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Abstract

Mesoscale jet formation due to the Coriolis Effect is well understood over sharp changes in surface

roughness such as coastlines (Hunt et al. 2004). This sharp change in surface roughness is experienced by

the atmosphere flowing over, and ocean flowing under, a compacted sea ice edge. Sea ice edge jets have

been observed (Johannessen et al. 1983). This thesis presents a study of a dynamic sea ice edge responding

to atmospheric and oceanic jet formation during various wind and ocean current conditions. An idealised

analytical model of sea ice drift is created using the momentum balance of Gray & Morland (1994) and

the viscous plastic rheology of Hibler (1979). This is compared to an ice edge in the Los Alamos sea ice

climate model (CICE) run on an idealised domain. A scheme has been developed which analyses sea ice

concentration and adds jets to the CICE model forcing data. The response of the model to jet formation is

tested at various resolutions.

The formation of atmospheric jets at the sea ice edge is shown to increase the wind speed parallel to the

sea ice edge and results in the formation of a sea ice edge jet. The increase is dependent upon the angle

between the ice and wind and results in an increase in ice transport along the sea ice edge of 40%. Observa-

tions and climate model data of the polar oceans has been analysed to show areas of likely atmospheric jet

formation with the Fram Strait being of particular interest. The possibility of oceanic jet formation and the

resultant effect upon the sea ice edge is less conclusive. The coupling between the components of climate

models is currently crude and does not allow for jet formation (Maslowski et al. 2012). Most climate models

also misrepresent the ice drift through the Fram Strait leading to errors in the prediction of Arctic sea ice

extent.
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Table 1: Mathematical Notation

General Variables
(x, y, z) Eulerian postion vector
u = (u, v) Two dimensional velocity vector

= (u, v, w) Three dimensional velocity vector
k = (0, 0, 1) Vertical identity vector
t Time
h Thickness
T Temperature
S Salinity
A Sea ice concentration
ρ Density
m Mass
P Pressure
fc = 2Ω sin θ Coriolis parameter for latitude

θ and the Earth’s rotational speed Ω
g = 9.8m s−1 Gravitational acceleration

Sea Ice Model Variables (Chapter 2)
G(h, t) Sea ice thickness distribution
f Sea ice growth rate
ψ Mechanical redistribution of sea ice
ξ = ∂ui

∂xi
Sea ice velocity divergence

ρI Sea ice density
αI Ratio of vertical to horizontal ice flux

during ridging
kI Sea ice mass transfer from leads
qI Volume flux of surface accumulation
bI Volume flux of basal melt
cT Thermal capacity of sea ice
k Conductivity of sea ice
I0 Penetrating solar radiation
κB Beers extinction coefficient
q Energy of melting of sea ice
Lo Sea ice latent heat of fusion
µm Relation between sea salinity and

melting temperature
τ̃ a Atmospheric drag upon sea ice
τ̃ o Oceanic drag upon sea ice
S Ocean tilt force
σ Sea ice stress tensor

Jet Calculations (Chapter 3)
UA(O) Far field wind (ocean) speed
(u′, v′) Fluid velocity perturbations
p Pressure perturbation
hA Far field ABL (Atmospheric Boundary

Layer) height
hM Far field OML (Ocean Mixed

Layer) depth
h Perturbation to the shallow layer

(ABL or OML)
ht Perturbation to the ocean surface
hb Perturbation to the mixed layer
hs Surface shear slayer height
ls Shear layer height
z00 Ocean surface roughness length
z0 Broken sea ice roughness length
ρA(O) Air (ocean) density in the ABL (OML)
̂∆ρA(O) Air (ocean) density inversion strength

∆gA(O) ABL (OML) reduced gravity
FA(O) Atmospheric (Oceanic) Froude number
LRA(O) Atmospheric (Oceanic) Rossby radius
(−u′w′)[z] Reynolds stresses
(−u′v′)[z]
∆(−u′w′)[z] Reynolds stress perturbations
∆(−u′v′)[z]
(ū, v̄) Fluid velocity averaged perturbations
F ,G Averaged body forces
φ, φ′ Original and modified angle between far

field wind or current and the sea ice edge
(X,Y ) Non-dimensionalised position vector

(aligned with the sea ice edge)
F̂ , Ĝ, R̂ Scaled forcing functions,
R̂(0), R̂(1) leading and first order
(û, v̂) Scaled velocity perturbation,
û(0), û(1) leading and first order,
v̂(0), v̂(1) aligned with wind or current
ĥ Scaled thickness perturbation,
ĥ(0), ĥ(1) leading and first order
∆CF ,∆CG Surface drag parameterisation functions
∆0,∆u Surface drag component functions
κ von Kármán’s constant
n̂ Non-dimensional distance

normal to the ice edge
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Φ[X,Y ] Forcing potential function
∆̂CF Scaled drag parameterisation
u2diff Ocean and sea ice velocity

difference parameterisation
J (0), J (0) Jet solution functions
J (0)′ , J (0)′ and derivatives
ũ Velocity perturbation normal and
ṽ parallel to the sea ice edge
Ũ Complete velocity normal and
Ṽ parallel to the sea ice edge
ÛO(1,2) Far field ocean velocity components
ÛI(1,2) Ice drift velocity components
d Ice edge typical length

Analytical Model (Chapter 4, Appendix A)
Ca(o) Atmospheric (oceanic) drag
Ua Wind velocity
ε̇ij = ∂ui

∂xj
Sea ice strain rate

p Internal ice pressure
e Plastic yield curve eccentricity
η, ζ Shear and bulk viscosities
g(A) Ice strength parameterisation
c Ice strength constant parameter
û = (û, v̂) Non-dimensionalised sea ice velocity
UI Typical sea ice drift speed
τ̂a(o) Scaled atmosphere (ocean) drag
Ta(o) Typical atmosphere (ocean) drag
α1,2 Constants and functions in equations
β1,2,3 (4.2.8) and (4.2.9)
T1,2 Combined forcing functions
u
a(o)
n̂ , v

a(o)
n̂ Scaled wind (current) components

ÛO, ÛI Typical non-dimensional ocean and
ice velocity for u2diff

Ai Ice concentration expansion
ui, vi Ice velocity expansion
ε Small expansion factor
α and expansion power
X Length contacted variable
Dij Contracted parts of the stress tensor
σ̂ij,X X derivative of expanded stress tensor
Xpeak Point of peak wind or current speed
gi(A) Ice strength approximation functions
Ai,mi, ci Constants of approximation
Qi Sets used in approximation
l Distance from ice edge, CICE forcing
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CHAPTER 1

INTRODUCTION

To introduce you to this thesis key ideas and existing research are presented in this chapter. A description

of sea ice is presented in section 1.1. Jet formation is introduced in section 1.2 and a review of research at

the sea ice edge is presented in section 1.3. Detailed descriptions of modelling processes are reserved for

discussion in chapter 2. Finally the introduction is summarised leading to the aims of this thesis in section

1.4.

1.1 Sea Ice

Sea ice is frozen sea water that floats upon the surface of the Earth’s polar oceans. The extent of sea ice

cover is in constant flux as it melts and refreezes with the changing seasons. It covers between 4-6% of the

Earth’s surface (between 17.5 - 28.5×106 km2) at any time (Comiso 2003).

During winter in the northern hemisphere sea ice fills the Arctic Ocean (see figure 1.1). It extends into

the northern Atlantic Ocean in the Greenland and Labrador Seas and in the Baltic Sea. As the temperature

increases in summer the ice retreats back to the Arctic Ocean opening up the Canadian Archipelago and
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Figure 1.1: Mean sea ice extent 1979-2000 (http://nsidc.org/cryosphere/sotc/sea_ice.
html). Marginal Ice Zones are highlighted in green. Image courtesy of the National Snow and Ice Data
Center (NSIDC), University of Colorado, Boulder

Siberian Sea and halving the sea ice extent (see figure 1.2). Sea ice can also exist in non polar seas, the

Baltic and Caspian for example (Kouraev et al. 2003).

The South Ocean presents the opposite oceanic system to the north. Whereas the Arctic ocean is sur-

rounded by land, the Antarctic continent is surrounded by the Southern Ocean. During winter in the southern

hemisphere sea ice surrounds Antarctica up to 60◦ south (figure 1.1). During summer the sea ice melts re-

vealing the coast of the Antarctic continent except for a few locations such as the Weddell Sea east of the

Antarctic Peninsula .

Arctic sea ice extent has been observed to be reducing, with an unprecedented summer low in September
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2007 (Comiso et al. 2008) and further lows in 2008 and 2011 and a new record low in 2012 (see figure

1.2). The September minimum sea ice extent over the period 1953-2011 is observed to be reducing at a

rate of -6.2% decade−1 with an accelerate rate of approximately -10% decade−1 for the period 1979-2011

(Stroeve et al. 2012). The March maximum has also decreased, though at a lesser rate of approximately -2%

decade−1 (Stroeve et al. 2012). Stroeve et al. (2008) attribute the decline in Arctic sea ice extent to a thinning

sea ice cover and changing atmospheric conditions over the Arctic causing an increased export of sea ice out

of the Arctic ocean to warmer waters. The decrease in sea ice extent is an acceleration from the trend over

the last 30 years that was not forecast or captured in global climate models (Stroeve et al. 2007). Stroeve

et al. (2007) comment that models with better physical representation of the sea ice physics do a better job

of capturing the trend. Further discussion of sea ice modelling and climate modelling is presented in chapter

2. Continuous sea ice cover in the Arctic ocean is no longer a certainty and many would think it unlikely

giving predictions of an ice free Arctic in the summer (Wang & Overland 2009, Stroeve et al. 2008, Holland

et al. 2006).

The Antarctic however has seen a small increase in sea ice extent (≈1% decade−1 Cavalieri & Parkinson

2008) particularly in the Ross sea (≈4% decade−1 Comiso et al. 2011). This increase is also attributed to

changing atmospheric conditions (Holland & Kwok 2012) and is further discussed in chapter 2.

The sea ice cover is made up of individual irregularly shaped sheets of sea ice called floes (Untersteiner

1986). The sea ice floes are typically 1-30 km in diameter (Herman 2010). The state of the sea ice cover is

determined by the temperature of the ocean surface and fluxes between the atmosphere and ocean (Thorndike

et al. 1975). Sensible heat fluxes are the change in temperature of the sea ice, latent heat fluxes alter the sea

ice mass through melting and freezing (Untersteiner 1986). The underside of the sea ice pack is assumed

to be at the freezing point of sea water (-1.8◦C, Untersteiner 1986) as a higher or lower temperature would

cause the melting or growth of sea ice respectively. The atmospheric temperature above the sea ice varies

seasonally. Comiso (1994) give summer atmospheric temperatures that can be as high as 1◦C above sea ice

in both the Arctic and Antarctic and winter temperatures as low as -25◦C (Antarctic) and -35◦C (Arctic).

A cold atmosphere lowers the temperature of the sea ice causing the formation of new ice on the underside

of the sea ice pack (Thorndike et al. 1975). As the underside of the sea ice is in contact with the ocean

and is at its melting point, the sea ice insulates the ocean from the cold atmosphere (Toole et al. 2010).
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Figure 1.2: 2012 and 2013 (up to February 28th) Arctic sea ice extent compared to the period 1979-
present (http://www.ncdc.noaa.gov/sotc/global-snow/). The sea ice extent varies continu-
ally throughout the year with the minimum extent typically occurring in September. The 2012 September
extent (red line) is lowest ever observed. Image/data courtesy of the National Snow and Ice Data Center
(NSIDC)/ National Oceanic and Atmospheric Administration (NOAA)

Alternatively the sea ice insulates a warm atmosphere from a cold ocean. The warm atmosphere will increase

the temperature of the sea ice. If the sea ice temperature becomes greater than its freezing point, it will melt

(Untersteiner 1986).

Mechanical deformation to sea ice is observed to be concentrated into kinematic features which are long

and thin, stretching for hundreds of kilometres across the sea ice pack (Kwok 2001). If the sea ice cover is

compressed horizontally due to a converging sea ice cover it can distort (Wadhams 2000). These distortions

come in the form of pressure ridges when two sea ice floes are compressed together or sheared past one
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another piling up ice about the floe boundary (Feltham 2008). The ice thickness in pressure ridges can be

in excess of 20 m, mostly contained in keels below the sea ice (Bourke & Garrett 1987). The ice can also

distort under tensile stresses, cracking to form leads (in the open ocean) and polynyas (near land masses)

(Wadhams 2000). Cracks in the sea ice expose the open ocean to the atmosphere and account for more than

70% of the upward heat fluxes although only cover 1 to 2% of the ice pack (Marcq & Weiss 2012).

Sea ice is comparatively fresh compared to sea water (Aagaard & Carmack 1989). As sea water freezes

to form sea ice brine is ejected and conversely during melting events, fresh water is introduced to the ocean

(Aagaard & Carmack 1989). Sea ice is therefore linked to the the salinity of the ocean. As water of higher

salinity is denser, sea ice formation can cause the sinking of cold polar water along continental slopes in

the polar oceans (Rudels 1995). The formation of cold deep water helps drive the global thermohaline

circulation (Broecker et al. 1995) which redistributes heat and salt throughout the world’s oceans.

Albedo is a measure of how much solar radiation is reflected away from a surface (Curry et al. 1995).

The albedo of sea ice is high compared to that of the ocean. Sea ice reflects 80-90% of the Sun’s energy

compared to 10% by the open ocean (Curry et al. 1995). The occurrence of melt ponds (pools of melted

sea ice water trapped above the sea ice, Fetterer & Untersteiner 1998) can alter the albedo of sea ice to

about 20% during the melting season (Perovich et al. 2002). This difference in reflectivity causes a feedback

mechanism where the melting of sea ice leads to a smaller sea ice ice cover, causing the greater absorption

of heat energy into the ocean and more sea ice melting (Curry et al. 1995).

1.2 Jet Formation

In the study of fluid dynamics, bands of increased fluid velocity relative to the surroundings are often en-

countered. Examples are the Jet Stream in the North Atlantic Ocean and laminar boundary layer flow near

solid obstacles. These bands are named as jets and their formation can be caused by a variety of physical

phenomena such as turbulence (Belcher et al. 1990), surface gradients (Hunt et al. 2004) and boundary layer

flow (Dyke 1975).

Atmospheric jets are known to form over coastlines with a band of faster wind centred over the shore

(Simpson 2007). Wind patterns where the sea meets the land are best understood by sailors who encounter

19



them on a daily basis (Simpson 2007). The atmospheric jets are colloquially known as “bends” to the wind.

The location of these bends and the faster winds associated with them can give a key advantage in yacht

races. Houghton (1992) gives direction to sailors to search for faster winds closer to the coast. There are

further observations of “rivers of wind” (Laing & Brenstrum 1996) at coast lines, of particular interest is

Pomeroy & Parish (2001) who present a study of jet formation along the Californian coastline.

A particular formation of atmospheric jets over coastlines can be accurately described by modeling the

Coriolis acceleration on flows over a sharp change in surface roughness (Hunt et al. 2004, Orr et al. 2005a).

The model presented by Hunt et al. considers wind jets formed over various surface roughness and elevation

features. The model uses turbulent boundary layer theory (Belcher et al. 1993) considering processes that

are of too small a scale to be resolved by current numerical atmospheric models. Of particular interest to

this thesis is the study of bands of increased surface roughness at an arbitrary angle to a uniform wind field.

This arrangement can be found at a compacted sea ice edge in the open ocean during on-ice winds (Massom

et al. 2008). There are further requirements for the state of the atmosphere during jet formation which are

discussed at the beginning of chapter 3. A similar jet formation is also possible for winds flowing off-ice

(Orr et al. 2005a) although such an arrangement will tend to disperse the sea ice edge (Lu et al. 2008)

smoothing the sharp change in surface roughness length (Birnbaum & Lupkes 2002).

The sea ice edge presents a similar change in surface roughness length to that found at coast lines. The

surface roughness lengths of both are approximately 0.001 - 0.01 m as described by Jarmalavicius et al.

(2012) for coast lines and Guest & Davidson (1991) for the sea ice edge. The roughness length of sea ice

can vary and is further discussed in section 3.1.4. The theory of Hunt et al. defines a sharp change as over

1-10 km. This length scale criterion is met by a compacted sea ice edge (Massom et al. 2008). The surface

roughness of the ocean surface is variable depending upon wave state (Donelan et al. 1993), which in turn

depends upon wind speed (Drennan et al. 2003). The maximum roughness length associated with the open

ocean surface is around 10−4 m, several orders less than over sea ice (Fairall et al. 2003).

Sea ice at the sea ice edge is often free drifting and driven by winds and ocean currents (Vihma et al.

1996). The relationship between sea ice drift and wind stress is often an Ekman Drift (Ogi & Wallace 2012)

where there is a constant angular difference between the ice and wind velocity vector (Csanady 2001). The

applied stresses from the atmosphere and ocean also drive the drift of pack ice along with internal ice stresses
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(Hibler 1986). The strength and direction of the drift is a major factor in sea ice extent. For example Ogi &

Wallace (2012) show the circulation of Arctic polar winds can cause low sea ice extents if directed towards

the Fram Strait.

The sea ice component of global climate models at best crudely parameterises processes at the sea

ice edge (McLaren et al. 2006). These parameterisations include an increased atmospheric drag over the

Marginal Ice Zone and increased melting for low ice concentrations (chapter 2). Other climate models do

not consider the changing sea ice state at the sea ice edge (increased roughness for example, see chapter

2). Atmospheric jets at the sea ice edge have previously been considered by Glendening (1994) through the

occurrence of coastal fronts, a rapid change in temperature and wind strength. Glendening focusses on the

development of the Atmospheric Boundary Layer (ABL) due to thermal forcing and does not use the same

methods as Hunt et al..

An atmospheric phenomena of similar scale to the roughness driven coastal jets are low level jets

(Smedman et al. 1993). These jets have been observed over many of the world’s oceans such as the Arabian

Sea (Grossman & Friehe 1986), the Californian coast (Zemba & Friehe 1987, Gerber et al. 1989) and Baltic

Sea (Smedman et al. 1993). These jets are characterised by an increasing wind speed with height with a

peak at a certain height before a decrease in speed (Smedman et al. 1993). Low level jet formation in the

Baltic Sea during the summer is shown to be a result of of warm air flowing from the land to over the cold

ocean (Smedman et al. 1993). This causes the rapid stabilisation of the lower atmosphere and the subse-

quent frictional decoupling (i.e the atmosphere becomes independent of surface conditions) which, through

turbulence, causes the formation of a low level jet (Hogstrom & Smedman 1984).

There have been several observations of low level jets over the sea ice edge (Vihma & Brummer 2002)

and sea ice pack (Andreas et al. 2000). These jets develop vertically with a peak wind speed at ≈ 100 m

from the ocean surface. Vihma & Brummer (2002) attribute the jet formation to changing baroclinity (a

measure of air pressure and density gradient alignment, Csanady 2001), due to the jet’s on - ice direction

and the temperature difference between the open ocean and sea ice pack. Andreas et al. (2000), however,

discount this method for low level jet formation in the sea ice covered Weddell Sea. The jets they observed

were of varying direction and exhibited a turning angle. Because of these reasons Andreas et al. account for

the low level jet formation through the decoupling of the atmosphere through stable stratification.
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The various methods of low level jet formation discussed above are caused by thermal differences at the

Earths surface. The jet formation discussed in this thesis is caused by a change in surface roughness length

and has not previously been considered over sea ice.

1.3 The Sea Ice Edge

The transition from open ocean to a continuous sea ice cover is not a clearly defined edge. The build up of

ice occurs over a distance defining the Marginal Ice Zone (MIZ). The MIZ contains sea ice floes typically

smaller than in the sea ice pack with a width of 5-50 m and a thickness 1-2 m (Frankenstein et al. 2001, Lu

et al. 2008). Figure 1.3 shows sea ice conditions typical of the MIZ. The state of the MIZ, and thus the extent

of the sea ice pack, can change rapidly due to changing atmospheric and oceanic conditions. For example

King et al. (2010) observed a rapid retreat of the sea ice edge in the Bellingshausen Sea due to prolonged

on-ice winds.

The effect of land upon sea ice and the MIZ leads to there being only four MIZs of significant size: in

the Greenland Sea, the Labrador Sea, the Bering Sea and the Antarctic Ocean with a complete circumpolar

ice edge during April to December (see highlighted green areas in figure 1.1). During the summer months in

the seas north of Russia, due to the sea-ice edge’s proximity to land and the absence of any significant wave

generation, the ice edge does not differ that greatly from the sea-ice pack and the MIZ is small and almost

non existent (Wadhams 2000).

The transition zone exists due to the large floes of the sea ice pack (1-30 km in diameter, Herman 2010)

being unable to exist at the sea ice edge due to wave interaction (Meylan & Squire 1994). Ocean waves,

upon encountering a region covered with sea ice, will be partly reflected back into the ocean with a portion

able to propagate beneath the ice cover (Lu et al. 2008). Ocean waves passing through an ice floe impart

a bending stress. If the stress is great enough the floe will break. The act of moving the ice floes and

potentially breaking them up dampens the ocean waves. These interactions account for the increasing floe

size (Lu et al. 2008) and decreasing wave strength at greater distances into the sea ice pack. Measurements

of waves in the sea ice pack have been made from ships (Robin 1963), submarine (Wadhams 1978), buoys

and aircraft (Liu et al. 1991). As a thicker sea ice floe has greater strength against bending stresses, the floe
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Figure 1.3: Ice breaker in the marginal ice zone of the McMurdo Sound, Antarctica. Note the small broken
ice floes. The width of the foreground is approximately 500 m.

thickness and size distributions in the MIZ are strongly linked (Toyota et al. 2011) with the thicker floes

tending to be of a larger diameter. When a storm encounters the sea ice edge the large waves associated with

it can break up the sea ice floes rapidly altering the state of the sea ice edge (Asplin et al. 2012).

The interaction of waves and sea ice within the MIZ has been widely studied and wave attenuation

coefficients have been calculated (Wadhams et al. 1988, Hayes et al. 2007) along with models of wave ice

interaction (Meylan & Squire 1994, Kohout & Meylan 2008).

During freezing events the marginal ice zone is an area of sea ice formation (Pedersen & Coon 2004).

The first state of sea ice formation is frazil ice: a suspension of ice crystals in sea water (Untersteiner 1986).

As more of these ice crystals form they agglomerate into grease ice, a soupy layer of frazil crystals, or

pancake ice which is roughly circular pieces of new ice up to 4 m in diameter (Weeks & Ackley 1986). The

formation of new ice ejects brine into the upper ocean (Rudels 1995).

The upper layer of the ocean is known as the Ocean Mixed Layer (OML). This layer is defined as a

well mixed layer with constant temperature, salinity and density (Williams et al. 2008). The bottom of the
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layer is at a level of strong gradient in density. The state of the OML in the MIZ, particularly its depth, is

strongly linked to the sea ice cover, for example the Antarctic the OML is thin in the summer and deep in the

winter (Gordon & Huber 1990). The difference in depth is accounted for by the entrainment of deeper water

thickening the layer in the winter (Markus 1999). In the Arctic Ocean the warm Atlantic water continually

interacts with the sea ice edge altering the bouyancy of the layer (McPhee & Morison 2001). The state of

the OML can conversely affect the state of the sea ice edge. Watanabe et al. (2004) show how a difference

in ocean temperature continually melts ice at the sea ice edge in the sea of Okhotsk. The polar OML is a

widely studied topic due to the large ecosystems that it supports (see Williams et al. 2008).

The compaction of the MIZ due to continued on-ice winds has been observed in the Antarctic (Massom

et al. 2006, Massom et al. 2008, King et al. 2010). These observations are from the Bellingshausen Sea

west of the Antarctic Peninsula during anomalous weather patterns that caused unusually prolonged on-ice

winds. In these events the broken floes of MIZ were compacted by winds over a period of approximately

one week retreating the sea ice edge by up to 250 km. At this time the ice concentration at the sea ice edge

had reached near 100% resulting in a halt in the ice retreat and a relatively thin MIZ covering the outer 10

km of the ice pack (Massom et al. 2008).

Off-ice winds will conversely tend to disperse the ice edge, though bands of ice are likely to form (Lu

et al. 2008). These bands of ice can be accounted for due to sea breezes (Chu 1987), wave interaction

and ocean stresses (Fujisaki & Oey 2011). The ice edge is also likely to disperse for a still atmosphere and

ocean. The internal ice pressures of sea ice in the marginal zone have been shown to have an expansion effect

(Flato & Hibler 1989) when not externally forced by atmospheric and oceanic stresses. This expansion may

however be due to the model rheology (as discussed in section 2.3.1) and there are limited observations of

the sea ice edge during calm winds and a still ocean which prohibit a study of this.

The lowest part of the atmosphere is known Atmospheric Boundary Layer (ABL) which is typically well

mixed with a sharp decrease in air density at the top of the layer (Brümmer & Thiemann 2002). For on-ice

winds, particularly in winter, the large temperature difference between the ocean (typically 0◦ C) and sea ice

(-10◦ C to -15◦ C) (Vihma & Brummer 2002) results in a stably stratified atmosphere (air density decreases

with increasing altitude) over the sea ice edge (Brümmer & Thiemann 2002). However during the melting

season the sea ice can be of a greater temperature than the ocean due to the freezing point of the relatively
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fresh sea ice being greater than the ocean. This results in a less stable ABL. For the majority of on-ice

winds the atmosphere is stably stratified in both the Arctic (Vihma & Brummer 2002, Vihma et al. 2003)

and Antarctic (Andreas et al. 2000). The thermal differences between the ice and ocean tend to form local

off-ice winds during still conditions (Chu 1987). These winds are known as sea breezes and also form

regularly at coastlines.

The presence of sea ice restricts the transfer of momentum from the atmosphere to the ocean, a process

that drives ocean currents (Csanady 2001). At the sea ice edge this restriction is removed causing an increase

in atmospheric wind stress upon the ocean away from the sea ice resulting in ocean jets along the sea ice

edge (Fennel & Johannessen 1998). These ocean jets are a direct result of the changing atmospheric stress

and are not due to the turbulence which causes the jets described in chapter 3. The ocean jets described by

Fennel & Johannessen (1998) result in the OML moving rapidly across the ocean surface. The movement of

the surface water can cause the up-welling of deeper water to replace it (Quadfasel et al. 1987). Ocean jets

can also lead to instabilities resulting in the formation of eddies near the sea ice edge (Smith & Bird 1991).

Ice jet formation at the sea ice edge has been observed. Johannessen et al. (1983) presents a study of

sea ice drift using observations from buoys tethered to sea ice floes. These observations are from the sea ice

edge and MIZ north of Svalbard in the Arctic Ocean. The sea ice drift is observed to be parallel to the sea

ice edge and aligned with strong winds (see figure 1.4). The ice drift at the extreme ice edge is shown to be

the fastest with the drift speed decaying into the sea ice pack, reducing by half at 250 km from the sea ice

edge. The formation of the jet has not been explained by the physics of the sea ice edge (Feltham (2005) for

example, see section 2.3.1) and its possible influence upon the sea ice pack has yet to be explored.

1.4 Summary and Thesis Goals

Sea ice and the polar climate are complex and changing systems. The sea ice edge exists at the boundary

between the sea ice pack and open ocean and has further influence upon the atmosphere and ocean. Atmo-

spheric jets have been shown to form at coastlines, a comparable boundary between ocean and land. The

theory of Hunt et al. (2004) has not previously been applied to the sea ice edge and could provide a physical

explanation for the ice jets observed by Johannessen et al. (1983). The process of jet formation is due to
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Figure 1.4: Daily average ice drift and surface current from ARGOS drifting buoys, and ship-measured
wind on (a) 19 September, (b) 27 September, (c) 28 September, and (d ) 29 September 1979 (taken from
Johannessen et al. (1983)).

the changing surface roughness between open ocean and sea ice. Understanding of this process, along with

others discussed in chapter 2, is needed to improve the predictions of coupled climate models.

The aim of this thesis is to investigate the formation of atmospheric and oceanic jets at the sea ice edge.

The dynamics of the sea ice is analysed to discover what effect jet formation has upon both the sea ice

edge and sea ice pack. This is achieved through a modelling study. Methods of sea ice modelling and their

application to the sea ice edge and MIZ are discussed in chapter 2.

Jet formation can be driven by a sharp change in surface roughness. This sharp change is apparent at
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the sea ice edge. The model of Hunt et al. (2004) is used to investigate atmospheric jet formation at the sea

ice edge in chapter 3. Literature on the state of the atmosphere and sea ice surface properties in the MIZ

are considered in the calculation of the size and strength of these jets in section 3.2. The model is adapted

to create a model of ocean jet formation underneath the sea ice edge and uses literature on the state of the

ocean and surface properties of the underside of the MIZ. Only on-ice winds and ocean currents will be

investigated. The jet perturbations investigated by Orr et al. (2005a) for off-land (or off ice for this thesis)

are negative to the wind so have less potential to modify ice drift as slower winds and ocean currents result

in a slower sea ice drift (Hibler 1986). Also the dynamical state of a dispersing sea ice edge is continually

changing as the sea ice drifts out into the open ocean (Fujisaki & Oey 2011) and does not present a steady

state. The steady state condition is essential for the construction of the analytical sea ice model in chapter 4.

Mathematical notation used in the thesis is given in table 1 for clarity between the calculations in chapter 3

and 4.

A simplified dynamical sea ice model has been created to model the effects of jet formation upon the

state of the sea ice edge. This model is solved analytically and is described in chapter 4 with results in

chapter 5. The model shows how the sea ice responds to changes in wind and ocean current speed.

For comparison to the idealised and constrained sea ice edge presented in chapters 4 and 5, a numerical

dynamic and thermodynamic sea ice model is used in chapter 6. This model is the Los Alamos sea ice (CICE)

model which is used as a component of global climate models (see chapter 2). This model is designed to run

on a global scale and has been adapted to focus on the ice edge. A uniform ice edge in a land free domain

with a cyclic boundary is used to compare the CICE and analytical sea ice models. Using such a domain

allows the model to be run at a high resolution.

The results of this thesis are discussed in chapter 7 and concluded in chapter 8. The results give pre-

dictions of winds and ocean currents at the ice edge which lead to predictions of sea ice drift through the

analytical and numerical modelling. These predictions are compared to observations of the atmosphere,

ocean and sea ice in the MIZ and at the sea ice edge. Global ice conditions and weather patterns are anal-

ysed to view areas where jets can form and what role they could play in the polar climate.
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CHAPTER 2

SEA ICE MODELLING

In this chapter sea ice modelling is introduced. The role of modelling in sea ice and climate science is

discussed in section 2.1 and numerical sea ice modelling techniques are introduced in section 2.2. A review

of modelling efforts at the sea ice edge is presented in section 2.3 including sea ice, atmospheric, oceanic

and coupled models.

Sea ice is difficult to observe in situ due to the extreme climate and remote location of the polar regions.

Its characteristics on a global scale are also very difficult to recreate in a laboratory. The width of the polar ice

caps (1000’s of km) is many orders of magnitude greater than its thickness (1-10 m). Detailed observations

of sea ice on a global scale are only available since the satellite era (from 1979). This period is of the same

scale as many natural variations in global climate patterns so it is difficult to observe clear trends in the

development of the sea ice cover due to climate change (Vinnikov et al. 1999, Holland et al. 2008). Partly

due to the difficulties in observing sea ice, modelling is essential to the increased understanding of sea ice

and its role in the global climate.
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Figure 2.1: Arctic September sea ice extent (106 km2) from observations (thick red line) and 13 Intergovern-
mental Panel on Climate Change fourth Assessment Report (IPCC AR4) climate models (see table 2.1 for
description), together with the multi-model ensemble mean (solid black line) and standard deviation (dotted
black line). Inset shows 9-year running means up to 2007. This figure is from Stroeve et al. (2007) modified
to include observations up to 2012, see figure 1.2.

2.1 Sea Ice in Climate Models

Due to the importance of sea ice in the global climate (see section 1.1) sea ice physics are accounted for

by many Global Climate Models (GCMs), see table 2.1. Climate models are compared to observations

of global climate to give insight into climate processes and future predictions of climate change (Wang &

Overland 2009). The Coupled Model Intercomparison Project (CMIP) is run by the Intergovernmental Panel

on Climate Change (IPCC) which takes many modelling efforts from the international scientific community,

see table 2.1 for a list of members who contributed to CMIP3 and the fourth assessment report (AR4) in 2007.
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The Arctic sea ice extent is observed to be reducing (Maslanik et al. 2011). The IPCC AR4 shows that

most models did not capture the speed of reduction in sea ice extent. In particular, the low sea ice extent

of summer 2007 was over a standard deviation less than the mean modelled ice extent (see figure 2.1 from

Stroeve et al. 2007). The mean ice extent of the GCMs in this figure does not reach the 2007 low for a further

40 years. The low Arctic sea ice extent of 2007 was partially due to the atmospheric conditions (Graversen

et al. 2011) with warmer winds from the Pacific increasing the sea ice melt. Also the anomalous anticyclonic

wind circulation in the period 2007-2011 has been shown to drive sea ice toward the Fram Strait and out of

the Arctic Ocean leading to the low sea ice extent (Ogi & Wallace 2012).

Not all of the models in the CMIP3 have an accurate representation of sea ice physics (Zhang & Walsh

2006, Parkinson et al. 2006), see table 2.1. The climate models from the later CMIP5 are shown to perform

better than those in CMIP3 although there is still an inconsistency between the models and rate of decline

in Arctic sea ice extent in the models is still less than the observed trend (Stroeve et al. 2012). CMIP5

shows an improvement over CMIP3 in matching the state of arctic sea ice to historical observations due to

improvements in the representation of sea ice within the models and a greater effort to tune the models to

match observations (Stroeve et al. 2012). The models from CMIP5 on average predict an ice free Arctic

summer earlier than the models from CMIP3. There is, however, a similar spread in predictions and thus a

similar uncertainty for the future of Arctic sea ice extent in both the projects.

Maslowski et al. (2012) argue that inaccuracies in predicting the decline of Arctic sea ice extent is due

to the misrepresentation of climate processes and feedbacks in many GCMs. For example the feedback

process where winds and sea ice drift cause the advection of heat from the North Atlantic and Pacific and

thus the warming of the Arctic Ocean water mass is often not captured in GCMs (Maslowski et al. 2012).

In order to improve the representation of such processes, Maslowski et al. call for higher resolution models,

improved coupling and more sophisticated parameterisations within GCMs. In order to achieve this a greater

knowledge of sea ice processes is needed along with more observations for validation.

The models in CMIP5 on average show a decrease in Antarctic sea ice extent (Turner et al. 2013), with

only 8 out of the 70 ensemble members recreating the observed increase in sea ice extent. The annual

variability in sea ice extent of the models is also greater than the observed variability. During the Febru-

ary minimum extent sea ice is typically only found in the Weddell and Bellingshausen Seas either side of
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the Antarctic Peninsula (Cavalieri & Parkinson 2008). The majority of CMIP5 models do not correctly re-

produce the spatial pattern of minimum sea ice extent (Turner et al. 2013) leading to large relative errors

in the minimum sea ice extent. The recent increase in Antarctic sea ice extent has been suggested to be

due to a decrease of springtime stratospheric ozone (Turner et al. 2009) leading to the specification that the

CMIP5 models include a realistic decline in stratospheric ozone. This inclusion has, however, not resulted

in an accurate modelling of Antarctic sea ice extent leading to Turner et al. (2013) commenting that there are

“failings in the representation of sea ice in the models or that a real trend in ocean conditions is behind the ob-

served increase of sea ice”. Another theory behind the increase in Antarctic sea ice extent is that of Holland

& Kwok (2012) who present a data set of Antarctic sea ice drift and atmospheric circulation. The Antarctic

sea ice drift is shown to correlate well with winds leading to the conclusion that wind-driven changes in

ice advection along with wind-driven thermodynamic changes are the dominant driver of ice-concentration

trends. Holland & Kwok (2012) comment that “surface winds and ice dynamics and thermodynamics must

be accurately represented” within climate models to capture the recent increase in Antarctic sea ice extent.

The reasons behind climate model inaccuracy are not obvious. The global climate is a complex and

chaotic system which, in order to be represented in a numerical model, needs to be simplified. Sea ice

models also represent the changing sea ice cover using simplified numerical schemes. These schemes solve

equations created by considering physical properties of the sea ice and observed phenomena (Hewitt et al.

2011). The resulting models of sea ice are forced by the atmosphere and ocean and can be run in a number

of configurations: a stand alone model forced by observations or a precalculated data set (see section 2.1.2);

coupled to an ocean model with both components forced by atmospheric observations (as with Rasmussen

et al. (1999) in section 2.3.3); or in a fully coupled climate model (see section 2.1.1).

2.1.1 Coupled Modelling

In climate models, the atmosphere, ocean and sea ice are typically modelled in separate numerical com-

ponents as in the Met Office Hadley Centre General Environment Model (HadGEM) (Collins et al. 2008).

These components are coupled together in parameter space, meaning that they share parameters at selected

time intervals. For instance the sea ice component is forced using output from the atmosphere and ocean

models. This coupling system allows each component to run at a resolution best suited to it, balancing
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Model Full Name Sea Ice Physics
CCCMA CGCM Canadian Centre for Climate Modelling and Analysis No

Coupled Global Climate Model
CNRM CM Centre National de Recherches Météorologiques (France) Yes

Coupled global climate Model GELATO
IPSL CM Institut Simon Pierre Laplace (France) No

Climate Model
MUIB ECHO Meteorological Institute University of Bonn Yes

ECmwf (European Centre for Medium-range Weather Forecasts) Internal
HOpe (Hamburg Ocean Primitive Equation) model

MRI CGCM Meteorological Research Institute (Japan) No
Coupled General Circulation Model

UKMO HadGEM UK Met Office Yes
Hadley centre Global Environmental Model CICE

BCCR BCM Bjerknes Centre for Climate Research (Norway) Yes
Bergen Climate Model NERSC

GISS AOM Goddard Institute for Space Studies (USA) No
Atmosphere-Ocean Model

MIROC MedRes Model for Interdisciplinary Research On Climate (Japan) No
Medium Resolution version

MPI ECHAM Max Planck Institute for meteorology (Germany) Yes
ECmwf HAMburg model Internal

NCAR CCSM National Center for Atmospheric Research (USA) Yes
Community Climate System Model CICE

UKMO HadCM UK Met Office No
Hadley centre Coupled Model

Table 2.1: Model acronyms from figure 2.1. The sea ice Physics column indicates whether the model
considers the geophysics of sea ice. If yes the sea ice component is named. The sea ice components are
the Global Experimental Leads and ice for ATmosphere and Ocean (GELATO) based upon the Nansen
Environmental and Remote Sensing Center (NERSC) sea ice model. The Los Alamos sea ice model (CICE)
is described in section 2.1.2. The sea ice components described as internal have schemes within the ocean
model.

model accuracy and computer run time. While the model components can be used to reproduce observed

trends within their individual system (see section 2.1.2), coupling the models together permits the various

feedback mechanisms between them. For the sea ice this includes the albedo feedback mechanism described

in chapter 1

A climate model can be used to test the evolution of global climate in different future scenarios (McLaren

et al. 2006). For example to predict the dependance of climate change on the amount of carbon dioxide in the

atmosphere. To ensure that the results of these changes are meaningful, the model must first accurately re-

produce the current climate and fit well with observations. Such consistency is however not always achieved
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(Ann Keen, UKMO Hadley Centre - personal communication). Some of the models included within the

IPCC AR4 report (see figure 2.1) do not have such accuracy but this was not considered when creating the

report and all the data was included (Stroeve et al. 2007).

Accuracy in all the mode components is achieved over the model development process. Test model runs

are typically 50-100 years in model time and are performed to test new parameterisation schemes and show

how the model performs (Hewitt et al. 2011). Shorter runs are then often repeated with adjusted model

parameters that are assumed constant by the model until a realistic reproduction of the the global climate is

produced. Parameters often used to tune the model to fit observations are the albedo and density of sea ice

(see section 1.1 and Uotila et al. (2012)). This process requires detailed observations of the sea ice cover.

Such observations are not readily available (Bitz et al. 2001) and model parameters are often not narrowly

constrained (Hunke 2010). When the model is performing well it is matched to the current climate by using

what is known as a spin up period. This period is given constant climate conditions and is longer than

typical variations in climate (run for 100 model years for example). The spin up allows the modelled climate

to approach an equilibrium and remove unnatural initial conditions.

A fully coupled atmosphere - sea ice - ocean GCM is the Met Office Hadley Centre’s HadGEM3 model,

an evolution of the HadGEM2 model in the IPCC AR4 (see figure 2.1 and table 2.1). This model has

been shown to be scientifically credible and is widely used for investigation into the global climate (Hewitt

et al. 2011). The atmospheric component is from the Met Office Unified Model. The ocean component is

the NEMO model. The sea ice model is the CICE model described in section 2.1.2.

The coupling between the ocean and ice in the HadGEM3 model is through applied stresses from ice

drift and ocean currents, freshwater and salinity fluxes, and a thermodynamic balance between the sea surface

temperature and the bottom of the sea ice (Hewitt et al. 2011). For coupling with the sea ice-ocean system the

atmospheric forcing is first split into the parts acting upon the ice and ocean separately. Atmospheric stresses,

rainfall and snowfall are split between the sea ice and the ocean by considering the ice concentration. Heat

fluxes and solar radiation levels are the same for both. Forcing for the atmospheric component is created by

combining fluxes from the sea ice and ocean. The ocean current and sea ice drift velocities are combined.

The sea ice concentration and thickness along with snow thickness is also considered along with the sea

surface temperature.
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2.1.2 Stand Alone Models

Observations of the atmosphere and ocean can be used to force a sea ice model. Such models are used

to understand the geophysics of sea ice on a global scale without the added complexity of a fully coupled

system. Single component models take less tuning than a fully coupled model and are thus easier to set

up and run. A stand alone sea ice model also requires much less computing power than a fully coupled

model and can be run on a desktop computer when a low resolution is used (Hunke & Lipscomb 2010). This

increases the accessibility of the model as expensive high powered super computers are not required. The

focus upon individual processes (such as melt pond formation - see below) allows the use of a standalone

model to find errors with a coupled system because problems with the sea ice simulation within a coupled

model could be due to the sea ice component not capturing the processes or due to incorrect forcing from

the atmosphere and ocean (Ann Keen, personal communication).

Due to the ease of setting up and running a stand alone sea ice model it plays a key role in introducing new

physics and parameterisations to a GCM. When the model is not coupled to the atmosphere or ocean, feed-

backs are eliminated, simplifying the analysis of the impacts of new physics. For example melt pond forma-

tion was initially proposed as important feature in the albedo feedback mechanism (Fetterer & Untersteiner

1998, Curry et al. 1995). Melt ponds were investigated in a simple model (Taylor & Feltham 2004) before

being parameterised into a numerical stand alone sea ice model (Flocco & Feltham 2007, Flocco et al. 2010).

These studies allows for melt ponds to now be considered by a GCM (Flocco et al. 2012), with primary re-

sults giving Arctic ice melt that matches observations better than a model which does not consider melt

ponds (summer 2007 given as a particular example with ice extent error reduced by 50%).

An example of a sea ice model is the Los Alamos numerical sea ice model (CICE). This model is

widely used in GCMs including the HadGEM and NCAR models (see table 2.1 for model names). It is

designed to work on a grid covering the entire globe. The model calculates the state of the sea ice from

atmospheric and oceanic forcing, considering the thermodynamics and momentum of the sea ice (see Hunke

& Lipscomb 2010). The model considers the ice state of Thorndike et al. (1975) (described in section 2.2.1).

Thermodynamic changes to sea ice are those of Bitz & Lipscomb (1999) (section 2.2.2) and the dynamics

are similar to those of Hibler (1979) (section 2.2.3) using a numerical implementation of the viscous plastic
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rheology in appendix A.

2.2 Sea Ice Modelling Techniques

Sea ice in a numerical model can be assumed to be continuous (Hunke & Lipscomb 2010). When viewing

sea ice on a scale similar to individual ice floe size (1-30 km) the ice appears to be a discrete medium with a

vast difference in ice state between the ice floe interior and edges (Lu et al. 2008). At a larger length scale the

ice state can be represented as a continuously varying medium by averaging over the floes. Many techniques

have been used to make this approximation accurately reproduce the geophysics of sea ice on a global scale

(Feltham 2008).

2.2.1 The Thickness Distribution of Sea Ice

The thickness of the sea ice cover in most basin scale continuum sea ice models is given by the thickness

distribution which evolves according to the thickness distribution equation (Hunke & Lipscomb 2010). This

equation balances the state of the sea ice pack against thermodynamic and redistributive modifications (due

to sea ice drift causing ridging for example). Thorndike et al. (1975) considers a probability density thickness

distribution function G(h, t) which gives the amount of ice of thickness h at time t that occupies a point in

Eulerian space. The function is over the unit interval such that integrating from zero ice thickness to the

maximum ice thickness hmax gives ∫ hmax

0

G(h)dh = 1,

and the result G(hexample) = 0.6 means that there is a probability of 0.6 that sea ice that has thickness in

the interval hexample to hexample + dh exists at the defined point. The concept of different thickness of sea

ice occupying the same point is not physically possible but the continuum is easier to use mathematically.

In numerical models the function is solved over discrete gird cells rather than at all points. In this case

the result G(hexample) = 0.6 means that 60% of the given grid cell is of thickness hexample. For a simple

numerical model the ice thickness distribution gives two categories for ice thickness, zero thickness (open

ocean) and a given greater thickness. As the complexity of a sea ice model is increased, more thickness
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categories can be considered.

The rate of thermodynamic change to the ice thickness is given as the ice growth rate f . Considering

sea ice of thickness h growing at rate f over the time interval dt to a new thickness of h + dh gives the

relation ∂G/∂t = −∂/∂h(fG). The redistributive modifications are split into those due to moving ice and

mechanical ice deformation such as ridging. Considering the velocity of the ice u and fluxes of ice in and

out of a given region, Thorndike et al. related the time change in thickness distribution to the divergence of

the ice flux given as ∇ · (Gu). The mechanical modifications are parameterised in a redistribution function

ψ giving a governing equation of

∂G

∂t
= −∇ · (Gu)− ∂

∂h
(fG) + ψ. (2.2.1)

The function ψ models how the ice deforms under compression, tension and shear forces. Pressure ridging

for example, increases the ice thickness (Bourke & Garrett 1987).

Alternatively the ice concentration can be modelled alongside the thickness distribution. The ice con-

centration A, can be modelled as a non - dimensional variable with 0 ≤ A ≤ 1 where A = 0 is for open

ocean, and A = 1 is for a complete ice cover. This method can be compared to the thickness distribution

with 1 − A = G(0). Gray & Morland (1994) introduce a model of the ice thickness and concentration in

multi floe pack ice which balances mass along with more specific modifications with

∂A

∂t
+ u · ∇A+Aξ{1− αIH(−ξ)} =

kI

ρI
, and

∂h

∂t
+ u · ∇h+ hξαIH(−ξ) = qI − bI .

(2.2.2)

The divergence of the horizontal velocity field ξ = ∂ui

∂xi
is considered along with α, the ratio of vertical

flux of ice redistribution through ridging to the horizontal flux of ice implied by the horizontal velocity

field. When the ice converges ridging causes an increase in thickness through hξαH(−ξ) and a decrease

in concentration through Aξ{1 − αH(−ξ)}. H is the Heaviside step function (with H(x ≤ 0) = 0 and

H(x > 0) = 1) which makes the ridging irreversible. Thermodynamic modifications are separated into kI

the mass transfer to ice from the water in the leads, qI the volume flux of surface accumulation and bI the
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volume flux of basal melt. ρI is the density of sea ice.

2.2.2 Thermodynamics

To calculate thermodynamic changes to sea ice the thermal and salinity characteristics need to be considered.

This is done across the vertical profile of the sea ice. Bitz & Lipscomb (1999) presented a model of the

thermodynamics of sea ice where the temperature profile is governed by the modified heat equation

ρcT
∂T

∂t
=

∂

∂z
kB

∂T

∂z
+ κI0e

−κz,

where cT the thermal capacity, T the temperature at vertical position z and k the conductivity of the sea ice.

I0 is the solar radiation that penetrates the upper surface of the ice cover with κB the extinction coefficient

in Beer’s law. The thermal capacity cT and the conductivity k are given as functions of temperature and

salinity and consider the effects of brine pocket formation within the ice. The model is specifically designed

to balance energy leading Bitz & Lipscomb to state that solving the equation continuously through the

vertical profile of the sea ice is essential. This is achieved by splitting the ice into several layers and solving

the equations of state for each layer. An extra layer of snow is added to the top of the sea ice.

At the upper surface of the sea ice radiation and sensible and latent heat from the atmosphere are consid-

ered. These can alter temperature of the sea ice and cause ice growth or melting. The growth and melting of

sea ice is dependent upon q, the energy of melting of sea ice, a function of the ice temperature and salinity.

This function is analogous to the enthalpy per unit volume of the sea ice with

q(S, T ) = ρIcIo(Tm − T ) + ρILo

(
1 +

µmS

T

)
,

where cIo is the heat capacity, Lo is the latent heat of fusion of fresh ice and µ is an empirical constant

relating the melting temperature Tm and salinity S of sea ice wih Tm = −µmS. The lowest layer of the sea

ice grows or melts to hold the bottom surface of the sea ice at the freezing point of sea water.

Bitz & Lipscomb use a prescribed salinity profile for their model which has fresh ice at the surface

due to contact with snow which is assumed to be fresh. The salinity increases with depth using a least
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squares fit to observations. The salinity of the ice in contact with the ocean is assumed to be at 3.2h(Bitz &

Lipscomb 1999).

2.2.3 Sea Ice Dynamics

The movement of sea ice as a continuum can be modelled using a momentum balance. The simplest consid-

eration of sea ice dynamics is that of free drift. Assuming a low ice concentration removes the importance

of ice floe interaction towards the ice drift. The momentum of the drifting sea ice can thus be accounted for

by applied stresses giving a momentum balance of

m(
∂u
∂t

+ u · ∇u) = −mfck× u + τ̃ a + τ̃ o, (2.2.3)

where m is the mass of the sea ice, u is the velocity vector of the sea ice drift (giving the left hand side of

the equation as the rate of change of momentum), fc is the Coriolis parameter and τ̃a and τ̃o are applied

stresses from the atmosphere and ocean. This momentum balance is used for many models of sea ice drift

at the sea ice edge (for example Chu 1987) which are discussed in section 2.3.1.

The momentum balance used in the analytical model described in chapter 4 considers both the sea ice

and ocean. It was developed by Gray & Morland (1994) by considering the surface layer of the ocean.

The sea-ice ocean mixture layer contains the ice floes and the ocean between them down to the depth of

the floes. The interactions between the ice floes and the ocean between them is described as a continuum,

over a length scale greater than individual floe dimensions. The momentum balance for the sea ice and

ocean mixture layer is constructed by considering momentum balances for both the ice and the ocean, and

integrating over the layer. The rate of change of momentum of the layer is balanced by

m(
∂u
∂t

+ u · ∇u) = −mfck× u +Aτ̃ a +Aτ̃ o + S +∇ · σ, (2.2.4)

where u, fc, τ̃a and τ̃o are as described for the free drift momentum, m is the mass per unit area of the

mixture layer, S is the ocean surface tilt force and σ is the ice stress tensor.

The applied stresses in the balance are dependent upon the ice concentration A. The ice concentration
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dependance applies the external stresses to only the ice in the layer. The internal stresses are derived from

a sea ice rheology. A rheology is a description of how a medium deforms or moves under the influence of

external stresses, for example the viscous plastic rheology described in appendix A. Sea ice is constantly

moving and deforming due to winds and ocean currents so a mathematical description of its rheology is es-

sential for modelling efforts. In a large scale numerical model the sea ice rheology is linked to the formation

of leads and pressure ridges. For instance the CICE model records the distribution of ridged ice which alters

the thickness distribution of the ice pack.

2.3 Models of the Sea Ice Edge

The sea ice edge and MIZ have been been considered in modelling studies. The characteristics of this

region are unique and present a physical system of particular interest. The sea ice edge can be viewed as a

step change along a straight boundary. This easily allows for the creation of an idealised domain with one

horizontal dimension extending from the open ocean to the sea ice pack.

2.3.1 Sea Ice Models

The sea ice within the MIZ is often observed to be in a different state to the sea ice within the ice pack

(smaller floe size for example, see section 1.3). The dynamics of sea ice when in this altered state have been

considered in many modelling studies. Simple models of free drifting ice have successfully predicted the

movement of sea ice with a low concentration. The natural divergence of the sea ice edge can be accounted

for by free drifting ice driven by an off-ice sea breeze formed by the thermal changes in the atmosphere

(Chu 1987). The free drifting movement of ice away from the ice pack can lead to ice bands. Fujisaki &

Oey (2011) use a coupled free drifting ice and ocean model to investigate the formation of ice bands at the

sea ice edge. The band formation is shown to be driven by the stresses between the atmosphere, ocean and

ice rather than floe collisions or other ice stresses.

Non free drifting ice has also been considered. Adding complexity to the ice movement has been

achieved by considering internal ice stresses due to plasticity (Lepparanta & Hibler 1985), internal ice pres-

sure (Flato & Hibler 1989) and floe collisions (Lu et al. 1989) leading to a granular rheology (Feltham 2005).
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Lepparanta & Hibler (1985) applied the viscous plastic rheology of Hibler (1979) (as described in ap-

pendix A) to an idealised ice edge. Numerical and analytical solutions were investigated in order to see how

the ice motion is driven by internal stresses and, in particular, if the sea ice jets observed by Johannessen

et al. (1983) (see figure 1.4) can be explained by viscous-plastic sea ice deformation. Lepparanta & Hibler

argue that ice jets are unlikely to form due to ice dynamics and a coupling between the ice, atmosphere and

ocean is required.

In accordance with observations of sea ice dynamics, an internal ice pressure in the MIZ has been con-

sidered by Flato & Hibler (1989). Internal pressure resists compression of the sea ice cover by modelling the

sea ice as a cavitating fluid. This method describes the sea ice as a two-phase system, sea ice in free drift,

and sea ice which resists compression when its compactness has reached a certain threshold. This is done

in a numerical model on an idealised grid of the ice and MIZ. The internal ice pressure is shown to disperse

the ice edge and restrict the unrealistic ice build up observed in pure free drift models despite the dispersion

component of the momentum balance being small compared to wind and ocean current stresses.

The MIZ typically contains little compressive ice deformation such as ridges leading to the assumption

that the internal ice stress is due to floe collisions. Shen et al. (1987) develops a regime based upon a

system of ice discs floating in the ocean. These discs randomly collide and their kinetic energy is dissipated.

This dissipation is considered along with the averaged velocity and separation of the discs to calculate the

internal stresses of the sea ice pack. The stress regime is shown to be dissimilar to a viscous plastic rheology.

The study of Lu et al. (1989) compares sea ice in the MIZ with no internal stress regime (free drifting), a

collisional rheology and a viscous plastic rheology in a numerical model on an idealised grid. When applied

to the MIZ and sea ice edge the free drifting and collisional sea ice have velocities that are almost parallel to

the applied wind field that is either on-ice, off-ice or parallel to the sea ice edge. The viscous plastic regime

gives sea ice drift with a greater turning angle against the applied forcing due to the internal ice stress. A

collisional rheology for sea ice is mathematically complex and numerical solving techniques are essential

for its use.

Furthermore, sea ice can be treated as a two dimensional granular medium even if collisions are unim-

portant. This has been considered in the sea ice pack by Shen et al. (1986) and at the sea ice edge by Feltham

(2005). Granular dynamics considers the floe or grain size distribution, the random motion and kinetic en-
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ergy of the grains or their granular temperature and the friction between the grains. Feltham (2005) used

boundary layer theory for the extreme ice edge to show how granular dynamics can lead to jet formation.

This jet formation is on a small scale (over approximately 1 km) compared to the extent of the MIZ (typically

100 km). Feltham showed that the collisional stresses are only significant over the length scale of the jet

when the ice concentration is low, and not over the MIZ zone width.

The stress regimes described here are all isotropic. An isotropic medium deforms in the same way in all

directions. Observations of sea ice, for instance long kinematic features, imply that sea ice has a directional

memory and deforms anisotropicaly. There has yet to be a dedicated study of anisotropy at the sea ice edge,

although an anisotropic sea ice rheology has been developed (Tsamados et al. 2012).

The role of wave-ice interation in the MIZ has been widely studied as discussed in section 1.3. Models of

this interaction have been created (for example Kohout & Meylan 2008). Details of this modelling process

will not be included in this summary due to their complexity. Wave interaction plays a large role in this

thesis as it accounts for the smaller ice floes and increased form drag in the MIZ (Birnbaum & Lupkes 2002).

The formation of atmospheric or oceanic jets could possibly increase the wave size in the MIZ and cause

the breaking of sea ice floes and an increase in applied drag coefficients through form drag (Birnbaum &

Lupkes 2002). The parameterisation of Birnbaum & Lupkes (as discussed in section 2.3.2) shows that the

increase in drag will be small and would only create a small increase in jet strength. Any link between

wave interaction and jet formation will not be investigated as other processes are more important (ice drift

speed for example). The increase in drag is assumed to be constant in time and the thesis focusses upon jet

formation and sea ice dynamics.

During freezing events the sea ice pack increases in size. The formation of new ice takes place at the sea

ice edge and in the MIZ. Pedersen & Coon (2004) model amounts of pancake and frazil ice formed in the

MIZ of the Greenland Sea. Ice concentration data from satellite observations and wind speed data from the

ECMWF are used to calculate the sea ice drift and areas of ice growth and melting. Known characteristics

of frazil and pancake ice allow for the modelling of the state of the new ice, its thickness, concentration and

salinity. The MIZ is shown to have a great extent during freezing events, with a complex and developing ice

profile as the different forms of new ice are redistributed causing melting or consolidation into pack ice.
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2.3.2 Atmosphere and Ocean Models

Models of the atmosphere above the sea ice edge have been produced. These models give further insight into

observations and investigate links between atmospheric processes and the changing sea ice cover. Obser-

vations of the atmosphere from the Earth’s surface or from aircraft are often incomplete in time and space.

Vihma & Brummer (2002) match observations of wind speed, temperature and humidity to a dynamic at-

mosphere modelling the wind speed, air temperature and humidity. The model is applied to the atmosphere

over the sea ice edge through its representation as a step change in surface temperature. The model balances

changes in momentum, potential temperature, water vapour mixing and sensible and latent heat, and gives

the state of the atmosphere up to 800 m above the Earths surface. Both on-ice and off-ice winds are con-

sidered, giving a stable Atmospheric Boundary Layer (ABL) in both cases and low level jet formation for

on-ice winds.

The ABL over the MIZ has been considered in fully theoretical models. Kantha & Mellor (1989),

Glendening (1994) and Tisler et al. (2008) use similar balance laws to Vihma & Brummer (2002) over a

laterally invariant sea ice edge. This allows the use of one horizontal dimension along with the vertical.

The models are numerical with 2 km horizontal resolution and variable vertical resolution to give greater

accuracy (5 m resolution) at the Earth’s surface and at the top of the ABL. The boundary conditions for the

models are from geostrophic winds above and surface conditions below the ABL and the model is initialised

with expected atmospheric conditions. Kantha & Mellor use prescribed geostrophic winds to test on-ice

and off-ice winds conditions. Glendening calculates the strength of the geostrophic winds within the ABL

model. The conditions set by Tisler et al. are more sophisticated using the output from an Arctic wide

atmospheric model (the HIgh Resolution Limited Area Model) to focus upon the MIZ north of the Fram

Strait and to correlate the results with observations of the ABL. The surface conditions in the models are

prescribed assuming a stationary sea ice edge with a step change in surface roughness and temperature

conditions. Tisler et al. use more sophisticated temperature conditions considering the thermal properties of

sea ice and any snow on top of it.

The results of these models show the importance of ice edge location toward the state of the ABL.

There is often a step change in atmospheric conditions such coastal fronts or cloud formation at the sea ice
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edge. Kantha & Mellor and Tisler et al. focus upon the thermal conditions of the ABL so are not of direct

importance to this thesis, however the modeling techniques, in particular the use of a laterally invariant

system has direct parallels to the methods used in chapters 3 and 4. Glendening analyses the changing

direction of the geostrophic winds upon the ABL formation of the sea ice edge. Atmospheric jets are shown

to form, although they are of a different structure to the calculations in chapter 3.

A three dimensional model of the ABL has been used by Liu et al. (2006). This model is the Cloud

Resolving Storm Simulator (CReSS) developed at Nagoya University and is applied to the MIZ to observe

cloud formation. Application to the MIZ is performed by using differing surface roughness lengths. Sea ice

is given a higher surface roughness (0.001 m) than the open ocean (roughness dependant upon wind speed

and approximately 0.0001 m). As the model is of high resolution (500 m grid cells) and has two horizontal

dimensions the MIZ can be represented by a mixture of sea ice and open ocean grid cells. The sea ice state

is fixed. The model gives a detailed image of cloud formation during off-ice winds.

The surface conditions in the previously mentioned models are given as a step change between the ocean

and sea ice. The MIZ is observed to develop over large distances into the sea ice pack (Lu et al. 2008) so this

method could be seen to be inaccurate. Birnbaum & Lupkes (2002) present a parameterisation of surface

drag over the MIZ that considers ice floe size and concentration. The surface drag is made of skin drag from

the flat top of the ice floes and ocean surface, form drag from the vertical edges of the floes and turbulence

around the ice floes. This parameterisation is used in a simple model of the ABL similar to that of Kantha &

Mellor (1989). The surface stress to the atmosphere is given as a function of frictional velocity (dependant

upon surface turbulence and skin drag) and form drag inversely weighted by the ice concentration. The

improved drag laws give a better fit with observations of surface wind stress and allow the state of the ABL

(density and wind direction in particular) to alter the surface stress.

The ocean mixed layer underneath the MIZ and sea ice edge has also been modelled. Markus (1999)

uses a mixed layer model of the of the southern ocean forced from below by the deep ocean temperature and

salinity and from above by atmospheric wind speed and temperature, cloud conditions, sea ice concentration

and the thickness of the snow upon it. The model has a resolution of 25 km and considers the mixed layer

and single layer of variable depth (known as a bulk model). Within the mixed layer the temperature, salinity

and layer depth are balanced with various temperature and turbulent fluxes. As with the atmospheric models,
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this model shows that the state of the ocean mixed layer is very sensitive to the location of the sea ice edge.

A more complex mixed layer which varies with depth is considered in the analytical model of Fennel &

Johannessen (1998). This model looks at the ocean response to atmospheric stress modified by the presence

of the sea ice edge. Caclulations are performed over a one dimensional laterally invariant sea ice edge giving

analytical solutions for the ocean velocity beneath. Several different ice edges are considered with differing

stress characteristics and ice drift speeds. The model predicts ocean jet formation due to the sharp change in

applied stress from the atmosphere to the ocean due to the presence of sea ice.

2.3.3 Coupled Systems

Due to the feedback mechanisms between the ocean, ice and atmosphere they are often modelled in a coupled

system. The simplest of such models is that of Roed & O’Brien (1983). This model uses a bulk ocean mixed

layer model similar to that of Markus (1999) along with a dynamic sea ice model similar to Hibler (1979)

but with a simplified rheology. The system is over one dimension with a laterally invariant sea ice edge.

The ice and ocean are coupled using a stress regime that considers both the ice to ocean interface below and

atmosphere to ice or ocean interface above. The model is forced by atmospheric stresses and shows how

upwelling of water into the mixed layer is a result of ice and ocean movement as a coupled system.

This two layer system has been extended to two dimensions by Smith & Bird (1991) to investigate the

formation of eddies along the sea ice edge. The momentum balance of the ocean mixed layer is coupled to

a free drifting ice edge (as described in equation (2.2.3)) using an sea ice to ocean interface stress regime

similar to that of Roed & O’Brien (1983). The model is solved numerically with a resolution of 2 km. The

domain used allows for different slopes on the ocean floor and different prescribed vorticity rates in the

mixed layer. Large eddies (10-100 km in diameter) are shown to form and travel along the sea ice edge

pulling the ice out into the open ocean through the applied oceanic stress.

The coupling of ice and ocean has been expanded to the entire ocean depth rather than just the mixed

layer. Rasmussen et al. (1999) present a full three dimensional ocean model of the basin between Greenland,

Iceland and Norway forced by observed atmospheric conditions. The model balances mass, salinity and

temperature profiles with the ocean velocity and pressure. The sea ice above is modelled with the viscous-

plastic scheme described by Lu et al. (1989). The model is numerical and has a 20 km horizontal resolution
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and a 50 m vertical resolution. The coupling between the ice and ocean is done by equating surface shear

stresses and a thermodynamic and salinity balance in the ocean mixed layer. Due to complex bathymetry of

the non- idealised domain the model required a spin up period using just the ocean component. The study

shows the importance of ice-ocean coupling toward the modelling of salinity and temperature profiles.

2.3.4 Summary

In this chapter many modelling methods have been presented. To investigate the jet formation described by

Hunt et al. (2004) atmospheric and oceanic models are described in the next chapter. The atmospheric model

used by Hunt et al. is not as complex as the atmospheric models described in section 2.3.2 as it is a bulk

model of the ABL which only considers wind speed perturbations. To apply this model to the sea ice edge

the atmospheric drag over sea ice needs to be investigated for which the study of Birnbaum & Lupkes (2002)

is of particular interest. To apply the theory of jet formation to the ocean mixed layer a bulk model which

considers perturbations to the ocean current is required. The model of Roed & O’Brien (1983) is similar to

the oceanic model required.

To investigate the effect that jet formation has upon the sea ice edge a dynamic sea ice model is described

in chapter 4. This model needs to be able to calculate the sea ice drift due to applied stress from the ocean and

atmosphere and be applied to the sea ice edge. The consideration of ice concentration within the momentum

balance of Gray & Morland (1994) makes it ideal for this task. The sea ice edge can be given as the locus

of points of zero ice concentration. To use this momentum balance a rheology is required to calculate the

internal ice stresses. Gray & Morland use the viscous plastic rheology of Hibler (1979) in their study.

The alternate collisional and granular rheologies discussed in section 2.3.1 are not shown to give a better

description of ice dynamics within the MIZ and are mathematically complex to use (Lu et al. 1989, Shen

et al. 1986, Feltham 2005). The viscous plastic rheology shall be used along with free drift dynamics for low

ice concentrations. This allows comparison with numerical sea ice models which use this same rheology

(such as the CICE model).
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CHAPTER 3

ATMOSPHERIC AND OCEANIC JET FORMATION

An application of the theory of Hunt et al. (2004) (Coriolis effects in mesoscale flows with sharp changes in

surface= conditions) to the sea ice edge is presented in this chapter. The theory and modelling of atmospheric

jet formation is described in section 3.1 and appied to the sea ice edge using observations of the ice cover

and atmosphere in the marginal ice zone. The theory of jet formation is adapted for application to the ocean

underneath the ice cover in section 3.2 using observations of the ocean and ice cover in section 3.2.4.

The formation of atmospheric jets has been modelled over coastlines (Hunt et al. (2004), hereafter known

as HORC). This formation is due to the Coriolis effect on flows over a sharp change in surface roughness.

The jets are able to form during low Froude number flows in a stably stratified atmosphere. The Froude

number condition is discussed in section 3.1.4 and the stratification of the atmosphere over the sea ice edge

is shown to be stable in section 1.3. The sharp change in surface roughness is present in the Marginal Ice

Zone (MIZ). The change in roughness is present for the atmosphere flowing from the open ocean to the

rough broken sea ice, and also for ocean flowing underneath the sea ice. The calculations of HORC are

applied to winds over the MIZ and the theory is adjusted to represent the ocean flowing underneath it.
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Figure 3.1: Vertical profile of the Atmospheric Boundary Layer with velocity (U [x] and perturbation u′) and
density (ρA) as a shallow layer perturbed flow.

3.1 Atmospheric Jets

The theory of HORC is explained (section 3.1.1) and applied to the sea ice edge. Characteristic values for

the winds and ice edge are derived and used to calculate the jet size and shape (section 3.1.4). Mathematical

notation for this chapter is explain below and listed in table 1.

3.1.1 Shallow-Layer Model Equations

Figure 3.1 illustrates the shallow layer flow over a sharp change in surface roughness. An atmospheric flow

of speed UA approaches a change in surface roughness length from z00 to z0. There is a lower layer of

thickness hA. This layer has density ρA and is known as the Atmospheric Boundary Layer (ABL). A step

change in air density of magnitude ρA∆̂ρA (where ∆̂ρA is the non-dimensional part) exists between the

ABL and the upper atmosphere with the ABL of higher density. ∆gA = g∆̂ρA is the reduced gravitational
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acceleration of the flow. Upwind conditions at x → −∞ are assumed to be steady and uniform in the

horizontal plane. The mean velocity profile is U [z], V [z], shear Reynolds stresses (the vertical variation

of horizontal turbulence stress) are (−u”w”)0, (−u”v”)0, pressure profile is P [z] and density is ρAρ[z]

(note that double prime indicates turbulent fluctuations). The development of the flow is modelled using

perturbations to the mean values. These are given as u′, v′, w′ for velocity, ∆(−u”w”)[z], ∆(−u”v”)[z]

for Reynolds stresses, and p for pressure, and are assumed to be uniform over the lower layer. The inversion

layer height hA and its perturbation h are also considered in the model. The scaling values for the flow are

the Froude number FA = UA/
√

∆gAhA, and the atmospheric Rossby radius LRA =
√

∆gAhA/fc where

fc = 2Ω sin θ is the Coriolis parameter for latitude θ and the Earth’s rotational speed Ω.

The change in roughness length z0 creates a shear surface layer of thickness hs. The shear layer depth

ls increases in the direction parallel to the wind over the change in roughness. For subcritical flows where

FA < 1, turbulent effects cause this change to be transferred to the inversion layer height h∗ over a horizontal

distance of over 10 km. This structure has been observed over the MIZ (Kantha & Mellor 1989, Tisler

et al. 2008) and has been reproduced by high resolution atmospheric models (Kantha & Mellor 1989).

This model of the ABL is valid for all subcritical flows with FA < 1 and is unable to give solutions for

supercritical flows with FA > 1. The possibility of atmospheric jet formation for supercritical flows is not

conclusive from this theory.

The components of the linearised momentum balance for the perturbations to the flow field are given as

Du′ =−px + fcv
′ + F [x, y, t] and

Dv′ =−py − fcu′ +G[x, y, t],

(3.1.1)

where D = ∂/∂t+ UA∂/∂x is the total derivative, F and G are the along and across effective body forces

determined by the vertical gradient of turbulent shear stress or by buoyancy forces.

The vertical perturbation velocity, w′, at the inversion and the perturbation to the inversion height, h,

are linked to ū and v̄, the horizontal perturbation velocities (u′, v′) averaged over the lower layer, using the

continuity equation so that at z = hA

Dh = w[z = hA] = −(ūx + v̄y)hA. (3.1.2)
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The horizontal gradients of the pressure perturbation are given by HORC (through the linearisation of pres-

sure fluctuations) as a function of h with

px = ∆gAhx and py = ∆gAhy. (3.1.3)

Equations (3.1.1) and (3.1.3) can be combined with (ū, v̄) and the body forces averaged over the layer (F ,G)

to give

Dū = −∆gAhx + fcv̄ + F and

Dv̄ =−∆gAhy − fcū+G.

(3.1.4)

Equations (3.1.2) and (3.1.4) can be combined to give an equation to be solved for h with

D

[
∇2h− h

L2
RA

− F
2
A

U2
A

D2h

]
= FA

hA
UA

[
1

LRA
(Gx − F y) +

FA
UA

D(F x +Gy)

]
. (3.1.5)

For the steady state (∂/∂t = 0) this equation can be integrated in the x direction and scaled to give

∇̂2ĥ−F2
AĥXX − ĥ = R̂[X,Y ] (3.1.6)

where

R̂[X,Y ] = (±)

∫ X

∓∞
(ĜX − F̂Y )[X ′]dX ′ + FA(F̂X + ĜY ) (3.1.7)

= R̂(0) + FAR̂(1),

with (F̂ , Ĝ) = (LRAFA/U2
A)(F ,G). The sign of the integral and the limit of integration relate to the

choice of constant of integration to achieve a definite integral. The scaling is done horizontally over the

Rossby radius (LRA) and vertically over the lower layer (hA) with ĥ = h/hA, (X,Y ) = (x, y)/LRA and

∂/∂X = LRA∂/∂x. The forcing function R̂[X,Y ] is split into a series in the Froude number. This allows

the system to be solved for the leading order, R̂(0), and first order, R̂(1), forcing functions.

49



Uo 

Parallel velocity  
perturbation 

Layer thickness 
perturbation 

(re
lative

ly 

sm
ooth su

rfa
ce) 

(re
lative

ly r
ough 

surfa
ce) 

LR 
 (Rossby radius) 

Ocean 

Sea Ice
 

x 

y 

ϕ

€ 

ˆ n 

Modified angle  

of incidence 
ϕ’ 

eU

eV
Modified 
flow velocity 
components 

ev

X

Y
Original SCALED 
coordinates 

h⇤
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Equations (3.1.2) and (3.1.4) can also be combined to give (û, v̂) = (ū, v̄)/UA in terms of ĥ with

ûXY +
ûX
FA

=−
(
∂

∂Y
+ FA

)
ĥX
F2
A

+
F̂Y
FA

and

v̂XX −
v̂Y
FA

=−
(
∂

∂Y
−FA

)
ĥX
F2
A

+
ĜX
FA

.

(3.1.8)

3.1.2 Forcing

The body forces (F,G) and the averaged and scaled functions (F̂ , Ĝ) are dependent upon surface drag, ele-

vation change and heating and cooling effects. This thesis focuses upon the surface drag. These components
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are equal to the vertical gradients of the perturbation shear stress terms, ∂(−u′w′)/∂z and ∂(−u′v′)/∂z.

These terms are parameterised using the perturbation functions ∆CF , ∆CG with

F = −∆CFU
2
0

hA
and

G =−∆CGU
2
0

hA
.

(3.1.9)

In the along-wind direction the perturbation ∆CF is given as

∆CF = ∆0[z0] + ∆u[ū], (3.1.10)

where ∆0 ≈ κ2{1/ ln2(hS/z0) − 1/ ln2(hS/z00)} is dependent upon the change in roughness length.

For large changes in surface roughness, where z0 >> z00, ∆0 ≈ κ2/ ln2(hS/z0), where κ(≈ 0.4) is

von Kármán’s constant. ∆u = CF (2ū/UA − h/hA), is dependent upon the velocity perturbation, with

CF = κ2/ ln2(hS/z00). Through scaling HORC shows how the velocity dependent component (∆u) can

be neglected for typical mesoscale atmospheric flows over sharp changes in surface roughness. The drag

coefficient in the across wind direction is given as ∆CG ≈ CF v̄/U0, shown by HORC to be insignificant

compared to the along wind drag. This simplifies the calculations.

To model the interaction between the atmospheric flow and the sea ice edge, the forcing functions

(∆CF ,∆CG) are given as step functions using the Heaviside Step functionH[n̂] and its derivative the Dirac

Delta function δ[n̂] (as shown in Roughness boundaries at arbitrary angle to the wind - HORC section 3(c)).

These step functions depend on the angle (φ) between the ice edge and the ocean current, see figure 3.2,

giving

∆CF = {∆CF }H[n̂], (3.1.11)

where n̂ = (x sinφ − y cosφ)/LRA is the non-dimensional distance normal to the ice edge and {∆CF } is

the magnitude of ∆CF . In order to solve equation (3.1.6), equations (3.1.9) and (3.1.11) are combined. As

the forcing components R̂(0,1) both experience a step change at the same location the calculations can be
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simplified through their relation to the same function Φ[X,Y ] where

∆CF = {∆CF }ΦX [X,Y ],

F̂ = −∆̂CFΦX [X,Y ],

R̂(0) = ∆̂CFΦY [X,Y ] and

R̂(1) =−∆̂CFΦXX [X,Y ],

(3.1.12)

with ∆̂CF = {∆CF }LRAFA/hA. Setting ΦX [X,Y ] = H[n̂], the forcing functions become

R̂(0) = −∆̂CF
H[n̂]

tanφ
and R̂(1) = −∆̂CF

δ[n̂]

sinφ
. (3.1.13)

3.1.3 Solutions

Firstly a solution for the inversion layer height ĥ is obtained. Substituting equations (3.1.13) and (3.1.7) into

equation (3.1.6) gives an equation for ĥ that be solved in the form ĥ = ĥ(0) + FAĥ(1) where

ĥ(0) = ∆ĈF
J (0)[n̂]

tanφ
and ĥ(1) = ∆ĈF

J (1)[n̂]

sinφ
, with (3.1.14a)

J (0)[n̂] =
1

2
{en̂H[−n̂] + (2− e−n̂)H[n̂]} and

J (1)[n̂] =
1

2
e−|n̂|.

(3.1.14b)

For the northern hemisphere, solutions give an increasing on-ice mixed layer thickness over the scale of LRA
for 0 < φ < π/2, and decreasing mixed layer thickness for π/2 < φ < π. This is reversed for the southern

hemisphere. The leading order term (ĥ(0)) gives a monotonic solution across the roughness change. The 1st

order solution adds a localised peak centred over the roughness change (see figure 3.3(a)).

Equations (3.1.8) can now be used to give solutions for û = û(0) + FAû(1) and v̂ = v̂(0) + FAv̂(1). To

leading order in FA, equations (3.1.8) can be simplified. This is due to the low Froude number conditions
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Figure 3.3: Shape of a jet formed by roughness change for angle φ = π/4 and Froude number FA = 0.3 in
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velocity perturbation parallel to the ice edge. These figures are independent of the magnitude of roughness
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FA < 1 assumed in the formation of the model. The equations reduce to

û = − ĥYFA
and v̂ =

ĥX
FA

,

which give û and v̂ as

û =
∆̂CF
FA

cosφ

(
J (0)′ [n̂] + FA

J (1)′ [n̂]

cosφ

)
and

v̂ =
∆̂CF
FA

cos2 φ

sinφ

(
J (0)′ [n̂] + FA

J (1)′ [n̂]

cosφ

)
,

(3.1.15)

where J (0)′ [n̂] = ∂/∂n̂(J (0)) = (1/2)e−|n̂| and J (1)′ [n̂] = ∂/∂n̂(J (1)) = −(1/2)e−|n̂|sgn(n̂). These

perturbation terms are aligned with the wind ((x, y) coordinates). The perturbation parallel to the change in

roughness is ṽ = v̂ sinφ+ û cosφ and can be seen in figure 3.3(b) with approach angle φ = π/4 and Froude

number FA = 0.3 at a latitude of 70◦ N. The leading order terms (û(0), v̂(0)) give a symmetrical solution

about the change in roughness which decays over a distance of order LRA. The first order terms give an

antisymmetrical correction, again centred about the roughness change. The correction is greater for a higher

Froude number. For the northern hemisphere, the first order terms give an enhanced jet on the smoother side
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of the roughness change for 0 < φ < 90◦, and on the rougher side for 90◦ < φ < 180◦, see figure 3.3(b).

This is reversed for the southern hemisphere. The strength of the jet is dependent upon the parameter ∆̂CF

which in turn depends upon the magnitude of change in roughness (equation (3.1.10)) which is derived in

section 3.1.4.

The perturbation perpendicular to the change in roughness (parallel to n̂), ũ = −û sinφ + v̂ cosφ, is

always zero as û cosφ ≡ v̂ sinφ = ∆̂CF /FA cos2 φ(· · · ) for 0 < φ < 180◦ (see equation (3.1.15)). As the

perturbation to the flow is purely parallel to the ice edge, the jet bends the wind to flow on a bearing closer

to parallel to the ice edge. The effective angle between the perturbed wind and the ice edge φ′ will be closer

to parallel than the original angle φ. This can be seen in figure 3.4(b).

3.1.4 Application to the Sea Ice Edge

In order to apply the jets to the atmosphere over the MIZ, numerical values need to be found for the control-

ling equations, namely (3.1.10), (3.1.15), and the Froude number and Rossby radius. The Froude number

and Rossby radius are dependent upon the thickness of the ABL and the strength of the inversion at the top

of it. There are observations of atmospheric processes over sea ice from which these values can be taken.

The ABL height over the MIZ is widely documented. The inversion height is low, varying from 200 m

(Vihma et al. 2003, Brümmer et al. 1994) to 500 m (Guest et al. 1995, Andreas et al. 1984). Considering the

modification to the inversion height in section 3.1.3 and observations of the ABL height over the ocean near

the sea ice edge (500 m, Fairall & Markson 1987), a value of hA = 400 m is used in these calculations.

The inversion strength at the top of the ABL is less widely documented. This is due to the difficulty

in observing such a change. The most common observations are in the form of a step change in potential

temperature. This change ranges from 5◦C (Guest et al. 1995, Kantha & Mellor 1989) to 10◦C (Tjernström

2005, Andreas et al. 1984). The change in potential temperature can be equated to the inversion layer

strength (dimensionless quantities) defined by ∆̂ρA = ∆T/TA (Garratt 1994) where ∆T is the change

in potential temperature and TA is the atmospheric potential temperature in degrees Kelvin. The range of

observed values give 0.18 < ∆̂ρA < 0.35 (dimensionless). A typical value of 0.3 is used here.

The selected values of ∆̂ρA and hA give the internal wave speed (speed of perturbations along the

inversion layer) as
√

∆gAhA ≈ 10.9 m s−1. From section 3.1.1 this leads to a Rossby radius of LR ≈ 75
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km. The condition for low Froude number flows (FA < 1) is that UA < 10.9 m s−1.

The surface roughness of sea ice is a controlling parameter in atmospheric models with a standard value

of z0 = 0.001 m (Vihma et al. 2003). The concept of “roughness length” is an abstract one that has little

relationship to any physical measurement (Csanady 2001). Roughness length values are often a product

of sensitivity studies in numerical models. The value associated with the sea ice pack is too low for the

broken MIZ as shown by Birnbaum & Lupkes (2002) and discussed below. Tisler et al. (2008) investigates
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this parameter and uses a value of z0 = 0.01 m for rougher ice. The thickness of the shear layer hs is

an observed and modelled value for the MIZ. It is consistent over several studies at approximately 20 m

(Tisler et al. 2008, Kantha & Mellor 1989). These values give ∆CF ≈ 3 × 10−3 (equation (3.1.10)). This

value is comparable to drag coefficients that have been measured over the MIZ. Anderson (1987) measured

C10 ≈ 3.5 × 10−3 (10 m drag coefficient) using direct eddy flux measurements. This is in agreement

with Bennett Jr & Hunkins (1986) who analysed the expedition of Andreas et al. (1984). It is also in

agreement with the summary of Guest et al. (1995) and the drag modelling of Birnbaum & Lupkes (2002).

The study of Birnbaum & Lupkes analyses various drag laws including form drag (the drag from floes

edges). They introduce a parameterisation of atmospheric drag over sea ice with a dependance upon the sea

ice concentration (see section 2.3.2 for a detailed description). The value of ∆CF ≈ 3× 10−3 fits well with

the maximum 10 m drag given at 80 % ice concentration.

The perturbation to the flow can now be calculated in dimensional units. The dimensional values for the

velocity components perpendicular, Ũ , and parallel, Ṽ , to the ice edge are

Ũ = UA sinφ and (3.1.16a)

Ṽ = UA cosφ+ UA
∆CFLRA
hA tanφ

(
J (0)′ [n̂] + FA

J (1)′ [n̂]

cosφ

)
. (3.1.16b)

The modified wind speed can be seen in figure 3.4(a) and (b) for an approach wind of UA = 5 m s−1 at

an angle of φ = 30◦ to the sea ice edge. The jet formed is approximately 200 km wide, with smaller

perturbations covering 600 km. The jet is more intense for the ocean side of the roughness change. This is

reversed for 90◦ < φ < 180◦ due to the antisymmetrical first order correction in equation (3.1.15), which

depends upon which hemisphere the ice edge is in (see section 3.1.3). The wind speed increases about the

ice edge (figure 3.4(a)), causing a change in wind direction (figure 3.4(b)). The change in wind direction

turns the wind to a bearing closer to parallel to the ice edge for all values of φ and in both hemispheres.

For faster wind speeds, the Froude number increases, creating a larger antisymmetry in the jet, and faster

peak wind speeds due to the FA dependance upon the J (1)′ [n̂] function in equation (3.1.16b). The solutions

presented give a constant wind velocity over the height of the ABL. This constant is comparable to observed

10 m wind velocities.
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The parallel component increases rapidly as the upstream flow has a bearing that approaches parallel to

the ice edge (φ → 0◦ or φ → 180◦) see figures 3.4(c) and 3.4(d). This increase is due to the inverse tanφ

relationship in equation (3.1.16b). This increase is not realistic as a flow parallel to the ice edge requires

a different mathematical analysis than that which was used in sections 3.1.2 and 3.1.3. Parallel flows are

continually accelerated as they flow along the edge. The maximum perturbation to the flow depends on the

length of the ice edge. For parallel flows, HORC (Elongated strips of rough elevated terrain aligned parallel

to the wind, equation (17b)) give the relationship between the maximum dimensional parallel perturbation

and edge length as

v̄ = UA
∆CF d

2hA
(3.1.17)

where d is the dimensional length of the ice edge. A length of d = 250 km is used in these calculations to

represent the persistence of winds that can form parallel to the ice edge. This is in accordance with the winds

and ice edge state observed during on-ice winds (Massom et al. 2006, Massom et al. 2008, King et al. 2010).

Another limiting factor is the straightness of the ice edge. The edge of the ice pack is unlikely to form a

straight edge and is more likely to meander and appear rough. A purely parallel flow is unlikely to persist

for longer than a Rossby Radius. An angle limit of 5◦ will be used in these calculations, limiting the size of

the perturbation for angles of 0◦ ≤ φ ≤ 5◦ and 175◦ ≤ φ ≤ 180◦. The maximum perturbation and angle

limit cause the cut off seen in figures 3.4(c) and (d).

3.2 Oceanic Jets

The atmospheric jet theory of HORC can also be applied to ocean currents underneath the MIZ as the ocean

mixed layer also presents a stratified flow. The theory does however need to be refined. The controlling

processes are similar and are analogous to the processes in the atmosphere. The interaction between the

surface shear layer and inversion layer heights that leads to atmospheric jet formation for subcritical winds

speeds (see figure 3.1) is assumed to occur within the ocean mixed layer for subcritical current speeds. This

assumption leads to a model of ocean jet formation.
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Figure 3.5: Vertical profile of velocity (U [x],u) and density (ρ0) of a shallow layer perturbed flow.

3.2.1 Mixed-Layer Model Equations

The ocean mixed layer of density ρM and thickness hM sits above the ocean of higher density ρO as illus-

trated in figure 3.5. The normalised step change in density is ∆̂ρO = (ρO − ρM )/ρO. A uniform current

of strength UO encounters the ice with roughness length z0. This causes perturbations to the velocity (ū, v̄),

pressure p, mixed layer depth hb, and sea surface height ht. This simple formulation of the mixed layer is

similar to that used by Roed & O’Brien (1983).

As with HORC and the equations in section 3.1.1, modifications to the ocean current within the mixed

layer are modelled using a linearised momentum balance for the perturbations to the flow field, equation

(3.1.1). As in section 3.1.1 expressions for pressure (P + p), layer thickness perturbation (h = ht + hb),

and body forces (F,G) are obtained. The scaling values for the flow are the oceanic Froude number FO =

UO/
√

∆gOhM , and the oceanic Rossby radius LRO =
√

∆gOhM/fc where ∆gO = g∆̂ρO.
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The perturbation velocity, w, at the top and bottom of the mixed layer is equated to the change in layer

thickness with

Dht = w[z = ht] and

Dhb = − w[z = −(hM + hb)].

The overall change in layer thickness is the sum of these (Dh = Dht +Dhb), which can be approximated

by the velocity perturbation by integrating the continuity equation over the mixed layer giving

Dh = w[z = ht]− w[z = −(hM + hb)] =

∫ ht

−(hM+hb)

wzdz ≈ −(ūx + v̄y)hM . (3.2.1)

The total pressure in the upper layer at position (x, z) is

(P + p)[x, z] = (P + p)[x, ht] + g(1− ∆̂ρO)(ht − z) and

(P + p)[x→ −∞, z] = (P + p)[x→ −∞, 0]− g(1− ∆̂ρO)z,

at x→ −∞ far from the sea ice edge. The sea surface pressure is taken to be independent of position with

(P + p)[x, ht] = (P + p)[x→ −∞, 0] = Ps.

Furthermore, pressure at equal depths is assumed to be equal throughout the model with

(P + p)[x→ −∞, z = −(hM + hb)] = (P + p)[x, z = −(hM + hb)]

Ps + g(1− ∆̂ρO)hM + ghb = Ps + g(1− ∆̂ρO)(ht + hM + hb), which gives

∆̂ρOhb = (1− ∆̂ρO)ht. (3.2.2)

Thus the thickness of the mixed layer is linked to the raised sea surface with h = ht/∆̂ρO. As the density

inversion is of order 10−3 and the mixed layer is of order 10 m thick, the change in sea surface level ht will

be of order 10−2 m. This change happens over a Rossby radius (104 m) and will be almost undetectable.
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See section 3.2.4 for derivation of numerical values.

The pressure perturbation can now be given by

(P + p)[x, z]− (P + p)[x→ −∞, z] =

p[z] = g(1− ∆̂ρO)ht ≈ ∆gOh

to leading order. The horizontal pressure gradients are

px =∆gOhx and

py =∆gOhy.

(3.2.3)

Combining the pressure perturbations and body forces in equations (3.1.1) and (3.2.3) and averaging over

the mixed layer (−(hM + hb) < z < ht) we get

Dū = −∆gOhx + fcv̄ + F and

Dv̄ =−∆gOhy − fcū+G,

(3.2.4)

where (F ,G) are the body forces averaged over the mixed layer. This is analogous to equation (3.1.4).

Equations (3.2.1) and (3.2.4) can be combined to give an equation to be solved for h with

D

[
∇2h− h

L2
RO

− F
2
O

U2
O

D2h

]
= FO

hM
UO

[
1

LRO
(Gx − F y) +

FO
UA

D(F x +Gy)

]
. (3.2.5)

As with equation (3.1.5) the steady state, (∂/∂t = 0), gives equations (3.1.6) and (3.1.7) with the oceanic

Froude number FO, rather than atmospheric Froude number FA. The scaling is this time horizontally

over the oceanic Rossby radius (LRO) and vertically over the mixed layer (hM ) with ĥ = h/hM , (X,Y ) =

(x, y)/LRO and ∂/∂X = LRO∂/∂x. The forcing functions are similarly scaled with (F̂ , Ĝ) =

(LROFO/UO)(F ,G) as in equation (3.1.7).
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3.2.2 Forcing

The body forces (F,G) and the averaged and scaled functions (F̂ , Ĝ) are dependent upon the stress applied

to the ocean currents by the underside of the broken sea ice. The corollary to this drag, the drag experienced

by sea ice in the ocean, is

τ̃ o = ρoCo|Uo
g − u|

[
(Uo

g − u) cos θ + k× (Uo
g − u) sin θ

]
(3.2.6)

(e.g. Feltham 2005), where Uo
g is the ocean velocity, u is the ice velocity, θ is a turning angle, ρo is the

density of sea water and Co is a constant associated with the drag between the ocean and ice. The turning

angle is associated with the Ekman turning of the water column underneath the ice. As this water column

is considered in this model, θ can be set to zero. The ice velocity is of the same order as the ocean velocity

(Johannessen et al. (1983) for example and the results in chapters 5 and 6) so forcing terms similar to

equations (3.1.9) cannot be used for the ocean. The flow velocity term in these equations needs to be

replaced with relative difference in velocity between the ocean and ice. This is done by introducing u2diff =

|ÛO − ÛI |2 where ÛO,I are the non-dimensional velocities of the ocean and sea ice at the sea ice edge,

giving the body forces as

F =FD = −∆CFU
2
Ou

2
diff

hM
and

G =GD = −∆CGU
2
Ou

2
diff

hM
,

(3.2.7)

selecting appropriate values for ∆CF and ∆CG.

Substituting equation (3.2.7) into equation (3.1.7) the forcing functions become

R̂(0) = −∆̂CFu
2
diff
H[n̂]

tanφ
and R̂(1) = −∆̂CFu

2
diff

δ[n̂]

sinφ
, (3.2.8)

where ∆̂CF = ∆CFLROFO/hM and n̂ = (x sinφ− y cosφ)/LRO.
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3.2.3 Solutions

As with the atmospheric jet in section 3.1.3, equations (3.2.8) give a series solution to equation (3.1.6)

(replacing FA with FO) with ĥ = ĥ(0) + FOĥ(1) where

ĥ(0) = ∆̂CFu
2
diff
J (0)[n̂]

tanφ
and

ĥ(1) = ∆̂CFu
2
diff
J (1)[n̂]

sinφ
,

where J (0) and J (1) are given by (3.1.14b).

For the northern hemisphere these solutions give an increasing mixed layer thickness in the on-ice di-

rection over the scale of LRO for 0◦ < φ < 90◦, and decreasing for 90◦ < φ < 180◦. The opposite is true

for the southern hemisphere. The leading order term ĥ(0) gives a monotonic solution across the roughness

change. The first order solution supplies a localised peak centred over the roughness change. This can be

seen in figure 3.3(a), with an increase in mixed layer thickness (shown), causing a deepening of the density

step change (at z = −(hM + hb)).

The solutions for û = û(0) +FOû(1) and v̂ = v̂(0) +FOv̂(1) also take a similar form to the atmospheric

perturbations (equations (3.1.15)) with

û =
∆̂CFu

2
diff

FO
cosφ

(
J (0)′ [n̂] + FO

J (1)′ [n̂]

cosφ

)
and

v̂ =
∆̂CFu

2
diff

FO
cos2 φ

sinφ

(
J (0)′ [n̂] + FO

J (1)′ [n̂]

cosφ

)
,

(3.2.9)

where J (0)′ [n̂] = ∂/∂n̂(J (0)) = (1/2)e−|n̂| and J (1)′ [n̂] = ∂/∂n̂(J (1)) = −(1/2)e−|n̂|sgn(n̂). These

perturbation terms are aligned with the ocean current ((x, y) coordinates). The perturbation parallel to the

change in roughness is analogous to the atmospheric jet with ṽ = v̂ sinφ+ û cosφ, and can be seen in figure

3.3(b). The solutions are of the same form, decaying over the oceanic Rossby radius LRO with an added first

order peak dependent upon the Froude number FO. Again the strength of the jet depends upon ∆̂CF and the

change in surface roughness. The perpendicular perturbation is of the same form, ũ = −û sinφ + v̂ cosφ,

and is identically zero.
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3.2.4 Application to the Sea Ice Edge

The strength and size of the ocean jets are dependent upon a number of numerical values associated with the

flow. The characteristic scales associated with the flow (LRO,FO) are calculated from the density inversion

and mixed layer thickness. These two values can be taken from observations of ocean temperature and

salinity. The equation of state for seawater is

ρ = ρ0(1− αT + βS) (3.2.10)

(from Thorpe 2005), where ρ0 is a reference ocean density, T is the change in temperature and S is the

change in salinity. α and β are constants based on the expansion of water and are specified at reference

values for S and T and vary with depth. For the mixed layer at the sea ice edge we use equation (3.2.10) to

calculate ∆̂ρO from salinity and temperature changes giving ∆̂ρO = −α∆T + β∆S. α and β are taken as

52× 10−6 ◦K−1 and 0.82 psu−1 respectively for seawater near it’s freezing temperature of −1.8◦C. For the

OML in polar regions the change in salinity contributes most to the change in ocean density. Sea ice growth

causes a release of salt into the OML and sea ice melt a release of freshwater. This gives a relatively large

value of β∆S compared to α∆T as the ocean temperature remains close to freezing throughout the year.

Measurements of mixed layer depth vary by some degree. For the sea ice pack far from the open ocean,

the mixed layer is typically 20-30 m deep, and rarely exceeds 50 m (Toole et al. 2010, McPhee et al. 2005).

For the MIZ it is more variable. Values can vary from 25 m (Fer & Sundfjord 2007, Williams et al. 2008,

Quadfasel et al. 1987) to as high as 150 m (Markus 1999, Padman & Dillon 1991).

This variability in the mixed layer depth makes selection of a value for hM challenging. There is often

a seasonal variation in the depth (Markus 1999), which could be included in longer time series coupled

models. There is a fairly good correlation between the depth of the mixed layer and the change in salinity.

For a shallow mixed layer the salinity change was between 1.5 and 3 psu (Quadfasel et al. 1987, Toole

et al. 2010, McPhee et al. 2005). Whereas for a deeper mixed layer it was lower at 1psu (Padman &

Dillon 1991). The change in temperature across the layer was between 0.5− 1◦C for all studies.

Average values of hM = 40 m, T = 0.5◦C and S = 2.5 psu are taken. This gives a density change

of ρO∆̂ρO ≈ 2 kg m−3 which correlates well with values given by McPhee et al. (1987) and Toole et al.
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(2010). These values give an internal wave speed of
√

∆ghM ≈ 0.9 m s−1 which results in a Rossby radius

of ≈ 6 km. The value of
√

∆ghM is high enough for low Froude number conditions for U0 < 0.9 m s−1.

This is true for all but the most extreme ocean currents (Fer & Sundfjord 2007).

The effect the roughness change has upon the flow depends upon the values of z0, the roughness length,

and lS , the surface shear layer. There has been little study into the surface roughness of the underside of the

MIZ. Shaw et al. (2008) conducted a study of roughness length measurements under the central Arctic pack

ice: the typical roughness lengths were of 5 mm< z0 <30 mm. A value of z0 = 20 mm and a shear layer

depth of lS = 4.5 m gives a value of ∆CF ≈ 0.0055 (equation (3.1.10)). This is equal to the value of CO

(see equation (3.2.6) in section 3.2.2) used by Feltham (2005). Shaw et al. (2008) also recorded roughness

lengths of up to z0 = 150 mm for a rougher sea ice due to the presence of pressure ridges. As the the broken

floes of the MIZ suggest a rougher surface than that of the sea ice pack, a value of z0 = 100 mm shall be

used giving ∆CF ≈ 0.011.

The dimensional perturbations can now be calculated. They are of a similar form to the atmospheric

perturbation in equation (3.1.16) with

(U + u)n̂ = UO sinφ and (3.2.11a)

(V + v)n̂ = UO cosφ+ UO
∆CFLROu2diff

hM tanφ

(
J (0)′ [n̂] + FO

J (1)′ [n̂]

cosφ

)
, (3.2.11b)

with one major difference in the addition of the u2diff term. Knowledge of the sign and size of u2diff is essential

to modelling the ocean jets. If the sea ice and ocean are moving wight he same velocity, the ocean will

experience no relative velocity to the change in surface roughness and no jet will form. However if the ice

is still there will be a large relative velocity and a strong jet will form. A simplified relationship between the

ocean and ice is used here, so to give a demonstration of the size and shape of the oceanic jet. Figure 3.6

contains demonstration calculations for an approach ocean current speed of UO = 0.2 m s−1 at an angle of

φ = 30◦ to the sea ice edge and shows the changing jet strength for varying φ.

The sea ice edge is assumed to be compacted. The ice can move freely parallel to the edge, but not

normal to the edge. For the purpose of illustration the parallel ice velocity is taken to be 3/4 of the parallel

component of the far field ocean speed, and u2diff is calculated from the ice velocity (ÛI(1,2) components of
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Figure 3.6: As figure 3.4 but for the ocean in the northern hemisphere. The approach ocean current speed is
UO = 0.2 m s−1 for all figures and at an angle of φ = 30◦ to the sea ice edge in (a) and (b).

ÛI ) and far field ocean velocity (ÛO(1,2) components of ÛO) with

u2diff = (ÛO1 − ÛI1)2 + (ÛO2 − ÛI2)2 = sin2 φ+
cos2 φ

16
.

This approximation is only valid for a system that only considers an ocean jet. When atmospheric forcing is

present, it is possible that the ice is blown to move faster than the ocean, or slowed against the ocean current.

This would modify the difference between the ocean and ice velocities, and the strength of the ocean jet.

The ocean jet perturbations can be seen in figure 3.6. This figure is for demonstration only as the jet
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formation is best modelled by coupling the ocean jet formation to a dynamic sea ice model as in chapter 5.

The ocean jet is similar in shape to the atmospheric jet seen in figure 3.4 though the size is different. The

ocean jet perturbations extend over a distance of 40 km with the most significant perturbations within the

central 20 km. The jets are also less intense due to the change in surface roughness being calculated from

the difference between ocean and ice velocity. The relative increase in parallel velocity for φ = 30◦ (figure

3.6(a)) is small compared to the wind velocity which doubles for the same value of φ. Again there is an

antisymmetrical correction about the change in roughness. This is of the same form discussed in section

3.1.4 due to the similarity between equations (3.1.15) and (3.2.9).

The relationship between the angle φ and the jet strength is greatly affected by the u2diff term. Sea ice

drift in the direction parallel to the sea ice is less restricted by the sea ice pack. This reduces u2diff for currents

with a bearing parallel to the ice edge which in turn reduces the jet strength. This creates the non monotonic

increase in figures 3.6(c) and (d), in particular the local maximum at φ = 40◦ and φ = 140◦. This in contrast

to the purely exponential increase experienced by the atmospheric jet in figures 3.4(c) and (d). The same

angle limit as used in section 3.1.4 restricts the strength of the ocean jet. No maximum perturbation limit is

used as the u2diff reduction keeps the perturbations small.

66



CHAPTER 4

AN ANALYTICAL MODEL OF SEA ICE DRIFT IN A COMPACTED

MARGINAL ICE ZONE

The formation of atmospheric and oceanic jets have been modelled at the sea ice edge and in the Marginal

Ice Zone (MIZ). This formation is due to a sharp change in surface roughness length and the Coriolis effect

and is described in detail in chapter 3. To model the sea ice drift during jet formation an analytical model

of sea ice drift has been created. The size and shape of the jets is discussed in section 4.1. The momentum

balance used in the model is described in section 4.2. The boundary conditions for the model are taken from

free drifting ice which is matched to the model equations in section 4.3.

Jet formation as described in chapter 3 modifies the atmosphere and ocean velocities. A change in

velocity causes a change in stress applied to the sea ice in the momentum balance described in section 2.2.3.

This momentum balance can be solved in steady state to give solutions for ice velocity and concentration.

The momentum balance is applied to the ice edge using scaling and simplifications described in section 4.2.1.

The ice edge is defined by a low ice concentration. For a low ice concentration a momentum balance is used

to model free drifting ice. This is described in section 4.3. The model can be rearranged algebraically into a

nonlinear coupled system of differential equations. The solutions are dependant upon the imposed boundary
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conditions. These conditions come from the atmospheric and oceanic forcing and the conditions at the

extreme ice edge as described in section 4.3.3. All coordinate systems used in this chapter will be redefined

(see figure 4.1) and the systems used in chapter 3 are no longer applicable. Notation for this chapter is

described below and listed in table 1.

4.1 Jet Formation

LRA(O) Atmospheric  
(Oceanic) Rossby radius 

O
ce

an
 

S
ea

 Ic
e 

x 

y 

ϕ
Angle of unpertu

rbed  

wind or cu
rre

nt 

ϕ’ 

X

Y Original & SCALED 
coordinates 

Ice
 D

rif
t 

dir
ec

tio
n 

bu
v

u

bv original & scaled  
ice drift velocity 

d

Figure 4.1: Coordinate and ice drift velocity notation
for the analytical model. This notation is true for the
results in chapters 5 and 6.

The formation of atmospheric and oceanic jets over

the sea ice edge is modelled as in chapter 3. The

size and shape of the jets depend on a number of

variables. These variables are the speed of the ap-

proach current, the angle of incidence between the

current and the ice edge, the drag between the sea

ice and the fluid (ocean or atmosphere), and the sign

and magnitude of the Coriolis effect (depending on

latitude and the north/south hemisphere). These

variables are varied, with each case tested against

identical currents with no jet. The gravity wave

speed and layer thickness associated with the at-

mospheric boundary layer above, and ocean mixed

layer below, the sea ice are also important because

they affect the Rossby radius and Froude number

associated with each flow. The gravity wave speeds

and layer thickness are held constant throughout the

experiments and their derivation can be found in chapter 3.
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4.1.1 Atmosphere

The formation of the atmospheric jet is described by equation (3.1.16b). The jet is centred about the change

in surface roughness length that causes it to form. For the ice edge this corresponds to the extreme edge of the

ice pack. In this model the sea ice edge is assumed to be compact with a sharp increase in ice concentration

expected. This sharp increase clearly defines point of sharp change in surface roughness length.

The stress applied to the ice from the atmosphere is calculated from the wind stress with

τ̃ a = ρaCa|Ua|Ua, (4.1.1)

where ρa is the air density, Ca is a drag coefficient and Ua the wind velocity vector. For these calculations

Ca = ∆CF (as used in equation (3.1.16b) to define the atmospheric jet) which is higher than typically used

for the sea ice pack. This represents the increased roughness of the broken floes at the sea ice edge. The

values of Ca and Ua correspond to Ua being calculated at a constant height of 10 m. This height is used in

many observations such as those in section 3.1.4.

4.1.2 Ocean

The ocean jet formation is described similarly to the atmospheric jet in section 4.1.1 by equation (3.2.11b).

The u2diff term scales the drag term to depend on the difference between the ocean and ice velocities. This

dependance upon the ice velocity requires the jet size to be solved along with the ice velocity. The theory

behind the jet formation views the sea ice as a slab moving at a constant velocity. As the sea ice does not

move as a slab, and has a varying velocity profile, a typical velocity is needed to calculate u2diff. This is taken

from the free drift calculations for the extreme edge of the pack, see sections 4.3 and 4.3.3.

The ocean jets are typically an order of magnitude thinner than the atmospheric jets with a oceanic

Rossby radius of 6 km compared to an atmospheric Rossby radius of 75 km (see figures 3.4 and 3.6). They

are less intense and are less antisymmetric. The Froude number associated with the ocean is generally less

than with the atmosphere, with FRO < 1 for all but the most extreme currents. Again the jet is centred about

the extreme edge of the sea ice pack.

The stress applied to ice from the moving ocean is dependent upon the difference in velocity between
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the ice and ocean beneath it. A turning angle between the velocities and the stress direction is used to

simulate Ekman turning in the ocean boundary layer beneath the ice in accordance with observations (e.g.

Csanady 2001). The ocean stress is calculated by equation (3.2.6). The turning angle is set to zero for these

calculations, to simplify the experiment and because the ocean jet formation considers the processes that the

turning angle replicates. As with the atmospheric drag, Co = ∆CF with ∆CF taken as applied to the ocean

jet in equation (3.2.11b) to account for the broken ice floes at the sea ice edge.

4.2 Ice Pack Dynamics

To model the compacted sea ice pack we use the momentum balance of equation (2.2.4) described in section

2.2.3. The components of this momentum balance given by equation (2.2.4) are used to calculate the sea ice

drift from the applied atmospheric and oceanic stresses. The internal ice stresses are calculated using the

Viscous-Plastic rheology described in appendix A.

4.2.1 Application to the Sea Ice Edge

The atmospheric and oceanic jets form during on-ice winds and currents. These winds and currents cause the

ice pack to compress forming a stable ice edge. This stability allows several assumptions about the ice to be

made. Primarily it can reach a steady state removing all time derivatives from the model, i.e ∂/∂t = 0. The

coordinate system can be aligned with the ice edge, with x normal and y parallel to the edge. Considering

an infinite laterally invariant ice edge gives ∂/∂y = 0. These simplifications are similar to those used by

Lepparanta & Hibler (1985) in their study of MIZ dynamics. As the edge is compacted assumptions can be

made about the normal ice velocity u. The thickness of the sea ice is take as a constant with h = 1 m. The

sea surface tilt is also ignored with S = 0. For an ice concentration of A < 1 the thickness distribution of

the sea ice does not need to be balanced using equations such as (2.2.1) or (2.2.2).
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Zero Normal Ice Velocity

The most simple assumption to make about the normal ice velocity is to set it to zero, i.e. u = 0. This gives

the steady state components of equation (2.2.4) as

0 = ρIhfcv +A(τa1 + τo1 ) + σ11x and

0 = A(τa2 + τo2 ) + σ12x,

(4.2.1)

where the massm = ρIh has been equated to the density multiplied by the thickness of the sea ice. Subscript

1 and 2 refer to the x and y direction respectively and subscript x refers to the partial x derivative.

The values of σ11 and σ12 can be calculated from equation (A.2.2). The only non-zero components of

the strain rate tensor are ε̇12 = ε̇21 = vx/2, simplifying equations (A.2.3). The desired components of the

stress tensor can be calculated with

σ11 = −p
2
, and (4.2.2a)

σ12 =
p

2

e−2vx

(2e−2vx2)
1
2

(4.2.2b)

=
p

2
√

2e
sgn(vx),

where sgn(vx) = −1 for vx > 0 and sgn(vx) = 1 for vx < 0 is the sign function. The point of vx = 0 is

undefined in this model. The ice pressure p is given as a function of ice concentration as in equation (A.2.4)

in appendix A.

The length scale of the model depends on the Rossby radius of the jet formation LR, given the appro-

priate value for the jet being investigated LRA for the atmosphere, LRO for the ocean. The model is non-

dimensionalised over these distances. For experiments with both jets, the atmospheric Rossby radius will be

used as it is an order greater than the oceanic Rossby radius. The ice velocity is also non-dimensionalised.

Typical ice speeds vary depending on the ocean current. For a still ocean the ice speed will be small, for a

moving ocean the ice speed will be greater, of the same order as the ocean speed. The applied stresses are

also scaled.

Equation (4.2.1) can be non-dimensionalised in velocity u→ UI û, position (x, y)→ LR(X,Y ), deriva-
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tives ∂/∂x → (1/LR)(∂/∂X) and applied stress τ̃a → Taτ̂a, τ̃o → Toτ̂o where the T terms are typical

stress values defined later. The scaled components of equation (2.2.4) can be calculated from equation (4.2.1)

and (4.2.2) with

0 = fcLRUI v̂ +
LR
ρIh

(Taτ̂a1 + Toτ̂o1 )A− p∗

2ρI

∂g

∂A

∂A

∂X
, and (4.2.3a)

0 =
LR
ρIh

(Taτ̂a2 + Toτ̂o2 )A+
p∗

2
√

2eρI
sgn(v̂X)

∂g

∂A

∂A

∂X
. (4.2.3b)

These two equations can be combined in order to separate the A and v̂ variables giving

gAAX = −sgn(v̂X)
2
√

2eLR
p∗h

(Taτ̂a2 + Toτ̂o2 )A and (4.2.4a)

v̂ = − 1

fcUIρIh

[
(Taτ̂a1 + Toτ̂o1 ) + sgn(v̂X)

√
2e(Taτ̂a2 + Toτ̂o2 )

]
A, (4.2.4b)

where the partial derivatives are given in subscript notation. Equation (4.2.4a) is an ordinary differential

equation (ODE) that can be solved to give a solution for A the ice concentration. This solution can be

substituted into equation (4.2.4b) to give a solution for v̂ the component of the sea ice drift velocity parallel

to the sea ice edge. Approximating g(A) by g(A) = Ac, equation (4.2.4a) can be integrated to give

A =

[
sgn(v̂X)

1− c
c

2
√

2eLR
p∗h

∫
(Taτ̂a2 + Toτ̂o2 )dx

] 1
c−1

. (4.2.5)

This produces solutions for applied forcing which is either constant or only dependant upon X . In these

cases, A behaves like a real root. For a value of c = 20 this is a 19th root.

However when the applied stresses have a more sophisticated relationship, such as equation (3.2.6), the

integral on the RHS of equation (4.2.5) will contain continuous functions of v̂X . This method does not work

for such cases and a more sophisticated model is needed to obtain solutions. This is created by using a non

zero value for the normal ice velocity.
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Non Zero Normal Ice Velocity

Allowing the ice to move normal to the sea ice edge introduces complexity to equation (2.2.4). As the sea

ice edge is compacted by on-ice winds and currents, u is taken as small and positive for x increasing into

the pack. This value is taken to be constant throughout the solution with ∂u/∂x = 0. The steady state

components of equation (2.2.4) under these simplifications become

0 = ρIhv +A(τa1 + τo1 ) + σ11x, and

uvx = −ρIhu+A(τa2 + τo2 ) + σ12x

(4.2.6)

with m = ρIh as in equation (4.2.1). Using the stress tensor components in equation (4.2.2) and scaling in

section 4.2.1, equation (4.2.6) can be non-dimensionalised to give

0 = fcLRUI v̂ +
LR
ρIh

(Taτ̂a1 + Toτ̂o1 )A− p∗

2ρI

∂g

∂A

∂A

∂X
, and (4.2.7a)

U2
I û

∂v̂

∂X
= −fcLRUI û+

LR
ρIh

(Taτ̂a2 + Toτ̂o2 )A+
p∗

2
√

2eρI
sgn(v̂X)

∂g

∂A

∂A

∂X
. (4.2.7b)

These two equations can be combined to give a system of two ODEs to solve for v̂ and A with

gAAX − α1[X, v̂]A− α2v̂ = 0 and (4.2.8a)

v̂X − β1sgn(v̂X)v̂ − β2[X, v̂, sgn(v̂X)]A+ β3 = 0, (4.2.8b)

where

α1[X, v̂] = 2
LR
p∗h

T1[X, û, v̂],

α2 = 2
ρIfcLRUI

p∗
,

β1 =
fcLR
UI û
√

2e
,

β2[X, v̂, sgn(v̂X)] = 2
LR

ρIhU2
I û

(
T1[X, û, v̂] +

sgn(v̂X)√
2e

T2[X, û, v̂]

)
and

β3 =
fcLR
UI

.

(4.2.9)
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The functions T1[X, û, v̂] = Taτ̂a1 [X] + Toτ̂o1 [X, û, v̂] and T2[X, û, v̂] = Taτ̂a2 [X] + Toτ̂o2 [X, û, v̂] are

derived from the appied stresses with the scaling terms Ta = U2
AρaCa, To = U2

OρoCo. The components of

the applied stress terms calculated from equations (4.1.1) and (3.2.6) with

τ̂a1 = ûan̂

√
ûan̂

2
+ v̂an̂

2
, τ̂a2 = v̂an̂

√
ûan̂

2
+ v̂an̂

2
,

τ̂o1 =

(
ûon̂ −

UI
UO

û

)√(
ûon̂ −

UI
UO

û

)2

+

(
v̂on̂ −

UI
UO

v̂

)2

and

τ̂o2 =

(
v̂on̂ −

UI
UO

v̂)

)√(
ûon̂ −

UI
UO

û

)2

+

(
v̂on̂ −

UI
UO

v̂

)2

,

(4.2.10)

with the scaled atmosphere and ocean velocites UA(ûan̂, v̂
a
n̂) = (uan̂, u

a
n̂) and UO(ûon̂, v̂

o
n̂) = (uon̂, u

o
n̂). The

ocean stresses have had the turning angle set to zero. Due to the dependency of the ocean jet upon the u2diff

term (see section 4.1.2), the ocean velocity term parallel to the ice edge is a function of typical ocean and

ice speeds, i.e. v̂on̂ = v̂on̂[ũO, ũI ].

4.3 Free Drift at the Extreme Ice Edge

At the extreme edge of the sea ice pack, the ice concentration approaches zero. This makes the ice ocean

mixture model described in section 2.2.3 no longer applicable. The ice movement can be modelled as a

free drift, where the ice floes no longer have any meaningful interactions and are assumed to make no

modification to the momentum over a large length scale. These interactions are considered by the ice stress

tensor in equation (2.2.4). The magnitude of the internal stresses calculated by the viscous-plastic rheology

are shown to be insignificant compared to the applies stresses in section 4.3.1 removing the need for an ice

stress tensor. The movement of the individual ice floes is now considered rather than the sea ice - ocean

mixture layer removing the dependance upon the ice concentration. The resulting free drift momentum

balance is that described in equation (2.2.3). The two sea ice momentum balances in equations (2.2.4) and

(2.2.3) need to be matched in order to fully model the sea ice edge. This is done using the mathemtical

techniques of length contraction and variable expansion.
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4.3.1 Matching the Free Drift and Ice Pack

To match the two momentum balances the controlling components are analysed. The ice concentration A is

expanded polynomially in ε. Using small ε one can view which terms take precedent through the order of ε

and the constants associated with them. This technique is used in fluid dynamics in laminar and boundary

layer flows. A full documentation can be found in Dyke (1975). Convention labels the region in which the

full order of the governing equations are preserved as the outer solution. The region in which the equations

are scaled and the highest order term ignored is labelled as the inner solution. This labeling is confusing

for this situation as it conflicts with the outer part of the MIZ which it represents. The inner and outer

terminology shall not be used.

We take

A = A0 +A1ε+A2ε
2 + . . . ,

∂A

∂X
= A0X +A1Xε+A2Xε

2 + . . . , (4.3.1)

where An are functions of X and ε << 1 is a constant. The series differentiate linearly. The length variable

X is replaced with the length contracted variable X where X = εαX with α > 0. This is carried through to

the derivatives where
∂

∂X
=

∂

∂X
∂X
∂X

= ε−α
∂

∂X . (4.3.2)

The expansion in powers of ε along with the change of variables has the effect of focusing on the point

X = 0, where A = A0, û = u0, v̂ = v0. For the case of the sea ice edge, the ice concentration is zero with

A0 = 0. The first order (in ε) change to these terms will happen beyond a specific length scale defined by ε

and α.

The non-dimensional steady state momentum balance in equation (4.2.7) is used with modification. û is

no longer kept constant as the assumption ûX ≡ 0 does not hold for free drifting ice near the the open ocean.

The terms σ11X and σ12X from equation (4.2.2) need expanding. The function g(A) in the ice pressure term

(see equation (4.2.2)) is approximated by g(A) = Ac so to fit with the polynomial form of equation (4.3.1).
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From equations (A.2.2) and (A.2.3) the tensor components become

σ11 =
1

2
p∗hAc

[
(1 + e−2)ûX ε−α

{(1 + e−2)û2X ε
−2α + 2e−2v̂2X ε

−2α}
1
2

− 1

]
and

σ12 =
1

2
p∗hAc

e−2v̂X ε−α

{(1 + e−2)û2X ε
−2α + 2e−2v̂2X ε

−2α}
1
2

.

(4.3.3)

In these two terms the ε−α values cancel out. The termsD11 andD12 shall be used to simplify the equations

with

D11 =

[
(1 + e−2)ûX

{(1 + e−2)û2X + 2e−2v̂2X }
1
2

− 1

]
and

D12 =
e−2v̂X

{(1 + e−2)û2X + 2e−2v̂2X }
1
2

.

(4.3.4)

Substituting equations (4.3.4) into equations (4.3.3), the X derivatives (notated by σ11,X for example) of the

stress tensor terms become

σ11,X = ε−ασ11,X (4.3.5a)

= ε−α
1

2
p∗h

[
cAc−1AXD11 +AcD11,X

]
, and

σ12,X = ε−ασ12,X (4.3.5b)

= ε−α
1

2
p∗h

[
cAc−1AXD12 +AcD12,X

]
.

The An terms have yet to be expanded. Upon expansion

An = (A0 +A1ε+A2ε
2 + . . .)n (4.3.6)

= A0
n + ε

(
n

1

)
A0

n−1A1 + ε2
[(
n

2

)
A0

n−2A1
2 +

(
n

1

)
A0

n−1A2

]
+ . . . .
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Parameter Value
c 20
e 2
LRA 75 000 m
LRO 6 000 m
UI 0.01 m s−1

UO 0.1 m s−1

fc 10−4 s−1

ρI 900 kg m−3

p∗ 27 500 N m−1

h 1 m
Ta, To 0.5 N m−2

Table 4.1: Typical values of constants for the sea ice edge.

For the case when A0 = 0 equations (4.3.5a) and (4.3.6) give

σ11,X = ε−α
1

2
p∗h

{
εc[A1

cD11,X + cA1,XA1
c−1D11]

+εc+1

[
Ac−11 A2

(
c

1

)
D11,X + cA1

c−2
(
A2A1,X

(
c− 1

1

)
D11

+cA1A2,XD11

)]
+ . . .

}
, (4.3.7)

= εc−α
1

2
p∗hσ̂11,X

with a similar result for equation (4.3.5b). Equation 4.3.7 gives σ11,X and σ12,X as o(p∗hεc−α) to leading

order as long as D11 and D12 and their derivatives and resultantly σ̂11,X are no greater than o(1). This

assumption is reasonable for any steady solution as otherwise there would have to be a large discrepancy

between uX 2 and vX 2. This is true for the solutions obtained in chapter 5.

The order of each component of equation (2.2.4) can now be expressed. The length contracted form of

the x component is

U2
I ûûX = fcLRUI v̂ +

LR
ρIh

(Taτ̂a1 + Toτ̂o1 )A+
p∗

2ρI
εc−ασ̂11,X , (4.3.8)

with a similar result for the y component. A value for α is selected to make the stress tensor (far right

of equation 4.3.8) small compared to the other terms. This is achieved by considering the order of each
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term along with values for each constant from table 4.1. The order of the constants in front of each term

in equation (4.3.8) can now be calculated over scales associated with an atmospheric jet (subscript A) and

oceanic jet (subscript O), ie.

U2
I ≈ o(10−4), U2

O ≈ o(10−2),

fcLRAUI ≈ o(10−1), fcLROUO ≈ o(10−1),

LRA
ρIh

(Taτ̂a1 + Toτ̂o1 ) ≈ o(102),
LRO
ρIh

(Taτ̂a1 + Toτ̂o1 ) ≈ o(100), and

p∗

2ρI
≈ o(103).

These values can be used to balance the order of the each component along with the constants associated

with it. There is a different balance for the atmospheric jet system (over LRA, equation (4.3.9a)) and ocean

jet system (over LRO, equation (4.3.9b)) with

o(10−4ε−α) = o(10−1) + o(102ε) + o(103εc−α) and (4.3.9a)

o(10−2ε−α) = o(10−1) + o(ε) + o(103εc−α). (4.3.9b)

The atmosphere can be balanced (removing the stress tensor) with ε = o(10−2) and α = 2. This makes the

order of the stress tensor < o(10−10) and negligible. This selection corresponds to a length contraction of

≈ 0.01%. For length scales shown in table 4.1 this is the outer ≈ 75 m of the MIZ. The ocean system can

be similarly balanced with ε = o(10−1) and α = 2 having the same result with the stress tensor term. The

length contraction in this case is for the outer 60 m of the MIZ.

The expansion shows how the viscous plastic dynamics of the sea ice pack are similar to free drift at the

sea ice edge. This is achieved by assuming that the ice concentration reaches zero and leaves the ice velocity

unchanged. The similarity is over a distance of 75m for a sea ice edge under an atmospheric jet and 60m

over an ocean jet. Boundary conditions for the ice pack can be calculated using the free drift momentum

balance.
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4.3.2 Application to the Sea Ice Edge

The same simplifications used for the ice pack (section 4.2.1) are applied to the free drift momentum balance.

This models the ice movement at the extreme ice edge, allowing the normal velocity û to be unconstrained.

As this region is thin compared to the scales of atmospheric and oceanic drag variation (Rossby radius

LR(A,O)), the velocity solution can be taken as constant throughout, removing all spatial derivatives. The

peak values of atmosphere and ocean velocity (at X = Xpeak) are used for the applied stresses. The ice ve-

locities (û, v̂) can be calculated from the components of equation (2.2.3) with all spatial and time derivatives

set to zero. These are a set of simultaneous equations with

0 = fcv̂ +
1

ρIhUI
T1[Xpeak, û, v̂] and

0 = −fcû+
1

ρIhUI
T2[Xpeak, û, v̂].

(4.3.10)

In order to calculate the stress terms (T1,T2), typical ice and ocean velocities are needed to calculate u2diff.

The typical ocean velocity ũO = (sinφ, cosφ) is taken as the non-dimensional far field ocean velocity, the

typical ice velocity ũI = (û, v̂) is equated to the ice velocity to be solved for. The solution gives boundary

conditions for the sea ice pack (see section 4.3.3). The boundary conditions give typical ice and ocean

velocities and thus a value of u2diff for the sea ice pack solution.

4.3.3 Boundary Conditions

Boundary conditions are needed to find a solution for the ice pack. These conditions are derived from the

free drift system in section 4.3.2 along with an imposed low, nonzero ice concentrationA chosen to represent

the sea ice edge. A value of A = 0, which would represent the open ocean results in the solution A = 0 for

the whole domain and we choose A = 0.1. The free drift system, however gives values for û, v̂ which are

inconsistent with the assumptions in section 4.2.1. The parallel component of the velocity (v̂) is consistent

though the normal component (û) is too high to match to the low normal velocity set in section 4.2.1. A

discontinuity in the normal velocity is required. A lower value for û can be calculated from equation (4.2.8b)

to maintain continuity in the x direction. Prescribed values of A = 0.1 (as before) and v̂ (from the free drift

solution) are used. Values for forcing functions T1,T2 are used as in the free drift solution. The derivative
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v̂X is set to zero, to maintain continuity, and the derivativeAX is set to be high, anticipating a sharp increase

in ice concentration. û is then calculated from

0 = −fcLRUI û+
LR
ρIh

AT2[Xpeak, û, v̂]A+
p∗

2
√

2eρI
sgn(v̂X)gAAX , (4.3.11)

with T1 calculated as for the free drift in section 4.3.2, i.e. u2diff is a function of û. For the results in chapter

5, û for the analytical model is approximately 10% of the value for the free drift solution.

For the pack solution v̂ is expected to be at its highest at the extreme edge of the ice pack. This gives

v̂X < 0 with sgn(v̂X) = −1 (in equation (4.2.8b)) for all X .
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CHAPTER 5

RESULTS FROM THE ANALYTICAL MODEL

A model of sea ice drift at the sea ice edge has been described in chapter 4. This chapter contains results

from that model. The techniques used in performing experiments with the analytical model are described

in section 5.1. Results from experiments with an atmospheric jet are in section 5.2.1 with detailed plots

from a demonstration experiment (figure 5.1) and an analysis of changing parameters (figure 5.2). Results

from experiments with an ocean jet are presented similarly with a demonstration experiment (figure 5.3)

and changing parameters (figures 5.4, 5.5 and 5.6). Sea ice drift during both atmospheric and oceanic jet

formation has been considered and four examples are presented in section 5.2.3. The nature of the sea ice

during jet formation is investigated in section 5.2.4.

5.1 Solving Methods

The system of equations (4.2.8) in chapter 4 can be used to model the dynamics of the sea ice edge. The

boundary conditions are set by matching the free drift solution (equation (4.3.10)) with the ice pack momen-

tum balance (equation (4.3.11)).

The equations are solved over a simplified domain. The domain has the ice edge at X = 0 defined by
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a low ice concentration of A = 0.1. The system is solved for X > 0 over the distance of > 2LR(A,O)

to include all of the sea ice under the influence of the atmospheric or oceanic jets. The jets are centred

about X = 0 with n̂ aligned with the X axis. When both jets are applied, the oceanic jet is a function

of (LRA/LRO)n̂ to allow for the different scales of the two jets. Using simplifications the system can be

solved over this domain.

5.1.1 Approximation and Linearisation

The coefficient of the highest order derivative in equation (4.2.8a) (AX) is a nonlinear function of A. This

non linearity comes from the g(A) function and makes the system of equations difficult to solve using simple

numerical methods. This has been addressed by linearising this function over many domains. Approximating

g(A) by a piecewise continuous set of lines causes the derivative ∂g/∂A in equation (4.2.8a) to be constant

in each domain. The system can now be solved in each domain, matching the boundary conditions of each

domain to its neighbours to create a complete solution.

Define the open set QA = [0, 1] which is subdivided into n open sets Qi = [Ai−1, Ai] by the monoton-

ically increasing series {A0, A1, . . . An}, where A0 = 0, An = 1 and
⋃n
i=1Qi = QA. This allows us to

define the set of functions

gi(A) =




miA+ ci s.t.

gi(Ai−1) = g(Ai−1)

gi(Ai) = g(Ai)

|g(A)− gi(A)| < εi ∀A ∈ Qi





(5.1.1)

where εi << 1 is the maximum error for each function. As both the functions gi(A) and g(A) are monotonic

increasing, the error can be contained by having the size of domain Qi (given as Ai − Ai−1]) sufficiently

small. Approaching the limit Ai−1 → Ai results in gi(Ai−1) = g(Ai−1) → gi(Ai) = g(Ai). This gives

|g(A)− gi(A)| → 0.

A non uniform subset distribution has been chosen. Set width decreases as A approaches 1. This allows

the maximum error εi to be small and approximately equal for all i, maintaining the accuracy of the complete

solution over all subsets.
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The solution is started at X = 0. Boundary conditions are taken for A and v̂ (derived in section 4.3.3)

and equations (4.2.8) are solved over Q1 until A = A1. Values for A, v̂ and X at this point are used as

boundary conditions to solve over Q2. This process is repeated to give a complete solution for the ice edge.

5.2 Results

Solving equations (4.2.8) over the domain in equation (5.1.1) gives values for the lateral ice velocity v and

ice concentration A. These values are defined for the whole solution. The movement of the ice balances the

rate of change in momentum induced by the external stresses. This rate of change is purely spatial in the x

direction with all other derivatives zero (i.e. ∂/∂t = 0, ∂/∂y = 0).

For each experiment, three conditions are considered and solved for. The first is for no jet and the second

and third are a jet in the northern and southern hemisphere. This is analogous to having runs with φ◦ and

180− φ◦ allowing all values of 0◦ ≤ φ◦ ≤ 180◦ to be considered. The orientation of the axes in this model

only allows movement in the positive y direction as defined in figure 4.1, constraining the far field forcing

to have an approach angle of 0◦ ≤ φ◦ ≤ 90◦.

5.2.1 Atmospheric Jet Formation

Demonstration calculations are done for an approach wind of 5 ms−1 at 45◦ to the ice edge. The calculations

are repeated for both the northern and southern hemispheres, giving the negative and positive sides of the

jet perturbations respectively (see section 3.1 for the jet shape). This gives similar results to repeating the

experiment with winds at 45◦ and 135◦ to the ice edge. For the angle selected, the ice edge in the southern

hemisphere experiences the stronger jet (figure 5.1(b)). The stress balance for the southern hemisphere has

been plotted. The applied stresses are the dominant forces within the balance (figure 5.1 (c) and (d)), with

the atmospheric stress balanced by the ocean stress (acting opposite to the ice motion due to the still ocean)

with a mall contribution from the internal stresses. The internal stress components in figures 5.1 (c) and

(d) have a saw tooth appearance due to the approximation methods used to solve the system (section 5.1.1).

This profile can be smoothed by approximating the internal stresses using the same method as used for g(A)

in section 5.1.1. This is the solid blue line in the stress plots which lies at the centre of the varying dashed

83



50 LRA 100 2LRA
km

0.2

0.4

0.6

0.8

1.0
A

!a"

No jet
SH jet
NH jet 50 LRA 100 2LRA 200 3LRA250 300

km

�0.15

�0.10

�0.05

0.05

0.10

0.15

ms
�1

�b⇥
v

Τ1
a

Τ1
o

Σ11x

fc v
50 LRA 100

km

#0.2

#0.1

0.1

0.2

Nm#2
!c"

Τ2
o

Τ2
a

Σ12x

# fc u
50 LRA 100

km

#0.2

#0.1

0.1

0.2

Nm#2
!d"

50 LRA 100 2LRA 200
km

1.2

1.4

1.6

1.8

2.0

2.2

k

�e⇥

NH wind enhancement

NH ice enhancement

NH wind enhancement

NH ice enhancement

SH 
SH 

0 50 100 150 200
km

10

20

30

40

50
�'

�f⇥

Ice no jet
Ice NH jet
Ice SH jet
Wind no jet
Wind NH jet
Wind SH jet

�

Figure 5.1: Atmospheric jet formation with φ = 45◦ and UA = 5 m s−1. Plot (a) is the ice concentration
A, plot (b) is the dimensional lateral ice velocities v for four cases (see legend, both no jet cases are green)
with the southern hemisphere case is plotted negative to the y axis to ease comparison to chapter 6. Plots
(c) (x direction) and (d) (y direction see figure 4.1) are the dimensional stress components for the southern
hemisphere solution. Plot (e) is the enhancement factor k for the parallel component of the wind and ice
velocities. Plot (f) is the angle φ′ between the wind (dashed) and ice (solid) motion and the ice edge.
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blue line. The Coriolis acceleration acts normal to the ice edge against the perturbed winds which compress

it, though is small compared to the other stresses.

The atmospheric stress is at its peak at the ice edge, decaying away to the far field value into the ice pack.

This decay is experienced by the ice velocity. The lateral component of the sea ice velocity is at its highest at

the ice edge, and decays away over the same distance as the atmospheric stress (≈ 2LRA see figure 5.1(b)).

The ice motion when no jet is present gives a constant value for the lateral velocity across the solution (green

lines in figure 5.1(b)). When the atmospheric jet is present, the ice speed decays to this value. Comparing the

jet, and no jet solutions gives an enhancement factor k = vjet/vno jet, where k = 1 is for no enhancement and

k > 1 is for positive enhancement or an increase in velocity. An atmospheric velocity enhancement factor

can be calculated in the same way. The atmosphere and ice velocity enhancement have a similar same size

and shape. The wind (dashed lines) and ice drift (solid lines) in figure 5.1(e) for the northern hemisphere

are identical with a small difference (<20% of the sea ice enhancement) for the southern hemisphere. As

the enhancement to the wind and also the sea ice velocity is purely parallel to the sea ice edge, the direction

of motion is modified. Figure 5.1 (f) shows the modified angle of incidence (φ′ see figure 4.1) between the

wind and sea ice drift and the sea ice edge. For all the cases shown, the ice drift direction is closer to parallel

to the ice edge than the wind above it. This is due to the compaction of the sea ice edge restricting ice motion

normal to the ice edge.

The ice concentration increases to around 70% over a short distance from the sea ice edge (< 1 km)

before the increase slows (see figure 5.1 (a)). This shape is similar to the 19th root in equation (4.2.5)

discussed in section 4.2.1 and is true for all the calculations presented.

The increased ice drift caused by the formation of the atmospheric jet increases the ice transport parallel

to the ice edge. This can be measured by integrating the dimensional ice velocity parallel to the ice edge

over the region of the jet, i.e. for 0 km ≤ x ≤ 3LRA km. The velocity is multiplied by the ice concentration

to give the sea ice fraction of the mixture layer. As the thickness of the ice is constant in this model, the

transport is given as the horizontal area of sea ice per unit time Atransport with

Atransport =

∫ 3LRA

0

Avdx (5.2.1)
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Where A is the ice concentration and v is the component of the dimensional ice drift velocity parallel to the

sea ice edge. The case of no jet has a parallel drift of ≈ 50 km2 hr−1 for the outer 3LRA of the sea ice edge.

The atmospheric jet formation increases this drift by ≈ 20 km2 hr−1 for a jet in the southern hemisphere

and ≈ 3 km2 hr−1 for the northern hemisphere.

As the angle of approach wind changes so does the jet intensity (section 3.1.3). This relationship to

the angle of approach is transferred to the ice jet through the atmospheric stress. This gives the lateral ice

velocity enhancement a similar profile to the lateral wind velocity enhancement, see figure 5.2(a) which

is at 5 km from the edge of the ice pack, near the centre of the jet. For an approach angle which gives a

significant lateral velocity component the profiles share a similar curve. As the lateral component of the ice

drift velocity become close to zero (60◦ < φ < 120◦ in both jet and no-jet cases), internal stresses and the

Coriolis accelerations take a greater role in the momentum balance. This can cause the non-jet case to have

a near zero value for the lateral velocity (the cause of the lump at φ = 110◦). Also as the wind approaches

an angle normal to the ice edge, the jet perturbation can be negative, slowing the lateral motion compared

to the non jet case (at φ = 70◦). There is a discontinuity in the plot at φ = 90◦ due to the change in sign

of the second order perturbation in the wind jet calculation (see chapter 3). The second order perturbation

gives a greater enhancement for φ > 90◦ with the ice and ocean reaching the maximum perturbation limit

derived from the analysis of parallel flow (equation (3.1.17)) at ≈ 15◦ to the ice edge rather than ≈ 5◦ for

the negative perturbation (φ < 90◦). This gives the wider plateau at φ = 180◦. This is reversed for the

southern hemisphere. The size of the plateau is also dependant upon UA, with a greater size for faster wind

speeds.

Changing the far field wind speed alters the jet in two ways. The symmetrical component is linearly de-

pendant upon the approach wind speed and gives the same enhancement factor for all wind speeds. The anti-

symmetrical component depends on both the wind speed and the Froude number. This gives a greater asym-

metry for higher wind speeds seen in the diverging trends in figure 5.2(b). As the wind speed approaches

the critical limit (FA → 1, UA → 10 m s−1) the asymmetric and symmetric components are of similar

magnitude. This gives a one sided jet with little or even a negative perturbation (seen for UA > 8 m s−1)

on the negative side and a large discontinuity about the ice edge. The spatial variability of such a jet is not
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reversed Coriolis acceleration).
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plotted, though the strength of a jet throughout it’s extent is proportional to the strength at it’s maximum.

Plotting the peak enhancement at the ice edge against the approach speed gives two results seen in figure

5.2. When the positive side of the jet is over the sea ice, the ice enhancement increases linearly with wind

speed. When the negative side is over the sea ice, there is a linear decrease. This linearity is not present

for low wind speeds when Coriolis and internal stress components become similar to the applied stress (for

UA < 2 m s−1).

5.2.2 Oceanic Jet Formation

The relationship between ocean jet formation and the sea ice response is more sophisticated than with the

atmospheric jet as described in section 5.2.1. The applied stress from the ocean cannot be applied as with the

atmospheric forcing. This is due to the ocean stress (equation (3.2.6)) and the ocean jet strength (u2diff term

in equation (3.2.11)) being proportional to the difference in velocity between the ice and the ocean rather

than just the ocean velocity.

Demonstration calculations are done for an approach current of 0.2 m s−1 at 30◦ to the ice edge. This

angle has been chosen over 45◦ (as used for the demonstration calculations in section 5.2.1) as it produces an

ocean jet of greater magnitude. The calculations are repeated for both the northern and southern hemispheres.

As with the atmospheric jet, the southern hemisphere experiences the stronger jet (figure 5.3(e)). The two

main components in the momentum balance are the ocean stress and the internal stress gradient (see figure

5.3 (c) and (d)). Again the internal stress components in figures 5.3 (c) and (d) have a saw tooth appearance

due to the approximation methods used to solve the system (section 5.1.1). The smooth approximation to

these stresses is the solid line. These components are equal throughout the solution despite the jet formation.

The ice is moving faster than it does in the experiments with the atmospheric jet, giving a larger Coriolis

acceleration. The ocean jet forms a sea ice jet of equal spatial size and similar intensity. This keeps the

difference between the lateral ocean and ice velocities equal throughout the solution (see the difference

between corresponding solid and dashed lines in figure 5.3(b)).

The ocean and ice perturbation velocities are at their peak at the ice edge, decaying away to the far

field values into the ice pack over a distance of ≈ 2LRO (see figure 5.3(b)). The enhancement factor k

is calculated as with the atmospheric jet. The spatial shape of the ice enhancement matches the ocean
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Figure 5.3: Sea ice edge response to oceanic jet formation with φ = 30◦ and UO = 0.2 m s−1. Plots (a)
and (b) are solutions for four cases (see legend, both no jet cases green). Plot (a) is the ice concentration A,
plot (b) is the dimensional lateral sea ice velocity v (see figure 4.1) as in 5.1(b) along with the corresponding
ocean velocities V̂ (see figure 3.2). Plot (c) (x direction) and (d) (y direction see figure 4.1) are the dimen-
sional stress components for the southern hemisphere solution. Plot (e) is the enhancement factor k for the
parallel component of the ocean and ice velocities. Plot (f) is the angle between motion and the ice edge as
in figure 5.1(f)
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enhancement for both northern and southern hemisphere jets with a small difference (<20% of the sea ice

enhancement) in magnitude (see figure 5.1(e)). The jets are smaller and less intense than the atmospheric

jet. This is due to the jet strength depending on the difference between ice and ocean (or wind) speeds (u2diff),

which is much smaller for the ocean jet. As with the atmospheric jet, the oceanic jet formation alters the

direction of the ocean current and the sea ice drift (see figure 5.3(f)). Again the ice drift direction is closer

to parallel than the ocean current beneath it due to the compaction of the sea ice edge. The directions of ice

drift for the far field (x > 3LRO) are not equal for the three cases shown. This is due to the variation of the

ice drift normal to the ice edge. The normal component of the sea ice velocity is constant throughout the

solution and matched to the free drift at the edge of the sea ice pack (see section 4.3.3).

The ocean jet formation increases the ice transport parallel to the ice edge. This transport can be calcu-

lated as with the atmospheric jet case using equation (5.2.1), integrating over the distance 0 km ≤ x ≤ 3LRO
km. As the ocean jet covers a smaller distance into the sea ice pack, the ice transport associated with it is

less. The no jet case has a transport of ≈ 7 km2 hr−1 for the outer 3LRO of the ice pack. This increases by

≈ 1.3 km2 hr−1 for the southern hemisphere jet and ≈ 0.6 km2 hr−1 for the northern hemisphere jet. The

ice concentration has a 19th profile as for the atmospheric jet (figure 5.3(a)) with a 70% concentration within

1 km from the sea ice edge.

The relationship between the changing angle φ and the ocean jet formation is different to that shown

by the atmospheric jet in figure 5.2(a). The difference between ocean and ice velocity (u2diff) is smallest for

ocean currents flowing in a direction parallel to the sea ice edge (see figure 5.4(b)) and greatest for normal

flows where the compaction of the ice edge limits the normal component of the sea ice velocity. This damps

the large jet speeds expected near to parallel angles and gives the bell curves in figure 5.4(a). As with the

atmospheric jet, the lateral component of the ocean and ice velocities have a similar enhancement over all φ

except for currents flowing parallel to the sea ice edge. At these angles, the normal ice drift velocity (u) is

close to zero and the normal ice stress is balanced by the Coriolis effect. There is the same discontinuity as

seen with the atmospheric jet about φ = 90◦ due to the second order jet perturbation. This also gives rise to

the increased jet for φ > 90◦ and the negative jet for 80◦ < φ < 90◦.

Changing the far field ocean current speed (figure 5.5(a)) alters the jet with a similar relationship to that

seen with the atmospheric jet (figure 5.2(b)). The northern and southern hemisphere solutions are split by the
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Figure 5.5: Ocean jet formation for varying UO, the far field ocean current speed with the approach angle
held constant at φ = 30◦. In plot (a) is for the enhancement factor k of the parallel velocities of a jet in the
northern (NH) and southern (SH) hemisphere. Plot (b) is the difference between the lateral component of
the ice and ocean velocities.

asymmetrical component of the ocean jet. This asymmetry is greater for higher ocean speeds with negative

jet perturbations for the northern hemisphere as the critical limit is approached (FO → 1, UO → 0.8 m s−1).

The relationship is not as linear as that of the atmospheric jet. This is due to the increased complexity

created by the u2diff term. Increasing the far field current speed decreases the ice jet enhancement (solid

lines), whereas the ocean jet shows an increase for the southern hemisphere jet (dashed blue line). For the

case of no jet and the northern hemisphere jet, the difference between the lateral ocean and ice velocities

have a similar relationship with the far field ocean current UO (figure 5.5(b)). For the southern hemisphere

and the positive second order jet the difference is much greater for higher UO (solid blue line). This gives

the increase in ocean jet enhancement seen in figure 5.5(a).

The ocean jet described in figures 3.6(c) and (d) in chapter 3 is not consistent with the jet calculated

from this model, seen in the ocean enhancement in figure 5.4(a). This is due to the assumption used for

calculating u2diff in section 3.2.4. This assumption was that the lateral component of the ice velocity is held

at 3/4 the magnitude of the ocean velocity. This can be replaced with the factor U ocean
ice , where previously
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Figure 5.6: The relationship between sea ice and ocean jet formation. The blue lines are calculated values
of u2diff, the red lines are calculated values of U ocean

ice , the dashed lines are values from chapter 3. Plot (a) is
for varying values of φ as in figure 5.4. Plot (b) is for varying values of UO, with φ = 30◦, as in figure 5.5.

a value of U ocean
ice = 3/4 was used. Figure 5.6 shows the relationship of u2diff and U ocean

ice against changing φ

(5.6(a)) and UO (5.6(b)), compared to the assumptions of chapter 3. This improved form of U ocean
ice can be

used to apply the ocean jets to a large sea ice model, as in chapter 6.

5.2.3 Combined Jets

The atmospheric and oceanic jets are likely to form whenever there is neither a still ocean or atmosphere (as

observed by King et al. 2010). For these cases the oceanic jet needs careful consideration, as depending on

the direction of the applied stresses, the ocean jet can either form positive or negative relative to the ocean

current. If the sea ice is moving faster than the ocean in the along ice direction, then from the frame of

reference of the sea ice edge, the ocean current will appear to be approaching the sea ice edge from the

opposite direction, giving a negative jet. The atmosphere (typically 1-10 m s−1, Andreas et al. 1984) moves

two orders of magnitude faster than the sea ice (typically 1-10 cm s−1, Johannessen et al. 1983) so does not

need to be considered in this way. In the following experiments three scenarios have been investigated: the

winds and ocean currents aligned; the winds and ocean currents seperated by an angle of 90◦ and opposing

each other; and the winds and ocean currents separated by an angle of 45◦ and approaching the ice edge
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Figure 5.7: Combined jet formation for aligned (a) and opposing wind and ocean current (b). The diagrams
show the direction of the approach winds and currents, along with the jet perturbations and relative velocities
of the ice and ocean. The plots show the lateral component of the ice and ocean velocities for calculations
with and without a jet.

from the same side.

To solve these various arrangements of atmospheric and oceanic stress, the experiments were first done

for ocean and atmosphere with no jet. The direction of the ice movement in these experiments shows the

relative direction between the ocean and the ice. This indicates the direction of a ocean jet. Far field wind

and ocean current speeds of UA = 5 m s−1 and UO = 0.1 m s−1 have been used for all the experiments.

These values give atmospheric and oceanic stress of comparable magnitude. Only the angle of incidence of
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Figure 5.8: Combined jet formation for near aligned wind and ocean current. The diagrams show the
direction of the approach winds and currents, along with the jet perturbations and relative velocities of the
ice and ocean. The plots show the lateral component of the ice and ocean velocities for calculations with
and without a jet.

the atmosphere (φa) and ocean (φo) with the ice edge have been varied.

Aligned Winds and Ocean Currents

When the wind and ocean current are aligned, the ice is shown to be moving faster than the ocean (figure

5.7(a)). The ocean stress will counter the applied stress from the atmosphere (see figure 5.7(a)). This will

cause a small oceanic jet negative to the direction of the ocean current. In this experiment φa = φo = 45◦.
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Opposing Winds and Ocean Currents

This situation produces the the largest ocean jet (see figure 5.7(b)). As the ocean and atmosphere oppose

each other, the ice pack is held near stationary for the no jet solution. The stationary ice pack gives a large

value for u2diff and a strong ocean jet is formed positive to the far field ocean current. As the atmospheric jet

is acting in the opposite direction to those in section 5.2.1, the sign(vx) term in equation (4.2.8b) is changed

to represent the increasing rather than decreasing lateral ice velocity. In this experiment φo = 45◦ and

φa = 135◦ separating the flows by 90◦.

Near - Aligned Winds and Ocean Currents

These two experiments have the approach wind and ocean current separated by a 45◦ angle, one at φ = 20◦

and one at φ = 65◦. Both these experiments (shown in figure 5.8) have the same jet structure as the aligned

experiment: a positive atmospheric and a negative oceanic. The ocean jet is small for both solutions. The

near parallel flow of the atmospheric jet for experiment shown in figure 5.8(b) gives a large value for u2diff

but the value of φo gives a small ocean jet. The opposite is true for the experiment shown in figure 5.8(a).

The atmospheric stress leads to a small value for u2diff, damping the large jet given by the near parallel ocean

current.

For all these cases the oceanic and atmospheric jets oppose each other. This is true for all times when

the lateral component of the applied stresses are of comparable magnitude. If either of the applied stresses

is lesser than the other, and is of comparable magnitude to the internal ice stresses, then the solutions in

sections 5.2.1 or 5.2.2 will be valid.

A failing of these combined jet calculations is with the internal stress gradient. Equation (4.2.2b) contains

a sign(vx) term. This is constant for the solutions with a single jet in sections 5.2.1 and 5.2.2 but not for the

combined jets. As the ocean and atmospheric jet oppose each other (in a steady state), a change in sign(vx)

is expected. This happens for all solutions in figures 5.7 and 5.8 at around 25 km from the ice edge. This

model does not contain any method for changing sign(vx) so these solutions are somewhat inaccurate. The

effect changing the sign(vx) has upon the solution is within the internal stress gradient. The component of
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this in equation (4.2.3b) will work positively or negatively depending on the sign of vx. For the outer region

of the ice pack (where the ocean jet dominates) the internal ice stresses will act in the opposite direction to

those in the inner. To balance this change in direction of stress, the ocean stress will have to increase. This

increase comes from having a greater difference between the ice and ocean velocity. The ocean velocity is

fixed so the lateral component of the ice velocity will be increased in the direction of the atmospheric stress.

There will be step change in the solution. The impact of a change in the internal stresses are not expected to

make a large impact upon the solution. For the experiments with an atmospheric jet the internal stresses are

less than the applied stress see figures 5.1(c) and (d). The internal stresses for the experiments illustrated in

figures 5.7 and 5.8 were of a similar magnitude.

The simplifications used in section 4.2.1 remove the ability of the ice pack to respond to discontinuities

in the x, or on-ice, direction. This leads to the step changes due to the sign(vx) term. A more sophisticated

model is needed to view the changing ice stresses. As the ice stress regime described in appendix A becomes

complex without the simplifications in section 4.2.1, a complete dynamical sea ice model shall be used. This

sea ice model is the Los Alamos Sea Ice Model (CICE) and the results are shown in chapter 6.

5.2.4 Ice Concentration Comparisons

The ice concentration profiles in all the model runs have a similar profile. This is the shape of 19th root

of the distance from the ice edge, x in this case, with some scaling (see the ice concentration solution in

equation (4.2.5)). The rates of increase in ice concentration from all the model runs, with jets and without,

are compared by plotting the distance from the ice edge (at x = 0) to the point where 90% ice concentration

is achieved in figure 5.9. The plots for 80% and 95% concentrations have a similar form on a different

distance scale. This is due to the concentration development following the same 19th root profile.

The rate of increase in ice concentration varies over all the experiments. There are trends within all sets

of experiments where a single parameter is varied, though there is no single parameter that directly influences

the ice concentration. To compare all the experiments, the ice motion at the edge has been compared to the

ice concentration in figure 5.9.

The relationship in figure 5.9(a) shows that the faster the ice, the quicker the ice concentration increases,

resulting in a shorter distance to the point of 90% ice concentration. This is as expected for the steady states
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Figure 5.9: Relationship between ice concentration and ice edge velocity. The distance from the ice edge (on
a log scale) at which 90% concentration is reached is plotted against; the ice speed (plot (a) - log scale), the
normal component of the ice velocity (plot (b) - log scale) and the angle of incidence between the ice motion
and the ice edge (plot c). This angle is analogous to φ′ in figures 5.1(f) and 5.3(f). The red points are from
experiments with a dominant atmosphere, blue for a dominant ocean. The circles represent experiments
without a jet, stars with a jet.

considered in this model. For a higher ice velocity at the ice edge, the internal ice stresses will need to be

higher to balance the applied stresses and Coriolis acceleration and to keep the ice edge steady. For this
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model the ice stress depends upon the rate of change in ice concentration ∂g(A)/∂x, with a higher value

giving greater internal stresses and the sorter distance to 90% concentration. There is a similar trend when

just considering the normal component of the ice edge velocity in figure 5.9(b). This component is more

directly linked to the bunching of the sea ice, particularly in this model where it is held constant throughout

the solution. High ice speeds and high normal components are not necessarily concurrent giving little trend

between the direction of ice motion at the extreme ice edge and the increase in ice concentration. This can

be seen in plot (c) where there is no clear trend.

There is no clear division in figure 5.9 between the ocean and wind jet experiments. The lowest ice

speeds, and therefore slowest increase in ice concentration, occur for a still ocean which is only apparent in

the atmospheric jet experiments. The variation in ice concentration shows that the dynamics of the ice edge

is not just confined to the region within an order of Rossby radius of the extreme edge. The concentration

can be less than 90% beyond the region under influence of the jets (300 km from the sea ice edge). Also the

concentration can be greater the 95% very quickly, well inside the jets (under 10 km).
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CHAPTER 6

RESULTS FROM THE CICE MODEL

This chapter documents the use of the Los Alamos Sea Ice model to investigate jet formation. The set up of

the the model is documented in section 6.1. This includes the various grids used, the method of applying the

jets to the sea ice edge and how the initial conditions are created. Of particular interest is section 6.1.3 which

compares the model’s response to jet formation at various resolutions. The results of the model are in section

6.2 with experiments with an atmospheric jet (section 6.2.1), oceanic jet (section 6.2.2) and both jets (section

6.2.3). Included in these sections are comparisons to the results from the Analytical model in chapter 5.

In the analytical model described in chapter 4 only the component of the ice velocity parallel to the ice edge

was able to vary. The normal component was held constant (see section 4.2.1), restricting the direction in

which the ice could deform. The edge was assumed to be laterally invariant, removing all variations along

the ice edge. Only a steady state was considered. To model an unconstrained sea ice edge the Los Alamos

Sea Ice Model (CICE) is used. This model is described in section 2.1.2 and uses a viscous plastic stress

regime as described in appendix A. This is the same rheology used in the analytical model described in

chapter 4. The ice edge in the CICE model is able to develop with time and in all directions. Also other

processes such as ice ridging are considered.
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6.1 Model Set Up

The CICE model is designed to model sea ice on a global scale. To focus on processes at the sea ice

edge an idealised domain is used. The size of the domain is varied according to the grid spacing in order

minimise computer run time. Several grids have been constructed to represent such a domain (see figure

6.1). These grids are land free and every grid point in each row (column) is at the same latitude (longitude).

The east-west edges are cyclic, in that the ice exiting the domian on the western boundary enters upon the

eastern boundary, and vice versa. The model had to be slightly modified in order to do this. This is the

only modification made to the model in these experiments. The size of the domains have been selected to be

greater than the length scale of the jets. The width of the domains are greater than 2LR(A,O) and the length

is such that the rear end of the domain is far away from the area under the influence of a jet (> 4LR(A,O) for

the jets shown in chapter 3 at 70◦N). For exact grid sizes see table 6.1. The jets are applied purely through

the forcing data. As in chapter 5, the experiments are done in pairs, with and without a jet.

6.1.1 Jet Application

In order to develop the forcing data to include atmospheric and oceanic jets, individual data points have to

be perturbed. The atmosphere and ocean velocity fields are stored in two arrays, the x and y components.

To add jets to these fields, two values need to be known for each point in the array; the distance from the

point to the ice edge, and the angle of the ice edge, which represent φ and n̂ in equations (3.1.16b) and

(3.2.11b). These values can be calculated by analysing the ice concentration, and taking values from the grid

dimensions.

To find the ice edge, two fields are created. These are areas of ice cover A > 60%, and areas of open

ocean A < 15%. Points of ice edge are defined as points of ice cover that are within a certain distance of

points of open ocean. This distance varies depending upon the grid resolution and how diffuse you want

the edge to be. A longer distance will include points on a slowly increasing ice concentration. The search

distances for the various domains are shown in Table 6.1. These distances were selected after performing an

edge search on various time steps from the spin up runs.

From the ice edge points the ice edge angle can be calculated. A box of width 2LR(A,O) (for an atmo-
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Domain Resolution Width Length Edge Search Distance Grid Points
50 km 1000 km 1500 km 75 km 20× 30
10 km 400 km 800 km 20 km 40× 80

Atmosphere 5 km 200 km 800 km 20 km 40× 160
2 km 200 km 800 km 5 km 100× 400
1 km 200 km 800 km 3 km 200× 800
1 km 200 km 400 km 3 km 200× 400

Ocean 500 m 100 km 200 km 2 km 200× 400
250 m 50 km 150 km 1 km 200× 600

Table 6.1: Dimensions and key lengths of the domains shown in figure 6.1.

spheric or oceanic Rossby radius, respectively) is drawn around each point. Starting at the edge of each

box, a search is performed for other edge points. When another point is found, the geodesic angle between

this point and the original point is calculated. During this calculation a check is performed to keep the ice

upon the right hand side, to keep all the ice edge angles consistent. This calculation is repeated for a number

of times and averaged. If no other ice edge points are found within the box, the original edge point is dis-

counted. For the grids shown in figure 6.1 the angle calculations were repeated five times. This number of

calculations gave a consistent angle across the ice edge.

This process calculates the direction of the ice edge over a Rossby radius. Wobbles and deviations of a

length scale shorter than this are ignored. Also ice edge points which are not part of a continuous edge are

discounted.

A band of grid cells (one or two cells thick depending upon the straightness of the edge and the grid

resolution) are now defined as the ice edge. As the jets cover a distance≈ 3LR(A,O) away from the ice edge,

a thicker band of cells is needed to define the region affected by the jets. Setting the distance l from the ice

edge in the thin band of edge cells as l = 0, the band of cells can be thickened by considering each ice edge

cell and adding all unselected neighbouring cells. The distance from the ice edge is increased by considering

the grid cell size at this point. The ice edge angle is also passed on to the new points. This process is iterated

until a band of width ≈ 6LR(A,O) is created. This distance contains all significant perturbations to the wind

or ocean current in both directions from the ice edge.

The jets can now be added to the wind velocity components of the forcing data. The values needed in

equations (3.1.16b) and (3.2.11b) are U(A,O) taken from the original velocity arrays, n̂ calculated by scaling
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Figure 6.1: Domains used in the CICE experiments. The dashed grid lines are spaced by 100 km, with
an extra line at 0◦W. The grids are all centred upon (70◦N,0◦W), with an ice edge at ≈ 70◦N. The angle
between the wind or ocean current and the sea ice edge, φ, is illustrated.

d over a Rossby radius and φ the difference between the ice edge angle and geodesic angle of the wind or

ocean current (see figure 3.2). This geodesic angle can be calculated from the components of the forcing

data and the geodesic angle of the grid. The atmospheric jets can now be added. For the oceanic jets, the

u2diff term needs to be considered. The coupled method of calculating this term used in chapter 4 cannot be

used. The addition of the jets is external to the dynamics of the CICE model, and there is no free drift layer

at the edge of the ice. The relationship between u2diff and φ or UO shown in figure 5.6 is considered. The

φ dependency can be easily parameterised with u2diff[φ] = K sin2 φ, where K = 1.1 is a constant. The UO

dependency is not conclusive from the analytical model so is not considered in calculating u2diff for the CICE

experiments.
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6.1.2 Initial Conditions

To get a smooth, but yet realistic initial ice edge at 70◦ N a spin up period is needed. The initial ice state gives

a constant ice thickness distribution (with an average ice thickness of≈ 1.5 m) and concentration (calculated

from the thickness distribution and approximately 99%) over the ice covered portion of the domain. Running

the model with a still ocean and atmosphere and an idealised forcing set gives a more realistic development

from the open ocean to continuous ice cover. However a small change in the forcing can cause large areas

of new ice to form. This gives the outer 10 km of the ice edge as thin (< 20 cm) ice which is not consistent

with a stable and well compacted ice edge. Spin up runs giving such edge conditions have to be repeated

after adjusting the idealised forcing set, specifically the ocean surface and air temperatures. The length of

the spin up period depends on the domain used as a higher resolution model has more grid points. Also due

to way in which the CICE model remaps its fields, the higher resolution models require a shorter time step.

Computational constraints on the high resolution (grid size of less than 5 km) models meant that the spin

up phase of the model run can be for 10 to 20 model days. The low resolution models could be allowed

to run for a longer period. This longer spin up gives more starting points to choose from, allowing for a

more compacted ice edge during the jet experiments. The high resolution models have a less smooth ice

edge. This is due to the shorter spin up period, and also the small scale variations that can exist at the higher

resolutions but not at the low resolutions.

After performing all the spin up runs all the resolutions have similar ice states. The ice concentration

increases rapidly, and the ice thickness increases to between 1 m and 1.5 m, within 10 km of the ice edge or

within one grid cell for coarser 50 km resolution. The ice states for the various resolutions are not identical.

Changing the resolution of the model changes the response of the model to the forcing. Altering the forcing

to ensure the same ice response for all resolutions is the beyond the scope of this thesis and such consistency

is not needed as all the jet experiments which are to be compared will be at the same resolution and with the

same initial conditions.
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Figure 6.2: Resolution comparisons. Plots (a) and (b) are for the atmospheric jet experiments, plots (c) and
(d) are for the ocean jet experiments. The zonally averaged enhancement of the parallel velocities are shown
in plots (a) and (c). The jet (solid line) and no-jet (dashed line) zonally averaged parallel velocities are shown
in plots (b) and (d). Plot (d) includes the ocean velocity (blue).

6.1.3 Resolution Comparisons

The response of the sea ice to the jets is not the same for all resolutions. The same jet experiment was

repeated on each domain in order to find at which resolution the response of the sea ice converges to the

same solution. Convergence is needed to ensure that the experiments in section 6.2 correctly analyse the

105



sea ice response to the jet formation, not to processes that can only occur at a particular resolution. For the

atmosphere a wind of 5 ms−1 at an angle of φ = 135◦ to the ice edge was used. The process in section

6.1.1 was used to add the jet to the forcing. The lowest resolution used was 50 km to represent the resolution

commonly used by the sea ice component in global climate models. It is also the resolution of a working

Arctic wide CICE set up at our disposal. Higher resolution domains at 10 km, 5 km, 2 km and 1 km were also

used. These domains can be seen in figure 6.1 along with the domains used for the ocean jet experiments.

The ocean jet was tested at 1 km, 500 m and 250 m resolution.

Figure 6.2 shows the results for the atmospheric jet approaching convergence for the 2 km and 1 km

resolutions. The way in which these results are interpreted and presented is explained in section 6.2. The

enhancement for the parallel ice velocity in both of these experiments is similar to the enhancement of the

wind speed in lateral extent (plot (a)) The magnitude of the enhancement differs by less than 20% of the

atmospheric enhancement, a similar result to the analytical model in figure 5.1. This result is in agreement

with the results in chapter 5. The parallel component of the sea ice velocity from the jet and no-jet runs

using the 1 km and 2 km resolutions (plot (b)), although not identical in magnitude due to the differing ice

state between model set ups (as discussed in section 6.1.2), have a similar profile which is not matched by

the lower resolution runs. From this, it is concluded that to accurately test the effects of the atmospheric jet

upon the sea ice edge, a grid size of at most 2 km must be used. In section 6.2.1 the 1 km resolution is used.

The sea ice shows little response to the jets at 50 km resolution, and simulation of the jets on a global

model of this size would be inconclusive. The response of the model at 10 km and 5 km resolution is not

consistent. For the test runs illustrated in figures 6.2(a and b) there is a very large jet enhancement for the

5 km resolution (blue lines) due to large variations in the ice velocity. This response was not matched by

any of the other resolutions and was also not seen for different wind patterns at the same 5 km resolution.

Analysis of atmospheric jet formation over the sea ice at 5 km resolution would not be conclusive.

There is no clear convergence for the ocean jet in figure 6.2 (c) and (d). There is an ice jet in all three

of the runs which has a similar size and shape. The magnitude of the ice drift speed in both the jet and

no-jet runs are similar (plot(d)). As the resolution increases the ice jet approaches the shape of the ocean jet,

though it does not have the the same correlation as seen with the atmospheric jet on the 1 km grid. When

at the high resolutions used for the ocean jet, the ice thickness can alter greatly over the width of the jet,
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whereas it is near constant over the width of the atmospheric jet. This gives the unsmooth velocity profile

and disagreement between the runs within 5 km from the sea ice edge for the ocean experiments at 500 m

and 250 m resolution. A grid resolution of 500 m has been selected for the experiments in section 6.2.2, to

give a well defined jet whilst keeping a run time short enough to allow the various runs shown in section

6.2.2.

6.2 Results

Taking the initial conditions described in section 6.1.2, experiments were performed. For the atmospheric

jets a domain with a 1 km resolution is used, for the oceanic jets a 500 m resolution. Various jets are applied

using the method described in section 6.1.1. The idealised forcing sets are applied to the ice for 6 hours

to allow a semi-steady state in which short time scale accelerations to the sea ice have finished. The CICE

model outputs results at every hour giving values for every grid point. As the grids are square in latitude

and longitude and the ice edge is at constant latitude, the output data can be averaged across the grid width

(in the direction parallel to the ice edge) to give a mean value in the zonal direction normal to the ice edge.

This mean value is the one used in figures 6.2 through to 6.8. Standard deviations to the mean values are

typically < 2% of the mean values and are too small to plot. Representing the data in this way allows direct

comparisons to the results in chapter 5 to be made.

Demonstration calculations with the same forcing conditions as used for the analytical model are shown.

The angular and far field velocity dependencies have been tested using many individual model runs. Due to

the time constraints in performing many high resolution model runs, the dependencies are tested over fewer

individual points than used for the analytical model. As the ice motion in the CICE model is unconstrained

the far field forcing can have a value of 0◦ ≤ φ ≤ 180◦.

For experiments with the atmospheric jet the ocean is kept still, and vice versa (section 6.2.1 and 6.2.2).

Experiments with both atmospheric and oceanic jets are shown in section 6.2.3.
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Figure 6.3: Atmospheric jet experiment analogous to figure 5.1. Plot (a) is the ice concentration A as with
figure 5.1(a) and plot (b) is the dimensional lateral ice velocity v; see legend for the cases plotted. Plots (c)
and (d) are the dimensional stress components for the φ = 135◦ experiment, plot (c) normal, plot (d) parallel
to the ice edge. Plot (e) is the enhancement factor k of the velocity components parallel to the ice edge. Plot
(f) is the angle φ′ between the wind (dashed) and ice (solid) motion and the ice edge. The 135◦ cases are
plotted as 180◦ − φ′ to ease comparison.
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6.2.1 Atmospheric Jet

An ice jet forms in the model in under an hour and is present in the first time step of the model and remains

constant over the run. Parallel to the ice edge (figure 6.3(d)) the external stresses dominate with the atmo-

spheric stresses balanced by ocean drag which oppose the ice motion due to the ocean being still. Normal

to the ice edge (figure 6.3(c)) the atmospheric stress is balanced by the internal ice stresses and the Coriolis

effect. The demonstration stress profiles are for φ = 135◦ where the Coriolis component opposes the on-ice

atmospheric stress. The Coriolis component has a large step at≈ 40 km from the ice edge due to an increase

in ice thickness at this point. The sharp change in the Coriolis component is balanced by the internal stress

of the sea ice, resulting in no change in the sea ice velocity at this point. The Coriolis component has a large

effect on the normal component of the sea ice drift, with differing values for the demonstration calculations.

For the wind at φ = 135◦ to the ice edge, the Coriolis component restricts the normal component resulting

in the angle between the ice drift and the ice edge being small (blue solid line and neighbouring green solid

line in figure 6.3(f)). For the extreme edge the ice is dispersing. For the wind at φ = 45◦ to the ice edge the

Coriolis component compacts the ice edge giving a higher normal ice drift. The angle between the wind and

the ice drift is ≈ 30− 40◦ in the direction of the Coriolis acceleration for all cases.

The difference between the positive and negative second order solution to the jet is clearly seen between

the jets at φ = 135◦ and φ = 45◦ (blue and red lines respectively in figures 6.3(b) and (e)). These two

solutions are congruous to a jet at φ = 45◦ in the southern and northern hemispheres respectively. The

change in sign of the second order component is at the extreme ice edge and alters the ice velocity. The

alteration is most evident for the wind at φ = 45◦ to the ice edge (red lines in figures 6.3(b) and (e)) where

the ice velocity rapidly increases at the ice edge forming a ≈ 20 km wide jet. This rapid increase in ice

velocity will be referred to as the thin atmospheric ice jet for the remainder of the thesis. The velocity

profiles of the no-jet cases have a slight westward bend toward the ice edge (green lines in figure 6.3(b)) that

can be accounted for by the increasing ice thickness and therefore Coriolis component further into the ice

pack. The enhancement factor k (as described in section 5.2.1) of the parallel component of the ice velocity

correlates well to that of the wind velocity (see figure 6.3(e)). The correlation is greater for the wind at

φ = 135◦ than for φ = 45◦.
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The ice transport parallel to the edge can be calculated as in chapter 5. The definite integrals can be

calculated numerically using the across grid averaged velocities and concentrations along with the grid cell

size at each data point. As the ice thickness in the CICE model is not constant, the volume transport is first

calculated and then divided by the cross sectional area of the ice to get the ice area transport

Atransport =

∫ 3LRA

0

Avhdx

∫ 3LRA

0

hdx

. (6.2.1)

Where A is the ice concentration, v is the component of the dimensional ice drift velocity parallel to the

sea ice edge and h is the ice thickness. As with the analytical model the sea ice transport is calculated

over the outer 3LRA of the sea ice pack. For the cases of no-jet the ice transport parallel to the ice edge

is ≈ 55 km2 hr−1 for the wind at 135◦ to the ice edge and ≈ 28 km2 hr−1 for the wind at 45◦ to the ice

edge. The transport increases when an atmospheric jet forms, by ≈ 18 km2 hr−1 for the wind at 135◦ and

by ≈ 6 km2 hr−1 for the wind at 45◦.

The ice concentration increases rapidly for all runs (figure 6.3(a)), reaching 99% inside 40 km from the

ice edge. As the runs all have the same initial conditions and are over too short a time scale for large scale

ice drift (> 10 km), no discernible difference between the runs can be observed.

The angular dependence of the atmospheric jet intensity is matched by the ice jet (figure 6.4(a)). At

near parallel winds where there is a large jet intensity, the sea ice jet reaches a maximum enhancement of

k ≈ 2.5. The enhancement of the thin atmospheric ice jet (as described above and seen in the red line in

figure 6.3(b)) due to the second order discontinuity (solid red line) is higher than the enhancement of the

atmospheric jet (dashed red line). There is a similar plateau as experienced by the ice outside the thin jet.

Changing the far field wind speed changes the enhancement of the atmospheric jet (red and blue dashed

lines in figure 6.4(b)). This change in enhancement does not transfer directly to the sea ice. For faster

wind speeds (UA > 5 m s−1) the sea ice velocity enhancement is similar to the atmospheric enhancement.

The negative side of the second order jet (for φ = 45◦ in this case) along with the thin edge jet follow the

atmospheric enhancement above them (the atmospheric enhancement above the thin jet is the same as the

positive side of the jet - the dashed blue line). The sea ice velocity enhancement for the positive second
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Figure 6.4: Atmospheric jet formation for varying wind direction and speed, values taken at 20 km from the
ice edge to avoid the thin atmospheric jet. The red ‘peak’ lines correspond to the thin atmospheric jet taken
at 5km from the ice edge. Plot (a) is the enhancement of velocities parallel to the ice edge for varying φ.
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order jet (φ = 45◦) is less than for the atmosphere with the same trend. For UA < 5 m s−1 the correlation

breaks down. The ice speed is near constant for all runs with UA < 3 m s−1 and even decreases slightly

for increasing UA for the no-jet runs. This non-linear relationship between the wind and ice speed results in

the non-linear change in enhancement. At low wind speeds the applied atmospheric stress is low and less

important in the momentum balance.

Analytical Model Comparisons

The size and shape of the ice jets are similar to those calculated by the analytical model in section 5.2.1. The

is a strong similarity between figures 5.1 and 6.3 except for the thin atmospheric jet for winds at φ = 45◦ to

the ice edge in the CICE model and different magnitudes of stresses in the stress balance. The different stress

magnitudes are due to different drag coefficients in the two models. The atmospheric (Ca = 3.5×10−3) and

oceanic (CO = 0.011) drags used in the analytical model were derived from observations of the marginal

ice zone (see sections 3.1.4 and 3.2.4). These values are approximately twice those used in the CICE model

which represent the smooth central pack ice. When repeating the analytical model calculations using the

drag coefficients used in the CICE model, the values in the stress balance are of similar magnitude to those

in figure 6.3(c) and (d). The ice drift speeds for the different models vary by less than 10% despite the

different drag coefficients.

The angular dependence of the jet enhancement is the same for both models (blue lines in figures 5.2(a)

and 6.4(a)). The atmospheric jet in both models are calculated using the same equation. The ice drift

enhancement has strong correlation to the atmospheric enhancement in both models, with a slightly reduced

enhancement for parallel winds in the CICE model. For low wind speeds there is less of a correlation

between the wind and ice enhancement in the CICE model than seen at high wind speeds (see figure 6.4(b

and c)). There is a strong correlation for all wind speeds in the analytical model.

6.2.2 Oceanic Jet

The formation of an ocean jet under the sea ice forms a sea ice jet above it. The ice jet takes 4-6 hours to form

during which the sea ice is accelerating to the velocity of the ocean beneath it. As the stress applied to ice

from the ocean is proportional to the square of the difference in velocity between them, the ice acceleration
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Figure 6.5: Ocean jet experiment analogous to figure 5.3. Plot (a) is the ice concentration A and plot (b)
is the dimensional lateral ice and ocean velocities v; see legend for the cases plotted. Plots (c) and (d) are
the dimensional stress components for the φ = 150◦ experiment, plot (c) normal, plot (d) parallel to the ice
edge. Plot (e) is the enhancement factor k of the velocity components parallel to the ice edge. Plot (f) is the
angle φ′ between the wind (dashed) and ice (solid) motion and the ice edge. The 150◦ cases are plotted as
180◦ − φ′ to ease comparison.
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is greatest at the first time step. The results shown in figures 6.5, 6.6 and 6.7 are from the semi-steady state

reached by the end of the demonstration model runs.

Both normal (figure 6.5(c)) and parallel (figure 6.5(d)) to the sea ice edge the ocean stress is balanced

by the internal ice stress. The Coriolis component is small and is normal to the ice edge in the off-ice

direction. The parallel component of the sea ice velocity is close to that of the ocean. For both the φ = 30◦

and φ = 150◦ no-jet experiments the parallel component of the sea ice velocities (solid green lines) are

westward of that of the ocean velocity, resulting in the parallel component of sea ice velocity being greater

than that of the ocean for φ = 30◦. The ice speed, however, is still less than that of the ocean. The westward

difference between the sea ice and ocean is due to the difference between the direction of ocean current and

ice drift (figure 6.5(f)) which is greater for the currents at φ = 30◦. For φ = 30◦ the ocean drag normal to

the ice edge opposes the the Coriolis acceleration whereas for φ = 150◦ they are aligned.

The enhancement of the ocean and ice velocity have a similar magnitude (see figure 6.5(e)). The shape

of the enhancement is not as correlated as the atmospheric jet in figure 6.3(e). There is a similar thin jet at

the extreme ice edge as seen with the atmospheric jet in section 6.2.1. This forms for the negative second

order jet solution during angles of incidence 0◦ < φ < 90◦.

There is an increased ice drift parallel to the ice edge. For a current at φ = 150◦ to the ice edge there is

a drift of ≈ 11 km2 hr−1 for the outer 3LRO of the ice pack which increases by ≈ 1.8 km2 hr−1 when the

ocean jet is present. For a current at φ = 30◦ to the ice edge there is a drift of ≈ 10 km2 hr−1, increasing by

≈ 1.2 km2 hr−1 with the ocean jet.

The ice speed is very similar to the ocean speed over all angles of incidence (see figure 6.6(b)). The

velocity enhancement of the sea ice parallel to the ice edge is similar to that of the ocean for near normal

angles of incidence (50◦ < φ < 130◦), but is less for near parallel angles. There is a similar peak enhance-

ment for the thin oceanic jet for 0◦ < φ < 90◦. The enhancement for this peak jet is greater and has a slight

correlation to the ocean enhancement at this point (red lines in figure 6.6(a)). For varying far field ocean

current speed, the ocean and sea ice velocity enhancement are well correlated (figure 6.7(a)) for the positive

and negative sides of the second order jet (φ = 150◦ and φ = 30◦ respectively) and also the thin oceanic jet

for φ = 30◦ (red dotted line). This correlation is due to the difference between the parallel component of

the ocean and sea ice velocity being small (figure 6.7(b)). This difference decreases for higher ocean speeds.
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Figure 6.7: Ocean jet formation for varying ocean speed UO. Plot (a) is the enhancement factor k of the
velocity components parallel to the ice edge at 1 km, the ‘peak’ velocity at 500 m is plotted for the 30◦ case
as with figures 6.4(b) and 6.6(a). Plot (b) shows the difference between the parallel component of the ice
and ocean at 1 km as in figure 5.5.

Figure 6.7(b) shows the westward difference between the sea and ocean for φ = 30◦ in the green dashed

line. The difference is negative for all far field ocean current speeds due to the parallel component of the sea

ice velocity being greater than that of the ocean.

Analytical Model Comparisons

The size and shape of the sea ice jets are similar for both models. The component of the sea ice velocity

parallel to the sea ice edge is of similar magnitude for the demonstration calculations although the spatial

profile in the CICE model is not as well correlated (figures 5.3(b and e) and 6.5(b and e)) .

The stress balance calculated by the CICE model (figures 6.5(c and d)) is of a different magnitude to

that calculated by the analytical model (figures 5.3(c and d)). The difference in stress is due to the drag

coefficient between the ocean and ice. For the analytical model a value of CO = ∆CF ≈ 0.011 is used to

represent the broken ice floes and therefore rougher underside of the sea ice pack expected in the Marginal
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Ice Zone (see section 3.2.4). This value is different in the CICE model. A value of CO = 0.00536 is used

by the model representing the continuous sea ice pack. Using this lower value in the analytical model results

in a stress balance of with a similar magnitude to that seen in figures 6.5(c and d). Despite the difference in

stress the speed of the ice drift is similar for both the models.

The angular dependence of u2diff has been considered in the creation of the jets with the CICE model.

The far field ocean current speed dependence has not. The ocean enhancement in figure 6.7(a) and the ocean

speed in 6.7(a) are similar to the ones in figures 5.4(a) and 5.5(a), with the jets applied to the CICE model

being more intense. The dependence upon the far field current speed (figure 6.7(a)) is different. The u2diff

term used to calculated the ocean jet strength applied to the CICE model does not consider the far field ocean

current speed (see end of section 6.1.1). This gives the relation between the ocean velocity enhancement and

the far field ocean current speed a similar form to the atmospheric jet seen in figure 6.4(a).

The angular dependency of the sea ice response to the ocean jet in the CICE model is different to that

predicted in section 5.2.2. The assumption in the analytical model that the compaction of the sea ice edge

will resist ice drift normal to the ice edge (see section 4.2.1) is not true for the experiments with the CICE

model. The CICE model ocean and ice drift speeds are similar over all angles of incidence (figure 6.6(b))

and all current speeds (figure 6.7(b)) with a difference in drift direction of ≈ 15◦ (figure 6.5(f)). This is in

contradiction to the assumptions used in calculating the jet strength.

The ocean jet strength is dependent upon the difference in velocity between the ocean and ice edge, the

u2diff term in equation (3.2.11b). This term was parameterised using the results from the analytical model

in figure 5.6(a). The ocean jets used in these CICE experiments are therefore not consistent with the ice

drift calculated by the model. The jet theory presented in chapter 3 predicts that only ocean jets with a low

enhancement of k < 1.1 will be able to form for the ice drift calculated by the CICE model. Such a low

enhancement makes little difference to the state of the sea ice edge.

6.2.3 Combined Jets

The 1 km grid has been used to apply both the atmospheric and oceanic jets to the sea ice edge. The

calculations from section 5.2.3 with aligned (figure 5.7(a)) and opposing (5.7(b)) jets have been repeated

using the CICE model. The sea ice is unconstrained and free to deform in all directions. The model was run
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Figure 6.8: Sea ice response to the formation of atmospheric and oceanic jets. Plots (a) and (b) are jets at
φa = φo = 45◦ as in figure 5.7(a). Plots (c) and (d) are for jets at φa = 135◦ and φo = 45◦ as in figure
5.7(b). Plots (a) and (c) are the ice and ocean velocities coloured as in figure 5.7. Plots (b) and (d) are the
parallel components of the ice stresses coloured as in figure 6.3(d).

for 12 hours to allow the sea ice dynamics to develop in time. The far field wind and ocean current speeds

are the same as the analytical calculations with UA = 5 m s−1 and UO = 0.1 m s−1. The strength of the

ocean jets was taken from the analytical calculations in section 5.2.3 by imposing the associated values of

u2diff.
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Aligned Jets

With both the atmosphere and ocean approaching the sea ice edge at angle of φa = φo = 45◦ a semi-steady

state was reached after 4 hours. The ice initially moves very fast, at almost twice the speed of the ocean.

This results in a very high ocean drag resisting the motion of the ice, decelerating it to the state shown in

figure 6.8(a). Here the atmospheric stress is balanced by the ocean drag, internal ice stresses and Coriolis

acceleration. The internal ice stress has large spatial variations at the extreme ice edge, changing sign several

times in the outer 30 km of sea ice. At the extreme sea ice edge, the step change between the positive and

negative side of the second order atmospheric jet occurs at the same location as the oceanic jet causing little

spatial change in the sea ice velocity. The component of the ice velocity normal to the ice edge is high

(≈ 0.13 m s−1) and has the ice moving faster than the ocean. This contradicts the assumptions behind the

formation of the oceanic jet (see section 3.2). Such a physical situation is unlikely to exist as the difference

in speed between the ice and ocean is not such that an ocean jet could form. The ocean jet formation would

be possible for ocean currents approaching parallel to the ice edge.

Opposing Jets

With the atmosphere and ocean opposing each other a semi-steady state was again reached after 4 hours. As

with the analytical model (figure 5.7(b)) this alignment has the greatest enhancement of the oceanic jet and

the greatest response of the sea ice to it. Away from the extreme edge the atmospheric stress and ocean drag

oppose each other (figure 6.8(d)) to give almost no ice drift parallel to the ice edge. The ice movement is

normal to the ice edge at ≈ 0.07 m s−1, which is less than the ocean speed. The large ocean jet forms a thin

and intense sea ice jet at the extreme edge. There is a large spatial change in ice motion, from no parallel

drift in the far field to a drift of over 0.1 ms−1. This large spatial change causes a large change in internal

ice stress.

Analytical Model Comparisons

The CICE model has produced a sophisticated model of combined jet formation at the sea ice edge. The

analytical model in chapter 4 is unable to consider internal ice stresses that change direction. This spatial
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variation is evident in the CICE model (figure 6.8(b and d)). The lateral ice velocities in both the CICE and

analytical model are similar over the extent of the atmospheric jet.

As with the ocean jet experiments in section 6.2.2, the aligned atmospheric and ocean jets present an un-

likely physical situation. The ice drift normal to the ice edge is much greater than predicted by the analytical

model and therefore an ocean jet would not be expected to form. The opposing jet experiment (figure 6.8(c)

and (d)) does present a valid ocean jet.
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CHAPTER 7

DISCUSSION

In this final chapter the results of the thesis are discussed. The model of atmospheric and oceanic jet for-

mation is summarised in section 7.1. This summary includes observations that are linked with jet formation

(section 7.1.1) along with analysis of where jet are likely to form (section 7.1.2). Modelling of the sea ice

edge is summarised in section 7.2 assessing the success of the Analytical and CICE models. The results of

the models are analysed to give a prediction of sea ice jet formation. Possible observations of ice edge jets

are presented in section 7.2.1. The wider implications of this thesis toward ice modelling (section 7.3) and

the global climate (section 7.4) are discussed. The chapter concludes with a discussion of the immediate and

long term research needed to follow on from this thesis in section 7.5.

Sea ice plays an important role in global climate (see section 1.1). Understanding the nature of sea ice

dynamics is needed to accurately model the global climate (chapter 2). The nature of the sea ice edge and

the atmospheric and oceanic conditions that exist above and below it differ from those of the sea ice pack

(section 1.3). However, the sea ice edge is not explicitly considered by the sea ice component of global

climate models. We have performed analytical and numerical studies of the dynamics of the sea ice edge.
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7.1 Atmospheric and Oceanic Jet Formation

The formation of atmospheric and oceanic jets has been modelled over the sea ice edge. The atmospheric

jet formation is similar to coastal jets and is driven by the sharp change in surface roughness at the sea ice

edge (see section 3.1.4). The oceanic jet formation is driven by a similar sharp change in surface roughness

beneath the ice. The jet strength depends upon the difference in velocity of the fluid (air or ocean) and the

sea ice. Since the ice moves much more slowly than the air, the ice can be considered stationary for the

atmospheric jet calculation. The similarity of the sea ice drift and ocean current velocities (see section 3.2.2)

makes the ocean jet problem more complex as both the ocean and ice velocity need to be considered.

For the problem presented in this thesis interaction between sea ice and ocean waves is not explicitly

considered. This interaction is a controlling factor in the state of the MIZ and sea ice edge as it accounts for

the smaller floe size (see section 1.3), and thus greater surface roughness. However the floe size is unlikely

to change greatly due to jet formation. The subcritical wind speed associated with atmospheric jet formation

is slower than the wind speed in stormy conditions which cause large ocean waves. In the study of Birnbaum

& Lupkes (2002) where the surface drag of the MIZ was allowed to vary at a greater distance from the ice

edge due to the form drag associated with floe edges, there was still a sharp change in surface roughness at

the sea ice edge. The assumption of chapter 3, that the sea ice edge can be modelled as a slab of constant

surface roughness unchanging throughout the jet formation, is therefore valid.

If the floe size and surface roughness does change due to continued jet formation on a greater time scale

(over several days compared to the six hour experiments presented here) then the results in this thesis suggest

that ice jet formation will not be greatly altered. When the surface roughness of the sea ice was changed

to match the analytical and CICE models (see comparisons in sections 6.2.1 and 6.2.2), the sea ice drift

speed was not greatly changed, although the stress balance was. This would also be true for a change in floe

size. As floe size becomes smaller, due to greater wave interaction, both the ocean and atmospheric drag

increases. The changing applied stresses (atmospheric and oceanic) balance themselves.

A decreasing floe size for unchanging ice concentration is unlikely to alter the dynamics of the sea ice

edge. Feltham (2005) shows how the granular flow like dynamics of smaller ice floes have little effect upon

the nature of the sea ice edge. A thin ice jet of approximately 1 km wide was discovered due to the granular
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nature of the ice. This jet is small in comparison to the width of the atmospheric jet and is of a similar size

to the thin atmospheric jet (see section 6.2.1 in particular figure 6.3(b)) or an oceanic jet. The atmopheric jet

is shown to have the greater effect upon the sea ice pack.

7.1.1 Observations of Jet Formation

There have been several ship and airborne studies of atmospheric conditions over the sea ice edge. Of par-

ticular interest are observations of wind speed and direction which are the greatest indicator of jet formation.

Sharp changes in wind stress have been predicted by Guest et al. (1995) as a cause of changes in the Atmo-

spheric Boundary Layer (ABL). A sharp change in stress fits well with the second order discontinuity in the

wind speed perturbations in figure 3.3. Guest et al. (1995) also give observations of wind stress at the sea ice

edge with the maximum just iceward of the sea ice edge during on-ice wind conditions in the Fram Strait.

This is well correlated with a jet forming during winds at 90◦ < φ < 180◦ to the ice edge. No information

about the angle between the wind and the ice edge is presented in the study. Orr et al. (2005a) attribute sharp

changes in cloud conditions over coastlines to the sharp change in wind speed caused by jet formation. Such

cloud conditions have been observed over the sea ice edge (Fairall & Markson 1987).

Atmospheric jet formation predicts changing wind speeds over an atmospheric Rossby radius. Guest

et al. (1995) show changing surface wind speeds across the sea ice edges in the Antarctic and Arctic Oceans.

They combine previous studies along with original data. Wind speeds are shown to vary over the order of

100 km from the sea ice edge during on-ice wind conditions. These events happened for wind speeds of

< 15 m s−1 so fit well with the atmospheric jets presented in this thesis (low Froude number conditions

require UA < 11 m s−1 but the perturbed wind speed can be greater than this). The observations of Andreas

et al. (1984) have a similar form. Guest et al. (1995) also comment that atmospheric mesocale features of

length scale less than 30 km are difficult to resolve from the aircraft borne measurements that were used for

the study.

There are limited available observations of ocean currents at the sea ice edge that either show or disprove

jet formation. Such observations would have to be over a scale of less than 10 km (comparable to an oceanic

Rossby radius LRO ≈ 6 km).

The form of the atmospheric jets, in particular the second order discontinuity, is in agreement with
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Figure 7.1: Areas of possible atmospheric jet formation in the Arctic from NSIDC SSMI ice concentration
data 1990 to 2008 (monthly averages). Colour shades represent the percentage of the data that could contain
an atmospheric jet formed over a sea ice edge when considering the sea ice edge location but not the wind
direction.

Glendening (1994). The model of Glendening is a numerical model of the ABL which is primarily forced

by a thermal change between the sea ice edge and open ocean and the occurrence of a coastal front along

the sea ice edge although changes in surface roughness are also considered. An along ice jet was observed

to arise from the model with a discontinuity between ice on the right (analogous to 0◦ < φ < 90◦) and ice

on the left (90◦ < φ < 180◦) of approach winds. This discontinuity is likewise attributed to the Corilois

acceleration of the wind. It is shown that the model agrees with the observations and modelling of Guest

et al. (1995).
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7.1.2 Areas of Likely Jet Formation

For atmospheric jets to form a sharp change in surface roughness length is required. A compacted sea ice

edge gives such a sharp change. For the jet to be the driving wind feature, the ice edge needs to be in the open

ocean to avoid wind processes formed over land masses and ice shelves due to changes in surface elevation

(Hunt et al. 2004). Locations that fit these requirements can be found by looking at ice concentrations.

Ice concentration from the National Snow and Ice Data Centre (NSIDC) (Cavalieri et al. 1996) has been

used to give the location of the sea ice edge in the Arctic ocean from 1990 to 2008 inclusive. The data is

satellite Special Sensor Microwave Imager (SSMI) data given as averaged monthly ice concentrations. The

ice concentration has been processed using the same method as in section 6.1.1 to give the areas where the

ice edge allows for an atmospheric jet to form. The criteria for a jet to form is that there is a sufficiently

compacted ice edge, in this case, open ocean within 70 km of sea ice of concentration greater than 80%. The

data available was of ≈ 50 km resolution.

The ice concentration map gives one main area where an ice edge allowing for jet formation is present.

This is in the Fram Strait and Greenland Sea (high percentage red area in figure 7.1). The Fram Strait is a

highly studied area of the Arctic. This is due to the ice drift in this area accounting for 90% of the sea ice

leaving the Arctic basin (Vinje & Finnekåsa 1986).

Ice drift in the Fram Strait can be calculated from Synthetic Aperture Radar (SAR) images from satellites

(Korsnes 1994). Images taken at various time intervals are compared to show the distance moved by the sea

ice. Kwok (2004) gives a summary of ice drift through the Fram Strait over the period 1978 to 2002. The

average ice drift in this period is 866,000 km2 yr−1, which is equivalent to ≈ 100 km2 hr−1. When an

atmospheric jet forms over the sea edge the results of this thesis show that the sea ice drift beneath it will

increase. This increase is calculated in chapters 5 and 6 to be ≈ 5 − 20 km2 hr−1, with greater values

possible for winds parallel to the ice edge. This increase is over the outer 250 km of ice pack compared to

the 780 km width of the Fram Strait. The possible ice drift increase due to the formation of an atmospheric

jet is significant at around a quarter of the total ice drift through the Fram Strait.

To view possible locations of jet formation, information about wind direction is needed along with ice

concentration. This is most easily available from a Global Climate Model. Presented in figure 7.2 is analysis
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Figure 7.2: Areas of possible atmospheric jet formation in the HadGEM2 model (2 years of daily ice con-
centration and wind data). Plots (a and b) are percentage of the data that could contain an atmospheric jet
formed over a sea ice edge (same analysis as presented in figure 7.1). Plot (c and d) show the percentage of
the data in which the wind direction and strength allow for an atmospheric jet over a sea ice edge.
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from two years of daily output from the Hadley Centre Global Environment Model version 2 (HadGEM2)

developed by the Met Office Hadley Centre (Collins et al. 2008). The output is from a model run that has

a similar mean sea ice extent to observations in the period 1990 - 2000. The daily averaged winds were

the highest time resolution available. As the wind speed and direction can change hourly, averaged wind

data may miss possible times of jet formation. Daily wind records for an entire polar region are not easily

available from observations. The output is given at ≈ 50 km resolution.

The ice concentration is analysed as the NSIDC data shown in figure 7.1 to give areas in which an

atmospheric jet is able to form. The wind speed and direction in these areas is then checked to see if a jet

would form. The criteria for this is that the wind is on-ice (0◦ < φ < 180◦ see figure 3.2 in chapter 3)

and that the wind is subcritical (UA < 11 m s−1). These conditions are in accordance with jets presented in

this thesis, although jet formation during off-ice winds may also be possible. The subcritical limit is used to

remove wind conditions which are inconsistent with the assumptions in the jet calculations in chapter 3. The

turbulent processes that form the jet have a length scale several orders less than the resolution of the model

(100 m compared to a resolution of ≈50 km) and are not parameterised into it. The jets are therefore not

expected to feature in the data analysed and no evidence of their formation in the model has been found (for

example there is no increased wind speed above the ice edge for on-ice winds).

For the Arctic the model data gives two main areas where atmospheric jets can form. In the Fram Strait

and Greenland Sea as with the NSIDC data in figure 7.1 and also in the Labrador Sea west of Greenland (see

figure 7.2(a)). There is an ice edge allowing for atmospheric jet formation in these areas for 90 - 100% of the

data. When considering the winds these two areas have subcritical on-ice wind allowing for jet formation for

40 - 50% of the time or approximately half of the time when there is an ice edge allowing for jet formation

(see figure 7.2(c)).

There is an other area of possible jet formation that only occurs during the summer. The area of the

Arctic Ocean north of the Bering Strait between the Beaufort and East Siberian Seas has a long ice edge

which allows for atmospheric jet formation (shown by the blue green in figure 7.2 (a)). The interaction

between the atmosphere and sea ice edge in this area, in particular the movement of storms, has been studied

by Long & Perrie (2012). Atmospheric jets were not included in this modelling study.

For the Antarctic there are two main areas where atmospheric jets can form. One is east of the Antarctic
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Figure 7.3: Enhancement of parallel components of velocities due to atmospheric jet (plot (a)) and oceanic
jet (plot (b)) formation in both Analytical and CICE models (see legend). The solid lines for the positive,
dashed lines for the negative second order part of the jet. Plot (a) is combination of figures 5.1(e) and 6.3(e),
plot (b) a combination of figures 5.3(e) and 6.5(e) repeated here for convenience.

Peninsula in the Weddell Sea. The other is off of East Antarctica between Wilkes Land and the Ross Sea.

Both of these areas have an ice edge allowing for jet formation at 80-100% of the time. When considering

the wind strength and direction an atmospheric jet would be expected to form around 40-50% of the time.

7.2 Ice Jet Formation

An idealised analytical model of the sea ice edge has been produced (chapter 4). This model uses a viscous-

plastic rheology to describe sea ice stress. Despite the complexity of the stress regime, the model produces

stable solutions within little computational time. Free drifting ice at the extreme edge of the sea ice pack has

been matched to the ice pack solution. The free drifting ice is in good agreement with the ice pack solution

as the ice concentration decreases. Despite the simplifications and restrictions in the analytical model, its

results are in agreement with the Los Alamos numerical sea ice climate model (CICE) which uses the same

sea ice rheology. The agreement is strongest for the atmospheric jet experiments where the longer length

scale (LRA an order greater than LRO) allows for smoother solutions to the CICE model. For the ocean
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Figure 7.4: Peak parallel velocity enhancement for atmospheric and ice jets in both Analytical and CICE
models (see legend) at the sea ice edge avoiding the thin atmospheric jet. This is a combination of figures
5.2(a) and 6.4(a) repeated here for convenience.

jet, the faster moving sea ice contradicts the assumptions used to create the analytical model. The analytical

model was unable to accurately model the ice drift during the formation of both atmospheric and oceanic

jets. This is due to simplifications within the model causing it to be unable to reproduce the internal stresses

caused by a change in ice drift direction. The results in this thesis show the validity of a simplified dynamical

model to observe processes at the sea ice edge.

Ice jet formation has been observed in the analytical model (chapter 5) and the CICE Model (chapter

6). Perturbations to winds and ocean currents over the sea ice edge cause perturbations to the sea ice drift.

These perturbations are of the same size and relative enhancement resulting in a good match in figure 7.3 of

the analytical and CICE models, particularly for the atmospheric jet in 7.3(a). The perturbations to the ice

drift form an ice jet parallel to the ice edge, alter the dynamics of the sea ice and increase the ice transport

along the ice edge.

The atmospheric jet size and strength varies for changing wind conditions. This variation is seen in
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the ice jet in both the analytical and CICE models with a good agreement between the two in figure 7.4.

The formation of this ice jet alters the sea ice edge. The amount of ice transported along the sea ice edge

increases when a jet is present. This is an increase of ≈ 5 − 20 km2 hr−1 which is an increase of around

40% over the outer 250 km of the sea ice pack (see equation (5.2.1) in section 5.2.1 and equation (6.2.1) in

section 6.2.1). The drift increase is also comparable to the ice drift through the Fram Strait. The ice drift in

the Fram Strait is responsible for 90% of the ice outflow from the Arctic ocean and plays a major role in the

state of Arctic sea ice (see section 7.1.2). Also due to the Coriolis acceleration of the sea ice, increasing the

ice drift velocity parallel to the sea ice edge alters the compaction or dispersion of the sea ice pack.

For calculations using the analytical model the ocean jet intensity was coupled to the ice drift calcula-

tions. The strength of the ocean jet is dependant upon the difference in velocity between the ice drift and

ocean current, u2diff. For this reason the jet intensity and ice drift speed are calculated as a coupled system

(see section 4.3.2). The value of u2diff associated with both the jet strength and ice drift is used to give a

solution for the ice edge (see section 4.3.3). The jet strength for varying ocean currents in this model gave a

parameterisation for the ocean jet strength to be used in the CICE model (see figure 5.6 in section 5.2.2 and

section 6.1.1). Due to simplifications and constraints in the analytical model, the ice drift calculated in the

analytical and CICE models is not in good agreement resulting in little correlation in figure 7.5 particularly

in the region 60 < φ < 120.

The ice drift velocity calculated by the CICE model is very similar to the ocean current velocity for all

the ocean jet experiments. This directly contradicts the assumption in the analytical model that the ice drift

normal to the ice edge is reduced due to the compaction of the sea ice. The difference between the ice drift

and ocean current (given as u2diff in section 3.2.2) in the results from the CICE model is small. This gives a

small ice jet intensity (the magnitude of the perturbation to the ice drift) for all occasions when the ocean

stress dominates the sea ice-ocean momentum balance.

If the compaction of the ice edge does not significantly reduce the component of the ice drift velocity

normal to the sea ice edge, then ocean jets as described in chapter 3 are unlikely to form. The results from the

CICE model suggest that the applied stress from a moving ocean is too great to be countered by a compact

ice edge. Therefore ocean jets are unlikely to play an important role in ice edge dynamics.

Ocean jets are only likely to form during specific arrangements of winds and ocean currents encountering
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Figure 7.5: Peak ocean and ice speed for ocean and ice jets in both Analytical and CICE models (see legend)
at the sea ice edge avoiding the thin oceanic jet. Solid lines are for situations with a jet, dashed for without
a jet. This is a combination of figures 5.4(b) and 6.6(b) repeated here for convenience.

the sea ice edge. If the applied wind and ocean stress are such that there is a significant difference between

the ice drift and ocean current then an ocean jet will be able to form. One such arrangement is shown in

figures 5.7(b) and 6.8(c and d) and has the direction of the wind and ocean current separated by 90◦. Winds

and ocean currents are often separated by such an angle due to the Ekman spiral (Csanady 2001), though the

possibility of such an arrangement over the sea ice edge is unknown.

7.2.1 Observations of Ice Jet Formation

Ice jets, that we presume to be caused by an atmospheric jet above them (ocean jet also possible though

more unlikely), have been observed. Johannessen et al. (1983) show ice jets that extend over 50 km into the

sea ice pack during on-ice winds. The ice speed is approximately 0.3 ms−1 at the ice edge decaying to 0.2

ms−1 at 250 km into the sea ice pack (see figure 1.4 in particular (a) from 19 September and (b) from 27

131



September). The winds are parallel to the ice edge at a speed of approximately 10 ms−1. No information

about the varying wind speed into the pack is available. The ice edge is recorded as being straight and well

compacted.

These observations fit well with the occurrence of an atmospheric jet over the sea ice edge. The wind

speed and direction agree with the presence of an atmospheric jet and the ice jet is of similar size to the ice

jets calculated in chapters 5 and 6. Johannessen et al. comment “that the ice edge jet is a ubiquitous, wind-

driven feature” and the decay of wind stress into the ice pack is in correlation to the decay in ice drift speed.

The location of this ice jet is in the Arctic Ocean north of Svalbard and the Fram Strait. This correlates with

the Fram Strait being a key area for possible atmospheric and ice jet formation (see section 7.1.2).

Greenan & Prinsenberg (1998) present observations of ice drift and wind speed in the MIZ. These obser-

vations are of buoys mounted on-ice floes in the Labrador sea. Although it is not possible to analyse these

observations to show atmospheric or ice jet formation, the relationship between the ice drift and wind speeds

is applicable. For the buoy located within the ice pack the ice drift speed was observed to be approximately

0.9% of the wind speed with a value of≈ 2.6% for the bouy in the MIZ. The results from both the analytical

(chapter 5) and CICE (chapter 6) give values of 0.9-1.6% for within the sea ice pack (at 100-150km from the

ice edge) and 1.2-1.9% for the ice edge. This comparison suggests that this thesis may be underestimating

the ice drift speed at the ice edge. The results from Greenan & Prinsenberg have a lower ice concentration

and thinner ice in the marginal ice zone than the values used in this thesis. Also small ocean currents are

observed to be aligned to the ice drift. This accounts for the faster ice drift.

7.3 Implications for Sea Ice Modelling

It has been shown that a sea ice jet can form in the CICE model (chapter 6) due to the presence of an

atmospheric jet. The best model response is for a maximum grid cell size of 2 km. The results in this

thesis can not give an accurate resolution at which ice jets can form due to the atmospheric jet above.

The results in figure 6.2 show a good response at 1 km and 2 km resolution with inconsistent results at

5 km resolution. The sea ice component of current climate models are approaching high resolutions of

2 km (McClean et al. 2010, Maslowski et al. 2012). The method documented in section 6.1.1 could be
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parameterised into the CICE or other sea ice model, to alter the wind speeds before they are applied to the

sea ice. The jets would be able to follow a moving ice edge and the model would show how the presence of

jets will affect the sea ice on a global scale.

For sea ice models running at a resolution with grid cells wider than 2 km the ice jets could be difficult to

include. From the results in chapter 6 it would be possible to create a parameterisation that would add in an

ice jet to a sea ice model by perturbing the sea ice drift. These perturbations would mimic the ice jet formed

by the arrangement of winds and ocean currents and the sea ice edge. However, adding such perturbation to

the sea ice drift would form an imbalance in the ice drift momentum. Such an imbalance does not make for

a well functioning model.

If atmospheric jets are present in climate models the results in this thesis indicate that ice edge jets will

form. If the atmospheric jets are not present, then they could be added to the wind above the sea ice edge

using the method described in section 6.1.1. Adding the jets in this manner does however introduce a similar

imbalance as perturbing the ice jets into a sea ice model.

Jet formation due to a sharp change in surface roughness is caused by the interaction of the atmosphere

or ocean with the sea ice edge. In order to model this process it needs to be considered in the coupling of

the sea ice and atmosphere or ocean component of a climate model. The coupling process of the HadGEM3

model described in chapter 2 simply passes forcing data between the components. This process is typical

of climate models and would not allow for the jet formation described in this thesis. The turbulence that is

responsible for the jet formation is of the order 10 m in scale (Hunt et al. 2004), far too small to be resolved

by a climate model. To include these jets within a climate model and investigate their role in the global

climate (discussed in the next section 7.4), a coupling process that considers and parameterises sub-grid

scale phenomena is required.

7.4 Implications for Global Climate

Atmospheric jet formation increases the sea ice drift at the sea ice edge during on-ice winds. This increase

in ice drift could play a major role in rapid ice retreats. These events have been observed by King et al.

(2010) in the Bellingshausen Sea and are discussed in section 1.3. Such events are ideal for jet formation
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with continued strong on-ice winds forming a compact sea ice edge. A compact sea ice edge gives a sharp

change in surface roughness which drives the jet formation.

The formation of atmospheric jets over the sea ice edge could cause an increase in the formation of deep

ocean water. Pickart et al. (2003) show that the Greenland tip jet makes a significant contribution to open

ocean convection and the formation of ocean deep water. This jet is formed by the cold air mass over the

high orography of the Greenland ice pack flowing out into the Atlantic ocean. The Greenland tip jet has

been modelled by Orr et al. (2005b) and is of similar size and strength to the atmospheric jets calculated in

chapter 3. The formation of deep ocean water is part of the global ocean circulation as discussed in section

1.1.

Atmospheric jet formation could play a major role in Arctic sea ice drift. The Fram Strait ice drift

has been shown to be forced by a wind feature known as the Greenland Sea Jet (van Angelen et al. 2011).

This jet is driven by temperature and surface gradient differences between the Greenland ice sheet and the

Greenland Sea. As the atmospheric jets presented in this thesis are driven by changes in surface roughness (a

process not considered by van Angelen et al.) they could play an additional role in the ice export through the

Fram Strait. Also ice jets have been observed in this area (Johannessen et al. 1983) giving further evidence

for their importance in the Fram Strait ice drift. The south Greenland Sea also experiences Barrier winds

(van den Broeke & Gallee 1996) which are southerly winds flowing towards the Greenland Peninsula. These

winds interact with the sea ice edge during winter allowing for jet formation.

Maslowski et al. (2012) show how current global climate models perform badly in predicting the Fram

Strait ice transport, for example the CCSM3 model was shown to give an ice transport on average twice the

observed value. The inclusion of atmospheric jets into sea ice models could make a significant improvement

in this area due to the ice drift associated with their formation. The Fram Strait ice transport plays a major

role in the state of Arctic sea ice (see section 7.2) and can influence ocean circulation in the north Atlantic

due to freshwater export (Frankcombe & Dijkstra 2011).

The modelling of ice transport could also be improved by new sea ice rheologies. There have been

recent developements in creating an anisotropic sea ice rheology (Wilchinsky & Feltham 2006a, Tsamados

et al. 2012). Modelling sea ice as an anisotropic medium gives sea ice a directional memory allowing it to

deform differently in different directions. This is in accordance with observations and simulations of ice
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interaction on floe size scales (Wilchinsky & Feltham 2006b). Anisotropy could be particularly important

in the Fram Strait and at the sea ice edge where the strongly directional sea ice drift present anisotropic

characteristics.

As the sea ice extent reduces in the Arctic summer, more opportunities for exploration are opened up.

These opportunities are for shipping routes in the north western and eastern passages, engineering and ex-

ploration for natural resources (Brigham & Ellis 2009). The safety and feasibility of these opportunities

relies on accurate predictions of sea ice drift, particularly in the Fram Strait. The changing sea ice conditions

in the Arctic and the new opportunities associated with them has international importance (Proelss 2009).

7.5 Future Work

Further investigation should be focussed upon atmospheric jet formation. This thesis has shown that ocean

jets are unlikely to form. Also the high resolution needed to investigate ocean jets is currently not available

in large scale sea ice models.

Short Term Goals

To immediately continue the research presented in this thesis the atmospheric jets should be applied to a

wider area. Regional sea ice modelling could be used to investigate the role of jet formation during particular

sea ice drift events. Atmospheric jet formation is likely to occur in the Greenland Sea and Fram Strait and

could play a major role in the ice export from the Arctic ocean. The rapid sea ice retreats observed west

of the Antarctic peninsula (Massom et al. 2006, Massom et al. 2008, King et al. 2010) give conditions for

continued atmospheric jet formation over several days significantly altering the ice drift and compaction of

the ice edge.

To set up such a sea ice model a high resolution is needed with grid size at most 2 km (see figure 6.2).

This would require a new grid and associated land mask. The model would require some spin up and tuning

along with detailed consideration of the grid boundaries. Output from a global sea ice model could be used

to force the expected ice drift into the new model domain. Jets could be added to atmospheric data sets

through a new parameterisation within the model which uses the method described in section 6.1.1. The
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study could be extended to use an anisotropic rheology for the deformation of sea ice.

Further study into the alignment of winds and ocean currents is also needed. The majority of investigation

into atmospheric jet formation in this thesis assumes a still ocean. Ice drift observations in the MIZ show

that on-ice winds are often accompanied by ocean currents (Greenan & Prinsenberg 1998, King et al. 2010).

The results shown in sections 5.2.3 and 6.2.3 show that a moving ocean influences the sea ice drift velocity

and can lead to ocean jet formation. The analysis of winds and ice edge location behind figure 7.2 could be

expanded to include ocean currents. The jet theory of chaper 3 could be then used to present a case study

of the alignment of flows and the jet formation associated with them as with the combined jets experiments

shown in figures 5.7 and 5.8. The analytical model from chapter 4 would calculate the ice jet formation, and

could be compared to observations of sea ice drift. The analysis in section 7.1.2 could easily be expanded

to other data sets. Of particular interest is the GlobICE data set (http://www.globice.info) which

includes Arctic wide sea ice concentration and drift speed.

Long Term Goals

More ambitious long term research is needed to continue the ideas of this thesis. Observational data is

essential to the understanding of jets within the atmosphere, ocean and sea ice.

There are currently very few studies of the sea ice edge that can be used to verify or refute the formation

of atmospheric jets due to a sharp change in surface roughness. Such a study would ideally observe low level

wind speeds and surface drag over several Rossby radii either side of a compact sea ice edge during on-ice

winds. Observations would need to be over a time scale less than 12 hours.

The effect that atmospheric jet formation at the sea ice edge has upon the wider sea ice pack needs to

be investigated. In order to do this a sea ice model for an entire polar region at high resolution is needed.

The resolution requires grid cells of at most 2 km in width. Using such a model atmospheric jets could be

added to the forcing data by the model itself over time scales of one or two years in model time. Long time

scale effects of jet formation in areas such as the Fram Strait and the East Antarctic (see figures 7.1 and 7.2)

could make significant changes to the expected sea ice cover. The CICE model as described in chapter 2

could be used though it would need to be tuned to run at such a high resolution and a spin up period would

be required.
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Atmospheric jets form centred over the sea ice edge. This means that half of the jet is over the open

ocean. The response of the ocean to the jet formation needs to be investigated. This requires a coupled

model of sea ice and ocean dynamics such as that of Roed & O’Brien (1983) or Smith & Bird (1991). This

would give insight into the alignment of winds and ocean currents. Also it could give rise to the alternate

ocean jets as described by Fennel & Johannessen (1998).
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CHAPTER 8

CONCLUSIONS

In this concluding chapter the achievements of this thesis are outlined. The original techniques devised to

investigate Jet Formation at the Sea Ice Edge are outlined in section 8.1 and the main results are presented

in section 8.2.

8.1 Original Research

For this thesis original research has been undertaken to investigate jet formation at the sea ice edge. Previous

research on this topic with focus upon the sea ice edge and MIZ is limited (section 1.3) with no comprehen-

sive review published to date. This research has been reviewed for this thesis. The subject of jet formation

over coastlines and low level jet formation over oceans is well researched and applicable to this thesis and is

described in section 1.2.

The theory of Hunt et al. (2004) models the formation of atmospheric jets due to a sharp change in

surface roughness. This theory has been applied to the sea ice edge in this thesis for the first time in chapter

3. A review of observations and modelling of sea ice roughness in the marginal ice zone has been performed

to estimate the increase in surface roughness. This has allowed for the prediction of atmospheric jet size and

strength in section 3.1.4.

138



The interaction of the ocean with the rough underside of the sea ice pack has been considered for the

first time in section 3.2. Jet formation in the ocean has required the consideration of jet formation due to a

fluid’s interaction with a moving band of increased surface roughness. This is a new extension to the theory

of Hunt et al. (2004). To apply the ocean jet theory a review of measurements of roughness lengths and drag

coefficients at the sea ice ocean interface has been performed in section 3.2.4. This review has been used to

investigate the ice to ocean drag in the MIZ, an area where observations are currently unavailable.

An analytical model of sea ice drift at the sea ice edge has been created (chapter 4). This model uses

several simplifications in order to calculate sea ice drift without the use of a full numerical model. These

simplifications are the use of a laterally invariant steady sea ice edge and assuming that the compaction of

the sea ice pack will resist the movement of ice drift normal to the sea ice edge (see section 4.2). The model

is constructed using the momentum balance of Gray & Morland (1994) and rheology of Hibler (1979),

which are widely used in existing sea ice models (see section 2.2). Most existing studies of sea ice with

the rheology of Hibler (1979) use numerical models whereas this model uses novel methods (section 5.1)

to achieve analytical solutions. Despite the simplifications and restrictions we have imposed, the analytical

model is able to produce realistic solutions for the ice drift during the formation of an atmospheric jet. These

results are similar to those produced by the CICE model (see section 7.2), which uses the same rheology in

a fully numerical model with no restrictions. The use of the analytical model is shown to be a valid method

of investigating sea ice drift at the sea ice edge using a viscous plastic rheology.

The use of the CICE model to investigate the sea ice edge is a novel method not documented in previous

research. The model has been set up at various resolutions to investigate the model’s sensitivity to grid

resolution (see section 6.1). This sensitivity is not documented in the existing literature. The method of

finding an ice edge in a map of ice concentration data has been created for this thesis (section 6.1.1). This has

allowed for the addition of atmospheric and oceanic jets into forcing data for the CICE model experiments

and the analysis of ice concentration data to find possible locations of atmospheric jet formation (section

7.1.2). The use of the edge finding and jet applying methods allow for the consideration of jet formation in a

global sea ice model. The analysis of ice concentration data to find areas of likely atmospheric jet formation

over the sea ice edge has been done for the first time (section 7.1.2).
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8.2 Original Results

Atmospheric jet formation at the sea ice edge has been modelled (chapter 3). These jets are due to the

action of the Coriolis acceleration on a flow over a sharp change in surface roughness length. The Coriolis

acceleration and change in roughness have been shown to exist at the sea ice edge (section 1.2) along with

the other requirements for the formation of atmospheric jets (section 3.1). The arrangement of on-ice winds

has been addressed in this thesis as it is more likely to present the sharp change in surface roughness length

and the resulting sea ice drift will be more stable and easier to model. The shape of the jets features a

peak wind speed over the sea ice edge that decays away over several atmospheric Rossby radii (75 km, see

section 3.1.4). There is a first order correction to the jet shape which results in a discontinuity in wind speed

at the sea ice edge. The jet perturbation to the wind speed is in the direction parallel to the sea ice and its

magnitude depends on the angle between the unperturbed wind and the sea ice edge and the Froude number

of the flow (section 3.1.4). The strongest jets are for winds that are near parallel to the sea ice edge where

the wind speed is increased by a factor of three.

Oceanic jet formation has also been modelled (section 3.2). The physical processes behind the oceanic

jets are the same as the atmospheric jets using the characteristics of the ocean mixed layer. The requirements

of the flow to allow for jet formation, such as the stability of the ocean and propagation of the surface shear

layer have been assumed to exist. This is due to limited available observations of the ocean mixed layer at the

sea ice edge. The ocean jet shape is the same as the atmospheric jet shape though over the lateral extent of

an oceanic Rossby radius (6 km see section 3.2.4). The strength of the ocean jet depends upon the difference

in speed between the ocean and sea ice edge (section 3.2.2). To accurately calculate the ocean jet strength

the jet calculation needs to be coupled to the analytical ice drift model as described in section 4.3.2 giving

an ocean jet that increases the ocean current speed by a maximum of 50% (section 5.2.2). The results from

the analytical model allow the jets to be added to the CICE model as described in section 6.1.1. The results

from the CICE model, however, disagree with the analytical model and show that the compaction of the sea

ice edge is not sufficient to stop the ice drift normal to the ice edge (figure 7.5). This results in the relative

difference between the sea ice and ocean velocities being small and no ocean jet likely to form (section 7.2).

This result from the CICE model shows that ocean jets are less likely to form than atmospheric jets.
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The formation of atmospheric and oceanic jets over the sea ice edge has been shown to result in the

formation of a sea ice jet (chapters 5 and 6). The sea ice jet formation is particularly likely for on-ice winds

over all angles of incidence between the unperturbed wind and sea ice edge (see figures 3.2 and 7.4). The sea

ice jet that forms under an atmospheric jet has a similar enhancement to the atmospheric jet (sections 5.2.1

and 6.2.1), for example a wind speed increase of 100% results in an ice drift speed increase of 100%. The sea

ice jet that results from an atmospheric jet matches an observed sea ice jet north of Svalbard (Johannessen

et al. 1983) and is shown to significantly increase the transport of sea ice along the sea ice edge by 40% over

the outer 250 km of the sea ice pack. This increase in sea ice transport could be a significant factor in the

Fram Strait ice export (section 7.1.2), an area where atmospheric jet formation is likely to occur over the

sea ice edge (figure 7.2). Current global climate models typically misrepresent the Fram Strait ice export

(section 7.4) a process that can have large implications for the Arctic sea ice extent (section 2.1).
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APPENDIX A

THE VISCOUS PLASTIC SEA ICE RHEOLOGY

When modelling sea ice as a continuum, a method of relating the deformation rates and internal stresses, or

its rheology, is needed. With early sea ice models such as Reed & Campbell (1960) this was done simply by

considering the sea ice cover as a highly viscous fluid. This method was improved by adding an internal ice

pressure (e.g. Rothrock 1970), and then by considering it as a plastic medium such as the AIDJEX (Arctic

Ice Dynamics Joint Experiment) model (Coon et al. 1974). At low stress rates sea ice is observed to behave

in a non deforming motion. A hybrid rheology is used giving a non plastic deformation at low stress rates.

Hibler (1979) introduced a Viscous - Plastic (VP) rheology which is described in this appendix. See Feltham

(2008) for a full description of sea ice rheology and methods used to model it.

A.1 Viscous and Plastic Deformation

For a continuum sea ice model at a length scale greater than individual sea ice floes the dynamics of the

sea ice have been assumed to be isotropic, that it obeys the same rules of deformation in all directions.

Anisotropy in a continuum sea ice model has recently been investigated (Tsamados et al. 2012) and, while

shown to be important to the central pack, would be expected to have little impact over the shorter length

scales investigated in this thesis. For normal stress levels in the VP rheology the ice deforms as a plastic. In
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plastic deformation energy is lost in deforming the ice. This lost energy creates kinematic features in the sea

ice pack such as ridges for compressive stresses, or leads (cracks extending for many kilometres) for tensile

stresses. For low stresses the sea ice is taken as a viscous fluid.

The transition from viscous to plastic deformation happens at the yield stress. This yield stress is ex-

pressed mathematically as a curve in the principle stress space (figure A.1) which is chosen to match known

characteristics of sea ice deformation. The sea ice is assumed to be strong in shear, strongest in compression

and weak in tension, often with no stress in pure divergence. Sea ice is plastically, or permanently, deformed

for all stress states on the yield curve.

A.2 Numerical Implementation

To mimic the deformation of sea ice in a continuum model an ice stress tensor is used. This tensor relates

the deformation rate of the sea ice,

ε̇ij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (A.2.1)

to the internal stresses within it σij where (i, j) = (x, y) are directional indices. Realigning in the direction

of greatest stress and summing the positive and negative parts gives the principle stress component σ1 with

σ2 at right angles to it. These components are positive for tension and negative for compression. The stress

invariants of negative pressure σI and maximum shear rate σII are related to the principle stresses with

σI =
1

2
(σ1 + σ2) and σII =

1

2
(−σ1 + σ2).

The stresses experienced by a packet of sea ice within the continuum defines a point in (σ1, σ2) space. As

the sea ice is assumed to be isotopic the yield curve in principle stress space is symmetric about the negative

pressure axis. Hibler (1979) gives an elliptic yield curve for the VP rheology which only allows for stresses

that exist within it, or upon its boundary. The regime allows non permanent viscous deformation to the sea

ice for stress states that exist within the yield curve. This is mainly for low compressive stresses in both

principle directions (negative to both σ1, σ2). The ice can deform viscously in shear (small tensile stress in

one direction, compressive in the other), though not in pure tension (positive values on both axis).
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Figure A.1: Elliptical yield curve in principle stress (σ1, σ2) space for a viscous-plastic rheology. For
plastic deformation, the stress state lies on the solid curve. The stress state for pure shear is located at S
giving maximal |σII |, pure convergence is at C, and pure divergence is at the origin O. For very small strain
rates, the stress state moves inside the yield curve as shown by the dashed ellipse. For a zero strain rate the
internal ice pressure p/2 must be countered.

The stress tensor is calculated with

σij = 2ηε̇ij + (ζ − η)ε̇kkδij −
1

2
pδij . (A.2.2)

where η and ζ are the nonlinear shear and bulk viscosities, p is the ice pressure, and ε̇ij is the deformation

rate as in equation (A.2.1). Hibler (1979) gives the shear and bulk viscosities as functions of ε̇ij and p in

accordance with the yield curve in figure A.1, with

η =
ζ

e2
, (A.2.3a)

ζ =
p

2∆
, and (A.2.3b)

∆ =
{

(ε̇211 + ε̇222)(1 + e−2) + 4e−2ε̇212 + 2ε̇11ε̇22(1− e−2)
} 1

2 , (A.2.3c)
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where e is the yield curve’s eccentricity. The upper bounds of the viscosity are the ice strength or pressure

p. This is given as a function of the ice concentration A. This variable 0 ≤ A ≤ 1 gives the non dimensional

fraction of thick sea ice (A) to thin sea ice or open ocean (1−A). Hibler (1979) gives

p = p∗hg(A) with g(A) = e−c(1−A), (A.2.4)

where p∗ is a constant, h is the ice thickness and c = 20 is a tuning constant. The function g(A) is used

to represent the amount of floe contact in the ice pack (Gray & Morland 1994) with g(A = 0) = 0 and

g(A = 1) = 1. This parameterisation of the ice strength gives a linear relationship between the strength and

thickness for high ice concentrations. As the concentration decreases the ice strength falls significantly.

This viscous-plastic rheology and numerical derivations of it (e.g. Hunke & Dukowicz 1997) have been

implemented in sea-ice models such as the Los Alamos Sea Ice (CICE) model. It has been shown to perform

well at the sea ice edge (Lepparanta & Hibler 1985) which is its intended use in this thesis.
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Shen, H. H., Hibler, W. D. & Leppäranta, M. (1986), ‘On applying granular flow theory to a deforming

broken ice field’, Acta Mechanica 63(1), 143–160.

Simpson, J. E. (2007), Sea Breeze and Local Winds, new ed edn, Cambridge University Press.

Smedman, A., Tjernstrom, M. & Hogstrom, U. (1993), ‘Analysis of the turbulence structure of a marine

low-level jet’, Boundary-Layer Meteorology 66(1-2), 105–126. WOS:A1993LZ06200006.

Smith, D. & Bird, A. (1991), ‘The interaction of an ocean eddy with an ice edge ocean jet in a marginal

ice-zone’, Journal of Geophysical Research-Oceans 96(C3), 4675–4689.

Stroeve, J. C., Kattsov, V., Barrett, A., Serreze, M., Pavlova, T., Holland, M. & Meier, W. N. (2012),

‘Trends in arctic sea ice extent from CMIP5, CMIP3 and observations’, Geophysical Research Letters

39, L052676.

Stroeve, J., Holland, M. M., Meier, W., Scambos, T. & Serreze, M. (2007), ‘Arctic sea ice decline: Faster

than forecast’, Geophysical Research Letters 34(9), L029703.

Stroeve, J., Serreze, M., Drobot, S., Gearheard, S., Holland, M., Maslanik, J., Meier, W. & Scambos, T.

(2008), ‘Arctic sea ice extent plummets in 2007’, Eos 89(2), 13–14.

Taylor, P. D. & Feltham, D. L. (2004), ‘A model of melt pond evolution on sea ice’, Journal of Geophysical

Research-Oceans 109(C12), C002361.

Thorndike, A. S., Rothrock, D. A., Maykut, G. A. & Colony, R. (1975), ‘The thickness distribution of sea

ice’, Journal of Geophysical Research 80(33), 4501–4513.

Thorpe, S. A. (2005), The turbulent ocean, Cambridge Univ Pr.
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