

The Bartlett School of Graduate Studies- University College London

 Quasi-Projection:
 aperiodic concrete formwork for perceived surface complexity

 Olivier Ottevaere

 This dissertation is submitted in partial fulfilment of the
 requirements for the degree of Master of Science in Adaptive
 Architecture & Computation from University of London

 University of London, September 2008

I, Olivier Ottevaere, confirm that the work presented in this thesis is my own.
Where information has been derived from other sources, I confirm that this
has been indicated in the thesis.

 Abstract

By disclosing long range order from few dissimilar tiles, aperiodic tilings can
potentially diversify and spatially enrich the repetitive aspects of modular
systems still pertinent in the production of architecture today. Such effective
tilings have been discovered in quasicrystals and can be generated by the
projection of higher dimensional grids in two or three dimensions. A Penrose
tiling, for example can be derived from the projection of five dimensional grids
onto a two dimensional plane.

The thesis initially investigates if a program allowing the grids to be rotated
parametrically can provide for numerous alternative tillings using the
projection method for any dimensions.

Some found tilings are then analysed and their assembly rules tested against
the adaptation of other types of geometries in order to determine if a high
level of diversity can still sustain the test of repetition of few different modules
and field a spatial configuration of probable forces.

It is further demonstrated that these initial tilings can in fact perform as
efficient organizational scaffolds by letting more complex geometries free
flowing past the tiles’ edges and pass the test of mass production with the aid
of a minimum amount of formwork.

Word count: 10279 + (3217 for the supplemented Adaptation and Fabrication chapters)

Keywords: Quasicrystals, aperiodic tiling, strip projection method, assembly
rules, adjacencies, porosity, tangential continuity, formwork, modularity.

Acknowledgments

I would like to thank my supervisors:

Sean Hanna for his insightful guidance and his critical opinions on the topic
throughout the research

Alasdair Turner for his invaluable programming assistance, particularly in
propelling the plunge in n dimensions

I would also like to thank:

Elsa Caetano for her inexhaustible help with generative components

Stylianos Dritsas for his numerous suggestions and expertises on the
computation part

Guan Lee for never stopping to challenge and inspire the physical counterpart
so pertinent to the thesis

Contents

1. Introduction
 The whole dilemma
 Aperiodic structure
 Motif versus pattern
2. Background
 Motif recognition
 6.1 Scientific approaches
 The Penrose tiling; a special case
 Quasitiler and the projection method
 6.2 Architectural correlations
 Modularities
 Quasi furniture
 Orgone Reef
3. Research objectives
 The projection method from arbitrary rotations
 Adjacency analysis
 Adaptation
 Fabrication
4. Methodology
 Tool used
 8.1 The projection strip method
 Transformation matrices
 The 4 and 5d hypercube experiment
 The strip or clipping boundary
 In jumping down one dimension
 In jumping down two dimensions
 In jumping down more than two dimensions
 8.2 Adjacency analysis
 Case study #1 to 6
5. Adaptation
 NURBS Line type
 Tangencies
 Fleeing the tile’s original shape
 Porosity
 Quasi roller
6. Fabrication
 6.1 Fieldproof
 6.2 Tileproof
 Quasi wall prototype
 Quasi roller prototype
7. Discussion
 Overall impressions
 The strip projection method by arbitrary rotations
 Adaptation to fabrication
 Further Work
8. Conclusion
 Repetitions of differences

References
Appendix

1

3

4

8

13

27

45
46

12

13

34

45

51

55

56
58

MSc Adaptive Architecture and Computation 1
Olivier Ottevaere

1. Introduction

The recent and ongoing advance of CAD/CAM* technologies has
considerably shrunk the passage between the digital and its physical
counterpart, portraying it to the designer almost seamless and nearly non
existent. Yet this passage has been and remains an important conceptual
ground for the designer to reside throughout the conception of a project. In
doing so, she or he allows the design development to be informed back and
forth by the digital as well as the physical.
Today, such conversion that CAD/CAM technologies facilitate, tends to
polarize the design process more towards the digital and to consider its
physical being later in the process.
While recognizing the advantages and the potentials of this smooth
conversion (e.g. more sophisticated forms and structure are made physically
possible nowadays by means of this type of technology), design projects are
often submitted to the law of fragmentation.
This, results in the breaking apart of an entity into single and unique units,
manufactured and then assembled into its original whole but this time for real.
The simple fact that data can almost effortlessly be processed by a computer
to a machine renders efficiency less crucial and the customization of
individual or unique pieces more predominant. However a building today
cannot still be manufactured in one single piece and the unavoidable issue of
fragmentation originates more from a conceptual level than from the level of
eased means of fabrication.

The whole dilemma

A distinction could be drawn between the relationships of a fragment and its
whole versus the one of a part to its whole. By definition, a fragment is a
piece cut off of something else. Many sets of fragments can make up this
something else but which specific one is less so relevant. On the contrary, a
part or a component is a constituent of a composite entity suggesting that it
has intrinsic properties related to the whole and vice versa. Therefore, could
some sort of intentional bondage between the specific constituents make for a
singular whole? This initial question prompted the following thesis to
investigate the ambiguity between parts and whole, but in reverse.
Could one initially conceive of building units and their organizational
properties and arrive at a unique spatial and physical assemblage? That is
without being too restricted about what that (assembled) entity must be to
start with. Could the rules making up this entity be embedded within the parts
and therefore conductive of their assembly?

*CAD stands for Computer-aided design
*CAM stands for Computer-aided manufacturing and is the use of computer-based software
tools that assist engineers and machinists in manufacturing or prototyping product
components (www.wikipedia.org), or even soon entire buildings.

http://www.wikipedia.org/

MSc Adaptive Architecture and Computation 2
Olivier Ottevaere

Aperiodic structure

A key motivation for the thesis was to generate relatively intricate entities from
the least possible parts, calling for some sense of economy of means and
efficiency without compromising the quest for diversity.
Similar characteristics to the ones just stated had been identified in aperiodic
structures, such as the ones found in Quasicrystals. They comprised of
structures made of few different tiles (or units) which are combined in a non
repetitive manner and which project long range order. Rotational symmetry
makes their non repetitive combination possible as opposed to periodic
structures which only have translational symmetry (can be copy and paste
next to one another). Quasicrystalline structures became the core material
from which these questions were researched.

Motif versus Pattern

In “The Self-Made Tapestry”, Philip Ball defines pattern as “arrays of units that
are similar but not necessarily identical, and which repeat but not necessarily
regularly or with a well-defined symmetry” (p.9).

Patterns are rendered by external forces and travel extensively in space,
Motifs are static and self-contained. Which category would Quasicrystals fall
into? It could be argued that rotational symmetries although less immediate
than translational ones are nonetheless well-defined symmetries. Therefore,
aperiodic tiling could then be classified at best as enhanced motifs which are
finite and bounded in space. Either this is accurate or not, the distinction
made here only highlights one of the dangers in working with aperiodic tilings
and raises a more definite question that this research would strive to tackle:
-If aperiodicity can present maximum variation with minimum variety of tiles,
would it suffice to perform as a provisional scaffold to govern only organized
efficiency and allow other types of geometries to be spatially let free of the
strict edges and recognizable motif those tilings ultimately depict?
And if so, could this leave room for other types of geometries to be
conditioned further in the process by external forces (physical) and become
more responsive to its milieu?
A general approach to this question was
First to fully disclose the searching space inside which aperiodic structures
emerge so that convergence to only special cases might be overcome
(Penrose tiling)
Then gradually test how far other types of geometry can distance themselves
from a found aperiodic tiling without disposing of the rules accounting for its
initial efficiency.

2. Background

Motif recognition

Even though aperiodic structure and space packing (3d aggregates) have
been an explored material for quite some time now within the scientific realm,
their growing interests have been seen in recent years applied to architecture.
Today well known examples of them are the water cube (National Swimming
Centre) for the Beijing Olympics by PTW Architects and Arup (fig. 2a) or the
RMIT Storey Hall in Melbourne, Australia by ARM Architects (fig. 2d, 2f).
A thorough or fair architectural critic of these specific projects is beyond the
scope of this research but it could be suggested that, while not undermining
their respective technical achievements (i.e. structure and facade of the water
cube), the strong look-alike proximity to the original scientific material is
somewhat conspicuous of their architectural shortcomings. The water cube
for instance borrows the Weaire-Phelan packing directly from its two authors
of the same names (fig. 2b) to only operate a series of transformations
(rotation and slicing) on it (fig. 2c). This was mainly prompted by a will from
the architects to render the original structure of aggregates visually less
repetitive while not risking a drift too far away from the initial metaphor; from
water to soap bubbles.

 Fig. 2a Water Cube, in Beijing, China (from the Architects http://www.ptw.com.au/)

 a

 b c

 Fig. 2b Weaire-Phelan space packing aggregates Fig. 2c procedure of transformations from the same
 a: irregular pentagonal dodecahedron aggregates for the water cube (from ARUP Australia)
 b: tetrakaidecahedron
 c: base cluster: 2 of a and 6 of b

MSc Adaptive Architecture and Computation 3
Olivier Ottevaere

http://www.a-r-m.com.au/project.php?projectID=1&categoryID=1
http://www.ptw.com.au/

 Fig. 2d Parts of RMIT Storey Hall, in Melbourne, Australia (from the Architects http://www.a-r-m.com.au/)

 Fig. 2f Parts of RMIT Storey Hall, in Melbourne, Australia (from the Architects http://www.a-r-m.com.au/)

“Our brief from RMIT for Storey Hall was the creation of an international standard exhibition
and auditorium facility, and one which could make a significant contribution to
architectural theory and practice, and to the present and future identity of RMIT.”
(From the Architects at http://www.a-r-m.com.au/)

The reader may feel slightly uneasy with the presented evidences to this
statement and a return later to why it may be architecturally problematic is
inevitable.

2.1 Scientific approaches

But where these strong iconographic precedents partly originated from?
Quasi periodic structures were discovered in 1982 within the field of
crystallography from electrons diffraction disclosing patterns (fig. 1a) with
icosahedral (20 sided) symmetry*. They are special crystals with no
translational symmetry. That is, contrary to crystals they cannot repetitively
align themselves as tiles or building blocks to fill up space without resorting to
rotational symmetry (see difference from fig.2a and fig.2b). Crystals have
close range order, whereas quasicrystalline structures disclose long range
order even though they are comprised of only few different tiles.

* From “Quasicrystals to Kleenex”, by Alison Boyle
(http://plus.maths.org/issue16/features/penrose/)

MSc Adaptive Architecture and Computation 4
Olivier Ottevaere

http://www.a-r-m.com.au/project.php?projectID=1&categoryID=1
http://www.a-r-m.com.au/project.php?projectID=1&categoryID=1
http://www.a-r-m.com.au/project.php?projectID=1&categoryID=1
http://plus.maths.org/issue16/features/penrose/

 (from Quasicrystals, The State of the Art, World Scientific, 1999, p.106)

 fig.1a High resolution images of electron diffraction pattern of the Al-Cu-Co allow annealed at 550 °C.

 fig.2a crystalline structure with fig.2b quasicrystalline structure with
 translational symmetry rotational symmetry (derived from
 (derived from a sectioning of a 2d projection of a five
 three dimensional grid: 1 tile type) dimensional grid: 10 tiles type)

The Penrose tiling; a special case

An exhaustive documentation already exists on Penrose sets of tiles. But in
short, they were devised (and patented) by the British mathematician Roger
Penrose in the 1970’s prior to the discovery of quasicrystalline structures
(1984). What makes them particularly interesting is their ability to cover a
plane or a space (2d or 3d) in an aperiodic manner only using two types of
tiles: skinny and fat rhombi for the rhombus Penrose tiling (fig. 2g). There exist
as well other types of Penrose tiling such as the pentagonal Penrose tiling
using pentagons (instead of rhombi). The growth of a Penrose tiling is
regulated by a finite number of (local) matching rules between tiles (fig.2e, 2f).

fig. 2e Two pairs of Penrose tiles and their grouping (from http://plus.maths.org/issue18/features/penrose/)
fig. 2f The 7 vertex stars allowed in the Penrose rhomb tiling (from http://intendo.net/penrose/)
fig. 2g An aperiodic Penrose tiling using 2 rhombi (from http://plus.maths.org/issue45/features/kaplan/)

MSc Adaptive Architecture and Computation 5
Olivier Ottevaere

http://plus.maths.org/issue18/features/penrose/
http://intendo.net/penrose/
http://plus.maths.org/issue45/features/kaplan/

 fig. 2e fig. 2f fig. 2g

Penrose tilings are briefly introduced here not only because of the later
discovery of similar structure in Quasicrystals but more for the reason that
they presented a break for a relevant question asked by Marjorie Senechal*:
Can Penrose tilings be alternatively generated, using a projection method?

Quasitiler and the projection method

By then, N.G. De Bruin* (1981) already showed that Penrose tilings could be
seen as the projection of an object in 5-dimensional space (5d to 2d) onto a
plane. However the question was put to task and generalized by Eugenio
Durand to become the aspiration behind the program Quasitiler (fig 2h) that
he later went on to develop. Unfortunately the program itself is no longer
available for use but a useful description of the method still remains
(http://www.geom.uiuc.edu/apps/quasitiler/).
It mainly consisted in drawing Penrose tilings from the projection of five
dimensional grids onto a two dimensional plane. Quasitiler also offers
drawings of other types of tilings from 4, 5 and more dimensional grids. Prior
to projection, the vertices making those grids need to be selected or sliced
from a specific region.

“Eugenio Durand, a Geometry Center programmer, has written the program QuasiTiler to find
the described quasiperiodic tilings of the plane. He originally wrote it to help Marjorie
Senechal with her work on quasicrystals. The program allows the user to specify the "slope"
of the plane E (see fig. 2j), using a mouse to modify a picture of the five-dimensional unit
cube. There are three degrees of freedom for the offset of the plane. The user uses three
sliders to change the offset. One of the offset directions specifies whether the tiling is a
Penrose tiling. The program then shows the tiling that the user has specified. In addition, the
user may specify a lattice dimension other than five. It is an easy program to use, and the
results are beautiful.”
(From http://www.geom.uiuc.edu/docs/forum/quasitiler/quasitiler.html)

Rotation angles appear to be contained in quasitiler inside an overall
rotational matrix (summary of many rotational matrices into one). However
this precedent became an inspiring benchmark for the research to follow.

*Marjorie Senechal has been a leading figure for years in the field of mathematical
 crystallography (http://maven.smith.edu/~senechal/).
*M. Senechal, Quasicrystals and Geometry, Cambridge University Press, 1995.
*N.G.deBruijn, Algebraic theory of Penrose's nonperiodic tilings of the plane, I, II, Nederl.

 Akad. Wetensch. Indag. Math. 43 (1981) 39-52, 53-66.

MSc Adaptive Architecture and Computation 6
Olivier Ottevaere

http://www.geom.uiuc.edu/apps/quasitiler/
http://www.geom.uiuc.edu/docs/forum/quasitiler/quasitiler.html
http://maven.smith.edu/%7Esenechal/

 fig. 2h Penrose tiling from Quasitiler 3.0 fig. 2i selection region for a Penrose tiling
 (from http://www.geom.uiuc.edu/apps/quasitiler/) (from http://www.geom.uiuc.edu/apps/quasitiler/)

The slicing region of n-dimensional lattices is given by an area just wide
enough to fit one unit of an n-dimensional lattice (fig. 2j, 2i).

 fig. 2j Example of slicing region in 2d for a projection
 of points onto a 1d line (from http://www.geom.uiuc.edu/apps/quasitiler/)

Alternative methods are also known today for generating Penrose tilings such
as the Updown generation* method (fig 2k) and the dual grid or Pentagrid*
method (fig 2l). These do not have a direct connection to the following thesis
and therefore are only briefly illustrated and referenced.
For the ‘Updown generation’ method, half rhombi are combined under some
specific assembly rules to recursively make an aperiodic tiling (fig. 2k).

 fig. 2k Example of the updown generation method for drawing a Penrose tiling
 (from http://www.ams.org/featurecolumn/archive/ribbons.html)

For the ‘Pentagrid method’, a Penrose tiling can be thought as a series of
parallel ribbons in five directions. The intersection between non parallel

MSc Adaptive Architecture and Computation 7
Olivier Ottevaere

http://www.geom.uiuc.edu/apps/quasitiler/
http://www.geom.uiuc.edu/apps/quasitiler/
http://www.geom.uiuc.edu/apps/quasitiler/
http://www.ams.org/featurecolumn/archive/ribbons.html

ribbons makes a rhombus belonging to the Penrose tiling. So each rhombus
can be defined from a series of intersecting straight lines. Ultimately those
intersecting lines can be used to generate a Penrose tiling (fig. 2l).

 fig. 2l Example of the dual grid or Pentagrid method for drawing a Penrose tiling
 (from http://www.ams.org/featurecolumn/archive/ribbons.html)

* The Updown generation method is explained in more detail by David Austin at
http://www.ams.org/featurecolumn/archive/ribbons.html
* The dual grid or Pentagrid method is as well explained by David Austin at
http://www.ams.org/featurecolumn/archive/ribbons.html
Dr. Eric R. Weeks wrote a program called Quasig using the Pentagrid method which can be
found at http://condellpark.com/kd/quasig.htm

6.2 Architectural correlations

Modularity

Some architects remain captivated by the idea that elements can be
effectively repeated to make a whole. Along with the aid of an ever evolving
scientific knowledge and technology, the modernist project continues
spreading its mission for mass production in architecture, although
increasingly at the brink of retinal and procedural exuberance. “Less is more”
has now the potential to be toppled by a pinch of “more for less”. At what
expense? This should be revisited towards the end of this thesis, but
undoubtedly this phenomenon has been facilitated by the tools employed?

Repetition of differences
As one of Greg Lynn latest projects, the “Blobwall” best epitomizes the above,
an initial module is repeated into wall-type patterns generated in the computer
and causing each one of its modules to digitally overlap with its neighbours
(fig. 2m). To permit the components to physically interlock and the wall-type
to stand, all individual and redundant intersections have to be trimmed off by a
well behaved six-axis robot (fig. 2mb). The manufacturing process is here
individualized (individual trimmings) while the rough material (unit) is the same
to begin with. It is clear to say that if the overlap for each module would have
had to be traced and trimmed by a human hand (manageable), an effort to
make the process more efficient would have had to be pondered on further.
However, if a robot can provide for some relative easiness, why not exploiting
it? In fact, during a lecture last year at the Architectural Association in London,

MSc Adaptive Architecture and Computation 8
Olivier Ottevaere

http://www.ams.org/featurecolumn/archive/ribbons.html
http://www.ams.org/featurecolumn/archive/ribbons.html
http://www.ams.org/featurecolumn/archive/ribbons.html
http://condellpark.com/kd/quasig.htm

he was supportive of an architecture being a singular object built out of many
variant components. In regards to the “Blobwall”, a more central question
persists: does this forceful process make up conceptually for a more
interesting wall and if so, what are the criteria to judge it? History may help.

 a b c
fig. 2m “Blobwall” by Greg Lynn (from http://www.glform.com/blobwall.html)

Repetition of same
For the last 50 years, the Austrian born artist Erwin Hauer has been
developing tectonic screens which main intentions are to temper with visual
movements while still allowing diffused light to go through. His screens (fig.2n)
are made of the same repeated module but are two-sided. Each module is
precast and mass produced manually. Using a suture curve* as its main
spatial articulation, they disclose an interstitial voided space continually
fleeing away from the moving eye. An ever changing presence that
dynamically makes up for the fact each cast module is the same throughout.

 a b c

Fig 2n example of a screen by Erwin Hauer (from Continua--Architectural Screens and Walls, by Erwin Hauer, 2007)

* A suture curve is “a way of partitioning the surface of a sphere into 2
identical halves…The makers of baseballs and tennis ball have chosen it to
fabricate their products.” (From Continua--Architectural Screens and Walls, p 84, 2007)

Repetitions of difference
The last modular precedent (fig.2o) developed by Gramazio/Kohler at the
ETH in Zurich, Switzerland differs from the previous two by bringing out a
stronger sense for rationality. It accepts the bricks as primitive artefacts and
contrasts their limitations as such by extending the ways they can literally
form a wall.

MSc Adaptive Architecture and Computation 9
Olivier Ottevaere

In their work the robot has taken charge for the bricklayer.
It sequentially positioned the bricks row by row and is informed by sets of
coordinates from created patterns in the digital realm. The process
emphasizes more on a series of instructions bounded by the brick size and its
consideration to gravity and experiment on how far it can be articulated as a
formal standing wall in perplex interplay between mass and void.

 a b c
 fig. 2o “Programmed wall” by Gramazio/Kohler (from http://www.dfab.arch.ethz.ch/web/e/lehre/index.html)

The reasons why these three examples were presented here was not so
much to validate one successful approach over the other two, but more to
reflect on the field of already pre-existing possibilities and on there respective
premises in tackling modular systems.

Quasi furniture

Aranda/lash, a young architectural practice based in New York City has been
interested in quasicrystalline structures since a few years now. They are
currently testing their ideas mainly in small scale prototypes (i.e. furniture in
fig. 2m) and believe these aperiodic structures can challenge new variations
in form and surface that they can further transform into architecture. Although
it is not very clear how they generate the (3d) tilings themselves, their results
portray an immediate resemblance to the scientific material presented before.
Nonetheless they are quite effective as pieces of furniture. While serving their
purposes, as objects they neither come out as lavishly decorative: A concern
that appears harder to conceal when having to deal with architectural space.

Fig 2m quasi cabinet quasi table quasi chair
(from http://www.johnsontradinggallery.com/)

The final precedent proposes an alternative take to the friction already
brought up earlier (motif recognition) and a more ventured approach to space,
further away from a restricted bounding box.

MSc Adaptive Architecture and Computation 10
Olivier Ottevaere

Orgone Reef (by Philip Beesley)

“Orgone Reef is a speculation of what the skin of a building could be like in the future.
Orgone Reef is a technical exercise in construction and fabrication. The project relates to
geotextiles, a new class of materials used for reinforcing landscapes and buildings. A minimal
amount of raw material is expanded to form a network forming a porous volume. A Penrose
tessellation, a non-repeating geometrical system, is used to create the hybrid fabric. This
structure acts like an artificial reef that could support a living skin.”
(from Philip Beesley: http://www.philipbeesleyarchitect.com/index.html)

Fig. 2o View of Orgone Reef at the London Building Centre (http://www.philipbeesleyarchitect.com/index.html).

Philip Beesley is a Canadian architect whose experimental kinetic structures
have been widely commended. Orgone Reef uses a Penrose tessellation (fig.
2nd) to organize its intricate hybrid fabric. One contrasting aspect of his
approach is how on one hand he rigorously overlays and organizes his
structure along the lines of the Penrose tiling and of its associated assembly
rules (fig. 2na, 2nd) and yet manages to spatially depart away from the tiling
strong graphical presence and at last allowing its structure to become
autonomous (fig 2o). Indeed, he uses the Penrose tiling only as an efficient
organizational scaffold and not any longer as a dominant and decorative
feature.

 a

 b c d

Fig 2na Penrose tessellation assembly rule: alternate configurations for rhombic structural units
Fig 2nb nested laser-cutting production layout, showing cutting paths for snap-fit assembly elements
Fig 2nc units are positioned within the membrane filter layer.
Fig 2nd unfolded meshwork structure showing a self-generating pattern of interlinked rhombic units
(Images and captions taken from AD “design trough Making”, July/August 2005, p. 49, 50)

MSc Adaptive Architecture and Computation 11
Olivier Ottevaere

MSc Adaptive Architecture and Computation 12
Olivier Ottevaere

3. Research objectives

The central research question was:

Can quasiperiodic tilings be employed as efficient means of producing
complex and visually irregular patterns with a minimal amount of
reusable formwork involved?

The thesis is structured into four major sections in undertaking the research
question:

1) The projection method from arbitrary rotations

The main part of the thesis was to create a parametric program to see if
alternative tiling to those already familiar like the Penrose tiling could be
found. Two and three dimensional projections of higher dimensional grids
(4d, 5d, 6d…) from any arbitrary rotations, was the method used to generate
aperiodic structures.

2) Adjacency analysis

The second phase was to analyse the organizational structure of some of
these findings (tilings) from various dimensions, such as the number of
different tiles a tiling will be made of (from a specific dimension) as well as
their inherent adjacency rules regulating how such tiling is put together.

3) Adaptation

The next objective was to investigate how alternative geometries and more
specifically NURBS* surfaces could be created in accord with those
adjacency rules (shared edges and tangencies from both sides of an edge,
overall curvature of tile, etc) while still making up for a field with long range
order and with certain degrees of adaptive freedom.

4) Fabrication

The ultimate aspiration for this research was to arrive to some spatial and
physical evidences of how with few a tiles, a large field of diversity can be
efficiently mass produced. This was accomplished by milling the necessary
moulds required for each type of tiles, by casting them in a repetitive manner
and by assembling them according to the rules of the overall (found) tiling.
For this phase an attention to details was inevitable in defying gravity
(reinforcements/connections) and avoiding leakages.

* Non-uniform rational B-spline (NURBS) is a mathematical model commonly used in
computer graphics for generating and representing curves and surfaces (wikipedia.org).

http://en.wikipedia.org/wiki/B-spline
http://en.wikipedia.org/wiki/Computer_graphics

8. Methodology

The main tools used in the research were processing (processing.org) for the
programming part, generative components (Bentley parametric software) for the
adaptation part and a 3 axis CNC (stands for Computer Numerical Control) milling
machine for the fabrication part.

8.1 The projection strip method

In general, the projection method consists of selecting for an n-dimensional
grid all the points falling within an area defined by a clipping boundary (or the
strip) of a one unit of the n dimensional grid and projecting those selected
points onto at least an n-1 dimensional (hyper) space. In this research, the
projection is done onto a two dimensional plane or within a three dimensional
space for any higher dimensional grid (i.e. From 3 to 2, from 4 to 3 or 2, from
5 to 3 or 2, from 6 to 3 or 2, etc).
When speaking of higher dimensions we quickly enter a domain where
visibility is quite limited. Their representation is often difficult to imagine.
Nonetheless, transformations can be performed on these extra parameters
(x, y, z, a, b) and their perception brought back in three dimensions in various
ways; projections (in n-1 or more) is one of those. The following section
illustrates a quick experiment of how higher dimensional transformations
prove to be quite powerful and on how those higher dimensions can be
brought back to some sort of visualization.

8.1.1 Transformation matrices

At this stage the concept of transformation matrices (essential in working with
higher dimensions) have to be presented as they became a central operator
in this research. It is well known in the field of computer graphics that
matrices are used to transform vectors in space or more precisely their
coordinates (x, y, z, a, b, c, etc). Examples of those possible transformations
are translations, mirroring, rotations, orthogonal projections and 1, 2, 3 points
perspectives. In 3d, we are accustomed to three possible rotations: Around
the X-Y plane, the Y-Z plane and the Z-X plane. For each rotation exists a
specific rotation matrix which when multiplied by a vector, will cause it to
rotate. The same thing applies for the other types of transformations.
A generalized 4x4 transformation matrix in 3d is as follow:
The extra column and row (a) are added to account for the other types of
transformations.
 x y z a
x | Ra Rb Rc px |
y | Rd Re Rf py | times vector |x, y, z, a|
z | Rg Ri Rj pz |
a | tx ty tz os |

Where, the Ra to Rj group is for rotations, tx, ty, tz for translations, px for 1 point perspective,
px and py for 2 points perspective, px, py, pz for 3 points perspective and os for overall
scaling, etc. (Computer Graphics: Mathematical First Steps : Patricia A. Egerton, William S.
Hall: Books, p.124.)

MSc Adaptive Architecture and Computation 13
Olivier Ottevaere

In 4 dimensions (x, y, z, a, b) we have 6 possible rotation matrices (5x5) around each plane:
x-y, x-z, y-z, x-a, y-a, z-a.
In 5 dimensions (x, y, z, a, b, c) we have 10 possible rotation matrices (6x6) around each
plane: x-y, x-z, y-z, x-a, y-a, z-a, x-b, y-b, z-b, a-b.
In 6 dimensions (x, y, z, a, b, c, d) we have 15 possible rotation matrices.
In 7 dimensions (x, y, z, a, b, c, d) we have 21 possible rotation matrices.

Here is an example of a rotation matrix around the Y-axis or the X-Z plane, in 3d.
Angle alpha can parametrically range from 0 to 360 degrees.
(See appendix A for an example of the all rotation matrices to a given dimension)
 x y z a
 x |cosa 0 -sina 0| x y z a
(x, y, z, 1) * y |0 1 0 0| = (x*cosa+ z*sina, y, -x*sina+ z*cosa, 1)
 z |sina 0 cosa 0|
 a |0 0 0 1|

8.1.2 The 4 and 5d hypercube experiment

A first program was created in order to comprehend better how diverse
transformations in higher dimensions interrelate while being represented in 3-
dimensional space. This clarified for instance what effect a rotation in 5d
around an A-B plane had upon the other dimensional vectors. All calculations
were performed first on vectors in high dimensions and then each one was
brought down to a 3-dimensional vector in order to be drawn in a 3d Cartesian
space following this formula:
In 4d for (x, y, z, a) = (x*da/(a+da),
 y*da/(a+da),
 z*da/(a+da),
 a*da/(a+da)) ~ (x, y, z, 0)
In 5d for (x, y, z, a, b) = ((x*db/(b+db))*da)/ ((a*db/(b+db))+da),
 (y*db/(b+db))*da)/ ((a*db/(b+db))+da),
 (z*db/(b+db))*da)/ ((a*db/(b+db))+da),
 (a*db/(b+db))*da)/ ((a*db/(b+db))+da),
 (b*db/(b+db))*da)/ ((a*db/(b+db))+da)) ~ (x, y, z, 0, 0)
da and db are scalars of a certain adjustable range.

A vector and a matrix class were implemented for this program partly to
facilitate the multiplication of vectors by matrices. Even tough all the rotation
matrices (6 in 4d, 10 in 5d) are all multiply into a single one before operating
on vectors, they can still be individually manipulated within the interface. This
offers the user to interact parametrically with any singular vectorial
transformations (rotations, perspectives, orthographic projections, scaling)
while simultaneously witnessing the effect it has on the overall geometry.

 3d 4d 5d

fig. 8a 3d, 4d and 5d representations of vectors in 3d space

MSc Adaptive Architecture and Computation 14
Olivier Ottevaere

fig. 8b Snap shot from the interface of a 5d hypercube under specific transformation matrices

The development of this small interface turned out to be quite useful in
disclosing parametrically the various transformations at work and was later
directly employed for the projection method. This set literally the apparatus to
search for aperiodic tilings from any compounds of individual and arbitrary
rotations. In place of mathematically determining the content of an overall
rotation matrix to unveil its corresponding tiling, this procedure permitted to
discover alternative tilings along non determinate routes and without any
preconceived destination.
By freely altering rotation’s angles one by one and in non prescriptive orders,
the contact sheet in the next page illustrates some specific encounters.
For instance, initially when none or only the rotations in 3d were manipulated,
the 5d, 4d and 3d (hyper) cubes were inside of each other respectively (fig 1a:
green, blue and red). Once some 4d rotations were activated the 4d
hypercube was extroverted from the 3d cube (fig 1c: blue, green and red).
The same occurred for the 5d hypercube under 5d rotations (fig 1e: red, blue
and green). Now the various rotations can be controlled in any prescriptive
orders, causing this interplay of higher dimensional representations to
intertwine in many surprising ways.

MSc Adaptive Architecture and Computation 15
Olivier Ottevaere

 1a 1b 1c

 1d 1e 1f

1g 1h 1i

Fig. 8c contact sheet of one-pass through the hypercube interface
Order of successive transformations: from1a, 1b, 1c, 1d......to 1i

8.1.3 The strip or clipping boundary

The strip projection method is a two-step process: one of projection and
beforehand one of selection.
The selective method involved what is called a strip; a width between two
lines in two dimensions or a space between two planes in three dimensions.
This range defined the boundary inside which a set of points were first
located, selected and then projected to create a tiling. The range for this
method had to be just wide enough to only incorporate all the points falling
within one unit of the n-dimensional lattice, no more, no less
(http://www.geom.uiuc.edu/apps/quasitiler/). But as the figure below shows, this width
(black strip) had to increase or decrease when the lattice was rotated in order
to constantly maintain this one unit rule. A first issue was how to make the
width of the strip shift to the correct amount when the lattice was subjected to
rotations.

MSc Adaptive Architecture and Computation 16
Olivier Ottevaere

http://www.geom.uiuc.edu/apps/quasitiler/

8.1.4 Jumping down one dimension

From 2d to 1d (x, y)

For a 2d lattice of a 1 unit, the width of the strip ranges
- from minimum: 1 (the side of the square at rotation x-y = 0 deg)
- to maximum: 1.414 (the diagonal of the square at rotation x-y = 45 deg)
In the case below, the strip is defined by 2 boundary lines:
1) y1= 0; fixed at the origin (the viewing plane).
2) y2= [min. to max.] ; varies upon x-y rotation.
In solving this, a depth vector from (0, 0) to (1, 1) was created and multiplied
by the rotation matrix. To define the second boundary line, one checks that
the points of the lattice are smaller or equal to its y-value.
 x y a
 x |cosa sina 0| x y a
(1, 1, 1) * y |-sina cosa 0| = (cosa- sina, cosa+ sina, 1)
 a |0 0 1|

2) y2= [min. to max.] = cosa+ sina
If a=45 deg, y2=cos 45+sin 45= 1.41 (= sqrt of 2)

as in fig 8d, if a= 0 deg, y2=cos 0- sin0= 1
as in fig 8e, if a =125 deg, y2= 1.39

 1d proj.

y1

y2

fig. 8d 2 dimensional lattice projected in 1 dimension fig. 8e same but rotated disclosing aperiodic structure

Notice the aperiodic structure of the 1d projection of figure 8e. If the magenta
segments were 0 and the green ones 1, we would have a series of this sort:
…0101001010010101001…., making it non repetitive as opposed to the
periodic structure in figure 8d (11111111111) disclosing only translational
symmetry.

Pseudocode

If the y-value of a point X > 0 and <= y-value of the depth vector
(y1 line < X_y <= y2 line)
Then point X is inside the clipping boundary and is selected.
After selection only its x-value is drawn (1d projection)

MSc Adaptive Architecture and Computation 17
Olivier Ottevaere

From 3d to 2d (x, y, z)

The same method presented for the 2d to 1d projections applies to the 3d to
2d projections. The depth vector goes from (0, 0, 0) to (1, 1, 1) with three
rotations matrices around x-y, y-z, z-x.

depth_Vec=(1,1,1)
z1 = 0 (fixed)
M_rotall= M_rotxy * M_rotyz * M_rotzx (multiply the 3 rotation matrices into a single one)
z2 = z_val of depth_Vec * M_rotall (varies upon rotations)

z2 min = 1
z2 max = 1.732 (= sqrt of 3)

z1

z2

fig. 8f 2d projection on x-y plane of a 3d grid fig. 8g strip width defined by z1, z2 planes

 diagonal vector : x, y and z coordinates
 z1

 X

 Z

 z2

fig. 8h X-Z projection view of a 2d projection tiling from a 3d lattice showing the space and its selection between the
 two boundary planes (z1,z2).

This method wasn’t yet working properly. As the next 2 figures indicate (fig. 8i,
8j), some holes were occurring in the tiling. The selection boundary was not
as large as it should have been causing it to not properly select all the points
needed to make a complete 2d tiling under the 3 specific rotations.

MSc Adaptive Architecture and Computation 18
Olivier Ottevaere

The problem originated when the depth vector was rotated past a certain
amount of degrees from any rotation(s). The quadrant in which the depth
vectors resides has a direct effect on the signs and values of its x, y, z
coordinates and therefore on the width of the boundary itself. What needs to
be avoided is a negative depth vector (- sign(s) of any of its coordinates
caused by the three rotations when changing quadrant). A pre-emptive
measure to this problem was to check first if the coordinates of the depth
vector were negative before it was actually rotated. This was done by
checking against its z-value (0, 0, 1) as clipping occurs along the z-axis and
by multiplying it by the inverse* of the overall rotation matrix. If any of its
coordinates turned out negative (i.e. (0.651, -0.781, -0.265)), then flip the
sign(s) for the same coordinates of the original depth vector (1, -1, -1). Now
the depth vector could be correctly rotated from 0 to 360 degrees along with
its complete tiling (fig 8k, 8l).

 z1

 z2

fig. 8i incomplete tiling; z2= 1.09 units fig. 8j incomplete tiling; z2= 0.70 units

Pseudo code

test_Vec = (0, 0, 1)
(0,0,1) * inv.M_rotall (multiply the test_Vec by the inverse of the overall rotation matrix)
//This results in flipping quadrant when coordinate(s) are negative upon rotation angles.

If x_ val of test_Vec < 0, then make x_val of depth_Vec < 0
If y_ val of test_Vec < 0, then make y_val of depth_Vec < 0
If z_ val of test_Vec < 0, then make z_val of depth_Vec < 0

depth_Vec * M_rotall (Only then multiply the depth_Vec by the overall rotation matrix)

void invRot(Matrix inv) {
 rows=inv.rows;
 cols=inv.cols;
 for(int i=0; i<rows; i++){
 for(int j=0; j<cols; j++){
 matrix[i][j]=inv.matrix[j][i]; }}}

*The inverse of a rotation matrix is its transpose (flip along its diagonal)

MSc Adaptive Architecture and Computation 19
Olivier Ottevaere

 z1

 z2

fig. 8k corrected depth vector and tiling from fig. 8i fig. 8L corrected tiling from fig. 8j

In fig. 8i, z2 was 1.09 units and its depth_Vec was in the SW quadrant
In the corrected fig. 8k, z2 is 1.58 units and its depth_Vec is now in the NE quadrant
In fig. 8j, z2 was 0.70 units and its depth_Vec was in the NE quadrant
In the corrected fig. 8L, z2 is 1.72 units and its depth_Vec is now in the NW quadrant

These revised examples illustrate how substantial this boundary error was.
Since, one of the premises of this research was to search for tilings from any
arbitrary rotations ranging from 0 to 360 degrees, it was crucial for the
projection to fully emerge under any rotations but also to progress in
accordance with the change of rotations.

8.1.5 Jumping down two dimensions

Until now, the method for stepping down one dimension was satisfactory.
Could the same strategy be applied successively when jumping down 2
dimensions from any higher dimensional grids?

From 4d to 2d (x, y, z, a)

As mentioned before in 4 dimensional space we have 6 possible rotations
around six planes: x-y, y-x, z-x, x-a, y-a, z-a.
Two dimensions need to be clipped against (z, a) in order to project in 2d (x,
y). The key issue was to elucidate if the clipping boundaries in those two
dimensions are checked against individually (one after the other) or in a pre-
combined manner.
The successive method or ‘square’ method is a continuation of the way 2d
projections were tackled previously with three dimensional grids (fig.8m).

Pseudocode

If the z-value of point X > 0 and <= z-value of the depth vector
(z1 plane < X.z <= z2 plane)
And if a-value of point X > 0 and <= a-value of the depth vector
(a1 plane < X.a <= a2 plane)
Then point X is inside the clipping boundary and is selected.

MSc Adaptive Architecture and Computation 20
Olivier Ottevaere

The combined method or ‘circular’ method calculates the projection boundary
in both dimensions simultaneously (fig.8n).

Pseudocode

If (the square (z-value of point X) + (the square (a-value of point X)) <=
((square (z-value) + square (a-value))*0.25) of the depth vector
(z1 plane <(sq(X.z) + sq(X.a))*0.25) < z2 plane)
Then point X is inside the clipping boundary and is selected before being projected.

The z-a reference plane is used in the following diagrams to visualize the
differences between the two approaches.

fig. 8m the ‘square’ method where fig. 8n the ‘circular’ method where fig. 8o area differences
the depth vector is individually the depth vector is calculated between both methods
calculated in each dimensions together for both dimensions for the depth vector.
(z_depth, a_depth). (z_depth + a_depth).

The ‘circular’ method has always a larger selection area upon rotations than
the ‘square’ method. For instance, as the depth vector in the ‘square’ method
is approaching the a-axis or the z-axis, the area is progressively being
reduced to a line. This will inevitably create holes till no points at all will be
found within the clipping boundary. The following figures indicate the main
problem caused while using the ‘square’ method.

fig. 8p 2d projection of 4d tiling using the ‘square’ method revealing holes in the tiling

This method was computed by initializing the 16 points (x, y, z, a) making up a
one unit 4d hypercube and by updating the clipping planes positions as the 4d
points were rotated. Two vectors (z_depth, a_depth) constantly spanned 2 of
those 16 points in making sure they always incorporated the smallest z_min
and a_min and the largest z_max and a_max from those 16 points (fig 8q).

MSc Adaptive Architecture and Computation 21
Olivier Ottevaere

Pseudocode

void update clip(){
.........
 for(int i = 0; i < c; i++) {
 if(block[i].vector[2] >= zmax) {
 if(block[i].vector[3] >= amax) {
 zmax = block[i].vector[2];
 amax = block[i].vector[3];
 }
 }
if(block[i].vector[2] <= zmin) {
 if(block[i].vector[3] <= amin) {
 zmin = block[i].vector[2];
 z_min = block[i];
 amin = block[i].vector[3];
 a_min = block[i];
 }
 }
 CLIP_POZ = z_max;
 CLIP_PIZ = z_min;
 CLIP_POA = a_max;
 CLIP_PIA = a_min;
 } fig. 8q 4d hypercube and its corresponding clipping
 plane positions subject to a set of rotations.
 The red line is the depth vector

fig. 8p 2d and 3d projection of 4d tiling using the ‘square’ method

From the ‘square’ method, a more or less complete tiling can still emerge by
manually incrementing the clipping planes (fudging) on top of a finely tuned
set of rotation angles. Figure 8p gives an indication as to how far the clipping
planes in this instance had to be widened from the originally calculated z and
a_depth vector to include the missing points of the tiling; 129% for the former
and 121% for the later. This percentage can vary greatly depending on
rotation angles and the tiling search process can become painstaking.

MSc Adaptive Architecture and Computation 22
Olivier Ottevaere

fig. 8q digital and physical (CNC milled) model of a 3d projection of 4d tiling using the ‘square’ method

It emerged that a 4d tiling is composed of six tiles or less if some of those tiles
become identical under specific rotations (rotational symmetry). Special cases
of tiling have been widely documented (Penrose tiling) and do not constitute
the focus of this research. In figure 8q, in order to complete the tiling the
holes were filled (in red) with the some of the 6 existing tiles from the 3
dimensional tiling.
To prove that the ‘circular’ method was potentially the correct one, a
comparative test was carried out in three dimensions where it is easier to
visualize what is at work. A cubic grid of points in three dimensions was
directly projected onto a one dimensional line (3d to 1d) using each method
separately and jumping down two dimensions at once. The diagrams below
explain each method and their differences.

fig. 8r diagram of the square method to define fig. 8s diagram of the circular method to define
 the clipping boundary for a 1d projection the clipping boundary for a 1d projection
 (line on the x-axis) of a cubic grid of points. (line on the x-axis) of a cubic grid of points.

MSc Adaptive Architecture and Computation 23
Olivier Ottevaere

Closer the depth vector (red arrow) is to the y-axis or the z-axis in the ‘square’ method,
smaller the clipping boundary becomes (the square is literally compressed towards a line).
The gray rectangles are the initial clipping planes for a y-z rotation of 0 degree.
The yellow planes are the same clipping planes for y-z rotation of 330 degree (z1, z2).
The clipping plane located at the origin (z1) is actually the viewing plane for the interface.

The findings illustrated in figure 8t and 8u are quite self explanatory.
These show that only the ‘circular’ method makes a complete tiling. Should it
work as well in jumping two dimensions from higher dimensional grids, this
would solve the overall problem.

 fig. 8t ‘square’ method from 3d to 1d with missing points in 3d

 fig. 8u ‘circular’ method with equal amount of matching points in 3d and 1d

MSc Adaptive Architecture and Computation 24
Olivier Ottevaere

It is worth noting that the existing literature* on the subject is somewhat
ambiguous about the description of the clipping offset for higher dimensions.
It often presents the projection method with the aid of a 2d to 1d projection
diagram (as in fig. 8e) and then stipulates that the same concept applies for
higher dimensions, yet not quite. If clipping occurs indeed within an area
between two lines from 2d to 1d, from 3d to 1d that area is actually delimited
by a rotating line in 3d and not by a linear offset between two planes. A hyper
plane is here a 2d plane wrapped around (3d line rotated) to form a cylinder.

The working ‘circular’ projection method for 4 dimensional grids

 fig. 8v example of a 2d tiling using the ‘circular’ projection method from 4d (6tiles)

 fig. 8w same example but for a 3d tiling using the ‘circular’ projection method from 4d (6tiles)

* Among others: http://www.geom.uiuc.edu/apps/quasitiler/

MSc Adaptive Architecture and Computation 25
Olivier Ottevaere

http://www.geom.uiuc.edu/apps/quasitiler/

8.1.6 Jumping down more than two dimensions

From 5d to 2d (x, y, z, a, b)

The same approach used for four dimensional grids was successfully tested
for five dimensional grids while this time jumping down three dimensions,
disclosing a maximum of 10 different tiles and employing ten possible
rotations (around x-y, y-z, x-z, x-a, y-a, z-a, x-b, y-b, z-b, a-b plane).

Pseudocode

If (the square (z-value of point X) + (the square (a-value of point X) + (the square (b-value of
point X)) <= ((square (z-value) + square (a-value) + square (b-value))*0.25) of the depth
vector (z1 plane < (sq(X.z) + sq(X.a) + sq(X.b))*0.25 < z2 plane)
Then point X is inside the clipping boundary and is selected before being projected.

fig. 8x example of a tiling from a 5d grids projected in 2d (x, y, z, a, b)

From 5d to 3d

fig. 8y example of a tiling from a 5d grids projected in 3d (x, y, z, a, b)

MSc Adaptive Architecture and Computation 26
Olivier Ottevaere

From 6d to 2d and from 6d to 3d (x, y, z, a, b, c), see case study #5, p.32.
15 different tiles, 15 possible rotations (around x-y, y-z, x-z, x-a, y-a, z-a, x-b, y-b, z-b, a-b, x-
c, y-c, z-c, a-c, b-c plane).
From 7d to 2d and from 7d to 3d (x, y, z, a, b, c, d).
21 different tiles, 21 possible rotations (around x-y, y-z, x-z, x-a, y-a, z-a, x-b, y-b, z-b, a-b, x-
c, y-c, z-c, a-c, b-c, x-d, y-d, z-d, a-d, b-d, c-d plane).

8.2 Adjacency analysis

A further incentive for this research was to employ those tilings and their
organizational structure and apply other types of geometries to them. This
also stresses that the investigation was less concerned about the aesthetic
values of the found tilings but more about their inherent assembly rules by
which very few tiles could be repeated to form a field of a long range order
and with a certain amount of specificities.
The type of geometry that was experimented with were NURBS* surfaces.
Each NURBS surface corresponded to a specific tile (6 types in 4d, 10 types
in 5d, etc) and was delimited by the tile’s edges. In order to constitute a
continuous field and maintain proper tangencies with its neighbouring tiles, a
specific NURBS surface had to know which edges it shared with which other
tile(s) at other locations within the field.
This is precisely what the next case studies (#1, #2, #3, etc) set to establish.
For any given set of tiles and their inherent organisation, how many degree(s)
of freedom does the tiling have? Or in other words how many different line
types at the tiles’ edges can be individually manipulated while still providing
for a fluent propagation of tiles. The example below shows how the initial
appearance of a tiling’s structure can be considerably altered under the new
geometry and become much less discernable even though the same structure
still governs the organization and repetition of the (NURBS) tiles.

 fig. 8za example of a clearly defined 4d tiling fig. 8zb
 (physical milled model)

same tiling’s structure but with NURBS surfaces

* NURBS stands for Non-Uniform Rational B-Spline.

MSc Adaptive Architecture and Computation 27
Olivier Ottevaere

Case study #1 (4d tiling same as figure 8v)

This first adjacency analysis unveiled 4 potentially different line types that
would be explored in more details in the next section.
The white lines compounds in the figure above are showing alternative
configurations for the 6 tiles (rotational symmetries within the same group of
tiles) and therefore already highlight that a specific edge will have more than
one neighbouring edge in common.

MSc Adaptive Architecture and Computation 28
Olivier Ottevaere

Finally, edge 1a and 1c (in rectangle above) have an extra edge in common
because in the overall tiling two tiles of type 1 are repeated next to one
another causing 1a to be equal to 1c (the same occurs with edge 3b and 3d).

Case study #2 (alternative 4d tiling for comparison with one (blue tile) double only)

In this example above, only edge 3a and 3c have more than 2 corresponding
edges (3 in total) because tile #3 is adjacently doubled in places in the tiling.
For a 4d tiling that has no double tiles left, every edge (24 in total) would have

MSc Adaptive Architecture and Computation 29
Olivier Ottevaere

a corresponding 2 edges in common and 4 different line types of 6 edges
each (6 edges x 4 line types= 24 edges).

Case study #3 (5d tiling same as figure 8x)

MSc Adaptive Architecture and Computation 30
Olivier Ottevaere

A 5d tiling has a maximum of 40 possible edges (10 tiles x 4 edges).
In this specific case study 6 possible line types were encountered ((4 x 8
edges) + (2 x 4 edges)) = 40 edges.

Case study #4 (alternative 5d tiling for comparison)

This case study is very close to the Penrose tiling

MSc Adaptive Architecture and Computation 31
Olivier Ottevaere

In the example above, 5 different line types were categorized (5 x 8 edges
each = 40 edges in total).

Case study #5 (6d hybrid tiling)

This 6d case study disclosed just 14 tiles instead of the expected 15 tiles.
Firstly, it does still perform as an aperiodic tiling as well as its adjacency
analysis. The actual ‘missing’ tile is there but has been reduced to a line
overlapping with an existing tile’s edge.
The fact that rotations are articulating the emerging tiling, by rotating in space
selected vertices within a specific region, does not guaranty that for a higher
dimension all the concerned vertices will be accordingly activated to make up
for the correct amount of tiles. A 5d type of tiling can be created within a 6d
environment even though the 15 rotations are all activated. More crucially,
arbitrary rotations offered the possibility for hybrid tilings to emerge. The ones
comprised with moments of 5d, 4d, 3d and/or 2d tile projections within the
same tiling. The red (contour) line above shows a 5d assortment (10 tiles)
inside the 6d tiling.
Hybrid tilings would prove to be spatially richer in the next experiments.
Lines linking vertices behave somewhat like ‘rubber bands’ within a dimension
and across dimensions. The default setup is when all rotations are at zero
degree angles and when for any dimensions the selected vertices are all
overlapping on top of one another, which perception from one of its clipping
plane is a simple 2d grid. Appendix B presents the geometry making up faces
from vertices in and across dimensions.

MSc Adaptive Architecture and Computation 32
Olivier Ottevaere

It is now safe to assume that for a tiling of n dimensions; a minimum of n
different line types are possible.
In 4d: for a max. of 6 repeated tiles, that is 24 edges: a min. of 4 line types of 6 edges each
In 5d: for a max. of 10 repeated tiles, that is 40 edges: a min. of 5 line types of 8 edges each
In 6d: for a max. of 15 repeated tiles, that is 60 edges: a min. of 6 line types of 10 edges each
In 7d: for a max. of 21 repeated tiles, that is 84 edges: a min. of 7 line types of 12 edges each
Etc.

Back to the Penrose

Case study #6 (5d tiling)
In 5d: min. of 2 repeated tiles, that is 40 edges: a min. of 5 line types of 8 edges each?

The Penrose tiling above can be generated by the 2d projection of 5-
dimensional grid. It is aperiodic and made of only two different rhombi (fig 6A,
6B). As such the adjacency analysis would require all the edges to have the
same line type in order to mass produce two types of tile only. One line type
for the overall tiling is very efficient but does limit the amount of irregularity
another geometry could have when adapted to the adjacency rules (see next
section). Alternatively it can also be thought as a 5d tiling comprised of a
maximum of 10 different tiles as in fig. 6D, even though as a 2d shape, it
actually portrays as 5x2 different tiles. This carries the possibility of 5 different
line types for 10 tiles to make up for a greater diversity in a field formation
from the exact same tiling, similar to case study #4. As 2 tiles, they have to
be rotated to make the appropriate tiling, but as 10 tiles, they are just
translated to make the same tiling (no rotations in individual tiles, only as
compounds of 10 tiles; see how the green tiles above have the same
orientation). This distinction would become useful in a later experiment (p.40).

MSc Adaptive Architecture and Computation 33
Olivier Ottevaere

5. Adaptation

This chapter is in some sort a continuation of the methodology pursued
previously. Nonetheless a separation wanted to be drawn to better
distinguish the findings (tiling from the projection method) against how their
organizational effectiveness can be further tested past a tiling graphical arrest.
This section also instigated the discussion part.

Towards the Quasi Roller

Once the organization of the edges for a tiling had been determined (i.e. case
studies carried out), a line type, accounting for a group of edges distributed
throughout the field, became its own being. This meant each line type had
the potential to be manipulated individually while readjusting the overall field.
This part of the process was tested in generative component, where each line
type was first programmed parametrically and then mapped appropriately
onto the field. In doing so, any changes made locally (on a line type itself)
would instantly altered and update the overall tiling. Appendix D1 shows
examples of different graph variables created to parametrically alter a 4d
tiling.

NURBS line type

A primary experiment was carried out by changing the Z-values of the line
types in two locations (yellow dots in fig. 5a) along the edges of the tiles in
order to create a NURBS curve in elevation (a sinusoidal-like curve). Figure
5a and 5b describe the geometry employed. The tiling used is a 2d projection
of a 4 dimensional lattice (for its adjacency analysis see appendix C).

 fig. 5a axonometric view showing a 2nd, 3rd, fig. 5b axonometric showing the 4 different linetypes
 4th degrees order of NURBS curves (green, red, orange, blue) from adjacency
 (a linetype) along a tile’s edge. analysis onto a combination of 6 tiles.

Every tile is rhombic (4 edges) but have different line types making up a
NURBS surface from the initial tile (fig. 5c shows 2 types of NURBS curves for
a single tile).

MSc Adaptive Architecture and Computation 34
Olivier Ottevaere

Tangencies

The construction of a Nurbs tile alone does not account for how it must
communicate with its neighbouring tiles. In fact, for a NURBS surface to
smoothly translate into its neighbours, tangencies had to be resolved so that
creases could be avoided along the tiles’ edges. Tangential offsets were
created away from the surfaces’ respective common edges, onto which a
series of points were added to be become part of the overall definitions of the
surfaces and act as tangency points. These offsets are represented in the
two figures below by dotted lines (fig. 5c, 5d). Each point along a dotted line
has a corresponding point perpendicular to a tile’s edge and belonging to the
other surface sharing the same edge. Figure 5e best illustrates this
geometrical model in plan view.

fig. 5c axonometric view showing a Nurbs surface from fig. 5d axonometric view showing the combination of 3
 4 Nurbs curves located onto the tile’s edges NURBS tiles with proper tangencies between them

One of the difficulties encountered was how good the tangencies performed
near the vertices. Each vertex is a meeting point of 3 to 8 edges (in 4d) at
different angles (obtuse, acute) across the field. Although each specific case
could have been tailored, the key was to arrive to a general method which
would apply anywhere in the tiling under any convergences of edges (p.37).

 fig. 5e plan view of a combination of 6 tiles showing the fig. 5f axonometric view of NURBS surfaces
 NURBS curves are coincident with the tiles’ edges from changes in the curves’ z-values.
 and the offsets points perpendicular to the tiles’ edges.

MSc Adaptive Architecture and Computation 35
Olivier Ottevaere

 fig. 5g Plan view of a CAM simulation of NURBS aperiodic field of 6 tiles from the 2d projection of a 4d grid
 Gray lines are tool paths: 45° parallel finish, 6mm ball mill
 White lines show the structure of the original 4d tiling superimposed

The image above shows a field configuration from the example in figure 5f.
Once the line types and its geometry have been tested for a combination of 6
tiles, they are then referenced as components to a larger field of tiles. This
was scripted (in generative components, see appendix D2, p.63) by following
the rules from the adjacencies analysis, shown previously.
A corresponding physical model in appendix F2 manifested for the first time
how the repetition of few tiles (6 in this case) could support a relatively
irregular and complex pattern away from the tiles’ immediate recognition.

Fleeing the tile’s original shape

A further test was to dislocate the NURBS geometry from to the tiles’ straight
edges by allowing not only the Z-values of the curves but also the X and Y-
values to vary. Simultaneously it was essential to ensure that suitable
tangencies between the NURBS tiles were well kept (fig. 5h, 5i).

MSc Adaptive Architecture and Computation 36
Olivier Ottevaere

 fig. 5h plan view of a combination of 6 tiles showing fig. 5i axonometric view of NURBS surfaces
 the overall geometry and how the NURBS from changes in the curves’ x, y and z-values.
 line types are changes in x and y.

In returning to the tangencies, the general method is a combination of two
principles and was constructed as follow:
a) Around the vertices (red lines and points in fig. 5j)
Equidistant points from a vertex along each edge were defined from which
transversal lines to each edge were drawn in order to create series of 2
tangential points belonging to the NURBS surfaces’ definitions. This made
sure a tangency between two NURBS surfaces near the vertices were
properly matching.
b) Along the edges (yellow lines and points in fig. 5j)
Additionally in between vertices, series of equidistant points are defined on
the tiles’ edges to transversally draw lines on which offset points are created
to also be part the NURBS surfaces so that proper tangencies between tiles
are settled. The general method was later tested effectively on a 5d tiling
(fig.5k).

 fig. 5j plan view detail of 5d NURBS tiling fig. 5k plan view of 5d NURBS tiling where x, y an z-
 default setup for tangencies values of the different line types were altered

MSc Adaptive Architecture and Computation 37
Olivier Ottevaere

 fig. 5l Plan view of a CAM simulation of NURBS aperiodic field of 6 tiles from the 2d projection of a 4d grid
 White lines show the tool paths between levels: horizontal finish, 6mm ball mill by plateaus of 3mm
 Magenta lines are the cut transfer paths)
 Black lines show the altered structure (x and y values) of the original 4d tiling superimposed
 See appendix F3 for the corresponding physical milled model

Porosity

Until now the two-sidedness of the field has been left latent, even though it
always existed. One way the interrelation of the two sides (recto, verso) of the
overall tiling can be enhanced is by allowing some voids throughout the field
of tiles upon the same initial assembly rules. These voids work as vehicles
between the two sides in settlement with their prior duality. A hole came about
by the incursion of part of a bottom tile into a top tile. Their intersection is then
voided to make an opening. Two families of holes were investigated; one
around the middle of a tile (fig. 5k), the other around the corners of a tile (fig.
5l). A void outline emerged specifically characterized by the partial overlap of
the bottom and top tiles NURBS geometry.
The figure 5m uses a tiling from a 2d projection of a 4d lattice, previously
analysed (case study #7, appendix C). The porosity factor contributed in
transforming what was previously a wall-type into a more dynamic screen.

MSc Adaptive Architecture and Computation 38
Olivier Ottevaere

fig. 5m plan view of 6 tiles with holes at the vertices (tiles’ corners)

fig. 5n plan view of 6 tiles with holes at the vertices (tiles’ corners) and in middles of the tiles

 fig. 5o
 The boundary line between the black and the gray zone defines the plane onto which all original vertices

Elevations of fig. 5k and 5l showing the amplitude of the z-values for each tile

 from the tiling are located (2d plane).

 See appendix F4 for the corresponding physical two-part mould from a larger field of tiles

MSc Adaptive Architecture and Computation 39
Olivier Ottevaere

 fig. 5o Top view of field configurations from 6 tiles (4d) with holes at vertices and at middle of tiles

Quasi roller

At last, an experiment was to liberate any tiling and the subsequent geometry
from its projected plane (2d projection of vertices) and roll it into a cylinder (fig
5q). Since each individual tile (6 in 4d, 10 in 5d, etc) is repetitively translated
and copy throughout the tiling, its relationship with regards to the curvature of
the cylinder was not altered, that is a quasi roller could be built without
increasing the amount of different tiles (still 6 tiles in 4d). None of the
individual tile was in fact rotated anywhere else. Only groupings of 6 tiles (in
4d) had various types of configurations across the field. On the contrary, this
efficiency of means would collapse in trying to map a sphere, a cone or any
volume changing in more than one direction; each tile would indeed have to
become individualized.
All the previous experiments can now be amplified from the new cylindrical
configuration where interior spatially interacts with the exterior and vice versa
(image on title page).

MSc Adaptive Architecture and Computation 40
Olivier Ottevaere

 fig. 5q rolling of a 4d tiling into a cylinder with close match

The length of a quasi cylinder (along its rotational axis as well as transversal
to it) for any n-dimensional tiling is limited for the same reason an aperiodic
tiling is finite in space. Regions of translational symmetry are indeed finite by
definition on such tilings. How long a cylinder could be made from a tiling was
an exploration beyond the scope of this research but more time may come
later to ponder further on the question.

 fig. 5r Elevations and interior views of a quasi roller from case study #7 (4d tiling) in appendix C

A rolling of a 5d (or more) tiling is as well effective. Nonetheless tiles need to
be repeated across the tiling by translations only. If they are repeated by
translations and rotations, the cylindrical curvature for the same tile would be
different and would increase the amount of tiles required initially. The 5d
Penrose tiling would have to be first generalized as 10 tiles and not just 2 in
order to avoid the problem of various curvatures for one tile. Or if it is
considered as a two tiles’ aperiodic structure, under the rules of a cylinder, it
will return to a 10 tiles’ structure in order to retain the same curvature for each
tile. Also, from the perspective of one tile because it is a parallelogram and it
is located askew (not transversal) to the rotation axis of the cylinder, it is
made of a surface which has a double curvature.

Geometrical development

 fig. 5s Front elevation of one NURBS tile within a cylindrical geometry showing the offset converging
 towards the centre in 2 directions (x and y not z)

MSc Adaptive Architecture and Computation 41
Olivier Ottevaere

By looking at one tile (fig.5s) with acceptable thickness beyond the paper thin
model and in regards to the new spatial configuration (cylindrical), the tiles’
edges raised some new geometrical challenges. Not only, had they tapered in
opposite direction in sets of two parallel lines (creating undercuts) but they
were also found warped (fig.5t) in order to meet the overall geometry of the
cylinder (convergence to a central axis). This caused more of a problem in
making it to the physical realm (next section) than it did resting inside the
digital one.

 fig. 5t Side elevation of a default tile prior to NURBS adaptation showing tapered and warped edges
 when the tile’s thickness is considered.

Similarly to the experiments carried out before with the 2d tilings, 6 NURBS
tiles were later developed within the quasi roller’s geometry (fig. 5u). All the
tiles’ vertices are converging perpendicularly along the central axis of rotation
of the cylinder (blue line). The converging lines (orange lines), as shown in
figure 5v became the basis from which all the tiles’ edges were geometrically
articulated. Once the 6 tiles were parametrically created, they could finally be
associated (components) to a cylindrical field following the same adjacency
rules from the case study in appendix C, p.62. A last experiment was to test
the notion of porosity throughout the NURBS field (fig. 5w, 5x).

 fig. 5u Side elevation of 6 NURBS tiles within the cylindrical geometry (axis convergence)

MSc Adaptive Architecture and Computation 42
Olivier Ottevaere

 fig. 5v front elevation of 6 NURBS tiles within the cylindrical geometry (axis convergence)

 fig. 5w interior view of porous NURBS field within the aperiodic cylinder

MSc Adaptive Architecture and Computation 43
Olivier Ottevaere

 fig. 5x Side elevation of porous NURBS field within the aperiodic cylinder

MSc Adaptive Architecture and Computation 44
Olivier Ottevaere

6. Fabrication

As stated in objectives, fabrication was from the very start a central motivation
in directing the research. At last, the aim was to mass produce some of the
findings by repeatedly casting the necessary tiles with the least possible
amount of formwork while not compromising on the overall ‘irregularities’ of
generated patterns from the projected tilings (what is meant here by
‘irregularities’ and how it can be objectively measured must be discussed
further in the next section). The fabrication process was conducted early on at
two scales informing one another: the scale of the field and the 1 to 1 scale of
the singular tile (fig 6a, 6b). Moreover attention to certain details was
inescapable if physicality had to be conveyed. The main tool used was a CNC
3-axis milling machine. For the singular tiles, negative moulds were milled and
positive casts (plaster, cement) were the final outputs (two-step production).

 Fig 6a milling of part of a field for geometry check Fig 6b milling of part of a mould for a 1:1 cast of a tile

6.1 Fieldproof

The milling of some fields was already introduced (in the adaptation chapter)
and was mainly conducted to verify that tangencies between NURBS tiles
were working properly in providing for a continuous field as well as for testing
the general amplitude of the NURBS geometry. It was often exaggerated to
see how robust the tangency method was, before a tile would be milled at full
scale.

 Fig 6c group of 6 tiles (two-sided) from a 4d tiling where tangency is still leaving creases on some edges

MSc Adaptive Architecture and Computation 45
Olivier Ottevaere

Figure 6c shows an early milling test where tangencies were not robust
enough under extreme z-values. The problem led to the corrected method
presented in figure 5j on page 37.

6.2 Tileproof

Some criteria for mass production (repeating many casts from the same
moulds) were durability of the moulds, rapid setup prior to casting, easy mould
release after casting. The full cycle had to be as efficient as possible to
facilitate repetition.
Other criteria related to the performance of the finished tiles themselves were
the tiles strengths upon stresses, tile reinforcements, surface finish, and most
importantly how the tiles are connected to one another (no magic silicon!).
These depended a lot on the spatial configuration of the tiling itself and its
associated loads. For instance, it could be a 3d one-sided floor tiling, a wall
tiling, a two-sided free standing wall (gravity), a porous screen, a porous quasi
roller, etc.
A first prototype was developed for a free standing wall type (two sided),
another for a porous quasi roller (interior/exterior).
Although the fabrication part is very much in the making and will continue to
be so past this report, here follows excerpts of some of the first experiments
pursued.

Quasi wall prototype (4d tiling: 6 tiles)

The following study is a two-sided NURBS tiling which has no undercuts.
The first full scale prototype tested the changes in the z-values of the tiles’
edges only (no x and y variations yet).

 Fig. 6d one tile’s corresponding two-part mould (dim: 400 x 400 x 250mm)

The 6 tiles are 3 dimensionally milled as a two-part mould (negative) matching
the top and bottom of the tiles’ surfaces (fig. 6d). Each half mould is
laminated into two horizontal sections to reach the necessary height (z-value).
They were made of EPS boards 30kg/m3 (Expanded Polystyrene) and glued
together.

MSc Adaptive Architecture and Computation 46
Olivier Ottevaere

The strategy for connecting the tiles to one another was first to position in the
moulds two pairs of hollow plastic tubes surrounded by plaster rings
(spacers).

 Fig. 6e same mould showing the addition of reinforcements, connection system and removable sides

The rings ensured the tubes would be kept away from the tile’s finished
surfaces and remain properly located within the tile’s thickness (fig.6e). After
the tiles were cast and dry, steel cables were threaded inside the hollow tubes
to travel from tiles to tiles until an end was finally reached, at which they were
tensioned and tightened (similar to the directions of the NURBS’ isocurves in
fig. 5e, p.35). The technique accounted for a non permanent site type of
assembly and disassembly (appendix F6, p.76 for an assembly of 6 tiles). For
permanency, the tubes would be replaced by continuous steel bars
reinforcements (pre-bent) and the moulds would travel along their paths to
make progressive pours.

 Fig. 6f the parts making a mould for easy assembly and disassembly

MSc Adaptive Architecture and Computation 47
Olivier Ottevaere

The figure above presents at this stage how a mould was devised in all its
parts to allow for fast reuse and easy mould release.

 Fig. 6g other mould type showing variation in the tile’ shape and in the z-amplitude of the edges

 Fig. 6h mould preparation during and after casting

EPS was not as durable a material as desired, especially when involving
reuse. After the technique was better perfected, fibreglass moulds were
made instead to counter that problem. The milled moulds nonetheless had to
accommodate for the change (see next prototype).
Other fabricated moulds are documented in appendix G, p.79.

Quasi roller prototype (4d porous tiling)

The last prototype only recently began and was initiated by the making of one
tile fitting a NURBS quasi cylinder (same tile as in fig. 5s, p.41). It further
involved solving for the x, y and z changes in the NURBS’ edges, holes at
middle and corners of the tile and not the least, cylindrical curvatures
disclosing undercuts (as in fig. 5t). The moulds’ geometry for the milling was
also revised to provide for the fibreglass change. It was applied as a layer
directly onto the EPS moulds and then later released.

MSc Adaptive Architecture and Computation 48
Olivier Ottevaere

To solve for the double curvature of the tile and the edges’ undercuts, the
mould had to be conceived in three composite parts (prior to fibreglass
application): Two negative beds (fig. 6i) and the actual positive tile (fig. 6l).
The two beds accounted for the top and bottom surfaces of the tile but also
served as supports in the process .The positive tile was flip-milled from one
bed to the other so that the undercuts could be avoided (fig. 6j, 6k).

 Fig. 6i the two beds for flip milling and for fibreglass mould

 Fig. 6j the two beds on which the positive tile is being milled in 2 horizontal laminations

Once the three pieces were completed, the positive was placed back onto one
of its bed (appendix G2) and then coated with fibreglass to make one half of

MSc Adaptive Architecture and Computation 49
Olivier Ottevaere

the final mould. The other half is done by coating the other bed alone. Once
the resin is cured, the EPS is fully removed and the fibreglass mould ready for
casting. The process turned out to be more robust as well as more flexible in
working with this type of geometrical complexity.

 Fig. 6k views of the two halves of the positive tile (recto/verso) after milling and before lamination

 Fig. 6l views of the final positive tile after laminations

MSc Adaptive Architecture and Computation 50
Olivier Ottevaere

MSc Adaptive Architecture and Computation 51
Olivier Ottevaere

7. Discussion

Overall impressions

The word ‘Irregularity’ had been mentioned at various places in this report as
a mean of measuring some of the premises of the thesis. One of which being
how far away can a generated pattern (parametrically defined) distance itself
from a comprehensive tiling (projection of n-dimensional grids) without
abandoning its efficient assembly or adjacency rules, that is its ability to
repeat with the least amount of tiles. ‘Irregularity’ here became the length of a
scale stretching from an initial aperiodic tiling to a generated NURBS pattern
to mainly gauge itself against that initial tiling: the most possible variations
within a generated field with the least possible amount of tiles. The scale’s
units defined not only a level of recognition one had over the other but also
etched along its length a series of parameters autonomous from the original
tiling. Such parameters were, for example the ones defining the geometrical
amplitude of a NURBS tile, the amount the porosity a field would have, the
size of individual holes, etc. A this stage they were established manually in
arbitrary ways, but they have the potential to be further conditioned
meaningfully by external forces. For instance, could such parameters become
more in tune with a specific environment? In a screen type or in the case of
the quasi roller, could its structural envelope perform as a mediator between
the amounts of natural (diffused) light is let in versus the amount of visibility is
offered through to a participant?

Even though the research had not directly addressed these types of
questions, it had freed up a ground for them to be explored extensively. Under
which processes though would still have to be determined.
The exploration presented may also be perceived rather self-referential
despite an effort to depart from the restrictions of the aesthetic appearances
of the found tilings (in contrast to the RMIT example in the Background
section). By comprehending how such tilings came about (the projection
method), how their adjacencies were related and less how they graphically
looked like, alternative geometries were able to ‘economically’ emerge
spatially from it (adaptation chapter). The self-referential criticism could as
well bring up to discussion a certain temptation of falling for the ornamental for
the sake of retinal exuberance. The reader should decide if that is the case.
Although in defence, it would be argued that to stand up, the tiles both in
themselves and connected together had no choice but to become a structural
entity (performing against gravity) and not merely an add-on decoration.

It often occurs throughout the scientific literature* on the subject that looking
for aperiodic structures (quasicrystals) becomes a final goal in and of itself.
Only sometimes, brief speculations are made on what they can be used for,
often derived from their appearances.

* “Things to do with Quasitiler: Redecorate the bathroom!”
 (From http://www.geom.uiuc.edu/apps/quasitiler/)

http://www.geom.uiuc.edu/apps/quasitiler/

MSc Adaptive Architecture and Computation 52
Olivier Ottevaere

In stopping short to analyse what rules tilings more broadly are really founded
on, the opportunity to think of them as mere organizers capable of effectively
articulating remote geometries is often missed out or by default too promptly
associated to the well known Penrose tiling and its specific assembly rules.

The strip projection method by arbitrary rotations

A principal characteristic of the proposed method was to render wide open the
searching space in which tilings emerged. This was achieved by breaking
apart an overall rotation matrix with specific values into a compound of
individual rotations (around various planes) where each angular value could
be parametrically adjusted (see appendix A, p.58 for example in 6d). Out of
this implementation, a user had more chances to arrive to a hybrid tiling than
a predefined case (Penrose). Because any dimensions could be activated in
no specific order (top-down, bottom-up or any subjective orders in fact), the
searching process was as valuable in cutting across projected dimensions as
the moment when a tiling was completed. By hybrid, it is meant here a tiling
made of a crossover between dimensions where for instance zone of 3d or 4d
tiles are mixed with zone of 5d tiles, etc (see case study #5, p.32). A hybrid
tiling had the extra potential to make a pattern (later developed) spatially
richer by externalizing greater irregularities from the same amount of tiles.
Despite the infinite quantity of tilings the method can disclose, it does have
some limitations. It is known by now that for a tiling to perfectly emerge it
requires a well tuned compound of rotation angles. The more rotations higher
dimensions offer, the more the space to entirely arrive to a well tuned group of
angular values is shrunk. The fact that they are operated manually in the
interface does not facilitate the task at hand (approximations and rounding
errors as explained by U. Vogg and P.L. Ryder, 1996, A general algorithm for
generating quasiperiodic lattices by the strip projection method, Journal of Non-
Crystalline Solids 194 134-144).
In theory it works absolutely fine but in practice it became harder and harder
to arrive to a complete tiling as higher dimensional grids increased. For
instance, the interface accommodates for the search for tiling from 7
dimensional grids, but its hunt can turn out painstaking and long. Could there
be some other types of processes capable of fine tuning and directing more
accurately this search? One dilemma is that there isn’t a real beginning or end
in determining a trajectory to pursue in the method. How to define what is
being search for away from special cases with special sets of angles? It is
similar to juggling at once with 15 balls (in 6d) in any prescriptive order. In
other words, the searching criteria are a bit ad hoc and in the method are
highly relying on step by step human intuition and curiosity (handling the
rotations). Could that sort of intuition be algorithmically substituted or maybe
only complemented?

Furthermore the hypercube example demonstrated that higher dimensions
can be transferred back in three dimensions with different representations. In
this research, with the help of transformations matrices (linear algebra) of

MSc Adaptive Architecture and Computation 53
Olivier Ottevaere

higher dimensions, rotations were used prior to 2d and 3d projections. Other
types of transformations than rotations could have been operated and higher
dimensional vectors represented in 3d space while still focusing on aperiodic
structure. In the method just the x, y and z values of vectors were kept. It is
important to stress that an abundance of parameters (x, y, z, a, b, c, d, etc)
and computation are used here and a lot of it remained latent or to use a
stronger term, wasted. Much more can be demanded from these extra
vectorial variables than rotations. For instance, a 5 dimensional lattice could
project a three dimensional tiling while its fourth parameter (coordinate: a) is
being utilized and represented in Cartesian space to regulate the size or the
amount of apertures upon a moving source of light. A not so great example
merely to illustrate (out of a certain consciousness) that these extra
dimensions were being disposed of too swiftly throughout the process.

Adaptation to fabrication

In the research, not as many explorations had been put into the three
dimensional projections (of n-dimensional grids) as it went into the two
dimensional ones. A lack of time was more the reason rather than one
favoured over the other. Although the method provided for three dimensional
projected outputs (see fig. 8w, 8x, 8y, etc) for any found tilings, they had yet to
be experimented with in the adaptation of other possible geometries. The
model presented in appendix F1 (p. 71) shows that 3 dimensional tiling came
out in a plate-like structure due to the strip selection from the projection
method. Within a plate unfinished aggregates (half sections) are embedded,
nonetheless they contained enough information to complete them into full
aggregate structures (formations of similar kinds to the presented water cube
and quasi furniture in the background section). Also in the interface the region
between the clipping planes can be parametrically incremented to incorporate
complete aggregates. The distinction from two to three-dimensional
projection raises a few queries on the choice of alternative geometries for
adaptation and on the volumetric limitations the 2d projection has over the 3d.
NURBS surfaces are known to support continuity and flow; therefore they
were thought to be an appropriate choice for adaptation in competing against
the strictly defined edges of tiles in 2d projections. Would this type of
geometry be suitable to test the rules of 3d tilings remains to be seen? Faces
forming 3d aggregates are in some places relatively acute and less desirable
for tangential continuity. In addition, 3d aggregates have the potential to be
much more flexible in making up volumes in space than when starting from 2d
aperiodic structures. The further the experiments went from 2d projection was
to the cylindrical configuration where the 2d vertices were not anymore
contained within a 2d plane. Numerous experiments would still need to be
carried out from 3d projections in order to test how far modularity can be
challenged beyond the initial aggregates’ identifications.
From the point of view of fabrication, a (full scale) single tile should integrate
all the necessary details to make up for the whole without requiring a
comprehensive notion of it. In reference back to a point made in the
introduction, the concept of going from the building element or the part

MSc Adaptive Architecture and Computation 54
Olivier Ottevaere

towards the whole (in contrast to the usual reversal) makes the edge detail of
a tile in this sense very crucial and informative. Their assembly into an entity
is indeed governed locally by the manner a tile’s edge meets its neighbours
and from the original adjacency analysis of a tiling regardless of its overall 3
dimensional articulation. For instance in return to the example of the quasi
roller, by assembling any of the 6 different tiles in the correct arrangement, it
incrementally evolves towards a cylinder on the basis of an edge to edge
correlation. The proposed route is additive rather than one based from
divisions where an emphasis had to be put first on structure before enclosure.
The thesis generally devoted itself to investigate how far an initial 2d tiling
could make it to the 3-dimensional realm without breaking into unique pieces.
At last, a direct way to evaluate how well a modular system performed is to
judged it from the ratio between the most (generated spatial field) against the
least (amount of different tiles required).

Further Work

In the short term, a porous quasi wall prototype will be carried out at 1 to 1
scale in the frame of a short workshop, followed by the further development
and construction of a complete quasi roller with all the detailing involved.
In the longer term, investigations in the geometry of n-dimensions will want to
be pursued and translated to the field of generative design and architecture.
But prior to that the missing experiments mentioned previously in tackling 3d
projections of aperiodic aggregates would have to bear to some more fruition.

MSc Adaptive Architecture and Computation 55
Olivier Ottevaere

8. Conclusion

Repetitions of Differences

To put it simply, it is quite gratifying for a designer to know beforehand that
because only few building elements would be reproduced over and over into a
relatively intricate assemblage, more attention and endeavour can be
channelled on just the few pieces accounting for it all.

By exposing and probing the space inside which aperiodic structures
emerged, the research virtually extended the quantity of already known tilings
to an infinite amount of possibilities for any higher dimensions. The computing
performance of the machine became one of its limits. The pursued
explorations not only detracted from the gravitation in and around the special
cases (i.e. Penrose tilings) but essentially proposed through analytical means
to liberate the organizational potentials of the found tilings from their strong
graphical appeals.
Once comprehended as mere scaffolds, alternatives geometries could
suddenly plot their courses past the tiles’ boundaries and present relatively
complex pattern formations without compromising on the scaffolds’ efficiency.

On one hand, the position taken for the thesis was an attempt to demonstrate
that one can conceive of modular systems without the restrictions frequently
attached to them; ‘repetitions of the same’.
On the other hand, how far the quest for intricacy and irregularity can be
stretched without falling into the gratuitous? A difficult question which
answers can begin to be legitimized by the call for efficiency of means:
Minimum amount of formwork for maximum overall irregularities.
This research would have reached its objectives if while interacting with a (full
scale 4d NURBS) quasi roller for instance, the initial tiling its adjacency rules
are based from and the fact it is made of only 6 tiles throughout, cannot be
directly recognized; ‘repetitions of differences’.

This motto summarizes an approach which may or not partially contribute to
the advance of modular systems, but which nonetheless highlights the fact
that modularity has plenty of space left to be explored under conducted
guidelines. In this regard, the ‘modernist project’ might have not yet ended.

References

Books

. D.M.Y. Sommerville, 1958, An introduction to the Geometry of n Dimensions,
New York, Dover Publications, Inc.

. D P DiVincenzo & P J Steinhardt, 1999, Quasicrystals: The State of the Art, London,
World Scientific.

. Marjorie Senechal, 1995, Quasicrystals and Geometry, Cambridge University Press.

. Roger Penrose, 1989, The Emperor's New Mind, New York, Oxford University Press.

. Philip Ball, 1999, The self-Made Tapestry: Pattern Formation in Nature, Oxford
University Press.

. Patricia A. Egerton & William S. Hall, 1998, Computer Graphics: Mathematical First
Steps, Harlow, England, Prentice Hall.

. Foley, Van Dam, Feiner, Hughes, 1996, Introduction to Computer Graphics,
Reading, Massachusetts, Addison-Wesley Publishing Company.

. Foley, Van Dam, Feiner, Hughes, Philips, 1997, Computer Graphics: Principles and
Practice, Boston, Addison-Wesley.

. Reas and Fry, 2007, Processing: A programming Handbook for Visual
Designers and Artists, Cambridge, Massachusetts, Massachusetts Institute of
Technology.

. H. Pottman, A. Asperl, M. Hofer, A. Kilian, 2007, Architectural geometry, Exton, PA,
Bentley Institute Press.

. Aranda & Lash, 2006, Tooling, Pamphlet Architecture 27, New York, Princeton
Architectural Press.

. Erwin Hauer, 2004, Continua--Architectural Screens and Walls, New York,
Princeton Architectural Press.

MSc Adaptive Architecture and Computation 56
Olivier Ottevaere

Articles and Papers

. N.G.deBruijn, 1981, Algebraic theory of Penrose's non-periodic tilings of the
plane, I, II, Nederl. Akad. Wetensch. Indag. Math. 43 p. 39-52, 53-66.

. U. Vogg, P.L. Ryder, 1996, A general algorithm for generating quasiperiodic
lattices by the strip projection method, Journal of Non-Crystalline Solids 194 134-144.

. Jose Caceres, Roberto Marquez, 2002, An aperiodic tiles machine, Computational
Geometry 23 171-182.

. Nagaraja S. Rao, E. R. Suryanarayan, 1994, Quasiperiodic tilings generated by
matrices, Physica B 193 139-146.

. Philip Beesley, 2005, Design Through Making: Orgone Reef, AD Architectural
Design, London, Wiley-Academy, p.46-53.

. Greg Lynn, 1993, Architectural Curvilinearity: The Folded, the Pliant and the
Supple, Architectural Design, London, Wiley-Academy, p.102.

. Alison Boyle, 1997, Quasicrystals to Kleenex, millennium mathematics projects,
University of Cambridge, http://plus.maths.org/issue16/features/penrose/

. Edwin Heathcote, February 23 2008, The argument for Ornement, London, Financial
Times.

Web documents

. http://www.geom.uiuc.edu/apps/quasitiler/ Quasitiler

. http://www.jcrystal.com/ Quasicrystals

. http://www.jcrystal.com/steffenweber/ Quasicrystals

. http://steve.hollash.net/thesis/ 4D objects

. http://www.stephencollins.net/Penrose/ Penrose Tiling Generator

. http://condellpark.com/kd/quasig.htm Quasig using the Pentagrid method

. http://www.ams.org/featurecolumn/archive/ribbons.html Updown Generation Penrose

. http://www.glform.com/blobwall.html Blobwall

. http://www.dfab.arch.ethz.ch/web/e/lehre/index.html Programmed wall

. http://www.johnsontradinggallery.com/ Quasi Furniture

. http://www.cgl.uwaterloo.ca/~csk/software/penrose/ Penrose Tiling Applet

. http://gregegan.customer.netspace.net.au/ DeBruijn Applet

MSc Adaptive Architecture and Computation 57
Olivier Ottevaere

http://plus.maths.org/issue16/features/penrose/
http://www.geom.uiuc.edu/apps/quasitiler/
http://www.jcrystal.com/steffenweber/
http://steve.hollash.net/thesis/
http://condellpark.com/kd/quasig.htm
http://www.ams.org/featurecolumn/archive/ribbons.html
http://www.dfab.arch.ethz.ch/web/e/lehre/index.html
http://www.johnsontradinggallery.com/
https://www.webmailexpress.ucl.ac.uk/redirect/http*3a*2f*2fwww.cgl.uwaterloo.ca*2f*7ecsk*2fsoftware*2fpenrose*2f
http://gregegan.customer.netspace.net.au/

Appendix A: Rotation matrices in 6d (x, y, z, a, b, c),

15 matrices around xy, xz, xa, xb, xc, yz, ya, yb, yc, za, zb, zc, ab, ac, bc plane

1)for xy
 x y z a b c g
x | cos(1) sin(1) 0 0 0 0 px |
y | -sin(1) cos(1) 0 0 0 0 py |
z | 0 0 1 0 0 0 pz |
a | 0 0 0 1 0 0 pa | times vector |x, y, z, a, b, c, 1|
b | 0 0 0 0 1 0 pb |
c | 0 0 0 0 0 1 pc |
g | tx ty tz ta tb tc os |

2)for xz
 x y z a b c
x | cos(2) 0 sin(2) 0 0 0 |
y | 0 1 0 0 0 0 |
z | -sin(2) 0 cos(2) 0 0 0 |
a | 0 0 0 1 0 0 |
b | 0 0 0 0 1 0 |
c | 0 0 0 0 0 1 |

3)for xa
 x y z a b c
x | cos(3) 0 0 sin(3) 0 0 |
y | 0 1 0 0 0 0 |
z | 0 0 1 0 0 0 |
a | -sin(3) 0 0 cos(3) 0 0 |
b | 0 0 0 0 1 0 |
c | 0 0 0 0 0 1 |

4)for xb
 x y z a b c
x | cos(4) 0 0 0 sin(4) 0 |
y | 0 1 0 0 0 0 |
z | 0 0 1 0 0 0 |
a | 0 0 0 1 0 0 |
b | -sin(4) 0 0 0 cos(4) 0 |
c | 0 0 0 0 0 1 |

5)for xc
 x y z a b c
x | cos(5) 0 0 0 0 sin(5) |
y | 0 1 0 0 0 0 |
z | 0 0 1 0 0 0 |
a | 0 0 0 1 0 0 |
b | 0 0 0 0 1 0 |
c | -sin(5) 0 0 0 0 cos(5) |

6)for yz
 x y z a b c
x | 1 0 0 0 0 0 |
y | 0 cos(6) sin(6) 0 0 0 |
z | 0 -sin(6) cos(6) 0 0 0 |
a | 0 0 0 1 0 0 |
b | 0 0 0 0 1 0 |
c | 0 0 0 0 0 1 |

7)for ya
 x y z a b c
x | 1 0 0 0 0 0 |
y | 0 cos(7) 0 sin(7) 0 0 |
z | 0 0 1 0 0 0 |
a | 0 -sin(7) 0 cos(7) 0 0 |
b | 0 0 0 0 1 0 |
c | 0 0 0 0 0 1 |

MSc Adaptive Architecture and Computation 58
Olivier Ottevaere

8)for yb
 x y z a b c
x | 1 0 0 0 0 0 |
y | 0 cos(8) 0 0 sin(8) 0 |
z | 0 0 1 0 0 0 |
a | 0 0 0 1 0 0 |
b | 0 -sin(8) 0 0 cos(8) 0 |
c | 0 0 0 0 0 1 |

9)for yc
 x y z a b c
x | 1 0 0 0 0 0 |
y | 0 cos(9) 0 0 0 sin(9) |
z | 0 0 1 0 0 0 |
a | 0 0 0 1 0 0 |
b | 0 0 0 0 1 0 |
c | 0 -sin(9) 0 0 0 cos(9) |

10)for za
 x y z a b c
x | 1 0 0 0 0 0 |
y | 0 1 0 0 0 0 |
z | 0 0 cos(10) sin(10) 0 0 |
a | 0 0 -sin(10) cos(10) 0 0 |
b | 0 0 0 0 1 0 |
c | 0 0 0 0 0 1 |

11)for zb
 x y z a b c
x | 1 0 0 0 0 0 |
y | 0 1 0 0 0 0 |
z | 0 0 cos(11) 0 sin(11) 0 |
a | 0 0 0 1 0 0 |
b | 0 0 -sin(11) 0 cos(11) 1 |
c | 0 0 0 0 0 0 |

12)for zc
 x y z a b c
x | 1 0 0 0 0 0 |
y | 0 1 0 0 0 0 |
z | 0 0 cos(12) 0 0 sin(12) |
a | 0 0 0 1 0 0 |
b | 0 0 0 0 1 0 |
c | 0 0 -sin(12) 0 0 cos(12) |

13)for ab
 x y z a b c
x | 1 0 0 0 0 0 |
y | 0 1 0 0 0 0 |
z | 0 0 1 0 0 0 |
a | 0 0 0 cos(13) sin(13) 0 |
b | 0 0 0 -sin(13) cos(13) 0 |
c | 0 0 0 0 0 1 |

14)for ac
 x y z a b c
x | 1 0 0 0 0 0 |
y | 0 1 0 0 0 0 |
z | 0 0 1 0 0 0 |
a | 0 0 0 cos(14) 0 sin(14) |
b | 0 0 0 0 1 0 |
c | 0 0 0 -sin(14) 0 cos(14) |

15)for bc
 x y z a b c
x | 1 0 0 0 0 0 |
y | 0 1 0 0 0 0 |
z | 0 0 1 0 0 0 |
a | 0 0 0 1 0 0 |
b | 0 0 0 0 cos(15) sin(15) |
c | 0 0 0 0 -sin(15) cos(15) |

MSc Adaptive Architecture and Computation 59
Olivier Ottevaere

Appendix B: Processing code snippets for 6d to 3d strip projection method

Matrix mult(Matrix a, Matrix b)
{
 Matrix result= new Matrix (a.cols, b.rows);
 for (int i=0; i<b.rows; i++){
 for(int j=0; j<a.cols; j++){
 result.matrix[i][j]= 0.0;
 for(int x=0; x<a.cols; x++){
 result.matrix[i][j]+= a.matrix[i][x]* b.matrix[x][j];
 }
 }
 }
 return result;
}

//
 void xform(Matrix b)
 {
 Vector result=new Vector(7);
 for(int i=0; i<7; i++){
 result.vector[i]=0.0;
 for(int j=0; j<7; j++){
 if(j!=6){
 result.vector[i]+=vector[j]*b.matrix[j][i];
 }
 else{
 result.vector[i] +=b.matrix[j][i];
 }
 }
 }
 for(int i=0; i<6; i++){
 vector[i]= result.vector[i]/result.vector[6];
 }
 }

//

void rot_yc(float ang_yc)
 {
 matrix[1][1]=cos(ang_yc);
 matrix[5][1]=-sin(ang_yc);
 matrix[1][5]=sin(ang_yc);
 matrix[5][5]=cos(ang_yc);
 }

//

void invRot(Matrix inv)
 {
 rows=inv.rows;
 cols=inv.cols;
 for(int i=0; i<rows; i++){
 for(int j=0; j<cols; j++){
 matrix[i][j]=inv.matrix[j][i];
 }
 }
 }

//

rotA=mult(p_xy,p_yz);
 rotA=mult(rotA,p_xz);
 rotA=mult(rotA,p_xa);
 rotA=mult(rotA,p_ya);
 rotA=mult(rotA,p_za);
 rotA=mult(rotA,p_xb);
 rotA=mult(rotA,p_yb);
 rotA=mult(rotA,p_zb);
 rotA=mult(rotA,p_ab);
 rotA=mult(rotA,p_xc);
 rotA=mult(rotA,p_yc);
 rotA=mult(rotA,p_zc);
 rotA=mult(rotA,p_ac);
 rotA=mult(rotA,p_bc);

 rotG=new Matrix(7,7);
 rotG.invRot(rotA);

//

MSc Adaptive Architecture and Computation 60
Olivier Ottevaere

//test with inverse rotatons to determine the clipping plane.
 Vector temp_test= new Vector((int)0, (int)0, 100, 100, 100, 100);

temp_test.xform(rotG);//overall inverse rotation matrix

//find diagonal for clipping thickness
 Vector temp_1= new Vector(100*zIn*zOut, 100*zIn*zOut, 100*zIn*zOut, 100*zIn*zOut, 100*zIn*zOut, 100*zIn*zOut);

 if(temp_test.vector[0]<0){
 temp_1.vector[0]=-temp_1.vector[0];
 }
 if(temp_test.vector[1]<0){
 temp_1.vector[1]=-temp_1.vector[1];
 }
 if(temp_test.vector[2]<0){
 temp_1.vector[2]=-temp_1.vector[2];
 }
 if(temp_test.vector[3]<0){
 temp_1.vector[3]=-temp_1.vector[3];
 }
 if(temp_test.vector[4]<0){
 temp_1.vector[4]=-temp_1.vector[4];
 }
 if(temp_test.vector[5]<0){
 temp_1.vector[5]=-temp_1.vector[5];
 }

 Matrix p6=new Matrix(7,7);
 p6.makeTrans(425,425,0,0,0,0);
 trans2=mult(rotA,p6);
 temp_1.xform(trans2);

 float diag= clip3d* temp_1.vector[2];
 float diag2= clip4d* temp_1.vector[3];
 float diag3= clip5d* temp_1.vector[4];
 float diag4= clip6d* temp_1.vector[5];

//

for(int i=-2-incPt; i<2+incPt; i++){
 for(int j=-2-incPt; j<2+incPt; j++){
 for(int k=-2-incPt; k<2+incPt; k++){
 for(int m=-2-incPt; m<2+incPt; m++){
 for(int n=-2-incPt; n<2+incPt; n++){
 for(int o=-2-incPt; o<2+incPt; o++){

 Vector temp_q = new Vector(i*100*zIn*zOut, j*100*zIn*zOut, k*100*zIn*zOut, m*100*zIn*zOut, n*100*zIn*zOut,
o*100*zIn*zOut);
 Vector temp_x = new Vector((i+1)*100*zIn*zOut, j*100*zIn*zOut, k*100*zIn*zOut, m*100*zIn*zOut, n*100*zIn*zOut,
o*100*zIn*zOut);
 Vector temp_y = new Vector(i*100*zIn*zOut, (j+1)*100*zIn*zOut, k*100*zIn*zOut, m*100*zIn*zOut, n*100*zIn*zOut,
o*100*zIn*zOut);
 Vector temp_z = new Vector(i*100*zIn*zOut, j*100*zIn*zOut, (k+1)*100*zIn*zOut, m*100*zIn*zOut, n*100*zIn*zOut,
o*100*zIn*zOut);
 Vector temp_w = new Vector(i*100*zIn*zOut, j*100*zIn*zOut, k*100*zIn*zOut, (m+1)*100*zIn*zOut, n*100*zIn*zOut,
o*100*zIn*zOut);
 Vector temp_b = new Vector(i*100*zIn*zOut, j*100*zIn*zOut, k*100*zIn*zOut, m*100*zIn*zOut, (n+1)*100*zIn*zOut,
o*100*zIn*zOut);
 Vector temp_c = new Vector(i*100*zIn*zOut, j*100*zIn*zOut, k*100*zIn*zOut, m*100*zIn*zOut, n*100*zIn*zOut,
(o+1)*100*zIn*zOut);

 Vector temp_w1 = new Vector(i*100*zIn*zOut, j*100*zIn*zOut, (k+1)*100*zIn*zOut, (m+1)*100*zIn*zOut, n*100*zIn*zOut,
o*100*zIn*zOut);
 Vector temp_w2 = new Vector(i*100*zIn*zOut, (j+1)*100*zIn*zOut, k*100*zIn*zOut, (m+1)*100*zIn*zOut, n*100*zIn*zOut,
o*100*zIn*zOut);
 Vector temp_w3 = new Vector((i+1)*100*zIn*zOut, j*100*zIn*zOut, k*100*zIn*zOut, (m+1)*100*zIn*zOut, n*100*zIn*zOut,
o*100*zIn*zOut);

 stroke(0,100,0);
 Matrix p5=new Matrix(7,7);
 p5.makeTrans(425,425,transZ,transA,0,0);
 trans=mult(rotA,p5);
 temp_q.xform(trans);
 temp_x.xform(trans);
 temp_y.xform(trans);
 temp_z.xform(trans);
 temp_w.xform(trans);
 temp_b.xform(trans);
 temp_c.xform(trans);

MSc Adaptive Architecture and Computation 61
Olivier Ottevaere

MSc Adaptive Architecture and Computation 61
Olivier Ottevaere

//

 //select and draw points
 if (pointOn==true){
 //points
 strokeWeight(1);
 if ((sq(temp_q.vector[2])+sq(temp_q.vector[3])+sq(temp_q.vector[4])+sq(temp_q.vector[5]))
 <=(sq(diag)+sq(diag2)+sq(diag3)+sq(diag4))*0.25){

 stroke(255,0,0);
 fill(255,0,0,0);
 ellipse(temp_q.vector[0], temp_q.vector[1],7,7);

 }
 }

//

//lines circle method
 stroke(255,opac2,255,opac3);//x_line=magenta
 makeLine(temp_q, temp_x, diag, diag2, diag3, diag4);
 stroke(opac2,255,opac2,opac3); //y_line=green
 makeLine(temp_q, temp_y, diag, diag2, diag3, diag4);
 stroke(opac2,opac2,255,opac3);//z_line=blue
 makeLine(temp_q, temp_z, diag, diag2, diag3, diag4);
 stroke(opac2,255,0,opac3);//a_line=yellow
 makeLine(temp_q, temp_w, diag, diag2, diag3, diag4);
 stroke(255,opac2,opac2,opac3);//b_line=
 makeLine(temp_q, temp_b, diag, diag2, diag3, diag4);
 stroke(255,255,255,opac3);//c_line=white
 makeLine(temp_q, temp_c, diag, diag2, diag3, diag4);

//

 //6d
 fill(0,0,155,opac1);//11
 makeFace(temp_q, temp_c, temp_c1, temp_x, diag, diag2, diag3, diag4);
 fill(125,0,0,opac1);//12
 makeFace(temp_q, temp_c, temp_c2, temp_y, diag, diag2, diag3, diag4);
 fill(155,155,0,opac1); //13
 makeFace(temp_q, temp_c, temp_c3, temp_z, diag, diag2, diag3, diag4);
 fill(0,100,50,opac1); //14
 makeFace(temp_q, temp_c, temp_c4, temp_w, diag, diag2, diag3, diag4);
 fill(50,100,0,opac1); //15
 makeFace(temp_q, temp_c, temp_c5, temp_b, diag, diag2, diag3, diag4);

//

void makeLine(Vector A, Vector B, float diag, float diag2, float diag3,float diag4){
 if ((sq(A.vector[2])+sq(A.vector[3])+sq(A.vector[4])+sq(A.vector[5]))<=(sq(diag)+sq(diag2)+sq(diag3)+sq(diag4))*0.25){
 if ((sq(B.vector[2])+sq(B.vector[3])+sq(B.vector[4])+sq(B.vector[5]))<=(sq(diag)+sq(diag2)+sq(diag3)+sq(diag4))*0.25){
 line(A.vector[0], A.vector[1], A.vector[2], B.vector[0], B.vector[1], B.vector[2]);
 }
 }
}

void makeFace(Vector A, Vector B, Vector C, Vector D, float diag, float diag2, float diag3, float diag4){
 if ((sq(A.vector[2])+sq(A.vector[3])+sq(A.vector[4])+sq(A.vector[5]))<=(sq(diag)+sq(diag2)+sq(diag3)+sq(diag4))*0.25){
 beginShape();
 noStroke();
 vertex(A.vector[0], A.vector[1], A.vector[2]);
 if ((sq(B.vector[2])+sq(B.vector[3])+sq(B.vector[4])+sq(B.vector[5]))<=(sq(diag)+sq(diag2)+sq(diag3)+sq(diag4))*0.25){
 vertex(B.vector[0], B.vector[1], B.vector[2]);
 if ((sq(C.vector[2])+sq(C.vector[3])+sq(C.vector[4])+sq(C.vector[5]))<=(sq(diag)+sq(diag2)+sq(diag3)+sq(diag4))*0.25){
 vertex(C.vector[0], C.vector[1], C.vector[2]);
 if ((sq(D.vector[2])+sq(D.vector[3])+sq(D.vector[4])+sq(D.vector[5]))<=(sq(diag)+sq(diag2)+sq(diag3)+sq(diag4))*0.25){
 vertex(D.vector[0], D.vector[1], D.vector[2]);
 endShape();
 }
 }
 }
 }
}

Appendix C: Adjacency rules

Case study #7 (4d tiling)

MSc Adaptive Architecture and Computation 62
Olivier Ottevaere

Appendix D: Graph variables and script snippets (Generative Components)

D1. two examples of graph variable tables for 4d NURBS tilings

transaction modelBased "GraphFunction polyBottom"
{
 feature polyBottom GC.GraphFunction
 {
 Definition = function (CoordinateSystem cs1 ,Polygon poly ,int start , BSplineCurve bs,double scalarZ)

 {
 //breakpoint;
 Point projPt={};
 DVector3d vect3dZ ={};
 DPoint3d ptD3d1={};
 for (int i = 0; i < poly.Vertices.Count-1;i++)
 {
 projPt[i]= new Point ();
 projPt[i].ProjectOnToCurve(bs,poly.Vertices[i]);
 vect3dZ[i] = new DVector3d();
 vect3dZ[i].Init(projPt[i].DPoint3d,poly.Vertices[i].DPoint3d);
 vect3dZ[i].NormalizeInPlace();
 vect3dZ[i].ScaleInPlace(scalarZ);
 ptD3d1[i]= new DPoint3d();
 ptD3d1[i].Init(poly.Vertices[i].DPoint3d);
 ptD3d1[i].AddInPlace(vect3dZ[i]);
 }
 pt= new Point();
 pt.FromDPoint3d(cs1, ptD3d1);
 Polygon polyOffset= new Polygon ();
 polyOffset.ByVertices(pt);
 return polyOffset;
 }
}

MSc Adaptive Architecture and Computation 63
Olivier Ottevaere

MSc Adaptive Architecture and Computation 64
Olivier Ottevaere

transaction modelBased "graph function pt"
{
 feature pt GC.GraphFunction
 {
 Definition = function (CoordinateSystem cs , Polygon poly , int start , int end, int start1 ,BSplineCurve bs , double scalarX ,
 double scalarY, double scalarZ , double scalarOff)

 {
 //breakpoint;
 iCount=0;
 Point pt= {};

 // vector X
 DVector3d vect3dX= new DVector3d ();
 vect3dX.Init(poly.Vertices[start].DPoint3d,poly.Vertices[end].DPoint3d);
 vect3dX.NormalizeInPlace ();
 vect3dX.ScaleInPlace (scalarX);
 DPoint3d pt3dBase = new DPoint3d ();
 pt3dBase.Init(poly.Vertices[start].DPoint3d);
 pt3dBase.AddInPlace(vect3dX);
 Point ptB = new Point ();
 ptB.FromDPoint3d(cs, pt3dBase);

 //vector y
 Point projPt = new Point();
 projPt.ProjectOnToCurve(bs, ptB);
 DVector3d vect3DProj = new DVector3d();
 vect3DProj.Init(ptB.DPoint3d ,projPt.DPoint3d);
 vect3DProj.NormalizeInPlace();
 DVector3d vect3dXn= new DVector3d();
 vect3dXn.Init(poly.Vertices[start].DPoint3d,poly.Vertices[end].DPoint3d);
 vect3dXn.NormalizeInPlace();
 DVector3d vect3dYCrossP = new DVector3d();
 vect3dYCrossP=DVector3d.FromCrossProduct (vect3dXn, vect3DProj);
 vect3dYCrossP.NormalizeInPlace();
 DVector3d vect3dY = new DVector3d();
 vect3dY=DVector3d.FromCrossProduct (vect3dX, vect3DProj);
 vect3dY.NormalizeInPlace();
 vect3dY.ScaleInPlace(scalarY);

 //vector z
 DVector3d vect3dZ = new DVector3d();
 vect3dZ.Init(ptB.DPoint3d ,projPt.DPoint3d);
 vect3dZ.NormalizeInPlace();
 vect3dZ.ScaleInPlace(scalarZ);

 DPoint3d pt3d= new DPoint3d();
 pt3d.Init(poly.Vertices[start].DPoint3d);
 pt3d.AddInPlace(vect3dX);
 pt3d.AddInPlace(vect3dY);
 pt3d.AddInPlace(vect3dZ);

 //vector offset
 DVector3d vect3dXOff= new DVector3d();
 vect3dXOff.Init(poly.Vertices[start].DPoint3d,poly.Vertices[end].DPoint3d);
 vect3dXOff.NormalizeInPlace();
 DVector3d vect3DProjOff= new DVector3d();
 vect3DProjOff.Init(poly.Vertices[start1].DPoint3d ,pt3d);
 vect3DProjOff.NormalizeInPlace();
 DVector3d vect3dOff = new DVector3d();
 vect3dOff=DVector3d.FromCrossProduct(vect3DProj ,vect3DProjOff);
 vect3dOff.NormalizeInPlace();
 vect3dOff.ScaleInPlace(scalarOff);
 DPoint3d pt3d1= new DPoint3d();
 pt3d1.Init(pt3d);
 pt3d1.AddInPlace(vect3dOff);
 iCount=0;
 pt[0]= new Point();
 pt[0].FromDPoint3d(cs, pt3d);
 iCount++;
 pt[1]= new Point();
 pt[1].FromDPoint3d(cs, pt3d1);
 iCount++;

 return pt;
 };
 }
}

D2. Script showing DPoint 3d/DVector3d geometry employed for NURBS adaptation

Appendix E: Drawings of aperiodic structures

D1. 4d to 2d

MSc Adaptive Architecture and Computation 65
Olivier Ottevaere

D2. 4d to 3d

MSc Adaptive Architecture and Computation 66
Olivier Ottevaere

D3. 4d to 2d NURBS adaptation

MSc Adaptive Architecture and Computation 67
Olivier Ottevaere

D4. 5d to 2d

MSc Adaptive Architecture and Computation 68
Olivier Ottevaere

D5. 5d to 3d

MSc Adaptive Architecture and Computation 69
Olivier Ottevaere

D6. 6d to 3d

MSc Adaptive Architecture and Computation 70
Olivier Ottevaere

Appendix F: Fabrication of tiles’ field, formwork and cast

F1. 3d projection of a 4d tiling
 Dimension: 500x500x90

MSc Adaptive Architecture and Computation 71
Olivier Ottevaere

F2.
 Dimension: 500x500x90

NURBS field from 2d projection of 4d tiling (z parameters only)

MSc Adaptive Architecture and Computation 72
Olivier Ottevaere

F3. NURBS field from 2d projection of 4d tiling (x, y, z parameters)
 Dimension: 500x500x90

MSc Adaptive Architecture and Computation 73
Olivier Ottevaere

F4. Two-part mould (negative) for a 4d NURBS porous field
 Dimension: 2x (500x500x90)

MSc Adaptive Architecture and Computation 74
Olivier Ottevaere

F5. Three cast tiles assembly from 4d tiling with working tangencies
 Dimension: 1100x400x300

MSc Adaptive Architecture and Computation 75
Olivier Ottevaere

F6. Six cast tiles assembly from a 4d tiling with working tangencies and cables through
 Dimension: 1400x700x300

MSc Adaptive Architecture and Computation 76
Olivier Ottevaere

F7. Example of another tile’s formwork

MSc Adaptive Architecture and Computation 77
Olivier Ottevaere

F8. NURBS tile from quasi cylinder; one bed and positive tile for fibreglass mould

MSc Adaptive Architecture and Computation 78
Olivier Ottevaere

F9. Examples of formworks for other shapes of tiles

MSc Adaptive Architecture and Computation 79
Olivier Ottevaere

F10. Formwork before and after casting

MSc Adaptive Architecture and Computation 80
Olivier Ottevaere

F11. Ready formwork for casting

MSc Adaptive Architecture and Computation 81
Olivier Ottevaere

	4 methodology.pdf
	Where, the Ra to Rj group is for rotations, tx, ty, tz for translations, px for 1 point perspective, px and py for 2 points perspective, px, py, pz for 3 points perspective and os for overall scaling, etc. (Computer Graphics: Mathematical First Steps : Patricia A. Egerton, William S. Hall: Books, p.124.)

	References.pdf
	. Marjorie Senechal, 1995, Quasicrystals and Geometry, Cambridge University Press.
	. Patricia A. Egerton & William S. Hall, 1998, Computer Graphics: Mathematical First Steps, Harlow, England, Prentice Hall.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

