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Abstract

Background: Heterogeneous nuclear ribonucleoprotein C1/C2 (hnRNP C) is a core component of 40S ribonucleoprotein
particles that bind pre-mRNAs and influence their processing, stability and export. Breast cancer tumor suppressors BRCA1,
BRCA2 and PALB2 form a complex and play key roles in homologous recombination (HR), DNA double strand break (DSB)
repair and cell cycle regulation following DNA damage.

Methods: PALB2 nucleoprotein complexes were isolated using tandem affinity purification from nuclease-solubilized
nuclear fraction. Immunofluorescence was used for localization studies of proteins. siRNA-mediated gene silencing and flow
cytometry were used for studying DNA repair efficiency and cell cycle distribution/checkpoints. The effect of hnRNP C on
mRNA abundance was assayed using quantitative reverse transcriptase PCR.

Results and Significance: We identified hnRNP C as a component of a nucleoprotein complex containing breast cancer
suppressor proteins PALB2, BRCA2 and BRCA1. Notably, other components of the 40S ribonucleoprotein particle were not
present in the complex. hnRNP C was found to undergo significant changes of sub-nuclear localization after ionizing
radiation (IR) and to partially localize to DNA damage sites. Depletion of hnRNP C substantially altered the normal balance of
repair mechanisms following DSB induction, reducing HR usage in particular, and impaired S phase progression after IR.
Moreover, loss of hnRNP C strongly reduced the abundance of key HR proteins BRCA1, BRCA2, RAD51 and BRIP1, which can
be attributed, at least in part, to the downregulation of their mRNAs due to aberrant splicing. Our results establish hnRNP C
as a key regulator of BRCA gene expression and HR-based DNA repair. They also suggest the existence of an RNA regulatory
program at sites of DNA damage, which involves a unique function of hnRNP C that is independent of the 40S
ribonucleoprotein particles and most other hnRNP proteins.
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Introduction

hnRNP C is one of the most abundant proteins in the nucleus

(,10 mM). Its two isoforms, hnRNP C1 and C2, form a (C1)3C2

tetramer and serve to nucleate the formation of the 40S hnRNP

particles, which also contain hnRNP A1, B2, A2 and B1 [1,2]. The

40S hnRNP particles assemble on nascent transcripts (pre-

mRNAs) and are thought to influence their splicing, transport,

stability and possibly other aspects of their metabolism. Conflicting

reports exist on the sequence specificity and mode of hnRNP C

binding to RNA [3–6], and how the protein functions remains

incompletely understood. Recently, using individual-nucleotide

resolution UV cross-linking and immunoprecipitation (iCLIP), it

was shown that hnRNP C binds tracts of 4 or more uridines with

defined spacing of 165 or 300 nucleotides and, depending on the

exact binding locations, can promote either exclusion or inclusion

of alternative exons [7]. Moreover, a new study found that hnRNP

C directly competes with the splicing factor U2AF65 at splice sites

to prevent exonization of Alu elements in introns [8]. hnRNP C is

essential for mouse development as homozygous mutant embryos

are not viable and are resorbed by 10.5 days of gestation [9].

hnRNP C is, however, dispensable for cellular viability, as

homozygous null cells were able to grow and differentiate in vitro

albeit with slower growth than wild type cells [9].

DNA double strand breaks (DSBs) occur due to both

endogenous damage and exogenous genotoxic insults. Homolo-

gous recombination (HR) and non-homologous end joining

(NHEJ) are two main modes of double strand break repair
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(DSBR) [10]. HR is a largely error-free mechanism that operates

primarily during the S/G2 phases of the cell cycle, while the more

error-prone NHEJ is the major DSBR mechanism during the G1

phase. Interestingly, the two major breast cancer suppressor

proteins BRCA1 and BRCA2 both play critical roles in HR

[11,12]. By affinity purification of endogenous BRCA2, we

previously identified a major BRCA2-binding protein, PALB2,

which is critical for BRCA2’s chromatin association and function

in HR-DSBR [13]. Like BRCA2, PALB2 itself is also mutated in

breast cancer, pancreatic cancer, ovarian cancer and Fanconi

anemia (FA) [14–16]. More recently, we and others demonstrated

that PALB2 also directly interacts with BRCA1 and connects

BRCA1 and BRCA2 in the HR process [17–19].

HR is an extremely complex and highly regulated process. The

initiation of HR requires the processing of DSBs to generate a long

single-stranded DNA (ssDNA) overhang, a step termed resection,

and the binding of the ssDNA by the recombination enzyme

RAD51 to form a nucleoprotein filament capable of searching for

and invading a homologous template [11]. Current evidence

suggests that BRCA1 may facilitate HR via at least two

mechanisms. First, it appears to promote end resection through

its interaction with the resection-capable nucleases MRE11-

RAD50-NBS1 (MRN) complex and CtIP [20–22]. This may also

involve a competitive prevention of the resection-inhibitory effect

of 53BP1, a factor that promotes NHEJ [23]. Second, BRCA1

may recruit the PALB2/BRCA2 complex to resected DSBs via its

direct interaction with PALB2 [18,19]. The role of BRCA2 in HR

has been extensively studied, and the protein is now believed to

function as an essential ‘‘mediator’’ in mammalian cells to

promote the loading of RAD51 onto ssDNA and the stability of

RAD51-ssDNA nucleoprotein filament during the initial strand

invasion step of HR [24]. PALB2 plays a critical role in HR by

enabling BRCA2 (and therefore RAD51) recruitment to the

chromatin and DSBs [13,17,25]. Additionally, PALB2 can interact

with RAD51 directly and may be able to stimulate RAD51

loading and activity independent of BRCA2 [26,27].

Tandem affinity purifications of epitope-tagged PALB2 has led

to the identification of BRCA1 and MRG15 as additional

components of the PALB2/BRCA2 complex [17,18,28,29]. These

findings have significantly advanced our understanding of the

regulation of PALB2 and BRCA2 in HR and DSBR. However,

the above purifications were all performed using whole cell or

nuclear extracts in which the binding between PALB2 and its

chromatin-bound partner proteins might have been missed or

altered. In this study, we attempted to purify PALB2 from

nuclease-solubilized chromatin fractions and identified hnRNP C

as a component of PALB2 nucleoprotein complexes. Our results

demonstrated that hnRNP C plays a critical role in HR-DSBR

and in the regulation of an important set of DNA repair proteins

including BRCA1, BRCA2, RAD51 and BRIP1.

Results

Presence of hnRNP C in the PALB2-nucleic acid
complexes

To identify proteins that interact with PALB2 in chromatin, we

purified FLAG-HA-double tagged PALB2 from micrococcal

nuclease (MNase)-solubilized nuclear fractions of HeLa S3 cells

stably expressing the tagged protein. As show in Fig. 1A, cells were

first permeabilized with a buffer containing low salt and detergent

to remove soluble components, the insoluble materials were then

treated with MNase to solubilize chromatin DNA and bound

proteins, and finally the tagged PALB2 was isolated through

tandem affinity purification (TAP). A time course was carried out

in order to achieve maximum conversion of insoluble chromatin to

the soluble form. We found that incubation of nuclear pellet with

MNase for 90 min resulted in nearly complete conversion of

genomic DNA to nucleosome-length fragments (,150 bp) (Fig 1B).

Tandem affinity purification of the tagged PALB2 from such

maximally solubilized chromatin fraction followed by mass

spectrometry analysis identified most known PALB2 binding

partners, e.g. BRCA1, BRCA2, RAD51 and MRG15 (Fig. 1C–D).

However, there were no significant changes in the amounts of

these binding partners in the complexes purified after DNA

damage induced by hydroxyurea (HU) and mitomycin C (MMC).

As expected, several histones were found in the complexes, but the

number of peptides was small and inconsistent for each histone

(not shown), likely due to their small size and highly positive

charge which may limit the detection by mass spectrometry.

Unexpectedly, hnRNP C was found to be a relatively abundant

component of the complexes, indicating that it may either directly

interact with PALB2 or its above-noted partner proteins, or reside

on the same nucleosomes with PALB2. Another possibility is that

hnRNP C and PALB2 may exist on the same small, residual

segment(s) of non-nucleosomal DNA or RNA that might persist

even after the extensive digestion by MNase. Importantly, other

components of the 40S hnRNP particle were not identified in the

PALB2/BRCA nucleoprotein complex, indicating that the bind-

ing is specific to hnRNP C and that hnRNP C has functions

outside of the 40S particle. Again, no difference in hnRNP C

abundance was observed in the complexes purified after DNA

damage (Fig. 1D).

To test whether hnRNP C and PALB2 interact with each other,

we immunoprecipitated (IPed) endogenous PALB2 or hnRNP C

from whole cell lysates, but no co-IP of the other protein was

detected (not shown). We also overexpressed and IPed GFP- or

FLAG-HA-double tagged versions of hnRNP C from whole cell

lysates but also failed to detect any co-IP of PALB2 (not shown).

Thus, it is unlikely that hnRNP C and PALB2 interact in cell

lysates in a significant manner. To confirm the association of

endogenous PALB2 and hnRNP C in the chromatin fraction and

further test if the association is DNA- or RNA-mediated, we

digested the insoluble nuclear materials from U2OS cells with

either DNase I or RNase A and then IPed PALB2 from the

solubilized fractions. As shown in Fig. 1E, co-IP of hnRNP C and

PALB2 was detected in RNase A-released fraction even though

this fraction contained less PALB2, suggesting that the association

between the two proteins may be mediated by RNA.

Depletion of hnRNP C reduces HR and alters DSBR
pathway choice

The existence of hnRNP C in the chromatin-bound PALB2/

BRCA complex raises the immediate question whether it functions

in HR, a process in which PALB2 and BRCA1/2 play critical

roles. To address this question, we used DR-U2OS cells stably

integrated with a single copy of a GFP direct repeat HR reporter

(Fig. 2A) [13,30]. Under normal conditions, GFP expression does

not occur since the two GFP genes are either mutated or

incomplete. Upon expression of I-SceI, the first GFP gene is

cleaved yielding a double strand break which may subsequently be

repaired by HR, NHEJ or single strand annealing (SSA). HR-

mediated repair using the second GFP gene as a template would

lead to restoration of a functional GFP open reading frame (ORF)

and therefore GFP-positive cells which can be quantified by

Fluorescence-activated Cell Sorting (FACS).

We silenced hnRNP C expression in DR-U2OS cells using two

different siRNA sequences, both individually and in combination,

and found that depletion of hnRNP C down-regulated HR by over

Role of hnRNP C in DNA Recombinational Repair
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3 fold (Fig. 2B–C) as compared with control siRNA-treated cells.

To rule out the possibility that the down-regulation of HR was

caused by siRNA off-target effect, we generated an siRNA-

resistant hnRNP C cDNA construct, by introducing 4 silent

mutations in the target sequence of siRNA 629 (Fig. S1), and

tested if it could reverse the knockdown of HR efficiency by the

siRNA. As shown in Fig. 2D, the siRNA-immune cDNA largely

restored HR rate whereas the wild type cDNA did not show any

effect, indicating that the reduction of HR following the siRNA

treatment was specifically due to loss of hnRNP C.

Next, we asked if the loss of hnRNP C also impacts other

mechanism of DSBR, including non-homologous end joining

(NHEJ), single strand annealing (SSA) and alternative end joining

(Alt-EJ, also called MMEJ for microhomology-mediated end

joining). To this end, we depleted hnRNP C in a series of similar

U2OS cell lines each containing a single copy of the respective

reporter construct (Fig. 2A) [31], and measured the efficiency of

each repair mechanism. As shown in Fig. 2E, loss of hnRNP C

altered the efficiency of all 3 other DSBR mechanisms in addition

to HR (note that in this experiment a different line of the HR

reporter cells were used). While NHEJ was impacted only

moderately, a 3-fold increase in the rate of Alt-EJ and a 2-fold

reduction of SSA rate were observed. The potential cause of these

changes is discussed later.

Loss of hnRNP C impairs cellular response to ionizing
radiation (IR)

Given the important role of hnRNP C in HR and DSBR

pathway choice, we analyzed the effect of hnRNP C loss on cell

cycle distribution and progression before and after IR by 5-bromo-

29-deoxyuridine (BrdU) incorporation. In addition to a non-

targeting control siRNA, a PALB2 siRNA was also used as a

reference for DNA damage-induced cell cycle checkpoints, as

PALB2 plays important roles in both S phase and G2/M

checkpoints [13,32]. Although cells depleted of hnRNP C

consistently grew slower, there was practically no difference in

cell cycle distribution before DNA damage suggesting that cells in

all cycle phases were almost equally affected (Figs. 3A–B and S2).

This finding also implies that the strong HR defect and the

changes in other repair mechanisms caused by hnRNP C

knockdown were not due to a lack of cells in S and G2 phases

which would preclude HR from occurring.

Six hours post IR (10Gy), control cells showed a marked

reduction of DNA synthesis that was especially pronounced in late

S phase population (Fig. S2), indicative of an active S phase

checkpoint. Cells treated with PALB2 siRNA displayed a clearly

milder reduction of BrdU incorporation in the late S phase

compared to control cells, reflecting a defect in the S phase

checkpoint as we reported previously [13]. Interestingly, inhibition

of DNA synthesis in all S phase cells was seen in hnRNP C-

depleted cells (Fig. S2B). Sixteen hours post IR, the S phase

population of control cells had mostly reached late S phase, and

PALB2-depleted cells had progressed even further as can be

judged by a reduction of S phase population and an increase in the

following G1 (Figs. 3A–B and S2C). This behavior of PALB2-

depleted cells reflected defects in both S phase and G2/M

checkpoints [13,32]. In contrast, S phase progression in hnRNP

C-depleted cells appeared to be slower, as a significant population

Figure 1. Presence of hnRNP C in PALB2-containing nucleoprotein complexes. A. Schematic diagram of the PALB2 purification procedure.
B. Sizes of DNA fragments in solubilized chromatin fractions after digestion of insoluble nuclear structures with micrococcal nuclease (MNase). C.
Silver-stained gel showing the components of TAP-purified PALB2 complexes from the solubilized chromatin fraction. D. Protein components of the
PALB2 complexes identified by liquid chromatography tandem mass spectrometry (LC-MS/MS). The numbers shown are the averages of the numbers
of unique peptides detected for each protein in two independent experiments. E. The interaction between hnRNP C and PALB2 is mediated by RNA.
Nuclear pellets of U2OS cells were digested with DNase I or RNase A, and the nuclease-released components were IPed with a PALB2 antibody. The
nuclease-released materials and IPed proteins were analyzed by Western blotting.
doi:10.1371/journal.pone.0061368.g001
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of cells remained in the early S phase at this point, indicating that

hnRNP C plays a role in the recovery of DNA synthesis and S

phase progression after DNA damage.

Since PALB2 and BRCA proteins play important roles in the

G2/M checkpoint maintenance, we further analyzed the mitotic

index of the cells before and after IR. As shown in Fig. 3C, cells

depleted of hnRNP C showed an equally dramatic drop of mitotic

index as did control cells shortly (1 hr) after IR, which lasted at

least until 6 hr. By 24 hr after IR, still no mitotic entry had

occurred in control cells, whereas a small number of cells depleted

of hnRNP C had escaped the G2/M checkpoint and had been

collected in mitosis by nocodazole. In contrast, depletion of

PALB2 elicited a profound defect in checkpoint maintenance as

reflected by a clear checkpoint escape that already started at 6 hr

and a highly significant collection of mitotic cells at 24 hr post

radiation. Note that without nocodazole cells would have

proceeded through mitosis and accumulated in G1, as shown in

Fig. 3A–B. These results demonstrate that loss of hnRNP C does

not affect the activation of the G2/M checkpoint but elicits a small

defect in checkpoint maintenance. Combined with the fact that an

equal number of or more hnRNP C-depleted cells were in the G1

phase than control cells post IR (Figs 3B and S2C), the results

further suggest that loss of the protein does not impair the G1/S

checkpoint.

To test the importance of hnRNP C in the overall DSB repair

efficiency after IR, hnRNP C-depleted cells were irradiated and

analyzed for the induction and persistence of phosphorylated

histone H2A.X (cH2A.X), a marker of DSBs, post damage. At

1 hr post IR, hnRNP C-depleted cells showed similar induction of

cH2A.X compared with control cells (Fig. 3D), indicating that the

initial induction of DSBs by IR is hnRNP C-independent.

However, 24 hr post IR, while cH2A.X abundance had returned

Figure 2. Critical role of hnRNP C in HR and DSBR. A. Schematic diagrams of the GFP-based DNA repair reporters used in this study. B–C. DR-
U2OS cells containing a stably integrated HR reporter were treated with control or hnRNP C siRNAs for 48 hr and then transfected with an I-SceI
expression plasmid (pCBASce) to induce DSB formation and repair. B shows representative downregulation of hnRNP C 72 hr after siRNA transfection
and C shows GFP positive cells measured 60–72 hr after pCBASce transfection. D. DR-U2OS cells were treated with control or hnRNP C (629) siRNAs
for 72 hr and then co-transfected with pCBASce together with vector, wt hnRNP C or siRNA-resistant hnRNP C plasmids; GFP positive cells were
counted 72 hr later. E. U2OS cell lines each harboring a different reporter as indicated were treated with control siRNA or a mixture of the two hnRNP
C siRNAs for 48 hr and then transfected with pCBASce, and GFP positive cells were measured 72 hr later. Values shown are averages of at least 3
independent experiments and errors bars represent standard deviations.
doi:10.1371/journal.pone.0061368.g002
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Figure 3. Effect of hnRNP C depletion on cell cycle distribution before and after IR. A. DR-U2OS cells were treated with control, PALB2 or
hnRNP C siRNAs for 72 hr and then subjected to 10 Gy of IR. Cells were labeled with BrdU either before or 16 hr post IR, and cell cycle profiles were
analyzed by anti-BrdU staining and FACS. Cells in S, G1 and G2/M phases were indicated by upper, lower left and lower right boxes, respectively. Early
S and late S phase cells are separated by an arbitrary dotted line and indicated by ‘‘ES’’ and ‘‘LS’’. B. Quantification of cell cycle distributions in two
independent experiments. Error bars represent standard deviations, and the asterisk indicates p#0.05. C. Cells were treated with the siRNAs and
subjected to IR in the same way as in A, and mitotic index was measured by phosphorylated histone H3 staining and FACS. D. Cells were treated with
control or hnRNP C siRNAs for 72 hr and then subjected to 10 Gy of IR. Cells were harvested at indicated time points, and cellular abundance of
hnRNP C and cH2A.X were analyzed by Western blotting. E. Cells treated with siRNAs and IR as in D were fixed and the abundance and localization of
hnRNP C and cH2A.X were analyzed by IF.
doi:10.1371/journal.pone.0061368.g003
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to the pre-damage level in control cells, significant persistence of

cH2A.X in hnRNP C-depleted cells was observed by both

Western blotting and immunofluorescence (IF) (Fig. 3D–E). These

results appear to indicate that hnRNP C loss causes a significant

deficit in overall repair efficiency of DSBs. To confirm this

possibility, we further carried out the comet assay, a more direct

analysis of DNA repair. Surprisingly, only small increases in the

number and mean length of comet tails were observed (at 22 hr

post IR) in cells depleted of hnRNP C (Fig. S3). This result

indicates that the overall DSB repair efficiency is only slightly

reduced in the absence of the protein and that the increased Alt-EJ

may have compensated for the substantial reduction of HR and

SSA. Since the small differences in overall repair efficiency

revealed by the comet assay may not fully explain the more

evident contrast in cH2A.X abundance between the cells at 24 hr

post IR, hnRNPC may also regulate, likely indirectly, the

dephosphorylation of cH2A.X during the recovery phase after

DNA damage.

Localization of hnRNP C to DNA damage sites
We further asked if the protein is recruited to DSBs following

DNA damage by IF. In un-irradiated cells, hnRNP C showed a

largely pan-nuclear staining pattern with varying numbers of

distinct foci (Fig. 4A). Interestingly, colocalization of hnRNP C

and cH2A.X, mostly at just one round focus per cell, was

observed. At 4 hr after IR, there was a slight but discernible

change in the staining pattern of hnRNP C, with somewhat more

foci having been formed and their shapes becoming more

irregular. At the same time, hnRNP C was found to colocalize

with cH2A.X, which had been dramatically induced, in at least

several distinct foci per cell. At 24 hr post IR, a substantial

decrease of overall hnRNP C staining signals was noticed (Fig. 4A).

Interestingly, two populations of cells were observed with respect

to hnRNP C staining pattern, one with bright and often clustered

hnRNP C foci and the other with weaker and dispersed foci. At

this time, partial colocalization of hnRNP C with the residual

cH2A.X was still present, especially in cells with bright and

clustered hnRNP C foci. Next, we tested if hnRNP C co-localizes

with PALB2. Confocal microscopy images revealed a partial co-

localization between the proteins which was present already in

undamaged cells and was further increased after IR (Fig. 4B).

These data demonstrate a dynamic relocalization of hnRNP C

after DNA damage and a limited but clear presence of the protein

at sites of damage.

Being an RNA-binding protein, hnRNP C may also be able to

bind ssDNA, which plays essential roles in DNA damage signaling

and the initiation of HR [33,34]. Therefore, we asked if hnRNP C

may bind ssDNA at DNA damage sites, such as resected DSB

ends. To this end, unfixed cells were first permeabilized, cellular

RNAs were then removed by RNase A digestion, and the

localization of hnRNP C was examined by IF. Remarkably,

RNase A digestion completely eliminated the hnRNP C staining

signal in both control and irradiated cells (Fig. 4C), suggesting that

the binding of hnRNP C to chromatin and/or nuclear structures

may be entirely RNA-dependent. The fact that cH2A.X foci still

remained post RNase A treatment indicate that the digestion was

specific to RNA and that all visible hnRNP C foci were formed in

an RNA-dependent manner.

hnRNP C selectively regulates the expression of key HR
and repair genes

The limited and RNA-dependent localization of hnRNP C to

DNA damage sites makes it unlikely that the protein directly

participates in HR by binding to ssDNA intermediates generated

during the process. Thus, we asked if hnRNP C regulates the

expression of key HR genes. Interestingly, we observed in hnRNP

C knockdown cells strongly reduced protein levels of BRCA1,

BRCA2, RAD51 and BRIP1 (Fig. 5A). For BRCA1 and RAD51,

the much reduced abundance and loss of foci formation were also

confirmed by IF (Fig. S4). Additionally, levels of BARD1 and

perhaps NBS1 were also lower. In contrast, cellular abundance of

PALB2, RAP80, CtIP and NBS1 was not affected. The apparently

selective effect of hnRNP C on the expression of the above HR-

related genes prompted us to further examine a panel of key NHEJ

and DNA replication factors following its depletion. As shown in

Fig. 5B, levels of NHEJ proteins DNAPK and 53BP1 were

unchanged, as were the amounts of essential DNA replication

factors MCM10, CDC45 and CDC6, consistent with the largely

unaffected cell cycle distribution under the condition used. These

findings suggest that the remarkable HR defect of hnRNP C-

depleted cells is, at least in part, due to greatly reduced

concentrations of above-noted key HR regulators.

Next, we measured mRNA amounts of BRCA1, BRCA2, PALB2,

RAD51, BARD1 and BRIP1 in control and hnRNP C-depleted

cells. As shown in Fig. 5C, hnRNP C depletion resulted in

significant reduction of BRCA1, BRCA2, RAD51 and BRIP1

mRNAs, while the PALB2 messenger was slightly upregulated.

We noticed that transfection of the control siRNA caused modest

but consistent decreases in RAD51, BARD1 and particularly BRIP1

mRNA levels, indicating that a sequence-independent effect of

siRNA transfection may be responsible for a fraction of the

reduction observed for these genes. Nevertheless, the effect of the

hnRNP C-specific siRNAs was significantly stronger.

Finally, we asked if hnRNP C may directly bind the transcripts

of the above HR genes and regulate their splicing. To this end,

we analyzed the newly generated high resolution iCLIP and

RNA-Seq data [8]. As shown in Figs. 6 and S5, iCLIP revealed

hnRNP C binding sites in all six genes. Moreover, consistent with

the previously described sequence specificity of hnRNP C,

binding sites preferentially located on uridine tracts (Fig. S5),

indicating that the binding was specific. Interestingly, exonization

of Alu elements was found in BRCA1, BRCA2, RAD51 and BRIP1

mRNAs following hnRNP C depletion (Fig. 6) but not in those of

PALB2 and BARD1. Thus, a correlation exists between the

downregulation of mRNA levels and exonization of Alu elements

after hnRNP C loss. Since exonized Alu sequences either contain

nonsense codons or result in frameshifts, the aberrantly spliced

mRNAs can be expected to be both unproductive and unstable

due to nonsense-mediated decay (NMD). Taken together, our

results demonstrate that hnRNP C directly binds to transcripts of

above key HR genes and regulates their splicing and function-

ality.

Discussion

In this study, we found a significant presence of hnRNP C in

PALB2-containing nucleoprotein complexes. The association

between hnRNP C and PALB2 appeared to be indirect and

instead mediated by RNA (Fig. 1E). hnRNP C was found to

undergo dynamic changes in intra-nuclear localization after

DNA damage and to be recruited to a subset of DNA damage

sites where it co-localized with PALB2. RNase A treatment of

permeabilized cells completely eliminated nuclear staining

signal of hnRNP C, indicating that the protein may bind

exclusively to the RNA components of nuclear structures.

Depletion of hnRNP C severely compromised HR while

increasing the rate of Alt-EJ/MMEJ. In addition, loss of

hnRNP C impaired S phase progression after IR. Interestingly,

Role of hnRNP C in DNA Recombinational Repair

PLOS ONE | www.plosone.org 6 April 2013 | Volume 8 | Issue 4 | e61368



depletion of hnRNP C resulted in a profound decrease of

cellular BRCA1/2 and RAD51 protein abundance, which can

be attributed, at least in part, to reduced amounts of their

mRNAs. These results establish hnRNP C as a DNA damage

response factor and an important regulator of HR as well as

general DSBR pathway choice.

Figure 4. Nuclear localization properties of hnRNP C. A. Control and irradiated DR-U2OS cells as indicated were fixed, permeabilized and
double stained with hnRNP C and cH2A.X antibodies. Some of the nuclear foci where the two proteins colocalize are marked by white arrows. B.
Control and irradiated cells were fixed, permeabilized, co-stained with hnRNP C and PALB2 antibodies, and analyzed by confocal microscopy. C.
Control and irradiated cells were first permeabilized, then treated without or with RNase A and finally fixed for IF analysis.
doi:10.1371/journal.pone.0061368.g004
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The pathway choice in DSBR is a competitive process in which

the commitment to one mechanism at a given break precludes

others. In general, SSA should increase following BRCA2 and/or

PALB2 loss as reported before [25,35], since the resulting inability

to commence HR following initial end resection would lead to

excessive resection exposing more homologous stretches in single

stranded DNA overhangs suitable for annealing. However,

BRCA1 loss has been reported to impair SSA [35]. This may be

explained by the recent finding that BRCA1, possibly in

cooperation with CtIP, promotes resection [23,36], which is a

prerequisite not only for HR but also for SSA. Thus, with respect

to SSA, the effect of BRCA1 loss overshadows that of BRCA2 or

PALB2 loss. In this vein, the low BRCA1 abundance after hnRNP

C loss may in part explain the reduced SSA observed in this study.

The likely inability of hnRNP C-depleted cells to fully resect DSB

ends for HR and SSA may also help explain the increased use of

Alt-EJ. Interestingly, Alt-EJ appears to effectively compensate the

impairment of the other three mechanisms since the overall DSBR

efficiency is only slightly reduced as revealed by the comet assay

(Fig. S3).

The mechanism(s) by which hnRNP C regulates the expression

of the BRCA and related genes may be complex. As a chaperone of

the transcriptome, hnRNP C presumably influences the expression

of a large number of genes and therefore may indirectly affect the

abundance of BRCA gene products through other factors involved

in transcription, RNA splicing and stability, or protein synthesis,

posttranslational modification and degradation, etc. However,

analysis of iCLIP and RNA-Seq data revealed direct binding of

hnRNP C to transcripts of all of the 6 genes tested and that loss

hnRNP C resulted in exonization of intronic Alu sequences in the

four genes whose mRNA amounts were affected (Figs. 6 and S5),

indicating that hnRNP C also directly regulates the splicing of the

transcripts to ensure proper expression of the genes. Considering

the large decrease in BRCA1, BRCA2, RAD51 and BRIP1

protein amounts and the relatively moderate reduction of their

mRNA levels, it is reasonable to assume that the stability and/or

translation of the proteins may have also been negatively affected

by hnRNP C loss.

Similar to our findings, a recent whole genome screen for HR

regulatory genes by Adamson et al. identified RBMX (hnRNP G)

as a novel factor that positively regulates HR and resistance to

DNA damage [37]. In the above study, the authors demonstrate

that RBMX is critical for cellular BRCA2 protein abundance. In

light of our findings, RBMX may regulate BRCA2 expression at

the mRNA level. The same screen also found hnRNP C and

hnRNP K as potential regulators of HR, whose depletion reduced

HR by ,4 fold and ,2.5 fold, respectively (but these genes were

not specifically studied therein). Such an effect of hnRNP C

depletion is similar to what we observed (Fig. 2), and the potential

role of hnRNP K in HR is consistent with a reported role of the

protein to bind the BRCA1 promoter [38]. Depletion of other

hnRNP proteins produced no or little effect on HR. Thus, given

Figure 5. Selective regulation of DNA repair and replication genes by hnRNP C. A–B. DR-U2OS cells were treated with transfection reagent
alone (labeled as ‘‘no siRNA’’), control siRNA or hnRNP C siRNAs for 72 hr and protein amounts were analyzed by Western blotting. C. Total RNAs
were isolated from cells 48–72 hr after transfection and mRNA amounts of the 6 genes indicated were analyzed by quantitative RT-PCR. Values shown
are averages of at least 3 independent experiments and error bars represent standard deviations. P values were calculated with student’s t test using
GraphPad Prism V5. P values smaller than 0.05 are denoted by one asterisk and those smaller than 0.01 are indicated by two asterisks.
doi:10.1371/journal.pone.0061368.g005
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the lack of other hnRNPs in our PALB2 complex, hnRNP C

clearly has an important and unique role in regulating the

expression of a set of key DNA repair genes that is independent

from its general function in the hnRNP particles. Since both

proteins are recruited to DNA damage sites, these two studies

together suggest the involvement of a RNA regulatory program in

regulating the DNA damage response and repair.

Since knockouts of Brca1, Brca2 and Rad51 in mice all result in

embryonic lethality [39–42], the much reduced levels of these

proteins in the absence of hnRNP C may contribute to the

embryonic lethal phenotype of the hnRNP C knockout mice [9].

Also, it has been found that downregulation of the protein in HeLa

cells leads to cellular sensitivity to topoisomerase inhibitors

camptothecin and ICRF-193 as well as another DNA damaging

agent hydrogen peroxide (H2O2) [43]. In particular, camptothecin

generates single strand breaks (SSBs) in the S phase that eventually

lead to replication fork collapse (DSB formation) which requires

HR for repair [44]. Our finding that hnRNP C is critical for HR

may, at least in part, explain the sensitivity of hnRNP C-depleted

cells to the above DNA damaging agents.

hnRNP C undergoes a dynamic relocalization after ionizing

radiation and localizes to a subset of DNA damage sites (Fig. 4A),

indicating that the protein may actively participate in the DNA

damage response. The fact that all of its nuclear staining signals

were eliminated by RNase A treatment (Fig. 4C) implies an

exclusive RNA-dependent association of the protein with nuclear

structures, and the extensive nuclear staining signal of hnRNP C

in pre-permeabilized cells also indicates that much of the protein is

bound to nascent RNAs that are still attached to the chromatin.

These observations together suggest that hnRNP C may respond

to DNA (or RNA) damage by altering the normal schedule of

nascent RNA processing (or transcription) to ensure faithful

expression of genetic information. Finally, the association between

hnRNP C and PALB2-BRCA1/2 proteins appears to be RNA-

mediated, and it remains to be seen exactly how the proteins and

bound nucleic acids work together to promote proper repair of

DNA damage or faithful gene expression after radiation.

Materials and Methods

Cell lines, siRNA and transfections
DR-U2OS as described before [13] were used in all experi-

ments except PALB2 tandem affinity purification. Cells were

cultured in Dulbecco’s Modified Eagle’s Medium (DMEM)

supplemented with 10% FBS in a humidified chamber containing

5% CO2 at 37uC. HeLa S3 cells were used for PALB2 purification

and were grown in Minimum Essential Medium Eagle (MEM)

(Sigma, M8028) supplemented with 5% FBS in spinner flasks in a

37uC warm room.

For general siRNA knockdown experiments, cells were plated at

,60% confluence in 6 cm dishes and siRNAs were transfected

using Lipofectamine RNAiMax (Invitrogen) at 5 nM final

concentration. Unless otherwise mentioned, cells were trypsinized

and reseeded into 6-well (for Western and FACS) or 12-well plates

(for IF) 48 hr after transfection and various analyses were carried

out another 24 hr later. The sense strand sequences of siRNAs

used are: control, UUCGAACGUGUCACGUCAAdTdT;

hnRNP C-629, CAACGGGACUAUUAUGAUAdTdT; and

hnRNP C-920, GUAGAGAUGAAGAAUGAUAdTdT.

Purification of PALB2 complexes
HeLa S3 cells harboring the empty vector or stably expressing

tagged PALB2 were described before [18]. The cells were

harvested, washed with PBS and permeabilized with 10 volumes

of MNase buffer I (20 mM Tris-HCl [pH 7.5], 100 mM KCl,

0.3 M sucrose, 0.1% Triton X-100, 10 mM NaF, 1 mM sodium

orthovanadate, with CompleteH protease inhibitor tablet (Roche))

by rocking at 4uC for 20 min. Nuclear structures were harvested

by centrifugation at 5,000 rpm for 10 min, washed with 10

volumes of MNase buffer I, and then resuspended in 2 volumes of

MNase buffer II (20 mM Tris-HCl [pH 7.5], 100 mM KCl,

2 mM CaCl2, 0.3 M sucrose, 0.1% Triton X100, 10 mM NaF,

1 mM sodium orthovanadate, with CompleteH EDTA-free

protease inhibitor tablet) containing MNase at a final concentra-

tion of 3 u/ml. The nuclei were digested by rocking at room

temperature for 90 min. The reactions were stopped by adding

EGTA and EDTA to 5 mM each, and supernatants containing

solubilized chromatin were collected by centrifugation at

5,000 rpm for 10 min. Nucleoprotein complexes containing the

FLAG-HA double tagged PALB2 were isolated by tandem affinity

purification as previously described [18].

For analysis of DNA fragment size after MNase digestion,

solubilized fractions were treated first with 5 mg/100 ml RNase A

at 37uC for 30 min and then with 100 mg/ml proteinase K in the

presence of 0.5% SDS at 55uC overnight. Digested samples were

extracted with phenol/chloroform, and then analyzed on a 1.5%

agarose gel.

Antibodies, Western blotting and immunoprecipitation
The anti-PALB2 M10 and M11 antibodies used in this study

were raised in rabbits against GST-fusions of 1–120aa and 601–

880aa of human PALB2, respectively, and affinity purified. The

rabbit BRIP1 antiserum is a gift from Dr. Sharon Cantor

(University of Massachusetts). Other antibodies used are as

follows: hnRNP C (Santa Cruz, sc-15386 and sc-32308), cH2AX

(Millipore, #05-636), BRCA1 (Millipore, #07-434), BRCA2

(EMD Biosciences, OP95), RAD51 (Santa Cruz, sc-8349),

BARD1 (Santa Cruz, sc-11438), RAP80 (Bethyl Labs, A300-

763A), CtIP (Bethyl Labs, A300-488A), NBS1 (Bethyl Labs, A300-

290A), DNAPK-cs (Bethyl Labs, A300-516A), 53BP1 (Bethyl

Labs, A300-272A), MCM10 (ProteinTech Group, #12251-1-AP),

CDC6 (Epitomics, #3561-1), CDC45 (Epitomics, 3840-1), a-

Tubulin (Sigma, T9026).

For Western analysis, cells were lysed in NETNG400 (20 mM

Tris-HCl [pH 7.4], 400 mM NaCl, 0.5 mM EDTA, 0.5% NP-40

and 10% glycerol) buffer for 10 min with mixing at 4uC. Lysates

were clarified by centrifugation at 21,0006g for 10 min at 4uC.

Supernatants were collected and protein concentration was

measured using Bradford’s assay (Bio-Rad). Equal amounts (15–

20 mg) of proteins were subjected to SDS-PAGE. Proteins were

then immobilized onto nitrocellulose membranes followed by

incubations in primary and secondary antibodies. Detection was

Figure 6. Depletion of hnRNP C leads to Alu element exonization in BRCA1, BRAC2, RAD51 and BRIP1. Genome browser view of BRCA1,
BRAC2, RAD51 and BRIP1 genes displaying RNA-Seq data (overlapping reads per nucleotide; blue) from control and HNRNPC knockdown HeLa cells,
that were independently transfected with two different siRNAs (KD1 and KD2), as well as hnRNP C iCLIP data (crosslink events per nucleotide; purple).
RefSeq transcript annotations (blue) and Alu elements in antisense orientation (orange) are depicted below. Yellow boxes contain zoomed regions
within the four genes where hnRNP C-repressed Alu exonization events were detected (marked by red arrowheads). See ref. #8 for details for data
generation and analyses.
doi:10.1371/journal.pone.0061368.g006
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carried out using Enhanced Chemiluminescence (ECL) detection

system (GE Healthcare).

For immunoprecipitation of endogenous PALB2 from nuclease-

released nuclear fractions, low salt-resistant nuclear structures

were prepared from DR-U2OS cells with MNase buffer I, digested

with DNase I or RNase A in MNase buffer II, and the released

proteins (supernatants) were subjected to IP with the anti-PALB2

M11 antibody. Approximately ,46106 cells were used for each

IP. The digestion was for 45 min at room temperature with 50

units of DNase I or 30 mg of RNase A in a volume of 300 ml, and

the IP was carried out for overnight at 4uC.

Homologous recombination assays
In experiments shown in Fig. 2B–C, DR-U2OS HR reporter

cells were seeded at 150,000 cells per well into 6-well plates the day

before transfection. On day one, cells were transfected with

siRNAs using Oligofectamine (Invitrogen) as per the manufactur-

er’s instruction. On day two, medium was replaced with fresh

medium containing serum and antibiotics. On the third day, cells

were transfected with pCBAsce plasmid (2 mg/well) using

FuGENEH 6 transfection reagent (Roche). Cells were trypsinized

on the sixth day, resuspended in 0.5 ml PBS and GFP-positive

cells were scored using a Beckman Coulter FC-500 flow

cytometer. In the HR reconstitution assay shown in Fig. 2D,

DR-U2OS cells plated in 10 cm dish (1.26106 cells per dish) were

transfected with siRNAs using Lipofectamine RNAiMax. 24 hr

later, cells were split into 6-well plates (200,000 cells per well). On

the next day, cells were co-transfected with the same siRNA,

pCBAsce (750 ng) and hnRNP C expression vectors (750 ng) using

Lipofectamine 2000. Medium was refreshed 8 hr later and GFP

positive cells were counted 72 hr post co-transfection. DNA repair

assays shown in Fig. 2E were carried out as in 2B–C except that

RNAiMax was used for siRNA transfections. The final concen-

tration of siRNAs was 8 nM in all above experiments.

Immunofluorescence
Cells were seeded into 12-well plates containing 15 mm #1

round coverslips the day before treatment or analyses. Briefly, cells

were fixed with 3% (w/v) paraformaldehyde (in PBS with 300 mM

sucrose) for 10 min at room temperature, permeabilized with 0.5%

Triton X-100 (in PBS) and then sequentially incubated with

primary and secondary antibodies (diluted in PBS containing 5%

goat serum) for 1 hr each at 37uC. Each of the above steps was

followed by three PBS washes. After staining, coverslips were

mounted onto glass slides with VECTASHIELD mounting

medium with DAPI (Vector Labs) and observed using a Nikon

Eclipse Ti fluorescent microscope.

For analyzing the RNA dependence of hnRNP C nuclear

localization, cells were first permeabilized with CSK buffer (20

mM HEPES [pH 7.4], 300 mM sucrose, 3 mM MgCl2, 50 mM

NaCl, 0.5% Triton X-100) for 4 min and then treated with

100 mg/ml of RNase A (Sigma) for 10 min at room temperature.

Cells were then fixed with 3% paraformaldehyde and stained as

described above.

Cell cycle analysis
For cell cycle and DNA synthesis analyses, DR-U2OS cells were

treated with siRNAs for 72 hr and then pulse-labeled (in 6-well

plates) with 10 mM BrdU for 10 min prior to harvest by

trypsinization. Collected cells were washed with PBS and fixed

with 10 volumes of ice-cold 70% ethanol and placed at 220uC
overnight. Cells were then stained using FITC-conjugated anti-

BrdU (BD Biosciences, #347583) following manufacturer’s

instructions. After staining, cells were pelleted and resuspended

in 0.5 ml of PBS solution containing 0.02% (w/v) propidium

iodide (PI, Sigma) and 200 mg/ml RNase A, and incubated for 15

min at 37uC. Finally, cells were analyzed by FACS on a Beckman

Coulter FC-500 flow cytometer and using the CXP software. To

measure mitotic index, cells plated in 10 cm dish were transfected

with siRNAs for 48 hr and split into 6-well plates at 750,000 cells

per well. On the next day, cells were irradiated and collected at

indicated time points. When nocodazole was used, it was added 1

hr after radiation to a final concentration of 100 ng/ml. Harvested

cells were fixed with 70% ethanol overnight and stained with anti-

phosphorylated histone H3 (pSer10) (Cell Signaling Technology,

#9701) following standard protocols. Following the staining cells

were incubated with PI and then analyzed by FACS.

Quantitative reverse transcriptase-PCR (qRT-PCR)
Total RNAs were extracted using RNeasy Plus Mini kit

(QIAGEN), and cDNAs were generated using the SureScriptH
III First Strand Synthesis System (Invitrogen). Real-time PCR was

performed using Brilliant II SYBRH Green qPCR Master Mix

(Agilent Technologies) on a MX3005P system (Stratagene) using

the following parameters: 15 min initial heating (denaturation and

hot start enzyme activation) at 95uC, 40 cycles of amplification

(95uC for 10 sec and 60uC for 30 sec) followed by melting curve

measurement. Data presented are relative mRNA levels normal-

ized to that of RPLP0, with the value in the control group

(transfection reagent only) set as 1. Experiments were performed in

triplicates for at least 3 times.

Primers were synthesized by Sigma. The sequences of the

primers are as follows: RPLP0- ATCAACGGGTACAAAC-

GAGTCCT, AGGCAGATGGATCAGCCAAGAAG; BRCA1-

GAATGGATGGTACAGCTGTGTG, ATGGAAGCCATTGT

CCTCTGTC; BRCA2- GCCACTTTCAAGAGACATTCAA

CA, GTACAGTCTTTAGTTGGGGTGGA; PALB2- TGTGA

TGCTGTACTGTCTTCCTC, GCAATTGTTCCAGAAGT-

CAAGAT; RAD51- TGTTTGGAGAATTCCGAACTG, GTC

AATGTACATGGCCTTTCCT; BARD1- ATTGCTGCTAC-

CAGAGAAGAATG, ACAGCCCACTGCCTATAAGTACA;

and BACH1- CAGAAAGGAGAAAAATGATCCAG, CTTTG

TTTGTTTGTTGAAAGTTGG.

Supporting Information

Figure S1 Construction and expression of an siRNA-
resistant form of hnRNP C cDNA expression vector. A.

Silent mutations introduced into the target sequence of the

hnRNP C siRNA (RNPC-629). Shown on top is the sequence of

the sense primer used for mutagenesis containing 4 silent

mutations that would render the cDNA resistant to the siRNA.

The bottom sequence is of the wt cDNA with the siRNA target

sequence shown in red. The corresponding protein sequence is

also shown. B. The modified hnRNP C expression vector was co-

transfected, in parallel with the empty vector and the wt expression

vector, with pCBASce into DR-U2OS cells. Cells were fixed 48 hr

after transfection and IF was conducted using the indicated

antibodies.

(PDF)

Figure S2 Effect of hnRNP C depletion on cell cycle
distribution before and after IR. DR-U2OS cells were

treated with control, PALB2 or hnRNP C siRNAs for 72 hr and

then subjected to 10 Gy of IR. Cells were labeled with BrdU either

before (A) or at 6 and 16 hr post IR (B and C, respectively), and

cell cycle profiles were analyzed by anti-BrdU staining and FACS.

Cells in S, G1 and G2/M phases were indicated by upper, lower

left and lower right boxes, respectively. Numbers in the boxes
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indicate the percentages of cells in the corresponding phases. In

the left panel of B, early S and late S phase cells are indicated by

"ES" and "LS" and separated by an arbitrary dotted line.

(PDF)

Figure S3 Comet assay of hnRNP C-depleted cells after
IR. A. DR-U2OS cells were treated with control or hnRNP C (1:1

mix of 629 and 920) siRNAs for 72 hr and then subjected to 10 Gy

of IR. Cells were harvested at indicated time points following IR

and subjected to alkaline comet assay (Trevigen) following

manufacturer’s instructions. B. Number (in percentage) of cells

with comet tails in a representative experiment. C. Mean length of

comet tails in a representative experiment. D–G. Length

distribution of comet tails in a representative experiment. Comet

measurements were carried out using the Image J software, and

approximately 100 comets were measured for each condition.

(PDF)

Figure S4 Reduced abundance and impaired focus
formation of BRCA1 and RAD51 in hnRNP C-depleted
cells. Control treated or hnRNP C-depleted DR-U2OS cells

were subjected to 10 Gy of IR. Cells were fixed at indicated time

points and stained for BRCA1 (A) or RAD51 (B) together with

cH2A.X. The antibody used were anti-BRCA1 (#07-434,

Millipore), anti-RAD51 (sc-8349, Santa Cruz) and anti-cH2A.X

(#05-636, Millipore).

(PDF)

Figure S5 Binding of hnRNP C to transcripts of HR
genes. A. Genome browser view of PALB2 and BARD1 genes

displaying RNA-Seq data (overlapping reads per nucleotide; blue)

from control and hnRNP C knockdown HeLa cells, that were

independently transfected with two different siRNAs (KD1 and

KD2), as well as hnRNP C iCLIP data (crosslink events per

nucleotide; purple). RefSeq transcript annotations (blue) and Alu

elements in antisense orientation to the shown strand (orange) are

depicted below. No Alu exonization events were found in these

two genes. B. "Weblogo" showing the base composition at the

hnRNP C crosslink sites (position 0) within BRCA1, BRCA2,

PALB2, RAD51, BARD1 and BRIP1 gene transcripts as well as

the surrounding sequence. The y-axis indicates the informational

content for each position in bits. The graph shows the aggregate of

all the crosslink sites in the 6 genes.

(PDF)
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