. We have seen that this form inference tech-

nique has several important advantages over typical forward-backward inference methods. In terms of

computational complexity the only difference between RTS-inference methods and forward-backward

techniques is the need to calculate the system reversal dynamics. The advantages of RTS-inference

come at this additional computational cost, but the construction of the system reversal dynamics is typ-

ically easily possible from the forward messages. The preference between the two forms of inference

therefore depends on the additional computational cost of calculating the system reversal dynamics and

the benefits of RTS-inference. We have considered some important models where these advantages of

RTS-inference makes it attractive alternative.

3.3 Model-Free Evaluation Techniques
In section we give a brief review of some of the predominant sampling-based methods for estimating the

gradient. No new theoretical work is provided in this section and instead we give an overview of these

methods to provide a reference for future discussions. In model-free methods the statistics necessary

to perform a parameter update are calculated in a stochastic, sampling-based manner. There are several

reason why such an approach may be taken; for instance a model of the system dynamics may not be

available and instead one has access only to samples of the system through either direct interaction or

simulation. On the other-hand even when a model of the system dynamics is available it is often an

intractable problem to calculate the expectations necessary to perform a parameter update. Model-free

procedures attempt to sidestep these problems by providing sample-based estimates of these expecta-

tions. Sampling-based methods are often very simple to implement as well as requiring no knowledge of

the system dynamics. Additionally, given enough sampling time model-free methods will converge, in

probability, to the true value of the statistics. One of the issues with sampling-based methods is that they

tend to have high variance in the estimands, which introduces a fresh set of problems into the optimisa-

tion procedure. For example, line searches lose much of their desirability because only noisy estimates

of the objective and its derivative are available. Instead a predefined, or possibly adaptive, step-size se-

quence is typically used instead. Algorithms such as steepest gradient ascent are particularly sensitive to

poor scaling of the search direction and in many problems defining an appropriate step-size sequence can

in itself be a challenging task. While the use of a step-size sequence {αt}∞t=1 satisfying the conditions

αt > 0,

∞∑
t=1

αt =∞,
∞∑
t=1

α2
t <∞,

is guaranteed to converge to a local maxima the rate of convergence can be prohibitively slow in practice.

In this section we shall highlight some of the main techniques used to perform model-free inference.

We shall focus on forward-sampling techniques that obtain samples through direct forward simulation of

the system dynamics. More complex sampling methods, such as Markov Chain Monte-Carlo techniques

[79, 78] and nonparametric Bayesian regression techniques [65], have also been successfully applied.

3.3. Model-Free Evaluation Techniques 78

Additionally we shall highlight two of the main techniques used to reduce the variance of the estimates,

including baseline methods [68, 180] and actor-critic methods [99, 98, 162, 29, 28]. Other methods for

reducing the variance of estimates also exist, such parameter-based exploration [149, 116], but we do

not detail them here.

Forward-Sampling

In terms of sampling the simplest situation is where the planning horizon is finite and it is possible to

directly simulate trajectories in the environment. It can be seen from the relation (2.6) that there is

a simple generative method for obtaining a sample-based estimate of the gradient. For instance, one

can simply sample a trajectory of length H from the trajectory distribution (2.2), while at each time-

point obtaining a sample from the reward distribution conditional on the current point in the trajectory.

This process can then repeated, say N times, and the results used to obtain an unbiased estimate of the

gradient. Denote these sample trajectories by {zl1:H}Nl=1, while the samples of the reward distribution

are denoted by {rl1:H}Nl=1. In the example of a finite horizon MDP we have that the model-free estimate

of the gradient takes the simple form

∇wU(w) ≈ 1

N

N∑
n=1

{ H∑
τ=1

∇w log p(anτ |snτ ;w)

{ H∑
t=τ

rnt

}}
.

This completes the most basic application of sampling-based methods to perform inference in finite

horizon problems. Inference for natural gradient ascent and Expectation Maximisation follows similarly.

Unsurprisingly the average reward and discounted infinite reward frameworks are necessarily more

complex than the finite planning horizon. In this framework it is generally assumed that the estimates

will be obtained from a single sample path of the system so that at some given time, T , the current

sample will consist of z1:T and r1:T . A common technique is to make use of a recurrent state, denoted

by z∗, by which is meant a state with an almost sure finite hitting time. If we let tn be the time-point

of the nth visit to the recurrent state, then the sample sequence ztn:tn+1
is known as the nth regenerative

cycle, and its length is given by

Tn = tn+1 − tn.

Holding w fixed the random variables Tn are independent and identically distributed, with finite mean

denoted by Tw.

As we have seen the functions∇w log p(·|· ;w) play a special role in gradient-based methods and it

is useful to maintain a summary statistic of these functions evaluated over the course of each regenerative

cycle. At the beginning of the nth regenerative cycle the term Λn
1 is initialised to zero and then through

the course of this cycle the following recursive update is applied

Λn
t+1 =

 Λn
t +∇w log p(at+1|st+1;w), if zt+1 6= z∗,

0, if zt+1 = z∗.

The term Λn
t is generally referred to as the eligibility trace of the nth cycle at time t, or just the eligibility

3.3. Model-Free Evaluation Techniques 79

trace when the context is clear. Additionally it is helpful to rewrite the samples of the reward function in

terms of the regenerative cycles, i.e. rnt is used to denote the sample reward received at the tth time-point

of the nth regenerative cycle. If the samples of N regenerative cycles are to be used in the estimate then

an unbiased estimate of (2.7) is given by

∇wU(w) ≈ 1

N

N∑
n=1

Tn∑
t=1

rnt Λn
t .

While algorithms that rely on the use of a recurrent state are able to provide unbiased estimates of

(2.7) they can also be problematic in a number of ways. For instance the variance of the estimate is de-

pendent on the recurrence time, which will typically grow as the state space increases. Additionally, the

recurrence time of a state is dependent on the control parameters and so is liable to change dramatically

through the course of the optimisation process, which means that the selection of a good recurrent state

may be a difficult problem in certain systems. Various techniques have been devised to overcome this re-

liance on the use of recurrent states, of which two prominent examples are truncating and discounting of

the eligibility trace [137, 67]. While these methods generally introduce bias into the estimate, they also

offer a certain amount of control on the variance. This reduced variance is usually at the cost of increased

bias and so these methods have a natural bias-variance tradeoff property built into their mechanism.

Methods that truncate the eligibility trace, see e.g. [137, 67], have an additional integer parameter,

n, and the eligibility trace is calculated using the previous n sample points. This means that up until the

nth time-point the eligibility trace is calculated in the normal recursive manner, i.e.

Λt(n) =

t∑
τ=1

∇w log p(aτ |sτ ;w),

and then from the (n+ 1)th time-point onwards the truncated eligibility trace is calculated

Λt+1(n) = Λt(n) +∇w log p(at+1|st+1;w)−∇w log p(at+1−n|st+1−n;w).

An estimate of (2.7), which we denote by ∇̂nwU(w), is obtained after T time-points (T ≥ n) through

the truncated summation

∇̂nwU(w) =
1

T − n+ 1

>∑
t=n

rtΛt(n).

Unless n exceeds the maximum recurrence time, which is infinite in ergodic Markov chains, ∇̂nwU(w)

will be a biased estimate. The bias of ∇̂nwU(w) tends to zero as n → ∞, however its variance will

diverge in the limit. Hence there is a natural trade-off between the bias and variance of the estimate

when selecting the truncation parameter. The parameter n has to be selected so as not to introduce too

much bias, while avoiding excessive amounts of variance.

An alternative to truncating the eligibility trace is to instead consider a discounted recursive update,

which was the subject of [19]. Introducing a bias-variance trade off parameter β ∈ [0, 1), also known

as a discount parameter, the discounted eligibility trace is updated according to the following recursive

3.3. Model-Free Evaluation Techniques 80

formulae

Λt+1(β) = βΛt(β) +∇w log p(at+1|st+1;w).

It was shown in [19] that

∇̂βwU(w) =
1

T

>∑
t=1

rtΛt(β),

gives a biased estimate of the gradient for β ∈ [0, 1), while

lim
β→1

lim
T→∞

1

T

>∑
t=1

rtΛt(β) = lim
T→∞

1

T

>∑
τ=1

>∑
t=τ

Ep̃(z,τ,t;w)

[
∇w log p(a|s;w)

]
.

As with the truncated estimate there is a natural bias-variance tradeoff in this discounted estimate. As

β → 1 the bias of ∇̂βwU(w) tends to zero while its variance increases, eventually diverging at the point

β = 1. However, it was additionally shown in [19] that the accuracy of the biased gradient estimate also

depends on the mixing time of the Markov chain induced by the current parameter setting. In particular

they obtain a bound relating this mixing time to the normalised inner product of (2.7) and its biased

estimate, see Theorem 3 of [19], so that it is not always necessary to have a value of β close to unity to

obtain a good approximation. Similar estimates where also proposed in [91, 92, 113]. In [91, 92] the

term rt is replaced by rt − b, where b is, known as a baseline, used to help reduce the variance of the

estimate while not effecting the bias. The use of baselines as a variance reduction technique is a subject

that we shall approach shortly. In [113] the term rt is replaced by rt− Û(w), where Û(w) is an estimate

of the average reward, and they make use of an identifiable recurrent state to zero out the eligibility trace.

An advantage of the discounting approach over the truncation method is that it is no longer necessary

to store the last n sample points, which can be a big advantage if it is necessary to have a prohibitively

large n to obtain an acceptably small amount of bias. The use of this estimate in steepest gradient ascent

is usually referred to as the GPOMDP algorithm [19] and there has been a general preference in the

literature to its use instead of the truncation method.

Baselines

While sampling-based methods are often easy to implement they generally suffer from high variance in

the estimands. This is a well-known problem and various techniques have been devised to help reduce

this variance, the simplest of which is perhaps the use of a baseline. In this case an additional term is

introduced into the gradient equation in such a manner that it doesn’t effect the bias of the estimate,

while having an effect on the variance. It is then possible to select this additional term in such a way so

as to either reduce or minimise the variance. The work [39] considered the effect baselines had on the

variance of gradient estimates for binary immediate reward problems. Similarly the immediate reward

problem was considered in [182], this time in the problem of connectionist networks, and found that

the introduction of a various baseline didn’t introduce bias into the estimand, although no basis was

found for selecting this baseline. These results were extended to the average reward GPOMDP gradient

estimator in [180, 68], where various optimality results were found for the use of a baseline. To observe

the main point of the baseline method consider the case of a finite horizon Markov Decision Process. In

3.3. Model-Free Evaluation Techniques 81

this instance the notion of an optimal baseline stems from the observation that for an arbitrary function

b : S → R the gradient can be written in the equivalent form

∇wU(w) =

H∑
t=1

Ep(z,t;w)

[
∇w log p(a|s;w)

[
Qt(z;w)− b(s)

]]
,

so that the incorporation of this additional term does not introduce any bias into sample-based estimate

of the gradient. This is simple to see because for each t ∈ NH we have

Ep(z,t;w)

[
∇w log p(a|s;w)b(s)

]
= Ep(s,t;w)

[
b(s)∇w

∑
a∈A

p(a|s;w)

]
= 0.

While the incorporation of this additional term, which is usually referred to as a baseline, doesn’t effect

the bias of any sample-based estimate it does effect the variance. It is therefore natural to find the optimal

baseline, where optimality is measured in the terms of variance. There are various possibilities in the

functional form of the baseline, such as constant baselines or baselines that depend on the state, and the

explicit form of such baselines can be found in e.g. [68, 180, 124].

Actor-Critic Methods

In the sampling schemes considered thus far no use is made of the simulations from previous parameter

updates, this information being essentially thrown away. This deficiency has led to the introduction of

the so called Actor-Critic methods [99, 98, 162] which additionally maintain an estimate of the state-

action value function through the use of function approximation. These methods are then formed of a two

stage iterative process, alternating between updates of the control parameters, known as the actor, and

updates of the approximate value function, known as the critic. While these methods attempt to increase

the rate of convergence of gradient-based methods by reducing the variance of the estimands, they also

have an important property in terms of the low complexity of the function approximation required by

the critic. In particular, as shown independently in [98] and [162], the critic only needs to maintain

a low-dimensional projection of the state-action value function, instead of the entire state-action value

function. These methods have been further extended to employ Bayesian inference methods [64] and

natural gradient actor-critic methods [123, 28, 29]. We shall postpone the discussion of these natural

gradient actor-critic methods until natural gradient methods have been introduced in section(4.1).

Consider the discounted infinite horizon framework for Markov Decision Processes, where the

extensions to the finite horizon and average reward frameworks are straightforward. As we’ve seen the

vector-valued function∇w log p(·|· ;w) : A×S → Rnw is of prime importance in gradient-based meth-

ods. Following standard notation in the literature we make the identification ψw ≡ ∇w log p(·|· ;w),

so that ψwi (a, s) = d
dwi

log p(a|s ;w). Consider the vector space of functions defined on A × S and

denote the subspace spanned by the functions {ψwi }
nw
i=1 by Ψw. For any instantiation of the parameter

vector define the inner product 〈·, ·〉w of any two real valued functions f1, f2 on A× S to be given by

〈
f1, f2

〉
w

=

∞∑
t=1

Epγ(z,t;w)

[
f1(a, s)f2(a, s)

]
.

3.4. Experiments 82

Under this notation the gradient for the infinite horizon discounted rewards framework can be written in

the form
d

dwi
U(w) =

〈
Qw, ψwi

〉
w
, (3.27)

where for notational convenience we use Qw to denote the state-action value function. Thus the de-

pendence on Qw is only through its projection into the subspace Ψw and instead of attempting to learn

the state-action value function it is instead sufficient to learn its projection in Ψw. This can be seen by

defining the projection operator Πw : R|A|×|S| → Ψw as follows

Πw(f) = argmin
f̂∈Ψw

‖f − f̂‖,

then it is simple to show that, see e.g. [162],

〈
Qw, ψwi

〉
w

=
〈
Πw(Qw), ψwi

〉
w
.

It is clear from (3.27) that it suffices to use the projection in Πw(Qw) in place of Qw in (2.4), where

the projection Πw(Qw) is often known a compatible function approximation [162]. As Πw(Qw) ∈ Ψw

there exists θ ∈ Rnw s.t. Πw(Qw) ≡
(
ψw
)>
θ and gradient can be rewritten in the form

∇wU(w) = Epγ(z;w)

[
∇w log p(a|s;w)∇>w log p(a|s;w)

]
θ = Gwθ,

where Gw is defined in the obvious manner. The final component in an actor-critic algorithm is to define

the update procedure for the critic parameters, for which a popular choice is some form of temporal-

difference learning [160]. The use of temporal-difference learning algorithms is motivated by various

results in the literature relating these algorithms to different forms of projections of the (state-action)

value function, see e.g. [173, 145]. We do not detail an particular instances of actor-critic algorithms

here but exact forms of the critic update can be found in e.g. [29]. This completes our brief description

of actor-critic methods.

3.4 Experiments
In this section we perform various experiments to highlight some of the theoretical work that has been

presented in this chapter. In particular, we present some experiments relating to the RTS-inference rou-

tine when applied to linear systems, with a possibly non-linear reward structure. Even though it is clear

that RTS-inference is more efficient than forward-backward inference in the this model, having a linear

instead of quadratic run-time, it is perhaps instructive to illustrate the amount of computational savings

that can be made in practice. For this reason we detail a finite horizon experiment where a comparison

is made between RTS-inference and forward-backward inference. Additionally, we detail an experiment

for the infinite horizon recursion on this model. In the experiments we used linearised versions of the

Lotka-Volterra system and N-link rigid manipulator, which we now describe in detail.

3.4. Experiments 83

Lotka-Volterra System

The Lotka-Volterra equations [177] are a standard method to describe the population dynamics of a

group of ns interacting species of animal. The uncontrolled version of the equations take the form

ṡ = D(s)
(
As+ c

)
+ η,

where the s ∈ Rns+ , c ∈ Rns , A ∈ Rns×ns , D(s) is a diagonal matrix with s running along the diagonal

and η is a zero mean Gaussian. The vector c describes the growth/death rates of the animals in the

absence of interaction of other species. The term D(s)As describes a quadratic interaction between the

species, where A is ordinarily assumed to skew-symmetric. The assumption of skew-symmetry of A

stems from the observation that if species i is a predator of species j, then species i will benefit from the

predation of species j through the quadratic form aijxixj , while the prey is being consumed at the rate

−aijxixj . A possible controlled version [70] of these equations is

ṡ = D(s)
(
As+ c+ f(a)

)
+ η,

where a ∈ Rna is the control vector and f : Rna → Rns is a vector-valued function of the control.

The control can be seen as a deliberate intervention with the environment (on the part of the controller)

in order to modulate the populations of the species to some pre-defined levels. Examples include the

culling of specific animals, which directly affects only a subset of the species, or the adjustment of a

global parameter (such as the temperature of a controlled environment) which affects all of the species.

We shall consider an environment with six species [70] where there are two super-predators (x1 and

x2), two prey (x3 and x6) and two intermediate species (x4 and x5). In this example the coefficients of

the uncontrolled Lotka-Volterra equations are given by

A =

0 0 4 3 0 0

0 0 0 2 3 0

−4 0 0 0 0 0

−3 −2 0 0 1 4

0 −3 0 −1 0 5

0 0 0 −4 −5 0

, c =

−13

−9

4

−10

−11

17

.

In [70] the control is a scalar variable u and fi(u) = −(δi,1 + δi,2)u, i.e. the controller only has direct

control of the two super-predator species. In this example however we will consider a control scenario

where a ∈ R6 and fi(a) = ui, which corresponds to having direct control of all six species individually.

We consider such a controller for the sake of simplicity as it easily allows for the linearisation of the

system by defining the controller a s.t.

ai =
τi
si
−Ais− ci,

3.4. Experiments 84

z1
t−1 z1

t z1
t+1

z2
t−1 z2

t z2
t+1

z6
t−1 z6

t z6
t+1

Rt−1 Rt Rt+1

Figure 3.6: A dynamic Bayesian network representation of the transition and reward structure of the
Lotka-Volterra system after the system has been linearised through feedback-linearisation.

where Ai denotes the ith row of the matrix A. This results in the linear system dynamics

ṡ = τ + η,

where τ is now the control variable. The transition dynamics and reward structure of the linearised

system is given in fig(3.6). It can be seen that the population of each species can be modulated indepen-

dently while the species are coupled in the objective function through the reward function. In this system

we have ns = 6 and na = 6 and due to the structure of the controller the matrix K is diagonal and there

are 13 policy parameters.

In the experiments we set ∆t = 0.1’s. In the finite horizon experiments we considered a planning

horizon of H = 100, while in discounted problems we considered a discount factor of γ = 0.95. The

mean of the initial population level for each species was randomly selected from the interval [0.1, 10].

The diagonals of K were initialised randomly from the interval [−2, 0], which ensures the spectrum of

F (K) lies within in the unit circle for the initial policy parameterisation. The parameters m and πσ

were initialised randomly from the intervals [−1, 1] and [10, 20] respectively. A single reward function

was used with y = (1, 2, 1, 3, 1, 4)>, which is an equilibrium point of the uncontrolled Lotka-Volterra

equations for this system [70]. The matrix M was set so that reward depended only upon populations

of the species and was independent of the control variable. To construct the covariance matrices of

the initial state distribution, transition dynamics and the reward function we used the representation

U>DU , where U is an orthogonal matrix and D is diagonal. We generated the orthogonal matrices by

orthonormalising a randomly generated full rank matrix, where the elements of the matrix were sampled

from the interval [0, 1]. The elements of the diagonal matrices were sampled from the intervals [0, 0.05],

[0, 0.05] and [0, 0.1] for the three covariance matrices respectively. The uniform distribution was used

for the initialisation of all random parameters.

3.4. Experiments 85

N -link Rigid Manipulator

The N -link rigid robot arm manipulator is a standard continuous model, consisting of an end effector

connected to an N -linked rigid body [90]. A graphical depiction of a 3-link rigid manipulator is given

in fig(3.7). A typical continuous control problem for such systems is to apply appropriate torque forces

to the joints of the manipulator so as to move the end effector into a desired position. The state of the

system is given by q, q̇, q̈ ∈ RN , where q, q̇ and q̈ denote the angles, velocities and accelerations of

the joints respectively, while the control variables are the torques applied to the joints τ ∈ RN . The

nonlinear state equations of the system are given by, see e.g. [155],

M(q)q̈ + C(q̇, q)q̇ + g(q) = τ (3.28)

where M(q) is the inertia matrix, C(q̇, q) denotes the Coriolis and centripetal forces and g(q) is the

gravitational force. While this system is highly nonlinear it is possible to define an appropriate control

function τ̂ (q, q̇) that results in linear dynamics in a different state-action space. This process is called

feedback linearisation, see e.g. [90], and in the case of an N -link rigid manipulator recasts the torque

action space into the acceleration action space. This means that the state of the system is now given by

q and q̇, while the control is a = q̈. Ordinarily in such problems the reward would be a function of the

generalised co-ordinates of the end effector, which results in a non-trivial reward function in terms of q,

q̇ and q̈. While this reward function can be modeled as a mixture of Gaussians, see [77], for simplicity

we consider the simpler problem where the reward is a function of q, q̇ and q̈ directly.

In the experiments we considered a 3-link rigid manipulator, which results in a 9-dimensional

state-action space and a 22-dimensional policy. In the experiment we discretised the continuous time

dynamics into time-steps of ∆t = 0.1 and considered a finite planning horizon of H = 100. The mean

of the initial state distribution was set zero. The elements of the policy parameters m and πσ were

initialised randomly from the interval [−2, 2] and [1, 2] respectively. The matrix K was initialised to be

zero on inter-link entries, while intra-link entries were initialised using rejection sampling. We sampled

the parameters for each link independently from the set [−400, 40]× [−50, 10] and rejected the sample if

the corresponding link was unstable. In the reward function the desired angle of each joint was randomly

sampled from the interval [π/4, 3π/4]. The covariance matrices of the initial state distribution and state

transition dynamics were set to diagonals, where the diagonal elements were initialised randomly from

the interval [0, 0.05]. The covariance matrix of the reward function was set to be a diagonal with all

entries equal to 0.1.

RTS-Inference Vs. Forward-Backward Inference - Finite Horizon

In this experiment we compared the efficiency of RTS-inference [59] and forward-inference [77] in

linear systems with a finite horizon. We performed the experiment on both the Lotka-Volterra system and

the 3-link rigid manipulator and repeated the experiment 100 for each system. Each training algorithm

3.4. Experiments 86

q1

q2
q3

end effector

Figure 3.7: A graphical depiction of a 3-link robot manipulator arm, where the angles of the joints are
given by q1, q2 and q3 respectively.

was given 300 seconds of training time in both of the experiments. The results are shown in fig(3.8)

where the normalised total expected reward is plotted against the training time (in seconds). The plot

shows the results for the RTS-inference algorithm (blue) and the forward-backward inference algorithm

(red). The dashed lines indicates the performance of forward-backward inference after the total allotted

training compared to the RTS-inference algorithm. It can be seen that in both systems the RTS-inference

algorithms needs only around 35 − 45 seconds to obtain the same level of performance as the forward-

backward algorithm with 300 seconds of training. Additionally, it can be seen that in comparison to the

RTS-inference algorithm the forward-backward algorithm only obtains around 50% and 5% in the Lotka-

Volterra and 3-link rigid manipulator systems respectively. Thus, even in these comparatively small

experiments the RTS-inference algorithm significantly outperforms the forward-backward algorithm and

this difference in performance can be expected to be even more marked in larger-scale problems with

longer planning horizons.

RTS-Inference - Infinite Horizon

We also performed the discounted infinite horizon RTS-inference procedure on the Lotka-Volterra sys-

tem. As the forward-backward algorithm of [77] is applicable only to finite horizons and there is no other

model-based procedure that is able to perform exact inference in this framework we made a comparison

with the finite horizon RTS-inference procedure, where we used a predetermined planning horizon. We

selected a finite horizon of H = 100, which was chosen to be sufficiently long so as to consistently

obtain reasonable performance in the problems considered.

We performed the experiment 100 times and both algorithms were given 60 seconds training time

in each experiment. The results are shown in fig(3.9) where we have plotted the mean and standard

error of the infinite recursion (blue) and the finite horizon heuristic (red). It is clear to see that the

infinite horizon procedure is consistently able to outperform the finite horizon heuristic. This difference

in performance is explained by the number of training iterations the two algorithms were able to perform

in the training time allotted. The finite horizon algorithm was able to perform 1039.8 ± 0.7 training

3.5. Discussion 87

0 100 200 300
0

0.2

0.4

0.6

0.8

1

Training Time

N
o

rm
a

lis
e

d
 T

o
ta

l
E

x
p

e
c
te

d
 R

e
w

a
rd

RTS−Inference

Forward−Backward Inference

(a) Lotka-Volterra Equations

0 100 200 300
0

0.2

0.4

0.6

0.8

1

Training Time

N
o

rm
a

lis
e

d
 T

o
ta

l
E

x
p

e
c
te

d
 R

e
w

a
rd

RTS−Inference

Forward−Backward Inference

(b) 3-Link Rigid Manipulator

Figure 3.8: Normalised total expected reward plotted against training time (in seconds) for the Lotka-
Volterra equations (a) and the controlled pendulum (b). The plot shows the results for RTS-inference
(blue) and forward-backward inference [77] (red).

iterations, while the infinite horizon algorithm was able to perform 7986.6± 221.8 training iterations. If

the two algorithms were plotted in terms of training iterations one would expect the difference to be less

marked6. The reason the infinite horizon recursion was able to perform more training iterations was due

to its run-time properties, which were discussed in detail in section(3.2). In the problem we considered

the largest eigenvalue of F (K) was usually sufficiently far away from the boundary of the unit circle

which ensured rapid convergence of the infinite horizon recursion. The convergence properties of the

current formulation of the infinite horizon recursion has the obvious disadvantage that one could easily

construct a control problem where inference would take arbitrarily long by ensuring that the optimal

K is arbitrarily close to the boundary of the unit circle. Indeed, we also tried this experiment on the

3-link manipulator but found that with the reward structures that were used the algorithm often tended

to the edge of the unit circle and as a result performed poorly. This is obviously an undesirable point

of our infinite horizon recursion and it would be desirable to obtain an alternative formulation whose

convergence properties don’t rely on the stationarity of the occupancy distribution. It would then be a

problem dependent issue as to which formulation would be most appropriate.

These issues with the convergence of the occupancy distribution are a general modelling issue with

these systems. If it is of no concern that certain dimensions of the state-action distribution diverge then

our algorithm is obviously limited by being constrained to the unit circle. On the other-hand if this is

a constraint of the system then our formulation is completely general, even though it could have poor

convergence in certain cases. In such cases this optimisation problem should be properly treated as a

constrained problem, which is an issue that we have not approached in this work.

3.5 Discussion
In this chapter we have presented a new range of model-based inference algorithms for parametric policy

search methods, such as steepest gradient ascent and Expectation Maximisation. Typical model-based in-

6We have done this but the plot is not shown.

3.5. Discussion 88

0 10 20 30
0

0.2

0.4

0.6

0.8

1

Training Time

N
o
rm

a
lis

e
d
 T

o
ta

l
E

x
p
e
c
te

d
 R

e
w

a
rd

Infinite Horizon

Finite Horizon Heuristic

Figure 3.9: Normalised total expected reward plotted against training time (in seconds) for the Lotka-
Volterra equations (a) and the controlled pendulum (b). The plot shows the results for the discounted
infinite horizon RTS-inference algorithm (blue) and a heuristic of using a prespecified finite planning
horizon (red).

ference algorithms in this area use forward-backward inference routines [170, 171, 77, 102, 104], which

are analogous to similar forward-backward routines in time-series models. In contrast our approach is

analogous to RTS-smoothing [133]. This extension is non-trivial due to the mixture structure of the

reward weighted trajectory distribution, as well as the infinite number of components in the mixture dis-

tribution when the planning horizon is infinite. An important difference in these two techniques is the

contrasting form of the backward recursions (3.3) and (3.7 & 3.12). In particular the different directions

of the transition dynamics in the two recursions. This difference is important and it allows for efficient

model-based inference in models where inference would be more inefficient through forward-backward

techniques. For example, in continuous system it allows for the construction of recursions over the mo-

ments of the RTS state-action value functions, as opposed the functions themselves. An example that we

have considered in detail are linear systems with a possibly non-linear reward structure. In these models

it is only possible to construct a forward-backward inference algorithm for finite planning horizons, in

which case it has a run-time that is quadratic in the planning horizon [77]. In contrast, by using RTS-

inference it is possible to perform inference in finite horizon problems in linear time, while it is also

possible to extend the algorithm to infinite planning horizons with discounted rewards. This last prob-

lem is non-trivial and involves calculating the moments of an infinite number of mixture components.

Furthermore, we shall see chapter(4) that we will be able to extend the RTS framework to calculate the

Hessian in linear time, while the forward-backward algorithm has a cubic complexity.

An additional important property of RTS-inference methods is that the normalisation constant of

RTS state-action value functions are directly related to the component weights of the reward weighted

trajectory distribution, which are themselves typically easily obtainable from the forward messages.

This property means that it is only necessary to approximate the RTS state-action value functions up to

3.5. Discussion 89

a positive scaling. It is therefore sufficient to approximate the distributions {Q̂rts
τ (z;w)}τ∈NH , which

can be done through numerous approximate inference techniques. To highlight the applicability of such

techniques we have briefly considered their application to high-dimensional multi-agent systems where

inference in the reward weighted trajectory distribution is intractable. At present we have only detailed

the advantages of performing inference on these models using RTS-inference. The exact construction

and study of various approximate inference algorithms for these models is an area of future research.

Chapter 4

Parametric Policy Search Methods :

Search Direction Analysis

We have seen in chapter(2) that there are various parametric optimisation methods, either gradient-based

or bound-based, that can be applied to the MDP framework. Due to the inherent difficulties of complex

real-world planning problems, however, these methods typically have to be applied in an approximate,

usually stochastic, manner. In most cases of interest, therefore, we are considering a stochastic non-

concave optimisation problem and as such are restricted to stochastic versions of these optimisation

methods. Almost exclusively in the MDP literature the methods considered are steepest gradient ascent,

natural gradient ascent or Expectation Maximisation, with the latter two being the current methods of

choice. The Newton method has also been previously considered [19, 120], but it suffers from numerous

problems, which shall be discussed in detail in section(4.2), that make its application undesirable. While

both natural gradient ascent and Expectation Maximisation have been successfully applied to numerous

challenging planning problems, such as Tetris [83] and real-world robotics domains [94], there is cur-

rently little understanding in the relationship between the two algorithms. Furthermore, little work has

been done on alternative gradient-based algorithms that are applicable to the MDP framework, and in

particular that can be applied in a stochastic manner.

We make two novel contributions in this chapter. The first contribution is to provide a novel analysis

of the step directions of natural gradient ascent and Expectation Maximisation, where in particular we

are able to show that the two algorithms are closely related to a particular form of approximate Newton

method. Motivated by this analysis we make our second contribution of the chapter, the consideration of

the direct application of this approximate Newton method to the MDP objective, which is analogous to

the Gauss-Newton method for nonlinear least squares. During our considerations we shall see that this

method has many desirable properties that are absent in the naive application of the Newton method.

These properties include guarantees that the approximate Hessian is negative-semidefinite when the

policy is log-concave in the control parameters; sparsity properties in the approximate Hessian, absent

in the Hessian, that make the matrix inversion more efficient; that the search direction can be evaluated

using the same techniques as described in chapter(3), which is not true of the Newton method. The

approximate Newton method is also shown to have the desirable property of being invariant to non-

4.1. Search Direction Analysis 91

singular linear transformations of the parameter space.

4.1 Search Direction Analysis

In this section we will perform our novel comparison of natural gradient ascent and Expectation Max-

imisation, where particular focus shall be on the search-direction of two algorithms. In gradient-based

algorithms of Markov Decision Processes the update of the policy parameters take the form

wnew = w + αM(w)∇wU(w), (4.1)

where α ∈ R+ is the step-size parameter and M(w) is some preconditioning matrix that possibly

depends on w. An immediate issue concerning updates of the form (4.1) is in the selection of the

‘optimal’ choice of the matrixM(w), which clearly depends on the sense in which optimality is defined.

There are numerous reasonable properties that are desirable of such an update, including the numerical

stability and computational complexity of the parameter update, as well as the rate of convergence of the

overall algorithm resulting from these updates. We now discuss these various properties in more detail,

before then proceeding to our novel analysis. While the parameter update of Expectation Maximisation

does not have the form (4.1) we shall see in section(4.1.2) that its parameter update is closely related to

such an update.

One of the most important property of an update of the form (4.1) is that it actually increases

the value of the objective function. Parameter updates of the form (4.1) are guaranteed to increase

the objective provided that the search direction is an ascent direction of the objective function. It is

well-known that when M(w) is positive-definite the corresponding search direction will be an ascent

direction. Indeed performing a Taylor expansion of U(wk + p) w.r.t. p gives, up to first order, the

following inequality

U(wk+1) = U(wk) + αk∇>wU(wk)M(wk)∇wU(wk) ≥ U(wk),

where this inequality follows immediately from the fact that M(wk) is positive-definite. In steepest

gradient ascent we haveM(w) = I , which is trivially positive-definite, so that steepest gradient ascent

always gives an ascent direction. In natural gradient ascent we haveM(w) = G−1(w), where G(w)

is the Fisher information matrix. The Fisher information matrix is positive-semidefinite over the en-

tire parameter space, which can be seen because it is the non-negative mixture of positive-semidefinite

matrices. Natural gradient ascent is therefore guaranteed to provide an ascent direction, or at least a

non-descent direction, over the entire parameter space. By contrast, the Newton method is not guaran-

teed to provide an ascent direction in non-concave problems. This is because the Hessian will not be

positive-definite over the entire parameter space when the objective is non-concave.

Another primary criteria for comparing optimisation algorithms is the rate of convergence, i.e. the

rate (in terms of number of iterations) that the solution converges to a local optima. A brief introduction

of the technical definitions for various rate of convergence are given in appendix(A). Generally speaking

4.1. Search Direction Analysis 92

(a) An Ill-Scaled Quadratic Function (b) An Well-Scaled Quadratic Function

Figure 4.1: An example of (a) ill-scaled quadratic function and (b) well-scaled quadratic function. For
the ill-scaled function steepest gradient ascent is showing typical zig-zagging behaviour, also known
as plateauing behaviour, where the search direction can be highly skewed by the poor scaling of the
quadratic component of the objective. Conversely, the well-scaled quadratic function has the identity
matrix as its quadratic component, which leads to the search direction always correctly pointing to the
optimum regardless of the initial point.

it is desirable to construct optimisation algorithms that have a quadratic rate of convergence in the vicinity

of a local optima, which is generally rapid and only requires a few iterations. Started from a point that is

sufficiently close to a local optimum the Newton method has a quadratic rate of convergence. The rate

of convergence of steepest gradient ascent is linear, where the rate of convergence is determined by the

condition number of the Hessian around a local optimum. See e.g. [121] for more details. I am unaware

of technical results for the rate of convergence of natural gradient ascent, but it is generally believed to

increase performance over steepest gradient ascent. This is has been shown to be the case empirically,

both in the MDP framework and other areas of research. Another property that is closely related is

computational complexity, i.e. the computational cost of performing a single parameter update. When

considering the overall speed of an algorithm it is necessary that both the rate of convergence and the

computational complexity are taken into account.

An important aspect of any optimisation problem is the issue of scaling. Intuitively a problem

is poorly-scaled if changes to the parameters in one direction produce much larger variations in the

objective than changes in another direction. A typical example of a poorly-scaled objective is a weighted

quadratic function

f(w) = αw2
1 + w2

2,

where α � 1. The function f is far more sensitive to small changes in w1 than it is to small changes in

w2. This can be observed visually by observing the behaviour of the contours of a quadratic function as it

becomes more poorly-scaled. As the function is quadratic the contours will be ellipses and as it becomes

more poorly-scaled the contours will become more elongated. This pronounced elongation can result in

some methods zig-zagging, also referred to as plateauing, in the parameter space and hence having poor

4.1. Search Direction Analysis 93

convergence. An example is given in fig(4.1) where an illustration of such zig-zagging behaviour can

be observed. The robustness of optimisation algorithms to poor scaling can be of significant practical

importance, especially in problems where only an approximation of the gradient is possible and line

search procedures become sensitive to errors in the function evaluations. Often in these approximate,

or stochastic, gradient-based algorithms a step-size sequence is defined prior to training in an off-line

manner and in poorly-scaled problems it can be extremely difficult to gauge an appropriate scale for

these steps lengths. This is not only an issue of slow convergence but also of overshooting in the param-

eter space, due to an overly large step in the parameter space, which can easily occur in poorly-scaled

problems. Steepest gradient ascent is notoriously sensitive to poor-scaling. This can be seen by the

fact the condition number of the Hessian increases as the objective becomes more poorly-scaled, where,

as previously mentioned, the rate of convergence of steepest gradient ascent is given by the condition

number of the Hessian. Again, more details can be found in [121]. By contrast, the Newton method is

scale-invariant [121]. It is well-known that poor-scaling of the objective often occurs in the modeling

and optimisation of physical and chemical systems. It is therefore of no surprise that poor scaling of the

gradient often occurs in Markov Decision Processes, as well as similar planning models. This is a well

known problem in the reinforcement learning and planning communities and various attempts have been

made to resolve it, most notably natural gradient ascent and Expectation Maximisation.

Finally, the numerical stability of the algorithm also needs to be taken into consideration. There are

two possible sources of instability that need to be considered: i) The stability of the parameter update,

which includes issues such as inverting a matrix that is nearly singular; ii) The numerical qualities of the

inference routine required for a parameter update, which can include issues such as the variance of the

estimand in model-free inference routines.

While all reasonable criteria the rate of convergence is of such importance in an optimisation al-

gorithm that it is a logical starting point in our analysis. For this reason we concern ourselves with

relating natural gradient ascent and Expectation Maximisation to the Newton method, which has the

highly desirable property of having a quadratic rate of convergence in the vicinity of a local optimum.

The Newton method is well-known to suffer from problems that make it either infeasible or unattractive

in practice, but in terms of forming a basis for theoretical comparisons it is a logical starting point. We

shall discuss some of the issues with the Newton method in more detail in section(4.2) when considering

our approximate Newton method. In the Newton method the matrixM(w) is set to the negative inverse

Hessian, i.e.

M(w) = −H−1(w), where H(w) = ∇w∇>wU(w).

Using methods similar to those used to calculate the gradient it can be shown that the Hessian takes the

form

H(w) = H1(w) +H2(w), (4.2)

4.1. Search Direction Analysis 94

where

H1(w) =

∞∑
t=1

Ep(z1:t;w)

[
γt−1R(zt)∇w log p(z1:t;w)∇>w log p(z1:t;w)

]
, (4.3)

H2(w) =

∞∑
t=1

Ep(z1:t;w)

[
γt−1R(zt)∇w∇>w log p(z1:t;w)

]
. (4.4)

Similar equations can be obtained for the Hessian of the finite horizon and infinite horizon average

reward frameworks. Having discussed some of the main desirable properties of parameter updates of the

form (4.1), we now provide provide our novel analysis of the natural gradient ascent and Expectation

Maximisation.

4.1.1 Natural Gradient Ascent

In section(2.3) we introduced natural gradient ascent when applied to Markov Decision Processes, where

this algorithm can be seen as performing steepest gradient ascent on the parameter manifold defined

through the trajectory distribution. In this section we give our novel analysis of natural gradient ascent.

In order to do so we use the form of the Fisher information matrix given by

G(w) = −Epγ(z;w)

[
∇w∇>w log π(a|s;w)

]
. (4.5)

Similarly, it is helpful to rewrite the matrix (4.4) into the following form

H2(w) = Epγ(z;w)Q(z;w)

[
∇w∇>w log π(a|s;w)

]
, (4.6)

where this form ofH2(w) is obtained through similar manipulations to those used in section(2.2). Com-

paring the Fisher information matrix (4.5) with the matrix (4.6) it is clear that natural gradient ascent

has a relationship with the approximate Newton method that uses H2(w) in place of H(w), which in

terms of (4.1) corresponds to settingM(w) = −H−1
2 (w). In particular it can be seen that the difference

between the two methods lies in the non-negative w.r.t. which the expectation is taken in (4.5) and (4.6).

In the Fisher information matrix the expectation is taken w.r.t. to the state-action occupancy marginals

of the trajectory distribution, while in H2(w) the expectation is taken w.r.t. the non-negative function,

pγ(·;w)Q(·;w). It also appears that there is a difference in sign, but observing the form of M(w)

for each algorithm shows that this is not the case. This is an important distinction as it shows that the

H2(w) accounts for the reward structure of the problem, while the Fisher information matrix does not.

It is therefore natural to expect H2(w) to contain more information about the curvature of the objec-

tive function. This observation has not been noted before, but it yet it is clearly important an important

result in terms of our understanding of natural gradient techniques in the context of Markov Decision

Processes. That this observation has never been noted before probably lies in the fact that the Fisher

information matrix is typically written in the form (2.9), in which form its relationship with H2(w) is

not apparent.

4.1. Search Direction Analysis 95

Due to the alternative form of the Fisher information matrix, i.e.

G(w) = Epγ(z;w)

[
∇w log π(a|s;w)∇>w log π(a|s;w)

]
, (4.7)

there is also an apparent relationship between the Fisher information matrix and H1(w). However, this

relationship is more complex. This is because for each t ∈ N, the terms∇w log p(z1:t;w)∇>w log p(z1:t;w)

and∇w∇>w log p(z1:t;w) in (4.3) and (4.4), respectively, take the form

∇w log p(z1:t;w)∇>w log p(z1:t;w) =

t∑
τ1=1

t∑
τ2=1

∇w log π(aτ1 |sτ1 ;w)∇>w log π(aτ2 |sτ2 ;w) (4.8)

+ terms independent of π,

∇w∇>w log p(z1:t;w) =

t∑
τ=1

∇w∇>w log π(aτ |sτ ;w) + terms independent of π, (4.9)

The double summation in (4.8), as opposed to the single summation in (4.9), complicates the expression

forH1(w). However, taking the terms in (4.8) where τ1 = τ2, i.e. the terms

t∑
τ=1

∇w log π(aτ |sτ ;w)∇>w log π(aτ |sτ ;w),

for each t ∈ N in (4.3) gives, after the, by now, standard manipulations from section(2.2), the following

matrix

H11(w) = Epγ(z;w)Q(z;w)

[
∇w log π(a|s;w)∇>w log π(a|s;w)

]
. (4.10)

The relationship between (4.7) and (4.10) is analogous to the relationship between (4.5) and (4.6). How-

ever, while M(w) = H−1
11 (w) is a valid preconditioner in a gradient-based optimisation algorithm,

where this matrix can be seen to be positive-semidefinite because it is a positive mixture of positive-

semidefinite matrices, we don’t consider this preconditioner in this work. The reason for this is that the

sign of this matrix is incorrect in terms of an approximate Newton method, i.e. the H11(w) is positive-

semidefinite and not negative-semidefinite. As a result the preconditioner,M(w) = H−1
11 (w), bears no

immediate relation to the Newton method. While the two forms of the Fisher information matrix (4.5)

and (4.7) are equivalent, the same is not true of the matrices H11(w) and −H2(w). This is because the

equivalence between (4.5) and (4.7) relies on the fact that the integrals in (4.5) and (4.7) is taken w.r.t.

to a distribution, which is not true in the case of H11(w) or −H2(w). Further analysis of the matrix

H11(w) and its relation to H2(w) is a point of future research, but we do perform a simple preliminary

comparison between these two preconditioners in section(4.3).

4.1.2 Expectation Maximisation

In section(2.4) we introduced the application of Expectation Maximisation to the Markov Decision Pro-

cess framework, as well as other planning frameworks. Since its introduction this algorithm has proven

popular and has been the centre of much research in the reinforcement learning and planning commu-

nities [40, 171, 170, 94, 93, 77, 57, 56]. In this section we provide our novel analysis of the search

4.1. Search Direction Analysis 96

direction of the EM-algorithm when applied to Markov Decision Process, as well as similar planning

models. Prior to this, however, we first detail what has been previously noted about the search direction

of the EM-algorithm.

In [94] it was noted that the parameter update of steepest gradient ascent and the EM-algorithm

can be related through the ‘energy’ term (2.14). In particular the gradient (2.4) evaluated at wk can

also be written as follows ∇w|w=wkU(w) = ∇10
w|w=wk

Q(w,wk), where we use the notation ∇10
w to

denote the first derivative w.r.t. the first parameter, while the update of the EM-algorithm is given by

wk+1 = argmax
w∈W

Q(w,wk). In other words, steepest gradient ascent moves in the direction that most

rapidly increases Q(w,wk) w.r.t. the first variable, while the EM-algorithm maximises Q(w,wk) w.r.t.

the first variable. While this relationship is true, it is also quite a negative result. It states that in situations

where it is not possible to explicitly perform the maximisation over w in (2.14) then the alternative, in

terms of the EM-algorithm, is this generalised EM-algorithm, which is equivalent to steepest gradient

ascent. Considering that algorithms such as EM are typically considered because of the negative aspects

related to steepest gradient ascent this is an undesirable alternative. It is possible to find the optimum

of (2.14) numerically, but this is also undesirable as it results in a double-loop algorithm that could

be computationally expensive. Finally, this result provides no insight into the behaviour of the EM-

algorithm, in terms of the direction of its parameter update, when the maximisation overw in (2.14) can

be performed explicitly.

Instead we provide the following result, which shows that the step-direction of the EM-algorithm

has an underlying relationship with the Newton method. In particular we show that, under suitable

regularity conditions, the direction of the EM-update, i.e. wk+1 −wk, is the same, up to first order, as

the direction of an approximate Newton method that usesH2(w) in place ofH(w).

Theorem 4. Suppose we are given a Markov Decision Process with objective (2.1) and Markovian

trajectory distribution (2.2). Consider the update of the parameter through Expectation Maximisation at

the kth iteration of the algorithm, i.e.

wk+1 = argmax
w∈W

Q(w,wk).

Provided that Q(w,wk) is twice continuously differentiable in the first parameter we have that

wk+1 −wk = −H−1
2 (wk)∇w|w=wkU(w) +O(‖wk+1 −wk‖2). (4.11)

Additionally, in the case where the log-policy is quadratic the relation to the approximate Newton method

is exact, i.e. the second term on the r.h.s. (4.11) is zero.

Proof. The idea of the proof is simple and only involves performing a Taylor expansion of

∇10
wQ(w,wk). As Q is assumed to be twice continuously differentiable in the first component this

Taylor expansion is possible and gives

∇10
wQ(wk+1,wk) = ∇10

wQ(wk,wk) +∇20
wQ(wk,wk)(wk+1 −wk) +O(‖wk+1 −wk‖2). (4.12)

4.1. Search Direction Analysis 97

As wk+1 = argmax
w∈W

Q(w,wk) it follows that ∇10
wQ(wk+1,wk) = 0. This means that, upon ignoring

higher order terms in wk+1 −wk, the Taylor expansion (4.12) can be rewritten into the form

wk+1 −wk = −∇20
wQ(wk,wk)−1∇10

wQ(wk,wk). (4.13)

The proof is completed by observing that ∇10
wQ(wk,wk) = ∇w|w=wkU(w) and ∇20

wQ(wk,wk) =

H2(wk). The second statement follows because in the case where the log-policy is quadratic the higher

order terms in the Taylor expansion vanish.

Theorem 4 gives us a deeper understanding of the application of Expectation Maximisation to

MDPs, and similar planning models. The derivation of EM-algorithm in terms of optimising a lower-

bound of the log-objective gives little insight into the update direction of the algorithm. This result

now shows that the algorithm is, up to first order, taking steps in the direction of a approximate Newton

method (that uses H2(w) in place of H(w)) with a constant step-size of one. Furthermore, when the

log-policy is quadratic in the policy parameters the relation (4.11) given in theorem 4 is exact, i.e.

wk+1 −wk = −H−1
2 (wk)∇w|w=wkU(w).

This follows because the higher order terms in the Taylor expansion, i.e. ∇i0wQ(w,wk), ∀i > 2, are

equal to zero in this case. In this case an EM-step is exactly equal to the approximate Newton step that

usesH2(w) in place ofH(w).

There is a superficially similar result that was given in terms of the problem of marginal log-

maximisation, see lemma 1 of [81]. In [81] the following relation is given

wk+1 −wk = −
(
P(ŵ, ŵ)

)−1∇w|w=wk logL(w) +O(‖wk − ŵ‖2), (4.14)

where logL(w) is the marginal log-likelihood function, ŵ is the local maximum of the log-likelihood

to which the iterates of the algorithm converge and P(w,w) is the expectation of the complete log-

likelihood conditioned on the observed data. The terms logL(w) and P(w,w) play similar roles to

terms U(w) and Q(w,w) in our problem and while (4.11) and (4.14) are superficially similar there

are significant differences. As ŵ is unknown in practice the relation (4.14) has no practical use and its

purpose in [81] is simply as a motivation for using wk+1 − wk as a search direction in a line search

algorithm. Additionally, the relation (4.14) requires ŵ to both exist and be an interior point of the

parameter space, which is often not the case in the control and planning frameworks.1 Finally, the

distance between the current iterate and ŵ can be significant for large parts of the optimisation process,

which means the second term of (4.14) will dominate and this relation becomes effectively meaningless.

1For example in a discrete state-action MDP with a differentiable parameterisation of the table look-up policy there will gen-
erally be no fixed-point of the EM-algorithm. This is because the optimal policy is deterministic and cannot be represented with a
set of finite-valued parameters in this parameterisation. Additionally, in a continuous MDP with a Gaussian policy the covariance
is often on the boundary of the parameter space.

4.2. An Approximate Newton Method 98

4.1.3 Summary

In this section we have provided a novel analysis of both natural gradient ascent and Expectation Max-

imisation when applied to the MDP framework. Previously, while both of these algorithms have proved

popular methods for MDP optimisation, there has been little understanding of them in terms of their

search-direction in the parameter space or their relation to the Newton method. Firstly, our analysis

shows that the Fisher information matrix, which is used in natural gradient ascent, is similar toH2(w) in

(4.2), with the exception that the information about the reward structure of the problem is not contained

in the Fisher information matrix, while such information is contained in H2(w). Additionally we have

shown that the step-direction of the EM-algorithm is, up to first order, an approximate Newton method

that usesH2(w) in place ofH(w) and employs a constant step-size of one.

4.2 An Approximate Newton Method
A natural follow on from the analysis in section(4.1) is the consideration of usingM(w) = −H−1

2 (w)

in (4.1), a method we call the full approximate Newton method from this point onwards. In this section

we show that this method has many desirable properties that make it an attractive alternative to other

parametric policy search methods. Additionally, denoting the diagonal matrix formed from the diagonal

elements ofH2(w) byD2(w), we shall also consider the method that usesM(w) = −D−1
2 (w) in (4.1).

We call this second method the diagonal approximate Newton method.

4.2.1 Properties of the Approximate Newton Methods

Recall that in (4.1) it is necessary thatM(w) is positive-definite (in the Newton method this corresponds

to requiring the Hessian to be negative-definite) to ensure an increase of the objective. In general the

objective (2.1) is not concave, which means that the Hessian will not be negative-definite over the entire

parameter space. In such cases the Newton method can actually lower the objective and this is an

undesirable aspect of the Newton method.2 An attractive property of the approximate Hessian, H2(w),

is that it is always negative-definite when the policy is log–concave in the policy parameters. This fact

follows from the observation that in such cases H2(w) is a non-negative mixture of negative-definite

matrices, which again is negative-definite [32]. Additionally, the diagonal terms of a negative-definite

matrix are negative and so D2(w) is also negative-definite when the controller is log-concave.

To motivate this result we now briefly consider some widely used policies that are either log-

concave or blockwise log-concave. Firstly, consider the Gibb’s policy, π(a|s;w) ∝ expw>φ(a, s),

where φ(a, s) ∈ Rnw is a feature vector. This policy is widely used in discrete systems and is log-

concave inw, which can be seen from the fact that log π(a|s;w) is the sum of a linear term and a nega-

tive log-sum-exp term, both of which are concave [32]. In systems with a continuous state-action space a

common choice of controller is π(a|s;wmean,Σ) = N (a|Kφ(s) +m,Σ(s)), where wmean = {K,m}

and φ(s) ∈ Rnw is a feature vector. The notation Σ(s) is used because there are cases where is it benefi-

cial to have state dependent noise in the controller. This controller is not jointly log-concave inwmean and

2Procedures exist, such as modification symmetric indefinite factorisation or modified spectral decomposition, see e.g. [121],
for modifying the Hessian in such a manner that the modified Hessian is negative-semidefinite. However, these modifications can
be expensive to perform and can also lose much of the information about the curvature of the objective function.

4.2. An Approximate Newton Method 99

Σ, but it is blockwise log-concave in wmean and Σ−1. In terms of wmean the log-policy is quadratic and

the coefficient matrix of the quadratic term is negative-definite. In terms of Σ−1 the log-policy consists

of a linear term and a log-determinant term, both of which are concave.

AlthoughH2(w) won’t necessarily be negative-definite over the whole parameter space, unless the

controller is log-concave in the control parameters, it will negative-definite in a neighbourhood of a local

optimum,w∗ ∈ W , provided the HessianH(w∗) has its eigenvalues bounded away from zero. This can

be seen from the relation

H2(w) = H(w)−H1(w),

whereH1(w) is always positive-semidefinite, as it is the non-negative mixture of outer-product matrices,

and the Hessian is negative-definite in a neighbourhood of w∗.

Another attractive property of the approximate Newton methods is the ease with which it is possible

to extend the evaluation techniques necessary for a parameter update, such as those detailed in chapter(3),

to the approximate Newton framework. Comparing the form of H2 given in (4.6) with the form of the

gradient given in (2.4) it is clear that the integrals necessary for a parameter update using an approximate

Newton method can be done in an almost identical manner to that of other parametric policy search

methods, such as steepest gradient ascent or natural gradient ascent. In particular, gradient evaluation

requires calculating the expectation of the derivative of the log-policy w.r.t. pγ(z;w)Q(z;w). In terms

of inference the only additional calculation necessary to implement either the full or diagonal approxi-

mate Newton methods is the calculation of the expectation (w.r.t. to the same function) of the Hessian of

the log-policy, or its diagonal terms. As an example in algorithm(4.1) we consider the straightforward

extension of the recurrent state formulation of gradient evaluation in the average reward framework, see

e.g. [182], to the approximate Newton method. We use this extension in the Tetris experiment that

we consider in section(4.3). Given ns samples and nw parameters the complexity of these extensions

scale asO(nsnw) for the diagonal approximate Newton method, while it scales asO(nsn
2
w) for the full

approximate Newton method.

While the extension of evaluation techniques to the approximate Newton framework is not difficult,

by contrast the Newton method requires the construction of an additional set of inference routines. These

additional routines are necessary for the calculation ofH1(w). Note that due to the Markov structure of

the trajectory distributionH1(w) can be written in the equivalent form

H1(w) =

H∑
t=1

t∑
τ,τ ′=1

Ep̃(z,z′,τ,τ ′,t;w)

[
∇w log π(a|s;w)∇>w log π(a′|s′;w)

]

where we have used the notation p̃(z, z′, τ, τ ′, t;w) ≡ p̃(zτ = z, zτ ′ = z′, t;w). It is clear that the

calculation of H1(w) requires the calculation of marginals of the form p̃(z, z′, τ, τ ′, t;w), for τ 6= τ .

A sample-based calculation of this matrix is provided in [19], while we provide two novel model-based

inference routines for the calculation of H1(w): The first is a forward-backward routine for discrete

systems where it is possible to enumerate over Z; The second is a RTS-inference routine for linear

systems. While these inference routines are interesting in themselves the actual form of the routines

4.2. An Approximate Newton Method 100

Sample a state from the initial state distribution:

s1 ∼ p1(·).

for t = 1,, N , for some N ∈ N, do
Given the current state, sample an action from the policy:

at ∼ π(·|st;w).

if st 6= s∗ then
Update the eligibility traces:

Φ1 ← Φ1 +∇w log π(at|st;w) Φ2 ← Φ2 +∇w∇>w log π(at|st;w)

else
reset the eligibility traces:

Φ1 = 0, Φ2 = 0.

end if

Update the estimates of the gradient and the approximate Hessian:

∆1 ←∆1 +R(at, st)Φ
1, ∆2 ←∆2 +R(at, st)Φ

2.

Sample state from the transition dynamics:

st+1 ∼ p(·|at, st).

end for

Return the estimated gradient and approximate Hessian, which up to a positive scaling are given by
∆1 and ∆2 respectively.

Algorithm 4.1: Recurrent state sampling algorithm to estimate the search direction of the approximate
Newton method when applied to an MDP with an infinite planning horizon with average rewards.

is not important to the discussion and the derivations are provided in appendix(C). While these addi-

tional inference routines are efficient (in the sense that they have a computational complexity that is

linear in the the planning horizon, assuming the planning horizon is finite) performing the inference

is already the most expensive part of policy search algorithms and this additional burden is unattrac-

tive. There is also a further drawback in the model-free setting, namely that the variance of sample-

based estimates of H1(w) will generally be larger than either the ∇wU(w) or H2(w). This is for

two reasons. Firstly, the elements in H1(w) consists of the sum of expectations w.r.t. marginal dis-

tributions of the reward weighted trajectory distribution, where these marginals span different time-

points, i.e. marginals of the form p̃(z, z′, τ, τ ′, t;w) where τ 6= τ ′. In many systems the variance

of these marginals will increase as the time difference, |τ − τ ′|, increases. Additionally, terms of

the form ∇w log p(a|s;w)∇w log p(a′|s′;w) will often be of a higher order than terms of the form

∇>w∇w log p(a|s;w) or∇w log p(a|s;w). For example, in a continuous control problem with a linear-

Gaussian policy the term ∇w log p(a|s;w)∇w log p(a′|s′;w) will contain monomials in the state-

4.2. An Approximate Newton Method 101

action variables that are of order 4, while in ∇>w∇w log p(a|s;w) or ∇w log p(a|s;w) they will be

of most order 2. Taking these points into account it is clear that the variance of sample-based estimates

ofH1(w) will, in general, be larger than eitherH2(w) or∇wU(w).

An additional issue with the Newton method is the calculation and inversion of the Hessian matrix,

which scale as O(n2
w) and O(n3

w) respectively in the worst case. In the standard application of the

Newton method these operations have to be performed at each iteration, which in large parameter systems

becomes prohibitively costly. In general H(w) will be dense and no computational savings will be

possible when performing these operations. The same is not true, however, of the full and diagonal

approximate Newton methods. Firstly, in the diagonal approximate Newton method the matrix D2(w)

is diagonal, so that the calculation and inversion of this matrix both scale as O(nw). Additionally, there

are several sources of sparsity in the matrix H2(w) that can make the construction and inversion of this

matrix more efficient. The reason that H(w) does not exhibit any such sparsity properties is due to the

term H1(w) in (4.2), which consists of the non-negative mixture of outer-product matrices. The vector

in these outer-products is the derivative of the log-trajectory distribution and this typically produces a

dense matrix.

A first source of sparsity in H2(w) comes from taking the second derivative of the log-trajectory

distribution in (4.4). This property ensures that any (product) sparsity over the control parameters in

the trajectory distribution will correspond to sparsity in H2(w). For example, in a partially observable

Markov Decision Processes where the policy is modeled through a finite state controller, see e.g. [114],

there are three functions to be optimised, namely the initial belief distribution, the belief transition

dynamics and the policy. When the parameters of these three functions are independent H2(w) will

be block-diagonal (across the parameters of the three functions) and the construction and inversion of

H2(w) can be performed more efficiently by considering each of these block matrices individually.

Another source of sparsity can occur inH2(w) provided that the Hessian of the log-policy has a suitably

sparse structure. For example, consider an MDP with a discrete state-action space and the following

policy parameterisation

π(a|s;w) =
ewa,s∑

a′∈A e
wa′,s

, s.t. wā,s = 0, for some ā ∈ A.

In this case the policy has a separate set of parameters for each state in the state space and it is not difficult

to show that H2(w) has a block diagonal structure across the parameters of the various states. In itself

this example is not particularly interesting, simply because when such a parameterisation is feasible then

it will also be feasible to perform dynamic programming. However, analogous parameterisations can be

used in planning models that do not permit dynamic programming solutions, such as partially observable

domains. Furthermore, such parameterisations can be used as part of a larger policy model. A simple

example would be a high-dimensional discrete system, such as a multi-agent system, where each action

4.2. An Approximate Newton Method 102

is of the form a = (a1, ...,aN) and the overall policy is given by the product of sub-policies, i.e.

π(a|s;w) =

N∏
n=1

πn(an|sn;w),

where sn is some subset of the state variables that is sufficiently small so as to allow the parameterisation

to be feasible. In this example H2(w) has a block-diagonal structure across the sub-policies, {πn}Nn=1,

and then, furthermore, each of these block matrices also has a block-diagonal structure across the states

in the conditioning set. A final motivating example is an MDP with a continuous state-action space,

where the parameters are a set of na × ns matrices, w = {Ki}Ni=1. For any given state the policy is

given by

π(a|s;w) = N (a|Kis;σ
2),

where the matrix Ki is selected through a Vornoi tessellation of the state space. In this example H2(w)

has a block diagonal structure across the matrices, {Ki}Ni=1, again making evaluation and inversion more

efficient.

An undesirable aspect of steepest gradient ascent is that its performance is affected by the choice of

basis used to represent the parameter space. This choice of representation is essentially arbitrary and that

the performance of steepest gradient ascent depends upon it is undesirable. An important and desirable

property of the Newton method is that it is invariant to non-singular linear (affine) transformations of

the parameter space, see e.g. [32]. This means that given a non-singular linear (affine) mapping T ∈

Rnw×nw , the Newton update of the objective Ũ(w) = U(T w) is related to the Newton update of the

original objective through the same linear (affine) mapping, i.e.

v + ∆vnt = T
(
w + ∆wnt

)
,

where v = T w and ∆vnt and ∆wnt denote the respective Newton steps. In other words running the

Newton method on U(w) and Ũ(T −1w) will give identical results. An important point to note is that

this desirable property is maintained when using H2(w) in an approximate Newton method, which we

prove in the following lemma.

Lemma 3. Given a discrete Markov Decision Process, where the policy is parameterised by w ∈ W ,

the approximate Newton method that uses H2(w) in place of H(w) is invariant to non-singular linear

mappings of the parameter space.

Proof. We denote an arbitrary non-singular linear mapping of the parameter space by T : Rnw → Rnw .

To show the affine invariance of the approximate Newton method we use the following formulae

∇wf̃(w) = T >∇vf(v), ∇w∇>wf̃(w) = T >∇v∇>v f(v)T ,

where f is some twice differentiable function ofw, f̃(w) = f(T w) and v = T w. Using these formulae

4.2. An Approximate Newton Method 103

we have the following two identities

∇w log π(a|s; T w) = T >∇v log π(a|s;v),

∇w∇>w log π(a|s; T w) = T >∇v∇>v log π(a|s;v)T ,

which hold for each (s,a) ∈ S × A. Defining Ũ(w) = U(T w), we have ∇wŨ(w) = T >∇vU(v).

Following calculations almost identical to those in section(4.1) it can be shown that H̃2(w) takes the

form

H̃2(w) = Epγ(z;Tw)Q(z;Tw)

[
∇w∇>w log π(a|s; T w)

]
,

which gives the following

H̃2(w) = Epγ(z;Tw)Q(z;Tw)

[
∇w∇>w log π(a|s; T w)

]
,

= Epγ(z;v)Q(z;v)

[
T >∇v∇>v log π(a|s;v)T

]
,

= T >Epγ(z;v)Q(z;v)

[
∇v∇>v log π(a|s;v)

]
T ,

= T >H2(v)T .

Using these two expressions we have that the parameter updates, under the approximate Newton method,

of the objective functions U and Ũ are related as follows

vnew = v + αH2(v)−1∇vU(v),

= T
(
w + αH̃2(w)−1∇vŨ(w)

)
,

where α is some step-size parameter. This shows that the approximate Newton method is affine invariant.

The proof to lemma 3 can be changed with little difficulty to show that the diagonal approximate

Newton method is invariant to arbitrary (non-zero) rescaling of the parameters along the various di-

mensions of the parameter space. This is a less general form of invariance than affine invariance, and

algorithms with this form of invariance are generally known as covariant. Note that the proof in lemma

3 shows that the affine invariance of the approximate Newton method is independent of the step-sizes

used during the optimisation. Additionally, the same argument can also be made to show that natural

gradient ascent in affine invariant. Due to some apparently contradictory results in [83, 13], as well as the

conflicting use of terminology in [83, 13, 123, 111], it is worthwhile to clarify the distinction between

the different types of invariance an optimisation algorithm can possess, as well as providing the exact

categorisation of the invariance of the approximate Newton method and natural gradient ascent. Three

popular types of invariance that appear in the literature are covariant algorithms, linear (affine) invariant

algorithms and invariant algorithms. As we have noted previously the class of linear (affine) invariant

algorithms is the class of algorithms that are invariant to non-singular linear (affine) transformations of

4.2. An Approximate Newton Method 104

the parameter space. Covariant algorithms, see e.g. [111], are the subset of linear invariant algorithms

that are invariant to non-singular orthogonal linear transformations of the parameter space, i.e. mappings

where T is a diagonal matrix with non-zero elements along the diagonal. Invariant algorithms are invari-

ant to arbitrary non-singular transformations of the parameter space. Natural gradient ascent algorithms

that use Fisher information matrix as a local metric are invariant, but only up to a infinitesimal step in the

parameter space [37]. Additionally, using the same argument as in lemma 3 it can be seen that natural

gradient ascent algorithms are also invariant to non-singular linear (affine) transformations of the param-

eter space, where this invariance is independent of the step-sizes used in the parameter updates. Now

in terms of the application of natural gradient ascent methods to Markov Decision Processes it was, in-

correctly, claimed in [83] that the algorithm was not covariant, where this claim was based on empirical

evaluations. In later papers in this area [123, 13] this error was rectified and the invariance properties of

natural gradient ascent were clarified, namely that natural gradient ascent techniques are invariant when

using the Fisher information matrix as the local norm on the parameter manifold, although they use the

terminology of covariant algorithms instead of invariant algorithms. Also in [123, 13] a possible expla-

nation for the results in [83] were given, where they state that these results maybe due to the necessity

to perform infinitesimal updates to maintain the invariance of natural gradient ascent. This explanation

was also used in [13] to account for similar anomalies in the results presented in that paper, where the

experiments considered were again related to the covariant, and not the invariant, property of natural

gradient ascent. We can now see that this claim is in fact false and the covariant property of natural

gradient ascent is independent of the step-sizes used in the parameter update. We do not offer a possible

reason for the results of [83, 13]. To summarise natural gradient ascent is invariant for steps of infinites-

imal size in the parameter space and linear (affine) invariant for steps of arbitrary size. In contrast we

have currently only shown that the full approximate Newton method is linear (affine) invariant, while the

diagonal approximate Newton method is covariant, both for steps of arbitrary size.

We performed an empirical illustration that the full approximate Newton method is invariant to

linear transformations of the parameter space. We considered the simple two state example of [83] as it

allows us to plot the trace of the policy during training, since the policy has only two parameters. The

policy was trained using both steepest gradient ascent and the full approximate Newton method and in

both the original and linearly transformed parameter space. The policy traces of the two algorithms are

plotted in fig(4.2). As expected steepest gradient ascent is affected by such mappings, whilst the full

approximate Newton method is invariant to them.

It is well-known that the search direction of gradient-based algorithms of the form (4.1) correspond

to the direction of steepest ascent w.r.t. to the local quadratic norm induced by M(w). In particular,

given thatM(w) is positive-definite it is possible to define a local quadratic norm, centred at w, so that

given v ∈ W , where v = w + p, the local norm of v is defined as follows

‖v‖M(w) =
(
v −w

)>M(w)
(
v −w

)
= p>M(w)p,

4.2. An Approximate Newton Method 105

−10 −8 −6 −4 −2 0 2
0

5

10

15

20

θ
1

θ
2

Figure 4.2: An empirical illustration of the affine invariance of the full approximate Newton method,
performed on the two state MDP of [83]. The plot shows the trace of the policy during training for the
two different parameter spaces, where the results of the latter have been mapped back into the original
parameter space for comparison. The plot shows the two steepest gradient ascent traces (blue cross and
blue circle) and the two traces of the full approximate Newton method (red cross and red circle).

where this norm is well-defined because the M(w) is positive-definite.3 If at any given point in the

parameter space,wk ∈ W , we consider optimising the first order variation of U(wk + p) w.r.t. p, under

the constraint that ‖wk + p‖M(wk) is equal to some infinitesimally small constant, then one obtains the

following constrained optimisation problem

max
p∈Rnw

s.t.‖wk+p‖M(wk)=ε

U(wk) + p>∇w|w=wkU(w). (4.15)

Solving this constrained optimisation problem through the method of Lagrange multipliers, see e.g. [25],

then one obtains the solution

p =M−1(wk)∇w|w=wkU(w). (4.16)

This shows that gradient-based algorithms of the form (4.1) are moving in the direction of steepest

ascent under the quadratic norm induced by M(w), where this matrix is evaluated at the iterates of

the given gradient-based algorithm. This viewpoint gives a new perspective to the various gradient-

based algorithm. For instance, in steepest gradient ascent, where M(w) = I for all w ∈ W , the

search direction corresponds to the direction of steepest ascent under the Euclidean norm. Similarly, the

search direction of natural gradient ascent corresponds to the steepest ascent direction under the local

norm defined on the parameter manifold, where we recall that this norm is defined through the Fisher

information matrix. When the objective is concave the Hessian will be negative-definite over the entire

3Actually, asM(w) is positive-definite, this norm is defined over the entire parameter space. However, the norm is described
as local because the matrixM(w) only provides local information about the objective function.

4.2. An Approximate Newton Method 106

parameter space and it is possible to define the following norm

‖w + p‖H(w) = −p>
(
∇>w∇wU(w)

)
p,

which is referred to as the Hessian norm, see e.g. [32]. This view of the Newton method moving in the

direction of steepest ascent under the Hessian norm helps to explain the good performance of the Newton

method in the vicinity of a local optimum, where the objective is approximately quadratic.

Taking these points into account it is natural to ask the question: What is the norm under which

the search direction of the approximate Newton method corresponds to the steepest gradient ascent

direction? Using the same argument as above the explicit functional form of this norm can be found

to be the quadratic norm defined as follows

‖w + p‖H2(w) = p>Epγ(z;w)Q(z;w)

[
∇w∇>w log p(a|s;w)

]
p. (4.17)

Considering log p(a|s;w) as a function ofw, for each (a, s) ∈ A×S, the termw>∇w∇>w log p(a|s;w)w

can be considered as the Hessian norm w.r.t. log p(a|s;w). From this perspective the norm (4.17) can be

seen as the non-negative mixture of Hessian norms, where this mixture is taken w.r.t. to pγ(·;w)Q(·;w).

Considering the form of the gradient, which is given by a non-negative mixture of the derivatives of the

log-policy, where the mixture is w.r.t. pγ(·;w)Q(·;w), this form of the quadratic norm is intuitive.

Thus far we have been concerned with comparing the approximate Newton methods with the New-

ton method. It is also important to provide a brief comparison with both natural gradient ascent and

Expectation Maximisation. A first point to note is that implementations of these algorithms that only

use an actor for the evaluation stage are very similar, with almost identical computational complexity

in practice. In terms of natural gradient ascent there are several important distinctions. Firstly, when

using the Fisher information matrix as the local norm on the manifold of trajectory distributions, natural

gradient ascent is invariant to arbitrary non-singular transformations of the parameter space, while the

approximate Newton method is invariant to linear (affine) transformations of the parameter space. Ad-

ditionally, the Fisher information matrix is always positive-semidefinite, while the approximate Hessian

is guaranteed to be negative-semidefinite only when the policy is log-concave. Furthermore, in actor-

critic versions of natural gradient ascent it is possible to construct versions of the algorithm where it is

unnecessary to perform the inversion of the Fisher information matrix, see e.g. [83, 29]. These are all

important points but the approximate Newton method has one significant advantage over natural gra-

dient ascent, namely that the approximate Hessian contains information about the reward structure of

the problem while the Fisher information matrix does not. Hence the approximate Hessian will contain

more information about the curvature of the objective than the Fisher information matrix. In the exper-

iments performed in section(4.3) we find that, especially in continuous systems, this improved estimate

of the curvature provides significant benefits to the approximate Newton method, both in terms of the

quality of the solution found and in terms of finding a good step-size sequence. A final point concerns

the selection of a step-size sequences in a stochastic, model-free, version of the approximate Newton

4.2. An Approximate Newton Method 107

method. Associated with the Newton method is the ‘natural’ step-size of one, which comes from the

view of the Newton method as optimising a quadratic approximation to the objective function, see e.g.

[121]. Typical applications of the Newton method use an initial step-size of one and then only consider

tuning the step-size if there is not a satisfactory change in the value of the objective function. In view

of theorem 4 there is, intuitively at least, a similar ‘natural’ step-size of one, which (up to first order)

corresponds to an EM-step. Empirically, in the experiments considered in section(4.3), this intuition has

been found to be useful as an initial gauge for the scale of the step-sizes that will be appropriate for a

given problem.

In terms of a comparison between the approximate Newton method and Expectation Maximisation

there are several points to note. Firstly, there is an important distinction between the approximate Newton

method and Expectation Maximisation in the case where it is not possible to perform the maximisation

over w explicitly in (2.14). When this is the case it is necessary, in terms of the EM-algorithm, to

consider either steepest gradient ascent or a double-loop type algorithm, both of which are unappealing.

In contrast, provided that the policy is log-concave, the approximate Newton method can still be applied

as normal. Conversely, the EM-algorithm is more general than the approximate Newton method in that

it can be applied to policies that are not log-concave, even if it is necessary to perform a double-loop

type procedure to perform the optimisation over w in (2.14). It was noted earlier that in the special

case where log π(a|s;w) is quadratic the search direction of the approximate Newton method coincides

with the direction of the EM-step. In this special case the EM-algorithm can be seen as a specialisation

of the approximate Newton method with a fixed step-size of one. The approximate Newton method is

therefore more general in this case and superior performance can be obtained by tuning the step-sizes.

In the experiments performed in section(4.3) it was found that tuning the step-size of the approximate

Newton method to obtain, sometimes markedly, superior performance was not a difficult problem.

Quasi-Newton Methods

While our focus on the approximate Newton method is primarily as a stochastic optimisation algorithm it

is also interesting to consider the situation where it is possible to perform policy evaluation analytically,

for example in linear systems. When it is possible to calculate the gradient exactly quasi-Newton meth-

ods provide an attractive alternative, see e.g. [121] for an overview. Quasi-Newton methods, such as

the l-bfgs method, work by constructing an estimate to the product of the negative inverse Hessian with

the gradient, with the constraint that the resulting search direction is an ascent direction. While these

methods only use the gradient at previous iterates of the algorithm they are able to obtain super-linear

convergence in the full case, or linear convergence in the limited memory case. Although typical applica-

tions of quasi-Newton methods use only the gradient of previous iterates it is also possible to incorporate

knowledge about the Hessian, such as the particular form of certain terms in the Hessian, into these

methods. Such an approach has been successfully considered previously in problems of marginal log-

likelihood maximisation [106] and non-linear regression [118]. Given our knowledge about the structure

4.2. An Approximate Newton Method 108

of the Hessian for MDPs such an approach is again possible in this framework. We do not consider this

point in depth, but we do provide a simple illustrative example in section(4.3) to highlight the possibility

of these methods.

4.2.2 Convergence Analysis

Clearly, as H2(w) is only an approximation to H(w), the rate of convergence of the Newton method

in the vicinity of a local optimum will generally be superior to that of the approximate Newton method.

To avoid going into too much technical details we simply give a sketch of the convergence analysis.

We denote the mapping of the parameter vector defined through the update equation of the approximate

Newton method byM(w), i.e.

M(w) = w −H−1
2 (w)∇wU(w),

where we suppose a step-size of one for simplicity. This notation is not to be confused with the notation

in (4.1). A standard approach for studying the rate of convergence of an algorithm is to first perform a

Taylor expansion of M(wk), for a sufficiently large k ∈ N, around a local optimum of the objective,

which we denote by w∗. Up to first order in ‖wk −w∗‖ this Taylor expansion gives

wk+1 −w∗ = ∇w|w=w∗M(w)
(
wk+1 −w∗

)
.

For notational simplicity we denote∇w|w=w∗M(w) and∇w|w=w∗U(w) respectively by∇w∗M(w∗)

and ∇w∗U(w∗). Intuitively ∇w∗M(w∗) can be viewed as contraction mapping with a Lipschitz con-

stant corresponding to the largest eigenvalue of ∇w∗M(w∗). Note that, as we shall see shortly, when

H(w∗) is negative-definite, negative-semidefinite, the eigenvalues of ∇w∗M(w∗) will be contained in

[0, 1) and [0, 1] respectively. There will be rapid convergence in the direction of eigenvectors which

correspond to eigenvalues that are close to zero, while those corresponding to eigenvalues close to unity

will have slow convergence. The explicit form of∇w∗M(w∗) can be calculated as follows

∇w∗M(w∗) = I −
(
∇w|w=w∗H−1

2 (w)

)
∇w∗U(w∗)−H−1

2 (w∗)

(
∇>w∇wU(w)

)
w|w=w∗

,

= I −H−1
2 (w∗)H(w∗).

The second line follows from the first as the gradient of the objective is zero at a local maximum. Given

the fact thatH(w) = H1(w) +H2(w), ∀w ∈ W , this can be simplified further

∇w∗M(w∗) = H−1
2 (w∗)

(
H2(w∗)−H(w∗)

)
,

= −H−1
2 (w∗)H1(w∗).

It is clear that the rate of convergence is determined by the relative sizes ofH1(w) andH2(w). When the

eigenvalues of H1(w) are small in comparison to the eigenvalues of H2(w) convergence will typically

4.2. An Approximate Newton Method 109

be fast. It is also possible to relateM(w) to the Newton method be writingM(w) in the following form

M(w) = w −
(
I −

(
−H−1

2 (w)H1(w)
))
H−1(w)∇wU(w).

The approximate Newton method can now be seen to take the step-direction of the Newton method,

−H−1(w)∇wU(w), and to modify it by mapping it through the matrix, I −
(
− H−1

2 (w)H1(w)
)
.

Sufficiently close to w∗ we have the approximate relation

M(w) ≈ w −
(
I −∇w∗M(w∗)

)
H−1(w)∇wU(w).

When the eigenvalues of ∇w∗M(w∗) are close to zero the identity matrix will dominate the term

∇w∗M(w∗) and quasi-Newton type behaviour is possible. Conversely, when the eigenvalues of

∇w∗M(w∗) are close to one the step-sizes will be small and slow convergence will result.

We noted earlier that when H(w∗) is negative-definite, negative-semidefinite, the matrix H2(w∗)

is respectively negative-definite or negative-semidefinite. Additionally, the relation ∇w∗M(w∗) = I −

H−1
2 (w∗)H(w∗) can be rewritten in the form H(w∗) = H2(w∗)

(
I − ∇w∗M(w∗)

)
. It now follows

that when the Hessian is negative-definite, negative-semidefinite, the eigenvalues of ∇w∗M(w∗) are

respectively contained in [0, 1) or [0, 1], which validates our earlier claim.

4.2.3 Summary

In this section we have considered the application of the approximate Newton method that uses the

approximate Hessian, H2(w), in place of the Hessian,H(w). We have found that it has many desirable

properties that are absent in the naive application of the Newton method. These advantages include

guarantees that the H2(w) will being negative-semidefinite when the policy is log-concave; Sparsity

properties of H2(w), not present in H(w), that make the inversion of the approximate Hessian more

efficient; More efficient policy evaluation. Additionally, the approximate Newton method maintains

the attractive property of being invariant to linear (affine) transformations of the parameter space. The

use of this approximate Hessian comes at the cost of a reduced rate of convergence, where the rate of

convergence of the approximate Newton method is anywhere between sub-linear and quadratic.

Considering the attractive properties of the Newton method, in terms of its rate of convergence and

scale invariance, it is surprising that an approximate Newton method has not been previously considered

for the optimisation of Markov Decision Processes. In many optimisation problems the Hessian often

has the form of being the sum of two matrices, where one is an outer-product matrix of first order

derivatives and the second matrix consists of second order derivatives. Typically the outer-product matrix

is used to approximate the Hessian as it often easier to calculate and it is guaranteed to be positive-

semidefinite. This is often called the Gauss-Newton method or the outer-product approximation [30] and

an example of its application is in nonlinear least-squares problems. However, we have seen that, due to

the temporal structure of the objective for Markov Decision Processes, this term is troublesome and such

an approximation has numerous undesirable properties. The most similar approximate Newton method

that we have been able to locate in the literature is an approximation to the Hessian of the marginal

4.2. An Approximate Newton Method 110

log-likelihood function in a maximum likelihood problem [105, 106]. This is one possible suggestion

as to why no previous attempts have been made to make efficient approximations to the Hessian in this

problem setting.

4.3. Experiments 111

4.3 Experiments
In this section we detail some experiments performed on the approximate Newton methods. Firstly,

we demonstrate the approximate Newton methods on the game of tetris, which is a non-trivial high-

dimensional discrete system. In continuous system we first demonstrate the approximate Newton method

on a high-dimensional linear system. This allows the search directions of the various parametric policy

search methods to calculated exactly, thus removing any issues the approximate inference clouding the

results, and allows for the comparison of search directions and selection of step-size sequences. Ad-

ditionally, we provide a simple illustration of using our knowledge of the Hessian to improve the per-

formance of a quasi-Newton method. Finally, we demonstrate the approximate Newton method on a

simple two-dimensional non-linear system where a forwarding-sampling is used to evaluate the search

directions.

Tetris

We considered the tetris domain, which is a popular computer game designed by Alexey Pajitnov in 1985.

See [51] for more details. Firstly, we compared the performance of the full and diagonal approximate

Newton methods to other parametric policy search methods. Tetris is typically played on a 20× 10 grid,

but due to computational costs we considered a 10 × 10 grid in the experiment. This results in a state

space with roughly 7 × 2100 states. We modelled the policy through a Gibb’s distribution, where we

considered a feature vector with the following features: the heights of each column, the difference in

heights between adjacent columns, the maximum height and the number of ‘holes’. Under this policy it

is not possible to obtain the explicit maximum over w in (2.14) and so a straightforward application of

EM is not possible in this problem. We therefore compared the diagonal and full approximate Newton

methods with steepest and natural gradient ascent.

We now detail the procedure used for each of the algorithms in this experiment. The same general

procedure was used for all the algorithms considered in the experiments. We modelled the environment

through with an infinite planning horizon with average rewards. The reward at each time-point is equal

to the number of lines deleted. We used a recurrent state formulation [182] of the gradient of the average

reward framework to perform the gradient evaluation. We used analogous versions of this recurrent state

formulation for natural gradient ascent, the diagonal approximate Newton method and the full approxi-

mate Newton method. As in [83] we used the sample trajectories obtained during the gradient evaluation

to estimate the Fisher information matrix. Irrespective of the policy a game of tetris is guaranteed to ter-

minate after a finite number of turns, see e.g. [27]. As we are considering the average reward framework

a new game starts when the previous one terminates. We used the empty board as a recurrent state where,

because a new game starts with an empty board, this state is recurrent.4 During each training iteration

the (approximation of the) search direction was obtained by sampling 1000 games, where these games

were sampled using the current policy parameters. Given the current approximate search direction the

4This is actually an approximation because it doesn’t take into account that the state is given by the configuration of the board
and the current piece, so this particular ‘recurrent state’ ignores the current piece. Empirically we found that this approximation
gave better results, presumably due to reduced variance in the estimands, and there is no reason to believe that it is unfairly biasing
the comparison between the various parametric policy search methods.

4.3. Experiments 112

(a) Game Pieces (b) Game Board

Figure 4.3: A graphical illustration of the game of tetris with (a) the collection of possible pieces, or
tetrozoids, of which there are seven (b) a possible configuration of the board, which in this example is of
height 20 and width 10.

following basic line search method was used to obtain a step-size: For every step-size in a given finite

set of step-sizes sample a set number of games and then return the step-size with the maximal score

over these games. In practice, in order to reduce the susceptibility to random noise, we used the same

simulator seed for each possible step-size in the set. To avoid over-fitting a different simulator seed was

used during each training iteration. In this line search procedure we sampled 1000 games for each of

the possible step-sizes. The same set of step-sizes was used in all of the different training algorithms

considered in the experiment, where we used the set

{
0.1, 0.5, 1.0, 2.0, 4.0, 8.0, 16.0, 32.0, 64.0, 128.0

}
.

To reduce the amount of noise in the results we used the same set of simulator seeds in the search

direction evaluation for each of the algorithms considered in the experiment. In particular, we generated

a nexperiments × niterations matrix of simulator seeds, where nexperiments was the number of repetitions of

the experiment and niterations was the number of training iterations in each experiment. We then used

this one matrix in all of the different training algorithms, where the element in the jth column and

ith row corresponds to the simulator seed used in the jth training iteration of the ith experiment. In a

similar manner the set of simulator seeds used for the line search procedure was the same for all of

the different training algorithms. Finally, to make the line search consistent among all of the different

training algorithms the search direction was normlised and the resulting unit vector was the vector used

in the line search procedure.

We ran 100 repetitions of the experiment, each consisting of 100 training iterations, and the mean

and standard error of the results are given in fig(4.4). It can be seen that the full approximate Newton

method outperforms all of the other methods, while the performance of the diagonal approximate Newton

method is comparable to natural gradient ascent. We also ran several training runs of the full approximate

Newton method on the full-sized 20× 10 board and were able to obtain a score in the region of 14, 000

completed lines, which was obtained after roughly 40 training iterations. An approximate dynamic

4.3. Experiments 113

0 20 40 60 80 100
0

100

200

300

400

Training Iterations

C
o
m

p
le

te
d
 L

in
e
s

Figure 4.4: Results of the tetris problem for steepest gradient ascent (black), natural gradient ascent
(green), the diagonal approximate Newton method (blue) and the approximate Newton method (red).

programming based method has previously been applied to the Tetris domain in [27]. The same set of

features were used and a score of roughly 4, 500 completed lines was obtained after around 6 training

iterations, after which the solution then deteriorated.

Linear System

In this section we perform various comparative experiments between the full approximate Newton

method and other existing parametric policy search algorithms. We consider linear systems because

they allow the search directions to be evaluated exactly, using methods described in section(3.2.2), but

sufficiently difficult to provide a challenging platform for gradient-based optimisation methods. In all

the experiments we shall consider in this section the policy takes the form

π(a|s;w) = N (a|Ks+m, σ2I),

wherew = (K,m, σ). The calculation of the derivative of the log-policy w.r.t. the policy parameters can

be performed in a straightforward manner. We consider finite horizon problems in this section. To calcu-

late the search directions of steepest gradient ascent, natural gradient ascent, Expectation Maximisation

and the full approximate Newton method it is necessary to calculate the first two moments of the RTS

state-action value functions, {Qrts
t }Ht=1, which can be done using the methods described in section(3.2.2).

To calculate the search directions of the Newton method and the method that usesM(w) = H−1
11 (w)

it is necessary to use the extensions of the RTS inference routines described in appendix(C). All of the

experiments in this section were performed on the 3-link manipulator as detailed in section(3.4). In this

system the maximal value of the objective function varied dramatically depending on the random ini-

tialisation of the system, where this initialisation was done as described in section(3.4). To account for

the variation in the maximal value of the objective function, between the repetitions of the experiment,

4.3. Experiments 114

the results of each experiment were normalised by the maximal value achieved between the algorithms

considered in that experiment. Hence, all results display the normalised total expected reward, i.e. the

percentage of reward received in comparison to the best results among the algorithms considered in the

experiment.

The first experiment on the linear system was performed to compare the search/step-direction of

the steepest gradient ascent, natural gradient ascent, Expectation Maximisation and the full approximate

Newton method. The experiment was performed on a linear system to remove any issues of approximate

inference obscuring the results. We performed the experiment on the 3-link manipulator as detailed in

section(3.4), considering a finite horizon of H = 100 and using RTS-inference to perform the evalu-

ation of the search direction. We used the minFunc5 optimisation library in all of the gradient-based

algorithms. We found that both the line search algorithm and the step-size initialisation had a significant

effect on the performance of all the algorithms. We therefore tried various combinations of these set-

tings for each algorithm and selected the one that gave the best performance. We tried bracketing line

search algorithms with: step-size halving; quadratic/cubic interpolation from new function values; cubic

interpolation from new function and gradient values; step-size doubling and bisection; cubic interpo-

lation/extrapolation with function and gradient values. We tried the following step-size initialisations:

quadratic initialization using previous function value and new function value/gradient; twice the pre-

vious step-size. To handle situations where the initial policy parameterisation was in a ‘flat’ area of

the parameter space far from any optima we set the function and point toleration of minFunc to zero

for all algorithms. We repeated each experiment 100 times and the results are shown in fig(4.5) where

the mean and standard error are plotted for steepest gradient ascent (black), Expectation Maximisation

(blue), the full approximate Newton method (red), natural gradient ascent (green). It can be observed

that the full approximate Newton method significantly outperforms all of the comparison algorithms.

In terms of steepest gradient ascent and natural gradient ascent this superior performance is explained

by the superior estimate of the curvature of the objective function provided by the approximate Hes-

sian. The step-direction of Expectation Maximisation is very similar to the search direction of the full

approximate Newton method in this problem. In fact over the mean parameters they are the same be-

cause the log-policy is quadratic in the mean parameters. The difference in performance between the

full approximate Newton method and Expectation Maximisation is explained by the tuning of the step-

size in the full approximate Newton method, compared to the constant step-size of one in Expectation

Maximisation. To observe the issues of poor scaling to the various optimisation algorithms we observed

the number of iterations required by each algorithm. These counts are given in table(4.1) where it can

be observed that steepest gradient ascent requires far more iterations than either natural gradient ascent

or the full approximate Newton method, both of which require roughly the same amount of iterations.

This validates that both natural gradient ascent and the full approximate Newton method are more robust

to poor scaling than steepest gradient ascent. Finally, we note that as the gradient can be calculated

exactly in this problem it is possible to apply quasi-Newton methods, such as l-bfgs, which perform well

5This software library is freely available at http://www.di.ens.fr/˜mschmidt/Software/minFunc.html.

4.3. Experiments 115

0 200 400 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Training Time

N
o

rm
a

lis
e

d
 T

o
ta

l
E

x
p

e
c
te

d
 R

e
w

a
rd

(a) Line-Search Results I

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Training Time

N
o
rm

a
lis

e
d
 T

o
ta

l
E

x
p
e
c
te

d
 R

e
w

a
rd

(b) Line-Search Results II

Figure 4.5: Normalisaed total expected reward plotted against training time (in seconds) for the 3-link
rigid manipulator using line search methods. (a) The plot shows the results for steepest gradient ascent
(black), Expectation Maximisation (blue), the full approximate Newton method (red) and natural gra-
dient ascent (green). (b) The plot shows the results for the full approximate Newton method (red), the
methods that usesM(w) = H−1

11 (w) (blue) and the Newton method (green).

in this particular problem. However, the aim of this experiment is to compare the search directions of

the current stochastic parametric policy search algorithms which, as mentioned earlier, does not include

quasi-Newton methods.

In the second experiment we compared the performance of the full approximate Newton method

against the Newton method and the methods that usesM(w) = H−1
11 (w). We performed the experiment

on the 3-link manipulator as detailed in section(3.4), considering a finite horizon of H = 100 and using

RTS-inference to perform the evaluation of the search direction. We repeated each experiment 100 times

and the results are shown in fig(4.5) where the mean and standard error are plotted for the full approx-

imate Newton method (red), the Newton method (green) and the method that usesM(w) = H−1
11 (w)

(blue). It can be seen that the Newton method performs poorly in comparison to the full approximate

Newton method. This is probably best explained by the fact that the Hessian is not negative-definite over

the entire parameter space, which means that it is necessary to correct the Hessian to ensure an ascent

direction is obtained. These correction operations can destroy much of the curvature information in the

Hessian, which is presumably what has occurred in this instance. This shows the benefit of the guarantee

that H2(w) is negative-definite, when the policy is log-concave, which negates the necessity of correct-

ing this preconditioning matrix. The full approximate Newton method also outperforms the method that

usesM(w) = H−1
11 (w), although this method obtains superior performance than the Newton method.

We also compared the performance of the full approximate Newton method against the performance of

the method that usesM(w) = H−1
11 (w) in terms of the number of iterations, and found the performance

of the two methods to be comparable. Note that in this system the full approximate Newton method

requires the calculation of only the first two moments of the RTS state-action value functions, while the

method that usesM(w) = H−1
11 (w) requires the first four moments of these functions. This additional

computational cost explains the superior performance of the full approximate Newton method in this

problem. It would be of interest to compare these two methods in a system where this additional com-

4.3. Experiments 116

putational cost is not present, such as in the Tetris domain. It is also of interest to further understand the

relationship betweenH2(w) andH11(w). These are both points of future research.

In the third experiment we again considered the 3-link manipulator described in section(3.4), but

in this experiment we used a fixed step-size in steepest gradient ascent, natural gradient ascent and the

full approximate Newton method. This experiment was performed to obtain a gauge on the difficulty of

selecting a step-size sequence in the various methods where the step-size sequence is an open parameter.

This is a difficult problem for algorithms such as steepest gradient ascent because the parameter space has

a non-trivial number of dimensions and the objective is poorly-scaled. In both steepest gradient ascent

and natural gradient ascent we considered the following fixed step-sizes 0.001, 0.01, 1, 10, 20, 30, 100

and 250. We were unable to obtain any reasonable results with steepest gradient ascent with any of these

fixed step-sizes, for which reason the results are omitted. In natural gradient ascent we found 30 to be

the best step-size of those considered. In the approximate Newton method we considered the following

fixed step-sizes 10, 20, 30, 100 and 250 and found that the fixed step-size of 30 gave consistently good

results without overstepping in the parameter space. The smaller step-sizes still obtained better results

than Expectation Maximisation, but still less than the fixed step-size of 30. The larger step-sizes often

found superior results, but would sometimes overstep in the parameter space. For these reasons we

used the fixed step-size of 30 in the final experiment. We repeated the experiment 100 times and the

results of the experiment are plotted in fig(4.6(a)), where the mean and standard error of the results are

plotted. The results show that even though this step-size tuning is crude it is still possible to obtain strong

results in comparison to Expectation Maximisation, which doesn’t require the selection of a step-size

sequence. In the experiment the approximate Newton method only took around 50 seconds to obtain the

same performance as 300 seconds of training with Expectation Maximisation. Furthermore Expectation

Maximisation was only able to obtain 40% of the performance of the approximate Newton method, while

natural gradient ascent was only able to obtain around 15% of the performance. The reason that natural

gradient ascent performed so poorly in this problem was because the initial control parameters were

typically in a plateau region of the parameter space where the objective was close to zero. To get out of

this plateau region on a regular basis and in the given amount of training time would require on overly

large step-size. However, once in a high reward part of the parameter space we found that, using natural

gradient ascent, these large step-sizes would result in overshooting in the parameter space and poor

performance. The step-size of 30 was able to locate areas of high reward in a subset of the problems

considered in the experiment, while not suffering from overshooting as much as the larger step-sizes.

Clearly, as we have seen in the first experiment, it is possible to improve the performance of natural

gradient ascent through tuning of the step-size sequence. However, the point of the experiment was to

highlight the robustness of the approximate Newton method to poor scaling, as well as the resulting ease

Steepest Gradient Ascent Natural Gradient Ascent Approximate Newton Method
Iterations 3684± 314 203± 34 310± 40

Table 4.1: Iteration counts of the 3-link manipulator experiment for steepest gradient ascent, natural
gradient ascent and the approximate Newton method when using the MinFunc optimisation library.

4.3. Experiments 117

0 200 400 600
0

0.2

0.4

0.6

0.8

1

Training Time

N
o

rm
a

lis
e

d
 T

o
ta

l
E

x
p

e
c
te

d
 R

e
w

a
rd

(a) Fixed Step-Size Results

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

Training Iterations

N
o

rm
a

lis
e

d
 T

o
ta

l
E

x
p

e
c
te

d
 R

e
w

a
rd

(b) Quasi-Newton Acceleration Experiment

Figure 4.6: (a) Normalised total expected reward plotted against training time (in seconds) for the 3-
link rigid manipulator using a predefined step-size sequence. The plot shows the results for steepest
gradient ascent (black), Expectation Maximisation (blue), the full approximate Newton method (red),
natural gradient ascent (green). (b) The results of the quasi-Newton acceleration experiment. The l-
bfgs method that uses with B0

k(w) = s>k yk/y
>
k yk is plotted in blue, while the l-bfgs method that uses

B0
k(w) = H−1

2 (w) is plotted in red.

(in comparison to algorithms such as natural gradient ascent) of selecting a good step-size sequence.

We also performed a simple experiment where we used our knowledge that the Hessian takes the

form (4.2), and that H2(w) is negative-semidefinite, in a quasi-Newton method. In particular we con-

sidered the l-bfgs method, which uses the last m iterates of the algorithm and an initial estimate of the

inverse hessian to construct an approximation to the product of the inverse Hessian with the gradient vec-

tor. We denote this initial inverse Hessian by B0
k, where k is the current iteration. Using our knowledge

of the Hessian we considered the initial estimate B0
k = H−1

2 (wk−m), where we used the approximate

Hessian from the initial point for the first m iterations.6 We performed the experiment on the 3-link

manipulator described in section(3.4), considering a finite horizon of H = 100. In the experiment

we used the last 5 iterates of the training algorithm. For comparison we considered the l-bfgs method

where the initial estimate of the inverse Hessian was set to B0
k = ρkI , where ρk = s>k yk/y

>
k yk, where

sk = wk+1 − wk and yk = ∇w|w=wk+1
U(w) − ∇w|w=wkU(w). This is a common choice in the

l-bfgs method, see e.g. [121] for more details. We repeated the experiment 100 times and the results are

shown in fig(4.6(b)), where the plot shows the mean and standard error of the results. It can be seen that

the l-bfgs method that uses B0
k = H−1

2 (wk−m) performs consistently better than the l-bfgs method that

uses B0
k = ρkI . We note that this method may not work as well as m becomes larger and H2(wk−m)

contains less information about the curvature of the objective function. This example is mainly meant

to illustrate the possibility of using the approximate Hessian, H2(w), in a quasi-Newton method. In

practice it would be preferable to incorporate our knowledge about the structure of the Hessian into the

actual update of the inverse Hessian vector product. Such a procedure has been successfully consid-

ered previously in problems of marginal log-likelihood maximisation [106] and non-linear least-squares

[118, 121, 54].

6We considered using the inverse of the approximate Hessian from different iterates, i.e. H−1
2 (wi) for some i ≤ k, but found

that usingH−1
2 (wk−m) work best in the experiment we considered.

4.3. Experiments 118

θ
2

θ
1

−8 −6 −4 −2 0
0

10

20

30

40

50

60

0

10

20

30

40

50

60

(a) Objective Function

0 200 400 600 800
0.6

0.7

0.8

0.9

1

Training Iterations

N
o

rm
a

lis
e

d
 T

o
ta

l
E

x
p

e
c
te

d
 R

e
w

a
rd

(b) Experiment Results

Figure 4.7: (a) A visual illustration of the objective function in the range θ ∈ [0, 60] × [−8, 0]. (b)
Results of the model-free non-linear experiment, where the plot shows the results for steepest gradient
ascent (black), Expectation Maximisation (blue), natural gradient ascent (green) and the approximate
Newton method (red). The plot shows the mean and standard error of the results.

4.3.1 Non-Linear System

Finally we performed an experiment on the synthetic two-dimensional non-linear MDP considered in

[176]. The state-space of the problem is two-dimensional, s = (s1, s2), where s1 is the agent’s position

and s2 is the agent’s velocity. The control is one-dimensional and the dynamics of the system is given as

follows

s1
t+1 = s1

t +
1

1 + e−ut
− 0.5 + κ,

s2
t+1 = s2

t − 0.1s1
t+1 + κ,

where κ is a zero-mean Gaussian random variable with standard deviation σκ = 0.02. The agent starts in

the state s = (0, 1), with the addition of Gaussian noise with standard deviation 0.001, and the objective

is to transport the agent to the state (0, 0). We use the same policy as in [176], which is given by

at = (w + εt)
>st, where w are the control parameters and εt ∼ N (εt; 0, σ

2
ε I). The objective function

is non-trivial for w ∈ [0, 60] × [−8, 0] and for illustration is plotted in fig(4.7(a)). In the experiment

the initial control parameters were sampled from the region w0 ∈ [0, 60]× [−8, 0]. In all algorithms 50

trajectories were sampled during each training iteration, which where then used to estimate the search

direction. We considered a finite planning horizon with a planning horizon of H = 80. We repeated

the experiment 100 times and the results of the experiment are given in fig(4.5), where the plot shows

the results for steepest gradient ascent (black), Expectation Maximisation (blue), natural gradient ascent

(green) and the approximate Newton method (red). The plot shows the mean and standard error of the

results. The step-size sequences of steepest gradient ascent, natural gradient ascent and the approximate

Newton method were all tuned for performance and the results shown were obtained from the best step-

size sequence for each algorithm. As in the linear system the approximate Newton method consistently

outperforms the other algorithms. It is interesting to observe that the difference in performance between

4.3. Experiments 119

0 200 400 600 800

28

30

32

34

36

38

40

42

Training Iterations

T
o

ta
l
E

x
p

e
c
te

d
 R

e
w

a
rd

(a) Approximate Newton

0 200 400 600 800
0

5

10

15

20

25

30

35

Training Iterations

T
o

ta
l
E

x
p

e
c
te

d
 R

e
w

a
rd

(b) Natural Gradient Ascent

Figure 4.8: Results of the approximate Newton method and natural gradient ascent on the synthetic two-
dimensional non-linear system for various step-size sequences. In the approximate Newton method we
considered step-size sequences of the form αk = (1−k/N)α+k/N , whereN is the number of training
iterations considered in the experiment and α ∈ R+. In natural gradient ascent we considered step-size
sequences of the form αk = α/

√
k for varying values of α ∈ R+. Plot (a) shows the results of the

approximate Newton method for α = 1 (blue), α = 6 (green), α = 12 (black) and α = 24 (red). Plot (b)
shows the results of natural gradient ascent for α = 0.0001 (blue), α = 0.001 (green), α = 0.01 (black)
and α = 0.1 (red). In the case of natural gradient ascent the values α = 1, 2 and 4 were also tried but
we found to give similar results to α = 0.1 and so are omitted.

the approximate Newton method and the other methods is not of the same magnitude in this system as it

is in the linear system. A possible explanation for this point is that this problem is sufficiently small and

well-scaled that it is a relatively easy problem in practice. Extending the approximate Newton method

to more challenging non-linear systems is a point of future work and this will help clarify this point.

Finally, it is illustrative to detail the contrasting nature of the approximate Newton method and

natural gradient ascent to step-size tuning in this problem.7 Using the intuition that the approximate

Newton method has a natural step-size of one, which corresponds to an EM-step in this problem because

the log-policy is quadratic in the control parameters, we considered step-size sequences of the form

αk = (1− k
N)α+ k

N , where N is the total number of training iterations considered and α ∈ R+. In the

experiment we considered the values α = 1, 6, 12 and 24. The intuition used in this selection was that,

provided that the steps were not so large as to cause overshooting in the parameter space, larger steps will

increase performance. In natural gradient ascent it was necessary to obtain a gauge of a reasonable scale

of a good step-size sequence. For this reason in the experiment we considered step-size sequences of the

form αk = α√
k

with α = 0.0001, 0.001, 0.01, 0.1, 1, 2 and 4. The results of this step-size training are

plotted in fig(4.8(a)) for the approximate Newton method and fig(4.8(b)) for natural gradient ascent. It

was found that the sequence α = 24 gave the best results for the approximate Newton method, while the

sequence α = 0.001 gave the best results for natural gradient ascent. The results show that the intuition

about the approximate Newton method was correct and as a result the step-size sequence was easy to

tune, while also giving reasonably consistent results over the sequences considered. These results also

demonstrate the ease with which it is possible to obtain superior results than Expectation Maximisation,

7The tuning of the step-size sequence in steepest gradient ascent was similar in nature to natural gradient ascent and so is
omitted from the discussion.

4.4. Discussion 120

even though a step-size sequence is required in the approximate Newton method. In contrast a reasonable

scale for the step-size sequence in natural gradient ascent was more difficult to find, while the algorithm

was also more sensitive to the different step-size sequences considered.

4.4 Discussion
In this chapter we presented a novel analysis for the application of natural gradient ascent and Expec-

tation Maximisation to the MDP objective. In particular we were able to show that both algorithms

are closely related to the approximate Newton method that uses H2(w) in place of H(w). Inspired by

this analysis we then considered the direct application of this approximate Newton method to the MDP

objective, where we found that this method has many desirable properties that are absent in the naive

application of the Newton method. These include a guarantee that H2(w) is negative-semidefinite pro-

vided that the controller is log-concave, sparsity properties in H2(w) that are not present in H(w) and

more efficient evaluation. Initial empirical experiments suggest that the method has both strong perfor-

mance and is robust to the selection of the step-size sequence. While the initial results are promising it

would be ideal to test this method on more realistic real-world problems, such as robotics or large scale

discrete MDPs. Additionally, we have only considered our approximate Newton methods in terms of an

actor method and in future work we shall consider the actor-critic extension of these algorithm. Finally,

it is a point of future work to better understand the relationship betweenH2(w) andH11(w), along with

a deeper analysis of the Hessian itself.

Chapter 5

Dual Decomposition for Planning with

Non-Markovian Policies

5.1 Introduction
It was noted in chapter(1) that one of the main restrictions of dynamic programming is the need for the

planning model to have a Markovian policy, i.e. the conditioning set of the policy should form a sepa-

rator set between the current action variable and the trajectory over the preceding time-points. This is

an essential requirement in the derivation of dynamic programming and it fails to hold in many mod-

els of partially observable environments, such as DEC-MDPs or POMDPs modelled with a BC, MC or

a FSC and finite horizon MDPs with a stationary policy. Different optimisation methods, such as the

policy-search methods of chapter(2), are required in such models and this is a severe limitation in the

applicability of dynamic programming. It is therefore of theoretical and practical interest to extend the

applicability of dynamic programming by constructing planning algorithms that have dynamic program-

ming as a core component of the optimisation process, not least because it is a global algorithm. This is

the subject of the present chapter, where we focus on the problem of finite horizon MDPs with a station-

ary policy, detailing possible future directions for other partially observable models in the conclusion.

To approach this problem we use an optimisation technique known as dual decomposition, which

originates from the convex optimisation literature, see e.g. [25, 35], and has been the centre of a recent

surge of research in the approximate inference community, see e.g. [153, 97]. In these methods the

original difficult global optimisation problem is relaxed into a series of easier local optimisations, the

solutions of which are used to update the relaxation. An attractive property of these algorithms is that

this relaxation provides a convex bound on the original objective function. This bound can be optimised

through any number of convex optimisation techniques and this provides these techniques with desir-

able convergence properties. In the case of a finite horizon MDP with a non-stationary policy dynamic

programming splits a difficult optimisation overO(ASH) (deterministic) policies into an easier problem

over O(ASH) policies, with a run-time of O(AS2H). When the policy is constrained to be stationary

dynamic programming cannot be applied and no such computational saving is possible. We apply dual

decomposition to the constrained stationary policy finite horizon MDP in such a manner that dynamic

programming is applicable and the original difficult optimisation can be split into a series of easier opti-

5.2. Markovian Policies & Dynamic Programming 122

misations. This relaxation has a natural interpretation as a non-stationary policy finite horizon MDP with

a modified non-stationary reward function, where the modified reward function encourages stationarity

in the policy.

The chapter shall be organised as follows: Section(5.2) will detail why Markovian policies are

so essential to the derivation of dynamic programming and examine some commonly used partially

observable environments where the policy is non-Markovian; Section(5.3) will contain an overview

of dual decomposition methods; Section(5.4) will contain our construction of the dual decomposition

algorithm for finite horizon MDPs with a stationary policy along with an analysis of the algorithm;

Section(5.5) contains empirical experiments of our algorithm, where comparisons shall be made against

policy-search methods; Finally in section(5.6) we shall give a discussion of the algorithm along with

possible future avenues of research.

5.2 Markovian Policies & Dynamic Programming
A policy is said to be Markovian if the conditioning set of the policy forms a separator set between the

current action variable and the trajectory over the preceding time-points. In the case of a MDP (with

either a non-stationary policy in a finite planning horizon or a stationary policy in a infinite planning

horizon) this property is satisfied because the policy is conditioned on the current state of the environ-

ment. Due to the form of the transition dynamics in a MDP the current state of the environment separates

the current action from the previous states of the environment. Another model that satisfies this prop-

erty is the POMDP, where the policy is conditioned on the current belief of the environment. As noted

in chapter(1) Markovian policies are important because they allow the construction of a dynamic pro-

gramming solution to the planning problem, which reduces an optimisation problem over an exponential

number of policies1 to a problem over a linear number of policies. Obviously in many cases of interest

this linear complexity is still too costly to be feasible, nevertheless dynamic programming still greatly

decreases the complexity of the problem while also providing the basis for many approximate solution

techniques.

While a Markovian policy is essential for the construction of a dynamic programming solution

there are many models where this property is not satisfied. Some typical examples are stationary policy

finite horizon MDPs, transition independent decentralised MDPs and POMDPs with a policy modelled

through either a finite state controller, memoryless controller or a blind controller. This list is not meant

to be exhaustive but instead an illustration of how non-Markovian policies preclude dynamic program-

ming. We now consider these examples in more detail.

Stationary Policy Finite Horizon Markov Decision Processes

The state of the environment in a finite horizon MDP is given by the current state and the current time-

point. The stationary policy finite horizon MDP can therefore be seen as a partially observable problem

as the agent is unaware of the current time-point. While a non-stationary policy finite horizon MDP can,

in theory, be solved easily through dynamic programming this is not true when the policy is constrained
1We are considering the number of deterministic policies and the complexity is w.r.t. the conditioning set.

5.2. Markovian Policies & Dynamic Programming 123

π1 π2 π3 π4

s1 s2 s3 s4

R1 R2 R3 R4

a1 a2 a3 a4

(a)

π

s1 s2 s3 s4

R1 R2 R3 R4

a1 a2 a3 a4

(b)

Figure 5.1: (a) An influence diagram representation of an unconstrained finite horizon (H = 4) MDP.
Rewards depend on the state and action, Rt(st, at). The policy p(at|st, πt) determines the decision and
the environment is modeled by the transition p(st+1|st, at). Based on a history of actions, states and
reward, the task is maximize the expected summed rewards with respect to the policy π1:H . (b) For a
stationary policy there is a single policy π that determines the actions for all time-points, which add a
large clique to the influence diagram.

to be stationary. When the policy is constrained in this manner the finite horizon MDP objective takes

the form

U(π) =

H∑
t=1

∑
a,s

R(a, s)pt(a, s|π). (5.1)

This can be seen by comparing the influence diagrams of a finite horizon MDP with a non-stationary

policy, fig(5.1a), and with a stationary policy, fig(5.1b). A non-stationary policy means the influence

diagram has a chain structure, which is easy to optimise, while a stationary policy causes the influence

diagram to lose this chain structure. Indeed the stationary policy couples all time-points together, making

the problem of finding the optimal policy π∗ much more complex. The exact complexity of this problem

class is still unknown: It’s known to be P -hard and inNP , but its completeness results are still unknown

[117].

Transition Independent Decentralised Markov Decision Processes

Consider a transition independent decentralised Markov Decision Process, with N agents and an infinite

planning horizon. In this model the optimisation problem can be written in the form

max
π

∞∑
t=1

∑
a,s

γt−1R(a, s)π(a|s)pt(s;π), (5.2)

s.t. π(a|s) =

N∏
n=1

πn(an|sn), ∀(a, s) ∈ A× S. (5.3)

While the objective (5.2) has the same form as the objective on an ordinary MDP the constraint on the

policy (5.3) means that a direct application of dynamic programming is not possible and will generally

result in a policy that violates the conditional independence constraint on the policy. The conditional

5.3. Dual Decomposition 124

independence constraint of the policy means that each agent is only aware of its own representation of

the environment, making each agents’ policy non-Markovian. It is the decentralised constraint of these

models, i.e. the conditional independence structure of the policy, that makes the optimisation intractable,

where these models are known to be NEXP-complete [23]. Other than direct application of gradient or

EM based algorithms these models are typically solved through multi-linear programs [126], which are

NP-hard to solve optimally but have been noted to have good initial performance.

Partially Observable Markov Decision Processes with a Finite State Controller

Consider an infinite horizon POMDP with a policy that is modelled with a FSC. For simplicity assume

that the initial belief distribution and belief transition dynamics are given and fixed. In this case the

optimisation problem is only w.r.t. π and takes the form

max
π

∞∑
t=1

∑
a,s,b,o

γt−1R(a, s)π(a|b, o)pt(s, b, o;π). (5.4)

It is clear that the policy π(a|b, o) is non-Markovian as it does not depend on the state variable. If

dynamic programming were to be applied then each possible combination of the conditioning variables

would be considered in turn and the corresponding optimal action selected. As the state variable is not

in this conditioning set it would instead be marginalised out and this would cause the reward function

to depend on the marginal distribution of the state variable, which is unknown and itself depends on the

policy. As a result the application of dynamic programming is not possible in this model. The cases of

memoryless and blind controllers are similar with the exception that the actions are respectively based

on the observation and the empty set, but the argument still holds and dynamic programming is again

not possible. With the exception of blind deterministic controllers these planning problems are NP-hard

and very difficult to solve in general, see e.g. [175] and references therein.

5.3 Dual Decomposition

In this section we shall a give a brief review of dual decomposition techniques, see e.g. [25, 35, 153, 97]

for more details. The derivations in [25, 35, 153, 97] differ slightly and we follow the derivation from

[97] as this is most similar to our derivation in section(5.4).

Suppose we are given a global objective function that takes the form of a summation over a finite

number of local functions. The global objective is denoted by E and the local functions are denoted by

{Ei}i∈I , for some finite index set I. The domain of E is denoted by X , which is generally assumed to

be a high-dimensional space that is either continuous or discrete, while the domains of the local functions

are subspaces of X and denoted by {Xi}i∈I . Given a vector x ∈ X the notation x|Xi is used to denote

the sub-vector of x whose components are in Xi2. In this notation the optimisation problem takes the

2We assume that the bases of the subspaces are subsets of the basis of X so that this definition of x|Xi corresponds to the
projection of x into the subspace Xi.

5.3. Dual Decomposition 125

form

max
x∈X

E(x) = max
x∈X

∑
i∈I

Ei(x|Xi). (5.5)

It is assumed that the optimisation of any of these individual local functions is easy in comparison to the

optimisation in (5.5). The property that makes the optimisation in (5.5) difficult is that the domains of

the local functions will generally overlap, which couples the easier optimisations of the local functions

into a difficult global optimisation. For example maximum a posteriori estimation in a pairwise Markov

random field is NP-hard in general, even through the objective can be written in the form (5.5) and each

local function is a function of at most two variables. An exception is when the spaces {Xi}i∈I are

mutually disjoint, in which case (5.5) becomes

max
x∈X

E(x) =
∑
i∈I

max
x|Xi∈Xi

Ei(x|Xi). (5.6)

In this case the local functions can be optimised independently, which makes the optimisation easy under

the assumption that each of the local functions can be optimised with comparative ease. When (5.5) has

the form (5.6) it said to be separable. It is the comparative ease of optimising separable objective

functions that motivates dual decomposition techniques. In particular these methods relax the original

optimisation problem in such a manner that the optimisation consists of solving a series of separable

problems, where these separable problems are obtained by iterative tightening of the relaxation.

To obtain this relaxation a set of auxiliary variables {x̂i}i∈I are introduced, where x̂i ∈ Xi for

each i ∈ I, and (5.5) is written in the equivalent form

max
x,{x̂i}i∈I

∑
i∈I

Ei(x̂i),

s.t. x ∈ X , x̂i ∈Xi and x|Xi = x̂i,∀i ∈ I.

This reformulation almost has the form of a separable problem with the exception of the consistency

constraint, where x|Xi is constrained to agree with x̂i for each i ∈ I. This constraint can be removed

through dual decomposition, also known as Lagrangian relaxation, where these constraints are adjoined

to the objective through the use of Lagrange multipliers, also known as dual variables. This adjoined

objective is known as the Lagrangian and, denoting the dual variables by {λi}i∈I , it takes the form

L(x, {x̂i}i∈I , {λi}i∈I) =
∑
i∈I

Ei(x̂i) +
∑
i∈I

λ>i
(
x̂i − x|Xi

)
,

=
∑
i∈I

(
Ei(x̂i) + λ>i x̂i

)
− λ>x.

where λ is a nx-component vector whose jth component is given by the summation of the components

of {λi}i∈I that occur in the jth dimension of X . The Lagrangian is separable in (x, {x̂i}i∈I) and it

remains to relate the Lagrangian to the original optimisation problem. This is done through the dual

function, denoted by g, which is a function of the dual variables. Its value is the maximum value of the

5.3. Dual Decomposition 126

Lagrangian over
(
x, {x̂i}i∈I

)
, i.e.

g({λi}i∈I) = max
x,{x̂i}i∈I

∑
i∈I

(
Ei(x̂i) + λ>i x̂i

)
+ λ>x. (5.7)

The dual function is always convex because it is the point-wise supremum of a family of affine functions

in the dual variables, see e.g. [32], and when it is unbounded from above it takes the value∞.

The dual function has the important property that it provides an upper bound on the optimal value

of the original objective, see e.g. [32], so that

g({λi}i∈I) ≥ max
x∈X

E(x), (5.8)

which holds for all values of the dual variables. The dual problem is then to find the tightest upper bound,

i.e. to solve the minimisation problem min{λi}i∈I g({λi}i∈I). Given the dual variables, {λi}i∈I , and

a feasible primal solution, x, the duality gap is defined to be the difference g({λi}i∈I)− E(x). Due to

the inequality (5.8) the duality gap is always non-negative and when it is equal to zero the problem (5.5)

is said to have strong duality. It can be seen from (5.8) that when strong duality holds the global solution

to the original optimisation problem has been obtained. When strong duality fails to hold it is necessary

to obtain a primal solution from the dual function. There are heuristics to obtain a primal solution in this

case, see e.g. [32, 153, 97], and we give two methods for obtaining a primal solution from our algorithm

in section(5.4.5).

As the dual problem is to minimise the dual function it is possible to remove the term that is linear

in x from (5.7). As the Lagrangian is linear w.r.t. x it is unbounded from above unless the dual variables

satisfy the condition λ = 0. We denote the set of dual variables where this condition is satisfied by

Λ = {{λi∈I}|λ = 0}. As the dual problem is to minimise the dual function and this function is infinite

outside the set Λ it is sufficient to consider the domain Λ and the dual function takes the final form

g({λi}i∈I) = max
{x̂i}i∈I

∑
i∈I

(
Ei(x̂i) + λ>i x̂i

)
. (5.9)

The maximisation problem over {x̂i}i∈I in (5.9) is separable and so it is possible to write the dual

function in the form g({λi}i∈I) =
∑
i∈I gi(λi), where

gi(λi) = max
x̂i

(
Ei(x̂i) + λ>i x̂i

)
. (5.10)

As the dual function is convex, even when (5.5) is not concave, the minimisation of the dual function

can be performed by any number of convex optimisation techniques, such as gradient methods (when the

dual function is differentiable), sub-gradient methods, projected (sub-)gradient methods or cutting-plane

methods, see e.g. [25]. In summary the dual decomposition algorithm is a two stage iterative process,

where these two stages can be summarised as follows:

Slave Problem Evaluate the dual function w.r.t. the current dual variables, {λi}i∈I . This is equivalent

5.3. Dual Decomposition 127

to solving the separable optimisation problem (5.9).

Master Problem Update the dual variables through some convex optimisation technique, such as gra-

dient methods, sub-gradient methods or cutting-plane methods.

As we shall use a projected sub-gradient method in our dual decomposition algorithm we now

briefly detail the method, see e.g. [34] for more details. To do so it is first necessary to introduce

the notion of a sub-gradient, see e.g. [33], which is an extension of the notion of a gradient to non-

differentiable functions. Given a convex function f : Rn → R a sub-gradient of f at x is any vector

h ∈ Rn that satisfies the inequality

f(x′)− f(x) ≥ h>
(
x′ − x

)
,

for all x′ in the domain of f . This means that h is a sub-gradient of f at x if and only if (h,−1) specifies

the supporting hyperplane to the epigraph of f at (x, f(x)). A graphical illustration of a sub-gradient of

a function is given in fig(5.2). When f is differentiable at x there is a unique sub-gradient and it is equal

to the gradient, otherwise there are multiple, perhaps infinitely many, sub-gradients.

In a projected sub-gradient method the dual variables are first updated by taking a step in the direc-

tion of a sub-gradient of gi(λi), for each i ∈ I. As this update will generally move the dual variables

outside the set Λ it is necessary to project the dual variables back down into this set through some appro-

priately defined projection operator, denoted by [·]Λ. The final form of the update for the dual variables

is given by

λi ← [λi + α∇λigi(λi)]Λ,

where α is a positive step-size parameter and ∇λigi(λi) denotes a sub-gradient. All that remains is to

calculate the sub-gradient of the dual function. This final step is surprisingly easy and follows from the

observation that if the optimum over the primal variables in (5.10) occurs at x̂i then for any λ′i we have

gi(λ
′
i) ≥

(
Ei(x̂i) +

(
λ′i
)>
x̂i

)
, using (5.10),

=

(
Ei(x̂i) + λ>i x̂i

)
+
(
λ′i − λi

)>
x̂i,

= gi(λi) +
(
λ′i − λi

)>
x̂i.

This result states that a sub-gradient of a dual function is given by a optimum over the primal variables

in (5.10), i.e. the sub-gradient is given by x̂i. This is an important result in computational terms as it

states that the sub-gradient of the dual function can be obtained at no computational cost once the dual

functions have been evaluated.

5.4. Dual Decomposition of a Stationary Policy Finite Horizon Markov Decision Processes 128

f(x)

f(x1) + h>(x− x1)(h,−1)

x1

Figure 5.2: A graphical illustration of a sub-gradient of a function. The vector (h,−1) defines the
supporting hyperplane to the epigraph of f at x1, given by f(x1) + h>(x− x1).

5.4 Dual Decomposition of a Stationary Policy Finite Horizon

Markov Decision Processes

It was noted in section(5.2) that the stationary policy constraint in a finite horizon MDP results in a highly

connected influence diagram and as a result it is not possible to optimise these models through dynamic

programming. On the other hand the (unconstrained) non-stationary policy finite horizon MDP is readily

solved through dynamic programming, at least in theory. The method of dual decomposition relaxes a

difficult global optimisation problem into a series of simpler problems, where these simpler problems

are constructed iteratively through the minimisation of an upper bound of the objective function. From

this perspective it is natural to apply the method of dual decomposition to stationary policy finite horizon

MDPs in such a manner that the slave problems correspond to non-stationary policy finite horizon MDPs.

As we shall see these unconstrained MDPs shall be similar to the original MDP model with the exception

that the reward function shall take on a modified non-stationary structure. This modified reward function

shall be updated during the master problem in such a manner that the policies are encouraged to be

consistent over the entire planning horizon.

As noted in section(5.2) the stationary policy finite horizon objective is given by (5.1) so that the

optimisation problem takes the form

max
π

U(π) = max
π

H∑
t=1

∑
s,a

R(s, a)pt(s, a|π). (5.11)

As it is the stationarity constraint on the policy that causes the difficulty in the optimisation it is natural

to relax this constraint. This is done by introducing a set of auxiliary variables, in this case the non-

stationary policies, and rewrite (5.11) into the equivalent form

max
π,π1:H

H∑
t=1

∑
s,a

R(s, a)pt(s, a|π1:t), (5.12)

s.t. πt = π, ∀t ∈ NH , (5.13)

5.4. Dual Decomposition of a Stationary Policy Finite Horizon Markov Decision Processes 129

where pt(s, a|π1:t) is the state-action marginal of the non-stationary trajectory distribution. The difficulty

now is to adjoin these constraints to the objective in such a manner that the slave problem is easy to solve,

i.e. that the slave problem corresponds to a non-stationary policy finite horizon MDP. Due to the structure

of the objective this is a more difficult problem than in the example considered in section(5.3). Indeed

it shall be seen that a simple adjoining of the constraints through the use of Lagrange multipliers is

insufficient in this problem.

In (5.11) and (5.12) we have omitted the distribution constraint on the policies, i.e. that the policy

for each state is a distribution over the action space. In the case of π1:H these constraints shall be

enforced during the optimisation of the slave problem. Given the distribution constraint on π1:H and the

consistency constraint (5.13) the distribution constraint on π is redundant. We therefore consider π as

unconstrained.

5.4.1 Naive Dual Decomposition

A naive procedure to enforce the consistency constraint between the policies is to construct the La-

grangian in the form

L(λ1:H , π1:H , π) =

H∑
t=1

∑
s,a

{R(s, a)pt(s, a|π1:t) + λt(s, a) [πt(a|s)− π(a|s)]} ,

where the Lagrange multipliers are denoted by λ1:H . However, a dynamic programming solution of the

slave problem is not possible in this Lagrangian, which is easiest observed by considering the optimisa-

tion of the policy for the final time-point. Considering only the terms of L(λ1:H , π1:H , π) that depend

upon πH we have that the optimisation problem for this policy takes the form

max
πH

∑
s,a

{
R(s, a)πH(a|s)pH(s|π1:H−1) + λH(s, a)πH(a|s)

}
, (5.14)

where pH(s|π1:H) ≡ p(sH = s|π1:H). It is clear that while the first term in (5.14) depends on the poli-

cies of previous time-points the second term does not and therefore the optimisation is heavily dependent

on the policies of previous time-points, making dynamic programming impossible. It is also clear that,

whilst the constraints are linear in the policies, the marginal p(st, at|π1:t) is non-linear and no simple

linear program exists to find the optimal policy.

5.4.2 Dynamic Dual Decomposition

It is clear that the immediate application of dual decomposition methods to stationary policy finite hori-

zon MDPs is not appropriate for our original aim, i.e. to obtain a simple optimisation algorithm for this

model that is able to use dynamic programming as a core part of the optimisation process. The problem

lies in adjoining the consistency constraints to the objective (5.12) in such a manner that dynamic pro-

gramming is applicable. We now consider an alternative expression for these constraints that does result

in a set of tractable slave problems.

5.4. Dual Decomposition of a Stationary Policy Finite Horizon Markov Decision Processes 130

Denoting the naive constraint functions used in section(5.4.1) by

gt(a, s, π, π1:t) = πt(a|s)− π(a|s),

we now consider constraint functions of the form

ht(a, s, π, π1:t) = gt(a, s, π, π1:t)pt(s|π1:t−1).

Provided pt(s|π1:t−1) > 0, the zeros of the two sets of constraint functions, g1:H and h1:H , are equiva-

lent3. Adjoining the constraint functions h1:H to the objective function (5.12) gives the Lagrangian

L(λ1:H , π1:H , π) =

H∑
t=1

∑
s,a

{(Rt(s, a) + λt(s, a))πt(a|s)pt(s|π1:t−1)

− λt(s, a)π(a|s)pt(s|π1:t−1)} (5.15)

As in section(5.3) the Lagrangian is linear in π and, as π is unconstrained, the dual function is unbounded

from above. A bounded dual function is obtained when π1:H and λ1:H satisfy the constraint

H∑
t=1

λt(s, a)pt(s|π1:t−1) = 0, ∀(s, a) ∈ S ×A. (5.16)

The dual function now takes the final form

g(λ1:H) = max
π1:H

H∑
t=1

∑
s,a

{
(Rt(s, a) + λt(s, a))πt(a|s)pt(s|π1:t−1)

}
, (5.17)

where the maximisation over π1:H is constrained through the distributional constraints of a policy, while

π1:H , λ1:H must satisfy (5.16). We have now obtained the dual decomposition of the original constrained

MDP.

5.4.3 The Slave Problem

It can be seen from (5.17) that to evaluate the dual function it is necessary to optimise an unconstrained

non-stationary policy MDP over π1:H . Given the current set of dual variables, λ1:H , this optimisation

problem is given by

max
π1:H

Uλ(π1:H) = max
π1:H

H∑
t=1

∑
s,a

Rλt (a, s)πt(a|s)pt(s|π1:t−1), (5.18)

where the modified reward function, which depends on the dual variables, is given by

Rλt (a, s) = Rt(a, s) + λt(a, s). (5.19)

3In the case that pt(s|π1:t−1) = 0, the policy πt(·|s) is redundant since the state s is not visited.

5.4. Dual Decomposition of a Stationary Policy Finite Horizon Markov Decision Processes 131

This slave problem is readily solved in O
(
AS2H

)
time, using dynamic programming with the modified

rewards Rλt .

5.4.4 The Master Problem

The master problem consists of updating the dual variables according to the convex optimisation routine

that is being used to minimise the dual function. In general the dual function will be differentiable

at a given point if the maximisation over the primal variables in (5.9) occurs at a unique point, see

proposition 6.1.1 in [25]. In the case of our dual decomposition for stationary policy finite horizon

MDPs this corresponds to (5.18) having a unique optimal policy4. There will be values of the dual

variables where this will not hold and so a sub-gradient method, in particular a projected sub-gradient

method, shall be implemented. At the ith iterations we therefore update

λit = λi−1
t − αi∇λtg(λi−1

1:H) (5.20)

where ∇λtg(λi−1
1:H) is the sub-gradient that is obtained using the procedure detailed in section(5.3) and

αi is the step-size. The sub-gradient contains the positive state occupancy factor and we consider the

simplified update equation

λit = λi−1
t − αiπi−1

t .

Once the dual variables have been updated through this sub-gradient step they need to be projected down

on to the feasible set, which is defined through the constraint (5.16). There are different ways to construct

this projection, but we restrict our consideration to the projections of the form

λit(s, a)← λit(s, a)−
H∑
τ=1

ρτ (s)λiτ (s, a). (5.21)

where we define the state-dependent time distributions

ρτ (s) ≡ pτ (s|π1:τ−1)∑H
τ=1 pτ (s|π1:τ−1)

. (5.22)

One may verify that this setting ensures that λit satisfy the constraint (5.16).

5.4.5 Algorithm Overview

We now look at two important aspects of the dual decomposition algorithm, obtaining a primal solution

from a dual solution and an interpretation of the dual variables.

Obtaining a Primal Solution

A standard issue with dual decomposition algorithms is obtaining a primal solution once the algorithm

has terminated. When strong duality holds, i.e. the duality gap is zero, then π = πt ∀t ∈ NH and a

4It is simple to determine whether the optimal policy is unique when dynamic programming is being used to perform the
optimisation. It is therefore immediately possible to determine if the dual function is differentiable at a given point.

5.4. Dual Decomposition of a Stationary Policy Finite Horizon Markov Decision Processes 132

Initialize the Lagrange multipliers λ = 0.
repeat

Evaluate Dual Function: Solve the finite horizon slave MDP with non-stationary rewards

Rλt (s, a) = λit(s, a) +Rt(s, a),

using dynamic programming to obtain the optimal non-stationary policies π1:H .
Sub-Gradient Step: Update the Lagrange multipliers through a gradient step:

λi+1
t = λit − αiπit.

Projection Step: Project the Lagrange multipliers into the feasible set:

λi+1
t ← λi+1

t −
H∑
τ=1

ρτλ
i+1
τ .

until g(λ1:H)− U(π) < ε, for some convergence threshold ε.
Output a feasible primal solution π(a|s).

Algorithm 5.1: Dual Decomposition Dynamic Programming

solution to the primal problem can be obtained from the dual solution. However, this will not generally

be the case and we therefore need to specify a way to obtain a primal solution. We considered two

approaches; In the first we take the mean of the non-stationary policies

π(a|s) =
1

H

H∑
t=1

πt(a|s), (5.23)

while in the second we optimise the Lagrangian w.r.t. π to obtain the primal policy π(a|s) = δa,a∗(s),

where

a∗(s) = argmin
a∈A

H∑
t=1

λt(s, a)pt(s|π1:t−1), (5.24)

and the λt are taken before projection.

A summary of the complete dynamic dual decomposition procedure is given in algorithm(5.1).

Interpretation of the Dual Variables

To help get an understanding of the dual decomposition algorithm we now have a look at the role of the

dual variables. We noted earlier that each of the slave problems is an unconstrained MDP problem with

non-stationary rewards given by (5.19). So we can immediately see that the dual variables λt(a, s) either

encourages, or discourages, πt to perform action a given state s, depending on sign(λt(a, s)). Now

consider how the Lagrange multiplier λt(s, a) gets updated at the ith iteration of the dual decomposition

algorithm. Prior to the projected sub-gradient step the update of λit(s, a) takes the form

λit(s, a) = λi−1
t (s, a)− αiπit(a|s),

5.5. Experiments 133

where πi1:H denotes the optimal non-stationary policy of the ith round of slave problems. Noting that the

optimal policy is deterministic gives

λit(s, a) =

 λi−1
t (s, a)− αi, if a = argmax

a
πit(a|s),

λi−1
t (s, a), otherwise.

Once the dual variables are projected down to the space of feasible variables through (5.21) we have

λit(s, a) =

 λ̄i−1
t (s, a) + αi

(∑
t∈Ni(a,s) ρt − 1

)
, if a = argmax

a
πit(a|s)

λ̄i−1
t (s, a) + αi

∑
t∈Ni(a,s) ρt otherwise

where N i(a, s) =
{
t ∈ NH |πit(a|s) = 1

}
is the set of time-points that action a was optimal in state

s in the last round of slave problems. The notation λ̄i−1
t means λ̄i−1

t = λi−1
t −

〈
λi−1
t

〉
ρ
, where 〈·〉ρ

means taking the average w.r.t. to the distribution (5.22). Noting that ρt is a distribution over time

means that the terms
∑
τ∈Ni(a,s) ρτ and

(∑
τ∈Ni(a,s) ρτ − 1

)
are positive and negative respectively.

We can now see that the projected sub-gradient step either adds (or subtracts) a positive term to the

projection, λ̄, depending on the optimality of action a (given state s at time t) in the last slave problem.

Thus there are two possibilities for the update of the dual variable; Either the action was optimal and

a lower non-stationary reward is allocated to this state-action-time triple in the next slave problem, or

conversely it was sub-optimal and a higher reward term is attached to this triple. We can now see

that the master algorithm tries to readjust the dual variables so that (for each given state) the same

action is optimal for all time-points, i.e. it encourages the non-stationary policies to take the same form.

Additionally, as |N i(a, s)| → H then
∑
τ∈Nia(s) ρτ → 1, which means that a smaller/larger quantity

is subtracted/added to the dual variable λit(s, a) depending of whether or not t ∈ N i(a, s). This means

that as |N i(a, s)| → H the time-points t /∈ N i(a, s) will have a larger positive term added to the reward

for this state-action pair, making it more likely that this action will be optimal given this state in the

next slave problem. Additionally, those time-points t ∈ N i(a, s) will have a smaller term subtracted

from their reward, making it more likely that this action will remain optimal in the next slave problem.

So we can see that the dual decomposition algorithm automatically weights the rewards according to a

‘majority vote’. This type of behaviour is typical of dual decomposition algorithms, and is known as

resource allocation via pricing [32].

5.5 Experiments

We made several empirical comparisons to the dual decomposition algorithm. Firstly, in section(5.5.1)

we detail a comparison that was made with a well-known heuristic, commonly referred to as the rolling-

horizon policy, that is often used in finite horizon MDPs with a stationary policy. Also, in section(5.5.2)

we detail some comparisons that were performed using several of the policy search algorithms of

chapter(2), in particular making comparisons with steepest gradient ascent and Expectation Maximi-

sation.

5.5. Experiments 134

5.5.1 Rolling-Horizon Comparison

A well-known heuristic that is often applied to finite horizon MDPs with a stationary policy is the

so-called rolling-horizons policy. In this case dynamic programming is performed on the given finite

horizon MDP, but with a non-stationary policy. Using this dynamic programming solution to the non-

stationary policy finite horizon MDP a stationary policy is obtained by using the policy of the initial

time-point. As this heuristic is commonly used we made a simple comparison between it and our dual

decomposition algorithm. The experiment is a simple illustration of the heuristic nature of the rolling-

horizon policy in comparison to the principled approach provided by dual decomposition.

We considered the toy state MDP given fig(5.3(a)), which has periodic transition dynamics that

alternate between two different transition matrices, T1 and T2, with a given periodicity. Under a non-

stationary policy the optimal policy at a given time-point depends on the transition dynamics of that

time-point. If the current transition dynamics are given by T1 then it is optimal to select action ‘a’ in

state s1 and action ‘b’ in state s2, while under transition dynamics T2 it is optimal to select action ‘b’

in state s1 and action ‘a’ in state s2. In the experiment the sequence of transition matrices was given

by one instance of T2, which was then followed by four instances of T1, at which point the sequence

would repeat. In this problem the policy obtained from the rolling-horizon heuristic is determined by the

transition dynamics of the initial time-point, which in this case is the transition matrix T2. Considering

the sequence of transition matrices, along with the form of the transition and reward matrices, it is

to be expected that this rolling-horizon policy will perform poorly. We ran our dual decomposition

algorithm and the rolling-horizon heuristic on a sequence of different planning horizons and for each

different planning horizon calculated the average reward (per time-step) of the policy obtained from the

two algorithms. The results are shown in fig(5.3(b)) where, as expected, the rolling-horizon algorithm

performs poorly. In contrast the dual decomposition algorithm was able to obtain the global optimum

in all instances, typically after only several iterations of the algorithm. This problem highlights the

contrasting natures of the two algorithms: The rolling-horizon algorithm selects the policy solely on the

fact that it is the policy of the initial time-point, while our dual decomposition algorithm obtains the

policy in a principled manner.

5.5.2 Policy-Search Comparison

We also compared our dual decomposition algorithm against some policy search algorithms from

chapter(2), where we considered several benchmark problems, including the chain problem [42], the

mountain car problem [163] and the puddle world problem [161]. We now describe the algorithms used

in the experiments, and the various parameter settings, before proceeding to the experiments.

Dual Decomposition Dynamic Programming (DD DP).

For the dual decomposition algorithm we used dynamic programming to solve the slave problems,

with the overall algorithm is summarised in algorithm(5.1). In the master problem we used a

predetermined sequence on step-sizes for the projected sub-gradient step. We experimented with

5.5. Experiments 135

T1 :

T2 :

s1 s2

s1 s2

b,0

b,0

a,0

a,0

a,10 a,-1

b,10 b,-1

(a) Periodic Markov Decision Process

10 20 30 40 50 60 70 80 90 100
−1

0

1

2

3

4

5

6

7

Planning Horizon

A
v
e
ra

g
e
 R

e
w

a
rd

(b) Rolling-Horizon Results

Figure 5.3: (a) A graphical illustration of a two state Markov Decision Process with periodic transition
dynamics. There are two different transition matrices, denoted by T1 and T2, and the transition dy-
namics of the Markov Decision Process alternates between these two transition matrices with a given
periodicity. (b) Results of the rolling-horizon experiment where the plot shows the average reward (per
time-point) plotted against the planning horizon, with the dual decomposition algorithm (blue) and the
rolling-horizon algorithm (green).

several different step-size sequences and found that sequences of the form

αn =
a

nb
,

gave good results, where we set a = 1 and b = 0.5 in the chain and mountain car problems, while

we set to a = 0.05 and b = 1 in the puddle world problem.

In the experiments we obtained the primal policy using (5.23). We also ran the experiments with

the dual primal policy (5.24) and obtained results that were similar, or even better. We considered

the algorithm converged when the duality gap was less than 0.0005.

Steepest Gradient Ascent

The first algorithm used in the comparison was steepest gradient ascent, see chapter(2) for details.

Steepest gradient ascent was considered because the problems were sufficiently small to allow

the gradient to be calculated exactly and we found in chapter(2) that steepest gradient ascent

performed well in such situations. We used the minFunc optimisation library5 to perform the

line search at each iteration. We set the optimisation method in minFunc to steepest descent6.

All other settings of the minFunc library were left at the default setting. In the experiments we

used a soft-max parameterisation of the table look-up policy, where the parameters were randomly

initialised from the interval [−1, 1].

Expectation Maximisation

The second algorithm we considered was Expectation Maximisation, see chapter(2) for details.

This algorithm was considered as it is generally robust (in relation to other the algorithms from
5This software library is freely available at http://www.di.ens.fr/˜mschmidt/Software/minFunc.html.
6We also tried l-bfgs but obtained similar results.

5.5. Experiments 136

s1 s2 s3 s4 s5
a,0 a,0

b,2

a,0 a,0

a,10

(a) Chain Problem

0 0.02 0.04 0.06 0.08 0.1
50

55

60

65

70

75

80

85

90

Training Time

T
o
ta

l
E

x
p
e
c
te

d
 R

e
w

a
rd

Dual Decompostion

Steepest Gradient Ascent

Expectation Maximisation

(b) Chain Results

Figure 5.4: (a) A graphical illustration of the chain problem state-action transitions with rewardsR(s, a).
The initial state is state 1. There are two actions a, b, with each action being flipped with probability 0.2.
(b) Results from the chain experiment where the total expected reward is plotted against the run time, in
seconds. The plot shows the results of the dual decomposition algorithm (red), steepest gradient ascent
(green) and Expectation Maximisation (blue). Steepest gradient ascent and Expectation Maximisation
were given 100 different random policy initialisations and the plot shows the mean and standard error of
the results.

chapter(2)) to local optima. As with steepest gradient ascent we used a soft-max parameterisa-

tion of the table look-up policy, where the parameters were randomly initialised from the interval

[−1, 1].

Chain Problem

The first experiment we performed was the chain problem [42] which has 5 states each having 2 possible

actions, as shown in fig(5.4(a)). The initial state is 1 and every action is flipped with ‘slip’ probability

pslip = 0.2, making the environment stochastic. If the agent is in state 5 it receives a reward of 10 for

performing action ‘a’, otherwise it receives a reward of 2 for performing action ‘b’ regardless of the state.

In the experiments we considered a planning horizon of H = 25 for which the optimal stationary policy

is to travel down the chain towards state 5, which is achieved by always selecting action ‘a’. While this

is obviously a small problem it is an interesting benchmark because the gradient w.r.t. ws1,a often points

strongly in the direction of the sub-optimal behaviour of performing action b in state s1.

The results of the experiment are shown in fig(5.4(b)) where the total expected reward is plotted

against the run time, in seconds. We can see from fig(5.4(b)) that the dual decomposition algorithm

outperforms both steepest gradient ascent and Expectation Maximisation. The dual decomposition algo-

rithm converged after 4 iterations and strong duality was found to hold in this problem. Steepest gradient

ascent had slower convergence than dual decomposition, but it did consistently converge to the global

optimum after around 0.03 seconds. In terms of training iterations the EM-algorithm took 273.82±3.07

iterations, where we counted iterations until the change in the total expected reward was less than 0.001.

Steepest gradient ascent took 74.59± 3.66 training iterations and 142.15± 1.37 function evaluations. It

appears that the EM-algorithm suffered from issues of local optima, but this is probably due to the poor

convergence of the algorithm.

5.5. Experiments 137

GOAL

(a) Mountain Car

0 2 4 6 8 10
0

5

10

15

20

25

30

35

40

45

Training Time

T
o
ta

l
E

x
p
e
c
te

d
 R

e
w

a
rd

Dual Decompostion

Steepest Gradient Ascent

Expectation Maximisation

(b) Mountain Car Results

Figure 5.5: (a) A graphical illustration of the mountain car problem. The agent (driver) starts the problem
at the bottom of a valley in a stationary position. The aim of the agent is to get itself to the right most peak
of the valley. (b) Results from the mountain car experiment where the total expected reward is plotted
against training time, in seconds. The plot shows the results for the dual decomposition algorithm (red),
steepest gradient ascent (green) and Expectation Maximisation (blue).

Mountain Car Problem

The second experiment we ran was a discretised version of the mountain car problem [163]. In the

mountain car problem the agent is driving a car and its state is described by its current position (denoted

by x) and its current velocity (denoted by v). The agent has three possible actions which are {−1, 0, 1}

which correspond to reversing, stopping and accelerating. The continuous dynamics are given by

vnew = v + 0.1a− 0.0028 cos(2x− 0.5),

xnew = x+ vnew,

where the ranges of the state space are restricted to the intervals x ∈ [−1, 1] and v ∈ [−0.5, 0.5]. At

the start of the problem the agent is in a stationary position, i.e. v = 0, and its position is x = 0. The

problem is depicted graphically in figure(5.5(a)), where we can see that the agent starts in the bottom of

a valley. The aim of the agent is to maneuver itself to the rightmost peak, we therefore set the reward

of 1 when the agent is in the rightmost position and 0 otherwise. In the experiment we discretised the

position and velocity ranges into bins of width 0.1, which resulted in a total state space of 231 states. We

considered a planning horizon of H = 50 in the experiment.

The results of the experiment are shown in fig(5.5(b)) where the total expected reward is plotted

against the run-time, in seconds, and we have plotted the mean and standard error of the results. Again

the dual decomposition algorithm consistently outperforms both of the comparison algorithms. The

dual decomposition algorithm converged in 3 iterations and strong duality was again found to hold in

this problem. In terms of training iterations the EM-algorithm took 138.68 ± 1.60 iterations, where we

counted iterations until the change in the total expected reward was less than 0.001. Steepest gradient

ascent took 26.66± 0.44 training iterations and 125.11± 2.43 function evaluations.

5.5. Experiments 138

0 10 20 30 40 50 60 70 80
−30

−20

−10

0

10

20

30

40

Training Time

T
o
ta

l
E

x
p
e
c
te

d
 R

e
w

a
rd

Dual Decompostion

Steepest Gradient Ascent

Expectation Maximisation

(a) Total Expected Reward

0 10 20 30 40 50
−8

−6

−4

−2

0

2

4

Training Iterations

L
o
g
a
ri
th

m
 o

f
D

u
a
lit

y
 G

a
p

(b) Duality Gap

Figure 5.6: (a) The results from the puddle world experiment where the total expected reward is plotted
against training time, in seconds. The plot shows the results for the dual decomposition algorithm (red),
steepest gradient ascent (green) and Expectation Maximisation (blue). (b) The duality gap of the dual
decomposition algorithm during training, where the plot is given in terms of the training time.

Puddle World

The final experiment we performed was on a discretised version of the puddle world problem [161].

In this problem the state space is a continuous 2-dimensional grid (x, y) ∈ [0, 1]2 that contains two

puddles. In the experiment two circular puddles (of radius 0.1) were placed in the state space, where

the centres of the puddles were generated uniform randomly over the grid [0.2, 0.8]2. The agent in this

problem is a robot that is depicted by a point mass in the state space. The aim of the robot is to navigate

itself to a goal region, while avoiding areas of the state space that are covered in puddles. The initial

state of the robot was set to the point (0, 0). There are four discrete actions (up, down, left and right)

that moves the robot 0.1 in that direction. The dynamics where made stochastic by adding the Gaussian

noise N (0, 0.01) to each direction. A reward of 1 is received for all states in the goal region, which is

given by those states satisfying x+ y ≥ 1.9. A negative reward of −40(1− d) is received for all states

inside a puddle, where d is the distance from the centre of the puddle. In the experiment we discretised

the x and y dimensions into bins of width 0.05, which gave a total of 441 states. In this problem we

found the setting the planning horizon to H = 50 was sufficient to reach the goal region.

The results of the puddle world experiment are shown in fig(5.6a) where the total expected reward is

plotted against the run time, in seconds. The dual decomposition algorithm converged after 49 iterations

and strong duality was found upon termination of the algorithm. A plot of the duality gap of the dual de-

composition algorithm is given in fig(5.6b). Steepest gradient ascent often got stuck in the local optima

that corresponded to avoiding the puddles, neglecting the objective of reaching the goal region. After 80

seconds of training the EM-algorithm generally found superior solutions than steepest gradient ascent,

but still inferior to the dual decomposition algorithm. This is due to the poor convergence properties

of the EM-algorithm in this problem and performance similar to the dual decomposition algorithm was

obtained given enough training time. A possible reason for the slow convergence of EM is that it is nec-

essary to add a positive constant to the reward function to apply the algorithm. As noted in appendix(B)

5.6. Discussion 139

this construction can have an adverse effect on the rate of convergence of Expectation Maximisation.

Summary

We have performed some initial comparisons with policy search methods on several benchmark prob-

lems. In the problems considered we found that the dual decomposition algorithm was consistently able

to find the global optimum, typically in comparatively few iterations. In all of the three problem domains

considered the initial iteration of the slave problem resulted in a non-stationary policy where there was

already a large amount of agreement between the policies of separate time-points. Due to the ‘majority

vote’, or resource allocation via pricing, behaviour of dual decomposition algorithms this large amount

of agreement between the policies of the different time-points results in rapid convergence.

5.6 Discussion
In this chapter we have considered the problem of extending dynamic programming techniques to finite

horizon MDPs with stationary policies. The complexity of this problem class is still an open problem,

but a principled application of dynamic programming is non-trivial. We approached the problem using

the technique of dual decomposition, which leads a two stage iterative solution method. The first stage

consists of solving an unconstrained non-stationary policy finite horizon MDP with a modified reward

function. The second stage consists of using the optimal policy obtained in the first stage to update this

modified reward function. The algorithm encourages consistency between the non-stationary policies by

appropriately modifying the reward function. This is a typical property of dual decomposition techniques

and is generally referred to as resource allocation via pricing. Experiments indicate that the algorithm

has excellent convergence properties, often converging to the optimum within a few iterations. This

compared favourably against the policy search algorithms that we used as a comparison, namely steep-

est gradient ascent and Expectation Maximisation. We also presented an example where the so-called

rolling-horizon policy performed very poorly, yet our dual decomposition algorithm was consistently

able to locate the global optimum.

At present we have only considered stationary policy finite horizon MDPs with discrete state-action

spaces. It would be desirable to extend the ideas of this chapter to more elaborate partially observable

environments, such as DEC-MDPs and POMDPs modelled with either a BC, MC or a FSC. In the case of

a DEC-MDP, as was observed in section(5.2), the objective can be written in the form of the constrained

optimisation problem (5.2 & 5.3). Comparing this constrained objective with the constrained objective

of a stationary policy finite horizon MDP (5.12 & 5.13) it can be seen that a similar dual decomposition

should be possible. In the case of a POMDP with a FSC policy, for example, it is not immediately obvious

that such an extension is possible as the objective (5.4) appears unconstrained. However, writing (5.4) in

the equivalent form

max
π,{π̃}

∞∑
t=1

∑
a,s,b,o

γt−1R(a, s)π̃(a|b, s)pt(s, b;π),

s.t. π(a|b, o) = π̃(a|b, s), ∀(a, b, o) ∈ A× B ×O, ∀s ∈ So,

5.6. Discussion 140

where So is the set of states that cause observation o, it is clear that similar methods can now be applied,

at least in theory. Such extensions would offer an interesting approach to optimising non-Markovian

policies and is a possible area of future research.

Chapter 6

Variational Reinforcement Learning

6.1 Introduction
Thus far we have considered optimal control almost exclusively from the viewpoint of planning, where a

model of the environment has been available to perform the necessary inference through either message-

passing or sampling-based techniques. In message-passing methods the model is used directly to evaluate

quantities of interest, such as the value function or the state-action occupancy distributions. By contrast

sampling-based methods typically use the model through the use of a simulator of the environment,

which is then used in place of the true environment to obtain samples1. In practice, however, it is gener-

ally the case that a model of the environment is not available and so a model needs to be constructed. One

possible solution to this issue is to construct a model of the environment from any available information,

such as samples of the transition dynamics or prior expert knowledge of the system. The disadvantage

of this approach is that any errors in the model may have an adverse effect on the performance of any

controller obtained from this model. An alternative approach is to construct a distribution over possible

models of the environment, which is updated as more information about the system is obtained, and to

optimise any controller over the entire distribution of models. By optimising the controller in this fashion

some of the uncertainty about the model of the environment will be incorporated into the optimisation

process.

This later approach is a form of Bayesian Reinforcement Learning (B-RL) and is the subject of the

current chapter. Given the close connection between the optimisation of MDPs and maximisation of the

marginal log-likelihood of latent time-series models it is natural to extend the Bayesian approaches to

these time-series models, see e.g. [112, 20, 16], to the B-RL framework. We take this approach in this

chapter and in particular we construct an EM-algorithm for this Bayesian framework, where to construct

this EM-algorithm we extend the methods of chapter(2) to the B-RL objective function. This objective

function incorporates uncertainty in our knowledge of the environment by simultaneously considering

the MDP objective for all models, where each of these MDP objectives is weighted by the probability

of the model under the distribution over models. As the optimisation of the controller occurs over the

entire distribution of transition models this EM-algorithm is intractable and approximate solutions are

1While it is possible to directly apply sampling-based methods to a given system (without the construction of a simulator) the
number of samples required by these methods is prohibitive in practice. For example, real-world robotic systems are expensive
and fragile and excessive use of the system through simulation-based optimisation is not feasible.

6.2. Bayesian Reinforcement Learning 142

required. To overcome this intractability we propose three approximations that are based on approximate

inference techniques, including a variational Bayes approximation [142, 21], Expectation Propagation

[115] and a stochastic EM-algorithm.

This chapter shall be organised as follows: In section(6.2) we shall introduce some notation and

also provide an overview of the standard formulation of Bayesian Reinforcement Learning, which differs

slightly from our own; Section(6.3) shall contain the construction of the EM-algorithm for our formalism

of Bayesian Reinforcement Learning; As this EM-algorithm will prove intractable we shall develop

several approximate algorithms in section(6.4); In section(6.5) we shall provide an empirical evaluation

our approximate algorithms and finally in section(6.6) we shall summarise the chapter.

6.2 Bayesian Reinforcement Learning

In the framework of Reinforcement Learning the transition dynamics are unknown and are instead treated

as variables, denoted by θ = {θs′s,a}(s′,s,a)∈S×S×A, where θs
′

s,a = p(s′|s,a). We denote the space

of possible transition models by Θ. As the transition dynamics are unknown the only knowledge the

agent has of the environment is gained through observed transitions, which are denoted collectively by

D = {(sn,an)→ sn+1, n = 1, . . . , N}. A typical approach it is to use a point-based estimate of the

transition model, such as the maximum likelihood (ML) estimator, which is then used in any of a number

of MDP planning algorithms. However, use of such an estimate fails to take into account any uncertainty

in the knowledge of the transition dynamics and can adversely affect the overall policy solution, result-

ing in myopic behaviour that is unaware of other potentially beneficial parts of the state-action space.

An alternative approach is to take a Bayesian perspective, where a distribution over transition models

is maintained and the controller is optimised over this distribution. This later approach is a form of

Bayesian Reinforcement Learning.

To construct a Bayesian framework for Reinforcement Learning it is necessary to construct a distri-

bution over transition models. As θ is a set of independent categorical distributions a natural conjugate

prior p(θ) is the product of independent Dirichlet distributions, i.e.

p(θ) ∼
∏
s,a

Dir(θ·s,a|α·s,a) (6.1)

where α are hyper-parameters. Given the set of observed transitions the posterior of θ is formed from

Bayes’ rule

p(θ|D) ∝ p(D|θ)p(θ), (6.2)

which, due to the conjugacy of the prior, gives the posterior

p(θ|D) =
∏
s,a

Dir(θ·s,a|c·s,a + α·s,a), (6.3)

6.2. Bayesian Reinforcement Learning 143

where c is the count of observed transitions:

cs
′

s,a =

N∑
n=1

I [sn = s,an = a, sn+1 = s′] . (6.4)

The Dirichlet distribution is used primarily because it makes the calculation of the posterior distribution

tractable. It is possible to consider other, more expressive, priors over the transition dynamics but we do

not do so in this work.

Given the prior over models there are several different ways to formulate a Bayesian Reinforcement

Learning framework. We shall consider a different formulation in section(6.3) but there is a standard

formulation that it is important to mention, not least because it will highlight the differences with the

objective that we consider. The standard framework for B-RL, see e.g. [50], simultaneously tackles

the problems of learning the environment (in an on-line manner) while also attempting to maximise its

total expected reward. This is known generally as the exploration/exploitation dilemma and it requires a

trade-off between exploratory behaviour, where previously unseen parts of the state space are explored,

and exploitative behaviour that uses the current knowledge of the environment to gain rewards. As

such in this standard formulation the agent is given a prior distribution at the initial time-point and this

distribution is updated in an on-line manner as the agent transitions through the state space. Following

standard notation in the remainder of this section we denote this distribution by b(θ) and refer to it as the

belief, or belief-state2. Now the main idea behind the standard formulation of B-RL is to combine the

state space of the original MDP with the space of possible beliefs to form a hyper-state space. Uncertainty

in the knowledge of the environment is then incorporated into the optimisation by performing planning

in this hyper-state space, i.e. over the space of states and possible transition dynamics. In particular a

belief-augmented MDP (BAMDP) [50] is a MDP with a state space given by S ×Θ and an action space

that is given by A. Assuming that the reward function of the MDP is known then the reward function of

the BAMDP is the same as that of the MDP. Due to Bayes’ rule the transition dynamics in the BAMDP

are Markov and take the form

p(s′, b′(θ)|s,a, b(θ)) = δb′(θ),bs′s,a(θ)θ
s′

s,a,

where bs
′

s,a(θ) denotes the update of the belief obtained from b(θ) when observing the transition

(s,a)→ s′. Due the Markovian structure of the BAMDP it is possible to obtain the following Bell-

man equation

V ∗(s, b(θ)) = max
a∈A

{
R(s,a) + γ

∑
s′∈S

p(s′|s,a, b(θ))V ∗(s′, bs
′

s,a(θ))

}
,

which can then be used to solve the B-RL problem. Equivalently, it is possible to consider this formula-

tion of the B-RL problem as a POMDP. In this case the transition dynamics are adjoined to the state of

the true underlying MDP and, as these transition dynamics are unknown, this constitutes a POMDP. The

2This is in keeping with the POMDP interpretation of the B-RL problem.

6.2. Bayesian Reinforcement Learning 144

construction of this POMDP follows in an analogous manner to that of the BAMDP, see e.g. [50, 129].

In this case the B-RL problem can be solved using POMDP solution techniques. Unfortunately, solving

a BAMDP is intractable because the number of belief states is infinite, in the case of an infinite planning

horizon, or grows exponentially w.r.t. the planning horizon in the case of a finite planning horizon.

As solving this standard formulation of B-RL is an intractable problem (for all but the smallest of

environments) research in this area has focused on approximate solution techniques. We now give a

brief overview of the literature in the area, which can be broadly categorised into four approaches: Di-

rect model-based Bayesian Reinforcement Learning that apply POMDP solution methods to the B-RL

POMDP [129]; Sampling approaches that sample MDPs from the posterior (at certain points during the

run-time of the system) and then use these MDPs to perform some type of planning, see e.g. [158, 10, 48];

Probably Approximately Correct (PAC) approaches3 that use large deviation bounds to construct modi-

fied reward functions that obtain a suitable trade-off between exploitative and exploratory behaviour, see

e.g. [96, 157, 154]; Belief tree search approaches that use tree search algorithms to perform planning

directly in the BAMDP, see e.g. [11, 46, 47, 74].

Perhaps the most direct approach to B-RL is through the POMDP formulation of the framework,

and in particular through the application of POMDP value iteration methods. Such an approach was

considered in [129] where point-based value iteration methods from the POMDP literature were used

to perform approximate dynamic programming. While this solution is elegant it is also computationally

intractable, bacause the complexity of maintaining the point-based estimate of the value function scales

exponentially in the number of Bellman updates. To overcome this exponential scaling in complexity

another level of approximation is introduced through the use of a projection mapping, which is used to

project the value function after each of the Bellman updates.

In the sampling-based approach of [158] a posterior distribution over the transition dynamics is

maintained throughout the course of the interaction with the system. At certain intervals, determined

by some predefined switching criterion, a MDP is sampled from this posterior distribution. This MDP

is then solved using a standard MDP planning algorithm, such as dynamic programming, and the agent

then acts greedily according to the policy obtained from this planning algorithm. The agent acts in this

manner until the switching criterion are again met and a new MDP is sampled from the posterior. This

process is repeated until the system terminates. This algorithm is based on Thompson sampling [165],

which, while intuitive, is a heuristic. Extensions of this algorithm have been considered in [10, 48], where

now multiple MDPs are sampled and these multiple samples are used in a specially constructed dynamic

programming algorithms. These works also also provide theoretical analysis for their algorithms, which

was lacking in [158].

Two of the first instances of large deviation bounds being used to obtain PAC performance guar-

antees in Reinforcement Learning literature are the so called Rmax and E3 algorithms, see [36] and

[88] respectively. Such approaches have since been extended to B-RL, see e.g. [96, 157, 154, 9]. From

the algorithmic perspective these algorithms work by applying standard planning algorithms to a MDP

3See e.g. [8] for a brief introduction into the theory of probably approximately correct algorithms.

6.3. Variational Reinforcement Learning 145

whose transition dynamics are set to the ML estimate, while the reward function is a modified version

of the original reward function. This modified reward function is constructed in such a manner that a

mixture of exploratory and exploitative behaviour is achieved. This modified reward function is typically

obtained by adjoining a non-negative term to the reward of each state-action pair, where this term is usu-

ally a decreasing function in the number of observations of the state-action pair. While these techniques

provide probably approximate correct performance guarantees, the bounds they provide are generally

so loose in practice that the parameter settings obtained from the bound perform poorly and heuristic

settings of these parameters are used instead.

Tree search algorithms, such as the upper confidence bounds on trees (UCT) [95] and sparse sam-

pling [87], have recently emerged as a powerful set of methods for optimising MDPs. Instead of planning

over the entire MDP, like standard planning algorithms such as dynamic programming, these methods

plan from the current state. They work by expanding a search tree, with its root based at the current

state, to the leaves of the tree, which may correspond to terminal states of the MDP, and propagating

the value of the leaves back up the tree. The optimal action for the current state then corresponds to

the optimal branch of the tree. As full expansion of the tree is generally too expensive to perform in

practice these methods use various techniques to prune the tree, such as branch and bound techniques.

These tree search methods have also been applied to the B-RL framework and they have the attractive

property that they can be directly applied to the BAMDP, see e.g. [11, 46, 47], thus directly tackling the

exploration/exploitation dilemma.

6.3 Variational Reinforcement Learning
In the BAMDP approach to B-RL the policy is dependent on the current belief, where the belief is

considered as a variable that is updated on-line according to Bayes’ rule. While in theory this approach

may be optimal it is also highly intractable, with a complexity that scales exponentially in the planning

horizon. Additionally, the BAMDP approach tackles a different problem than the one that is of interest

to us and that was introduced in section(6.1). In particular the BAMDP approach considers the problem

“What is the optimal control given the current, and possible future, knowledge of the environment?”,

which is another way of phrasing the exploration/exploitation dilemma. In contrast we are interested

in the alternative problem “Given a distribution over models, which is constructed using previously

observed transitions, how do you optimise a controller over this distribution?”. As such in our framework

we hold the belief fixed in the objective function and consider policies that are conditioned only upon the

state. To incorporate the uncertainty of the transition dynamics into the agent’s behaviour we optimise

the total expected reward given the environmental data

U(w|D) = Ep(θ|D)

[
U(w|θ)

]
, (6.5)

where U(w|θ) is the total expected reward given the transition dynamics, θ, and policy parameters, w.

While less general than the standard Bayesian Reinforcement Learning paradigm, this problem is still

intractable. For instance, it is not possible to apply dynamic programming because it is not possible to

6.3. Variational Reinforcement Learning 146

simultaneously optimise the policy over all the possible transition dynamics of the MDP. In this chapter

we shall tackle (our version) of Bayesian Reinforcement Learning through parametric policy search

algorithms, where we shall construct various approximations to deal with the intractabilities that result

in taking a Bayesian approach. It is possible to apply our framework to the on-line setting described

in section(6.2), where, for instance, this could be done by choosing to optimise the policy at certain

intervals during the run-time of the system.

Considering the close relation between the optimisation of U(w|θ), for any given θ ∈ Θ, and the

maximisation of the marginal log-likelihood of latent variable time-series models it is natural to consider

extending Bayesian approaches to these time-series models, see e.g. [112, 20, 16], to the objective

function (6.5). A typical approach in these methods is to construct a lower-bound on the marginal log-

likelihood, which is then optimised through EM. As the inference in the E-step is generally intractable,

approximations, such as variational Bayes, are then used to perform approximate inference. In this

section we do likewise and extend the derivation of chapter(2) to the Bayesian objective (6.5), where we

shall detail some approximate inference algorithms in section(6.4). It is also possible to use the gradient-

based techniques (described in depth in chapter(2)) but we do not take that approach here4. We shall,

however, briefly detail the calculation of the gradient of (6.5) at the end of this section and discuss this

approach further when we discuss the stochastic EM-algorithm in section(6.4.3).

The derivation of the EM-algorithm is similar to the MDP derivation given in chapter(2). Consider

the following unnormalised distribution defined over state-action paths and times t ∈ NH ,

p̃(z1:t, t|θ,w) = R(zt)p(z1:t|θ,w) (6.6)

where p(z1:t|θ,w) is the trajectory distribution, up to time t, given the transition dynamics, θ. We now

define a joint distribution over state-action trajectories, time-points and transition dynamics as follows

p̂(z1:t, t,θ|w,D) =
p̃(z1:t, t|θ,w)p(θ|D)

U(w|D)
(6.7)

As in chapter(2) this distribution is properly normalised, which can be verified through use of (1.1) and

(6.5). To obtain a lower-bound on the log-objective we take the Kullback-Leibler divergence between a

variational distribution q(z1:t, t,θ) and (6.7), which gives

logU(w|D) ≥ Hentropy(q(z1:t, t,θ)) + Eq(θ)

[
log p(θ|D)

]
+ Eq(z1:t,t,θ)

[
log p̃(z1:t, t|θ,w)

]
. (6.8)

As in chapter(2) an EM-algorithm for optimising U(w|D) is obtained from this lower-bound by

coordinate-wise maximisation w.r.t. the variational distribution and the policy. This is summarised as

follows:

E-step For fixed wk find the best q(z1:t, t,θ) that maximises the r.h.s. of (6.8). For no constraint on

q(z1:t, t,θ), this gives q(z1:t, t,θ) = p̂(z1:t, t,θ|wk,D).
4This is for historical reasons. The theoretical content of this chapter precedes the work of preceding chapters. Given the strong

performance of the approximate Newton method, for example, such alternatives could be preferable in practice.

6.4. Approximate Variational Reinforcement Learning 147

M-step For fixed q(z1:t, t,θ) find the best w that maximises the r.h.s. of (6.8). This is equivalent to

maximising the following ‘energy’ term w.r.t. w,

wk+1 = argmax
w∈W

Eq(z1:t,t,θ)

[
log p̃(z1:t, t|θ,w)

]
.

As the policy is independent of the transition dynamics the update of the policy takes the simple

form

wk+1 = argmax
w∈W

H∑
t=1

t∑
τ=1

Eq(z,τ,t)
[

log p(a|s;w)

]
. (6.9)

Calculating the policy update is now a matter of calculating the state-action marginals of the q-

distribution from the previous E-step. If no functional restriction is placed on the q-distribution then

it will take the form of (6.7), where w are the policy parameters of the previous M-step. However,

examining the form of (6.7), the exact state-action marginals of this distribution are computationally

intractable. This can be understood by first carrying out the integral over θ, which has the effect of

coupling together all time slices of the path distribution p̂(z1:t, t;w).

It is clear that the gradient-based methods of chapter(2) can also be extended to the Bayesian Rein-

forcement Learning framework. For example, parameterising the policy w.r.t. the parameter w ∈ W s.t.

the objective is differentiable w.r.t. w, then the gradient of (6.5) can be written in the form

∇wU(w|D) = Ep(θ|D)

[
∇wU(w|θ)

]
. (6.10)

Hence the gradient ∇wU(w|D) is equal to the expectation of model-based derivatives, ∇wU(w|θ),

θ ∈ Θ, where this average is taken over the posterior over transition models. As the policy does not

depend on the transition dynamics the gradient ∇wU(w|θ), θ ∈ Θ, can be calculated through direct

application of the methods in chapter(2). As with the EM-algorithm the expectation over Θ is intractable

and cannot be performed analytically.

6.4 Approximate Variational Reinforcement Learning

In this section we shall discuss three approaches for dealing with the intractability of calculating the

state-action marginals of the variational distribution, which are required in the variational Reinforcement

Learning algorithm. In particular we shall consider a variational Bayes approximation, an approxima-

tion based on Expectation Propagation and a simple stochastic EM-algorithm. In the variational Bayes

approach a restricted functional form of the variational distribution is considered in the E-step. This

restricted functional form is selected in such a manner that inference in the approximate variational

distribution is tractable. In Expectation Propagation the marginals of the variational distribution are ap-

proximated directly using Expectation Propagation in an approximate message-passing scheme. In the

stochastic EM-algorithm the conditional independence structure of the variational distribution is used to

construct a simple sampling scheme.

6.4. Approximate Variational Reinforcement Learning 148

Input: policy parameters w, reward r, prior α and transition counts c.
repeat

For fixed policy parameters w
repeat

Calculate the q-marginals (6.15) and (6.17).
until Convergence of the marginals.
Update the policy parameters according to (6.9).

until Convergence of the policy.

Algorithm 6.1: VB EM-Algorithm

6.4.1 Variational Bayes

In this section we define our variational Bayes approximation to the variational distribution, while de-

tailing the corresponding variational Bayes EM-algorithm. Variational Bayes (VB), see e.g. [142, 21,

15, 12], is a general technique for performing approximate inference that stems from the statistical me-

chanics literature and which is commonly used in the EM-algorithm when the E-step is intractable. The

technique is very general, often simple to calculate and usually provides an intuitive functional form

for the approximate posterior, or variational distribution. The technique stems from the observation that

the Kullback-Leibler divergence, KL(q||p), is non-negative regardless of the structure of q. Using this

observation it is possible to retain the lower-bound in the EM-algorithm, whilst restricting the functional

form of the variational distribution in such a manner that the inference in the E-step becomes tractable.

The log-objective is no longer guaranteed to increase during each iteration, but the lower-bound is still

guaranteed to increase.

In the problem that we are considering the computational intractability occurs because of the cou-

pling of the transition dynamics and the reward weighted state-action trajectories. Therefore a suitable

restriction on the functional form of the variational distribution is the factorised approximation:

q(z1:t, t,θ) = q(z1:t, t)q(θ). (6.11)

This approximation maintains the lower-bound in (6.8), which now takes the form

logU(w|D) ≥ Hentropy(q(z1:t, t)) +Hentropy(q(θ)) (6.12)

+ Eq(θ)

[
log p(θ|D)

]
+ Eq(θ)q(z1:t,t)

[
log p̃(z1:t, t|θ,w)

]
.

Under the variational Bayes approximation the M-step is the same as in the original EM-algorithm, while

the E-step consists of iteratively updating the approximate variational distribution until convergence. The

E-step is obtained by maximising (6.12) w.r.t. the distributions q(z1:t, t) and q(θ). Taking the functional

derivative of (6.12) with respect to q(z1:t, t) and q(θ), whilst holding the other fixed, gives the following

update equations:

q(z1:t, t) ∝ eEq(θ)
[

log p̃(z1:t,t|θ,w)
]
, (6.13)

q(θ) ∝ p(θ|D)eEq(z1:t,t)
[

log p̃(z1:t,t|θ,w)
]
. (6.14)

6.4. Approximate Variational Reinforcement Learning 149

p1 z1 R

p1 z1

P
z2 R

p1 z1

P
z2

P
z3 R

p(θ|D) θ

Figure 6.1: A factor graph representation of q(z1:t, t,θ) for state-action transition factors P and reward
factors R, for a H = 3 horizon. The square nodes represent the various factors (functions) of the
distribution and the circle nodes represent the variables. The initial time has no transition. The tth chain
is the tth row of this diagram for fixed θ.

As (6.13) and (6.14) are coupled these equations need to be iterated until convergence.

Expansion of the term log p̃(z1:t, t|θ,w) in (6.13) shows that q(z1:t, t) can be written in the form

q(z1:t, t) ∝ R(zt)π(at|st;w)

{ t−1∏
τ=1

eEq(θ)
[

log θsτ+1,sτ ,aτ

]
π(aτ |sτ ;w)

}
p(s1). (6.15)

This has the same form as the reward weighted trajectory distribution for a MDP with the transition

dynamics, θ, replaced with unnormalised transitions

θ̃(s′, s,a) ≡ eEq(θ)
[

log θs′,s,a

]
. (6.16)

The averages of log θ in the exponent can be computed using digamma functions. Given q(θ), the

marginals q(z, τ, t) can then be calculated using the message-passing techniques detailed in chapter(2).

A similar calculation for the parameters of the transition dynamics gives the update equation

q(θ) ∝ p(θ|α,D)e
∑H
t=1

∑t−1
τ=1 Eq(z1:t,t)

[
log θsτ+1,sτ ,aτ

]
The summation of the states and actions in the exponent means that we may write q(θ) in the form

q(θ) =
∏
s,a

Dir
(
θ·s,a|α·s,a + c·s,a + r̃·s,a

)
, (6.17)

where

r̃s
′

s,a =

H∑
t=1

t−1∑
τ=1

q(sτ+1 = s′, sτ = s,aτ = a, t). (6.18)

Equation (6.17) has an intuitive interpretation: for each triple (s′, s,a) we have the prior αs
′

s,a term

and the observed counts cs
′

s,a which deal with the posterior of the transitions. The term r̃s
′

s,a encodes

an approximate expected reward obtained from starting in state s, taking action a, entering state s′ and

then following π afterwards. The posterior q(θ) is therefore a standard Dirichlet posterior on transitions

but biased towards transitions that are likely to lead to higher expected reward. Under the approxima-

tion (6.11) the E-step consists of calculating the distributions (6.15) and (6.17). As these distributions

6.4. Approximate Variational Reinforcement Learning 150

are coupled we need to iterate them until convergence. A summary of VB EM-algorithm is given in

algorithm(6.1).

6.4.2 Expectation Propagation

In order to implement the Variational Reinforcement Learning approach of section(6.3) we require the

state-action marginals of the intractable distribution p̂(z1:t, t,θ|w,D). As an alternative to the varia-

tional Bayes factorised approach we here consider an approximate message passing (AMP) approach

that approximates the required marginals directly.

The graphical structure of p̂(z1:t, t,θ|w,D) is loopy but sparse, see fig(6.1) for a factor repre-

sentation, so that a sum-product algorithm [100] may provide reasonable approximate marginals. The

messages for the factor graph version of the sum-product algorithm take the following form.

µx→f (x) =
∏

h∈n(x)\{f}

µh→x(x) (6.19)

µf→x =
∑
∼{x}

f(X)
∏

y∈n(f)\{x}

µy→f (y) (6.20)

where
∑
∼{x} means the sum over all variables except x, n(·) is the set of neighbouring nodes and X

are the variables of the factor f . At convergence the singleton marginals are approximated by

p(x) =
∏
f∈Fx

µf→x(x) (6.21)

where Fx means the set of functions in the factor graph that depend on x. Given that when θ is held fixed

the components of p̂(z1:t, t,θ|w,D) are chain structured there is a natural message-passing scheme that

alternates between the following two step: Firstly, holding the messages {µt,τθ→T }t∈NH ,τ∈Nt fixed, per-

form message-passing along the components of p̂(z1:t, t|θ,w) using the messages {µt,τθ→T }t∈NH ,τ∈Nt
in place of the transition dynamics; Secondly, using the messages calculated in the first stage of the

message-passing scheme, {µt,τT→θ}t∈NH ,τ∈Nt , update the messages {µt,τθ→T }t∈NH ,τ∈Nt .

Under the current formulation this message-passing procedure is intractable, which is because of

the intractabilities of the messages {µt,τθ→T }t∈NH ,τ∈Nt . To see this observe that, using (6.19), we have

that µθ→T (θ) takes the form,

µθ→T (θ) = p(θ|D)
∏
T ′ 6=T

µT ′→θ(θ), (6.22)

where we drop time indices for notational simplicity and µT ′→θ(θ) is given by

µT ′→θ(θ) =
∑

s′,a,s
µz→T ′(s, a)µs′→T ′(s′)θs′

s,a. (6.23)

In order to maintain the tractability of this message-passing scheme it is necessary that the messages

{µt,τθ→T (θ)}t∈NH ,τ∈Nt be a product of independent Dirichlet’s. However, it can be seen from (6.22) and

(6.23) that µθ→T (θ) is a mixture of Dirichlet’s, where the number of mixtures is exponential in the

6.4. Approximate Variational Reinforcement Learning 151

repeat
for t = 1 to H do

Perform message-passing along the tth component of the reward weighted trajectory distribution,
q(z1:t, t), holding all the messages µθ→T (θ) fixed.

end for
Perform Expectation-Propagation to obtain q(θ), and then update the messages
{µt,τT→θ(θ)}t∈NH ,τ∈Nt .

until Convergence of the state-action marginals.

Algorithm 6.2: Approximate Message-Passing Schedule

planning horizon H . This makes messages of the form

µT→s′(s′) =

∫
dθ
∑
s,a

µz→T (s, a)µθ→T (θ)θs′
a,s.

computationally intractable. Following the general approach outlined in [115] to make a tractable ap-

proximate implantation we therefore project the marginal q̃(θ) to a product of independent Dirich-

let’s by moment matching. Given the projection q̃(θ) it is then necessary to obtain the messages

{µt,τθ→T }t∈NH ,τ∈Nt . One possibility is to use (6.20) and (6.21) to obtain the approximate message

µ̃T→θ(θ) =
q̃(θ)

p(θ|D)
∏
T ′ 6=T µ̃T ′→θ(θ)

. (6.24)

In practice (6.24) can lead to improper distributions and so in the experiments we set these messages to

the mean of q̃(θ). The message passing schedule used in the experiments is outlined in algorithm(6.2).

6.4.3 Stochastic Expectation Maximisation

Thus far we have considered deterministic approximations to the variational distribution and in this

section we introduce a simple stochastic approximation. As the policy update takes the simple form

(6.9) it can written in the following equivalent form

wk+1 = argmax
w∈W

H∑
t=1

t∑
τ=1

Ep̂(z,τ,t|wk,D)

[
log p(a|s;w)

]
,

= argmax
w∈W

∫
dθ

H∑
t=1

t∑
τ=1

Ep̂(z,τ,t,θ|wk,D)

[
log p(a|s;w)

]
.

For each θ ∈ Θ the expectation w.r.t. p̂(z, τ, t|θ,wk) can be calculated using standard methods from

chapter(2). Given this simple structure in the policy update a naive stochastic approximation is given by

wk+1 = argmax
w∈W

I∑
i=1

H∑
t=1

t∑
τ=1

Ep̂(z,τ,t|θi,wk)

[
log p(a|s;w)

]
.

where {θi}Ii=1 are a set of sample transition parameters that are sampled from p(θ|D). This sampling

scheme is simple but it will, in general, be expensive as it makes inefficient use of the samples. Given

the close similarity between the gradient of the Bayesian objective (6.10) and the gradient of the MDP

objective it is possible to consider more sophisticated sampling-based methods, such as extensions of

6.5. Experiments 152

the Bayesian gradient methods [65] or actor-critic methods [98, 99], but we do not do so in this work.

Additionally, it will generally be the case that areas of high probability under p(θ|D) will correspond

to areas of low probability under p̂(θ|wk,D). As a result this simple Monte-Carlo method will be

inefficient, with many of the samples providing a negligible contribution to the policy update. Therefore

it will be preferable to consider more sophisticated sampling methods that are designed to obtain samples

from areas of high probability under p̂(θ|wk,D), such as Gibbs sampling or MCMC methods.

6.5 Experiments
In this section we perform some empirical evaluations of the theory presented in this chapter. In the

section(6.5.1) we justify the use of the objective function (6.5) and illustrate that it indeed incorpo-

rates some of the uncertainty of our knowledge of the environment into the optimisation process. In

section(6.5.2) we compare our three approximation algorithms to the EM-algorithm that uses the maxi-

mum likelihood estimate of the transition dynamics.

6.5.1 Incorporation of Uncertainty

The first experiment is designed to demonstrate that the objective function (6.5) indeed incorporates

uncertainty in the knowledge of the environment into the policy optimisation process. The experiment

is performed on a problem small enough that for short horizons the objective function (6.5) and the EM

update (6.9) can be calculated exactly. This allows for characteristics of the objective function to be

gleaned without the complicating issue of approximations.

The experiment was performed on a toy two-state problem, with the transition and reward matrices

given in fig(6.2(a)). The horizon was set to H = 5 and the initial state is 1. The aim of the experiment

is to compare the average total expected utility of the policies obtained from the Bayesian and point-

based objective functions. The average is taken over the true transition model, θtrue, and we compare

these averages for increasing numbers of observed transitions, N . We set the distribution over the true

transition model to be uniform. Writing the quantities of interest down algebraically we have for the

Bayesian objective function

Ep(θtrue)[Ep(D|θtrue,N)[U(π̂D|θtrue)]] =

∫
dθtruedDU(π̂D|θtrue))p(D|θtrue, N)p(θtrue) (6.25)

where π̂D is the optimal policy of the Bayesian objective function. For the ML objective function we

have

Ep(θtrue)[Ep(π̂ML|θtrue,N)[U(π̂ML|θtrue)]] =

∫
dθtruedπ̂

MLU(π̂ML|θtrue)p(π̂
ML|θtrue, N)p(θtrue) (6.26)

where similarly π̂ML is the optimal policy of the ML objective function.

As we can calculate the objective function U(π|D) exactly, we can also calculate (6.25) for reason-

able values of N . It remains to calculate (6.26), where the difficult term is the probability distribution

over the optimal policy, which we now detail.

The settings of the reward matrix and the horizon are such that, given (θ1, θ2) are known, the optimal

6.5. Experiments 153

R =

[
4 10
1 1

]
Ti =

[
θi 1− θi

1− θi θi

]

(a) Transition Dynamics and Reward Function

0 5 10 15 20
30.5

31

31.5

32

32.5

33

Sample Size, N

ML Objective Function

Bayesian Objective Function

(b) Incorporation of Uncertainty Experiment

Figure 6.2: (a) The transition and reward matrices for the two-state toy problem. Ti represents the
transition matrix from state si, where the columns correspond to actions and the rows correspond to
the next state. The reward matrix R is defined so that the actions run along the rows and the states run
along the columns. (b) The average total expected reward of the policies obtained from the Bayesian
objective function, U(π|D), and the maximum likelihood objective function, U(π|θML). The sample
size is plotted against the average total expected reward.

action in state s2 is a1 for all values of θ2. This means that when the transition dynamics are known the

optimal policy can be given by a single parameter, π̂s1,a1 . In the experiment we set θ1 = θ2 = θ, so

that π̂s1,a1 = 1 when θ < θ̂, and π̂s1,a1 = 0 otherwise, where θ̂ = 0.7021. The fact that we know

the point, θ̂, at which the optimal policy of the MDP changes means that we can form a distribution of

π̂ML
s1,a1 . Given the sample size and the true value of the transition parameter we have the distribution

p(π̂ML
s1,a1 = 1|N, θtrue) =

∑
{n≤N |n/N<θ̂}

BN,θtrue(n)

where BN,θtrue is the density function of the Binomial distribution with parameters (N, θtrue). Having

obtained the distribution over the optimal policy it is now possible to calculate (6.26).

We calculated (6.25) and (6.26) for increasing values of the N , the results of which are shown in

fig(6.2(b)). It can be observed that the Bayesian objective function consistently outperforms the point-

based objective function. We expect a more dramatic difference in larger problems for which the amount

of uncertainty in the transition parameters is greater.

6.5.2 On-Line Learning

In this section we apply our algorithms to the on-line learning framework, where the agent begins with no

knowledge of the environment and must optimise its behaviour in an on-line manner as more information

about the environment is gained. In the experiment the agent starts with a random policy and performs

a certain number of policy updates at certain intervals during the run-time of the system. We ran two

experiments where in the first a single policy update was performed after each step in the environment,

while in the second a single policy update was performed after every 25 steps in the environment. Due

to the prohibitive computational cost of the approximate message-passing algorithm this algorithm was

considered only in the later of these two experiments. The policy of the initial time-point was initialised

6.5. Experiments 154

randomly from a uniform distribution. We considered the chain problem [42] in the experiment, the

details of which can be found in the preceding chapter.

In the experiments we considered a total of 1000 time-points and the observation counts were

updated after each observed transition. The experiments were repeated 500 times and the results shown

display the mean and standard error of the algorithms. Where appropriate the hyper-parameters of the

prior were set to α = 0.1. We considered two types of prior, uniform and structural. In the uniform

prior all the hyper-parameters of the Dirichlet were set to the same value. In the structural prior the

structure of the transition matrix was assumed to be known, i.e. it was known which elements were zero

or non-zero, so that the hyper-parameters of the impossible transitions were set to zero. In the case of

point-based estimates of the transition matrix this structural information was used when no transitions

had been observed for a given state-action pair. In this case the next state probability was set to a uniform

distribution over the possible states in the next time-point.

We performed the experiments with the following algorithms:

ML-DP After every n steps in the environment the policy is obtained by performing a single iteration

of Expectation Maximisation with the ML estimate of the transition matrix.

VB-EM After every n steps in the environment the policy is updated using the variational Bayes ap-

proach described in section(6.4.1). During each policy update 15 VB iterations were performed.

Heuristic VB-EM Considering the form of the VB variational distribution over θ, given by (6.17 &

6.18), we considered the following heuristic: At any given VB iteration take the mean of the cur-

rent approximation to q(θ) and use this point estimate as a model to calculate the state-action

marginals in (6.18), using the methods of chapter(2); Using these marginals update the approxi-

mation to q(θ) using (6.17);

AMP-EM After every n steps in the environment the policy is updated using the approximate message-

passing approach described in section(6.4.2). During each policy update we performed 10 repeti-

tions of the message-passing schedule algorithm(6.2).

S-EM After every n steps in the environment the policy is updated using the stochastic EM-algorithm

described in section(6.4.3). We took 100 samples in each training iteration.

The results of the two experiments are shown in fig(6.3) and fig(6.4), where we show the mean

and standard error of the results. In the first experiment, where a policy update was performed after

every step, the stochastic EM-algorithm obtained the best performance of the three Bayesian algorithms

presented in this chapter. In the second experiment, where a policy update was performed after every

25 steps in the environment, the approximate message-passing algorithm obtained the best performance.

In the first experiment all of the algorithms obtain better performance under the structural prior than

the uniform prior. In the second experiment this difference is less apparent. In the maximum likeli-

hood EM-algorithm this is because the point estimate of the transition matrix contains more information

about the structure of the problem in state-action pairs that have not been observed. In the Bayesian

6.5. Experiments 155

0 200 400 600 800 1000
1

1.5

2

2.5

3

3.5

4

4.5

Number of Transitions

M
o

v
in

g
 A

v
e

ra
g

e
 R

e
w

a
rd

(a) Uniform Prior

0 200 400 600 800 1000
1

1.5

2

2.5

3

3.5

4

4.5

Number of Transitions

M
o

v
in

g
 A

v
e

ra
g

e
 R

e
w

a
rd

(b) Structural Prior

Figure 6.3: The results of the variational Reinforcement Learning algorithms applied to the chain prob-
lem when a policy update is performed after every step in the environment. The plot shows the mean and
standard error of the running average per time point, where the running average uses the last 100 steps
in the environment. The plot shows the results for ML EM-algorithm (black), variational Bayes EM-
algorithm (green), Heuristic variational Bayes EM-algorithm (red), the approximate message-passing
EM-algorithm (purple) and the stochastic EM-algorithm (blue). The black dashed line shows that results
of using the optimal policy for the chain problem throughout the course of the interaction with the envi-
ronment. This line was obtained by applying this policy to the random streams used in the experiment.

methods this is explained by the fact that a larger proportion of the mass in the posterior is placed on

models where transitioning towards the end of the chain is optimal. As a result more ‘exploratory’ be-

haviour is obtained and the algorithms are able to find the global optimum more consistently. With the

exception of variational Bayes EM-algorithm all of the Bayesian methods outperformed the point-based

maximum likelihood EM-algorithm. This highlights the advantages of our Bayesian perspective to the

Reinforcement Learning problem. We now consider the results in greater detail.

The VB EM-algorithm performed poorly, obtaining rewards that were substantially lower than using

Expectation Maximisation with the maximum likelihood estimate of the transition matrix. There are two

possible reasons for this poor performance. The first is that the factorisation assumption (6.11) is too

strong and much of the useful information in the variational distribution is lost by this approximation.

Another issue is the form of the trans-dimensional distribution q(z1:t, t) that is obtained from the VB

approximation. It was observed that (6.15) has the form of a reward weighted trajectory distribution of

an MDP, with the exception that the transition dynamics are replaced by terms of the form

θ̃(s′, s,a) ≡ eEq(θ)
[

log θs′,s,a

]
.

As these transition dynamics are geometric means they are subnormalised, i.e. their sum is less than or

equal to 1, see e.g. [112]. While this sub-normality doesn’t effect the forward-backward algorithm for

HMMs it does effect the inference for the trans-dimensional distribution (6.15). In the case of a HMM

it is possible to normalise the forward messages and, as the HMM is chain structured, this normalisation

factor cancels out when combining the messages to obtain the marginals of the posterior5. In the case of

5Recall that in the forward-backward algorithm for a HMM the forward message, say α(h), and backward message, say β(h),
are combined to give the marginal p(h) ∝ α(h)β(h). This means that the using the normalised forward message, α̃(h) =

6.5. Experiments 156

0 200 400 600 800 1000
1

1.5

2

2.5

3

3.5

4

4.5

Number of Transitions

M
o

v
in

g
 A

v
e

ra
g

e
 R

e
w

a
rd

(a) Uniform Prior

0 200 400 600 800 1000
1

1.5

2

2.5

3

3.5

4

4.5

Number of Transitions

M
o

v
in

g
 A

v
e

ra
g

e
 R

e
w

a
rd

(b) Structural Prior

Figure 6.4: The results of the variational Reinforcement Learning algorithms applied to the chain prob-
lem when a policy update is performed after every 25 steps in the environment. The plot shows the
mean and standard error of the running average per time point, where the running average uses the
last 100 steps in the environment. The plot shows the results for ML EM-algorithm (black), varia-
tional Bayes EM-algorithm (green), Heuristic variational Bayes EM-algorithm (red), the approximate
message-passing EM-algorithm (purple) and the stochastic EM-algorithm (blue). The black dashed line
shows that results of using the optimal policy for the chain problem throughout the course of the inter-
action with the environment. This line was obtained by applying this policy to the random streams used
in the experiment.

the trans-dimensional distribution (6.15) each component of the mixture is chain structured, but they are

all of different lengths. The differing lengths of the chains means that the weights of the mixture compo-

nents are effected to varying degrees by the issue of subnormalisation, and this issue cannot be removed

in the same manner as in the HMM. To obtain a better gauge on the cause for this poor performance

we also considered a heuristic version of the VB EM-algorithm, where the E-step consisted of iterating

equations (6.17 & 6.18) and using the mean of q(θ) as a point-estimate of the transition dynamics when

evaluating (6.18). In this heuristic the form of the posterior over Θ is the same as that in (6.17) but there

are no longer any issues with subnormalisation. It can be seen in fig(6.3) that this heuristic can perform

substantially better than the actual VB EM-algorithm. Additionally, in the first experiment this heuris-

tic obtains superior results to the ML EM-algorithm with both the uniform and structural prior. These

results suggest that the main issue with the VB EM-algorithm lies in the issues of subnormalisation and

not so much in the severity of the factorisation assumption (6.11).

The approximate message-passing algorithm performed well in the experiments and obtained con-

sistent performance over the two forms of prior considered. In the experiments it was observed that the

approximate distribution over θ weighted each transition in terms of the amount of reward that could

be ‘expected’ from the transition, where this expectation was approximated through message-passing.

Given the form of the distribution q(θ) under the VB approximation this behaviour is unsurprising and

the AMP EM-algorithm can be seen to automate its exploration by adjusting the ‘transition matrix’ (i.e.

the approximate transition matrices in the message-passing) to make transitions to possibly fruitful parts

of the state-action space more likely under the approximation. When only a few transitions have been ob-

Z−1α(h), where Z−1 is the normalisation constant, in place of the original forward message leaves the update of the marginal
unaffected.

6.6. Discussion 157

served for a given state-action pair the corresponding part of the ‘transition matrix’ is dominated by this

exploratory weighting. As more transitions are observed the data starts to dominate the corresponding

part of the approximate transition dynamics. As an example of this type of behaviour consider the chain

problem with a uniform prior, where no transitions have been observed for any state other than the initial

state. In this situation the approximate transition dynamics for the unobserved states would be heavily

weighted to transition to the end of the chain where the reward is highest. These skewed transition dy-

namics then encourage the agent to travel to these ‘fruitful’ states and exploratory behaviour is obtained.

While the AMP EM-algorithm performed well in the experiments it was the most computationally ex-

pensive of all the algorithms, requiring approximate inference to be performed in order to perform a

policy update. For this reason we considered this algorithm only in the second experiment, where the

algorithm was considered too computationally expensive to be considered in the first experiment. The

average computational cost of performing a run of each experiment for all of the various algorithms is

given in table(6.1).

The stochastic EM-algorithm outperforms the ML EM-algorithm under both priors in the first ex-

periment, while it outperforms the ML EM-algorithm in the last 500 iterations of the second experiment

under the structural prior. While all algorithms obtained superior performance under the structural prior

in the first experiment the comparative performance of stochastic EM-algorithm in relation to the other

algorithms is markedly improved under this prior. This is due to the smaller amount of volume under

the posterior using the structural prior, which means that this stochastic approximation to the posterior is

superior when using the same amount of samples.

6.6 Discussion
Given the close connection between the maximisation of the marginal log-likelihood of latent vari-

able time-series models and the optimisation of Markov Decision Processes it is natural to extend the

Bayesian techniques for these time-series models to the Reinforcement Learning framework. This is the

approach we have taken in our formulation of Bayesian Reinforcement Learning, giving some ground-

work theory to this approach. The advantage of this approach is that it allows methods in approximate

inference to be exploited to help overcome difficulties associated with Bayesian Reinforcement Learn-

ing. An exact implementation of such a Bayesian formulation of Reinforcement Learning is formally

intractable and we considered three approximate solutions, one based on variational Bayes, another on

Expectation Propagation and the third based on a naive sampling method. We have shown the bene-

fits of using the Bayesian objective (6.5) in place of a point-based objective by considering a toy MDP

problem. Initial empirical results suggest that the latter two approaches are generally to be preferred,

although more extensive empirical evaluations are necessary in terms of extending these algorithms to

large-scale problems. There are various avenues of possible future research.

The variational Bayes approximation offers a mathematically elegant solution. However, the mix-

ture structure of the reward weighted trajectory distribution leads to issues of subnormalisation affecting

the approximation. A possible solution to this issue is to consider the risk-sensitive MDP objective func-

tion given in (1.5), or some similar objective that has a product (as opposed to additive) structure over

6.6. Discussion 158

Maximum Likelihood Variational Bayes Approximate Message-Passing Stochastic
Run-time (seconds) 0.25 0.90 175 9.25

Table 6.1: Run-time of the second on-line learning experiment for the Maximum Likelihood EM-
algorithm, Variational Bayes EM-algorithm, Approximate Message-Passing EM-algorithm and Stochas-
tic EM-algorithm.

the rewards of the various time-points. As noted in chapter(2) constructing an EM-algorithm for this

objective would result in a variational distribution that has the structure of a single chain, similar to the

Hidden Markov Model. The advantage of such an approach would be that subnormalisation would no

longer be an issue in the variational Bayes approximation. Considering the performance of the heuristic

variational Bayes approximation there is good reason to believe that this approximation will perform

well once the issue of subnormalisation has been removed. This advantage comes at the cost of tun-

ing the risk-sensitive parameter, which can be non-trivial in practice, but the possible advantage of this

approach make it an attractive alternative.

There are various possible avenues of future research in terms of sampling methods. The stochas-

tic EM-algorithm from section(6.4.3) is inefficient in terms of the number of samples required, where

sampled MDP parameters generally have high probability under p(θ|D) but low probability under

p̂(θ|w,D). One possible solution is to construct a Gibbs sampler for sampling from p̂(z1:t, t,θ|w,D),

where the sampler alternates between sampling over reward weighted trajectories and transition matrices,

i.e.

θ | z1:t, t,D ∼ p̂(θ|z1:t, t,w,D), z1:t, t | θ ∼ p̂(z1:t, t|θ,w).

Obtaining samples from p̂(θ|z1:t, t,w,D) ∝ p̂(z1:t, t|θ,w)p(θ|D) is simple when using a conjugate

prior, which in this case amounts to sampling from a Dirichlet distribution. One possible routine to obtain

a sample from p̂(z1:t, t|θ,w,D) would be to first sample the component of the mixture distribution,

t ∼ p̂(t|θ,w,D), and then to sample a trajectory from the distribution corresponding to that mixture

component, z1:t ∼ p̂(z1:t|t,θ,w,D). It is possible to use a forward-recursion backward-sample routine,

see e.g. [148], to sample from p̂(z1:t|t,θ,w,D). Another possibility is to construct a Monte-Carlo

Markov Chain sampler for obtaining samples from p̂(θ|w,D).

To date we have only considered discrete state-action spaces with a table-look parameterisation of

the transition dynamics. It is of interest to extend the work in this chapter to a wider range of problems,

including alternative, perhaps more structural, parameterisations of the transition dynamics in discrete

state-action problems, as well as problems with a continuous state-action space. One of the strengths

of our Bayesian approach is that such extensions pose little problems theoretically. Some work has

been previously done in this area, see e.g. [132, 43], and strong results have been obtained. In [132, 43]

Gaussian processes are employed to model the uncertainty in the transition dynamics and to overcome the

intractabilities of the Bayesian Reinforcement Learning framework they use a form of assumed density

filtering. Alternative approaches in this area, similar to those discussed in this chapter, could be an

interesting point of future work.

Conclusion

A large portion of the work in this thesis has focused on policy search methods, such as steepest gradient

ascent, natural gradient ascent and Expectation Maximisation. It has previously been noted that the

policy evaluation stage of these algorithms can be seen to be equivalent to performing inference in a

latent variable time-series model, where we refer to this distribution as the reward weighted trajectory

distribution. The structure of this distribution is markedly different from the structure that typically

occurs in latent variable time-series models, having a mixture structure over the planning horizon. This

necessarily makes the form of the inference different from typical time-series inference and thus requires

the construction of novel inference algorithms. To date all model-based inference algorithms in this area

can be seen as a type of forward-backward algorithm. In contrast I have introduced a novel model-based

inference algorithm that more closely resembles Rauch-Tung-Striebel type inference algorithms. Due

to this mixture structure of the reward weighted distribution, as well as the possibly infinite planning

horizon, this reformulation of the inference is non-trivial and has significant consequences. An example

we have considered in depth is linear systems with a non-linear reward structure. A forward-backward

algorithm has previously been constructed for this model, but it is only applicable to finite planning

horizons and has a runtime that scales quadratically in the planning horizon. In contrast the RTS style

algorithm that I have presented has a runtime that is linear in the planning horizon and is also applicable

to infinite planning horizons with discounted rewards. A current issue with the infinite horizon recursion

for these liner systems is the necessity that the eigenvalues of the state-action transition matrix lie within

the unit circle. This is a non-trivial constraint and correctly handling it has thus far proved problematic

on higher dimensional systems. Further, I have highlighted how this novel reformulation of the policy

evaluation problem can be beneficial in other models, specifically high-dimensional discrete problems

that have a sufficiently sparse underlying structure that approximate inference techniques can be applied.

Thus far I have only highlighted the possible advantages of this RTS approach and the actual construction

and evaluation of such inference procedures is a point of future work.

A second contribution to the area of policy search methods is the provision of a unifying perspective

of both natural gradient ascent and Expectation Maximisation. While both of these methods have been

popular in the area of policy search methods there has previously been little understanding about the

relation between the two algorithms. The novel analysis provided greatly clarifies the relation between

the two algorithms by relating them both to a particular form of approximate Newton method. Motivated

by this analysis a natural consideration is the direct application of this approximate Newton method

Conclusion 160

to the optimisation of the MDP objective. Such considerations have been made and it has been found

that it has many desirable properties that are absent in the naive application of the Newton method.

Initial empirical results show that the method has strong performance in comparison to natural gradient

ascent and Expectation Maximisation, especially in continuous systems. It is desirable to apply this

approximate Newton method to larger scale problems in order to better gauge the scalability of the

algorithm. Additionally, thus far we have considered this approximate Newton method only in terms of

an actor method and it is a point of future work to consider the extension to actor-critic methods,

Viewing policy evaluation as probabilistic inference easily allows for the extension of these tech-

niques to the Bayesian framework, where a distribution is placed over the model parameters of the

Markov Decision Process. In this case the policy evaluation stage of policy search methods corre-

sponds to inference in a Bayesian time-series model where both the trajectory and model parameters are

weighted by the total expected reward of the trajectory under the current model. A Bayesian perspective

to Reinforcement Learning then corresponds to likelihood maximisation of this Bayesian latent variable

time-series model. This is an approach we have taken in chapter(6) and, as the inference is intractable

in this Bayesian framework, we have presented several approximate inference routines for this problem,

including a variational Bayes approximation, an approximation based on Expectation Propagation and

a stochastic approximation. Initial experiments suggest that there are significant possible benefits to the

Bayesian approach to Reinforcement Learning and, other than more extensive experiments, there are

several possible extensions to this work. These include the consideration of the risk-sensitive objective

function (1.5), which would result is a chain structured reward weighted trajectory distribution that is

more amenable to the construction of approximate inference routines. Additionally, thus far we have

only considered discrete state-action spaces and it would be interesting to extend these approaches to

continuous domains. An advantage of the current approach is that such an extension is, theoretically at

least, relatively straightforward.

The final significant contribution of this thesis is the novel application of dual decomposition tech-

niques to a particular sub-family of Markov Decision Processes, namely finite horizon Markov Decision

Processes with a stationary policy. This problem class is non-trivial because the policy is non-Markovian,

due to the stationarity constraint, and this invalidates the application of dynamic programming. By re-

laxing this stationarity constraint through dual decomposition techniques it is possible to obtain a convex

upper bound on the objective function. This bound can be minimised through various convex optimi-

sation techniques and this results in a two stage iterative process. This algorithm has an intuitive inter-

pretation where the inner loop of the algorithm consists of optimising a finite horizon Markov Decision

Process with non-stationary policy and reward function, while the outer loop updates the non-stationary

reward function to encourage consistency between the policies of different time-points. Empirical results

suggest that the dual decomposition algorithm is well suited to this problem class, consistently obtain-

ing the global optimum in relatively few iterations. It is of interest to see if similar performance can

be obtained in other planning models with non-Markovian policies, such as a decentralised transition

independent Markov Decision Processes.

Bibliography

[1] D. L. Alspach and H. W. Sorenson. Nonlinear Bayesian Estimation Using Gaussian Sum Approx-

imations. IEEE Transactions on Automatic Control, 17(4):439–448, 1972.

[2] E. Altman. Constrained Markov Decision Processes. Chapman and Hall, first edition, 1999.

[3] S. Amari. Neural Learning in Structured Parameter Spaces - Natural Riemannian Gradient. NIPS,

9:127–133, 1997.

[4] S. Amari. Natural Gradient Works Efficiently in Learning. Neural Computation, 10:251–276,

1998.

[5] S. Amari, A. Cichocki, and H. Yang. A New Learning Algorithm for Blind Signal Separation.

NIPS, 8:757–763, 1996.

[6] S. Amari, K. Kurata, and H. Nagaoka. Information Geometry of Boltzmann Machines. IEEE

Transactions on Neural Networks, 3(2):260–271, 1992.

[7] C. Amato, D. Bernstein, and S. Zilberstein. Solving POMDPs Using Quadratically Constrain

Linear Programs. IJCAI, 20:673–680, 2007.

[8] M. Anthony and N. Biggs. Computational Learning Theory. Cambridge University Press, second

edition, 1997.

[9] M. Araya, O. Buffet, and V. Thomas. Near-Optimal BRL using Optimistic Local Transitions.

ICML, 29:97–104, 2012.

[10] Asmuth, J. and Li, L. and Littman, M. and Nouri, A. and Wingate, D. A Bayesian Sampling

Approach to Exploration in Reinforcement Learning. UAI, 25:19–26, 2009.

[11] Asmuth, J. and Littman, M. Learning is Planning: Near Bayes-Optimal Reinforcement Learning

via Monte-Carlo Tree Search. UAI, 27:19–26, 2011.

[12] H. Attias. A Variational Bayesian Framework for Graphical Models. NIPS, 12:209–215, 2000.

[13] J. Bagnell and J. Schneider. Covariant Policy Search. IJCAI, 18:1019–1024, 2003.

[14] D. Barber. Expectation Correction for Smoothing in Switching Linear Gaussian State Space

Models. Journal of Machine Learning Research, 7:2515–2540, 2006.

Bibliography 162

[15] D. Barber. Bayesian Reasoning and Machine Learning. Cambridge University Press, 2011.

[16] D. Barber and S. Chiappa. Unified Inference for Variational Bayesian Linear Gaussian State-

Space Models. NIPS, 19:81–88, 2007.

[17] D. Barber and W. Wiegerinck. Tractable Variational Structures for Approximating Graphical

Models. In NIPS, volume 12, pages 183–189, 1998.

[18] N. Bäuerle and U. Rieder. Markov Decision Processes with Applications to Finance. Universitext,

2011.

[19] J Baxter and P. Bartlett. Infinite Horizon Policy Gradient Estimation. Journal of Artificial Intelli-

gence Research, 15:319–350, 2001.

[20] M. Beal. Variational Algorithms for Approximate Bayesian Inference. PhD thesis, Gatsby Com-

putational Neuroscience Unit, University College London, 2003.

[21] M. J. Beal and Z. Ghahramani. The Variational Bayesian EM Algorithm for Incomplete Data:

with Application to Scoring Graphical Model Structures. In Bayesian Statistics, volume 7, pages

453–464. Oxford University Press, 2003.

[22] R. Bellman. Dynamic Programming. Princeton University Press, 1957.

[23] D Bernstein, R Givan, N. Immerman, and S. Zilberstein. The Complexity of Decenteralised

Control of Markov Decision Processes. MOR, 27:819–840, 2002.

[24] D. P. Bertsekas. Dynamic Programming and Stochastic Control. Academic Press, 1976.

[25] D. P. Bertsekas. Nonlinear Programming. Athena Scientific, 2nd edition, 1999.

[26] D. P. Bertsekas. Approximate Policy Iteration: A Survey and Some New Methods. Research

report, Massachusetts Institute of Technology, 2010.

[27] D. P. Bertsekas and S. Ioffe. Temporal Differences-Based Policy Iteration and Applications in

Neuro-Dynamic Programming. Research Report LIDS-P-2349, Massachusetts Institute of Tech-

nology, 1996.

[28] S. Bhatnagar, R. Sutton, M. Ghavamzadeh, and M. Lee. Incremental Natural Actor-Critic Algo-

rithms. NIPS, 20:105–112, 2008.

[29] S. Bhatnagar, R. Sutton, M. Ghavamzadeh, and L. Mark. Natural Actor-Critic Algorithms. Auto-

matica, 45:2471–2482, 2009.

[30] C. Bishop. Neural Networks for Pattern Recognition. Clarendon Press, first edition, 1995.

[31] V. Borkar and S. Meyn. Risk-Sensitive Optimal Control for Markov Decision Processes with

Monotone Cost. Mathematics of Operations Research, 27(1):192–209, 2002.

Bibliography 163

[32] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

[33] S. Boyd and L. Vandenberghe. Sub-Gradients. Lecture notes, Stanford University, 2008.

[34] S. Boyd, L. Xiao, and A Mutapcic. Sub-Gradient Methods. Lecture notes, Stanford University,

2003.

[35] S. Boyd, L. Xiao, A. Mutapcic, and J. Mattingley. Notes on Decomposition Methods. Lecture

notes, Stanford University, 2008.

[36] R. Brafman and Tennenholtz. R-MAX - A General Polynomial Time Algorithm for Near-Optimal

Reinforcement Learning. Journal of Machine Learning Research, 3:213–231, 2002.

[37] A. Coolen, R. Kuehn, and P. Sollich. Theory of Neural Information Processing Systems. Oxford

University Press, 2005.

[38] W. Davidon. Variable Metric Method for Minimisation. SIAM Journal on Optimisation, 1:1–17,

1991.

[39] P. Dayan. Reinforcement Comparison. Proceedings of the 1990 Connectionist Models Summer

School, 1990.

[40] P. Dayan and G. E. Hinton. Using Expectation-Maximization for Reinforcement Learning. Neural

Computation, 9:271–278, 1997.

[41] D. de Farias and B. Van Roy. The Linear Programming Approach to Approximate Dynamic

Programming. Operations Research, 51(6):850–865, 2003.

[42] R. Dearden, N. Friedman, and S. Russell. Bayesian Q learning. AAAI, 15:761–768, 1998.

[43] M. Deisenroth and C. Rasmussen. PILCO: A Model-Based and Data-Efficient Approach to Policy

Search. ICML, 28:465–472, 2011.

[44] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum Likelihood from Incomplete Data via the

EM Algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 39(1):1–38,

1977.

[45] F. d’Epenoux. A probabilistic production and inventory problem. Management Science, 10(1):98–

108, 1963.

[46] C. Dimitrakakis. Tree Exploration for Bayesian RL Exploration. CIMCA/IAWTIC/ISE, pages

1029–1034, 2008.

[47] C. Dimitrakakis. Complexity of Stochastic Branch and Bound Methods for Belief Tree Search in

Bayesian Reinforcement Learning. CoRR, abs/0912.5029, 2009.

[48] C. Dimitrakakis. Robust Bayesian Reinforcement Learning Through Tight Lower Bounds. CoRR,

abs/1106.3651, 2011.

Bibliography 164

[49] A. Doucet, N. de Freitas, and N. J. Gordon. Sequential Monte Carlo Methods in Practice.

Springer-Verlag, 2001.

[50] M. Duff. Optimal Learning: Computational Procedures for Bayes-Adaptive Markov Decision

Processes. PhD thesis, University of Massachusetts Amherst, 2002.

[51] C. Fahey. Tetris AI, Computers Play Tetris http://colinfahey.com/tetris/tetris_

en.html, 2003.

[52] W. Fleming and H. Soner. Controlled Markov Processes and Viscosity Solutions. Springer Velag,

1992.

[53] R. Fletcher. A New Approach to Variable Metric Algorithms. The Computer Journal, 3(13):317–

322, 1970.

[54] R. Fletcher. Practical Methods of Optimisation. John Wiley & Sons, 1987.

[55] R. Fletcher and C. Reeves. Function Minimisation by Conjugate Gradients. The Computer Jour-

nal, 7:149–154, 1964.

[56] T. Furmston and D. Barber. Solving deterministic policy (PO)MPDs using Expectation-

Maximisation and Antifreeze. European Conference on Machine Learning (ECML), 1:50–65,

2009. Workshop on Learning and data Mining for Robotics.

[57] T. Furmston and D. Barber. Variational Methods for Reinforcement Learning. AISTATS, 9:241–

248, 2010.

[58] T. Furmston and D. Barber. Variational Methods for Reinforcement Learning. AISTATS,

9(13):241–248, 2010.

[59] T. Furmston and D. Barber. Efficient Inference for Markov Control Problems. UAI, 27:221–229,

2011.

[60] S. Gelly and D. Silver. Achieving Master Level Play in 9 x 9 Computer Go. AAAI, 23:1537–1540,

2008.

[61] S. Gelly and D. Silver. Monte-Carlo Tree Search and Rapid Action Value Estimation in Computer

Go. Artificial Intelligence, 175(11):1856–1875, 2011.

[62] A. Gelman, J. Carlin, H. Stern, and D. Rubin. Bayesian Data Analysis. Chapman & Hall, 2004.

[63] Z. Ghahramani and G. E. Hinton. Variational Learning for Switching State-Space Models. Neural

Computation, 12:831–864, 2000.

[64] M Ghavamzadeh and Y. Engel. Bayesian Actor-Critic Algorithms. ICML, 24:297–304, 2007.

[65] M. Ghavamzadeh and Y. Engel. Bayesian Policy Gradient Algorithms. NIPS, 19:457–464, 2007.

Bibliography 165

[66] P. W. Glynn. Stochastic Approximation for Monte-Carlo Optimisation. Proceedings of the 1986

ACM Winter Simulation Conference, 18:356–365, 1986.

[67] P. W. Glynn. Likelihood Ratio Gradient Estimation for Stochastic Systems. Communications of

the ACM, 33:97–84, 1990.

[68] E. Greensmith, P. Bartlett, and J. Baxter. Variance Reduction Techniques For Gradient Based

Estimates in Reinforcement Learning. Journal of Machine Learning Research, 5:1471–1530,

2004.

[69] G. Grimmett and D. Stirzaker. Probability and Random Processes. Oxford University Press, third

edition, 2001.

[70] F. Grognard and J. Gouze. Positive Control of Lotka-Volterra Systems. Proceedings of the 16th

IFAC World Congress, 16(1), 2005.

[71] C. Guestrin, D. Koller, P. Parr, and S. Venkataraman. Efficient Solution Algorithms for Factored

MDPs. Journal of Artificial Intelligence Research (JAIR), 19:399–468, 2003.

[72] C. Guestrin, D. Koller, and R. Parr. Max-norm Projections for Factored MDPs. IJCAI, 1:673–680,

2001.

[73] C. Guestrin, D. Koller, and R. Parr. Multiagent Planning with Factored MDPs. NIPS, 15:1523–

1530, 2001.

[74] A. Guez, D. Silver, and P. Dayan. Efficient Bayes-Adaptive Reinforcement Learning using

Sample-Based Search. NIPS, 26, 2012.

[75] N. Hastings and D. Sadjadi. Markov Programming with Policy Constraints. European Journal of

Operations Research, 3:253–255, 1979.

[76] Kappen H.J. Path integrals and symmetry breaking for optimal control theory. Journal of Statis-

tical Mechanics: Theory and Experiment, page P11011, 2005.

[77] M. Hoffman, N. de Freitas, A. Doucet, and J. Peters. An Expectation Maximization Algorithm for

Continuous Markov Decision Processes with Arbitrary Rewards. AISTATS, 12(5):232–239, 2009.

[78] M. Hoffman, H. Kueck, N. de Freitas, and A. Doucet. New Inference Strategies for Solving

Markov Decision Processes Using Reversible Jump MCMC. UAI, 25:223–231, 2011.

[79] Hoffman, M. and Doucet, A. and De Freitas, N. and Jasra, A. Bayesian Policy Learning with

Trans-Dimensional MCMC. NIPS, 20:665–672, 2008.

[80] R. A. Howard. Dynamic Programming and Markov Processes. M.I.T. Press, 1960.

[81] M. Jamshidian and R. Jennrich. Conjugate Gradient Acceleration of the EM Algorithm. Journal

of the American Statistical Association, 88(421):221–228, 1993.

Bibliography 166

[82] L. Kaelbling, M. Littman, and A. Cassandra. Planning and Acting in Partially Observable Stochas-

tic Domains. Artificial Intelligence, 101:99–134, 1998.

[83] S. Kakade. A Natural Policy Gradient. NIPS, 14:1531–1538, 2002.

[84] R.E. Kalman. A new approach to linear filtering and prediction problems. Journal of Basic

Engineering, 82(1):35–45, 1960.

[85] H. Kappen and W. Wiegerinck. Novel Iteration Schemes for the Cluster Variation Method. NIPS,

15:415–422, 2001.

[86] N. Karmarkar. A New Polynomial Time Algorithm for Linear Programming. Combinatorica,

4(4):373–395, 1984.

[87] M. Kearns, Y. Mansour, and A. Ng. A Sparse Sampling Algorithm for Near-Optimal Planning in

Large Markov Decision Processes. IJCAI, 16:1324–1331, 1999.

[88] M. Kearns and S. Singh. Near-Optimal Reinforcement Learning in Polynomial Time. Machine

Learning, 49:209–232, 2002.

[89] L. G. Khachian. A Polynomial Algorithm for Linear Programming. Soviet Math Dokl., 20:191–

194, 1984.

[90] H. Khalil. Nonlinear Systems. Prentice Hall, 2001.

[91] H. Kimura, K. Miyazaki, and S. Kobayashi. Reinforcement Learning in POMDP’s with Function

Approximation. ICML, 14:152–160, 1997.

[92] H. Kimura, M. Yamamura, and S. Kobayashi. Reinforcement Learning by Stochastic Hill Climb-

ing on Discounted Reward. ICML, 12:295–303, 1995.

[93] J. Kober and J. Peters. Policy Search for Motor Primitives in Robotics. NIPS, 21:849–856, 2009.

[94] J. Kober and J. Peters. Policy Search for Motor Primitives in Robotics. Machine Learning, 84(1-

2):171–203, 2011.

[95] L. Kocsis and C. Szepesvári. Bandit Based Monte-Carlo Planning. European Conference on

Machine Learning (ECML), 17:282–293, 2006.

[96] Z. Kolter and A. Ng. Near Bayesian Exploration in Polynomial Time. ICML, 26:513–520, 2009.

[97] N. Komodakis, N. Paragios, and G. Tziritas. MRF Energy Minimization and Beyond via Dual

Decomposition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(3):531–

552, 2011.

[98] V. Konda and J. Tsitsiklis. Actor-critic algorithms. NIPS, 13:1008–1014, 1999.

[99] V. R. Konda and J. N. Tsitsiklis. On Actor-Critic Algorithms. SIAM J. Control Optim.,

42(4):1143–1166, 2003.

Bibliography 167

[100] F. R. Kschischang, B. J. Frey, and H-A. Loeliger. Factor Graphs and the Sum-Product Algorithm.

IEEE Transactions on Information Theory, 47:498–519, 2001.

[101] A. Kumar and S. Zilberstein. Message-Passing Algorithms for Large Structured Decentralized

POMDPs. AAMAS, 10:1087–1088, 2011.

[102] A. Kumar, S. Zilberstein, and M. Toussaint. Scalable Multiagent Planning Using Probabilistic

Inference. IJCAI, 22:2140–2146, 2011.

[103] H. Kushner and G. Yin. Stochastic Approximation and Recursive Algorithms and Applications.

Springer, 2003.

[104] T. Lang and M. Toussaint. Probabilistic Backward and Forward Reasoning in Stochastic Rela-

tional Worlds. ICML, 27:583–590, 2010.

[105] K. Lange. A Gradient Algorithm Locally Equivalent to the EM Algorithm. Journal of the Royal

Statistical Society. Series B (Methodological), 57(2):425–437, 1995.

[106] K. Lange. A Quasi-Newton Acceleration of the EM Algorithm. Statistica Sinica, 5:1–18, 1995.

[107] R. Little and D. Rubin. Statistical Analysis with Missing Data. Wiley-Blackwell, 2002.

[108] M. Littman, T. Dean, and L. P. Kaelbling. On the Complexity of Solving Markov Decision Prob-

lems. UAI, 11:394–402, 1995.

[109] M. Littman, R. Sutton, and S. Singh. Predictive Representations of State. NIPS, 15:1555–1561,

2001.

[110] Littman, M. Memoryless Policies: Theoretical Limitations and Practical Results. Simulation of

Adaptive Behaviour, 3:238–245, 1994.

[111] D. MacKay. Maximum Likelihood and Covariant Algorithms for Independent Component Anal-

ysis. Research report, University of Cambridge, 1996.

[112] D. J. C. MacKay. Ensemble learning for hidden Markov models.

http://www.inference.phy.cam.ac.uk/mackay/abstracts/ensemblePaper.html,

1997.

[113] P. Marbach and J. Tsitsiklis. Simulation-Based Optimisation of Markov Reward Processes. IEEE

Transactions on Automatic Control, 46(2):191–209, 2001.

[114] N. Meuleau, L. Peshkin, K Kim, and L. Kaelbling. Learning Finite-State Controllers for Partially

Observable Environments. UAI, 15:427–436, 1999.

[115] Minka, T. P. Expectation Propagation for Approximate Bayesian Inference. UAI, 17:362–369,

2001.

Bibliography 168

[116] A. Miyamae, Y. Nagata, I. Ono, and S. Kobayashi. Natural Policy Gradient Methods with

Parameter-Based Exploration for Control Tasks. NIPS, 23:1660–1668, 2010.

[117] M. Mundhenk, J. Goldsmith, C. Lusena, and E. Allender. Encyclopaedia of Complexity Results

for Finite-Horizon Markov Decision Process Problems. Research Report TR 273-97, University

of Kentucky, 1997.

[118] L. Nazareth. Some Recent Approaches to Solving Large Residual Nonlinear Least Squares Prob-

lems. SIAM Review, 22(1):1–11, 1980.

[119] R. Neal and G. Hinton. A View of the EM Algorithm That Justifies Incremental, Sparse and Other

Variants. Learning in Graphical Models, pages 355–368, 1999.

[120] A Ngo, Y. Hwanjo, and C. TaeChoong. Hessian Matrix Distribution for Bayesian Policy Gradient

Reinforcment Learning. Information Sciences, 181:1671–1685, 2011.

[121] J. Nocedal and S. Wright. Numerical Optimisation. Springer, 2006.

[122] B. K. Oksendal. Stochastic Differential Equations: An Introduction with Applications. Springer,

2003.

[123] J. Peters and S. Schaal. Natural Actor-Critic. Neurocomputing, 71(7-9):1180–1190.

[124] J. Peters and S. Schaal. Policy Gradient Methods for Robotics. IROS, 21:2219–2225, 2006.

[125] K. B. Petersen and O. Winther. The EM-algorithm in Independent Component Analysis. ICASSP,

5:169–172, 2005.

[126] M. Petrik and S. Zilberstein. A Bilinear Programming Approach for Multiagent Planning. Journal

of Artificial Intelligence Research, 35:235–274, 2009.

[127] L. Pontryagin, V. Boltyanskii, R. Gamkrelidze, and E. Mischenko. The Mathematical Theory of

Optimal Processes. Wiley, 1962.

[128] P. Poupart and C. Boutilier. Bounded Finite State Controllers. NIPS, 16, 2004.

[129] P. Poupart, N. Vlassis, J. Hoey, and K. Regan. An Analytic Solution to Discrete Bayesian Rein-

forcement Learning. ICML, 23:697–704, 2006.

[130] M. H. Protter and C. B. Morrey. A First Course in Real Analysis. Springer, second edition, 1997.

[131] M. L. Puterman and M. C. Shin. Modified Policy Iteration Algorithms for Discounted Markov

Decision Problems. Management Science, 24(11):1127–1137, 1978.

[132] C. Rasmussen and M. Deisenroth. Probabilistic inference for fast learning in control. In S. Gir-

gin, M. Loth, R. Munos, P. Preux, and D. Ryabko, editors, Recent Advances in Reinforcement

Learning, pages 229–242, 2008.

Bibliography 169

[133] H.E. Rauch, F. Tung, and C. T. Striebel. Maximum Likelihood Estimates of Linear Dynamic

Systems. AIAA, 3(8):1445–1450, 1965.

[134] M. I. Reiman and A. Weiss. Sensitivity Analysis via Likelihood Ratios.

[135] M. I. Reiman and A. Weiss. Sensitivity Analysis for Simulations via Likelihood Ratios. Opera-

tions Research, 37(5):830–844, 1986.

[136] Richter, S. and Aberdeen, D. and Yu, J. Natural Actor-Critic for Road Traffic Optimisation. NIPS,

19:1169–1176, 2007.

[137] R. Y. Rubinstein. How to Optimise Complex Stochastic Systems From a Single Sample Path by

the Score Function Method. Annsls of Operations Research, 27:175–211, 1991.

[138] T. Rückstieb, M. Felder, and J. Schmidhuber. State-Dependent Exploration for Policy Gradient

Methods. European Conference on Machine Learning (ECML), 2:234–249, 2008.

[139] G. Rummery and M. Niranjan. On-Line Q-Learning Using Connectionist Systems. Technical

report, Cambridge University, 1994.

[140] R. Salakhutdinov, S. Roweis, and Z. Ghahramani. Optimization with EM and Expectation-

Conjugate-Gradient. ICML, (20):672–679, 2003.

[141] Salakhutdinov, R. and Roweis, S. and Ghahramani, Z. On the Convergence of Bound Optimization

Algorithms. UAI, 19:509–516, 2003.

[142] L. Saul, T. Jaakkola, and M. Jordan. Mean Field Theory for Sigmoid Belief Networks. Journal of

Artificial Intelligence Research, 4:61–76, 1996.

[143] L. Saul and M. Jordan. Exploiting Tractable Substructures in Intractable Networks. volume 9,

pages 486–492, 1995.

[144] J. Schaeffer, M. Hlynka, , and V. Jussila. Temporal Difference Learning Applied to a High-

Performance Game-Playing Program. IJCAI, 17:529–534, 2001.

[145] R. Schoknecht. Optimality of Reinforcement Learning Algorithms with Linear Function Approx-

imation. NIPS, 15:1555–1562, 2002.

[146] N. Schraudolph and T. Graepel. Combining Conjugate Direction Methods with Stochastic Ap-

proximation of Gradients. ICONIP, 9:853–856, 2002.

[147] N. Schraudolph, J. Yu, and S. Gunter. A Stochastic Quasi-Newton Method for Online Convex

Optimization. AISTATS, 11:433–440, 2007.

[148] S. Scott. Bayesian Estimation of Hidden Markov Chains: A Stochastic Implementation. Journal

of the American Statistical Association, 97:337–351, 2002.

Bibliography 170

[149] F. Sehnke, C. Osendorfer, T. Rückstieß, A. Graves, J. Peters, and J. Schmidhuber. Policy Gradients

with Parameter-Based Exploration for Control. ICANN, 1:387–396, 2008.

[150] Y. Serin and V. Kulkarni. Markov Decision Processes Under Observability Constraints. Mathe-

matical Methods of Operational Research, 61:311–328, 2005.

[151] R.D. Shachter. Probabilistic inference and influence diagrams. Operations Research, 36:589–604,

1988.

[152] D. Silver, R. Sutton, and M. Müller. Temporal-Difference Search in Computer Go. Machine

Learning, 87(2):183–219, 2012.

[153] D. Sontag, A. Globerson, and T. Jaakkola. Introduction for Dual Decomposition for Inference. In

S. Sra, S. Nowozin, and S. Wright, editors, Optimisation for Machine Learning. MIT Press, 2010.

[154] J. Sorg, S. Singh, and R. Lewis. Variance-Based Rewards for Approximate Bayesian Reinforce-

ment Learning. UAI, 26:564–571, 2010.

[155] M. Spong, S. Hutchinson, and M. Vidyasagar. Robot Modelling and Control. John Wiley & Sons,

2005.

[156] R. Stengel. Optimal Control and Estimation. Dover, 1993.

[157] A. Strehl and M. Littman. A Theoretical Analysis of Model-Based Interval Estimation. ICML,

22:857–864, 2005.

[158] M. Strens. A Bayesian Framework for Reinforcement Learning. ICML, 17:943–950, 2000.

[159] H. Sussmann and J. Willems. 300 Years of Optimal Control: From The Brachstochrone to the

Maximum Principle. Control Systems Magazine IEEE, 17(3):32–44, 1997.

[160] R. Sutton. Learning to Predict by the Methods of Temporal Differences. Machine Learning,

3:9–44, 1988.

[161] R. Sutton. Generalization in Reinforcment Learning: Successful Examples Using Sparse Coarse

Coding. NIPS, 9:1038–1044, 1995.

[162] R. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy Gradient Methods for Reinforcement

Learning with Function Approximation. NIPS, 13:1057–1063, 2000.

[163] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press, 1998.

[164] G. Tesauro. TD-Gammon, A Self-Teaching Backgammon Program Achieves Master-Level Play.

Neural Computation, 6:215–219, 1994.

[165] W. Thompson. On the Likelihood that one Unknown Probability Exceeds Another in View of the

Evidence of Two Samples. Biometrika, 25(3-4):285–294, 1933.

Bibliography 171

[166] E. Todorov and W. Li. A Generalised Iterative LQG Method for Locally-Optimal Feedback Con-

trol of Constrained Non-Linear Stochastic Systems. Proceedings of the American Control Con-

ference, pages 300–306, 2005.

[167] M. Toussaint. Pros and Cons of truncated Gaussian EP in the context of Approximate Inference

Control. NIPS - Workshop on Probabilistic Approaches for Robotics and Control., 21, 2009.

[168] M. Toussaint. Robot Trajectory Optimisation Using Approximate Inference. ICML, (26):132–

139, 2009.

[169] M. Toussaint, L Charlin, and P. Poupart. Hierarchical POMDP Controller Optimization by Like-

lihood Maximization. UAI, 24:562–570, 2008.

[170] M. Toussaint, S. Harmeling, and A. Storkey. Probabilistic inference for solving (PO)MDPs. Re-

search Report EDI-INF-RR-0934, University of Edinburgh, School of Informatics, 2006.

[171] M. Toussaint, A. Storkey, and S. Harmeling. Bayesian Time Series Models, chapter Expectation-

Maximization methods for solving (PO)MDPs and optimal control problems. Cambridge Univer-

sity Press, 2011. In press. See userpage.fu-berlin.de/˜mtoussai.

[172] P. Tseng. Solving H-Horizon, Stationary Markov Decision Problems in Time Proportional to

log(H) . Operations Research Letters, 5(9):287–297, 1993.

[173] J. Tsitsiklis and B. Van Roy. An Analysis of Temporal-Difference Learning with Function Ap-

proximation. IEEE Transactions on Automatic Control, 42(5):674–690, 1997.

[174] J. Veness, D. Silver, A. Blair, , and W. Uther. Bootstrapping from Game Tree Search. NIPS,

19:1937–1945, 2009.

[175] N. Vlassis, M. Littman, and D. Barber. On the Computational Complexity of Stochastic Controller

Optimization in POMDPs. CoRR, abs/1107.3090, 2011.

[176] N. Vlassis, M Toussaint, G. Kontes, and S. Piperidis. Learning Model-Free Robot Control by a

Monte Carlo EM Algorithm. Autonomous Robots, 27(2):123–130, 2009.

[177] V. Volterra. Variations and Fluctuations of the Number of Individuals in Animal Species Living

Together. McGraw-Hill, 1931.

[178] M. J. Wainwright and M. I. Jordan. Graphical Models, Exponential Families, and Variational

Inference. Foundations and Trends in Machine Learning, 1(1-2):1–305, 2008.

[179] C. Watkins and P. Dayan. Q-Learning. Machine Learning, 8:279–292, 1992.

[180] L. Weaver and N. Tao. The Optimal Reward Baseline for Gradient Based Reinforcement Learning.

UAI, 17:538–545, 2001.

[181] C. White and D. White. Markov decision processes. European Journal of Operational Research,

39:1–16, 1989.

Bibliography 172

[182] R. Williams. Simple Statistical Gradient Following Algorithms for Connectionist Reinforcement

Learning. Machine Learning, 8:229–256, 1992.

Appendix A

Rates of Convergence

The rate of convergence of a sequence is concerned with the speed, in terms of the number of iterations,

at which a fixed point is reached. In this appendix we give a brief introduction to the various rates of

convergence that we will consider in this work.

Let {xk}k∈N be a sequence of iterates in Rn that converge to a point x∗. This sequence is said to

converge linearly if ∃r ∈ (0, 1) s.t.

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖

= r, (A.1)

for all sufficiently large k. In more descriptive terms (for sufficiently large k) the distance from the fixed

point decreases by at least a constant, multiplicative, factor r, which is known as the rate of convergence.

Given two linearly convergent sequences, then the sequence with the lower rate of convergence will show

the faster convergence (for sufficiently large k). If the limit (A.1) exists and r = 0 then the sequence

is said to have super-linear convergence, whereas in the case r = 1 the sequence is said to converge

sub-linearly.

A sequence is said to have a quadratic rate of convergence if

‖xk+1 − x∗‖ ≤M‖xk − x∗‖2,

for all sufficiently large k and some positive constant M . Note that in quadratic convergence M is

only restricted to be positive and not necessarily less than 1. The speed of convergence depends on

the constants r and M , which can be problem dependent as well as algorithm dependent. However,

regardless of these constants, a sequence with quadratic convergence will always eventually converge

faster than a linearly convergent sequence.

To illustrate these definitions we consider the sequences

sk = (0.5)k, tk = k−k, uk =
1

k
, vk = (0.5)2k ,

which respectively have linear, super-linear, sub-linear and quadratic rates of convergence. A plot show-

ing the iterates of these sequences is shown in fig(A.1).

174

0 50 100
10

−35

10
−30

10
−25

10
−20

10
−15

10
−10

10
−5

10
0

Linear

0 50 100
10

−200

10
−150

10
−100

10
−50

10
0

Superlinear

0 50 100
10

−2

10
−1

10
0

Sublinear

0 5 10

10
−300

10
−250

10
−200

10
−150

10
−100

10
−50

10
0

Quadratic

Figure A.1: A graphical illustration of the differing behaviour of linear, super-linear, sub-linear and
quadratic convergence.

Appendix B

An Analysis for the Application of Expectation

Maximisation to Markov Decision Processes

In addition to the numerous desirable properties of the EM-algorithm there is also a detailed analysis of

its convergence properties, see e.g. [44, 107, 140, 141]. These analyses typically involve studying the

eigenvalues of the Jacobian of the EM-operator around a local optimum of the objective function, with

fast, super-linear, convergence as the eigenvalues tend to zero and slow, sub-linear, convergence as the

eigenvalues tend to one. While it is possible to calculate the Jacobian of the EM-operator in the case

of a MDP with a discrete state-action space it is difficult to analyse the behaviour of the eigenvalues in

terms of certain aspects of the MDP, such as the planning horizon or the reward structure. An alternative

approach, which we take in this appendix, is to directly analyse the policy updates in terms of these given

aspects of the MDP. We do not give any formal rates of convergence, but instead aim to give an intuitive

understanding about the convergence behaviour for this particular application of the EM-algorithm. We

now give the following lemma, which details the behaviour of the policy update in terms of the reward

structure of the Markov Decision Process.

Lemma 4. Suppose we are given an infinite horizon Markov Decision Process in the discounted rewards

framework. Considering this Markov Decision Process separately under the reward functions R1 and

R1 +R2, then given a policy, π, s.t.

π(a|s)QR1
π (a, s)∑

a′∈A π(a′|s)QR1
π (a′, s)

≥ π(a|s)QR2
π (a, s)∑

a′∈A π(a′|s)QR2
π (a′, s)

, (B.1)

where the notation QRπ (a, s) is used to denote the state-action value function that corresponds to the

MDP with reward function R and policy π, then

πR1(a|s) ≥ πR1+R2(a|s), (B.2)

where πR1 and πR1+R2 denote the policies obtained through respectively applying the EM-algorithm to

the given Markov Decision Process with reward functions R1 and R1 + R2 and policy π. Additionally,

176

if the inequality in (B.1) is in the other direction then

πR1(a|s) ≤ πR1+R2(a|s).

Proof. To prove the lemma we use the fact in the EM-algorithm the policy update in a MDP, with reward

function R and policy π, takes the form

πnew(a|s) =
π(a|s)QRπ (a, s)∑

a′∈A π(a′|s)QRπ (a′, s)
.

This means that the inequality (B.2) has the equivalent form

π(a|s)QR1
π (a, s)∑

a′∈A π(a′|s)QR1
π (a′, s)

≥ π(a|s)QR1+R2
π (a, s)∑

a′∈A π(a′|s)QR1+R2
π (a′, s)

,

and to prove the lemma it is sufficient to prove that the quantity

χ = π(a|s)QR1
π (a, s)

∑
a′∈A

π(a′|s)QR1+R2
π (a′, s)− π(a|s)QR1+R2

π (a, s)
∑
a′∈A

π(a′|s)QR1
π (a′, s),

is non-negative. As the MDP objective is linear w.r.t. the reward the state-action value function,

QR1+R2
π (a, s), can be written in the equivalent form

QR1+R2
π (a, s) = QR1

π (a, s) +QR2
π (a, s).

This means that χ takes the simpler form

χ = π(a|s)QR1
π (a, s)

∑
a′∈A

π(a′|s)
(
QR1
π (a′, s) +QR2

π (a′, s)

)
− π(a|s)

(
QR1
π (a, s) +QR2

π (a, s)

) ∑
a′∈A

π(a′|s)QR1
π (a′, s),

= π(a|s)QR1
π (a, s)

∑
a′∈A

π(a′|s)QR2
π (a′, s)− π(a|s)QR2

π (a, s)
∑
a′∈A

π(a′|s)QR1
π (a′, s).

It is clear, under the assumption (B.1), that χ is non-negative and this completes the proof. The reverse

inequality follows similarly.

We now give an illustrative example to highlight the effect that lemma 4 can have on the rate

of convergence of the EM-algorithm. Consider the Markov Decision Process depicted figuratively in

fig(B.1)(a), which is a one-dimensional problem that we consider to be discretised to allow our analysis

to apply. The state space is illustrated by the black line, while the reward function is depicted by the

red line and is dependent only upon the state. The agent can move left or right and the optimal policy

is always to move to the right. In fig(B.1)(b) a second reward term is added to the reward function of

the original MDP, giving a positive reward for being in the l.h.s. of the state space. Provided the second

reward term is sufficiently small the optimal policy of the initial state is still to travel to the right of the

177

State Space

Reward Function

(a) Unimodal Reward

State Space

Reward Function

(b) Multimodal Reward

Figure B.1: An illustrative example of the convergence properties of the EM-algorithm applied to dis-
crete Markov Decision Processes. The state space is depicted by the black line and is a one-dimensional
line, which we consider to be discretised so that our analysis applies. The reward function is dependent
only upon the state and is depicted by the red line. The initial state is in the middle of the state space,
which is depicted graphically in the figures. Figure (a) illustrates a unimodal reward function, while
figure (b) considers a multimodal reward function.

MDP but, depending on the policy, the convergence of the EM-algorithm will be effected. If the total

expected reward w.r.t. this second reward term, weighted by the current policy, is larger for the action of

moving left than it is for moving right then (B.1) will be satisfied and the convergence of the policy will

be slower. An empirical illustration of this behaviour is given in fig(B.2). We can now see how, in this

instance, the multimodal reward function effects the rate of convergence of the EM-algorithm. Given the

form of the policy update in the EM-algorithm, where the policy update takes the form of a normalised

product of the current policy with the total expected reward of the state-action pair, this behaviour is

unsurprising. As the difference in the total expected reward of two actions decreases, as it has done

in the present example, the convergence becomes slower. Another example that clearly illustrates this

behaviour is the chain problem, which we have considered repeatedly in this work. In this case the

difference in the total expected reward of actions ‘a’ and ‘b’ in state 1 is generally small, even when the

policy is close to optimal, and as a result the convergence on the policy in this state is slow.

Lemma 4 highlights an additional property that is peculiar to the EM-algorithm. Suppose we are

given an infinite horizon MDP with discounted rewards and reward function, R. Consider a second

MDP that is identical to the first with the exception that the reward function takes the form Rnew(a, s) =

R(a, s) + c, where c ∈ R+. The objective function of this second MDP takes the form

Unew(w) = U(w) +
c

1− γ
, (B.3)

whereU(w) is the objective function of the original MDP. It is simple to see from (B.3) that the curvature

properties of Unew(w) and U(w), such as the gradient and Hessian, are identical. Any gradient-based

algorithm is therefore invariant to the addition of a positive constant to the reward function. However,

the same is not true of the EM-algorithm. Making the identifications R1 ≡ R and R2 ≡ c then (B.1)

becomes
QR1
π (a, s)∑

a′∈A π(a′|s)QR1
π (a′, s)

≥ 1.

This inequality states that when QR1
π (a, s) ≥ Eπ(·|s)[Q

R1
π (·, s)], then πR1+R2(a|s) ≤ πR1(a|s). Con-

178

0 2 4 6 8 10
0.5

0.55

0.6

0.65

0.7

0.75

Reward of Left−Most State

p(
a

=
 m

ov
e

rig
ht

| i
ni

tia
l s

ta
te

)

Figure B.2: An illustration of the behaviour of the policy update for the initial state of the MDP depicted
in fig(B.1). The initial policy for all states of the MDP is uniform over the two possible actions. The
reward of the right-most state is set to 10, while the reward of the left-most state is altered across the
various MDPs considered in the experiment. In the plot the magnitude of the second reward term is
plotted against the probability of moving right under the new policy, where the new policy is obtained
by performing a single policy update using EM. As can be observed the probability of moving right
decreases as the magnitude of the second reward term increases, where a fixed-point is reached when the
magnitude of the two reward terms is equal.

versely, when QR1
π (a, s) ≤ Eπ(·|s)[Q

R1
π (·, s)], then πR1+R2(a|s) ≥ πR1(a|s). This is a peculiar re-

sult and is a direct consequence of the averaging behaviour of the policy update in the EM-algorithm.

While this result may seem like a pathological case this is not actually true. Recall that to apply the

EM-algorithm to MDPs it is necessary that the reward is non-negative, and when this condition is not

satisfied it is still possible to apply the EM-algorithm by adding a sufficiently large positive constant to

the reward function s.t. this condition becomes satisfied under this new reward function. This is possible

due to the linearity of the objective w.r.t. the reward function and the fact that the reward function is

bounded. It can now be seen that such a construction can actually have an effect on the convergence of

the algorithm in certain areas of the state-action space.

The example considered in lemma 4 is just one possible such result and similar results can be

obtained in different formulations of the MDP problem, such as finite horizons, and different discrete

planning models, such as the POMDP with a policy modelled with a FSC. We don’t detail these results

here as they run along the same lines as lemma 4 and give little additional insight. The update of the con-

trol parameters in continuous system is more complicated and obtaining such an intuitive understanding

of the convergence analysis of the EM-algorithm is necessarily more complicated and we do not give

such an analysis here.

Appendix C

Newton Inference Recursions

In this appendix we detail two novel inference routines for the calculation of H1(w), which forms part

of the Hessian. For ease of reference we now restate the form ofH1(w), namely

H1(w) = Ep̃(z1:t,t;w)

[
∇w log p(z1:t;w)∇Tw log p(z1:t;w)

]
,

which due to the Markovian structure of the transition dynamics can be written in the equivalent form

H1(w) =

H∑
t=1

t∑
τ,τ ′=1

Ep̃(z,z′,τ,τ ′,t;w)

[
∇w log p(a|s;w)∇Tw log p(a′|s′;w)

]
.

It can now be seen that in order to calculate H1(w) it is necessary to calculate marginals of the re-

ward weight trajectory distribution of the form p̃(z, z′, τ, τ ′, t;w), where t ∈ NH and τ, τ ′ ∈ Nt s.t.

τ 6= τ ′. Individually calculating all the marginals necessary for the construction of H1(w) would have

a run-time that was cubic in the planning horizon. Instead, using methods similar to those detail in

section(3.1), it is possible to calculate the summation of these marginals with a run-time that is linear in

the planning horizon. We now provide two novel model-based inference routines for the calculation of

H1(w): The first is a forward-backward routine for discrete systems where it is possible to enumerate

over the state-action space; The second is a RTS-inference routine for linear systems with a possibly

non-linear reward structure. A sample-based procedure for the calculation of this matrix is given in [19].

Forward-Backward Inference

In discrete systems where it is feasible to enumerate over Z it is possible to obtain a linear time forward-

backward inference routine to calculate the statistics required for H1(w). The calculation of H1(w)

requires the calculation of
H∑
t=1

t∑
τ,τ ′=1

p̃(z, z′, τ, τ ′, t;w),

180

which can be written in the equivalent form

H∑
τ=1

τ−1∑
τ ′=1

H∑
t=τ

p̃(z, z′, τ, τ ′, t;w) +

H∑
τ=1

H∑
t=τ

p̃(z, τ, t;w).

The second term is the same as that required for first order methods, which we already know how to

calculate, see e.g. [171, 59], and so we concentrate on the calculation of the first term. As with first order

methods the summation over t corresponds to the summation over future rewards and can be summarised

in terms of the state-action value function as follows

H∑
τ=1

τ−1∑
τ ′=1

H∑
t=τ

p̃(z, z′, τ, τ ′, t;w) =

H∑
τ=1

τ−1∑
τ ′=1

p(z, z′, τ, τ ′;w)Qτ (z;w).

As we have assumed that it is possible to enumerate over Z the calculation of the state-action value

functions can be performed exactly and in linear time. Note also that the Qτ (z;w) is independent of τ ′

so that it can be pulled through the summation over τ ′ to give

H∑
τ=1

τ−1∑
τ ′=1

H∑
t=τ

p̃(z, z′, τ, τ ′, t;w) =

H∑
τ=1

Qτ (z;w)

τ−1∑
τ ′=1

p(z, z′, τ, τ ′;w).

Now to obtain a linear time formulation for the calculation ofH1(w) we derive a recursive equation for

the calculation of the terms

Λτ (z, z′;w) =

τ−1∑
τ ′=1

p(z, z′, τ, τ ′;w), τ ∈ {2, ...,H}.

The first term in the recursion, corresponding to τ=2, is equal to p(z1, z2;w) and is easily obtained. If

we now assume that Λτ has already been calculated then it is possible to obtain Λτ+1 as follows

Λτ+1(z, z′;w) =

τ−1∑
τ ′=1

p(z, z′, τ + 1, τ ′;w) + p(z, z′, τ + 1, τ ;w),

=
∑
z′′∈Z

P (z|z′′;w)

τ−1∑
τ ′=1

p(z′′, z′, τ, τ ′;w) + p(z, z′, τ + 1, τ ;w),

=
∑
z′′∈Z

P (z|z′′;w)Λτ (z′′, z′;w) + p(z, z′, τ + 1, τ ;w).

The last term in this recursion is again easily obtained as it is simply the state-action marginal for

adjacent time-points. It is now straightforward to see that all these operations can be performed in linear

time w.r.t. the planning horizon. We omit the details here but an extension to an infinite planning horizon

with discounted rewards is not difficult using methods similar to those in [171].

RTS-Inference

We shall now detail how to calculateH1(w) in the case of a linear system with an arbitrary rewards. See

either [77] or [59] for a specification of these models. In these systems the Hessian is of a similar size to

181

the matrix that is inverted during each iteration of Expectation Maximisation or natural gradient ascent,

therefore it is reasonable to expect the Newton method to be feasible in such systems. While a forward-

backward procedure such as [77] can easily be extended to Newton’s method the run-time would be

cubic in the planning horizon. Instead we derive our inference algorithm in terms of the RTS-inference

paradigm [59] which has a linear run-time w.r.t. the planning horizon. In the following the state-action

value functions will take the Rauch Tung Striebel form given in chapter(2) as opposed to their standard

form. Using the usual manipulations of the RTS-inference routine the terms in H1(w) can be written

in the form of a summation of the cross-moments of the reward-weighted trajectory distribution. In

particular for each τ ′ ∈ NH it is necessary to calculate the terms

∑τ ′−1
τ=1 E←−p (zτ |zτ′)Qrts

τ′ (zτ′ ;w)

[
ziτz

j
τ ′

]
, i, j ∈ Nnz ,

∑τ ′−1
τ=1 E←−p (zτ |zτ′)Qrts

τ′ (zτ′ ;w)

[
ziτz

j
τ ′z

k
τ ′

]
, i, j, k ∈ Nnz ,

∑τ ′−1
τ=1 E←−p (zτ |zτ′)Qrts

τ′ (zτ′ ;w)

[
ziτz

j
τz

k
τ ′

]
, i, j, k ∈ Nnz ,

∑τ ′−1
τ=1 E←−p (zτ |zτ′)Qrts

τ′ (zτ′ ;w)

[
ziτz

j
τz

k
τ ′z

l
τ ′

]
, i, j, k, l ∈ Nnz .

Where therefore detail the efficient calculation of these summation of cross-moments. In particular we

are interested calculating these quantities with a computational complexity that is linear in the planning

horizon. Extensions to an infinite planning horizon with discounted rewards can be obtained using the

methods of section(3.2.2), but we omit the details here.

Using standard formulae for the conditional distribution of a multivariate Gaussian we have that for

any τ, τ ′ ∈ NH , s.t. τ < τ ′,

zτ =
←−
Gττ ′zτ ′ +←−mττ ′ +←−η ττ ′ , (C.1)

where
←−
Gττ ′ = Σττ ′Σ

−1
τ ′τ ′ ,

←−mττ ′ = µτ − Σττ ′Σ
−1
τ ′τ ′µτ ′ , (C.2)

and←−η ττ ′ is a zero-mean Gaussian distributed random variable with covariance

←−
Σ ττ ′ = Σττ − Σττ ′Σ

−1
τ ′τ ′Στ ′τ .

For each τ ′ ∈ NH the first two cross-moment equations are linear zτ , where τ < τ ′, and so these

two terms can be obtained easily as follows. Due to (C.1) the first term takes the form

τ ′−1∑
τ=1

E←−p (zτ |zτ′)Qrts
τ′ (zτ′ ;w)

[
ziτz

j
τ ′

]
=

τ ′−1∑
τ=1

EQrts
τ′ (zτ′ ;w)

[(
←−
Gττ ′(i, :)zτ ′ +←−mi

ττ ′

)
zjτ ′

]
,

=

τ ′−1∑
τ=1

{
←−
Gττ ′(i, :)ΣQτ′ (:, j) +←−mi

ττ ′µ
j
Qτ′

}
.

182

The notation A(i, :) is used to denote the ith row of the matrix A, with similar notation for the columns

of A. We use the notation from chapter(2) to denote the first two moments of the RTS state-action value

functions, i.e. {µQτ′}τ ′∈NH and {ΣQτ′}τ ′∈NH . Due to the form of
←−
Gττ ′ and←−mττ ′ in (C.2) this term

can rewritten into the form

τ ′−1∑
τ=1

E←−p (zτ |zτ′)Qrts
τ′ (zτ′ ;w)

[
ziτz

j
τ ′

]

=

{ τ ′−1∑
τ=1

Σττ ′(i, :)

}
Σ−1
τ ′τ ′

{
ΣQτ′ (:, j)− µτ ′µ

j
Qτ′

}
+

{ τ ′−1∑
τ=1

µiτ

}
µjQτ′ .

A similar calculation can be performed for the second term and gives

τ ′−1∑
τ=1

E←−p (zτ |zτ′)Qrts
τ′ (zτ′ ;w)

[
ziτz

j
τ ′z

k
τ ′

]

=

{ τ ′−1∑
τ=1

Σττ ′(i, :)

}
Σ−1
τ ′τ ′

{
χQτ′ (:, k, l)− µτ ′ΣQτ′ (k, l)

}
+

{ τ ′−1∑
τ=1

µiτ

}
ΣQτ′ (k, l),

where {χQτ′}τ ′∈NH is used to denote the third moments of the RTS state-action value functions. It can

now be seen that the efficient calculation of the first two cross-moment equations, for each τ ′ ∈ NH ,

requires a recursive calculation of
∑τ ′−1
τ=1 µτ and

∑τ ′−1
τ=1 Σττ ′ . The first recursion is trivial and we shall

detail the second recursion shortly, but first we consider the calculation of the remaining two cross-

moment equations.

The calculation of the remaining two terms is more protracted due to the quadratic term in zτ , for

each τ < τ ′. To obtain a linear run-time formulation for these terms it is necessary to consider terms of

the form

ziτz
j
τ =
←−
Gττ ′(i, :)zτ ′

←−
Gττ ′(j, :)zτ ′ +←−mi

ττ ′
←−mj
ττ ′+
←−η iττ ′

←−η jττ ′ (C.3)

+
←−
Gττ ′(i, :)zτ ′

←−mj
ττ ′ +

←−
Gττ ′(j, :)zτ ′

←−mi
ττ ′ ,

where we have neglected terms that are linear in←−η ττ ′ as this is a zero-mean random variable and these

terms are zero in expectation. Now the first term in (C.3) can be written in the form

←−
Gττ ′(i, :)zτ ′

←−
Gττ ′(j, :)zτ ′ =

∑
s,t

Σττ ′(i, s)Σττ ′(j, t)
∑
k,l

Σ−1
τ ′τ ′(s, k)Σ−1

τ ′τ ′(t, l)z
k
τ ′z

l
τ ′ ,

= Σ̃ττ ′((i ◦ j), :)Σ̃−1
τ ′τ ′ z̃τ ′ ,

where we have defined the matrices, Σ̃ττ ′ , Σ̃
−1
τ ′τ ′ ∈ Rn2

z × Rn2
z , as follows

Σ̃ττ ′
(
i ◦ j, s ◦ t

)
= Σττ ′(i, s)Σττ ′(j, t), Σ̃−1

τ ′τ ′

(
i ◦ j, s ◦ t

)
= Σ−1

τ ′τ ′(i, s)Σ
−1
τ ′τ ′(j, t).

183

The second term in (C.3) takes the form

←−mi
ττ ′
←−mj
ττ ′ = µiτµ

j
τ − µiτ

←−
Gττ ′(j, :)µτ ′ − µjτ

←−
Gττ ′(i, :)µτ ′ +

←−
Gττ ′(i, :)µτ ′

←−
Gττ ′(j, :)µτ ′ . (C.4)

To write this quantity in terms of the mean, covariance and cross-covariance of the marginals of the

trajectory distribution we introduce the matrix, Ξττ ′ ∈ Rn2
z × Rnz , which is defined as follows

Ξττ ′(i ◦ j, k) = µiτΣττ ′(j, k). (C.5)

Under this notation the second and third terms of (C.4) can be written, respectively, as

Ξττ ′(i ◦ j, :)Σ−1
τ ′τ ′µτ ′ , Ξττ ′(j ◦ i, :)Σ−1

τ ′τ ′µτ ′ ,

so that (C.4) now takes the form

←−mi
ττ ′
←−mj
ττ ′ = µiτµ

j
τ − Ξττ ′(i ◦ j, :)Σ−1

τ ′τ ′µτ ′ − Ξττ ′(j ◦ i, :)Σ−1
τ ′τ ′µτ ′ +

←−
Gττ ′(i, :)µτ ′

←−
Gττ ′(j, :)µτ ′ .

The last term in (C.4) can be calculated in the same manner as the first term in (C.3). The expectation of

the third term in (C.3) can be written in the form

EN (0,
←−
Σ ττ′)

[
←−η iττ ′

←−η jττ ′
]

= Σττ (i, j)−
∑
s,t

Σττ ′(i, s)Σττ ′(j, t)Σ
−1
τ ′τ ′(s, t),

= Σττ (i, j)− Σ̃ττ ′(i ◦ j, :)µ̃Σ−1

τ′τ′
,

where the vector µ̃Σ−1

τ′τ′
∈ Rn2

z is defined as follows

µ̃Σ−1

τ′τ′
(i ◦ j) = Σ−1

τ ′τ ′(i, j).

The final terms in (C.3) which can be written in the form

←−mi
ττ ′
←−
Gττ ′(j, :)zτ ′ = µiτ

∑
s

←−
Gττ ′(j, s)z

s
τ ′ −

∑
s,t

←−
Gττ ′(i, s)

←−
Gττ ′(j, t)z

s
τ ′µ

t
τ ′

= Ξττ ′(i ◦ j, :)Σ−1
τ ′τ ′zτ ′ − Σ̃ττ ′((i ◦ j), :)Σ̃−1

τ ′τ ′ µ̃zτ′µτ′

where the vector µ̃zτ′µτ′ ∈ Rn2
z is defined as

µ̃zτ′µτ′ = zτ ′(i)µτ ′(j).

184

Collecting all of there terms together gives

ziτz
j
τ = Σ̃ττ ′(i ◦ j, :)

{
Σ̃−1
τ ′τ ′

(
z̃τ ′ + µ̃τ ′

)
− µ̃Σ−1

τ′τ′

}
+

{
Ξττ ′(i ◦ j, :) + Ξττ ′(j ◦ i, :)

}
Σ−1
τ ′τ ′

{
zτ ′ − µτ ′

}
+ µiτµ

j
τ + Σττ (i, j)− Σ̃ττ ′(i ◦ j, :)Σ̃−1

τ ′τ ′ µ̃zµ − Σ̃ττ ′(j ◦ i, :)Σ̃−1
τ ′τ ′ µ̃µz,

which can be used directly to calculate the remaining two terms

∑τ ′−1
τ=1 E←−p (zτ |zτ′)Qrts

τ′ (zτ′ ;w)

[
ziτz

j
τz

k
τ ′

]
, i, j, k ∈ Nnz ,

∑τ ′−1
τ=1 E←−p (zτ |zτ′)Qrts

τ′ (zτ′ ;w)

[
ziτz

j
τz

k
τ ′z

l
τ ′

]
, i, j, k, l ∈ Nnz .

To complete derivation it is necessary to derive recursive equations for the calculation of

Λτ =

τ−1∑
τ ′=1

Στ ′τ , Ξτ =
τ−1∑
τ ′=1

Ξτ ′τ .

Both of these recursions can be calculated efficiently using the structure of the cross-covariance matrix,

where for τ ′ > τ we have Σττ ′+1 = Σττ ′F
T . The first term in the first recursion takes the form Λ2 =

Σ12, which is immediately available from the system dynamics. Given Λτ , for some τ ∈ {2, ...,H − 1},

then the next term in the recursion is given by

Λτ+1 =

τ∑
τ ′=1

Στ ′τ+1 =

{ τ−1∑
τ ′=1

Στ ′τ + Σττ

}
FT =

{
Λτ + Σττ

}
FT .

In the next recursion we have a sum of outer products between the mean vectors and the cross-covariance

matrices of the state-action occupancy marginals of the trajectory distribution,

Ξτ =

τ−1∑
τ ′=1

Ξτ ′τ ,

where Ξτ ′τ is defined as in (C.5). The first term in the recursion is given by Ξ12 and is available from

the occupancy marginals of the trajectory distribution. Given Ξτ the next term in the recursion is given

by

Ξτ+1 =

τ∑
τ ′=1

Ξτ ′τ+1 =

τ−1∑
τ ′=1

Ξτ ′τ+1 + Ξττ+1,

=

{ τ−1∑
τ ′=1

Ξτ ′τ + Ξττ

}
FT =

{
Ξτ + Ξττ

}
FT .

It can be seen from (C.5) that the terms of the form {Ξττ}Hτ=1 can be obtained from the state-action

marginals of the trajectory distribution.

Appendix D

Expectation Maximisation with Deterministic

Policies

It is well-known that there are many instances where the EM-algorithm can exhibit extremely slow,

sub-linear, rate of convergence. Various acceleration methods have been introduced in the EM litera-

ture, including hybrid algorithms that switch to an alternative optimisation algorithm at a given point

[140] and Aitken acceleration methods [44]. Similarly, slow convergence has been noted in the case

of MDPs and one attempt to increase the rate of convergence (for this particular application of the

EM-algorithm) has been made in [170]. The authors of that method exploit the fact that, in the case of

MDPs, it is sufficient to search over the space of deterministic policies to obtain global optimality of the

MDP objective. Unfortunately this algorithm, which is referred to as greedy EM in [170], is not a true

EM-algorithm but instead a reformulation of policy iteration. Using the same intuition, but in a more

formally correct manner, we now construct an actual EM-algorithm for the restricted search space of

deterministic policies.

Expectation Maximisation with Deterministic Policies

To obtain such an algorithm we restrict the policy space to deterministic policies, where π(a|s) =

δ(a, a∗(s)), and run through the same procedure as in section(4.1.2). The function a∗(·) : S → A maps

states to actions and we need to find the mapping that optimises the energy. Expressed in this form the

energy becomes

E(a∗) =

H∑
t=1

t−1∑
τ=1

∑
sτ+1,sτ∈S

q(sτ+1, sτ , t) log p(sτ+1|sτ , a∗(sτ)) +

H∑
t=1

∑
st∈S

q(st, t) logR(st, a
∗(st)).

(D.1)

In contrast to the non-deterministic energy (2.13) we now have an additional term from the reward

function. Note that this shows the non-commutative nature of taking the deterministic policy limit and

optimising the additional term from the utility cannot be obtained from taking the deterministic limit of

(2.13). Our procedure then results in an EM-algorithm in the deterministic case, as opposed to the policy

iteration approach of [170]. In our EM approach, for each state, s, we now determine the action, a, that

186

Figure D.1: Maze considered in the MDP experiments.
The walls are black, with initial state in the top left corner
(green), the goal state in the top right corner (red) and the
rest of the maze in white. There are in total 240 states.

maximizes the energy, equation (D.1). Since transition probabilities are stationary, this corresponds to

finding for each state, s, the action, a, that maximises

∑
s′∈S

{ H∑
t=1

t−1∑
τ=1

q(sτ+1 = s′, sτ = s, t) log p(s′|s, a) +

{ H∑
t=1

q(st = s, t)

}
logR(s, a).

The E-step for the q-distribution is as before, expect that we also require the two-time marginals

q(sτ+1 = s′, sτ = s, t).

Experiment

We compare the convergence of the deterministic EM-algorithm with the standard EM-algorithm on

solving the problem in fig(D.1) with γ = 1 and horizon T = 100. As can be seen in fig(D.2) our algo-

rithm converges to the optimal policy after the first M-step, whereas the stochastic policy EM-algorithm

has slower convergence. For comparisons we also ran policy iteration on this problem and noted that it

too converged after the first policy update.

Freezing of Expectation Maximisation

The M-step updates in the EM-algorithm characteristically freeze, in a deterministic or near-

deterministic observation distribution, leading to extremely small increases in the log-likelihood. This

problem occurs in our EM approach when the transitions and the policy are both deterministic, or close

to deterministic. In this case all, or most of, the weight of the q-distribution is put onto the single

state-action trajectory that is dictated by the policy and the transition, and the M-step performs the

trivial update πnew = πold. To counter this problem it is possible to add ‘anti-freeze’ to the environment,

rendering it non-deterministic, and then solve the MDP in this new environment. For each state we

define the new transition pε(s′|s, a) as a convex combination of the transition with a distribution

pε(s
′|s, a) = (1− ε)p(s′|s, a) + εΓs(s

′)

where ε ∈ [0, 1) and Γs(s
′) is an arbitrary probability distribution and then solve the MDP 〈S,A, R, pε〉.

The idea behind this is encourage ‘exploration’ during the E-step and therefore enable the algorithm to

escape local minima, similar to ε-greedy policies used in various Monte-Carlo solution methods to MDPs

187

Figure D.2: The deterministic policy EM-algorithm
(blue) compared with the standard EM-algorithm (red) on
the maze problem in fig(D.1). The discount factor was set
to γ = 1 and the horizon was set to H = 100. The algo-
rithms each performed 100 M-steps and were initialized
with the same uniform policy. The plot shows the results
of the deterministic policy EM-algorithm (blue) and the
standard EM-algorithm (red).

[163]. We explain below how the above technique can be both theoretically and practically justified.

Anti-Freeze for Expectation Maximisation

Standard EM-learning

To explain the general problem of freezing in EM and a possible solution, consider a distribution of the

form

p(v|θ) =
∑
h

p(v|h, θ)p(h),

for which our task is to find the θ that maximises p(v|θ), given an observed value for v. Treating h as a

hidden variable, we may apply the EM-algorithm for which the E-step is

q(h|θold) ∝ p(v|h, θold)p(h),

and the M-step sets

θnew = argmax
θ

Ep(h|θold)

[
log p(v, h|θ)

]
= argmax

θ
Ep(h|θold)

[
log p(v|h, θ)

]
,

since p(h) is independent of θ. For a deterministic observation distribution, p(v|h) = δ(v, f(h|θ)), for

some function f(h|θ) with parameters θ, we have

p(h|θold) ∝ δ(v, f(h|θ))p(h),

so that the M-step sets

θnew = argmax
θ

Ep(h|θold)

[
log δ(v, f(h|θ))

]
.

Since p(h|θold) is zero everywhere except that h for which v = f(h|θ), then the energy is negative

infinity for θ 6= θold and zero when θ = θold. Hence zero is the optimum of the energy, corresponding

to a frozen update. This situation occurs in practice, and has been noted, in particular, in the context of

Independent Component Analysis [125] although, as explained here, the phenomenon is quite general.

One can attempt to heal this behaviour by deriving an EM-algorithm for the distribution

pε(v|h, θ) = (1− ε)p(v|h, θ) + εn(h), 0 < ε < 1,

188

Figure D.3: For each γ, ε pair we ran 500 ex-
periments and plot in the figure the fraction of
times the correct optimum value is returned by
the EM procedure. As γ increases the distri-
bution p(v|θ) tends to a deterministic distribu-
tion and EM optimisation of θ fails. This corre-
sponds to the case ε = 0. As we increase noise
more noise is included in the process and the
EM-algorithm succeeds. Note that for a truly
deterministic environment γ = ∞ a value of
ε < 1 still suffices, see fig(D.4).

where n(h) is an arbitrary ‘anti-freeze’ distribution on the hidden variable h. The original deterministic

model corresponds to p0(v|h, θ). Hence

pε(v|θ) ≡
∑
h

p(v|h, θ)p(h) = (1− ε)p(v|θ) + const.

so that applying ‘anti-freeze’ idea preserves the optima of pε(v|θ) at the same locations as those of

pε(v|θ). An EM-algorithm for pε(v|θ), 0 < ε < 1 satisfies

pε(v|θnew)− pε(v|θold) = (1− ε)[p0(v|θnew)− p0(v|θold)] > 0

which implies p0(v|θnew) − p0(v|θold) > 0. Hence the EM-algorithm for the non-deterministic case,

0 < ε < 1, is guaranteed to increase the likelihood under the deterministic model p0(v|θ) at each

iteration, unless we are at convergence. Note n(h) can be chosen arbitrarily at each iteration of the

EM-algorithm, which can help escape local minima.

MDP EM-learning

To translate the ‘anti-freeze’ idea into the MDP framework consider an objective

F (θ) =
∑
s∈S

R(s)p(s|θ)

for a positive function R(·) : S → R+ with our task being to maximise F with respect to θ. An EM

style bounding approach can be derived by defining the auxiliary distribution

p̃(s|θ) =
R(s)p(s|θ)
F (θ)

so that by considering KL(q(s)|p̃(s|θ)) for some variational distribution q(s) we obtain the bound

logF (θ) ≥ Eq(s)
[

log q(s)

]
+ Eq(s)

[
logR(s)

]
+ Eq(s)

[
log p(s|θ)

]
.

189

Figure D.4: Maximising a utility L(θ) =
∑10
s=1 logR(s)p(s|θ), where p(s|θ) is deterministic, placing

all its mass in the state s = θ. Here R(s) is given, being positive and drawn at random. The task is to
find the optimal θ, which is equivalent in this case to finding the state s that maximises the given R(s).
(a) True utility L(θ) as a function over the 10 values of θ. The optimal state is θ = 5. (b) The energy
for ε = 0 and θold = 1. The energy is − log∞ (cut off here at −36) for all but θ = θold = 1, where
the energy is zero, displaying the characteristic EM-freezing. (c) Energy of modified distribution using
ε = 0.99 and θold = 1. The new energy has the optimum at the correct place, θ = 5.

The M-step states that the optimal q-distribution is given by q(s) = p̃(s|θold). At the E-step of the

algorithm the new parameters θnew are given by maximising the ‘energy’ term

θnew = argmax
θ

Ep(s|θold)

[
log p(s|θ)

]
.

For a deterministic distribution p(s|θ) = δ(s, f(θ)) the E-step fails since the energy is negative infinity

unless θnew = θold, in which case the energy is zero. We can attempt to heal this by using the alternative

objective

Fε(θ) =
∑
s

R(s)pε(s|θ),

with

pε(s|θ) = (1− ε)p(s|θ) + εn(s), 0 ≤ ε ≤ 1,

and an arbitrary distribution n(s). Our task is to maximise F with respect to θ. Since

Fε(θ) = (1− ε)F0(θ) +
∑
s

n(s)R(s) (D.2)

it is clear that Fε(θ) has the same optimum as F0(θ). Furthermore, since

Fε(θnew)− Fε(θold) = (1− ε)[F0(θnew)− F0(θold)]

provided that for ε > 0 we can find a θnew such that F (θnew) > F (θold), then necessarily F0(θnew) >

F0(θold). Using this result, we may derive an EM-style algorithm that guarantees to increase F (θ), unless

we are already at the optimum, for ε > 0 and can therefore guarantee to increase F0(θ). To do so we use

p̃ε(s|θ) ≡
R(s)p(s|θ)
Fε(θ)

,

in place of equation (15), and then derive an EM algorithm as before. Currently this proof only holds

for a planning horizon of 1 and in longer planning horizons the added noise term no longer separates

in the additive manner it does in (D.2). However, this result still provides intuitive justification for the

190

Figure D.5: (Left) Maze considered in the deterministic transition and deterministic policy experiments.
The colour scheme is the same as previously, that is the walls are black, the initial state is green (top
left corner) and the goal state is red (top right corner), with the remaining states in white. The discount
factor was set to γ = 1 and the horizon set to H = 40. There are a total of 27 states. (Right) Anti-
freeze experiment for a deterministic policy and environment. We compare the deterministic policy
EM-algorithm with anti-freeze, ε = 0.35 to the standard EM-algorithm and policy iteration. The two
EM algorithms were initialized with the same deterministic policy. The plot shows the results for the
deterministic policy EM-algorithm (blue), the standard EM-algorithm (green) and policy iteration (red).

extension of the ‘anti-freeze’ idea to longer planning horizons.

Applying anti-freeze on a toy problem

To demonstrate that the effect of adding on noise to the deterministic distribution is non-trivial and

can heal the EM-algorithm, we carried out a simple experiment, see fig(D.3). We define a distribution

p(s|θ) ∝ exp(γI[s = θ]) over the states N5. For each experiment the reward for each state R(s),

s ∈ N5 is drawn from a uniform distribution between 0 and 1. The task is to find θ that maximises∑
sR(s)p(s|θ) using an EM style algorithm. To attempt to resolve freezing we added uniform noise by

an amount ε to the distribution p(s|θ). In fig(D.3) we compute the number of times that starting from a

random starting state we will, under EM, converge to the correct optimum state. As we can see, for no

noise added, ε = 0, and in a deterministic limit (γ large) we are in the optimum state only 20% of the

time, since no updating occurs, and we start in the correct state with probability 0.2. As we increase ε,

EM unfreezes and we begin to find the correct optimum. One may have the impression that for a truly

deterministic p(s|θ) we would need to set ε = 1 to unfreeze EM and thereby destroy the problem in

the process. To show that this is not the case, consider the example in fig(D.4) which considers a truly

deterministic p(s|θ) yet, by applying antifreeze with ε < 1, we find the optimum at the correct place.

Applying anti-freeze on a MDP

To illustrate the validity of the ‘anti-freeze’ method in a MDP setting we consider the simple maze prob-

lem in fig(D.5). The transitions are deterministic and the policy is initialised in the worst possible way,

taking an action that moves in the opposite direction of the optimal policy, e.g. when the agent is in

the initial state it will move upwards instead of downwards. Since the environment is deterministic, the

normal deterministic EM-algorithm would perform trivial updates on this problem and freeze. When

implementing the anti-freeze idea one has to select the amount of noise and the form of the noise dis-

191

tribution. In the experiments we use an anti-freeze distribution Γs(s
′) to be uniform for all states that

satisfy the condition Qπ(a, s) = 0, ∀a ∈ A, i.e. states that have zero probability of receiving a reward

under the current policy. The transitions of the remaining states where left unchanged. When adding

noise to the transitions was set to 0.35. The results of the experiment are shown in fig(D.5) where we can

see that our algorithm converged in a single M-step. We also ran the standard EM-algorithm and policy

iteration on this maze problem with the transition probabilities. Policy iteration converges to the optimal

policy after roughly 20 policy updates and the EM-algorithm converges more slowly, since it does not

explicitly seek a deterministic policy. It should be noted that policy iteration also converges quickly if

we add a small amount of noise to the transitions.

Summary
In an attempt to increase the rate of convergence of the EM-algorithm we have considered an EM-

algorithm that restricts its search space to the space of deterministic policies. This algorithm uses the

insight that it is sufficient to consider the space of deterministic policies to obtain global optimality of

the MDP objective. A previous attempt was made at such an extension in [170], but their algorithm

is not a true EM-algorithm but actually a reformulation of policy iteration. Perhaps unsurprisingly this

restriction to the space of deterministic policies is able to increase the rate of convergence, and some-

times dramatically so, but at the cost of robustness of the algorithm. An important limitation of all EM

approaches is that in a deterministic environment (in a standard EM problem this corresponds to the

observation distribution being deterministic, and in the MDP case the analog is that the environment

transitions are deterministic) EM freezes, and no updating occurs. This can also happen in low noise

environments. We introduced a ‘anti-freeze’ method, that is similar to other ‘exploration’ techniques,

that potentially heals this problem by considering a modified environment being a convex combination

of the true environment and a noise distribution. To date we have only applied this ‘anti-freeze’ idea to

toy problems and it would be interesting to study its viability in larger scale problems, as well as other

settings such as independent component analysis. Additionally, it is of interest that this ‘anti-freeze’

approach also increased the convergence of other optimisation techniques, such as policy iteration, and

it is of interest to better understand this phenomena.

