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Abstract

Fabry disease (FD) results from mutations in the gene (GLA) that encodes the lysosomal enzyme a-galactosidase A (a-Gal A),
and involves pathological accumulation of globotriaosylceramide (GL-3) and globotriaosylsphingosine (lyso-Gb3). Migalastat
hydrochloride (GR181413A) is a pharmacological chaperone that selectively binds, stabilizes, and increases cellular levels of
a-Gal A. Oral administration of migalastat HCl reduces tissue GL-3 in Fabry transgenic mice, and in urine and kidneys of
some FD patients. A liquid chromatography-tandem mass spectrometry method was developed to measure lyso-Gb3 in
mouse tissues and human plasma. Oral administration of migalastat HCl to transgenic mice reduced elevated lyso-Gb3 levels
up to 64%, 59%, and 81% in kidney, heart, and skin, respectively, generally equal to or greater than observed for GL-3.
Furthermore, baseline plasma lyso-Gb3 levels were markedly elevated in six male FD patients enrolled in Phase 2 studies.
Oral administration of migalastat HCl (150 mg QOD) reduced urine GL-3 and plasma lyso-Gb3 in three subjects (range: 15%
to 46% within 48 weeks of treatment). In contrast, three showed no reductions in either substrate. These results suggest
that measurement of tissue and/or plasma lyso-Gb3 is feasible and may be warranted in future studies of migalastat HCl or
other new potential therapies for FD.
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Introduction

Fabry disease (FD, OMIM # 301500) is an X-linked lysosomal

storage disorder caused by mutations in the gene (GLA; Gene/

Locus MIM # 300644, Ref Seq NM_000169.2) that encodes the

lysosomal hydrolase a-galactosidase A (a-Gal A, EC 3.2.1.22) [1].

Mutations in GLA that are associated with FD lead to reduced

cellular a-Gal A activity [1]. Deficiency of a-Gal A results in

accumulation of neutral glycosphingolipids with terminal a-

galactosyl residues, primarily globotriaosylceramide (GL-3, Gb3,

ceramide trihexoside), in the plasma, and in lysosomal and non-

lysosomal compartments of cells of the blood vessels, skin, heart,

kidney, brain, and other tissues and organs throughout the body

[1,2,3,4].

FD clinical manifestations include progressive renal failure,

cardiac disease, cerebrovascular disease, small-fiber peripheral

neuropathy, and skin lesions, among other abnormalities [1,5].

The clinical presentation of FD spans a broad spectrum of severity,

and roughly correlates with residual a-Gal A activity [1]. Males
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with FD who have little or no detectable a-Gal A activity are

commonly referred to as ‘‘classic’’ Fabry patients and are most

severely affected. Female Fabry patients may be mildly symptom-

atic or as severely affected as classic males [6]. Many individuals

with FD present with a ‘‘later-onset’’ form, and generally have

higher residual a-Gal A activity than ‘‘classic’’ patients [7].

Recently, the deacylated GL-3 analogue, globotriaosylsphingo-

sine (known as lyso-Gb3), was found to be markedly increased in

the plasma of ‘‘classic’’ male Fabry patients relative to that of

normal individuals [8]. The relative excess of plasma lyso-Gb3

exceeded that of plasma GL-3 by more than an order of

magnitude [8,9,10]. In symptomatic Fabry females, plasma lyso-

Gb3 levels were clearly higher, while plasma GL-3 concentrations

were in the normal range [8,9,10]. High levels of plasma lyso-Gb3

correlated with increased risk for cerebrovascular disease or left

ventricular hypertrophy in FD males or females, respectively [9].

Greater life-time exposure to plasma lyso-Gb3 was found to

correlate with disease severity in male and female patients with FD

[9]. These observations suggest that plasma lyso-Gb3 is an

important indicator of FD and warrants further evaluation as a

marker of FD clinical severity and progression.

Currently, the only treatment available for Fabry patients is

enzyme replacement therapy (ERT), with two approved products:

FabrazymeH (agalsidase beta; Genzyme Corporation, Cambridge,

MA) and ReplagalH (agalsidase alfa; Shire Pharmaceuticals,

Cambridge, MA), generally given as regular every-other-week

infusions. In humans, ERT is generally well-tolerated, and in some

patients leads to lower levels of plasma, urine, and microvascular

endothelial GL-3, stabilized kidney function, and improved FD-

related clinical symptoms [11,12,13,14,15,16]. Recently, reduction

of plasma lyso-Gb3 levels in Fabry patients in response to ERT has

been demonstrated [8,10,17]. Plasma lyso-Gb3 reduction was

significantly lower in Fabry males who developed neutralizing

antibodies towards the infused enzyme compared to those who did

not [18].

A new approach to the treatment of Fabry disease, and which

may serve as an alternative to ERT for some patients, is small-

molecule pharmacological chaperone (PC) therapy

[19,20,21,22,23]. PCs selectively bind and stabilize some mutant

forms of a-Gal A in the endoplasmic reticulum, facilitate proper

protein folding and trafficking, and thereby increase lysosomal

enzyme activity. An investigational, orally available small molecule

PC, migalastat hydrochloride (1-deoxygalactonojirimycin HCl,

AT1001, GR181413A) is in Phase 3 clinical studies to evaluate its

safety and efficacy as a potential treatment for FD (see

ClinicalTrials.gov: NCT00925301 and NCT01218659). In pre-

clinical studies, oral administration of migalastat HCl reduced GL-

3 levels in plasma and disease-relevant tissues of Fabry transgenic

mice (hR301Q a-Gal A Tg/KO and TgM/KO mice) [24,25].

Furthermore, in Phase 2 clinical studies, oral administration of

migalastat HCl reduced GL-3 levels in urine and in kidneys of

some Fabry patients [26]. To date, the effect of migalastat HCl on

plasma or tissue levels of lyso-Gb3 has not been evaluated in pre-

clinical or clinical studies.

In this study, we developed methods for the detection and

quantification of lyso-Gb3 in mouse tissues and human plasma

using liquid chromatography-tandem mass spectrometry (LC-MS/

MS). These methods were used to analyze lyso-Gb3 levels in

disease-relevant tissues of GLA deficient (GLA KO) and hR301Q a-

Gal A Tg/KO mice at baseline, after intravenous administration

of rha-Gal A (agalsidase beta), or after oral administration of

migalastat HCl. The effects of these drug treatments on tissue lyso-

Gb3 levels were compared to their effects on tissue GL-3 levels

determined from the same mice. Lastly, plasma lyso-Gb3 was

analyzed in six male subjects with FD who were administered

migalastat HCl in Phase 2 clinical studies (see ClinicalTrials.gov:

NCT00283959 and NCT00283933) [26]. Again, the effect of

migalastat HCl treatment on plasma lyso-Gb3 levels was compared

to the effects on urine and plasma GL-3 in the same subjects. The

results show that measurement of tissue or plasma lyso-Gb3 levels,

in addition to GL-3 levels, in response to ERT or oral

administration of migalastat HCl is feasible and may be warranted

in future pre-clinical and clinical studies.

Materials and Methods

Materials
Globotriaosylceramide (GL-3), lactosylceramide, globotriaosyl-

sphingosine (lyso-Gb3) and plant glucopsychosine were purchased

from Matreya LLC (Pleasant Gap, PA). Migalastat HCl was

synthesized by Cambridge Major Laboratories (Germantown,

WI). Recombinant human a-Gal A (rha-Gal A; agalsidase beta;

FabrazymeH) was purchased from Genzyme Corporation (Cam-

bridge, MA). Analytical grade methanol, acetonitrile, dimethysulf-

oxide (DMSO), acetone, sodium acetate and formic acid were

purchased from Thermo Fisher Scientific (Waltham, MA).

Deionized water was generated using a Mili-Q UV Plus water

purifying system from Millipore (Billerica, MA).

Mice/breeding
Mice that express a mutant transgene of human a-Gal A

(R301Q) on a GLA knock-out (KO) mixed background of C57BL/

6 and B129Sve (hR301Q a-Gal A Tg/KO) and GLA deficient

(GLA KO) mice were obtained from Dr. Robert Desnick (Mt. Sinai

School of Medecine, New York, NY). Wild-type C57BL/6 mice

were purchased from Taconic Farms (Germantown, NY).

Oral Administration of Migalastat HCl to hR301Q a-Gal A
Tg/KO Mice

Migalastat HCl was administered orally to mice ad libitum in

drinking water as described previously [25]. Briefly, migalastat

HCl dosing solutions were made fresh weekly, with appropriate

concentrations determined based on the average daily water

consumption of hR301Q a-Gal A Tg/KO mice (,5 mL/day per

mouse) (all doses represent the free-base equivalent of the salt

form). At study completion, mice were euthanized with CO2.

Whole blood was drawn into lithium heparin tubes from the

inferior vena cava and plasma was collected by centrifuging blood

at 2,700 g for 10 minutes at 4uC. Heart, kidney, brain, and skin

(shaved and removed from the lower ventral side of the neck) were

quickly removed, rinsed in cold phosphate-buffered saline (PBS),

blotted dry, and stored on dry ice.

Tissue Homogenate Preparation Procedure
Tissue homogenates were prepared by adding 16 mL of

deionized water per mg of tissue (typically 15 to 25 mg). The

mixture was homogenized with lysing matrix A/D on a FastPrep-

24 homogenizer (MP Biomedicals, Solon, OH). Care was taken to

ensure complete homogenization of the tissue sample.

Determination of GL-3 in Plasma or Tissue Homogenate
GL-3 was extracted from plasma (human and mouse) or mouse

tissue homogenate by solid phase extraction (SPE) and analyzed

via LC-MS/MS as previously described [25,26]. Final tissue GL-3

concentrations were reported normalized to tissue weight. GL-3 in

human whole urine was determined and normalized to total

phosphatidylcholine (PC) as previously described [26].
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Lyso-Gb3 Calibration Standard and Quality Control (QC)
Sample Preparation

Stock solutions of lyso-Gb3 and the internal standard (IS)

glucopsychosine were prepared by dissolving the powders in a

solvent mixture of chloroform/methanol (2/1, v/v) at final

concentrations of 1 mg/mL. Two different stock solutions were

used to prepare calibration standard or quality control samples in

two steps. In the first step, one stock solution of lyso-Gb3 was used

to prepare calibration standard spiking solutions in DMSO. A

separate stock solution of lyso-Gb3 was used to prepare quality

control spiking solution in DMSO. In the second step, the lyso-

Gb3 calibration standard or QC spiking solution was added to

plasma or tissue homogenate (at a dilution of 99/1, v/v; plasma or

tissue homogenate/spiking solution) to prepare 8 matrix calibra-

tion standard levels: 1, 2, 5, 10, 25, 50, 100, 250 ng/mL and up to

5 matrix QC levels: 2, 4, 40, 80, 160, 200. The matrices (normal

control human or wild-type mouse plasma or tissue homogenate)

were pre-screened for levels of interfering peaks to lyso-Gb3 or the

IS. Blank matrices found to have low or undetectable levels of

interfering lipids were used.

Lyso-Gb3 Tissue or Plasma Sample Extraction Procedure
A 50 mL aliquot of the plasma or tissue homogenate was

transferred to a 13 mL silanized glass tube and 25 mL of the

internal standard (500 ng/mL glucopsychosine in DMSO) was

added. The mixture was further diluted with 1 mL of methanol,

vortexed briefly, then sonicated at room temperature for

approximately 10 minutes. After the addition of 500 mL of 1 N

HCl, the mixture was shaken on medium speed (setting = 5) on a

multi-tube vortexer (VWR, Radnor, PA) for approximately 30

minutes and then centrifuged at 3,220 g for 5 minutes at room

temperature. The supernatant was loaded onto a pre-conditioned

Oasis MCX 3 cc, 60 mg sorbent solid phase extraction cartridge

(Waters, Milford, MA) and lyso-Gb3 extracted as previously

described [27].

Analytical Run Composition
All analytical runs were populated with double blanks (normal

control human or wild-type mouse plasma or tissue homogenate

that was run to check for interfering chromatographic peaks),

blanks (normal control human or wild-type mouse plasma or tissue

homogenate fortified with IS and used to check the IS response),

two sets of calibration standards (one at the beginning of the run,

and the other at the end), and QC samples in triplicate randomly

placed within the runs.

HPLC Instrumental Conditions
Chromatographic separation of lyso-Gb3 and IS was conducted

using a liquid chromatography (LC) system that consisted of an

HTc autosampler coupled with two LC-20AD pumps from

Shimadzu (Columbia, MD). The chromatographic separation

was performed at room temperature under a gradient elution

profile using a Halo HILIC 2.7 mm, 7564.6 mm silica analytical

column from MAC MOD (Chadds Ford, PA). The following

binary mobile phase system was used: A: 5 mM ammonium

formate and 0.5% formic acid in acetonitrile/H2O (5/95, v/v),

and B: 5 mM ammonium formate and 0.5% formic acid in

acetonitrile/H2O (95/5, v/v). The following gradient profile was

used to elute lyso-Gb3 and IS from the analytical column: 0.00 to

1.0-min/100% B, 1.01 to 4.00-min/100% to 70% B, 4.01 to 6.00-

min/70% B, 6.01 to 7.50-min/60% B, 7.51 to 11:00-min/100%

B, and 11:01-min/stop.

MS/MS Instrumental Conditions
Tandem mass (MS/MS) spectrometry detection of lyso-Gb3

and IS was performed using a 4000QTrap mass spectrometer

(Applied Biosystems, Foster City, CA). All optimization was

performed via FIA with the above mentioned Shimadzu LC

system (see HPLC instrumental conditions) at a flow rate of

0.5 mL/minute and a 10 mL injection. Positive ion electrospray

ionization (ESI+) was used with the following conditions: an ion

spray voltage of +5500V, a source temperature of 500uC, a curtain

gas flow of 30 psi, a Gas1 flow of 20 psi, a Gas2 flow of 60 psi, a

de-clustering potential of +141V for lyso-Gb3 and +56V for the IS.

Nitrogen was used as the collision gas with a pressure of 6.00

mTorr. The collision energy was set at +53V for lyso-Gb3 and

+29V for the IS. Quantitative MS/MS data were collected using

selected reaction monitoring (SRM) scan mode with precursor ion

to product ion transitions of m/z 787 to m/z 282 for lyso-Gb3 and

m/z 460 to m/z 280 for the IS. These transitions represent the

neutral loss of hexose from these molecules. The total run time was

11 minutes. All MS/MS data were acquired and analyzed using

Analyst version 1.4.2 (Applied Biosystems).

Determination of Lyso-Gb3 in Plasma and Tissues
Samples

A linear calibration curve with weighting factor 1/x was

generated by plotting the ratio of the peak area of lyso-Gb3 to that

of the IS versus increasing standard actual concentrations of lyso-

Gb3 in plasma or tissue homogenate. The standard curve was used

to quantify lyso-Gb3 levels in the study samples.

Extraction Efficiency of Lyso-Gb3 from Plasma and Tissue
Homogenates

The extraction efficiency (also referred to as ‘‘recovery’’) of lyso-

Gb3 from biological matrices across the dynamic range of the

current method was assessed at three concentration levels in

plasma or tissue homogenates. The mean % recovery of lyso-Gb3

was defined as the ratio of the mean peak areas determined from

sample extracts to those determined from blank matrix extracts

that were spiked with lyso-Gb3 at similar concentrations after

extraction.

Data Analysis
Percent bias (% Bias) was defined as 100 times the difference

between the mean found concentration and the actual concentra-

tion divided by the actual concentration [% Bias = 1006[(mean

found concentration – actual concentration)/actual concentra-

tion]. Precision or percent coefficient of variation (% CV) was

defined as 100 times the standard deviation divided by the mean

found concentration [% CV = 1006(standard deviation/mean

found concentration)].

Determinations of statistical significance were conducted using

GraphPad Prism, version 5 (San Diego, CA). In the mouse studies,

percent reduction (or percent change) refers to the percent of the

mean difference from untreated (or control), and was calculated

using Excel 2003 (Microsoft, Redmond, WA) as follows: [(mean

untreated – treated) 4 mean untreated] * 100. In the plasma

samples from male FD patients, percent reduction (or percent

change) refers to the percent of the difference from baseline, and

was calculated using Excel 2003 as follows: [(baseline – treated) 4

baseline] * 100.

Ethics Statement
All animal experiments including animal husbandry were

conducted according to protocols approved by the Rutgers
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University Animal Care and Facilities Use Committee. Patients

signed informed consent to future use of their samples for research

related to FD. These plasma samples were obtained during two

open-label, Phase 2 clinical studies (see ClinicalTrials.gov:

NCT00283959 and NCT00283933), which received Ethical

Committee/Institutional Review Board (IRB) approval and were

conducted according to accepted standards of Good Clinical

Practice (ICH-GCP) and in agreement with the Declaration of

Helsinki [26].

Results

Chromatography and Calibration Curves
The base peak [M+H]+ at m/z = 787 was consistent with the

lyso-Gb3 molecular weight of 787 (Fig. 1A,B). The product ion

spectrum of m/z = 787 exhibited a major product ion at m/

z = 282 (Fig. 1C). Thus, the SRM transition m/z = 787 R m/

z = 282 was used to quantify lyso-Gb3 in plasma and tissue

homogenates.

The base peak [M+H]+ at m/z = 460 was consistent with the

glucopsychosine molecular weight of 460 (Fig. 2A,B). The

product ion spectrum of m/z = 460 exhibited a major product

ion at m/z = 280 (Fig. 2C). Therefore, the SRM transition m/

z = 460 R m/z = 280 was used to quantify glucopsychosine in

plasma and tissue homogenates.

The retention times for lyso-Gb3 and the glucopsychosine IS

were approximately 6.3 minutes and 5.7 minutes, respectively,

with an 11-minute run time (Figure 3). There were interfering

peaks due to the presence of endogenous lyso-Gb3 and

glucopsychosine in both normal control plasma and tissue

homogenate samples. These interfering peaks were generally

#25% of the lyso-Gb3 peak at the LLOQ (1 ng/mL) and #1% of

the glucopsychosine peak at the concentration of 500 ng/mL used

in this assay.

The linear regression y = ax+b with a weighting factor of 1/x

was determined to best represent the relationship of the lyso-Gb3

concentration in plasma or tissue homogenates and the detector

response (defined as the peak area ratio of lyso-Gb3 to the IS).

Lyso-Gb3 levels from unknown samples were determined based on

this calibration curve. The overall coefficient of determination r2

of the calibration curves in all matrices was $0.988.

Figure 1. Lyso-Gb3: structure, MS, and product ion spectra. The lyso-Gb3 molecule (A) was detected and confirmed in positive electrospray
ionization mode (ESI+), where (B) shows the lyso-Gb3 [M+H]+ ion at m/z of 787, and (C) shows the most intense product ion at m/z 282. The data were
collected in product ion scan mode.
doi:10.1371/journal.pone.0057631.g001
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Assay Bias and Precision
QC samples were used to assess intra- and inter-assay bias and

precision of the LC-MS/MS assay. QC samples were prepared in

normal control human or wild-type mouse plasma or tissue

homogenates at the LLOQ, low, middle, and high concentration

range of the calibration curve, and were analyzed on at least two

separate days. The QC samples were populated in the beginning,

middle, and end of the analytical run to account for sample

stability and possible instrumental drift. An intra-assay bias

criterion was set, whereby the analytical run was accepted if 2/3

of the QC samples were within 620% (625% for the LLOQ) of

the actual lyso-Gb3 concentration.

The intra-assay bias in the four mouse matrices ranged from

25.70% to 15.6% of actual values (data not shown). The intra-

assay precision across all matrices was #16.6% (22.9% at the

LLOQ) (data not shown). The inter-assay bias across the four

mouse matrices ranged from 25.70% to 15.6% of actual values

(Table 1). The inter-assay precision across the four matrices was

#15.8% (Table 1). Inter- and intra-assay bias and precision were

also assessed in quality control samples prepared in normal control

human plasma, as described above. In summary, the intra-assay

bias ranged from 212.8 to 15.6% of actual values (data not

shown). The intra-assay precision ranged from 2.52 to 19.8% (data

not shown). The inter-assay bias in human plasma ranged from

26.19 to 3.60% of actual values (Table 2). The inter-assay

precision ranged from 9.25 to 16.4% (Table 2).

Recovery of Lyso-Gb3 from Plasma and Tissue
Homogenates

The mean % recovery of lyso-Gb3 from human plasma ranged

from 76% to 104% at the three concentration levels used in this

experiment (Table 3). The mean % recovery in mouse plasma or

tissue homogenates was greater than or equal to 65% across the

actual concentrations of lyso-Gb3 assessed in the experiment

(Table 3).

Determination of Lyso-Gb3 in Normal and Fabry Mouse
Tissues

An a-Gal A gene knock-out (GLA KO) mouse model of FD that

shows significant accumulation of GL-3 in multiple tissues

including skin, heart, and kidney has been described

[25,28,29,30]. In addition, a new mouse model of Fabry disease

that expresses a human R301Q GLA transgene transcriptionally

regulated by the human GLA promoter on a GLA KO background

(hR301Q a-Gal A Tg/KO) has also been shown to accumulate

Figure 2. Glucopsychosine (IS): structure, MS, and product ion spectra. The glucopsychosine molecule (A) was detected and confirmed in
positive electrospray ionization mode (ESI+), where (B) shows the glucopsychosine [M+H]+ ion at m/z of 460, and (C) shows the most intense product
ion at m/z 280. The data were collected in product ion scan mode.
doi:10.1371/journal.pone.0057631.g002
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GL-3 in Fabry disease-relevant tissues [25]. Recently, the GLA KO

mice have been shown to accumulate lyso-Gb3 in multiple tissues,

as measured by o-phtaldialdehyde (OPA)-derivitization of lyso-

Gb3 followed by HPLC-fluorescence detection (HPLC-FD) [8,31].

However, lyso-Gb3 levels have not yet been characterized in the

hR301Q a-Gal A Tg/KO mice. Thus, to assess whether tissue

lyso-Gb3 accumulation in GLA KO mice can be reproduced using

our LC-MS/MS assay, and to extend the characterization of the

hR301Q a-Gal A Tg/KO mouse model, the baseline levels of

lyso-Gb3 in heart, kidney, and skin tissues were measured in 12-

week old male wild-type (C57BL/6), hR301Q a-Gal A Tg/KO,

and GLA KO mice by LC-MS/MS (Fig. 4A). GL-3 levels were

also measured by LC-MS/MS in the same tissue samples for

comparison (Fig. 4B).

Lyso-Gb3 levels were below the lower limit of quantification

(BQL ,1 ng/mL) in wild-type mouse tissues, but were markedly

Figure 3. Representative LC-MS/MS chromatograms of lyso-Gb3 and glucopsychosine extracted from human plasma. (A) Blank
human plasma without spiked lyso-Gb3 or glucopsychosine; (B) lyso-Gb3 calibration standard at LLOQ = 1 ng/mL; glucopsychosine (IS) in control
human plasma.
doi:10.1371/journal.pone.0057631.g003
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elevated in hR301Q a-Gal A Tg/KO and GLA KO mice. GLA

KO mice showed significantly higher tissue levels of lyso-Gb3 (2.9

to 4.9-fold) compared to those found in hR301Q a-Gal A Tg/KO

mouse tissues. The trend seen for lyso-Gb3 levels (i.e., GLA KO

mice.hR301Q a-Gal A Tg/KO mice.wild-type mice) was

similar for GL-3 levels determined in the same tissues of these

transgenic and wild-type mice.

Administration of rha-Gal A Decreases lyso-Gb3 and GL-3
Levels in GLA KO Mice

Intravenous administration of rha-Gal A (agalsidase beta,

1 mg/kg body weight) to GLA KO mice has been shown to result

in both decreased lyso-Gb3 and GL-3 levels as measured by non-

LC-MS/MS methods (e.g., HPLC-FD of OPA-derivitized lyso-

Gb3 and high performance thin layer chromatography with

immunostaining and luminescent imaging of GL-3) [31]. In that

study, the observed relative decrease in kidney lyso-Gb3 was

greater than the decrease in kidney GL-3. Thus, to assess whether

a similar pattern of decrease can be reproduced using LC-MS/

MS, lyso-Gb3 and GL-3 levels were determined in heart, kidney,

skin, and plasma of GLA KO mice seven days after a single

intravenous administration of rha-Gal A (1 mg/kg agalsidase beta;

Fig. 5). Lyso-Gb3 and GL-3 levels in all tissues and plasma were

significantly (p,0.05) lower in the rha-Gal A-treated animals

compared to untreated animals. The reductions in lyso-Gb3 levels

(mean 6 std. err.) were 27262%, 26362%, 26767%, and

26363% in kidney, heart, skin and plasma, respectively. The

reductions in GL-3 levels were 22569%, 27162%, 27068%,

and 25963% in kidney, heart, skin, and plasma, respectively.

Thus, consistent with previous observations, rha-Gal A adminis-

tered to GLA KO mice in this study generally resulted in similar

reductions of lyso-Gb3 and GL-3 levels in most FD-relevant tissues

and plasma, except in kidney where the reduction in lyso-Gb3

(272%) was substantially greater than that seen for GL-3 (225%).

Administration of Migalastat HCl Decreases Tissue Lyso-
Gb3 Levels in hR301Q a-Gal A Tg/KO Mice

Migalastat HCl is a pharmacological chaperone that can

selectively bind, stabilize, and increase cellular levels of a-Gal A

[20,23,32,33,34,35]. Recently, oral administration of migalastat

HCl was shown to reduce GL-3 levels in tissues of hR301Q a-Gal

A Tg/KO mice [25]. In that study, dose optimization revealed

that an even greater reduction in GL-3 was achieved using less-

frequent administration as compared to daily administration of

migalastat HCl. Thus, in the current study, we assessed the effect

of migalastat HCl on tissue lyso-Gb3 levels in these mice using our

LC-MS/MS assay, and compared these results to the effect

observed on tissue GL-3 as determined from the same tissue

samples. To this end, hR301Q a-Gal A Tg/KO mice were

administered migalastat HCl (100 mg/kg) ad libitum in drinking

water either daily or less frequently (four consecutive days with

drug followed by three consecutive days with drinking water only;

i.e., 4 on/3 off) for 28 days.

Daily and less-frequent administration of migalastat HCl to

hR301Q a-Gal A Tg/KO mice resulted in significant reductions

Table 1. Inter-assay % Bias and precision (% CV) of lyso-Gb3

quality control mouse tissue samples.

QC (Actual Conc.) Kidney Skin Heart Plasma

Low1

(2.00 ng/mL)
Mean ±
SD

2.166

0.306
2.026

0.233
2.126

0.122
2.1560.210

% CV 14.2 11.5 5.77 9.78

% Bias 7.89 1.00 6.17 7.36

Low2

(4.00 ng/mL)
Mean ±
SD

4.106

0.327
4.186

0.517
4.236

0.413
4.0960.616

% CV 8.0 12.4 9.78 15.1

% Bias 2.50 4.43 5.67 2.25

Mid
(80.0 ng/mL)

Mean ±
SD

84.96

8.43
82.36

5.51
92.56

3.91
79.8612.6

% CV 9.93 6.70 4.23 15.8

% Bias 6.08 2.88 15.6 20.250

High
(160 ng/mL)

Mean ±
SD

1626

19.7
1676

13.9
1816

27.2
151611.8

% CV 12.2 8.34 15.0 7.83

% Bias 1.32 4.50 13.2 25.70

Quality control samples were prepared in wild-type mouse plasma or tissue
homogenates at four concentration levels and analyzed on three separate days.
Six to 10 replicates at each concentration level were used for inter-assay
determination. Conc., concentration; SD, Standard Deviation.
doi:10.1371/journal.pone.0057631.t001

Table 2. Inter-assay % Bias and precision (% CV) of lyso-Gb3 quality control human plasma samples.

QC (actual conc.) Low1 (2.00) Low2 (4.00) Mid1 (40.0) Mid2 (80.0) High (200)

Mean ± SD (ng/mL) 2.0760.249 3.7560.617 41.265.20 75.066.94 200619.7

% CV 12.0 16.4 12.6 9.25 9.84

% Bias 3.60 26.16 2.95 26.19 0.15

Quality control samples were prepared in normal human plasma at five concentration levels and analyzed on four separate days. Twenty replicates at each
concentration level were used for inter-assay determination. Conc., concentration (ng/mL); SD, Standard Deviation.
doi:10.1371/journal.pone.0057631.t002

Table 3. Recovery of lyso-Gb3 from plasma and tissue
homogenates.

% Recovery (Mean)

Human Mouse

Actual Conc.
(ng/mL) Plasma Plasma Skin Heart Kidney

2 76 80 70 88 76

10 94 76 64 66 71

160 104 87 69 86 77

Recovery samples were prepared in normal human plasma, and wild-type
mouse tissue homogenates or plasma at three concentration levels and
analyzed in quintuplicates (n = 5). % recovery (mean) = 1006(mean peak area of
extracted lyso-Gb3/mean peak area of unextracted lyso-Gb3).
doi:10.1371/journal.pone.0057631.t003
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in lyso-Gb3 levels in kidney, heart, and skin (p,0.05 for all three

tissues using either regimen) (Fig. 6A). Furthermore, significantly

greater reductions in tissue lyso-Gb3 levels were seen with the ‘‘4

on/3 off’’ regimen compared to daily administration. Lyso-Gb3

reductions (mean 6 std. err.) of 22767%, 24066%, and

26766% were seen in kidney, heart, and skin, respectively, with

daily migalastat HCl administration; reductions of 25965%,

26463%, and 28161%, respectively, were seen with the less-

Figure 4. Baseline levels of lyso-Gb3 and GL-3 in normal and Fabry mouse tissues. Baseline levels of (A) lyso-Gb3 and (B) GL-3 were
measured in kidney, heart, and skin tissues of twelve-week-old male wild-type (C57BL/6; WT), hR301Q a-Gal A Tg/KO (Tg/KO), and GLA KO (KO) mice.
*p,0.05 compared to WT, t-test; #p,0.05 compared to KO, t-test; WT contained non-detectable levels of lyso-Gb3. BQL = Below Quantitation Limit
,0.034 ug/g tissue weight; the lyso-Gb3 and GL-3 data represent the mean 6 SEM of 5–10 mice/group.
doi:10.1371/journal.pone.0057631.g004
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frequent regimen. In general, similar effects were seen on GL-3

levels determined from the same tissues. GL-3 reductions of

2468%, 24964%, and 26462% were seen in kidney, heart,

and skin, respectively, with daily migalastat HCl administration;

reductions of 23365%, 26363%, and 26163%, respectively,

were seen with the less-frequent regimen. In general, GL-3

reduction was greater with the less-frequent regimen (Fig. 6B),

consistent with previous findings [25]. In addition, reduction of

kidney lyso-Gb3 in hR301Q a-Gal A Tg/KO mice with either

migalastat HCl regimen was substantially greater than the

reductions in kidney GL-3, and was consistent with the greater

reduction of lyso-Gb3 compared to GL-3 seen in GLA KO mouse

kidney after administration of rha-Gal A.

The Effects of Migalastat HCl on lyso-Gb3 in Plasma of FD
Patients

In two open-label, Phase 2 clinical studies (see ClinicalTrials.-

gov: NCT00283959 and NCT00283933) a total of nine male FD

patients were administered 150 mg migalastat HCl orally every

other day (QOD) for up to 48 weeks. Increases in peripheral blood

mononuclear cell (PBMC), skin, and kidney a-Gal A activity of at

least 50% were seen in 6 of 9 patients. GL-3 decreases were also

seen in skin, urine, and kidney. In urine, all nine patients had

elevated GL-3 levels prior to administration of migalastat HCl. In

5 of the 9 patients, urine GL-3 levels were lower by at least 20% at

the last measured time point compared to baseline [26].

In the current study, the effects of treatment with migalastat

HCl on plasma lyso-Gb3 levels were retrospectively assessed in a

subset of male FD patients from these Phase 2 clinical studies. The

Figure 5. Lyso-Gb3 and GL-3 reductions in GLA KO mice administered rha-Gal A. Twelve-week old male GLA KO mice were used as control
or administered 1 mg/kg rha-Gal A via bolus tail vein injection. Kidney, heart, skin, and plasma were harvested 7 days post-administration for the
determination of (A) lyso-Gb3 and (B) GL-3 levels. The lyso-Gb3 and GL-3 data represent the mean 6 SEM of 5 mice/group. *p,0.05 compared to
untreated; t-test.
doi:10.1371/journal.pone.0057631.g005
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effects on plasma lyso-Gb3 were compared to the effects on other

potential biomarkers, such as plasma and urine GL-3, in the same

patients. To this end, lyso-Gb3 and GL-3 levels were analyzed in

plasma samples collected at baseline, as well as after 12, 24, and 48

weeks of migalastat HCl administration to six male FD patients

during the Phase 2 studies. These six patients signed informed

consent to future use of their samples for research related to FD.

Furthermore, three of these FD patients had the GLA missense

mutations p.N215S, p.P205T, and p.R301Q, and had shown

increased PBMC a-Gal A activity and decreased urine GL-3 levels

after migalastat HCl administration. The other three had GLA

missense mutations, p.C94S, p.R112C and p.F295C, had shown

increase in PBMC a-Gal A activity with no decrease in urine GL-3

levels after migalastat HCl administration at 150 mg QOD for up

to 48 weeks [26].

Figure 6. Lyso-Gb3 and GL-3 reduction in hR301Q a-Gal A Tg/KO mice administered migalastat HCl. Eight-week old male Fabry hR301Q
a-Gal A Tg/KO mice were administered either water or migalastat HCl (100 mg/kg ad libitum in drinking water) daily or less frequently (4 on/3 off) for
28 days. Kidney, heart, and skin were subsequently harvested and analyzed for (A) lyso-Gb3 and (B) GL-3 levels. The lyso-Gb3 and GL-3 data represent
the mean 6 SEM of 10 mice/group. *p,0.05 compared to control; #p,0.05 compared to daily; t-test.
doi:10.1371/journal.pone.0057631.g006
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The baseline plasma lyso-Gb3 levels of the six FD patients

ranged from 4.70 to 64.9 ng/mL (Fig. 7A, B; left panels).
These levels were markedly elevated above normal (normal level

,2.00 ng/mL in the current study (n = 6), consistent with the

previously reported normal range of 0.12 to 1.12 ng/mL

determined from 178 healthy control plasma samples; [36]). In

the three FD patients with p.P205T, p.N215S, and p.R301Q

mutations who had shown urine GL-3 changes ranging from

220% to 259% after 24 or 48 weeks on migalastat HCl (Fig. 7A;
middle panel), plasma lyso-Gb3 levels were also reduced with

changes ranging from 215% to 246% at the same time points

(Fig. 7A; left panel). In the three FD patients with p.C94S,

p.R112C, and p.F295C mutations who had shown changes in

urine GL-3 ranging from +7% to +192% after 24 or 48 weeks on

drug (Fig. 7B; middle panel), plasma lyso-Gb3 levels showed

changes of 22.6% to +106% (Fig. 7B; left panel).

In contrast to the marked baseline elevations seen for urine GL-

3 and plasma lyso-Gb3, baseline plasma GL-3 levels were either

moderately elevated or in the high-normal range in these six FD

patients (range: 2.57 to 7.87 mg/mL compared to 1.15 to 2.50 mg/

mL in 6 different normal plasma samples that were assessed in this

study, and compared to 7 mg/mL upper limit of normal reported

previously [37]). These results were consistent with the male FD

patient plasma GL-3 ranges previously reported in multiple

independent investigations [8,9,17]. In addition, plasma GL-3

changes after migalastat HCl administration (Fig. 7A, B; right
panels) were not consistent with the changes seen in urine GL-3

or plasma lyso-Gb3 for some of the patients.

Discussion

Lyso-Gb3, a deacylated analogue of GL-3, the primary substrate

which accumulates in FD, has recently been shown to be elevated

in the plasma of Fabry patients and is an important new indicator

of FD [8]. In the current study, an LC-MS/MS method was

developed that allows accurate and quantitative measurement of

lyso-Gb3 in human plasma as well as in mouse skin, kidney, heart,

and plasma. Preliminary assessment indicates that the method can

also be applied to lyso-Gb3 quantification in mouse brain (data not

shown).

Previous studies of lyso-Gb3 in mouse tissues have used non-LC-

MS/MS methods with lower sensitivity (,10 ng/mL LLOQ) that

have required lengthy and complicated preparation procedures

[8,31]. These same methods were used to discover the presence of

elevated lyso-Gb3 in the plasma of FD patients [8]. More recently,

high sensitivity (, 2 ng/mL LLOQ in human plasma), rapid LC-

MS/MS methods for measurement of lyso-Gb3 in human urine

and plasma have been developed [27,36,38,39]. One of these

human plasma methods used a non-commercially available

glycine derivative of lyso-Gb3 as an internal standard. Our

method utilizes commercially-available plant glucopsychosine as

the internal standard, the same internal standard used by Auray-

Blais et al. for the measurement of lyso-Gb3 in human urine [27];

and by Boutin et al. for the measurement of lyso-Gb3 in human

plasma [39]. A previously stated concern about the use of plant

glucopsychosine as an internal standard was the risk of interfer-

ence with the glucopsychosine measurement depending on patient

Figure 7. Plasma lyso-Gb3, as well as urine and plasma GL-3 levels in male FD patients after oral administration of migalastat HCl.
(A) Male FD patients who showed urine GL-3 reductions after oral administration of migalastat HCl; (B) male FD patients who did not show urine GL-3
reductions after oral administration of migalastat HCl; ULN, upper limit of normal. The ULN was determined for urine GL-3, and the value is 74.6 pmol/
nmol PC. The same acronym denotes the upper range of normal for plasma lyso-Gb3 (value is 1.12 ng/mL; [36]) and plasma GL-3 (value is 2.50 mg/
mL).
doi:10.1371/journal.pone.0057631.g007
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nutrition status or consumption of a plant-rich diet [36,38]. Thus,

in our assays the concentration of the internal standard (500 ng/

mL) that was used achieved peak area counts in a range where the

contribution of endogenous lipid interference was limited to 1% or

less of the internal standard response. In addition, the previously

reported methods have not been evaluated in mouse tissues or

plasma. Thus, the LC-MS/MS method we have developed has

equivalent sensitivity, accuracy, precision, reliability, and simplic-

ity, and works for a variety of sample and tissue types in mice and

humans while not requiring access to specialty reagents.

We report the first LC-MS/MS analysis of lyso-Gb3 levels, with

comparison to GL-3 levels, determined in multiple tissues from

two different Fabry mouse models at baseline, after intravenous

administration of rha-Gal A, or after oral administration of the

PC, migalastat HCl. The results reproduced previous findings of

elevated baseline lyso-Gb3 in GLA KO mice as measured by non-

LC-MS/MS methods [8,31]. Interestingly, hR301Q a-Gal A Tg/

KO mice showed intermediate levels of lyso-Gb3 and GL-3 in

tissues compared to GLA KO and wild-type mice, perhaps due to

the low but significant residual activity of the transgene

[20,25,33,40]. As shown previously [31], intravenous administra-

tion of rha-Gal A to GLA KO mice reduced lyso-Gb3 and GL-3

levels to similar extents in multiple tissues, except kidney in which

the lyso-Gb3 reduction was greater. Furthermore, similar reduc-

tions in lyso-Gb3 and GL-3 were seen across most tissues, except in

kidney, of the transgenic mice after daily or less-frequent oral

administration of migalastat HCl. In both Fabry mouse models,

kidney GL-3, but not lyso-Gb3, consistently showed less reduction

than other tissues in response to the different treatments and

regimens. Less kidney GL-3 reduction in the transgenic mice after

oral administration of miglastat HCl has been reported previously

[25]; and may be due to differences in the turnover rates of the

affected cell types in the various tissues, differences in the tissue

concentrations and rates of clearance of the PC, or the possibility

of GL-3 re-uptake into kidney from the urine [25]. In addition, it is

interesting to note that our lyso-Gb3 and GL-3 results were from

tissues of male mice. Unlike normal humans or FD patients

[41,42], mature male wild-type and GLA KO mice have markedly

elevated urine and kidney GL-3 levels as compared to mature

female wild-type and GLA KO mice [43]. This murine-specific sex

difference is thought to be due to a testosterone-induced form of

GL-3 that is secreted into the urine in multi-lamellar bodies

[44,45,46], which appears to be inaccessible to exogenously

administered rha-Gal A [30]. Moreover, incomplete clearance of

kidney GL-3 in male GLA KO mice has been reported in response

to other forms of therapy [47,48,49,50]. However, in one study of

female TgM/KO mice expressing hR301Q under a b-actin

promoter (a different hR301Q mouse model than used in the

current studies), oral administration of migalastat HCl (3 mg/kg ad

libitum in drinking water for 4 weeks) again led to an incomplete

reduction (246%) in kidney GL-3 levels [24], although GL-3

reduction in other tissues was not assessed. Thus, less GL-3

reduction in kidney as compared to other tissues of male Fabry

mice reported here is consistent with previous results and may be

due to a number of factors related to the kidney tissue, the drug

treatments, and/or to the sex of the animals used in the studies.

Importantly, the consistently greater reductions in kidney lyso-Gb3

as compared to GL-3 seen in the current studies suggest that

kidney lyso-Gb3 may be a more sensitive indicator of increased

kidney a-Gal A activity in situ in pre-clinical studies of male Fabry

mice.

We also report the first analysis of lyso-Gb3 levels in plasma

from male Fabry patients after oral administration of migalastat

HCl, an investigational PC that is currently in Phase 3 studies for

the treatment of FD (see ClinicalTrials.gov: NCT00925301 and

NCT01218659). This retrospective analysis of samples obtained

during Phase 2 clinical studies (see ClinicalTrials.gov:

NCT00283959 and NCT00283933) [26] showed that the baseline

plasma lyso-Gb3 levels in all six patients studied (6 to 83 nM) were

markedly elevated above normal (normal ,1.4 nM). The baseline

plasma lyso-Gb3 range was lower, but overlapped with the

previous reported plasma lyso-Gb3 range seen in males from a

larger cohort of patients with ‘‘classic’’ FD (range: 51 to 489 nM;

n = 37 [9]).

Three FD patients in the Phase 2 clinical studies had GLA

missense mutations (p.N215S, p.P205T, and p.R301Q), and had

shown increased PBMC a-Gal A activity and decreased urine GL-

3 levels after migalastat HCl administration [26]. Based on the

current study, these three FD patients also showed decreased

plasma lyso-Gb3 levels after oral administration of migalastat HCl

(150 mg QOD for up to 48 weeks). The other three FD patients

had GLA mutations corresponding to p.C94S, p.R112C, and

p.F295C, and had not shown increased PBMC a-Gal A activity or

decreased urine GL-3 levels after migalastat HCl administration

[26]. Based on the current study, these three FD patients also did

not show decreased plasma lyso-Gb3 levels after oral administra-

tion of migalastat HCl. These results indicate that in this limited

number of male FD patients, the change in plasma lyso-Gb3 was

consistent with the change in urine GL-3 after oral administration

of migalastat HCl. In contrast, plasma GL-3 changes from

baseline were not consistent with the changes seen in urine GL-3

or plasma lyso-Gb3 for some of the patients. Furthermore, the

baseline plasma GL-3 levels were not clearly elevated in all of the

patients, consistent with high-normal plasma GL-3 ranges

previously reported in male FD patients [8,9,10,17].

In the three FD patients that showed plasma lyso-Gb3

reductions, the magnitudes of the changes (215% to 247%) after

24 to 48 weeks of migalastat HCl administration were lower than

those (e.g., 268%, n = 22) seen in male classic FD patients after 48

weeks of treatment with different ERT regimens [8,10,17].

However, in those previous studies, the baseline plasma lyso-Gb3

levels in the ERT-treated male patients were markedly greater

(102 to 397 nM, ,250 to 450 nM, and ,75 nM respectively). It is

possible that greater plasma lyso-Gb3 reductions may be

dependent, in part, on greater elevation at baseline; further

investigation is warranted.

For more than a decade, monitoring plasma or urine GL-3

levels as a diagnostic tool for FD and as a marker of treatment

efficacy has been evaluated in numerous independent investiga-

tions [51,52]. Urine GL-3 was more consistently elevated as

compared to plasma GL-3, particularly in females with FD.

However, for some females and a few exceptional males with

certain ‘later-onset’ disease-associated mutations (e.g., N215S and

M296I), urine GL-3 was in the normal range, limiting its

diagnostic value for such patients [53]. More recently, plasma

lyso-Gb3 has shown greater sensitivity than plasma GL-3 as an

indicator of FD in females [9]. However, a direct and thorough

comparison of the sensitivity of plasma lyso-Gb3 to that of urine

GL-3 is not yet available. The current study provides an initial

retrospective assessment of plasma lyso-Gb3 and urine GL-3 levels

at baseline and in response to oral administration of migalastat

HCl in samples from the same FD patients. In the small number of

male FD patients tested, plasma lyso-Gb3 and urine GL-3 showed

comparable results. Future clinical investigation to extend the

comparison of urine GL-3 and plasma lyso-Gb3 to larger FD

patient cohorts, preferably matched for age, sex, disease severity,

and GLA genotype is warranted.
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In conclusion, we have developed a sensitive and robust method

for the detection of lyso-Gb3 levels in mouse tissues and human

plasma using LC-MS/MS. We have found that lyso-Gb3 is

elevated in disease-relevant tissues of a transgenic mouse model of

Fabry disease. We have shown significant reductions in the

transgenic mouse tissue lyso-Gb3 levels in response to daily or less-

frequent oral administration of migalastat HCl. The tissue lyso-

Gb3 reductions were generally equal to or greater than those of

GL-3 determined from the same mice. The LC-MS/MS method

was also used to retrospectively analyze plasma lyso-Gb3 levels in

six male subjects orally administered migalastat HCl (150 mg

QOD) in Phase 2 clinical studies [26]. Importantly, the results

show for the first time that migalastat HCl can lower plasma lyso-

Gb3 levels in some FD patients treated with this PC. Thus, the LC-

MS/MS method developed here represents a single approach that

enables accurate measurement of lyso-Gb3 in pre-clinical and

clinical studies of investigational new therapies for the treatment of

FD, as well as in new studies of currently available ERTs. As

migalastat HCl is in Phase 3 clinical studies to further assess its

safety and efficacy for the treatment of FD, the results from the

current studies suggest that monitoring of lyso-Gb3, in addition to

other assessments, is feasible and warranted in future prospective

or retrospective studies.
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