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Abstract

A promising platform for quantum information processing is that of silicon impu-
rities, where the quantum states are manipulated by magnetic resonance. Such
systems, in abstraction, can be considered as a nucleus of arbitrary spin coupled to
an electron of spin one-half via an isotropic hyperfine interaction. We therefore refer
to them as nuclear-electronic spin systems. The traditional example, being subject
to intensive experimental studies, is that of phosphorus doped silicon (Si:P) which
couples a spin one-half electron to a nucleus of the same spin, with a hyperfine
strength of 117.5 MHz. More recently, bismuth doped silicon (Si:Bi) has been sug-
gested as an alternative instantiation of nuclear-electronic spin systems, differing
from Si:P by its larger nuclear spin and hyperfine strength of 9/2 and 1.4754 GHz
respectively. The aim of this thesis has been to develop a model that is capable
of predicting the magnetic resonance properties of nuclear-electronic spin systems.
The theoretical predictions of this model have been tested against experimental data
collected on Si:Bi at 4.044 GHz, and have proven quite successful. Furthermore, the
larger nuclear spin and hyperfine strength of Si:Bi, compared with that of Si:P, are
predicted to offer advantages for quantum information processing. Most notable
amongst these is that magnetic field-dependent two-dimensional decoherence free
subspaces, called optimal working points, have been identified to exist in Si:Bi, but
not Si:P.
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Chapter 1

Introduction

1.1 The dream of quantum computation

Digital computers have been the defining technology of the second half of the 20th

century, whose commercial viability became possible due to the advent of the tran-

sistor and the integrated circuit. Due to the decrease in manufacturing costs of

integrated circuits, coupled with improvements in miniaturisation of the compo-

nents, the power of computers – characterised by the time taken to solve a particular

problem – has been growing incessantly up to the present day, following closely the

famous Moore’s law [Moore, 1965]. Some problems, however, require an exponential

increase in computational time with respect to a linear increase in the size of the

problem. Richard Feynman made the observation that tracing the evolution of a

quantum state with a computer grows exponentially hard with the size of the Hilbert

space; we can solve Schrödinger’s equation for a two-level atomic system quite effi-

ciently, but simulating a complex virus with quantum degrees of freedom numbering

in the millions would take eons. So why not use a quantum system to simulate an-

other one? Such a quantum system can be called a quantum computer [Feynman,

1982], in contrast with the current digital computers that operate under the laws

of classical physics and are thus named classical computers. Quantum computation

is also referred to as quantum information processing (QIP). This observation by
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Feynman was made more concrete by David Deutsch who asked whether the laws

of physics, which to the best of our knowledge are quantum mechanical, could be

used to derive the laws of computation [Deutsch, 1985]. He asserted that a com-

putational device built using the laws of quantum physics will be able to simulate

arbitrary physical systems efficiently, whereas classical computers can only do so

with classical systems. As classical physics is a subset of quantum physics, then, a

quantum computer is a generalisation of a classical computer. In the following years

there was a surge of interest in developing specific quantum algorithms that would

offer an advantage to the corresponding algorithm running on a classical computer.

This culminated in the discovery by Peter Shor [Shor, 1997] of a quantum algorithm

for discovering the prime factors of numbers, for which no efficient counterpart in

classical computing is known to exist.

Although theoretical research in quantum computing did not stop here, and contin-

ues to be a vibrant field of research to this day, more and more people started to

contemplate building a quantum computer in the laboratory capable of performing

algorithms such as that developed by Peter Shor. To this end, physical systems were

sought that offered access to quantum degrees of freedom. A system with a degree

of freedom that can take one of two discrete values, in analogy with the bits of clas-

sical computation, is called a qubit. By bringing together many such systems and

effecting interactions between them, we can have a many-qubit quantum computer.

The physical systems considered can be categorised with respect to the quantum

degree of freedom used. The most common fall into three categories: (a) photon (b)

charge and (c) spin. Two implementations using photons are

(i) Linear optics

This scheme uses single photons as qubits. Single qubit operations are car-

ried out by beam splitters and phase shifters, and the qubits can be measured

destructively with photo detectors. Interaction between the photons can be im-

plemented deterministically, provided the availability of materials with strong

enough Kerr non-linearities, or stochastically using ancillary photons and mea-

surements [Knill et al., 2001; Myers and Laflamme, 2005].
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(ii) Cavity QED

Again, this scheme will use beam splitters and phase shifters on the individual

photons, but interactions are effected using an optical cavity containing atoms

that couple to the photons [Sleator and Weinfurter, 1995].

Charge based quantum computers can be built using

(i) Quantum dots

The quanta of charge, electrons, are localised in three-dimensional space via

electrostatic potentials, such that the number of electrons forms a quantum

degree of freedom so as to provide a qubit. Electrostatic gates are used to

perform operations on a single qubit, and the Coulomb interaction is used

to establish coupling between multiple qubits. The charge is detected via

transistors [Loss and DiVincenzo, 1998].

(ii) Superconductors

In superconducting materials at certain temperatures, two electrons may bind

to form a Cooper pair which, as with electrons, may be confined in an electro-

static potential. The individual charge superconducting qubits are controlled

by electrostatic gates, and interaction between them is brought about by use

of Josephson junctions. As with quantum dots, the qubits are measured by

detection of the charge using transistors. It should be noted, however, that due

to the limitations posed by charge superconducting qubits, recent efforts in su-

perconducting QIP have focused on the phase and flux qubit implementations

instead [Zagoskin and Blais, 2008].

Spin based quantum computing largely falls into the two camps of

(i) Trapped ions

The ions are trapped with lasers, and offer their internal energy states as the

relevant quantum degree of freedom. The ions are individually manipulated

by laser pulses, and the interactions between them are induced by means of

phonons. Measurement is performed by detecting the fluorescence seen when a

3



probe laser pulse is resonant with the hyperfine levels [Cirac and Zoller, 1995].

(ii) Magnetic resonance

In this case, the spin is associated with either the electron or nuclear spin

(or both) of a system. Individual spins are manipulated by means of mag-

netic resonance, which is nuclear magnetic resonance (NMR) for nuclear spins,

electron spin resonance (ESR) for electron spins, and electron nuclear double

resonance (ENDOR) for both. Interactions are induced by exchange, or dipo-

lar, coupling between the spins. Measurements are performed weakly by the

free induction induced by the spin’s Larmor precession or projectively with,

for example, magnetic resonance forced microscopy. A good review article for

magnetic resonance QIP is [Jones, 2011].

All of these schemes have their own pros and cons, and it is beyond the scope of

this work to compare them all. Here, we shall focus on the magnetic resonance

implementation.

1.2 Interactions in open systems: the inherent contradiction

No matter what the physical implementation is, there are two necessary criteria for

robust quantum computation which cannot both be satisfied simultaneously. To be

able to manipulate the quantum system of interest, it must be an open quantum

system where it interacts with its environment, such as the measuring apparatus.

However, for the computation to be quantum mechanical, the coherence established

must not be destroyed and, resultantly, the system must be a closed quantum system

where it does not interact with its environment. Here lies one of the key problems

facing quantum computation, the resolution of which rests upon the ability to control

the interaction of the quantum system of interest with its environment. In other

words to alternate it, at will, between an open and closed quantum system.

Spin-based QIP encapsulates this issue quite neatly. We may choose as our qubits

either the electron spin or the nuclear spin where the former interacts much more

4



strongly with its environment than the latter. Consequently, while the electron

spin can be measured and manipulated easily and at a rapid rate, it also decoheres

very quickly. In contrast, while the nuclear spin has longer coherence times, it is

manipulated and measured much more slowly, and with much greater difficulty. One

possible solution that immediately presents itself is to be able to switch between the

two systems at will: to transfer the quantum information to the electron spin for

manipulation and measurement, and to then transfer it again to the nuclear spin

for storage.

1.3 Magnetic resonance QIP and Kane’s proposal

Nuclear magnetic resonance QIP, using the nuclear spins of an ensemble of molecules

in solution at room temperature to provide qubits, was one of the first to be demon-

strated experimentally. This implementation was rife with problems, however, which

include among them:

(i) Because the energy difference between the spin states is very small, they are

generally in a highly mixed thermal equilibrium state. Cooling techniques

cannot be used to alleviate this problem as the spins are in solution.

(ii) Since measurements allowed on such ensemble states are statistical averages of

traceless observables, increasing the number of qubits in the system decreases

the detected signal. This renders such systems as inherently unscalable [War-

ren, 1997].

(iii) It was shown that as the number of physical qubits is increased, the entan-

glement of the system vanishes. As entanglement is thought to be one of the

key factors that distinguishes QIP from classical computation, NMR imple-

mentations in liquid solution with more than a few physical qubits are entirely

classical [Braunstein et al., 1999].

Solid-state NMR seemed to offer many advantages to solution NMR [Cory et al.,

2000]. These advantages include: (a) longer coherence times, (b) higher suscep-
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tibility to polarisation, (c) stronger coupling between spins, thus enabling faster

multi-qubit gates, and (d) ability to dynamically reset the qubits so as to enable

error correction protocols. Also, solid-state spin architectures allow for the possi-

bility of performing strong, projective measurements on single spins [Rugar et al.,

2004], as opposed to the weak ensemble measurements of traditional magnetic res-

onance. The best known proposal for scalable QIP in solid-state was put forward

by Bruce Kane [Kane, 1998], who suggested the use of phosphorus-doped silicon

(Si:P). Such a system at low temperatures offers a localised donor nuclear spin –

which for phosphorus is spin one-half – coupled to a localised donor electron spin,

also of spin one-half, by the hyperfine interaction. Each localised nuclear-electronic

spin system can be considered as two coupled qubits. The nuclear and electronic

degrees of freedom can be manipulated by global ENDOR pulses. To allow for se-

lectivity, A-gates at each site control the hyperfine coupling strength between the

electron and nuclear spins, and hence the transition frequencies. Nearest neighbour

interactions are mediated via the electron spins, which have an exchange interaction

due to the overlap of their wavefunctions. The strength of such interactions can be

controlled by J-gates that alter the degree of electronic wavefunction overlap. At

the end of the computation the electron spins at each site are measured. In such a

scheme the nuclear spin, having much longer coherence times, houses the quantum

information, and the electron spin is used as an ancillary system to enable ENDOR

pulse selectivity, and nearest neighbour interactions.

Figure 1.1: The Kane quantum computer, using the donated nuclear and electron spins of

phosphorus impurities in silicon (Si:P). A-gates control the hyperfine coupling between the

electron and nuclear spins of a single donor, and J-gates control the interaction between nearest

neighbour electron spins. Image taken from

http://www.ccms.uq.edu.au/research materials.htm.
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Although present technology does not allow for the manufacture of such an intricate

device, research in Si:P with QIP in mind has been flourishing over the last decade.

The research has included: precision placement of dopants in silicon [Schofield et al.,

2003], Ensemble measurement of spins by electrical detection [McCamey et al., 2006;

Stegner et al., 2006; Morley et al., 2008; Morishita et al., 2009], detection of single or

small number of spins [Fu et al., 2004; Morello et al., 2009, 2010], decoherence of the

spins [Tyryshkin et al., 2003; Morley et al., 2008; McCamey et al., 2012], initialisation

of spins in a highly polarised, or hyperpolarised state [McCamey et al., 2009; Steger

et al., 2011], two-qubit interactions [Greenland et al., 2010], entanglement [Simmons

et al., 2011], and the transfer of quantum information between the nuclear and

electronic spins [Morton et al., 2008].

One of the obstacles to QIP is “decoherence”. In silicon impurity architectures, the

decoherence mechanisms mainly fall under two categories; the temperature depen-

dent spin-boson, and temperature independent spin-spin mechanisms. The spin-

boson mechanism involves an interaction between the donor spin and the quanta of

vibration in the silicon crystal, or phonons, which is dependent on the temperature

of the system and can be lowered (but not entirely removed) by cryogenic cooling.

At temperatures above 7 K, the interaction is dominated by the Orbach process

[Castner, 1967], whereas at temperatures of ∼ 5 K, the dominant mechanisms are

due to single-phonon, or “direct”, and two-phonon processes. Further lowering of the

temperature results in the single phonon mechanism dominating [Feher and Gere,

1959]. Such processes lead to depolarisation of the spins, which follows an exponen-

tial decay of the form e−τ/T1 . The parameter T1 is referred to as the longitudinal, or

spin-lattice relaxation time. At temperatures where only the single phonon mecha-

nism prevails, for electron spins of silicon impurities T1 ∝ 1/(TB40) where T is the

temperature and B0 the applied magnetic field. Therefore, the smaller the magnetic

field, the longer the T1 time for the electron becomes [Roth, 1960; Hasegawa, 1960].

Furthermore T1 poses an upper bound on the transverse, or spin-spin, relaxation

time T2, itself also characterised by the exponential decay e−τ/T2 , as T2 6 2T1. Fi-

nally, the spin-boson mechanism affects the electron spin more strongly than it does

the nuclear spin; for Si:P at temperatures of 6-12 K the T1 times for the two spin
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types obey the relationship T1n ≈ 102T1e.

The spin-spin mechanism for decoherence comes from undesirable interactions be-

tween the system spin and its surrounding spins, which in natural silicon is due to

both the 29Si isotopes that have spin one-half, and the undesirable interaction be-

tween the donors themselves. To a very good approximation, it is only the electron

spin of the donor which is involved in this interaction as the nuclear donor spin is far

more localised. Such a process generally only leads to dephasing. The mechanism

by which dephasing is brought about by the surrounding spin bath of 29Si is called

spectral diffusion, delineated by [Witzel and Das Sarma, 2006; Yang and Liu, 2008].

Colloquially, spectral diffusion is brought about when the members of a spin bath

which the qubit interacts with flip-flop. The region of the crystal in which the flip-

flop process has an effect is called the active region, in which the dipolar coupling

among the members of the spin bath are comparable to their interaction strength

with the donor spin, termed the super hyperfine coupling.

For QIP it is not so much the coherence time itself that is important, but the ratio

of the coherence time with respect to computation time; if the error probability

of a quantum operation, determined by this ratio, is sufficiently small, then we

may perform our quantum computation fault-tolerantly. We perform our quantum

gates on single donors by using magnetic resonance pulses whose speed, given a

certain pulse strength, depends on both the gyromagnetic ratio of the spin species

considered and the degree to which the desired transition frequency differs from

those of unwanted transitions: the larger the difference between these frequencies,

the faster the pulse may be such that we maintain selective control of the desired

transition. The gyromagnetic ratio for the electron spin, in Si:P, is ∼ 103 times larger

than that of the nuclear spin. Also, at sufficiently large magnetic fields the ESR

transition frequencies differ to a greater degree from the other transitions than do the

NMR transition frequencies. These factors, together, indicate that in principle ESR

pulses can be many times faster than NMR ones, which has lead many researchers

to consider using the electron spin for quantum computation. However, as shown

by [Morton et al., 2008], it is possible to use the best of both worlds, and use the
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nuclear spins for quantum memory and electron spins for processing.

There is a limit to how low the concentration of donors in silicon can be to allow for

traditional, weak ensemble ENDOR detection, with the threshold for natural silicon

being at ∼ 1013 cm−3 phosphorus nuclei. NMR requires even higher concentrations.

This poses a fundamental limitation on how much the undesirable donor-donor in-

duced dephasing can be reduced by. Recently [Tyryshkin et al., 2011] studied the

coherence times of highly enriched Si, with the concentration of 29Si lowered to less

than 50 ppm, and saw the electron spin coherence times T2 of Si:P raised to ∼ 1 s at

a temperature of ∼ 5 K. Even more recently [Steger et al., 2012] demonstrated that

such highly purified silicon allows for rapid hyperpolarisation of the nuclear spins

of phosphorus. This allows for an improvement in detection of the donor spins,

allowing the phosphorus concentrations to be lowered to ∼ 1012 cm−3, that leads to

an even further increase in T2 times, which for the nuclear spins were measured to

be ∼ 180 s.

1.4 Enter bismuth

The difficulty of manufacturing the Kane quantum computer, which requires precise

controllable spin-spin interactions by electrodes, has spawned an interest in other

donor species in silicon. It has been shown by [Lloyd, 1993; Benjamin, 2001] that,

for QIP, it suffices to control the spin-spin interactions of a many-body spin system

collectively, and not individually, so long as more than one spin species is used.

[Stoneham et al., 2003] proposed the use of different donor species in silicon to allow

for such a global control, as each species will have different resonance frequencies.

The two species are placed such that in their ground states none will interact.

By optically exciting one species to their excited Rydberg state, we can effect an

intermediated interaction between members of the other species, in which we store

our quantum information. This scheme allows us to dispense with the requirement of

J-gate electrodes. In the same year, [Benjamin and Bose, 2003] demonstrated that

it is possible to use multi-species spin systems to perform quantum computation
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with the spin-spin interactions always being on, provided we are able to collectively

tune the energies of each individual spin species.

In more recent times, one specific donor species with favourable properties has been

identified. Bismuth belongs to the same group in the periodic table as phosphorus,

group V, and has many extremal properties. Bismuth doped silicon (Si:Bi) offers

a nuclear-electronic spin system very similar to Si:P and indeed other group V

impurities in silicon, but with some crucial differences.

(i) It is the heaviest group V donor with the highest binding energy of ∼ 71 meV,

compared with that of Si:P which is ∼ 2 meV.

(ii) The effective Hamiltonian for Si:Bi at low temperatures gives an isotropic

hyperfine interaction between the nuclear and electron spins with the highest

strength of 1.4754 GHz, compared to that of Si:P which is 117.5 MHz.

(iii) Both Si:Bi and Si:P donate electrons of spin one-half. However, while the latter

has a nuclear spin which is also one-half, the former has the largest nuclear

spin of 9/2.

Decoherence is still an issue to be dealt with; if bismuth impurities have much shorter

coherence times, their inclusion with phosphorus will not be advantageous. It has

not been until recently that the relaxation processes of Si:Bi have become the sub-

ject of intensive study [Belli et al., 2011]. [Morley et al., 2010] showed that Si:Bi has

electron spin coherence times at least as long as Si:P at comparable temperatures

and 29Si concentrations. Indeed, owing to the dominant thermalisation mechanism

at temperatures above 7 K being the Orbach process, whose effect is mitigated by

the binding energy of the donor, Si:Bi has longer electron T1 times than Si:P in this

temperature regime. Furthermore, as shown by [George et al., 2010], at low temper-

atures where the electron T2 time is limited by spectral diffusion, Si:Bi has electron

T2 times approximately 30% longer than Si:P in natural silicon, owing again to the

greater binding energy which reduces the donor Bohr radius, thereby shrinking the

active region. [Sekiguchi et al., 2010] demonstrated a high capacity for hyperpolar-

isation of Si:Bi, ∼ 90 %, which is likely to be improved upon in the near future.
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Also, as was shown by my collaborators and me both theoretically [Mohammady

et al., 2010, 2012] and experimentally [Morley et al., 2013], the large nuclear spin

and hyperfine coupling of Si:Bi results in some interesting spectroscopic properties.

The large hyperfine interaction strength brings about entanglement of the nuclear

and electronic spin degrees of freedom in the magnetic field region of B0 . 0.6 T.

In this regime, transitions that at high magnetic fields are classified as NMR can be

achieved with speeds of the same order of magnitude that is characteristic of ESR.

Provided that the relaxation times for the transitions that, at high fields, are labeled

NMR do not significantly decrease in this field regime, Si:Bi has the potential for

offering a QIP platform that is more robust than Si:P. The large nuclear spin offered

by Si:Bi offers a further possible advantage over Si:P. This allows for certain optimal

working points (OWPs) wherein pure dephasing processes such as spectral diffusion

are reduced to a negligible amount, and under certain limiting conditions can be

removed entirely. Theoretical work has been done in this regard by my colleagues

and me both in [Mohammady et al., 2012] and [Balian et al., 2012].

1.5 Thesis outline

This thesis aims to explore the prospect of using Si:Bi, or indeed any nuclear-

electronic spin system obeying a similar Hamiltonian, as a platform for QIP. Proof

of principle arguments composed of analytic, numerical, and experimental studies

will be considered. It is my aim to keep this work as self contained as is feasible,

and progress my arguments from the general and abstract down to concrete exam-

ples. Furthermore, as this study is quantum mechanical in nature, I will attempt to

describe the relevant phenomena in the elegant formalism of operational quantum

mechanics. Consequently, this thesis will be divided into three parts.

PART I: Here, I will lay down the mathematical formalism for quantum theory of

finite dimensional systems, measurement and control with magnetic resonance, and

the fundamentals of quantum computing.
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PART II: Here, you will find an exposition of my published research. This will

be composed of four chapters. In the first two chapters I will keep my arguments

as general as possible, and provide a purely analytical study pertaining to nuclear-

electronic spin systems. In the first chapter I shall provide a study of the Hamiltonian

and coherent dynamics alone, and complete the study in the second chapter by con-

sidering the nuclear-electronic spin system as an open system subject to decoherence.

In the third chapter, I shall then move to a more concrete setting and use the estab-

lished theory to provide numerical predictions for the magnetic resonance properties

of Si:Bi and Si:P. In the fourth chapter, I shall conclude by providing experimental

data pertaining to Si:Bi and compare with our theoretical predictions.

PART III: This final section will consist of arguments as to the application of Si:Bi

for quantum information processing, and concluding remarks.

As a further note, throughout this thesis, I set ~ = 1. Indeed, as all relevant

calculations yielding numerical values are in units of frequency (spectroscopy), ~

need not be considered at all.
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Part I

Theoretical Background
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Chapter 2

Quantum theory

2.1 Introduction

Figure 2.1: A general schematic of an experiment in the paradigm of operational quantum

mechanics: (i) preparation, (ii) measurement, and (iii) transformation.

When asked to describe what quantum mechanics is, most scientifically literate

individuals will answer with a statement equivalent to “the study of the physical

behaviour of microscopic things”. Such an answer is not unexpected, given that the

development of the theory was largely1 motivated by the experimental study of mi-

croscopic objects such as photons and electrons in the early half of the 20th Century.

Upon further reflection, however, such a description proves to be unsatisfactory as

1The pioneer of quantum theory Max Planck, immortalised by the constant named after him, h,
postulated that the energy of electro-magnetic waves was quantised proportional to their frequency.
This finding was used to solve the ultraviolate catastrophe of black body radiation, which is
clearly a domain of macroscopic objects as large as stars. Albert Einstein, however, sharpened this
quantisation in his study of the photoelectric effect to introduce the idea of the photon which is a
tiny corpuscular object.
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quantum theory is used to study certain aspects of the behaviour of macroscopic

objects such as semiconductors and metals. This motivates another description of

what quantum theory is at its core. The minimal understanding of quantum theory,

also known as operational quantum theory, is exemplified by Asher Peres in the

sentence:

“Quantum theory gives probabilities for measurement outcomes following a

specified preparation of a quantum system.”

Let us ponder the meaning of the key elements within this statement. A preparation

is an equivalence class of well-defined and repeatable tasks such as turning levers on

a machine, whilst a measurement entails probing the system in some systematic way

so as to extract information from it. These measurement outcomes, characterised

by the permanent record they leave either in the apparatus itself or the lab note of

the physicist, are described by entirely classical means. However, for this classical

measurement outcome to be used to make a claim about the object of study, a

theoretical model must be used. This model establishes a connection between this

classical measurement outcome to some underlying degrees of freedom of the object

of study. In quantum theory we may call this the quantum system. Finally, the

meaning of probability here takes the usual sense as the relative frequency of a

particular measurement outcome as a fraction of the total number of measurements,

in the limit of the number of measurements tending to infinity.

An illustrative concrete example is the Stern-Gerlach experiment [Stern, 1921]. Here,

the physicist performs some well-defined set of tasks to prepare the particles in a

particular way, and chooses his measurement procedure by passing these particles

through a magnetic field gradient of a specified orientation. He then completes the

measurement by observing the position of the particles after they leave the magnetic

field, which is an entirely classical quantity. The probability of the measurement

outcome is obtained by repeating this process many times, while the way this ex-

periment is interpreted is by invoking the concept of a degree of freedom called the

spin. Therefore, the quantum system on which the experiment is conducted is the

spin.
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In this chapter, I aim to provide an overview of operational quantum mechanics.

An experiment described by operational quantum mechanics can be separated into

three parts, as shown in Fig.2.1, where the components are:

(i) Preparation

An equivalence class of preparations of the system are described by a quantum

state ρ, which is an operator on a Hilbert space.

(ii) Measurement

Measurements are carried out on quantum states, and give a measurement

value, or event, coupled with a probability.

(iii) Transformation

Between the preparation and measurement the quantum state can be altered

by a linear quantum operation.

It should be noted, however, that how such a separation is made is somewhat ar-

bitrary; the processes of transformation and measurement themselves constitute a

preparation, while the evolution process can also be absorbed into the measurement

process. Regardless, we may always conceptually separate a quantum mechanical

experiment in this way. In most introductory courses on quantum theory quan-

tum states are always assumed to be pure, measurements are always assumed to

be projective, and operations are always assumed to be unitary. Here, I will give

descriptions for what general states, measurements and operations are. In each case

it turns out that if we are allowed to consider our system as a small subspace of a

larger Hilbert space, then all general states, measurements and operations on this

subspace can indeed be seen as pure states, projective measurements and unitary

transformations on the larger Hilbert space.

The literature available on quantum theory is indeed vast, and I cannot hope to pro-

vide an exhaustive list here. However, I shall name a small selection of books, each

with different aims, that should provide a good overview of the topic. Good modern

textbooks for computation of numerical values are [Sakurai, 1993] and [Audretsch,

20



2007], while [von Neumann, 1996] and [Heinosaari and Ziman, 2011] concerns the

mathematical structure of quantum theory. The theory of measurement is covered

extensively in [Busch et al., 1995] and [Busch et al., 1996]. The books [Wheeler and

Zurek, 1992], [Peres, 1995] and [Bub, 1999] deal with foundational issues.

2.2 Basic concepts

2.2.1 The Hilbert space

A Hilbert space, H, is a complete inner product vector space. To explain this, let

us make the following observations regarding inner product vector spaces V:

(i) The inner product for V is a function defined as 〈∙|∙〉 : V×V→ C which maps

any pair of vectors 2 ψ, ϕ ∈ V to an element c of the complex numbers C.

(ii) The inner product can be used to define a norm ‖ ∙ ‖ of a vector ψ as ‖ψ‖ :=
√
|〈ψ|ψ〉|, which can itself be used to define a distance measure between two

vectors as d(ψ, ϕ) := ‖ψ − ϕ‖. Therefore, an inner product space is also a

normed space, as well as a metric space.

Since an inner product space has metric properties, we can talk about convergent

sequences3 of vectors {φi}∞i=1 in this space. This inner product space is said to

be complete, and hence a Hilbert space, if and only if every absolutely convergent

sequence, meaning that it satisfies
∑∞

i=1 ‖φi‖
2 <∞, is convergent. The dimension,

d, of a Hilbert space is the cardinality of the largest set of orthonormal vectors in

that space {φi ∈ H : 〈φi|φj〉 = δij}, where δij is a Kronecker delta function. Such a

set is referred to as the orthonormal basis4 that spans the Hilbert space. All finite

dimensional V are complete and therefore also Hilbert spaces. In fact, it turns out

that all finite dimensional Hilbert spaces are isomorphic to complex inner product

2In the Dirac notation, a vector φ is denoted as |φ〉.
3A sequence of vectors {φn}∞n=1 converges to a vector ψ if for all ε > 0 there exists an integer

N such that for every n > N , d(φn, ψ) < ε.

4The inner product can be used to expand any vector ψ with respect to an orthonormal basis
{φi} as ψ =

∑
i〈φi|ψ〉φi.
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spaces Cd. Not all infinite dimensional inner product spaces are Hilbert spaces,

however. Hilbert spaces of infinite dimension that are of interest are separable,

being spanned by the delta functions {δi : i ∈ N} where N are the natural numbers,

which means that their dimension is countably5 infinite. These are most commonly

encountered as the Hilbert spaces of square-integrable functions on RN, denoted as

`2(RN), where R represents the real numbers.

2.2.2 Operators on Hilbert space

Now that we have established the Hilbert space, we may talk of linear mappings,

or operators, on this space. Consider an operator on a Hilbert space defined as

L : H → H. Such operators are said to be bounded if there exists a 0 6 t <∞ such

that ‖Lψ‖ 6 t‖ψ‖ ∀ ψ ∈ H. The space of bounded operators itself forms a vector

space, and all operators on the finite dimensional space Cd are bounded. The norm

of a bounded operator can therefore be given as ‖L‖ = sup‖ψ‖=1 ‖Lψ‖ < ∞. The

trace of a bounded operator, tr[∙], is a function defined as

tr[L] :=
∑

i

〈φi|Lφi〉 (2.1)

which is independent of the basis {φi} used. This defines a subclass of the space of

bounded operators, called the trace-class operators L(H), such that tr[L] <∞ ∀ L ∈

L(H). As before, all finite dimensional operators are automatically also trace-class

operators. The trace operation gives us a method of calculating the Hilbert-Schmidt

inner product between any L, Y ∈ L(H) as 〈L|Y 〉HS := tr[L†Y ], and the Hilbert-

Schmidt norm as ‖L‖HS :=
√

tr[L†L]. Here, the operator L† is the adjoint, or

Hermitian conjugate of L, characterised by the identity 〈ϕ|Lψ〉 = 〈L†ϕ|ψ〉 ∀ ψ, ϕ ∈

H. Just as the inner product can be used to expand a vector in H with respect to an

orthonormal basis, so too can the Hilbert-Schmidt inner product be used to expand

an operator in L(H). Given H, with basis {φi}, we may obtain an orthonormal basis

in L(H) as {Eij} 6 which, for finite dimensional Hilbert spaces Cd, has a dimension

5A set is countably infinite if there exists a one-to-one correspondence between this set and the
natural numbers N.

6In the Dirac notation Eij is represented as |φi〉〈φj | such that |φi〉〈φj |ψ = 〈φj |ψ〉φi ∀ ψ ∈ H.
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d2. An operator L can thus be expanded as

L =
∑

i,j

〈Eij|L〉HSEij. (2.2)

Two important operators are the identity operator 1 and the null operator O, char-

acterised respectively by 1ψ = ψ ∀ ψ ∈ H, and Oψ = φnull ∀ ψ ∈ H. Here, φnull

represents the null vector which has the property ‖φnull‖ = 0.

Let us denote the subset of L(H) in which all operators are self-adjoint as Ls(H).

An operator L is self-adjoint7 if 〈ϕ|Lψ〉 = 〈Lϕ|ψ〉 ∀ ψ, ϕ ∈ H, equivalently stated

as L = L†. The positive operators where 〈ψ|Lψ〉 > 0 ∀ ψ ∈ H are a subset of

the self-adjoint operators. The positivity condition can be used to determine the

ordering relation between two positive operators L and Y ; we may say that L > Y if

〈ψ|(L−Y )ψ〉 > 0 ∀ ψ ∈ H. Furthermore, any positive operator Y can be composed

as Y = L†L for some linear operator L ∈ L(H) that need not itself be positive. This

is easy to prove as 〈ψ|L†Lψ〉 = 〈Lψ|Lψ〉 > 0 ∀ ψ ∈ H, L ∈ L(H).

2.2.3 The state space

If the trace of a positive self-adjoint operator is one, it is called a density operator

and represents a quantum state. The state space of density operators is the convex

set

S(H) := {ρ ∈ Ls(H) : ρ > O, tr[ρ] = 1} (2.3)

which means that, for any ρ1, ρ2 ∈ S(H), any convex combination thereof also exists

in that space; λρ1+(1−λ)ρ2 ∈ S(H) ∀ λ ∈ [0, 1]. An important property of ρ is the

purity:= tr[ρ2]. For pure states, purity = 1, whereas for mixed states, purity < 1.

Pure states are the extremal points of the convex set S(H), and all mixed states

in S(H) can be formed by a convex combination of pure states. This pure state

decomposition of a density operator is not unique. Indeed, there are infinite such

decompositions. One useful decomposition of ρ ∈ S(H) is given by the canonical

7 An operator L : D(L)→ H, where D(L) ⊆ D(L†) ⊆ H is a dense domain of L, is self-adjoint
if 〈ϕ|Lψ〉 = 〈Lϕ|ψ〉 ∀ ψ, φ ∈ D(L) and D(L) = D(L†). This operator is also Hermitian if it is
bounded, which is true when D(L) = D(L†) = H.
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decomposition of orthogonal rank-1 projector operators Π(φi) ≡ |φi〉〈φi|, satisfying

Π(φi)Π(φj) = δijΠ(φi), which is given by

ρ =
∑

i

P (i)Π(φi) such that
∑

i

P (i) = 1. (2.4)

This representation is unique if all the P (i) differ from one another, and corre-

sponds to a pure state if there is only one non vanishing P (i). The {P (i)} are thus

interpreted as probabilities that the pure states {Π(φi)} are prepared. Since Π(φi)

projects onto the equivalence class of vectors {cφi : c ∈ C, |c| = 1}, called a ray,

pure states may be referred to as such. Indeed, many physics texts simply refer to

a pure state as the vector ψ itself, and I will often use this short-hand description

throughout this thesis.

A useful representation of density operators ρ ∈ S(Cd), in terms of an orthonormal

basis in Ls(Cd), is given by

ρ =
1

d
(1 + ~n. ~F ) (2.5)

where ~F is a vector of d2 − 1 traceless, self-adjoint, and unitary8 operators Fi, such

that tr[FiFj] = dδij. Because these operators are both unitary as well as self-adjoint,

their eigenvalues are one of {+1,−1}. Furthermore, ~n is a vector in Rd2−1, where

R denotes the real numbers, such that ‖~n‖ 6 1. Hence, the state space S(Cd) can

be seen as a convex space in the real vector space Rd2−1. This representation of the

density operator facilitates the understanding of purity. Pure states are those for

which ‖~n‖ = 1, and as ‖~n‖ decreases, so too does the purity. The maximally mixed

state is 1
d
1, obtained when ‖~n‖ = 0, for which the purity takes the minimal value of

1/d. Such a state is trivially unique.

There are two methods that are usually used to determine how close two quantum

states are. The first is given by the trace distance

D[ρ1, ρ2] :=
1

2
‖ρ1 − ρ2‖tr (2.6)

which uses the trace norm ‖ ∙ ‖tr : L 7→ tr|L|. Here, |L| =
√
L†L is the absolute

value of L which is positive for all linear operators L. This uses the square root

8A unitary operator U has the property that ‖Uψ‖ = ‖ψ‖ ∀ ψ ∈ H. Equivalently, we may say
that UU † = U †U = 1.
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lemma which states that, for every positive operator Y , there exists a unique positive

operator
√
Y such that

√
Y
√
Y = Y .

The other measure is called the fidelity, which is given by

Fid[ρ1, ρ2] = tr

[√√
ρ1ρ2
√
ρ1

]

≡ tr

[√√
ρ2ρ1
√
ρ2

]

(2.7)

and, for pure states Π(ψ) and Π(ϕ), is equivalent to the quantity |〈ϕ|ψ〉|. 9 The

two measures have the properties:

Trace distance Fidelity

0 6 D[ρ1, ρ2] 6 1 0 6 Fid[ρ1, ρ2] 6 1

D[ρ1, ρ2] = 0⇔ ρ1 = ρ2 Fid[ρ1, ρ2] = 1⇔ ρ1 = ρ2

The trace distance and fidelity can be seen as being complements of each other;

while the trace distance gives a value of 0 for two identical states, the fidelity gives a

value of 1. Conversely, while the trace distance gives a value of 1 for two orthogonal

states, the fidelity gives a value of 0.

2.2.4 Composite systems

We may combine the Hilbert spaces HA and HB to form a new composite Hilbert

space HA ⊗ HB via the tensor product. The basis vectors of HA ⊗ HB can be

constructed as {φi ⊗ ϕj}, where {φi} is an orthonormal basis in HA and likewise

{ϕj} is an orthonormal basis in HB, and the inner product on HA ⊗HB is defined

as 〈φi⊗ϕk|φj ⊗ϕl〉 = 〈φi|φj〉〈ϕk|ϕl〉. For finite dimensional cases, if dim(HA) = dA

and dim(HB) = dB, then dim(HA ⊗HB) = dAdB.

Any operator L ∈ L(HA⊗HB) can be expanded with respect to the Hilbert-Schmidt

inner product as

L =
∑

i,j

cijAi ⊗ Bj (2.8)

where {Ai} and {Bj} are respectively orthonormal bases in L(HA) and L(HB) with

respect to the Hilbert-Schmidt inner product, and cij = 〈Ai⊗Bj|L〉HS ∈ C. Clearly,

9Uhlmann’s theorem states that Fid[ρ1, ρ2] = sup{ψ,φ} |〈ψ|φ〉| where ψ and φ are purifications
of ρ1 and ρ2 respectively. This is trivial if ρ1 and ρ2 are themselves pure states.
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this can be done with respect to any basis. What is known as the operator-Schmidt

decomposition – in analogy with the Schmidt decomposition of a vector in Hilbert

space mentioned in Appendix B.1 – is the decomposition of L into k orthonormal

product operators Ai ⊗ Bi as

L =
k∑

i=1

qiAi ⊗ Bi (2.9)

using a specific orthonormal basis, where qi > 0 and k represents the Schmidt-rank.

For a composite system Cd⊗Cd′ , where d 6 d′, the maximum value the Schmidt-rank

can take is d2. If the Schmidt-rank is one, then L is itself a product operator.

The partial trace over HB is a linear mapping trB : L(HA ⊗ HB) → L(HA) such

that

tr[Y trB[L]] = tr[(Y ⊗ 1)L] ∀ L ∈ L(HA ⊗HB), Y ∈ L(HA) (2.10)

and the partial trace over HA is similarly defined. It follows from this definition that

the partial trace is a positivity preserving operation. It is also a trace preserving

operation, as

tr[trB(L)] = tr[trA(L)] = tr[L] ∀ L ∈ L(HA ⊗HB). (2.11)

Consequently, for any ρ ∈ S(HA⊗HB), the partial trace provides a uniquely defined

reduced density operator ρA := trB[ρ] and ρB := trA[ρ].

2.2.5 Measurement

As mentioned at the start of this chapter, the central aspect of quantum theory is

the prediction of probabilities for measurement outcomes. In the previous section I

covered what constitutes a quantum state, which is an equivalence class of experi-

mental preparation procedures that uniquely determines the probability distribution

of all possible measurements. In this section, then, I will give an outline of what

constitutes a measurement.

In measure theory a measurable space is defined as 〈Ω,F〉 where Ω is a sample space

and F is a collection of subsets of Ω where every ω ∈ F is identified with an event,

or a measurement outcome. Furthermore, F satisfies the conditions
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Figure 2.2: A simplified depiction of the Stern Gerlach experiment. A preparation device can

switch between preparing a spin one-half particle with mS = +
1
2 and mS = − 12 . If the

measurement is sharp, then an event ω1 will determine that the particle was of spin mS = +
1
2

and conversely for the other event.

(i) Ω and the empty set {∅} are in F .

(ii) for every ω ∈ F , its complement Ω \ ω := {x ∈ Ω : x /∈ ω} is also in F .

(iii) For a sequence of pairwise disjoint subsets {ωi : ωi ∈ F , ωi ∩ ωj = ∅}, where

i ∈ N, then
⋃
i ωi ∈ F .

A measure μ on 〈Ω,F〉 is a probability measure if

(i) μ(ω) ∈ [0, 1] ∀ ω ∈ F .

(ii) μ(
⋃
i ωi) =

∑
i μ(ωi) for any sequence of pairwise disjoint subsets {ωi : ωi ∈

F , ωi ∩ ωj = ∅} where i ∈ N. This is known as the countable additivity

condition.

(iii) μ(Ω)=1.

In quantum theory a positive operator valued measure, abbreviated as POVM, is

characterised as a mapping M : ω 7→ Mω where Mω, which is an effect operator

associated with the event ω, is an affine10 mapping from the state space S(H) to

the interval [0, 1], and is determined by the Born rule as

Mω : ρ 7→ tr[Mωρ] ∈ [0, 1] ∀ ρ ∈ S(H). (2.12)

Here tr[Mωρ] takes the meaning of a conditional probability of detecting event ω

given a measurement ofM on a state ρ, denoted P (ω|ρ,M). A POVM, also known

as an observable, has the following features:

10An affine mapping M [∙] is defined such that M [λρ1 + (1− λ)ρ2] = λM [ρ1] + (1− λ)M [ρ2].
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(i) O 6Mω 6 1 for all ω ∈ F .

(ii) M⋃
i ωi

=
∑

iMωi for any pairwise disjoint sequence {ωi : ωi ∈ F , ωi ∩ ωj = ∅}

where i ∈ N.

(iii) MΩ = 1.

The situations that are of interest for the remainder of this thesis are those where

the number of possible events are finite. In such a situation we may make the

substitution Mωi ≡ Mi, and loosely identify the POVM with the collection of the

effects 11 as

M = {Mi}
N
i=1 with the property that

N∑

i=1

Mi = 1. (2.13)

2.2.5.1 Sharp observables

A subclass of POVMs are projective valued measures (PVM), which are also known

as sharp observables. Here, the effects are described by orthogonal projector op-

erators, and the events can be associated with the support of the projectors on

H. Furthermore, these projectors need not be rank-1. Indeed, while a PVM with

d projector effects requires a Hilbert space with a minimum dimension of d, a d-

dimensional Hilbert space allows for a PVM with fewer projector effects. We denote

a PVM on finite dimensional Hilbert spaces Cd, constituted of d rank-1 projector ef-

fects associated with the orthonormal basis {φi}di=1, as P = {Π(φi)}di=1. Naimark’s

dilation theorem [Naimark, 1943] relates POVMs and PVMs by stating that any

POVM acting on a d-dimensional Hilbert space can be realised by a PVM acting on

an extended Hilbert space with dimension d′ > d.

In many experiments we only wish to determine the expectation value of a given

observable, given by the average event value. For the case of sharp observables,

we may facilitate this by identifying P = {Π(φi)}di=1 with a self-adjoint operator

O ∈ Ls(Cd), which has the spectral decomposition

O =
d∑

i=1

ωiΠ(φi) (2.14)

11Hence why, in the physics literature, an effect is often referred to as a POVM element.
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with the real eigenvalues {ωi}di=1 associated with the different events. The expecta-

tion value of measuring O on ρ is then given by

〈O〉 :=
d∑

i=1

ωiP (ωi|ρ) ≡ tr[Oρ] (2.15)

which for pure states is tr[OΠ(ψ)] ≡ 〈ψ|Oψ〉.

2.2.5.2 Instruments

A measurement of observables, whereby the probability distribution over the events

can be used to distinguish between different quantum states ρ1 and ρ2, and hence ex-

tract information from the system, disturbs the quantum system in question [Busch,

2008]. It is useful, therefore, to consider measurements in relation to how they trans-

form quantum states or, equivalently, how they can be used as preparation devices.

To this end, we may introduce the concept of an instrument IM defined as

IMωi : ρ 7→ IMωi [ρ] (2.16)

with the properties

(i) P (ωi|ρ,M) = tr[IMωi (ρ)].

(ii) IM⋃
i ωi

[ρ] =
∑

i I
M
ωi

[ρ] for any pairwise disjoint sequence {ωi : ωi ∈ F , ωi ∩ ωj =

∅} where i ∈ N.

(iii) tr[IMΩ (ρ)] = 1.

(iv) The post-measurement state is ρMωi = IMωi [ρ]/tr[IMωi (ρ)].

Most generally, the action of the instrument can be written as

IMωi [ρ] =
N∑

j=1

P (j)Ki,jρK
†
i,j (2.17)

such that

Mi =
N∑

j=1

K†i,jKi,j . (2.18)
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The case where N = 1 is referred to as an efficient measurement, and that where

N > 1 is an inefficient 12 measurement. In the case of efficient measurements, we

may use the polar decomposition 13 to represent the Kraus operator Ki [Kraus, 1983]

as

Ki = U

√
K†iKi ≡ U

√
Mi (2.19)

where U can be one of many unitary operators. Hence, we may conceive of the

measurement transformation as occurring in two parts; the state is first transformed

under the action of
√
Mi, followed by some unitary transformation. It should be

clear that, generally, an instrument uniquely determines an observable, but that an

observable may be implemented by many instruments.

What is known as a minimal measurement is an instrument where U = 1. Minimal

measurements of sharp observables are achieved by Lüders instruments

IPωi [ρ] = Π(φi)ρΠ(φi). (2.20)

Here, after a measurement outcome ωi, the post-measurement state is ρPωi = Π(φi).

It is often said that the state ρ collapses to Π(φi). Resultantly, any proceeding

measurement of the system by the same sharp observable P will give the result of

ωi with a probability

P (ωi|ρ
P
ωi
,P) = tr[Π(φi)] = 1. (2.21)

One can say that a sharp observable due to a Lüders instrument constitutes a

repeatable measurement.

2.2.5.3 Measurement models

In the previous section we saw that an observableM = {Mωi} on a Hilbert space H

is uniquely determined by an instrument IM. These are in turn uniquely determined

by a measurement model MM, where the observable M on the system of interest,

12 Inefficient measurements include statistical uncertainties, whereby several different state trans-
formations are registered as the same measurement outcome.

13The polar decomposition states that for every L ∈ L(Cd), there exists a unitary operator U
such that L = U |L|. U is uniquely determined only if L is invertible.
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often referred to as the object in such a context, is measured indirectly by observing

a probe, or measurement apparatus, after it has interacted with the object. A

measurement model may generally be described by the 5-tuple

MM = 〈K, %, U, Z, f〉 (2.22)

where K is the probe Hilbert space, % is the initial state of the probe, U is a unitary

operator acting on H⊗K, and Z the self-adjoint operator associated with the sharp

observable on the probe. The “pointer function” f is an invertible mapping between

the measurable space of the probe 〈Ω′,F ′〉 and that of the object 〈Ω,F〉 such that

f : ω′i 7→ ωi. For this model to determine the observable M, it must satisfy the

“probability reproducibility condition”

tr
[
(1⊗Mf−1(ωi))Uρ⊗ %U

†
]

= tr [Mωiρ] ∀ ρ ∈ S(H), (2.23)

and for it to also be repeatable, it must further satisfy

tr
[
(Mωi ⊗Mf−1(ωi))Uρ⊗ %U

†
]

= tr [Mωiρ] ∀ ρ ∈ S(H). (2.24)

The most general measurement model for a sharp observable associated with the

self-adjoint operator O, which is diagonal with respect to the basis {φi}, is the von

Neumann-Lüders measurement model [von Neumann, 1996] where the initial probe

state % ≡ Π(ϕ) is pure, the action of the joint unitary operator U is

U : φi ⊗ ϕ 7→ φi ⊗ ϕi, (2.25)

and the probe observable Z is diagonal with respect to the basis {ϕi}.

2.2.5.4 Ensemble measurements of sharp observables

It is possible to perform local measurements on a composite system HA⊗HB, with

observables MA on subspace HA and MB on subspace HB. The events of such

an experiment are given by the cartesian product of the events of the individual

observables, denoted 〈ωAi , ω
B
j 〉, with the corresponding effect operators MA

i ⊗M
B
j .

The joint probability of the these two events is

P (ωAi , ω
B
j |M

A,MB, ρ) = tr[MA
i ⊗M

B
j ρ]. (2.26)
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Figure 2.3: A measurement device performing an ensemble measurement of a sharp observable

O, denoted O′, on a composite Hilbert space H⊗N .

However, in many experimental situations we do not have access to the events in

the individual subspaces, but only their average. The composite system in such

situations is referred to as an ensemble or assembly. If each d-dimensional subsystem

of a composite Hilbert space
⊗N

n=1H
n ≡ H⊗N can be measured by the same sharp

observable

O =
d∑

i=1

ωiΠ(φi) (2.27)

we may identify the following self-adjoint operator

O′ =
1

N

N∑

n=1

On ⊗ 1¬n (2.28)

with the ensemble measurement of O, where each On acts on subspace Hn and

1¬n signifies an identity operator on all subspaces other than Hn. The eigenvectors

of this observable are given by
⊗N

n=1 φn with the generally degenerate eigenvalues

1
N

∑N
n=1 ωn.

If we wish to only determine the expectation value of the ensemble observable, we

notice that

tr[O′ρ] = tr

[
1

N

N∑

n=1

On ⊗ 1¬nρ

]

= tr

[

O

(
1

N

N∑

n=1

ρn

)]

(2.29)

where ρn = tr¬n[ρ]. As such, we may say that the composite state ρ on a dN -

dimensional Hilbert space has associated with it an effective ensemble state on a

d-dimensional Hilbert space given by

ρ̄ =
1

N

N∑

n=1

ρn (2.30)
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which has a clear interpretation as the averaged reduced density operator.

Let us now consider a von Neumann-Lüders measurement of this ensemble observ-

able, where the object is initially in a pure separable state Ψ =
⊗N

i=1 ψn. The

measurement Hamiltonian is

HI = f(t)P ⊗
g

N

N∑

n=1

On ⊗ 1¬n (2.31)

where P is a self-adjoint operator acting on the probe from the conjugate pair {P,Q},

f(t) is a function that is non vanishing only during the measurement process and

is normalised such that
∫
dtf(t) = 1, and g is the strength of the measurement

(See Appendix C) . The probe is initially in a Gaussian state which, in the Q

representation, is given by ψ(q). After the measurement interaction, the object

and probe are generally entangled, with the reduced state of the probe being in

the statistical mixture
∑

a P (a)Π(ψ(q − ga)), where {a} are the eigenvalues of the

ensemble observable O′. The shift in the expectation value of Q on the probe, Δ〈Q〉,

will correspond with the measured eigenvalue.

An interesting question to ask is what the measurement statistics of the ensemble

observable will be in the limit of N → ∞. As shown by [Aharonov and Vaidman,

1990] we may always write

Oψn = αψn + βψ⊥n (2.32)

where 〈ψ⊥n |ψn〉 = 0. From this we can determine that α = 〈ψn|Oψn〉 ≡ 〈On〉 and

β =
√
〈Oψn|Oψn〉 − 〈ψn|Oψn〉2 ≡ ΔOn . It follows that the projection of Ψ by O′

is

O′Ψ =

(
1

N

N∑

n=1

On ⊗ 1¬n

)
N⊗

n=1

ψn =
1

N

N∑

n=1

(
〈On〉ψn + ΔOnψ

⊥
n

)⊗

m 6=n

ψm,

=

(
1

N

N∑

n=1

〈On〉

)
N⊗

n=1

ψn +
1

N

N∑

n=1

ΔOnψ
⊥
n

⊗

m 6=n

ψm,

= 〈Ψ|O′Ψ〉Ψ + Ψ⊥ ≡ Φ̃, (2.33)

which can be normalised as Φ = Φ̃/‖Φ̃‖. In the limit of N → ∞, we explicitly
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calculate ‖Φ̃‖ to be

lim
N→∞

‖Φ̃‖ = lim
N→∞

∥
∥
∥
∥
∥
〈Ψ|O′Ψ〉

N⊗

n=1

ψn +
1

N

N∑

n=1

ΔOnψ
⊥
n

⊗

m 6=n

ψm

∥
∥
∥
∥
∥
,

= lim
N→∞

√√
√
√〈Ψ|O′Ψ〉2 +

1

N2

N∑

n=1

(ΔOn)2,

= 〈Ψ|O′Ψ〉, (2.34)

where we have relied on the fact that every vector in the summation
∑

n ψ
⊥
n

⊗
m 6=n ψm

is mutually orthogonal. Using this result, the trace distance between Ψ and Φ is

calculated as

lim
N→∞

d(Ψ,Φ) = lim
N→∞

∣
∣
∣
∣2

(

1−
〈Ψ|O′Ψ〉

‖Φ̃‖

)∣∣
∣
∣

1/2

= 0 (2.35)

and, thus, we arrive at the striking conclusion that

lim
N→∞

O′Ψ = 〈Ψ|O′Ψ〉Ψ ∀ Ψ =
N⊗

n=1

ψn ∈ H
⊗N . (2.36)

If the object is initially in the state ρ =
∑

i P (i)Π(Ψi), after the measurement

interaction the state of the system and apparatus will be

∑

i

P (i)Π(Ψi)⊗ Π(ψ(q − g〈Ψi|O
′Ψi〉)) (2.37)

with the probe’s reduced state given as
∑

i P (i)Π(ψ(q−g〈Ψi|O′Ψi〉)). In the limit of

ψ(q) being a delta function, a single measurement of the probe will reveal 〈Ψi|O′Ψi〉

with a probability of P (i). Additionally, if all the probe states ψ(q − g〈Ψi|O′Ψi〉)

are (effectively) orthogonal, then the state of the object will not be (significantly)

altered by the measurement.

It should be stressed that the proof above has rested upon the separability of the

object state. If the initial pure state Ψ is entangled, then even in the N →∞ limit

it will not be an eigenstate of O′.

2.2.6 Entanglement

In a composite Hilbert space, there are states that cannot be written as a convex

combination of product states. In this section I shall provide a historical overview
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for why such states are of interest with respect to the correlations they possess.

Consider two sharp observables Ox and Op which do not commute, i.e. where

[Ox, Op]− := OxOp − OpOx 6= O. In their seminal paper [Einstein et al., 1935]

Einstein, Podolsky and Rosen (EPR) argued that, as a quantum state cannot in-

stantaneously predict the measurement outcome of two non commuting observables

Ox and Op with certainty, that there are two possibilities:

(i) The values of these non commuting observables cannot have simultaneous re-

ality.

(ii) Quantum mechanics does not have a one-to-one correspondence between the

elements of the theory and the elements of reality, and is thus incomplete.

A quantity described by a physical theory is said to correspond with an element of

reality if its value can be predicted with certainty without disturbing the system.

EPR proposed a thought experiment, where two observers at the space-like sepa-

rated14 positions A and B – who we call Alice and Bob respectively – share a pure

quantum state of two particles emitted simultaneously from a source, and moving

in opposite directions such that their relative momentum is zero, and their relative

distance is L (the non commuting observables here are position and momentum).

Therefore, the measurement statistics is highly correlated such that if a measure-

ment outcome for the position of the particle at A is x, then the position at B is

−x with certainty, and similarly for the momentum. Although this example uses an

infinite dimensional Hilbert space, we may consider the argument in a finite dimen-

sional case which is conceptually more simple. Imagine if the vector in H = C2⊗C2

corresponding with a bipartite pure state is given by

ΨA+B =
1
√

2
(φA0 ⊗ φ

B
0 + φA1 ⊗ φ

B
1 ) (2.38)

where {φ0, φ1} forms an orthonormal basis for both HA and HB. Suppose also that

both Alice and Bob can measure the non commuting observables Ox = {Π(φ0),Π(φ1)}

with events {x0, x1} and Op = {Π(φ+),Π(φ−)} with events {p+, p−}. We designate

14Space-like separated events are those which lie outside one another’s light cones and, by the
principle of relativistic causality, cannot be causally related.
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φ± = 1√
2
(φ0 ± φ1). If both Alice and Bob measure the same observable, then their

measurement statistics are fully correlated. For example, since

P (xA0 , x
B
0 ) = tr[(Π(φ0)

A ⊗ Π(φ0)
B)Π(Ψ)] =

1

2
(2.39)

and

P (xA0 ) = tr[(ΠA
φ0
⊗ 1B)Π(Ψ)] =

1

2
(2.40)

we may use Bayes’ rule to infer that P (xB0 |x
A
0 ) = 1. Hence, if the measurement of Ox

by Alice yields the event x0 then Alice knows with certainty that the measurement of

Ox by Bob will yield result x0 also, without Bob ever needing to perform that mea-

surement. Similar arguments hold for measurement of Op. EPR argue that as Bob’s

system can be measured indirectly without disturbing it (because the two observers

are space-like separated) the value of x and p at B are simultaneously elements of

reality. 15 Therefore EPR conclude that Quantum mechanics is incomplete.

Following this result, many people have approached the apparent incompleteness

of quantum theory by trying to construct hidden variable theories which stipulate

that the perceived randomness of quantum theory is due to some hidden variables

that we cannot control in experiments, and hence sample a random distribution

thereof. In the 1960s John Bell presented a no-go theorem on the nature of such

hidden variable theories [Bell, 1987]. If we consider the EPR paradox, it relies on

two propositions; realism and locality. These have the following descriptions

(i) Realism: As in classical physics, the property of the object that we wish to

measure, such as the momentum, exists in that object independently of our

measurement. As such, the measurement process is an act of discovering what

is already out there in the universe. Such a view takes the probabilistic na-

ture of quantum theory in the same light as that of statistical mechanics; the

probabilities are a product of our ignorance of the true state of the system in

question.

15It is true that only one of Ox and Op can be measured in any given experiment. However,
in the EPR framework, because the two observers are space-like separated, Alice has freedom to
choose which measurement she performs without disturbing Bob’s system, and hence the state of
Bob must contain the information for both x and p simultaneously.
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(ii) Locality : An observation of a physical quantity at position A depends only on

the parameters at position A and not any other. For an event at A to influence

an event at B, there must be a physical intermediary message which transports

this influence between the two positions. Such a message cannot travel faster

than the speed of light according to the principle of relativistic causality. As

such, for the event at B to be caused by the event at A, the former must exist

in the future light cone of the latter.

Figure 2.4: The setup for a CHSH Bell inequality. The measurements {A1,A2} and {B1,B2}

are carried out at two space-like separated locations A and B so as to ensure their statistics are

independent from one another under the locality assumption. Each measurement will give an

event value {+1,−1}.

John Bell constructed a general measurement scheme of two space-like separated

systems A and B, and assuming local realism, determined an upper bound on the

correlation of measurements conducted in these two positions. It is important to

note that quantum theory has not been assumed here, but only a general scheme of

measurements which can have a binary outcome of ±1 according to some underlying

real parameter. A more general version of the Bell inequality is the CHSH inequality

[Clauser et al., 1969], where the pair of local observables {A1,A2} and {B1,B2} can

be measured on system A and B respectively. These observables have event values

{a1, a2} ∈ ±1 and {b1, b2} ∈ ±1 respectively, and are dependent on some hidden

variable. The correlation of a measurement, say, A1 on A and B1 on B, is given by

the expectation value 〈a1b1〉. This correlation function can give values in the range

of [−1, 1]. If it is +1 then A1 and B1 are fully correlated, and if it is −1 they are

fully anti-correlated. If, on the other hand, it is 0, then the two are uncorrelated.

The local realistic assumptions imply that the following always holds true

(a1 + a2)b1 + (a1 − a2)b2 = ±2 (2.41)
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because if a1 + a2 = 0 then a1 − a2 = ±1 and vice versa. Note that this equation

has counterfactual measurements; in any one experiment, only one of the joint event

values

{a1b1, a1b2, a2b1, a2b2} ∈ ±1 (2.42)

can be determined. In this argument, we are essentially assuming that if, say,

a1 = +1 in the joint event a1b1 owing to some hidden variable, then its value

would also be +1 in the joint event a1b2. In other words, we are assuming that

a1 has an objective, predefined value which is independent of the measurement

performed at B. This is where the local-realistic assumption manifests itself. By

taking expectation values for such measurements and taking the modulus, we obtain

the CHSH inequality

|〈a1b1〉+ 〈a1b2〉+ 〈a2b1〉 − 〈a2b2〉| 6 2. (2.43)

However, quantum theory can, depending on the state and choice of observables

used, violate the CHSH upper bound of 2. 16 This result means that quantum

theory is not a local-realistic theory, and consequently any hidden variable theory

which aims to replicate the predictions of quantum theory must abandon either

realism, locality, or both. Another important inequality is Cirel’son’s inequality

[Cirel’son, 1980]

C = A1 ⊗ B1 +A1 ⊗ B2 +A2 ⊗ B1 −A2 ⊗ B2,

‖C‖ 6 2
√

2, (2.44)

stating that the maximum amount by which the CHSH inequality can be violated

given quantum theory is 2
√

2.

So what states ρA+B ∈ S(HA⊗HB) are the CHSH inequality violated for? It turns

out that a violation of the CHSH inequality is a sufficient reason for a bipartite state

16It should be noted, however, that to date no experiment has been able to prove that reality
violates the CHSH inequality, because experimental imperfections and impracticalities introduce
loopholes, which would increase the upper bound of 2. Although a few experiments have closed
some of these loopholes, to prove that reality violates Eq.(2.43), one must close all of these loopholes
simultaneously.
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to be inseparable. 17 Separability of a bipartite state ρA+B is assured whenever it

can be written as a convex combination of product states

ρA+B =
∑

i

P (i)ρAi ⊗ ρ
B
i . (2.45)

When a bipartite state cannot be written in such a form, as is the case for Eq.(2.38),

it is inseparable or entangled. Two good review articles for entanglement are given

by [Plenio and Virmani, 2007] and [Horodecki et al., 2009]. I give a brief description

of three measures which quantify entanglement in Appendix B.

2.2.7 Quantum dynamics

Figure 2.5: The simplified Stern Gerlach experiment with the inclusion of quantum channels.

After the preparation of a specific quantum system ρ, and before the state reaches the detectors,

it may evolve according to a quantum channel E [ρ]. This is known as the Schrödinger picture.

Alternatively, instead of the state, the detectors may be seen to evolve by the dual channel E†.

This is the Heisenberg picture.

So far our description of a quantum mechanical experiment has involved two con-

ceptual parts; the preparation of a quantum state, and the measurement of said

state. We may, however, include another element in our description to allow for the

possibility of both measuring a different state than that which was prepared initially,

or to change the measurement from that which was initially chosen. To this end, we

introduce the concept of quantum operations18, defined as E [∙] : S(H) → S̃(H′),

which map states from the state space S(H) to the subnormalised state space

17Violation of the CHSH inequality is not necessary for inseparability, however, as is evident by
the inseparable Werner states [Werner, 1989] that do not violate the CHSH inequality. This shows
that inseparability is a more general phenomenon than Bell inequalities.

18Quantum operations are also called super-operators; just as operators map between vectors in
a Hilbert space, super-operators map between operators in the operator vector space.
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S̃(H′) = {ρ̃ ∈ Ls(H′) : 0 6 tr[ρ̃] 6 1}. The dimension of H′ need not be the

same as that of H; dim(H′) > dim(H) implies the addition of an ancillary Hilbert

space, and dim(H′) < dim(H) implies the discarding of a subspace. A quantum

operation must satisfy the following conditions:

(i) Linearity : This results from the requirement that we may stochastically switch

between different experimental parameters. Hence for λ ∈ [0, 1] we have

λE1[ρ] + (1− λ)E2[ρ] = E3[ρ], and E [λρ1 + (1− λ)ρ2] = λE [ρ1] + (1− λ)E [ρ2].

(ii) Trace non-increasing : All quantum operations must satisfy tr[E(ρ)] 6 1. A

quantum operation for which tr[E(ρ)] = 1 is a deterministic quantum opera-

tion, also known as a quantum channel. Conversely, a quantum operation for

which tr[E(ρ)] < 1 is a stochastic or probabilistic quantum operation.

(iii) Complete positivity : A quantum state is positive, and hence ρ̃′ = E [ρ] must also

be positive for all ρ ∈ S(H). However this is not sufficient. Given a composite

system HA ⊗ HB, a quantum operation EA : S(HA) → S̃(H′A) is said to be

completely positive if the mapping EA⊗1B on S(HA⊗HB) is also positive for all

finite dimensional extensions HB. This is a necessary requirement for physical

processes, as operating locally on a subspace of an entangled state ρA+B must

provide a valid physical state. As shown in Appendix B.3, an example of a

positive map which is not completely positive is the partial transposition.

All quantum operations can be written down in the operator sum form, also known

as the Kraus decomposition [Kraus, 1983]

E [∙] : ρ 7→
∑

i

KiρK
†
i ,

∑

i

K†iKi 6 1 (2.46)

with the Kraus operators {Ki}. In the case of finite dimensional Hilbert spaces Cd,

the number of Kraus operators cannot be greater than d2. It should be immediately

apparent that measuring a POVM using the instrument IMΩ results in a quantum

channel. 19

So far we have discussed quantum operations as mappings on quantum states. How-

19Or a stochastic quantum operation for the instrument IM⋃
i ω
where

⋃
i ωi ⊂ Ω.
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ever, since quantum theory only concerns itself with the probability of measurement

outcomes, we can consider the dual of a quantum operation, E†, as a mapping on

effects

P (ωi|E [ρ]) = tr[MiE [ρ]] = tr

[
∑

j

MiKjρK
†
j

]

= tr

[
∑

j

K†jMiKjρ

]

= tr[E†[Mi]ρ] = P (ω′i|ρ) (2.47)

where ω′i denotes the event associated with the effect E†[Mi]. The framework in

which states are transformed is the Schrödinger picture, and the equivalent frame-

work in which the effects change is the Heisenberg picture.

The simplest class of a quantum channel is the unitary channel, where EU [∙] : ρ 7→

UρU †. This channel has the unique property that it is reversible, meaning that it

has an inverse channel – which for a unitary channel is given by its dual – such that

concatenating this channel with its inverse gives E−1U ◦ EU [ρ] = U †UρU †U = ρ.

An aspect of quantum channels which will be of relevance to the study of quantum

noise is their contractivity

Fid[E(ρ1), E(ρ2)] > Fid[ρ1, ρ2],

D[E(ρ1), E(ρ2)] 6 D[ρ1, ρ2], (2.48)

which means that deterministic quantum channels can never improve our ability to

distinguish between two quantum states. 20 The equality here holds for the unitary

channels or when ρ1 and ρ2 are both stationary states of the channel E [∙]. 21 Some

channels that increase the fidelity between two states, and hence lead to quantum

noise, are the depolarising channel, the dephasing channel, and the random unitary

channel

Edepolarising[∙] : ρ 7→ λ
1

d
1 + (1− λ)ρ. (2.49)

Edephasing[∙] : ρ 7→
∑

i

〈φi|ρφi〉Π(φi). (2.50)

20It should be noted that this does not need to hold for stochastic quantum operations, which
can probabilistically decrease the fidelity between quantum states. An example is the stochastic
perfect state discrimination [Chefles, 2000] .

21The stationary states of a channel are defined as the set of states {ρi} such that E [ρi] = ρi.
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Erandom unitary[∙] : ρ 7→
∑

i

P (i)UiρU
†
i . (2.51)

The depolarising channel is a convex combination of the identity channel and the

contraction of ρ to the maximally mixed state 1
d
1. The dephasing channel reduces a

state ρ to its diagonal components, given a specific basis {φi}, where all elements of

the matrix 〈φi|ρφj〉Π(φi) such that i 6= j are eliminated. The random unitary chan-

nel has a clear meaning, which is a convex combination of different unitary channels,

such that the full channel itself is no longer unitary and hence irreversible.

2.2.7.1 Separable operations

The concept of separability, introduced in Sec.2.2.6, can also be used for quantum

operations. A quantum operation EA+B[∙] is said to be separable with respect to the

A : B partition if it can be written as

EA+B[ρ] =
∑

i

(Ai ⊗ Bi)ρ
A+B(A†i ⊗ B

†
i ). (2.52)

Given a separable input state ρA+B, such separable operations cannot generate an

entangled state.

A separable unitary operator is given by UA+B = UA ⊗ UB. However, as shown

in [Busch, 2003], A SWAP unitary on HA ⊗ HB, possible only when HA and HB

have the same dimension, also does not generate any entanglement given an initial

product state. Such a unitary operation is characterised as

UφA ⊗ ϕB = VBAϕ
A ⊗WABφ

B (2.53)

with the isometries VBA : HB → HA and WAB : HA → HB. Notwithstanding such a

unitary map is strictly not separable, but separability preserving. This is a weaker

condition [Harrow and Nielsen, 2003], stipulating that although a SWAP map cannot

generate entanglement given a separable input state, one may generate entanglement

between HA and HB utilising ancillary systems HA′ and HB′ . Additionally, if the

SWAP map is the result of some continuous unitary operator Uτ at τ = t, then at

some other value of τ it must be entangling. 22

22Consider, for example, the entangling
√
SWAP gate.
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2.2.7.2 Stinespring’s dilation theorem

Two examples of quantum operations, where they correspond respectively to an

increase and decrease in Hilbert space dimension, and are also trace preserving and

hence quantum channels, are

(i) Independent addition of an ancillary system : The addition of an ancillary

system, or a probe, % ∈ S(HB) to the system space HA, independently of the

state in the system space, is characterised by the map E% : ρ 7→ ρ ⊗ % ∀ ρ ∈

S(HA). The complete positivity and linearity of this map are evident. This is

also a quantum channel as it is trace preserving, since tr[ρ⊗%] = tr[ρ]tr[%] = 1.

(ii) Partial trace: In the Heisenberg picture, it is the effects that are acted upon

by the dual of the partial trace, defined as tr†B : L(HA)→ L(HA⊗HB), which

acts on an effect MA
i as tr†B[MA

i ] = MA
i ⊗ 1B. This is completely positive,

linear, as well as trace preserving. It is therefore a quantum channel.

We may therefore concatenate these, together with a unitary channel EU with U ∈

L(HA ⊗HB), to obtain a quantum channel E [∙] acting on a system A as

EA[∙] = trB ◦ EU ◦ E%. (2.54)

Stinespring’s dilation theorem [Stinespring, 1955], analogous to Neimark’s dilation

theorem, states that any quantum channel can be decomposed in such a way. Equiv-

alently, any unitary evolution acting on a system and a probe, initially in a prod-

uct state, leads to a deterministic quantum channel on the system. If the unitary

channel forms a dynamical semigroup, where given a positive parameter τ we have

Uτ1Uτ2 = Uτ1+τ2 , then we may equivalently say that the doublet 〈EUτ , E%〉 charac-

terises a family of quantum channels {Eτ : τ ∈ R+}, where the channels therein

differ only due to the positive parameter τ of the unitary channel.

Let us consider a concrete example. We start with the initial addition of a probe by

the map E% : ρA 7→ ρA ⊗ %B. Using the canonical pure state decomposition of %B,
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this can be expressed as

∑

i

P (i)ρA ⊗ Π(φi)
B ≡

∑

i

P (i)|φi〉ρ
A〈φi|. (2.55)

The composite system subsequently evolves due to the unitary operator Uτ , followed

by a partial trace over HB which results in the following quantum channel

EAτ
[
ρA
]

=
∑

i,j

P (i)〈ϕj|Uτ |φi〉ρ
A〈φi|U

†
τ |ϕj〉,

=
∑

i,j

Ki,j(τ)ρAK†i,j(τ).

Here, the Kraus operators 23 are given by Ki,j(τ) =
√
P (i)〈ϕj|Uτ |φi〉. This quantum

channel can be thought of as a result of a measurement model, as discussed in

Sec.2.2.5.3, where the partial trace is in fact the result of carrying out a projective

measurement on the probe with respect to the basis {ϕj}. If the joint unitary channel

is separable, meaning that Uτ = UA
τ ⊗ U

B
τ , then no information can be transferred

from the object to the probe, and system A simply undergoes a reversible unitary

evolution.

2.3 Closed quantum systems

A closed quantum system is a mathematical idealisation reminiscent of the free point

mass in classical mechanics. It assumes that the quantum degrees of freedom of the

system are completely isolated from the rest of the universe, and any interaction

that they can have with the outside world are through classical means, such that

the external object is not affected at all by the quantum system. An isolated spin

in a classical magnetic field is a clear example, where it interacts not with other

quantum objects, but rather with the external magnetic field which is a purely

classical quantity, and not affected by the state of the spin.

23Note that the quantity 〈ϕj |Uτ |φi〉 is not an inner product, but rather a shorthand for the
operator

∑
l ql〈ϕj |Blφi〉Al acting onH

A, where
∑
l qlAl⊗Bl is the operator-Schmidt decomposition

of Uτ .
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The differential equation governing the evolution of a quantum state in a closed

system is the Liouville-von Neumann equation

L [ρ(t)] ≡
d

dt
ρ(t) = i[ρ(t), H(t)]− (2.56)

where L is the Liouville super-operator, and H(t) is the – generally time-dependent

– Hamiltonian of the system, which is a self-adjoint operator. This is reminiscent of

Hamilton’s equations of motion expressed in terms of the Poisson brackets in classical

mechanics. The final time state ρ(t), given an initial state ρ(t0), is deterministically

obtained as

ρ(t) = T←e
∫ t
t0
dt1L (t1)ρ(t0) = ρ(t0) + i

∫ t

t0

dt1 [ρ(t0), H(t1)]−

−
∫ t

t0

dt1

∫ t1

t0

dt2
[
[ρ(t0), H(t1)]− , H(t2)

]
−

+ ...,

= Ut,t0ρ(t0)U
†
t,t0 (2.57)

where T← is the time ordering operator, and t1 > t2 > ... > tn. In other words, the

time-dynamics of closed quantum systems are governed by unitary channels that

are generated by the Hamiltonian. The time evolution unitary operator Ut,t0 is the

solution to Schrödinger’s equation

d

dt
U(t) = −iH(t)U(t) (2.58)

and is in general given by the Dyson series as

Ut,t0 := T←e
−i
∫ t
t0
dt1H(t1),

= 1 +
∞∑

n=1

(−i)n
∫ t

t0

dt1...

∫ tn−1

t0

dtnT←H(t1)...H(tn)

= 1 +
∞∑

n=1

(−i)n

n!

∫ t

t0

dt1...

∫ t

t0

dtnH(t1)...H(tn). (2.59)

2.3.1 Unitary evolution given a time-independent Hamiltonian

In the special case of a time-independent Hamiltonian, the unitary operator simpli-

fies to Ut,t0 = e−i(t−t0)H . From now on, for time-independent Hamiltonians, we shall

use the simplified notation Uτ := e−iτH where τ = t−t0. The stationary states of the

45



unitary channel EUτ are convex combinations of the pure states {Π(φi)}, where {φi}

form a basis in which H is diagonal. This is often referred to as the eigenbasis of H

and the individual pure states are referred to as the eigenstates, or eigenvectors, of

the Hamiltonian.

The unitary operators generated by time-independent Hamiltonians form dynamical

semigroups, because Uτ1Uτ2 = Uτ1+τ2 . This is easily understood when considering

the unitary operators in their diagonal form

Uτ =
∑

i

e−iτEiΠ(φi) (2.60)

given the Hamiltonian’s eigenbasis {φi} and energies {Ei}. If the Hamiltonian is

the same for both unitaries, then they are diagonal in the same basis, and their

concatenation results in the addition of their phases. Furthermore, given a finite

dimensional Hilbert space, we may always find a T <∞ such that

T En = 2π ∀ En. (2.61)

At times T , then, Uτ becomes an identity operator. As Uτ is continuous and dif-

ferentiable, we may say that it forms an orbit in the state space S(Cd). Any initial

input state ρ(t0) will be taken along a smooth and differentiable loop and, at times

NT , where N is an integer, will come back to ρ(t0). The orbit time T depends

upon the dimension of the Hilbert space, growing longer as the Hilbert space gets

larger.

2.3.2 Unitary evolution given a time-dependent Hamiltonian

A useful technique for dealing with time-dependent Hamiltonians is to separate

them into a time-independent and time-dependent part as H(t) = H0 +HI(t). The

dynamics can then be taken into the interaction picture by the transformation of

both the Hamiltonian and the state by the unitary operator U0,τ := e−iτH0 as

H(t) 7→ H̃(t) = U †0,τH(t)U0,τ ,

ρ(t) 7→ ρ̃(t) = U †0,τρ(t)U0,τ . (2.62)
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The Liouville-von Neumann equation in the interaction picture involves only the

interaction Hamiltonian H̃I(t), and is given by

d

dt
ρ̃(t) = i[ρ̃(t), H̃I(t)]− (2.63)

which gives Ũt,t0 = U †0,τUt,t0U0,τ . To see that this is equivalent to the Schrödinger

picture, we insert the substitutions in Eq.(2.62) such that

d

dt

(
eiτH0ρ(t)e−iτH0

)
= i[eiτH0ρ(t)e−iτH0 , eiτH0HI(t)e

−iτH0 ]−

⇒ eiτH0
d

dt
ρ(t)e−iτH0 = i[eiτH0ρ(t)e−iτH0 , H0]− + i[eiτH0ρ(t)e−iτH0 , eiτH0HI(t)e

−iτH0 ]−

⇒ eiτH0
d

dt
ρ(t)e−iτH0 = eiτH0 (i[ρ(t), H0 +HI(t)]−) e−iτH0 . (2.64)

2.4 Open quantum system dynamics

An open quantum system is the extension of a closed system to a more realistic

setting. Here, the quantum system in question is embedded in a larger system that

is itself considered to be closed.24 As such, the dynamics of an open system is given

by the reduced dynamics of the larger one

L [ρA(t)] ≡
d

dt
ρA(t) = trB (i[ρ(t), H(t)]−) . (2.65)

The component of the full Hilbert space which excludes the system is one on which

we are unable to perform any measurements, and therefore is designated the term

environment or bath as inspired by thermodynamics. It is possible to write the full

system Hamiltonian as

H = HA ⊗ 1B +HA+B
I + 1A ⊗HB (2.66)

where the interaction term is isolated from the Hamiltonians that govern the system

A and environment B only. As shown in the discussion of Stinespring’s dilation

theorem in Sec.2.2.7.2, if the system and environment are initially in a product state,

24Perhaps only the universe can reasonably be assumed to be closed. It is difficult to conceive of
a system that is fully isolated from the rest of the universe, as even a scattering event by a single
photon, where the latter is unaccounted for, would render it an open system.
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then the evolution undergone by the system’s reduced density operator is described

by a quantum channel. This is a non unitary channel if and only if the unitary

evolution the composite system undergoes is inseparable, which results from the

presence of the interaction Hamiltonian. As such, we may characterise non unitary

evolution of open quantum systems by the entanglement established between them

and their environment.

Solving Eq.(2.65) is generally very difficult, however, and grows more so exponen-

tially as the size of the environment increases. Approximate techniques do exist to

treat the reduced dynamics of specific systems, however, with the most common one

being the master equation technique. In what follows, we give a brief overview of

this.

2.4.1 From dynamical semigroups to the Lindblad master equation

As mentioned previously, the unitary operators generated by time-independent Hamil-

tonians form dynamical semigroups. This is a special subclass of dynamical semi-

groups in general, defined as a family of quantum channels {Eτ : τ ∈ R+} satisfying

Eτ2 ◦ Eτ1 = Eτ1+τ2 for all τ1, τ2 ∈ R+, and trivially E0 = 1. As outlined in [Breuer

and Petruccione, 2007] a family of quantum channels that form a dynamical semi-

group, under certain mathematical conditions which we shall not cover here, can be

expressed in exponential form as

Eτ = eτL (2.67)

where the Liouville super-operator L is the generator of this map. Such a generator

can be expressed most generally as the Lindblad master equation which has the

form

L [ρ(t)] ≡
d

dt
ρ(t) = i [ρ(t), H]− +D [ρ(t)] (2.68)

where H is the time-independent Hamiltonian governing the unitary part of the

dynamics and D is the dissipator given by

D [ρ(t)] =

N6d2−1∑

i

γi

(

Liρ(t)L†i −
[
ρ(t), L†iLi

]

+

)

. (2.69)

48



Here, [∙, ∙]+ is the anti-commutator defined as [A,B]+ := AB + BA. The γi are

positive, having the dimension of inverse time, and can be interpreted as decay

rates. The associated Kraus operators Li are also called Lindblad operators in such

a context. d has its usual meaning as the dimension of the Hilbert space. Such

a differential equation preserves the positivity, trace, and self-adjoint properties of

density operators.

Due to the semigroup structure of this form of dynamics, the operators in the dif-

ferential equation are time-independent, and the evolution of state ρ(t) does not

depend on its history but rather only on its configuration at the infinitesimal time

t. This type of dynamics is called Markovian.

2.4.2 A microscopic derivation of the Lindblad master equation

In the previous section we discussed how quantum channels that form a dynamical

semigroup are generated by the Lindblad master equation. Here we wish to start

off with a microscopic description of an open quantum system, and from this derive

a Markovian master equation which, to ensure it preserves the properties of density

operators, we must be able to give in Lindblad form. Provided we have knowl-

edge of the total Hamiltonian of the system and its environment, we may use the

method of the weak-coupling approximation which, as the name implies, assumes

the system and its environment are weakly coupled. The arguments provided follow

those from [Breuer and Petruccione, 2007] and [Kryszewski and Czechowska-Kryszk,

2008].

Let the time-scale for the relaxation of the environment to the thermal equilibrium

state % such that [%,HB]− = O be τenv, and the time-scale for the relaxation of

the system due to its interaction with the environment be τsys. If the interaction

strength between the system and environment, V := ‖HI‖, is weak in comparison

with the spectral width given by the environment relaxation time, V τenv � 1, then

the coarse-grained time-scale for the system evolution, Δt, satisfies the condition

τsys � Δt � τenv. We are therefore justified in expressing the system-environment
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composite state for all time t as the product state ρtot(t) = ρ(t)⊗ %, which is known

as the Born approximation.

We will develop our master equation by using the Liouville-von Neumann equation

in the interaction picture. Firstly, we note that the rate of change in the total system

in our coarse-grained picture is given by averaging out the small-time fluctuations of

the state in the interval Δt; Δρ̃tot(t)
Δt

= 1
Δt

∫ t+Δt
t

ds d
ds
ρ̃tot(s). To begin, we use the fact

that the density operator can be written as ρ̃tot(t) = ρ̃tot(t0)+ i
∫ t
t0
ds[ρ̃tot(s), H̃I(s)]−

to write the Liouville-von Neumann equation for the reduced dynamics in differentio-

integral form.

Δρ̃(t)

Δt
=

1

Δt

(

i

∫ t+Δt

t

dt1trB

[
ρ̃(t)⊗ %, H̃I(t1)

]

−

)

−
1

Δt

(∫ t+Δt

t

dt1

∫ t1

t

dt2trB

[[
ρ̃(t)⊗ %, H̃I(t2)

]

−
, H̃I(t1)

]

−

)

−
1

Δt

(

i

∫ t+Δt

t

dt1

∫ t1

t

dt2

∫ t2

t

dt3trB

[[[
ρ̃(t3)⊗ %, H̃I(t3)

]

−
, H̃I(t2)

]

−

, H̃I(t1)

]

−

)

.

(2.70)

Because we have assumed the interaction Hamiltonian is weak, we may neglect the

third term of this equation, proportional to V 3, which contains the contribution of

the history of the state in the interval [t, t + Δt]. The resultant equation will only

depend on the state of the system at the start of the coarse-graining – ρ̃(t) – and

hence we can make the approximation Δρ̃(t)
Δt

= d
dt
ρ̃(t) which treats the rate of change

of the state as a differential operator dependent on the state of the system at time

t only. This is known as the Markovian or coarse-graining approximation.

As the commutators still contain the full interaction Hamiltonian, this equation

is not very useful. We can proceed by writing the interaction Hamiltonian in its

operator-Schmidt decomposition

H̃I(t) =
∑

α

Ãα(t)⊗ B̃α(t)

=
∑

α

eitH
A

Aαe
−itHA ⊗ eitH

B

Bαe
−itHB
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where the individual Aα and Bα need not be themselves self-adjoint operators. 25

This makes our differential operator

d

dt
ρ̃(t) = i

∑

α

1

Δt

∫ t+Δt

t

dt1trB

[
ρ̃(t)⊗ %, Ãα(t1)⊗ B̃α(t1)

]

−

−
∑

α,β

1

Δt

∫ t+Δt

t

dt1

∫ t1

t

dt2trB

[[
ρ̃(t)⊗ %, Ãβ(t2)⊗ B̃β(t2)

]

−
, Ã†α(t1)⊗ B̃

†
α(t1)

]

−

(2.71)

where we have used the fact that HI is a self-adjoint operator to make the sub-

stitution
∑

α Ãα(t) ⊗ B̃α(t) =
∑

α Ã
†
α(t) ⊗ B̃†α(t), which will prove to be a useful

mathematical tool later on. Owing to the fact that the state of the environment is

stationary, and that we can always shift the energy scales, we may make the non-

restrictive assumption that 〈Bα〉 := trB[Bα%] = 0 ∀ α 26. This has the consequence

that the first part of the differential equation can be ignored.

Before continuing further, it is useful to make some mathematical modifications to

this differential equation. Firstly, let us express the operators Aα in the eigenbasis

of HA, given as {φi}. This is done by noting that

Aα =
∑

Ω

Aα(Ω)

Aα(Ω) =
∑

i,j

δ(Ω− ωij)〈φj|Aαφi〉|φj〉〈φi| (2.72)

where ωij = 〈φi|HAφi〉 − 〈φj|HAφj〉 and δ(∙) is the Kronecker delta function. Con-

sequently the interaction picture operators are given by Ãα(Ω, t) = e−itΩAα(Ω) and

Ã†α(Ω, t) = eitΩAα(Ω) . Furthermore, let us make the observation that for self-adjoint

operators {A,B,C} we have

[
[A,B]− , C

]
−

= ABC − CAB +H.C (2.73)

25Here we have set t0 = 0 so as to change our usual notation of Uτ to Ut. This is done to avoid
confusion with the use of a different symbol τ later on.

26We may write H ′I =
∑
αAα ⊗ (Bα − 〈Bα〉) =

∑
αAα ⊗Bα −

∑
α〈Bα〉Aα ⊗ 1 for any arbitrary

〈Bα〉. Taking the expectation value of the interaction Hamiltonian with respect to subsystem B
then gives 〈H ′I〉B =

∑
αAα(〈Bα〉 − 〈Bα〉) = 0, and we may take the full Hamiltonian as H

′ =
(HA +

∑
α〈Bα〉Aα)⊗ 1B + 1A ⊗HB +H ′I .
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where H.C denotes the Hermitian conjugate of the terms appearing before it. Fi-

nally, we note that as t1 > t2, we can make the substitution t1 − t2 = τ > 0.

Changing the integration variables and limits accordingly leads to
∫ t+Δt
t

dt1
∫ t1
t
dt2 =

∫ Δt
0
dτ
∫ t+Δt
t+τ

dt1 and our differential equation takes the form

d

dt
ρ̃(t) =

∑

α,β

∑

Ω,Ω′

1

Δt

∫ Δt

0

dτeiΩτ
∫ t+Δt

t+τ

dt1e
i(Ω′−Ω)t1〈B̃†α(t1)B̃β(t1 − τ)〉

×
(
Aβ(Ω)ρ̃(t)A†α(Ω′)−A†α(Ω′)Aβ(Ω)ρ̃(t)

)
+H.C . (2.74)

Because of the cyclicity of the trace operator and the commutatitivity of HB with

%, we have the identity

〈B̃†α(t1)B̃β(t1 − τ)〉 = tr[B̃†α(t1)B̃β(t1 − τ)%]

= tr
[
eit1H

B

B†αe
−it1HBei(t1−τ)H

B

Bβe
−i(t1−τ)HB%

]

= tr
[
eiτH

B

B†αe
−iτHBBβ%

]

= 〈B̃†α(τ)B̃β(0)〉 (2.75)

which we may call the bath time correlation function. This only depends on the

time τ during which the initially uncorrelated system and environment have been

undergoing the joint evolution process. Because of our coarse-graining assumption

that Δt � τenv this function vanishes sufficiently fast such that we may take the

upper limit of the integral of dτ to infinity, and the lower limit of the integral of dt1

to t. 27

We now bring our differential equation back into the Schrödinger picture to ob-

tain

d

dt
ρ(t) = i

[
ρ(t), HA

]
−

+
∑

α,β

∑

Ω,Ω′

Gα,β(Ω)Jα,β(Ω,Ω′)
(
Aβ(Ω)ρ(t)A†α(Ω′)−A†α(Ω′)Aβ(Ω)ρ(t)

)
+H.C.

(2.76)

27The coarse-graining Δt is bounded by the bath correlation time τenv, which is itself limited by
the interaction strength V owing to the weak-coupling approximation V τenv � 1. Hence the period
in which the correlation function can be appreciable, such that the Markovian approximation is
still valid, grows longer the weaker the interaction strength becomes.
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where we have made the substitutions

Gα,β(Ω) =

∫ ∞

0

dτ〈B̃†α(τ)B̃β(0)〉eiΩτ ,

J(Ω,Ω′) = ei(Ω−Ω
′)t

∫ t+Δt

t

dt1
ei(Ω

′−Ω)t1

Δt
. (2.77)

This Markovian differential equation is incomplete however, as it is not guaranteed

that it forms the generator of dynamical semigroups. Indeed, there are cases where

such a differential operator has been shown to fail the complete positivity criterion.

An additional step required to get a Markovian master equation that generates

a dynamical semigroup is the secular approximation. We make the observation

that

J(Ω,Ω′) = ei(Ω
′−Ω)Δt

2
sin[(Ω′ − Ω)Δt/2]

(Ω′ − Ω)Δt/2
(2.78)

which is independent of the time variable t. The absolute value of this function

becomes infinitesimally narrow around the region Ω′ − Ω = 0 for all the frequency

terms {Ω} if the time scale Δt is sufficiently long 28 such that Δt� 1/|Ω′−Ω| ∀ Ω 6=

Ω′, which may also be expressed as V/|Ω′−Ω| � 1 ∀ Ω 6= Ω′. If this condition is met,

we may make the secular approximation with the replacement J(Ω,Ω′) = δ(Ω−Ω′).

This can be qualitatively expressed as the energy states of the system fluctuating

many times during the period of appreciable change caused by the environment,

such that terms with different frequencies will be averaged out.

Taking advantage of the fact that we are free to swap the indices {α, β}, we may

incorporate the Hermitian conjugate component into the Master equation to ob-

tain

d

dt
ρ(t) = i

[
ρ(t), HA

]
−

+
∑

α,β

∑

Ω

[
Gα,β(Ω) +G∗β,α(Ω)

]
Aβ(Ω)ρ(t)A†α(Ω)

−
(
Gα,β(Ω)A†α(Ω)Aβ(Ω)ρ(t) +G∗β,α(Ω)ρ(t)A†α(Ω)Aβ(Ω)

)
.

(2.79)

We now introduce some new notation. Gα,β(Ω) can be written as

Gα,β(Ω) =
1

2
Γα,β(Ω) + iΛα,β(Ω) (2.80)

28Because Δt� τsys we may relax this condition to Δt & 1/|Ω′ − Ω| ∀ Ω 6= Ω′
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where we have used

Γα,β(Ω) = Gα,β(Ω) +G∗β,α(Ω),

Λα,β(Ω) =
1

2i

(
Gα,β(Ω)−G∗β,α(Ω)

)
. (2.81)

The matrices Γ(Ω) and Λ(Ω) are Hermitian and positive semi-definite. Given that

for an operator L we have the identity tr[L]∗ = tr[L†], we note that

G∗β,α(Ω) =

(∫ ∞

0

dτeiΩτ trB[B̃†β(τ)B̃α(0)%]

)∗
=

∫ ∞

0

dτe−iΩτ trB[B̃†α(0)B̃β(τ)%]

=

∫ ∞

0

dτe−iΩτ trB[e−iΩτB†αe
iΩτBβ%] =

∫ ∞

0

dτe−iΩτ trB[B̃†α(−τ)B̃β(0)%]

=

∫ 0

−∞
dτeiΩτ trB[B̃†α(τ)B̃β(0)%]

where in the last line we make the substitution of variables τ → −τ . This leads

to

Γα,β(Ω) =

∫ ∞

−∞
dτeiΩτ 〈B̃†α(τ)B̃β(0)〉 (2.82)

which is the Fourier transform of the bath correlation function 〈B̃†α(τ)B̃β(0)〉, and

Λα,β(Ω) =
1

2i

(∫ ∞

0

dτeiΩτ 〈B̃†α(τ)B̃β(0)〉 − e−iΩτ 〈B̃†α(−τ)B̃β(0)〉

)

. (2.83)

Substituting these into our differential equation yields a Markovian master equation

in its first standard form, which is

L [ρ(t)] ≡
d

dt
ρ(t) = i

[
ρ(t), HA +HLS

]
−

+D [ρ(t)] (2.84)

where

HLS =
∑

α,β

∑

Ω

Λα,β(Ω)A†α(Ω)Aβ(Ω) (2.85)

is the Lamb shift, whose action is the change in the energy levels of the system free

Hamiltonian HA, and the dissipator is given by

D [ρ(t)] =
∑

α,β

∑

Ω

Γα,β(Ω)

(

Aβ(Ω)ρ(t)A†α(Ω)−
1

2

[
A†α(Ω)Aβ(Ω), ρ(t)

]
+

)

. (2.86)

This master equation preserves all properties of density operators, as it can always

be written in Lindblad form. This can be done by choosing an appropriate unitary
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operator U which diagonalises the positive decay rate matrix Γ(Ω) =
∑

α,β Γα,β(Ω)

as UΓ(Ω)U † =
∑

μ Γ′μ(Ω). The resultant Lindblad operators in the new basis are

given by Lμ =
∑

α U
†
α,μAα , and so the dissipator for the Lindblad Master equation

is given by

D [ρ(t)] =
∑

μ

∑

Ω

Γ′μ(Ω)

(

Lμ(Ω)ρ(t)L†μ(Ω)−
1

2

[
L†μ(Ω)Lμ(Ω), ρ(t)

]
+

)

. (2.87)

2.4.3 Decoherence in open quantum systems

Let us make one final remark that relates our discussion thus far with the concept of

decoherence [Hornberger, 2009]. Decoherence is the term used to describe the irre-

versible process of environment-induced effective superselection rules [Zurek, 2003]

in a Hilbert space, whereby superpositions can only be established within specified

subspaces, and not between them. Although developed in its inception to explain

quantitatively the lack of interference effects in the macroscopic world (Schrödinger’s

cat), it has come to be used in the domain of mesoscopic, and even microscopic sys-

tems. The exact microscopic model that best describes the decoherence process is

reliant upon the system in question. Nonetheless, a paradigmatic model that aides

in conceptualising the problem is that of an environmental measuring process, which

was covered briefly in Sec.2.2.7.2. Although no person performs a measurement on

the environment, so long as the system and environment become entangled such

that measurements on the latter would reveal information pertaining to the state

of the prior, the system will undergo an irreversible quantum channel. It should

be noted, however, that without the process of measurement on the environment,

the loss of coherence will not be irreversible, as the unitary evolution operator will

eventually 29 bring the system back to its initial configuration. In this formulation,

then, the generation of entanglement between system and environment is necessary

but not sufficient for decoherence.

There are, generally speaking, two types of decoherence: Pure decoherence and

dissipative decoherence.

29Except, of course, if the system is infinite-dimensional.
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(i) Pure decoherence, in the language of quantum channels, is caused by the pure

dephasing channel Eq.(2.50). Given some preferred basis the diagonal ele-

ments of the density operator are left intact but all off-diagonal elements, or

coherences, are destroyed. Usually, the preferred basis is the eigenbasis of

the free Hamiltonian describing the system. In the language of open quan-

tum systems, a sufficient condition for pure decoherence is that the interaction

Hamiltonian between the system and environment commutes with the system

Hamiltonian.30

(ii) Dissipative decoherence, in addition to destroying coherences, also changes the

populations of the system. The depolarising channel Eq.(2.49) is an example

of such a mechanism. In the language of open quantum systems, this usu-

ally results in the exchange of energy between the system and environment. A

necessary condition for dissipative decoherence is that the interaction Hamilto-

nian between the system and environment does not commute with the system

Hamiltonian.
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Chapter 3

Quantum measurement and control with

magnetic resonance

3.1 Introduction

Magnetic resonance is a paradigmatic experimental framework for investigating the

interaction of the intrinsic spin of a material with electromagnetic radiation; it is

a well established experimental field, with a history of over 50 years, explained

by quantum theory. The intrinsic spin of the system – first demonstrated by the

Stern-Gerlach experiment [Stern, 1921] – in most magnetic resonance experiments

is associated either with the electronic or nuclear degrees of freedom of the material.

The intrinsic spin is the prototypical example of a quantum system described by a

finite dimensional Hilbert space. Indeed, many texts will refer to a finite dimensional

quantum system, that is not spin proper, as a pseudo-spin. Regarding the radiation,

as the name implies, it is the (oscillating) magnetic component thereof which is of

interest. Given typical high intensities of the electromagnetic field, we can treat it

classically, and for a large wavelength of the field in comparison with the size of

the sample under study, we may stipulate that the strength of the magnetic field

is independent of position. The effective Hamiltonian governing the spin degree of
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freedom in such a paradigm can therefore be given as

H(t) =
∑

i∈{x,y,z}

γi [B0i +B1i(t)] Ji (3.1)

where {B0x, B0y, B0z} and {B1x(t), B1y(t), B1z(t)} are, respectively, static and fluctu-

ating external magnetic fields.31 Furthermore, {Jx, Jy, Jz} are the spin observables,

whose properties are covered in Appendix A, and {γx, γy, γz} are the gyromagnetic

ratios that determine how strongly the spin operators couple to the external field.

As the static magnetic field defines the coordinate frame of the spin system, we may

define the z axis with respect to this, and relabel it B0. The situations that we will

be studying require the electromagnetic field to be propagating in a perpendicular

direction to B0, and consequently only {B1x(t), B1y(t)} will remain. The resulting

Hamiltonian can thus be rewritten as

H(t) = γzB0Jz + γxB1x(t)Jx + γyB1y(t)Jy,

= H0 +HI(t). (3.2)

Magnetic resonance, then, is the phenomenon where an HI(t) whose time depen-

dence is exhibited by a sinusoidally varying magnetic field, with frequency ω, induces

transitions between eigenstates of H0; the pure stationary states of the unitary chan-

nel EU0,τ . For a given pair of eigenstates {φi, φj}, these transitions are possible if (a)

〈φi|H0φi〉−〈φj|H0φj〉 = ω, hence the resonance in the name, and (b) |〈φi|Jxφj〉| > 0

or, equivalently, that ΔmJ = ±1 where mJ is the spin quantum number. We say

that the transition is allowed by the dynamical selection rule for Jx.

If the transition is that of nuclear spin states, it is called nuclear magnetic resonance

(NMR), and if it is electron spins that have these transitions the effect is named

electron spin resonance (ESR). 32 As far as the mathematical model used to describe

the phenomena is concerned, these two processes are identical, save for the different

gyromagnetic ratios for the two spin types, where that of electron spins is around

31Although typically B1 � B0, the photon occupancy of the electromagnetic field is high. This
is why we are justified in treating this classically.

32In the literature this is often also referred to as electron paramagnetic resonance (EPR). I
opt not to use this term so as to avoid any confusion with the Einstein-Podolsky-Rosen (EPR)
paradox.
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three orders of magnitude larger than the nuclear one. A consequence of this is

that, for values of the static field that can be achieved in most experiments today,

the transition frequencies observed in NMR are in the radio frequency (RF) range,

whereas those of ESR experiments are in the micro wave (m.w.) domain. 33 NMR

as it is understood today was first observed by two groups in America who both

published their results in Physical Review in the year 1946 [Bloch et al., 1946;

Purcell et al., 1946]. ESR was first observed in the USSR in 1945 [Zavoisky, 1945],

and independently developed two years later by researchers in the United Kingdom

[Bagguley and Griffiths, 1947]. Systems with both nuclear and electronic degrees of

freedom were shown to be manipulatable using electron nuclear double resonance

(ENDOR) techniques, demonstrated by [Feher, 1959]. A good textbook covering

techniques for ESR and ENDOR is [Schweiger and Jeschke, 2001], while NMR is

covered by [Cowan, 2005].

3.2 Controlled dynamics in magnetic resonance

3.2.1 Lie algebras, Lie groups, and controllability

In Sec.2.3 it was shown that the dynamics of a closed quantum system is governed

by a unitary operator that is the solution to Schrödinger’s equation. If we want to

achieve controllability, defined as the ability to perform unitary operations capable

of mapping between any two pure states in a given state space, we must be able to

control the system Hamiltonian. Naively approaching the problem of controllability

would seem to require an infinity of Hamiltonians an experimentalist needs to con-

struct in the lab, one associated with each orbit. In the case of finite dimensional

Hilbert spaces, however, we may use the concept of Lie algebras and groups to un-

derstand how controllability can be achieved given a finite set of Hamiltonians an

experimentalist can switch between at will [D’Alessandro, 2007].

A Lie algebra L is defined as a vector space with the addition of a binary operation

33RF frequencies are ∼ MHz and m.w. frequencies are ∼ GHz.
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L × L → L defined as the Lie bracket, or commutator [∙, ∙], which for any ordered

pair of elements {A,B} ∈ L provides another element [A,B] ∈ L. If the Lie algebra

is one of complex matrices, which is called a linear Lie algebra, then the commutator

is defined as [A,B]− := AB −BA and the Lie algebra has the following properties.

34

(i) Bilinearity :

[αA+ βB,C]− = α[A,C]− + β[B,C]− , [C,αA+ βB]− = α[C,A]− + β[C,B]−

(3.3)

∀A,B,C ∈ L , α, β ∈ C

(ii) Jacobi identity :

[
A, [B,C]−

]
−

+
[
B, [C,A]−

]
−

+
[
C, [A,B]−

]
−

= 0 (3.4)

(iii) Skew-symmetry condition :

[A,B]− = −[B,A]− (3.5)

The linear Lie algebras of finite dimensional vector spaces can be generated by a

finite set of elements. The generators of L are the smallest subset of its linearly

independent elements {Ai} such that every element of the whole algebra can be

obtained from this set (or any linear combination thereof) by the repeated use of

the defined commutator. In the case of d× d complex matrices, the generators are

a subset of a given basis that spans L(Cd).

A Lie group 35 eL is obtained by exponentiating the elements of a Lie algebra L,

and is defined as

eL = {eB : B ∈ L}. (3.6)

34It is only condition (iii) that is particular to the Lie algebra of complex matrices. For general
Lie algebras this is replaced by [A,A] = O ∀ A ∈ L.
35In the case of linear Lie algebras, the group operation for eL is matrix multiplication.
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Given the generators {Ai}si=1 of the linear Lie algebra L, we may find a finite number

r such that every element of eL can be given as

eB =
r∏

i=1

etiAi (3.7)

where {ti} are positive scalar quantities. This follows from the fact that, as [Ai, Aj ]− 6=

O for any pair of generators {Ai, Aj}, then the group multiplication etAietAj 6=

etAi+tAj . Instead, it is supplied by the Baker-Campbell-Hausdorff formula

etAietAj = etAi+tAj+
t2

2
[Ai,Aj ]−+O(t

3). (3.8)

Two linear Lie algebras, of interest in quantum control theory, are the algebra of d×d

skew-Hermitian36 operators u(d), and its subalgebra37 of skew-Hermitian operators of

zero trace su(d). The subalgebra su(d) is obtained by simply omitting the generator

of u(d) which is proportional to the identity operator and, as a consequence, has

a dimension of d2 − 1. u(d) generates the Lie group of unitary matrices U(d), and

su(d) generates the subgroup of unitary matrices with unit determinant SU(d),

called the special unitary group. As the identity operator commutes with all the

other generators of u(d), any member of SU(d) can be turned to one of U(d) by a

multiplication of a phase factor, but this clearly has no effect on the evolution of

quantum states.

In summary, if an experimentalist has access to a set of Hamiltonians {Hi} that

generate the Lie algebra su(d), which gives the Lie group SU(d), then he can achieve

controllability in the state space S(Cd).

36An operator T is skew-Hermitian if T † = −T . Any T can be constructed as ±iL given a
Hermitian operator L. If L is the Hamiltonian, then convention chooses −iL as the element of
su(d) to give the generated unitary operator that is the solution to Schrödinger’s equation.

37The subspace A ⊆ L is a subalgebra of L if it also forms an algebra given the commutator
defined on L.
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3.2.1.1 The Lie algebras su(2) and so(3) and the Bloch sphere

Figure 3.1: The Bloch sphere allows for an elegant geometrical interpretation of quantum states

and dynamics in S(C2). Image taken from [Nielsen and Chuang, 2000].

The Pauli matrices which span L(C2) are given by {σi}3i=0, where each σi is given

as

σ0 ≡ 1 =




1 0

0 1



 , σ1 ≡ σx =




0 1

1 0



 , σ2 ≡ σy =




0 −i

i 0



 , σ3 ≡ σz =




1 0

0 −1





(3.9)

with respect to the basis {φ0, φ1}. σx is diagonal with respect to the basis {φ+, φ−}

where φ± = 1√
2
(φ0±φ1) and σy is diagonal with respect to the basis {ϕ+, ϕ−} where

ϕ± = 1√
2
(φ0 ± iφ1). The Lie algebra su(2) is spanned by the skew-Hermitian Pauli

matrices38

σ̄1 = −
i

2
σ1, σ̄2 = −

i

2
σ2, σ̄3 = −

i

2
σ3 (3.10)

where [σ̄i, σ̄j]− = εijkσ̄k. Any two-element subset of these suffices to generate su(2)

which in turn generates the Lie group SU(2). The Lie group of 3 × 3 orthogonal

matrices SO(3) that perform rotations in R3 is generated by the Lie algebra so(3)

which is related to su(2) by the isomorphism 39 ϑ. The effect of this isomorphism

is the homomorphism Θ : SU(2)→ SO(3), where Θ[eA] = eϑ[A] ∀ A ∈ su(2). The

reason this is a homomorphism and not an isomorphism is that Θ[eA] = Θ[−eA],

and as such is a two-to-one and onto mapping.

38These are in fact, ignoring scalar multiplications, all elements of the Pauli group G = {σi}3i=0×
{±1,±i}.
39A map ϑ : su(2) → so(3) that preserves the commutator of su(2) such that ϑ([A,B]−) =
[ϑ(A), ϑ(B)]− is a homomorphism. A homomorphism that is bijective (mapping is one-to-one and
onto), is an isomorphism.
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We can therefore treat unitary evolutions acting on the state space S(C2) as rotations

in R3, and hence use the Euler decomposition to write any unitary operator U ∈

SU(2) as

U = eiαeθ3σ̄zeθ2σ̄yeθ1σ̄z (3.11)

where α is a phase factor. An arbitrary V ∈ SU(2) can also be represented by the

matrix

V =




cos(θ)e−iξ − sin(θ)eiζ

sin(θ)e−iζ cos(θ)eiξ



 (3.12)

with θ ∈ [0, π] and ξ, ζ ∈ [0, 2π). U = V when the conditions θ = θ2
2
, ξ = θ1+θ3

2
, ζ =

θ1−θ3
2

are met. In fact, any two orthogonal generators of su(2) can be used to

construct U , and the Euler angles can be determined as demonstrated above by

performing a unitary transformation on these generators to obtain U in the form of

Eq.(3.11).

We may express any quantum state ρ ∈ S(C2) in the Pauli basis as

ρ =
1

2
(1 + nxσx + nyσy + nzσz) (3.13)

and hence the state can be completely parameterised with respect to the vector ~n

in R3. The extremal states with |~n|2 = 1 are the pure states, and the state with

|~n| = 0 is the maximally mixed state. Because any U ∈ SU(2) will translate an

extremal state to only other extremal states, and that the homomorphism between

SO(3) and SU(2) describes this unitary evolution as a rotation in R3, which leaves

the length of a vector with respect to the center of rotation invariant, then the state

space of S(C2) can be completely characterised as a unit sphere in R3, known as

the Bloch sphere, shown in Fig.3.1. Any point on the surface of the Bloch sphere

describes a pure state whose associated vector ψ ∈ C2 can be represented as

ψ = cos(θ)φ0 + eiθ
′
sin(θ)φ1 (3.14)

where the polar angle has the range θ ∈ [0, π] and the azimuthal angle has the

range θ′ ∈ [0, 2π). However, because the relationship between SU(2) and SO(3) is

a homomorphism we need only consider half of the Bloch sphere to describe states.
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This is because a vector ψ′ on the opposite side of the Bloch sphere is shown to

obey

ψ′ = cos(π−θ)φ0+e
i(θ′+π) sin(π−θ)φ1 = −

(
cos(θ)φ0 + eiθ

′
sin(θ)φ1

)
= −ψ (3.15)

such that it varies only by a phase factor which is an unobservable quantity. There-

fore, by convention the state vectors spanning the Hilbert space are described by

imposing half polar angles θ 7→ θ/2 to give

ψ = cos

(
θ

2

)

φ0 + eiθ
′
sin

(
θ

2

)

φ1. (3.16)

This geometrical picture offered by the Bloch sphere provides a method of explaining

states and dynamics in S(C2) in a language that is intuitive.

3.2.2 The magnetic resonance control scheme

The dynamics in magnetic resonance can occur only in a two-dimensional subspace

where the spin quantum numbers of the eigenstates differ by one, assuming no de-

generacy. Hence, for the sake of clarity, we may consider a spin-half object in a static

unidirectional magnetic field, whose axis we label z, with the Hamiltonian

H±0 = ±
γB0

2
σz. (3.17)

Depending on the coupling of the spin and the external field, this will have the high

energy (low energy) eigenstate φ0 and the low energy (high energy) eigenstate φ1

with transition frequency Ω = γB0.

In order to achieve controllability, we wish to obtain the generators of su(2). To this

end we introduce a circularly polarised oscillating magnetic field, or driving field, in

a plane perpendicular to z with its polarity dependent on the sign of H±0

H±I (t) =
ω1

2
f(t) (cos(ωt)σx ± sin(ωt)σy) . (3.18)

Here, ω1 = γB1 is the strength of the driving field, where B1 denotes the strength

of the magnetic field in this plane. ω is the frequency of the field, and the + sign

signifies a right handed (RH) circularly polarised field and the − sign denotes a left
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handed (LH) one. f(t) is the “pulse” function, which is non-vanishing only during

the time that the driving field is switched on. We only consider a square pulse,

satisfying

f(t) =






0 when t < t0

1 when t0 6 t 6 t0 + τ

0 when t > t0 + τ

. (3.19)

We can now take H±I (t) in the rotating frame of H±0 to give

H̃±I (t) =
ω1

2
f(t)

(
cos(ωt)e±it

Ω
2
σzσxe

∓itΩ
2
σz ± sin(ωt)e±it

Ω
2
σzσye

∓itΩ
2
σz
)
. (3.20)

Noting that

e±it
Ω
2
σzσxe

∓itΩ
2
σz = cos(Ωt)σx ∓ sin(Ωt)σy,

e±it
Ω
2
σzσye

∓itΩ
2
σz = cos(Ωt)σy ± sin(Ωt)σx, (3.21)

this becomes

H̃±I (t) =
ω1

2
f(t) (cos[(ω − Ω)t]σx + sin[(ω − Ω)t]σy) . (3.22)

Given the resonance condition ω = Ω, a RH(LH) driving field will give H̃±I (t) =

ω1
2
f(t)σx, and a phase shift ωt 7→ ωt+π/2 will give H̃±I (t) = ω1

2
f(t)σy. We therefore

have the required generators for su(2) in the rotating frame, and as such can generate

the Lie group SU(2) by the Euler decomposition shown in Eq.(3.11). Because the

absorption of a RH(LH) photon of the driving field leads to the increase(decrease) of

angular momentum by one, we can say that the RH and LH fields have, respectively,

positive and negative angular momentum photons.

3.2.2.1 The rotating wave approximation

In the example above, where circularly polarised fields are used, we may exactly

establish, in principle, our desired generators in the rotating frame, provided the

resonance condition is met. No approximations are necessary here. In many ex-

perimental situations, due to engineering limitations, it is not possible to establish
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Figure 3.2: The trace distance between Π(φ1) and the numerical solution to the Liouville-von

Neumann equation using the interaction Hamiltonian in Eq.(3.25), given an initial input state

Π(φ0) and evolution time τ = 4π/ω1. The trace distance converges to zero as ω1/8Ω→ 0.

circularly polarised magnetic fields. Rather, a linearly polarised field is used. In such

a situation, however, even when the resonance condition is met, we do not have a

rotating frame Hamiltonian that exactly gives the desired generator. Consequently,

we need to make the rotating wave approximation (RWA) which is valid up to an

arbitrary accuracy when the approximate solution converges with the exact one.

This is analogous to the secular approximation made in the microscopic derivation

of a Lindblad master equation, where the oscillating terms of the Hamiltonian are

ignored.

A linearly polarised driving field can be considered as being composed in equal parts

of a RH and a LH field

HI(t) =
ω1

2
f(t) cos(ωt)σx ≡

ω1

4
f(t) ([cos(ωt)σx + sin(ωt)σy] + [cos(ωt)σx − sin(ωt)σy]) .

(3.23)

For the system Hamiltonians H±0 , the resulting rotating frame interaction Hamilto-

nian is given by

H̃±I (t) =
ω1

4
f(t) {(cos[(ω − Ω)t] + cos[(ω + Ω)t])σx + (sin[(ω − Ω)t]∓ sin[(ω + Ω)t])σy} .

(3.24)

At resonance, the interaction Hamiltonian is given by

H̃±I (t) =
ω1

4
f(t) (σx + cos[(2Ω)t]σx ∓ sin[(2Ω)t]σy) . (3.25)

This will be approximately close to the desired rotating frame Hamiltonian ω1
4
f(t)σx

given the rotating wave approximation. The rotating wave approximation is justi-
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fied if the pulse has a small time variation, df(t)/dt � 1, and if it is sufficiently

weak. The former criterion is met by using a square pulse. For the latter, we may

use time-dependent perturbation theory. The unitary operator generated by the

rotating frame Hamiltonian of Eq.(3.25) is determined by the Dyson series, shown

in Eq.(2.59), as

U = 1− i
ω1

4

(

τσx ∓ i
(e±i2Ωτ − 1)

2Ω
|φ0〉〈φ1| ± i

(e∓i2Ωτ − 1)

2Ω
|φ1〉〈φ0|

)

+ ...,

= 1 +
1

l!

∞∑

l=1

(
−i
τω1

4
σx

)l
+

1

l!

∞∑

l=1

(
−i
ω1

8Ω

)l
Ol,

= URWA + Õ. (3.26)

The first term, URWA, is just the unitary operator generated by the rotating wave

approximation Hamiltonian, while the second term, Õ, is the correction containing

all the sinusoidal terms. Let the system initially be in the pure state with the

associated vector ψ. We may calculate the distance between the solution using the

RWA unitary operator and that using the exact unitary operator as

d(Uψ,URWAψ) =
√〈

(U − URWA)ψ
∣
∣(U − URWA)ψ

〉

=

√〈
Õψ
∣
∣Õψ

〉

=

√√
√
√ 1

l!m!

∞∑

l,m=1

( ω1
8Ω

)l+m 〈
Olψ

∣
∣Omψ

〉
. (3.27)

In the limit ω1/8Ω→ 0, the distance vanishes, and the rotating wave approximation

becomes valid.

In practice ω1/8Ω will have some finite value, and the rotating wave approximation

will have some error ε. For general mixed states, where we assign ρ(t) as the exact

solution, and %(t) as the solution using the rotating wave approximation, this error

can be defined as the trace distance

ε = D[ρ(t), %(t)] ∈ [0, 1]. (3.28)

Given an arbitrarily small error threshold ε and a convergence threshold40 N , there

40If ω1/8Ω is too large the systems evolution will not be convergent with that of the desired
Hamiltonian; decreasing ω1/8Ω will not necessarily result in a decrease in the trace distance.
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are values of ω1/8Ω < N such that D[ρ(t), %(t)] < ε. This is illustrated in Fig.3.2

which uses the Runge-Kutta-Fehlberg method to numerically integrate the Liouville-

von Neumann equation and determine ρ(t). The initial state is set to ρ(t0) = Π(φ0)

and the final state, given the rotating wave approximation, is determined by a

π rotation about the x axis of the Bloch sphere, which gives %(t) = Π(φ1). As

ω1/8Ω gets smaller, the rotating wave approximation becomes increasingly more

accurate.

3.2.3 The Hahn echo and dynamical decoupling

Dynamical decoupling [Viola et al., 1999] is the application of dynamics on a quan-

tum system with the aim of decoupling its evolution from that of its environment,

thereby reducing or altogether removing decoherence. The Hahn echo [Hahn, 1950]

is one simple example of such a scheme used in magnetic resonance and is applica-

ble to two-dimensional systems, or dynamical selection rule allowed two-dimensional

subspaces of systems. There are two cases in which we may apply the Hahn echo,

only one of which constitutes dynamical decoupling, but both of which counteract

phenomenological dephasing:

(i) Dephasing of ensemble state

In this case, there are no environmental degrees of freedom from which we wish

to decouple our system’s evolution and hence the Hahn echo does not constitute

a form of dynamical decoupling. Instead, this phenomenon arises in situations

where we only have access to an ensemble state ρ̄, which was introduced in

Sec.2.2.5.4. Consider the case where the ensemble state belongs to S(C2) and

is composed of individual spin half objects ρn, each of which is experiencing a

magnetic field B0(t) in the same direction : they are all generated by σ̄z. As a

result, we may write the unitary operators in their diagonal form as

Un
t,t0

= e
i
2

∫ t
t0
ωn(s)ds

Π(φ0) + e
− i
2

∫ t
t0
ωn(s)ds

Π(φ1) (3.29)

where each Un
t,t0

differs only by the generally time-dependent frequency function
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ωn(t). The state at times t is given by the random unitary channel

Erandom unitary : ρ̄ 7→
1

N

N∑

n=1

Un
t,t0
ρ̄Un†

t,t0 (3.30)

which will bring about dephasing. The Hahn echo, acting on each ensemble

member, is defined as the sequence

σxU
n
t1,t
σxU

n
t,t0

= e
i
2

(∫ t
t0
ωn(s)ds−

∫ t1
t ωn(s)ds

)

Π(φ0)

+ e
− i
2

(∫ t
t0
ωn(s)ds−

∫ t1
t ωn(s)ds

)

Π(φ1) (3.31)

where t−t0 = t1−t. This gives the identity operator if ω(t) is time-independent.

Here the σx operation, which is also called a π pulse about the x axis, has the

effect of reversing the phase evolution effected by each Un
t,t0

, thereby canceling

the dephasing undergone by the ensemble. If ω(t) does have a time dependence,

but changes slowly, we may expand the Taylor series of the integrands in

Eq.(3.31) to first order so as to obtain

∫ t

t0

ωn(s)ds−
∫ t1

t

ωn(s)ds

'
∫ t

t0

(ωn[t0] + (s− t0)ω̇
n[t0]) ds−

∫ t1

t

(ωn[t0] + (s− t0)ω̇
n[t0]) ds

= (t− t0)ω
n[t0]. (3.32)

As such, we may suppress dephasing by the Hahn echo in the limit t− t0 → 0:

in the limit of continuous π pulses.

(ii) Decoupling a spin-spin interaction of Schmidt-rank one

Consider a composite system A+B where system A is a spin one-half particle

and system B, designated as the environment, has arbitrary spin, with the

Hamiltonian written in the operator-Schmidt decomposition as H = HA⊗HB,

where HA and HB are self-adjoint operators in Ls(C2) and Ls(Cd) respectively.

Because the Hamiltonian has a Schmidt-rank of one, it does not result in

exchange of energy between the two subspaces. This Hamiltonian may be

written as H = (E0Π(φ0)+E1Π(φ1))⊗HB where {φ0, φ1} is the basis in which

HA is diagonal, and {E0, E1} are the corresponding energies. The unitary
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operator that is the solution to Schrödinger’s equation for this Hamiltonian

can then be shown to be of the form

Uτ = Π(φ0)⊗ U
φ0
τ + Π(φ1)⊗ U

φ1
τ (3.33)

where the conditional unitaries on B are given by Uφi
τ = e−iτEiH

B
, and are

both generated by HB and hence commute. This is an entangling operation

and causes pure decoherence in system A, with the preferred basis being the

eigenbasis of HA. By acting on A with an operator σx, chosen with respect to

the basis {φ0, φ1}, we have

(σx⊗1)Uτ (σx⊗1)Uτ = Π(φ0)⊗U
φ1
τ Uφ0

τ +Π(φ1)⊗U
φ0
τ Uφ1

τ = 1⊗Uφ0
τ Uφ1

τ (3.34)

which is decoupled with respect to the A : B divide.

Consider a specific example of such a Hamiltonian as H = 1
4
J σz ⊗ Bz. This

is often referred to as an Ising interaction, and {φ0, φ1} is the basis in which

σz is diagonal, and the conditional unitaries on the environment system B are

Uφ0
τ = U−τ and Uφ1

τ = U+τ and are given as

U±τ = e±i
J
4
τBz . (3.35)

This is clearly an entangling operation, as can be seen by having the initial

pure product state represented by the vector ψ = 1
2

(φ0 + φ1) ⊗ (ϕ0 + ϕ1),

where 〈ϕ0|ϕ1〉 = 0. After the evolution for a time period τ = π
J the state

evolves, ignoring an overall phase factor, to

ψ′ =
1

2
(φ0 ⊗ [ϕ0 + iϕ1] + φ1 ⊗ [ϕ1 + iϕ0]) (3.36)

which is a maximally entangled state. The reduced density operator for system

A is consequently given by a maximally mixed state 1
2
1 due to the decoherence

that has taken place. However, by using the Hahn echo sequence on subsystem

A we can reverse this entanglement generation as

(σx ⊗ 1)Uτ (σx ⊗ 1)Uτ = 1. (3.37)
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It should be noted that the Hahn echo sequence can only remove dephasing in case

(i) and decoherence in case (ii) if there are no other noise processes occurring. The

presence of noise may be modelled by the replacement of the unitary operator with

an irreversible quantum channel E , in which case

(Eσx ⊗ 1) ◦ Eτ2 ◦ (Eσx ⊗ 1) ◦ Eτ1 6= 1 (3.38)

where Eσx [ρ] = σxρσx.

3.3 Magnetic resonance experiments with weak measurements

There are two main types of experiment that can be conducted in magnetic reso-

nance. The first is continuous wave (c.w.) spectroscopy, which was the exclusive

method in the early days of magnetic resonance. Here, the system is exposed to

a weak driving field – of a set frequency – continuously for a long period of time.

As the static magnetic field is altered, the absorption (emission) of radiation from

(to) the driving field is detected, providing a spectrum. More recently, the method

of pulsed spectroscopy has been developed, where the system is driven by short,

powerful pulses of radiation. The magnetic field is no longer swept, and the mea-

surement over time will provide a generally sinusoidal time-varying signal called the

free induction. The Fourier transform of the free induction will give a signal peak

in the frequency domain with similar properties to the associated peak given by the

c.w. method. In both cases, measurement is presently performed on ensembles of

spin systems, although much effort is being invested in realising measurements of

single systems, which will hopefully prove fruitful in the near future.

In Chap.2 I described the notion of conceptually separating a quantum mechanical

experiment into the three components of preparation, transformation, and mea-

surement. We may use such a conceptual compartmentalisation to study these two

types of experiments in magnetic resonance. We need not worry too much about the

preparation for now, and take for granted that spin systems may be produced by the

press of a “button”. The transformation part of the experiment, on the other hand,
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is clearly described by magnetic resonance. What remains, then, is an account of

measurement. The measurement that we will consider is described by weak ensem-

ble measurements, discussed in Sec.2.2.5.4. The von Neumann-Lüders measurement

scheme here uses a single probe state coupled weakly with each ensemble member,

and the only information available about the system is the expectation value of the

ensemble observable.

3.3.1 Continuous wave spectroscopy

When a spin system interacts coherently with electromagnetic radiation of frequency

ω, any increase in energy of the spin system is coupled with a decrease of the same

energy in the radiation, and vice versa. We say that the system absorbs quanta of

energy from the radiation field, or emits quanta of energy to it. Continuous wave

spectroscopy on a system, governed by the time-independent Hamiltonian H0(B0),

gives three pieces of information about such interactions.

(i) The first is the so called transition rate proportional to |〈φk|Jxφj〉B0 |
2 where

{φj(B0), φk(B0)} are two eigenstates of H0(B0).

(ii) The second is the magnetic field values B0 for which such states have an energy

difference (or frequency) Ω = ω.

(iii) Finally, c.w. spectroscopy tells us whether a transition is an absorption or an

emission process.

The quantum mechanical treatment of the interaction involved in c.w. spectroscopy

is calculated perturbatively using what is known as Fermi’s golden rule, which was

largely developed by Paul Dirac [Dirac, 1927]. Here, the system is evolved by a weak

driving field which ensures that if the system is driven for a long time – hence the

continuous in the name – so that transitions occur only at resonance, the final state

has a high fidelity with its original configuration.

Let us consider a two-dimensional subspace {φj(B0), φk(B0)} in which transitions are

permitted by the dynamical selection rule for Jx. This has the transition frequency
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given by ΩB0
kj = |Ek(B0) − Ej(B0)|, where Ej(B0) = 〈φj|H0(B0)φj〉B0 . Initially, we

prepare the system to be in the pure state Π(φj[B0]) associated with the vector

φj(B0). Subsequently we turn on the time-dependent Hamiltonian, or driving field,

to get the total Hamiltonian

H±(t) = H0(B0) + λf(t) (cos[ωt]Jx ± sin[ωt]Jy) (3.39)

where λ = γB1 is the strength of this field, ω is the frequency, and the ± term

designates a RH and LH field. We wish to determine the probability of finding the

system in state Π(φk(B0)) after some time τ . To this end, we note that we may

expand the state vector of the spin system at any time with respect to the eigenbasis

of H0, and take note that the effect of the driving field is to merely change the

coefficients of these basis vectors. Therefore, the interaction picture state vector is

given by

ψ̃(t)(B0) =
∑

n

αn(t)φn(B0) (3.40)

where we note that αj(t0) = 1 so as to satisfy ψ̃(t0)(B0) = φj(B0). We may write

the Dyson series, shown in Eq.(2.59), for the interaction picture unitary operator

as

Ũt,t0 = 1 +
∞∑

l=1

(−iλ)l

l!

∫ t

t0

dt1...

∫ t

t0

dtl

(
cos[ωtl]J̃x(tl)± sin[ωtl]J̃y(tl)

)
. (3.41)

It is then possible to write the solutions of αn(t) determined by 〈φn|Ũt,t0ψ(t0)〉B0 , in-

cluding only up to the lth term of the Dyson series, as the infinite sequence {αln(t)}∞l=0

which converges to αn(t). The distance between α1n(t) and αn(t), denoted ε, can be

made arbitrarily small by reducing the size of λ/ΩB0
kj . Provided λ/ΩB0

kj � 1 we

can, with a small error ε, approximate the dynamics by the first order perturbation
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theory. Explicitly we calculate

〈φk|ψ(t)〉B0 = 〈φk|Ũt,t0φj〉B0 ,

' −iλ
∫ t0+τ

t0

dt1 (cos[ωt1]〈φk|Jxφj〉B0 ± sin[ωt1]〈φk|Jyφj〉B0) e
it1Ω

B0
kj ,

= −iλ〈φk|Jxφj〉B0

∫ t0+τ

t0

dt1 (cos[ωt1]− i sin[ωt1]) e
it1Ω

B0
kj ,

= −λ〈φk|Jxφj〉B0

(
1− e−iτ(ω−Ω

B0
kj )

ω − ΩB0
kj

)

,

= −2iei
τ
2
(ω−Ω

B0
kj )λ〈φk|Jxφj〉B0

sin
[
τ
2
(ω − ΩB0

kj )
]

ω − ΩB0
kj

. (3.42)

Such an approximation always yields 〈φj|ψ(t)〉B0 = 1. Hence, after renormalisation,

the transition probability given a magnetic field value of B0 is given by

|〈φk|ψ̃(t)〉B0 |
2

1− |〈φk|ψ̃(t)〉B0 |2
'
∣
∣
∣τλ〈φk|Jxφj〉B0sinc

[τ
2

ΔωB0
]∣∣
∣
2

(3.43)

if τλ � 1. Here, we have made the substitution (ω − ΩB0
kj ) = ΔωB0 . Let us note

the reciprocal Fourier transform relationship between the time of the driving field’s

action and the range of frequencies on which it acts 41 given as

τΔωB0 ∼ 1. (3.44)

Because we have made the weak driving strength and long driving time assumptions,

we may take the limit τ → ∞ by choosing τ to be arbitrarily long (limited by the

strength of λ) so as to make the width of the Sinc function arbitrarily narrow, thus

enabling us to develop a coarse-grained picture where we may treat segments of

the continuous magnetic field variable as discrete values, providing the discrete set

{Bl
0}
L
l=1. Therefore, we finally arrive at the following expression for the transition

probability after driving the system for time τ

|〈φk|ψ(t)〉Bl0 |
2 = |λτ〈φk|Jxφj〉Bl0 |

2 (3.45)

which is non vanishing only when ΔωB
l
0 = 0 : when the driving field is in resonance

with the frequency between the two eigenstates. We will omit the l superscript from

41This is also referred to as the time-frequency uncertainty relation in the literature, even though
different in nature to that between position and momentum, because time is a parameter and not
an observable in quantum mechanics.
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now on. Because Eq.(3.45) is quadratic in time, this still does not give a transition

rate. We may, however, integrate this function over the magnetic field variable to

get

lim
τ→∞

∫

B0

dB′0

∣
∣
∣τλ〈φk|Jxφj〉B′0sinc

[τ
2

ΔωB
′
0

]∣∣
∣
2

= τ2π|λ〈φk|Jxφj〉B0 |
2. (3.46)

which is the total probability of transition over the continuum of the magnetic field.

This is a quantity that is linear in time, and is used to define the transition rate

2π|λ〈φj|Jxφk〉B0 |
2.

Because this experiment is performed on an ensemble, however, we must take into

account the possibility that not all members of the ensemble are in the same initial

state. Assuming that the detection of an absorption event is marked by +, and like-

wise that of an emission is marked by −, and that Ek(B0) > Ej(B0), the measured

transition rate will be modified to

2π|λ〈φj|Jxφk〉B0 |
2 (P (j)− P (k)) (3.47)

where P (j) and P (k) are respectively the probabilities that the system is initially

in the state Π(φj(B0)) and Π(φk(B0)).

3.3.2 Pulsed spectroscopy

A precessing magnet generates a magnetic field which, if surrounded by a wire,

induces a current therein. This process is called the free induction. An ensemble of

spins in a magnetic field, when prepared in a superposition of the free Hamiltonian’s

eigenvectors, also generate a free induction. So long as this superposition exists in a

two-dimensional subspace, the effective observable can be given by the self-adjoint

operator σm = Π+m − Π−m with the projector effects

Π±m =
1

2
(1±m.σ) (3.48)

where m = {mx,my, 0z} is a vector of unit length in the x − y plane of the Bloch

sphere. 42 We may write the Pauli operators with respect to the energy eigenvector

42In an alternative formulation, we may write the vectors corresponding to the projector effects
as φ±θ′ =

1√
2
(φ0 ± eiθ

′
φ1) for θ

′ ∈ [0, π).
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basis of the two-dimensional subspace of our system, {φ0, φ1}, such that φ0 denotes

the excited state and φ1 the ground state. As the vector m can be chosen freely, for

simplicity we may consider the two cases of σx and σy. Since these sharp observables

are measured weakly on an ensemble, we only have access to the expectation value

of said observables on the effective ensemble state.

Unlike c.w. spectroscopy, pulsed spectroscopy utilises strong “pulses” of electro-

magnetic radiation to induce any desired unitary from the group SU(2), within any

two-dimensional subspace that obeys the relevant dynamical selection rule. There-

fore, with the pulses at our disposal we may at first prepare every member of the

ensemble in the state ρ = 1
2
(1 + n.σ). If the state is allowed to evolve according

to the sub-Hamiltonian Heg = Ω
2
σz, the expectation value of σx calculated at time

t = t0 + τ will be given by

tr[σxρ(t)] := nx(t) = nx(t0) cos(Ωτ)− ny(t0) sin(Ωτ). (3.49)

Similarly, the measurement of σy will yield

tr[σyρ(t)] := ny(t) = ny(t0) cos(Ωτ) + nx(t0) sin(Ωτ). (3.50)

If the phase of the measurement is varied so as to measure σx, or σy, in the rotating

frame of the two-level subspace, then this sinusoidal dependence will be omitted and

the measurement will only reveal nx(t0), or ny(t0). Alternatively, if we merely want

to measure the length of the Bloch vector component in the x − y plane, we may

weakly measure the two sharp observables σx and σy in the lab frame, such that we

may simultaneously43 determine the sinusoidally varying Bloch vector components

nx and ny. This is the quadrature detection technique used in pulsed spectroscopy.

The time-independent Bloch vector component parallel to the x− y plane can then

be determined by
√
n2x(t) + n2y(t) =

√
n2x(t0) + n2y(t0).

Furthermore, we may use the weak measurement of σx to, in principle, determine

the expectation value of any PVM on our two-dimensional subspace. Recall the

equivalence between the Heisenberg and Schrödinger pictures where tr[U †σxUρ] =

43Even though the two observables do not commute, we may still measure both simultaneously
by using weak measurements which, by definition, do not disturb the quantum state in question.
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tr[σxUρU
†], such that the unitary transformation U †σxU = σn gives a two element

PVM along any axis n of the Bloch sphere. Therefore, we can effect this change in

measurement basis by simply performing the unitary transformation UρU † prior to

weakly measuring σx.

3.4 Pulsed Fourier transform spectroscopy and signal broad-

ening

Fourier transform spectroscopy, as the name implies, calculates the Fourier trans-

form of the measured time varying free induction to give a frequency domain signal.

In the ideal case discussed above, the frequency domain signal will be a delta function

centred around the frequency Ω of the two-level subspace. In realistic experimental

situations, however, these are broadened in the frequency domain owing to the free

induction decay (FID), which is caused by dephasing. Here, we consider two cases

of signal broadening.

3.4.1 Homogeneous broadening

tr
x

(a) FID

a
.u

.

(b) Fourier transform signal

Figure 3.3: Exponential FID will lead to a Fourier transform signal broadening of Lorentzian

form.

Assuming dephasing processes that are identical for every member of the ensem-

ble, the resultant broadening is called homogeneous. Consider the case where the
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effective ensemble state undergoes the pure dephasing channel

E : ρ̄ 7→ (1− λ[τ ])ρ̄+ λ[τ ]σzρ̄σz (3.51)

where λ(τ) = (1 − e−ατ )/2. Hence the FID signal of an input state ρ̄(t0) = Π(φ+)

with associated vector φ+ = 1√
2
(φ0 + φ1) is given by

tr[σxρ̄(t)] = cos(Ωτ)e−ατ . (3.52)

The Fourier transform of this signal gives a Lorentzian function

1

π

α

α2 + (ω − Ω)2
(3.53)

centred around Ω, and whose width is proportional to the decay rate α.

3.4.2 Inhomogeneous broadening

tr
x

(a) FID

a
.u

.

(b) Fourier transform signal

Figure 3.4: Gaussian FID will lead to a Fourier transform signal broadening of Gaussian form.

In this scenario, it is assumed that the ensemble on which the experiment is con-

ducted has effective magnetic field inhomogeneities. 44 As a result there will be a

distribution of free induction oscillation frequencies {ωi} which in most situations

will have a Gaussian distribution with mean Ω and variance α2. In the thermody-

namic limit of infinite ensemble members, the effective ensemble state undergoes a

random unitary channel

E : ρ̄ 7→
1

α
√

2π

∫ ∞

−∞
dωe−

1
2
Δω2

α2 e−τωσ̄z ρ̄eτωσ̄z (3.54)

44This inhomogeneity is time invariant and only dependent on the position of the ensemble
member.
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where Δω = ω − Ω. Given an input state ρ̄(t0) = Π(φ+) with associated vector

φ+ = 1√
2
(φ0 + φ1), the free induction varies as

tr[σxρ̄(t)] =
1

α
√

2π

∫ ∞

−∞
dωe−

1
2
Δω2

α2 cos(ωτ) = cos(Ωτ)e−
1
2
(τα)2 . (3.55)

The Fourier transform of this signal is given by a Gaussian function

1

α
√

2π
e−

(ω−Ω)2

2α2 . (3.56)

3.5 Pulsed magnetic resonance experiments for studying dy-

namics

Here we will cover the main pulsed spectroscopy experiments aimed at studying

the dynamics of a spin system within a two-dimensional dynamical selection rule

allowed subspace. As before, these procedures are split up into the three stages of

preparation, transformation, and measurement.

3.5.1 Dephasing

The dephasing in a dynamical selection rule allowed two-dimensional subspace of

a spin system can be easily ascertained by measuring the decay of the Bloch vec-

tor component
√
nx(t)2 + ny(t)2 in the lab frame. If it is the dephasing due to

irreversible processes that is to be investigated, as opposed to reversible ones such

as the ensemble-caused random unitary channel, or Ising interactions with a static

environment, then the Hahn echo can be used to remove those contributions. The

dephasing measurement protocol can be conducted as follows

(i) Prepare the initial state ρ = 1
2
(1− σx).

(ii) Allow system to evolve for a time τ , and then carry out the Hahn echo sequence.

(iii) At the end of the Hahn echo sequence, which is after a period 2τ has passed,

weakly measure the expectation value of σx and σy.
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(iv) Repeat (i)-(iii) N times, and on each occasion increase τ by a constant value

Δτ

The equivalent rotating frame sequence of operations and measurements can be

denoted as follows

1

2
(1− σx) e

−iτH ◦ eπσ̄x ◦ e−iτH−−−−−−−−−−−−−→
1

2
(1 + f(2τ)σx) 〈σx〉

−−−→
f(2τ) (3.57)

By plotting f(2τ) ≡
√
nx(2τ)2 + ny(2τ)2 as given by the free induction decay, the

dephasing properties can be investigated. If the dephasing is exponential, a fitting

function of the form e−τ/T2 is used, where T2 parameterises the exponential dephasing

time. This is also referred to as the transverse relaxation time or the spin-spin

relaxation time in the literature. In the absence of any other noise process, the

corresponding quantum channel is

Eτ [ρ̃(t)] = [1− λ(τ)]ρ̃(t) + λ(τ)σzρ̃(t)σz (3.58)

where λ(τ) = (1 − e−τ/T2)/2 is the probability of performing a σz operation on the

state under conjugation. This is known as the dephasing channel and forms a dy-

namical semigroup. Consequently, its Lindblad master equation is of the form

d

dt
ρ(t) = i [ρ(t), H0]− +

1

2T2
(σzρ(t)σz − ρ(t)) . (3.59)

The state fully dephases when τ →∞ where λ(τ) = 1/2. In some circumstances the

dephasing process is non-Markovian. This is captured by the use of a fitting function

e−τ/T2−(τ/TS)
n

where the added parameter TS is an indication of non-exponential

dephasing which is a result of non-semigroup dynamics.

3.5.2 Amplitude damping

In the magnetic resonance literature, amplitude damping is known as spin-lattice

relaxation, or longitudinal relaxation. The ensemble system in thermal equilibrium

will relax to the thermal state ρth given as

ρth =
e
− H0
kBT

tr[e
− H0
kBT ]

≡
1

tr[e
− H0
kBT ]

d∑

i=1

e
− Ei
kBT Π(φi) (3.60)
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where kB is Boltzmann’s constant and T is the temperature. In any two-dimensional

subspace with an allowed dynamical selection rule, the renormalised state will

be

ρ =
e
− 1
kBT

(ΔE)

Z
(Π(φ0) + Π(φ1)) +

1− e−
1

kBT
(ΔE)

Z
Π(φ1)

=
2e
− 1
kBT

(ΔE)

Z

1

2
1 +

1− e−
1

kBT
(ΔE)

Z

1

2
(1− σz) (3.61)

where Π(φ0) is the excited state and Π(φ1) the ground state, with ΔE = E0−E1 > 0

the energy difference. Z = 1 + e
− 1
kBT

(ΔE)
is the renormalised partition function.

The second line shows that the term on the left is proportional to a maximally

mixed state and the term on the right is proportional to the pure ground state

configuration. This latter component is referred to as a pseudo pure state. The

component which is proportional to the maximally mixed state is invariant under

any quantum operation, and does not contribute to the free induction. We may

therefore consider only the pseudo pure state. As such, the free induction signal will

be improved at low temperature environments or at higher magnetic fields B0.

To determine the amplitude damping process, we must measure the decay of nz. In

such a case, we may take the pseudo pure state at thermal equilibrium, rotate it to

its orthogonal state in the Bloch sphere, and observe how fast it decays back to its

original state. As discussed previously, to measure the nz component of the Bloch

sphere we need to first rotate it onto the x−y plane, which is done by the π/2 pulse

e
π
2
σ̄y . To ascertain the decay rate we simply need to increment the time we allow the

system to evolve before performing this pulse. As before, other reversible dephasing

mechanisms can be removed with the Hahn echo. The steps for the amplitude

damping measurement can therefore be decomposed in the following way

(i) After allowing the system to relax to its thermal equilibrium, carry out a π

pulse about the y axis to take the pseudo pure state to its orthogonal state on

the Bloch sphere.

(ii) Wait for a time τ to allow the system to evolve, and then Perform a π/2 pulse

to take the state onto the x−y plane. Following this, carry out the Hahn echo

sequence using a constant time period τ ′ to remove reversible dephasing noise
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mechanisms.

(iii) Weakly measure the expectation values of σx and σy.

(iv) Repeat (i)-(iii) N times, and on each occasion increase τ by a constant value

Δτ .

The equivalent rotating frame sequence of operations can be denoted as follows

1

2
(1− σz) e

πσ̄y

−−→
1

2
(1 + σz) τ−→

1

2
(1 + f(τ)σz)

e−iτ
′H ◦ eπσ̄x ◦ e−iτ

′H ◦ e
π
2
σ̄y

−−−−−−−−−−−−−−−−−−−→
1

2
(1− f(τ)σx) 〈σx〉

−−−→
− f(τ) (3.62)

This process is usually exponential such that in the absence of any other relax-

ation processes f(τ) = 2e
− τ
T1 − 1. The relaxation time scale here, T1, is usually

referred to as the longitudinal relaxation time or the spin-lattice relaxation time.

Mathematically, it can be described by the amplitude damping channel

Eτ [ρ̃(t)] = K0,τ ρ̃(t)K†0,τ +K1,τ ρ̃(t)K†1,τ (3.63)

with the Krauss operators

K0,τ =




1 0

0 e
− τ
2T1



 K1,τ =




0
√

1− e−
τ
T1

0 0



 (3.64)

which forms a dynamical semigroup, and as such has the following Lindblad master

equation

d

dt
ρ(t) = i [ρ(t), H0]− +

1

T1

(

|φ1〉〈φ0|ρ(t)|φ0〉〈φ1| −
1

2
[|φ0〉〈φ0|, ρ(t)]+

)

. (3.65)

This relaxation process also leads to an exponential decay of the Bloch vector com-

ponent in the x − y plane which could be detected by the dephasing measurement

protocol. In such a case, the T2 time is twice the T1

T2 = 2T1. (3.66)

3.5.2.1 Depolarisation

In the case of depolarisation, where a state is taken to the maximally mixed state,

there is no pseudo pure state. Instead of the initial π pulse from the amplitude
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damping measurement, we must prepare our system in a pure state and observe

how nz vanishes. The depolarisation channel is given as

Eτ [ρ] = (1− λ(τ))ρ+
λ(τ)

3
(σxρσx + σyρσy + σzρσz) (3.67)

which forms a dynamical semigroup and has the Lindblad master equation

d

dt
ρ(t) = i[ρ(t), H0]− +

3∑

i=1

γ (σiρ(t)σi − ρ(t)) . (3.68)

where λ(τ) = 3
4
(1− e−4γτ ). The system fully depolarises as τ →∞ so that λ(τ) =

3/4.

3.5.3 Nutation

If we wish to observe the Rabi oscillations, or nutation, caused by our driving field,

we may use the following protocol.

(i) Prepare the system in the state ρ = 1
2
(1 + σz).

(ii) Perform the operation eωτσ̄y to effect a ωτ rotation about the y axis, followed

by a Hahn echo sequence.

(iii) Weakly measure the expectation value of σx and σy.

(iv) Repeat (i)-(iii) N times, on each occasion increasing τ by Δτ .

The equivalent rotating frame sequence of operations can be denoted as follows

1

2
(1 + σz) e

ωτσ̄y

−−−→
1

2
(1 + sin(ωτ)σx + cos(ωτ)σz)

e−iτ
′H ◦ eπσ̄x ◦ e−iτ

′H

−−−−−−−−−−−−−−→
1

2
(1 + sin(ωτ)σx − cos(ωτ)σz) 〈σx〉

−−−→
sin(ωτ) (3.69)

The Fourier transform of this FID signal will give information pertaining to the Rabi

frequency ω.
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3.6 The equipment

Although complex and varied in practice, the ESR(NMR) spectrometer can be con-

ceptually simplified to its essential components. First, the components common to

both c.w. and pulsed spectrometers are

(i) External static magnetic field

As the only tunable term in the free, time-independent Hamiltonian, it allows

us to set the transition frequencies to the desired value.

(ii) m.w.(RF) source

This generates a sinusoidally oscillating electromagnetic field which drives the

electronic (nuclear) transition at resonance. The strength of the source is

constant, but the strength of the m.w.(RF) reaching the sample is controlled

by an attenuator. The m.w.(RF) may be transported to the sample by a

rectangular pipe called a waveguide.

(iii) m.w.(RF) resonator

For ESR, utilising m.w. fields which have short wavelengths, the resonator

may be a small metallic box which houses the sample, called a cavity. The

iris placed between the cavity and the m.w. waveguide controls the intensity

of waves that enter and are reflected away from the cavity, by affecting the

impendence of the cavity to the radiation. The size of the iris, and hence the

coupling between the m.w. and cavity, is often controlled by a screw. The

cavity is critically coupled if the size of the iris is such that all of the incident

radiation enters the cavity. If the m.w. frequency is in resonance with the

cavity (dependent on its size) then the cavity absorbs all of the radiation. As

a result, an ESR machine which is built to detect transitions of a particular

frequency must have a cavity of the appropriate dimensions. The Q-factor

determines how efficiently the cavity stores the radiation energy as opposed

to dissipating it away, with an increase in Q-factor leading to an increase in

signal-to-noise ratio. Furthermore, the radiation inside the cavity produces a
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standing wave at resonance, which has its electric and magnetic fields out of

phase. As the electric field causes off-resonance absorption by most samples

and the heat dissipation thereof leads to a reduction in the Q-factor, we can

position the sample at the electric field minimum so as to ensure only the

magnetic field component of the m.w. leads to resonant absorption, and hence

improve the signal quality.

NMR spectrometers, needing access to RF fields of long wavelength, use a

different type of resonator, known as LCR (or RLC) resonators. These incor-

porate a resistor, inductor, and capacitor to expose the sample to the required

long wavelength RF fields.

(iv) Cryostat

To cool the sample, we place the resonator inside a cryostat, through which

we pump liquid helium. Both the cryostat and the tubing through which the

liquid helium is pumped are isolated from the environment by a vacuum. The

temperature of the cryostat is measured, and if temperatures above those of

liquid helium are desired, a heater within the cryostat is used to elevate the

temperature accordingly.

(v) Detector

As the sample resonantly absorbs the radiation, the impendence of the res-

onator changes and hence the degree by which radiation is reflected is altered.

This can be detected by a diode.

The components which differ between c.w. and pulsed spectrometers are in the

detection component. Firstly, for c.w. spectrometers these are

(i) Field modulator

To improve the sensitivity of the signal, what is actually detected is the first

derivative of the absorption spectrum, by use of field modulation. This works

by sending a sinusoidally oscillating magnetic field – with a particular mod-
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ulation amplitude (MA) and frequency – in the same direction as the static

magnetic field. This produces an amplitude-modulated signal which will have

a sine wave shape. The larger the modulation amplitude, the better the signal-

to-noise ratio will be, but modulation amplitudes larger than the line width of

the absorption spectrum will produce signals whose line widths are larger, and

whose shapes are distorted. The modulation frequency must also be chosen

with careful consideration, as the Fourier transform relationship means that

for ESR(NMR) signals that are close, a modulation frequency that is too large

will reduce the resolution.

(ii) Reference arm

To ensure that the detector diode is operating in the linear regime (where the

m.w.(RF) power is proportional to the square of the diode current), a refer-

ence arm is used which, when operating, supplies the detector with auxiliary

m.w.(RF) power. For an ESR spectrometer used in ETH Zurich, for example,

the diode operates in the linear regime for high currents, and so we set the

power of the reference arm to increase the zero-value of the diode current to

200 μA. The phase of the reference arm is also important, with larger currents

detected when the reflected radiation from the cavity and the radiation from

the reference arm are in phase.

Pulsed spectrometers differ in their detector technology in the following way

(i) Amplifier

As pulsed spectroscopy requires powerful pulses, an amplifier is needed to

increase the power of the microwave source.

(ii) Shielding

The FID signals are weak compared to the background noise and need to be

amplified, using a preamplifier, in order to be detected. However, because

the m.w.(RF) radiation in pulsed spectrometers is strong, the preamplifier can

easily be destroyed. Therefore, the preamplifier must be shielded from the

pulses until they dissipate. Consequently, there is a dead time between the
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driving of the system and the detection of the free induction, the duration of

which is dependent on the resonator’s frequency and Q-factor.

(iii) Pulse programmer

An electronic interface is required so as to program the spectrometer to conduct

its sequence of pulses and measurements, which occur at such a fast pace that

they cannot be controlled in situ by a human being.
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Chapter 4

Quantum Information Processing

4.1 Introduction

The digital computer is a device that can perform a function f : {0, 1}N → {0, 1}M .

Here, {0, 1}N means a string of characters of length N , where each character can

take either a value of 0 or 1. These characters are known as bits, while the function f

is known as an algorithm. A universal Turing machine is a mathematical construc-

tion, named after the mathematician Alan Turing, which can simulate any digital

computer [Turing, 1937] and hence perform any algorithm f . This Turing machine

consists of an infinite memory tape which can contain symbols, and a device that

can read and alter these symbols. The action of altering these symbols is known as

an elementary operation. In the language of complexity theory, we may define the

efficiency with which a Turing machine can simulate a given algorithm. An algo-

rithm is said to be computed efficiently if it is soluble in polynomial time, and it is

computed inefficiently if it is soluble in super-polynomial (often exponential) time.

For an algorithm f solving a problem of size n, it is computed in polynomial time if

the number of elementary operations – each of which take an equal time to perform

– grow45 as O(nk) ,where k is some integer, in the asymptotic limit of n → ∞ .

45If the polynomial function is αnk + βnl such that l < k, then as n → ∞ the second term
makes a negligible contribution and, ignoring the constant multiplicative factor α, this polynomial
function grows in the order of nk, denoted as O(nk).
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Conversely, if the size of the problem grows as O(αn) for any real value α, then it

does so in exponential time and is computed inefficiently.

The complexity class BPP is one where every algorithm belonging to it can be

simulated efficiently (with a bounded probability of error) using a Turing machine

augmented by a random number generator. The discovery of the prime factors of

numbers is one which is not known to exist in BPP at this time, which is an open

problem in complexity theory. As demonstrated by [Shor, 1997], however, one can

efficiently factorise an integer N in O((logN)3) by using the laws of quantum me-

chanics to devise a quantum computer. The complexity class of algorithms that can

be simulated efficiently on a universal quantum computer is BQP , and as classical

physics is a subset of quantum physics, then we know that BPP ⊆ BQP . Al-

though this has not been proven, examples such as Shor’s algorithm suggest that

the equality here does not hold, and BQP is in fact larger than BPP . This intuition

has spurred an interest in quantum computer science, with the discovery of various

other algorithms that are in BQP , but not yet known to exist in BPP.

A parallel rise in interest in quantum information theory was also seen at this time.

One of the pioneers in this field was Benjamin Schumacher, who in [Schumacher,

1995] used the von Neumann entropy covered in appendix B.1 to give quantum in-

formation an operational meaning as the amount by which a composite quantum

system may be faithfully encoded into a smaller Hilbert space. In light of the rela-

tionship between information theory and computer science, quantum computation

is also referred to as quantum information processing (QIP).

A good introductory text book for quantum information and quantum computer sci-

ence is [Nielsen and Chuang, 2000]. A more recent text focusing on quantum infor-

mation processing is [Rieffel and Polak, 2011]. Good online resources are the lecture

notes by John Preskill [Preskill, 2001] and John Watrous [Watrous, 2004].
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Figure 4.1: The circuit model of quantum computation. The most general quantum computer

performs a quantum operation (generally stochastic) on an input of N qubits each set to the pure

state with the associated vector φ0 in the computational basis. This can also be achieved by

increasing our system by M ancillary qubits and performing a unitary map on the whole system.

As per Stinespring’s dilation theorem, the desired quantum operation on our desired N -qubit

state will be completed when a projective measurement is carried out on the M ancillary qubits.

In the case of stochastic quantum operations, we would post select the transformed state for only

a subset of the possible measurement outcomes on the ancillary systems. At the end of the

computation, we read out the result by measuring each qubit in the computational basis.

4.2 Universal quantum computation

Analogous to the fundamental unit of classical computation – the bit x ∈ {0, 1} – in

quantum information we have the quantum bit, or qubit, which is a state ρ ∈ S(C2)

with the computational basis states {φ0, φ1}. A universal quantum computer (or a

quantum information processing device) is a device which can perform any quantum

operation E : ρ 7→ E [ρ] on an N -qubit input state ρ ∈ S(C2
N

). As this state can

be prepared by a quantum channel acting on the pure, separable initial input state

Π(φ0)
⊗N we may, without loss of generality, absorb the preparation map into E , and

redefine our quantum computer as a device which performs a quantum operation

on the input state Π(φ0)
⊗N . We may further restrict our quantum computer to

unitary operators as any quantum operation E acting on N qubits may be obtained

by a unitary map acting on our system coupled with M ancillary qubits, followed

by projective measurements on said qubits, as per Stinespring’s dilation theorem.

At the end of the computation, the result is obtained by measuring each qubit in
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the computational basis. This is referred to as the computational read out. This

quantum computer can be drawn as a circuit diagram shown in Fig.4.1, where

each wire corresponds to C2 and time flows from left to right. Hence the box

corresponding to the unitary map acts on the input state coming in from the left,

and outputs another state which exits on the right. Consequently, this is referred

to as the circuit model of quantum computation.

A universal quantum computer must be able to perform any transformation in the

state space S(C2
N

). In analogy with classical digital computers which can be formed

by a set of universal logic gates, we want to identify a finite set of universal quantum

gates, which we can concatenate in order to achieve controllability within a state

space S(C2
N

) of arbitrary N . As we discussed in Sec.3.2.1, we can have control-

lability in S(Cd) if we have access to the generators of the Lie algebra su(d) from

which we can obtain the Lie group of unitary matrices SU(d). In the case of one-

qubit unitaries, which correspond to rotations on the Bloch sphere, we can use two

orthogonal Pauli matrices to obtain a unitary operator Rn.σ(θ) := e−i
θ
2
n.σ.

φ0 Rn.σ(θ) ψ

As has been shown by [DiVincenzo, 1995] we can generate the group SU(2N ) given

the group SU(2) for each qubit subspace, and any entangling two-qubit gate which

we can perform between the qubits. Two such gates are the controlled NOT (CNOT)

and controlled phase (CZ) gates

CZ = Π(φ0)⊗ 1 + Π(φ1)⊗ σz, CNOT = Π(φ0)⊗ 1 + Π(φ1)⊗ σx. (4.1)

Here, the qubit subspace which the projectors act on is called the control qubit, and

the subspace where either the identity or the Pauli matrix acts on is the target qubit.

These two are equivalent under the action of the Hadamard gate in conjugation on

the target qubit subspace

CZ = (1⊗ H)CNOT(1⊗ H),

H =
1
√

2
(σx + σz). (4.2)
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The Hadamard gate transforms Pauli matrices to Pauli matrices under conjugation,

such that

HσxH = σz,

HσyH = −σy,

HσzH = σx. (4.3)

We may restrict the number of gates needed to be built experimentally by utilising

the standard universal set given by {H, Pπ/8,CNOT} where the π/8 phase gate is

given by

Pπ/8 = Π(φ0) + ei
π
4Π(φ1) = ei

π
8 e−i

π
8
σz . (4.4)

Here, we note that the H and Pπ/8 gates can generate any unitary operation in the

state space of a single qubit.

In what sense do we say that the CNOT (or CZ) gate is an entangling one? We may

observe that these unitaries cannot be factorised into UA⊗UB. The CNOT gate can

produce an entangling gate UE given an initial product state in the computational

basis, if the control qubit is first taken to the σx basis. This can be done by preceding

a CNOT by an HA ⊗ 1B to get

UE = CNOTA+B(HA ⊗ 1B) (4.5)

which performs the maps

UE :






φ0 ⊗ φ0 7→ 1√
2

(φ0 ⊗ φ0 + φ1 ⊗ φ1) ≡ Φ+

φ0 ⊗ φ1 7→ 1√
2

(φ0 ⊗ φ1 + φ1 ⊗ φ0) ≡ Ψ+

φ1 ⊗ φ0 7→ 1√
2

(φ0 ⊗ φ0 − φ1 ⊗ φ1) ≡ Φ−

φ1 ⊗ φ1 7→ 1√
2

(φ0 ⊗ φ1 − φ1 ⊗ φ0) ≡ Ψ−

. (4.6)

4.2.1 Alternative models of quantum computation

Other models of quantum computation exist which are equivalent to the circuit

model, but may have advantages in terms of implementation. One such model is
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the measurement based quantum computer, which takes a highly entangled state

such as the cluster state as a resource, and the quantum computation is then carried

out by adaptive single-qubit measurements [Raussendorf et al., 2003]. To generate

the cluster state we may take an array of qubits, all prepared in the state φ+ :=

1√
2
(φ0 + φ1), and then perform a CZ gate between all the neighbours. In general

terms, the rows of the cluster state may be seen as representing a logical qubit,

and hence for the cluster state to allow for universal quantum computation that is

advantageous to a classical computer, we require multiple rows of qubits that are

interconnected; a two-dimensional cluster state is needed.

Another model is that of adiabatic quantum computation [Farhi et al., 2000], where

the quantum information is stored in the ground state of a certain Hamiltonian.

The algorithm is then solved by adiabatically changing this Hamiltonian, thereby

performing a unitary map that transforms the initial ground state to a new one.

This model has garnered interest because it has been shown to have some inherent

protection from decoherence [Childs et al., 2001].

4.3 Fault tolerance

So far our description of a quantum computer has assumed the lack of noise, which

is of course an unreasonable expectation for any realistic device. When noise is

introduced into our system, which could be due to the interaction of a qubit with its

environment, or the imprecise realisation of a unitary gate, our quantum computer

fails with some probability. We may model the noise process as acting after our

computation. In the case of depolarising noise, for example, the output of our

quantum computation, ρ, is taken to (1 − P )ρ + P 1
2
1. The computation is then

said to fail with a probability P . What we require is a method of performing our

computation fault tolerantly, such that by investing resources, we may lower the

probability of failure for a computation to an arbitrarily small amount ε. This

requires a method of performing error correction. In classical digital computers, the

logical bits are encoded into physical bits to allow for error correction. The simplest

96



example is

0L = 0000... 1L = 1111... (4.7)

If the noise process is independent for the physical bits, such as a bit flip occurring

with an independent probability for each of the physical bits, we may use this

introduced redundancy to correct the bit flip errors by taking the logical qubit to be

that of the most common of the physical bits. For example, if we have the physical

bit 1000..., then we may make the assumption that because most of the physical bits

are 0, then this must be our original logical bit 0L. In quantum computing, there

is a more sophisticated method of encoding logical qubits into physical ones, and it

is called the stabiliser code. I will give a very brief overview of this, but interested

readers may learn more by referring to the texts I introduced at the beginning of

this chapter.

4.3.1 Stabiliser formalism

4.3.1.1 Stabiliser space and the Clifford group

Consider the N -qubit Pauli group GN and its subset GN which are observables 46 on

C2
N

. The subset of GN , denoted St, which is generated by the set {gi}ri=1, defines

the subspace C2
K

that it stabilises as

C2
K

:= {ψ ∈ C2
N

: gψ = ψ ∀ g ∈ St} (4.8)

whereK = N−r. Every physical state ρ ∈ S(C2
N

) which is spanned by the stabilised

subspace is an encoding of our quantum information, and the corresponding logical

state is given as % ∈ S(C2
K

). Let us assume that the operators {Ei}, which can cause

errors on the physical states ρ ∈ S(C2
N

) by the map ρ 7→ ρ′ = (1− P )ρ + PEiρEi,

are a subset of GN . It can be shown that every Ei either commutes or anticommutes

with each g ∈ St, and as ρ and ρ′ are both an eigenstate of the Stabiliser observables,

46The N -qubit Pauli group is defined as GN := ({σi}3i=0 × {±1,±i})
⊗N . The subset of this

which are self-adjoint are n-qubit Pauli observables, Gn, whose elements are given as
⊗N

n=1 σn .
These are all both unitary and self-adjoint, so have eigenvalues from the set {+1,−1}.
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we may measure these on the system, without disturbing it, to reveal the eigenvalues

±1. For each g that gives an eigenvalue −1, or an error syndrome, we are informed

of the set of possible errors {Ei : [Ei, g]+ = O} that could have occurred. Acting on

ρ by any Ej such that [EjEi, g]− = O can then correct for the error.

What kind of unitary operations are allowed in this stabilizer formalism? We require

that our unitaries transform a stabilized vector to another stabilised vector, and

hence

Uψ = Ugψ ⇐⇒ Uψ = UgU †Uψ. (4.9)

Therefore, Uψ must be stabilised by UgU † for all g ∈ St. The set of such unitary

operations, that transform members of the Pauli group to other members of the Pauli

group under conjugation, are known as the Clifford group, and can be generated by

the set {H, Pπ/4,CNOT}. This differs from the standard universal set in that Pπ/8

has been replaced by Pπ/4, given by

Pπ/4 = Π(φ0) + iΠ(φ1) = ei
π
4 e−i

π
4
σz . (4.10)

4.3.1.2 Local noise, concatenated codes, and the threshold theorem

Let us consider the case where we encode one logical qubit into N physical ones:

[[N, 1]]. The simplest noise model is local, where there are no correlations in the

errors that may occur on the qubits. In such a case, given the probability of failure

for each physical qubit being P , this encoding reduces the probability of failure for

the encoded qubit to be cP 2 for a constant c which is dependent on the code used.

We can further reduce the probability of failure by concatenating the code, whereby

we develop a hierarchy of codes for a time block 47 of computation ad infinitum.

For i levels of concatenation, then, the error probability for the concatenated code

is P (c, i) = c2
i−1P 2

i
.

Consider now an ideal (noiseless) circuit containing p(n) gates – where p(∙) is a poly-

nomial function and n specifies the size of the problem – with the output ρ, and the

47A time block here refers to a unit of time in which at most one operation is carried out on any
given physical qubit.
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noisy encoding [[N, 1]] which prepares the state ρ′. We define the error with respect

to the trace distance of these states as D[ρ, ρ′] = ε. The threshold theorem states

that there is an error threshold PT ≡ 1/c for the physical qubits, where provided

that P < PT , there exists an i such that for any ε > 0 we can satisfy P (c, i) 6 ε/p(n).

The encoded circuit will contain O(poly[log2p(n)/ε]p(n)) gates, where poly[∙] is a

polynomial function independent of n 48. As such, a doubly exponential reduction

in the error of the encoded circuit requires only a polylogarithmic increase in the

physical size of the computation.

The threshold theorem provides a symbiotic relationship between design of fault

tolerant codes and experimental realisation of quantum computation. The larger

PT is for a given code, the better the code is. Conversely the smaller P is for a

physical realisation, the better the physical realisation is. Early codes gave PT in

the range of 10−5− 10−6, but more recent codes have pushed this higher to ∼ 10−3.

For a particular physical realisation, with usually an exponential coherence time of

T2 and the longest quantum gate taking Δt to perform, we may estimate the upper

bound for P for a single gate to be P ∼ (1−e−Δt/T2)/2. This can be lowered to reach

the threshold requirement by either decreasing Δt, increasing T2, or both.

A simple example of a stabiliser code is the [[5, 1]] code, which encodes one logical

qubit into five physical ones [Gottesman, 1997]. The stabilizers are {gi}16i=1, with the

sixteen linearly independent elements generated from the set

g1 = σx ⊗ σz ⊗ σz ⊗ σx ⊗ 1,

g2 = σz ⊗ σz ⊗ σx ⊗ 1⊗ σx,

g3 = σz ⊗ σx ⊗ 1⊗ σx ⊗ σz,

g4 = σx ⊗ 1⊗ σx ⊗ σz ⊗ σz. (4.11)

The basis of the logical qubit is defined as φL0 being an equal superposition of physical

qubit basis states with an even number of φ1 (such as φ1 ⊗ φ1 ⊗ φ0 ⊗ φ0 ⊗ φ0), and

φL1 being an equal superposition of physical qubit basis states with an odd number

48Here, P (c, i) = PT

(
P
PT

)2i
. This is a doubly exponential function in i.
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of φ1 (such as φ0⊗φ0⊗φ1⊗φ1⊗φ1). The logical qubit operators are given as

Z = σz ⊗ σz ⊗ σz ⊗ σz ⊗ σz X = σx ⊗ σx ⊗ σx ⊗ σx ⊗ σx (4.12)

The logical CNOT gate is implemented by performing a CNOT between the corre-

sponding physical qubits of each logical qubit. As can be verified, such a code does

not propagate any local error as the computation proceeds.

• = •
•
•
•
•

Figure 4.2: The logical CNOT operation in the [[5, 1]] code is performed by performing a

physical CNOT gate on each corresponding physical qubit of the two logical qubits.

4.3.2 Gottesman-Knill theorem

Figure 4.3: The Stabiliser state space ST (C2) represented as an octahedron inside the Bloch

sphere. The twelve blue pure states are the H-type magic states and the eight red pure states are

the T -type magic states. Image taken from [Anwar et al., 2012].

Let us consider the state space of a logical qubit in the stabilizer code. The state

space which can be obtained by the one-qubit Clifford group C1 – generated by
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{Pπ/4,H} – acting on an initial pure state chosen from one of the eigenstates of the

logical Pauli observables {X,Y, Z}, is the convex hull whose extremal states are said

eigenstates. This convex space is an octahedron in the Bloch sphere, with its vertices

given by the vectors {φ0, φ1, φ±, ϕ±} where φ± = 1√
2
(φ0±φ1) and ϕ± = 1√

2
(φ0±iφ1).

The state space of N qubits is similarly given by the convex hull whose vertices are

given by the eigenstates of {X,Y, Z}⊗N . It should be clear that the stabilizer state

space ST (C2
N

) is a subset of the full state space S(C2
N

), and that our description of

a quantum computer in the stabiliser formalism does not equate with our previous

definition of a universal quantum computer. Indeed, we lack the ability to generate

the Pπ/8 gate, found in the standard universal set, with the one qubit Clifford group

C1. The question remains whether or not a computation in the stabiliser state

space lies outside the complexity class BPP , and thus provides an advantage to

a classical computer. This can be rephrased thusly: can such a computation be

simulated efficiently on a classical digital computer? A quantum computer and

a classical computer produce probability distributions over measurement outcomes

p(x) and p̃(x) respectively. In order for the classical computer to simulate the

quantum computer, the L1 distance between the probability distributions must be

able to be brought below an arbitrarily small positive amount ε.

L1[p(x), p̃(x)] :=
∑

x

|p(x)− p̃(x)|
2

6 ε (4.13)

A quantum computer is said to be efficiently classically simulatable if the number of

computational tasks required to bring the L1 distance below ε grows polynomially

with an increase in the size of the problem. The Gottesman-Knill theorem [Gottes-

man, 1998] states that, any quantum computer which consists of preparation in

the computational basis, unitary gates from the Clifford group, and measurement of

observables in the Pauli group, is efficiently classically simulatable. As such, a quan-

tum computer which generates maps within the stabilizer space ST (C2
N

) offers no

advantage to a classical digital computer with access to a random number generator.

However, as shown by [Bravyi and Kitaev, 2005], universal quantum computation

can be obtained in the stabiliser formalism by distilling so called magic states from

many copies of a mixed non-stabiliser state ρ′. Consider the pure states Π(ψH) and
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Π(ψT )

Π(ψH) =
1

2

(

1 +
1
√

2
(σx + σy)

)

Π(ψT ) =
1

2

(

1 +
1
√

3
(σx + σy + σz)

)

. (4.14)

There are twelve H-type magic states given by {UψH : U ∈ C1} and eight T -type

magic states given by {UψT : U ∈ C1}. The H-type magic states are those that

are eigenstates of Hadamard-like gates which correspond with 180◦ rotations about

the edges of the stabiliser octahedron. The T -type magic states are eigenstates of

T -like gates (the Pπ/8 gate is also known as a T gate) which correspond with 120◦

rotations about the faces of the stabiliser octahedron.

4.4 DiVincenzo’s criteria and scalable QIP

In the early days of quantum computer science, [DiVincenzo, 1998] identified five

criteria that any physical implementation of a QIP device – within the circuit model

– must satisfy to enable universal, robust and fault tolerant quantum computation.

These are famously known as DiVincenzo’s criteria, and are

(i) Access to a scalable Hilbert space

Any system which we hope to use for quantum information processing must

have degrees of freedom which are described by the mathematics of Hilbert

spaces. To perform arbitrarily large calculations we will need arbitrarily large

Hilbert spaces, so the system must be scalable. This means that we can bring

several copies of the system and perform interactions between them so as to

gain access to a larger Hilbert space. For this to be efficiently scalable, the

operations needed for computation must grow logarithmically with the size of

the Hilbert space; increasing the number of energy levels within a single system

is not efficiently scalable.

(ii) Initialisation

The system must have the capacity of being initialised in a fiducial state, such

as the pure product state with vector φ⊗n0 . For most physical systems this

equates with cooling the system to its ground state.
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(iii) Universal set of quantum gates

We must have access to a universal set of quantum gates to achieve control-

lability in the entire state space. In fault tolerant schemes, magic states are

required to turn the Clifford group gates universal.

(iv) Long coherence times

These need to be sufficiently long in comparison with gate times to allow for

fault tolerance.

(v) Measurements

We must be able to perform strong, projective measurements on our qubits.
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Part II

Quantum dynamics of nuclear-electronic
spin systems
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Chapter 5

Closed system dynamics

5.1 Introduction

Nuclear-electronic spin systems consist of coupled electronic and nuclear spin de-

grees of freedom. The experimentally accessible states of such a system are the

eigenstates of the free Hamiltonian, and dynamics can be established between these

states using magnetic resonance. In this chapter I aim to delineate the properties of

the eigenstates, and the transitions that can be established between them using mag-

netic resonance. This largely follows from the work done by my colleagues and me in

[Mohammady et al., 2010, 2012]. The system shall be treated as a closed quantum

system, wherein all dynamics are described by unitary transformations.

5.2 The Hamiltonian and state space

We define a nuclear-electronic spin system as a bipartite composite system consist-

ing of an electronic degree of freedom and a nuclear degree of freedom, where the

total system has zero orbital angular momentum, and is thus described only by the

intrinsic spin. The electron spin operators are given as {Sx, Sy, Sz} which act on the

Hilbert space He := C2S+1 where S is the total electron spin, and the nuclear spin

operators are {Ix, Iy, Iz} and act on Hn := C2I+1 where I is the total nuclear spin.
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Figure 5.1: The coupled nucleus and electron spin constitute a nuclear-electronic spin system

Consequently, the dimension of the full Hilbert space He+n is d = (2S + 1)(2I + 1).

The closed system dynamics is governed by the Breit-Rabi Hamiltonian [Breit and

Rabi, 1931]

H0 = B0 (γeSz − γnIz) + Aiso
∑

i∈{x,y,z}

Si ⊗ Ii (5.1)

where B0 is the static magnetic field in the z direction, γe and γn are the electron

and nuclear gyromagnetic ratios respectively, and Aiso is the isotropic hyperfine

interaction strength. Such a Hamiltonian can describe atomic systems [Oh et al.,

2008], endohedral fullerenes [Benjamin et al., 2006], as well as silicon impurities

[Kane, 1998] at low enough temperatures that the donor electrons are sufficiently

localised and not in the conduction band. We shall restrict our discussion by setting

the electron spin to S = 1/2, whilst allowing for the nuclear spin I to take an

arbitrary integer or half-integer value. While this is sufficient for describing the

three major silicon impurity architectures where the dopants used are phosphorus,

antimony, and bismuth, it will no longer be able to describe endohedral fullerenes,

where S = 3/2 and I = 1. Notwithstanding, our approach can be extended to the

more general setting, albeit with more cumbersome analytical expressions.

Before continuing with our analysis, let us introduce some notation. We define the

electron Zeeman frequency as ω0 = γeB0, and the rescaled Zeeman frequency as

ω̃0 = ω0/Aiso. The ratio of the nuclear to electronic gyromagnetic ratios is defined

as δγ = γn/γe which is very small, usually being in the range 10−4−10−3. Finally, we

denote the eigenvectors of Sz using the Dirac notation as {|mS〉 : Sz|mS〉 = mS|mS〉}

and similarly the eigenvectors of Iz as {|mI〉 : Iz|mI〉 = mI |mI〉}. Because of our
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restriction on S, mS can take one of only two values {+1/2,−1/2}.

We first observe that the Hamiltonian obeys the following commutation relation

[H0, Sz + Iz]− = O. (5.2)

Hence, the eigenvectors of the Hamiltonian must be superpositions of the product

eigenvectors of the individual spin operators, |mS〉 ⊗ |mI〉, such that the total mag-

netisation quantum number m = mS +mI is conserved. The Hamiltonian therefore

decomposes into a direct sum of sub-Hamiltonians Hm

H0 =
⊕

m

Hm. (5.3)

By inspection, we can see that there is only one unique product spin eigenvector

|mS〉 ⊗ |mI〉 with m = ±(I + 1/2), which is given by | ± 1/2〉 ⊗ | ± I〉. Therefore,

the corresponding sub-Hamiltonian is represented by a 1 × 1 matrix denoted as

Hm=±(I+1/2). For any |m| < (I + 1/2), the eigenvectors are given as a superposition

of the product vectors |1/2〉⊗ |m− 1/2〉 and |− 1/2〉⊗ |m+ 1/2〉 and, consequently,

the corresponding sub-Hamiltonians are represented by 2 × 2 matrices, which we

denote as Hm,2. These can be evaluated easily using the basic rules of angular

momentum operators covered in Appendix A. Furthermore, as any matrix in L(C2)

can be spanned by the Pauli matrices {σi}3i=0, we do so for Hm,2. Here, the Pauli

matrices are defined with respect to the basis {|1/2〉⊗|m−1/2〉, |−1/2〉⊗|m+1/2〉}.

The sub-Hamiltonians are thus given as

Hm=±(I+1/2) =
Aiso

2
(±Wm − εm),

Hm,2 =
Aiso

2
(Wmσz +Omσx − εm1) , (5.4)

where

Wm = m+ ω̃0(1 + δγ),

Om =

√

I(I + 1) +
1

4
−m2,

εm =
1

2
(1 + 4ω̃0mδγ). (5.5)
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To keep the expressions compact, we define a positive parameter Rm =
√
W2m +O2m,

with the ad hoc specification that Rm=±(I+1/2) is given as Wm=±(I+1/2), and not the

absolute value thereof. Furthermore, the angle θm is defined such that

cos(θm) :=
Wm

Rm

sin(θm) :=
Om
Rm

. (5.6)

As Om is a constant for any given m subspace, any variation in these angular

quantities is due to the magnetic field B0. The magnetic field constitutes the refer-

ence coordinate frame for our spin system, by the direction of which the quantities

{m,mS,mI} have meaning. Hence, we may restrict it to take only positive values:

B0 > 0. Due to this consideration, for subspaces where |m| < (I + 1/2), the range

of values that θm can take are given by

θm ∈






[0, arctan
(
Om
|m|

)
] when m > 0,

[0, π
2
] when m = 0,

[0, π
2

+ arctan
(
Om
|m|

)
] when m < 0,

(5.7)

where the minimal value occurs as B0 → ∞ and the maximal value is actualised

when B0 = 0. For finite I, then, it follows that θm < π ∀ B0. For subspaces where

|m| = (I+1/2), on the other hand, since Om=±(I+1/2) = 0 it follows that θm=±(I+1/2)

is always zero.

Going back to the angular representation of the sub-Hamiltonians, as cos(θm=±(I+1/2)) =

1 for all magnetic fields, the form of Hm=±(I+1/2) will be unaltered. This represen-

tation, however, will allow us to rewrite Hm,2 as

Hm,2 =
Aiso

2
(Rm cos[θm]σz +Rm sin[θm]σx − εm1) (5.8)

with the eigenvectors

φ±m = am |±1/2〉 ⊗ |m∓ 1/2〉 ± bm |∓1/2〉 ⊗ |m± 1/2〉 (5.9)

where

am = cos

(
θm

2

)

≡
Wm +Rm√

O2m + (Wm +Rm)2
, bm = sin

(
θm

2

)

≡
Om√

O2m + (Wm +Rm)2
.

(5.10)
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From this, we see that cos(θm) and sin(θm) can be expressed equivalently as

cos(θm) = a2m − b
2
m sin(θm) = 2ambm, (5.11)

and make the further identification that

〈φ±m|Szφ
±
m〉 = ±

1

2
cos(θm) (5.12)

and

〈φ∓m|Szφ
±
m〉 = −

1

2
sin(θm). (5.13)

This representation of the eigenstates facilitates an understanding of the different

magnetic field regimes of the system.

(i) We define the high-field regime when the condition B0(γe + γn)/Aiso � 1 is

satisfied. In this regime θm → 0, and hence am → 1 and bm → 0 for all m; the

electron and nuclear spins are said to decouple.

(ii) We define the low-field regime when the condition B0(γe + γn)/Aiso . 1 is

satisfied. Here, an appreciable superposition of the product spin eigenvectors

is established; the electron and nuclear spins are entangled.

The eigenstate representation of Eq.(5.9), henceforth referred to as the adiabatic

basis, may also be used to describe the eigenvectors of Hm=±(I+1/2). This is done by

the identification | ± 1/2〉 ⊗ | ± I〉 ≡ φ±±(I+1/2), noting that bm=±(I+1/2) = 0 for all

magnetic fields, and that the vectors φ±∓(I+1/2) do not represent eigenstates of the

system. Furthermore, in addition to {φ±m}, we may also represent the eigenbasis of

the Hamiltonian as {ϕi : i ∈ N, 1 6 i 6 2(2I + 1)} such that ϕ1 is the ground state,

and ϕ2(2I+1) the maximally excited state.

As for the energies, we determine those belonging to the eigenstates of Hm,2 as

E±m =
Aiso

2

[

−
1

2
(1 + 4ω̃0mδγ)±Rm

]

(5.14)

while the energies of the eigenvectors φ±±(I+1/2) can be given more simply as

Em=±(I+1/2) =
Aiso

2

[

−
1

2
(1± 4ω̃0mδγ)±Wm

]

≡ ±
ω0

2
(1− 2δγI) +

AisoI

2
. (5.15)
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Figure 5.2: Pictorial representation of the energy ordering phases. At all fields, we have

E+m > E−m′ and E
−
m < E−m−1. However, the ordering between E

+
m and E

+
m−1 reverses at

B0 ' Aiso/2γn.

5.2.1 Energy ordering phases

We define the term energy ordering phase as a regime of the system defined with

respect to the ordering of energies E±m. At all non-zero magnetic fields, the energies

obey the ordering

E+m > E−m′ ∀ {m,m
′},

E−m < E−m−1 ∀ m. (5.16)

However, there are two phases in which the ordering of the energies E+m and E+m−1

is reversed. At the magnetic fields B0 . Aiso/2γn, these energies obey the order-

ing

E+m > E+m−1 ∀ m (5.17)

which is opposite to the ordering of energies E−m and E−m−1. At magnetic fields

B0 & Aiso/2γn, however, the ordering reverses to

E+m < E+m−1 ∀ m (5.18)

which is the same as the ordering of the energies E−m and E−m−1. Consequently,

we may define the magnetic field region B0 ' Aiso/2γn as a transition point be-

tween the two phases of the energy ordering. Note that the system will be in the
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high-field regime at magnetic fields much smaller than this energy ordering phase

transition.

5.2.2 Cancellation resonances

We introduce the term cancellation resonance to describe the magnetic field regimes

that simplify the sub-Hamiltonians. There are two types of cancellation reso-

nance:

Type I : Takes place when Wm = 0

This can only occur for subspaces where m 6 0. At these field values, and for

subspaces with −I+1/2 6 m 6 0, the term in Hm,2 dependent on σz vanishes

entirely, such that θm = π/2. For the subspace m = −(I + 1/2), on the other

hand, the sub-Hamiltonian simplifies to the magnetic field-independent value

− Aiso

(
1

4
+

δγ

1 + δγ
(I2 + I +

1

4
)

)

(5.19)

Type II : Takes place when Wm = Om

This only affects the sub-Hamiltonians Hm,2, but is no longer restricted to

negative m subspaces. Here, the sub-Hamiltonian becomes proportional to

σx + σz, meaning that θm = π/4.

5.2.3 Avoided crossings

The stationary points of the energy are defined as the magnetic field values where

dE/dB0 = 0. For states φ±±(I+1/2) the derivative of the energy with respect to B0 is

given by
dEm=±(I+ 1

2
)

dB0
= ±

γe

2
(1− 2δγI) (5.20)

which is constant for all magnetic fields and never vanishes. For all other states,

this is calculated to be

dE±m
dB0

= −mγeδγ ±
γe

2
cos(θm)(1 + δγ) (5.21)
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and disappears when

cos(θm) = ±
2mδγ
1 + δγ

. (5.22)

Since δγ � 1, it follows that only the energies of subspaces with −I + 1/2 6 m 6 0

can be made stationary, as cos(θm) for all other subspaces can never be made small,

or even worse, negative. Other than the subspace m = 0, the two energies E+m and

E−m are not made stationary at the same magnetic field, as is the case for traditional

Landau-Zener avoided crossings [Landau, 1932; Zener, 1932]. Rather, these occur at

different field values that are equally close to the type I cancelation resonance. We

may equivalently express this as the system being an equal angular distance from

π/2; E+m is made stationary when θm = π/2 + ζm and E−m is made stationary when

θm = π/2− ζm, where

ζm = arccos

(
2|m|δγ
1 + δγ

)

. (5.23)

5.2.4 Entanglement

All eigenvectors of H0, other than φ±±(I+1/2), are entangled with respect to the nu-

clear and electronic spin Hilbert spaces, except in the asymptotic limit of (γe +

γn)B0/Aiso → ∞. The reduced density operators of any eigenstate Π(φ±m) ≡

|φ±m〉〈φ
±
m| where |m| < (I + 1/2) are

trn[Π(φ±m)] = a2mΠ±1/2 + b2mΠ∓1/2,

tre[Π(φ±m)] = a2mΠm∓1/2 + b2mΠm±1/2, (5.24)

with Πn ≡ |n〉〈n|. From this we can calculate the entropy of entanglement, discussed

in Appendix B.1, as

E[Π(φ±m)] = −a2m log2(a
2
m)− b2m log2(b

2
m). (5.25)

The eigenvectors φ±m are the maximally entangled Bell states

Ψ± :=
1
√

2
(φ0 ⊗ φ1 ± φ1 ⊗ φ0) (5.26)

when a2m = b2m = 1/2, which occurs when θm = π/2. This is satisfied at the type I

cancelation resonance, meaning that only subspaces with −I + 1/2 6 m 6 0 have

maximally entangled eigenstates.
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For a statistical mixture, the entropy of entanglement no longer satisfies the require-

ments of an entanglement measure. If Hn = C2 then we may use the concurrence,

described in Appendix B.2. For Hn of larger dimensions we can use the negativity,

described in Appendix B.3. In this case care must be taken in the interpretation

of results; for Hn = Cd>3 a negativity greater than zero shows the presence of

entanglement but a zero negativity does not show its absence.

In addition to the mathematical criteria for entanglement to be present, care must be

taken in the interpretation of this “entanglement” in operational terms. We are only

justified in speaking of entanglement between the components of a composite system

if we can speak of the system as being composite in the first place; a Hilbert space can

be factorised as HA⊗HB if we can perform local measurements on HA and/or HB.

There are, consequently, two cases in which we may speak of entanglement:

(i) Entanglement in the composite system HA ⊗HB may be defined with respect

to local operations and classical communication (LOCC) if we are able to

perform local measurements on each subspace, supplemented with classical

communication.

(ii) If we are able to perform measurements on just a single subspace, say HA,

then we may treat it as an open quantum system. If we can assume that the

composite system is pure, and the measurement statistics of system HA reveals

a statistical mixture, then we may infer that the composite system is entangled.

This is the justification behind the traditional explanation of decoherence, as

well as of the von Neumann-Lüders measurement model.

In the current context, then, the eigenstates that are mathematically shown to be

entangled with respect to the electron and nuclear spin Hilbert spaces are oper-

ationally entangled only if we can locally measure either the electron or nuclear

spin, or both. If we can measure both of the systems locally, then we may use the

entanglement as a resource to, say, teleport quantum information.

In the prime examples of nuclear-electronic spin systems – silicon impurities – only

local measurements on the electronic degree of freedom has been reported to date.
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Therefore the entanglement cannot, for now at least, be operationally defined with

respect to LOCC. This notwithstanding, the entanglement of the eigenstates is not

fictitious and “real”, so long as it results in deducible phenomenon that can be falsi-

fied experimentally. I will show, in following sections, that the entanglement of the

eigenstates does indeed result in experimentally verifiable effects; that of magnetic

resonance transition rates and decoherence. This results from the Hamiltonian that

we posit for the system, in which the environment acts locally on the electron and

nuclear spin Hilbert spaces.

Indeed, the magnetic resonance community agrees with the reality of such an en-

tanglement, albeit by a different name of mixing. The eigenstates shown in Eq.(5.9)

are said to be “mixed” if they contain a “mixture” of the high-field eigenstates

|mS〉 ⊗ |mI〉. In other words, the state is “mixed” if both am and bm are non-

zero, as it were. However, this is tantamount to saying that the eigenstates have a

Schmidt-rank of two: that they are entangled. There is, therefore, a one-to-one cor-

respondence between entanglement and “mixing”, and speaking of one necessarily

implies the other.

5.3 Nuclear-electronic magnetic resonance

5.3.1 Selection rules

In magnetic resonance experiments, a time-dependent Hamiltonian – due to the in-

teraction of the spin with an oscillating magnetic field, also referred to as the driving

field– is switched on so as to allow for the establishment of superpositions between

the eigenstates of the Breit-Rabi Hamiltonian in Eq.(5.1). In the high-field regime,

where the stationary states of the nuclear-electronic spin system are decoupled prod-

uct states, superpositions between the eigenstates {ϕi, ϕj} are possible by NMR if

the transition is allowed by the dynamical selection rule for Ix: if |〈ϕj|Ixϕi〉| > 0

or, equivalently, ΔmI = ±1 and ΔmS = 0. For ESR the transition must be allowed

by the dynamical selection rule for Sx: |〈ϕj|Sxϕi〉| > 0 or, equivalently, ΔmS = ±1

115



and ΔmI = 0. In both cases we can talk about changes in each individual spin

quantum number because the electron and nuclear systems are in a pure product

state, where each subsystem is itself a pure state with a deterministic outcome for

a spin measurement; in other words, they are good quantum numbers.

In the low-field regime, however, with the exception of φ±±(I+1/2), the eigenstates are

entangled. In general the dynamical selection rules cannot be categorised simply as

ESR or NMR. Indeed, to avoid contradictions the magnetic resonance phenomenon

must be called by a different name, where ESR and NMR are only valid descriptions

asymptotically in the high-field limit. As the relevant selection rule allows transi-

tions between eigenstates that obey |〈ϕj|(Sx + Ix)ϕi〉| > 0, whereby Δm = ±1, it

is appropriate to call this nuclear-electronic magnetic resonance (NEMR). To see

why this is the case, consider the reduced density operators for an eigenstate of the

nuclear-electronic spin system in the low-field regime, trn[Π(φ±m)] and tre[Π(φ±m)],

provided by Eq.(5.24). These are, in general, convex combinations of pure states,

and we cannot say how the individual spin quantum numbers change due to a tran-

sition between different eigenstates φ±m, as there will be many contradictory answers

depending on which component of the mixed states we consider. The amount by

which the total spin magnetisation m changes, however, is always well defined.

These statements notwithstanding, for all practical purposes we may qualitatively

express the NEMR transition rates in the low-field regime by ESR. This is because

these transition rates are proportional to |〈ϕj|Sxϕi〉 + δγ〈ϕj|Ixϕi〉|2 which can be

approximated as |〈ϕj|Sxϕi〉|2 owing to the fact that δγ � 1. The nuclear spin effect

on the Rabi frequency in pulsed spectroscopy is similarly negligible.

5.3.2 NEMR Transitions

We now look at all the magnetic resonance transitions permissible in nuclear-electronic

spin systems, together with their relative c.w. transition rates and frequencies. The

discussion shall be general so as to be able to describe the observable phenomenon,

both in the high and low-field regimes, in a unified fashion. Recall the driving field
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Hamiltonian for a single spin species, given in Eq.(3.18). By extension, the spin op-

erators Jx/y, describing a single spin species, will be replaced by Fx/y = Sx/y+δγIx/y

to give the driving field

H±I (t) = ω1f(t) (cos[ωt]Fx ± sin[ωt]Fy)) (5.27)

which interacts with both the electron and nuclear spins locally. Here, ω1 = γeB1 is

the strength of the driving field and f(t) is a function describing a pulse of duration

τ . Hence, following the arguments laid out in Sec.3.3.1, the transition rate between

two eigenstates {ϕi, ϕj}may be calculated as I = 2π|ω1〈ϕj|Fxϕi〉|2. 49 Furthermore,

in a given magnetic field regime, the transitions may be classified as either

(a) ESR-allowed

when |〈ϕj|Sxϕi〉| ∼ 1.

(b) ESR-forbidden but NMR-allowed

when |〈ϕj|Sxϕi〉| � 1 but |〈ϕj|Ixϕi〉| ∼ 1.

(c) Dipole forbidden

when |〈ϕj|Sxϕi〉| � 1 and |〈ϕj|Ixϕi〉| � 1.

There are four types of dipole allowed transitions, classified as either φ±m ↔ φ±m−1 or

φ±m ↔ φ∓m−1. Here, I shall expound upon the properties of each. In all the ensuing

expressions for the transition rates, the common factor of πω21/2 will be omitted,

and we denote CI−
mI

=
√
I(I + 1)−mI(mI − 1) .

49It should be noted that we shall only consider transitions allowed up to first-order perturbation
theory, which obey the dynamical selection rule for Fx, and will ignore those allowed by second-
order perturbation theory, namely those that obey the dynamical selection rule for F 2x . These
second-order transitions are reported by [Morishita et al., 2009] using c.w. spectroscopy, but have
very weak transition rates.
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(i) φ±m ↔ φ±m−1

There are 2I of each of these transitions. The transitions φ+m ↔ φ+m−1 have the

associated transition rate

I+m↔m−1 ∝
∣
∣
∣ambm−1 + δγ

(
CI−
m− 1

2

amam−1 + CI−
m+ 1

2

bmbm−1

)∣∣
∣
2

,

' cos2
(
θm

2

)

sin2
(
θm−1

2

)

in the low-field regime, (5.28)

and the transitions φ−m ↔ φ−m−1 have the rate

I−m↔m−1 ∝
∣
∣
∣−am−1bm + δγ

(
CI−
m+ 1

2

amam−1 + CI−
m− 1

2

bmbm−1

)∣∣
∣
2

,

' cos2
(
θm−1

2

)

sin2
(
θm

2

)

in the low-field regime. (5.29)

Both these transitions are ESR-forbidden but NMR-allowed in the high-field

regime. In the low-field regime, however, they become ESR-allowed.

(ii) φ+m ↔ φ−m−1

There are 2I + 1 of such transitions. These have the rate

I+↔−m↔m−1 ∝
∣
∣
∣amam−1 + δγ

(
−CI−

m− 1
2

ambm−1 + CI−
m+ 1

2

bmam−1

)∣∣
∣
2

,

' cos2
(
θm

2

)

cos2
(
θm−1

2

)

at all magnetic fields, (5.30)

and are ESR-allowed at all field values.

(iii) φ−m ↔ φ+m−1

There are 2I − 1 of such transitions. Hence, unlike the other transition types,

these can only be observed for systems with I > 1. These have the rate

I−↔+m↔m−1 ∝
∣
∣
∣−bmbm−1 + δγ

(
CI−
m+ 1

2

ambm−1 − C
I−
m− 1

2

bmam−1

)∣∣
∣
2

,

' sin2
(
θm

2

)

sin2
(
θm−1

2

)

at all magnetic fields. (5.31)

Such transitions are ESR-allowed in the low-field regime, but dipole forbid-

den at high fields. Furthermore, unlike the other three transition types, the

uncoupled eigenstates φ±
±(I+ 1

2
)

are never involved here.
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Here we see the first of the experimentally verifiable effects of entanglement in the

eigenstates of the free Hamiltonian H0 that was alluded to in Sec.5.2.4: we predict

that transitions that are either dipole forbidden or only NMR-allowed at high fields,

where the eigenstates are separable, have transition rates in the low-field regime

that are comparable with those considered as ESR.

Each of the dipole-allowed transitions have associated with them a magnetic field

dependent frequency Ω, determined by the difference in energies of the associated

eigenstates, and can most generally be given as

Ω±,m↔±,m−1 =
Aiso

2
|Rm −Rm−1 ∓ 2ω̃0δγ| ,

Ω±,m↔∓,m−1 =
Aiso

2
|Rm +Rm−1 ∓ 2ω̃0δγ| . (5.32)

5.3.3 Frequency stationary points

The transition frequencies (5.32) for any pair of eigensates

{ϕi, ϕj : 〈ϕi|H0ϕi〉 > 〈ϕj|H0ϕj〉, |〈ϕi|Fxϕj〉| > 0} (5.33)

can also be represented as

Ω := 〈ϕi|H0ϕi〉 − 〈ϕj|H0ϕj〉. (5.34)

As the Hamiltonian is a function of B0, we may differentiate it with respect to this

parameter to determine

dH0(B0)

dB0
:= lim
ΔB0→0

H0(B0 + ΔB0)−H0(B0)
ΔB0

= γeSz − γnIz. (5.35)

Consequently, as
d〈ϕi|H0ϕi〉

dB0
= 〈ϕi|

dH0

dB0
ϕi〉, (5.36)

the derivative of frequency with respect to the magnetic field can be easily shown

to be
dΩ

dB0
= 〈ϕi|(γeSz − γnIz)ϕi〉 − 〈ϕj|(γeSz − γnIz)ϕj〉. (5.37)
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The frequency stationary points (FSPs) of the spectra are defined as the magnetic

field values where this derivative vanishes. Namely, when

〈ϕi|(γeSz − γnIz)ϕi〉 = 〈ϕj|(γeSz − γnIz)ϕj〉. (5.38)

Provided a nuclear spin satisfying I > 1, nuclear-electronic spin systems will have

FSPs in the low-field regime, which are frequency minima for transitions of type

φ±m ↔ φ∓m−1, and frequency maxima for transitions of type φ±m ↔ φ±m−1, if −I+3/2 6

m 6 0. In what follows, I shall provide proofs for this claim, and show the conditions

under which the FSPs are obtained.

Transitions of type φ±m ↔ φ∓m−1

Firstly, we note that the transitions φ±±(I+1/2) ↔ φ∓±I∓1/2 have the frequency

Ω =
1

2

(
∓2ω0δγ + Aiso

[
Wm=±(I+1/2) +Rm=±I∓1/2

])
. (5.39)

Here, the gradient of Ω with respect to B0 is given as

dΩ

dB0
=
γe(1 + δγ)

2
cos(θm=±I∓1/2) +

γe

2
(1 + δγ ∓ 2δγ) (5.40)

and vanishes only if

cos(θm=±I∓1/2) = −
1 + δγ ∓ 2δγ

1 + δγ
' −1 (5.41)

which cannot be satisfied since θm=±I∓1/2 < π ∀ B0. For the rest of the

transitions, where −I + 3/2 6 m 6 I − 1/2, the frequency is given by

Ω =
1

2
(∓2ω0δγ + Aiso[Rm +Rm−1]) . (5.42)

In this case, the gradient of the frequency with respect to B0 is calculated as

dΩ

dB0
= ∓γeδγ +

γe(1 + δγ)

2
(cos[θm] + cos[θm−1]) (5.43)

and vanishes when

cos(θm) + cos(θm−1) = ±
2δγ

1 + δγ
. (5.44)
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Determining the values of B0 that satisfy the exact Eq.(5.44) requires solving

a high-order polynomial, the analytic solution to which will not be very in-

structive. However, taking into account that δγ is small, we may determine

B0 approximately by taking the limit of δγ → 0 to obtain

lim
δγ→0

BFSP0 = −
Aiso

γe

(m− 1)Om +mOm−1
Om−1 +Om

. (5.45)

This gives a positive, and therefore valid solution, only if −I + 3/2 6 m 6 0.

To show that this is a minimum we simply calculate

lim
δγ→0

d2Ω

dB20

∣
∣
∣
∣
BFSP0

=
Rm +Rm−1

RmRm−1

(
1− cos2[θm]

)
(5.46)

which is positive.

Transitions of type φ±m ↔ φ±m−1

Firstly, we note that the transitions φ±±(I+1/2) ↔ φ±±I∓1/2 have a frequency

Ω =
1

2

(
∓2ω0δγ + Aiso

[
±Wm=±(I+1/2) ∓Rm=±I∓1/2

])
(5.47)

with the gradient

dΩ

dB0
= ∓

γe(1 + δγ)

2
cos(θ±I∓1/2)±

γe

2
(1− δγ). (5.48)

Here, dΩ/dB0 = 0 if

cos(θm=±I∓1/2) =
1− δγ
1 + δγ

(5.49)

which, although cannot be satisfied in the low-field regime, is still actualised

at finite magnetic fields and satisfies the criterion for FSPs. The magnetic

field value which satisfies this condition is calculated as

BFSP0 = Aiso
−2δγ(1 + δγ)m+Om

√
δγ(δ2γ − 1)2

2δγ(1 + δ2γ)γe
. (5.50)

To determine whether the transition is a minimum or maximum, we evaluate

d2Ω

dB20

∣
∣
∣
∣
BFSP0

= ∓
γ2e
2

(1 + δγ)
2

Rm=±I∓1/2

(

1−

[
1− δγ
1 + δγ

]2)

(5.51)

which implies that the FSP for transition φ+I+1/2 ↔ φ+I−1/2 is a frequency

maximum, whilst that for the transition φ−−I−1/2 ↔ φ−−I+1/2 is a frequency

minimum.
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For the remainder of the transitions, where −I + 3/2 6 m 6 I − 1/2, the

frequency is given by

Ω =
1

2
(∓2ω0δγ + Aiso(Rm −Rm−1)) . (5.52)

In this case, the gradient of the frequency with respect to B0 is calculated as

dΩ

dB0
= ∓γeδγ +

γe(1 + δγ)

2
(cos[θm]− cos[θm−1]) (5.53)

which vanishes when the condition

cos θm − cos θm−1 = ±
2δγ

1 + δγ
(5.54)

is met. The values of B0 that satisfy Eq.(5.54) are, in the limit δγ → 0, given

by

lim
δγ→0

BFSP0 =
Aiso

γe

(m− 1)Om −mOm−1
Om−1 −Om

(5.55)

which give positive, and therefore valid, solutions only if −I + 3/2 6 m 6 0.

To show that this is a maximum we simply calculate

lim
δγ→0

d2Ω

dB20

∣
∣
∣
∣
FSP

=
Rm−1 −Rm

RmRm−1
(1− cos2[θm]) (5.56)

which is negative.

5.3.4 Differences in transition frequency

Another quantity to consider is the difference between transition frequencies, ΔΩ,

at a given magnetic field value. This is important when considering issues of con-

trol, where the presence of degeneracies in transition frequency must be taken into

account. Also, even in the absence of degeneracies, to determine the strength of

a driving field needed for the rotating wave approximation to be valid, we need to

know the smallest relevant ΔΩ in the system.

First, let us consider the frequency difference between transitions of the same type.

For arbitrary m and m′, these are evaluated as

|Ω±,m↔±,m−1 − Ω±,m
′↔±,m′−1| =

Aiso

2
|(Rm −Rm−1)− (Rm′ −Rm′−1)| (5.57)
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for transitions of type φ±m ↔ φ±m−1 and

|Ω±,m↔∓,m−1 − Ω±,m
′↔∓,m′−1| =

Aiso

2
|(Rm +Rm−1)− (Rm′ +Rm′−1)| (5.58)

for transitions of type φ±m ↔ φ∓m−1. With the exception of one of the transitions

being φ±−I+1/2 ↔ φ−−I−1/2, ΔΩ for both of these cases vanishes when B0 = 0. Addi-

tionally, ΔΩ given by Eq.(5.57) is always smaller than that given by Eq.(5.58) at any

field value greater than zero. Furthermore, ΔΩ for both cases becomes stationary

when

cos(θm)± cos(θm−1) = cos(θm′)± cos(θm′−1) (5.59)

which can occur both in the low-field and high-field regimes. In the high-field regime,

this shows that the transition frequency differences stabilise to a given value. To

determine this value, we note that

lim
(γe+γn)B0/Aiso→∞

(Rm ±Rm−1) = m± (m− 1). (5.60)

Hence, in the high-field regime, ΔΩ for transitions of type φ±m ↔ φ∓m−1 stabilise

to Aiso|m − m′|, whereas ΔΩ for transitions of type φ±m ↔ φ±m−1 become smaller

with B0 and vanish altogether as (γe + γn)B0/Aiso →∞. The latter, however, does

maximise to an appreciable value of order Aiso in the low-field regime.

Now let us consider frequency differences given two different transition types. The

first way we do this is the following where ΔΩ, given arbitrary m and m′, can be

given as

∣
∣
∣Ω±,m↔±,m−1 − Ω±,m

′↔∓,m′−1
∣
∣
∣ =

Aiso

2
|Rm − (Rm−1 +Rm′ +Rm′−1)| (5.61)

and

∣
∣
∣Ω±,m↔±,m−1 − Ω∓,m

′↔±,m′−1
∣
∣
∣ =

Aiso

2
|Rm − (Rm−1 +Rm′ +Rm′−1)∓ 4ω̃0δγ| .

(5.62)

Such frequencies are never degenerate when m 6= m′. In the high-field limit and for

any m and m′ these both grow linearly with B0, with the rates

lim
(γe+γn)B0/Aiso→∞

dΔΩ

dB0
= γe(1 + δγ) and lim

(γe+γn)B0/Aiso→∞

dΔΩ

dB0
= γe(1 + (1± 2)δγ)

(5.63)
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respectively. There is only one case, where m = m′, that results in transition

frequency degeneracy. The transitions φ+−I+1/2 ↔ φ−−I−1/2 and φ−−I+1/2 ↔ φ−−I−1/2

will have a frequency difference given by

ΔΩ =
Aiso

2

∣
∣−2W−(I+1/2) + 4ω̃0δγ

∣
∣ (5.64)

which vanishes when ω̃0 = (I+1/2)/(1−δγ). This is the type I cancelation resonance

of Hm=−(I+1/2) in the limit δγ → 0.

The second way to consider ΔΩ for two different transition types is given by

|Ω+,m↔+,m−1 − Ω−,m
′↔−,m′−1| =

Aiso

2
|(Rm −Rm−1)− (Rm′ −Rm′−1)− 4ω̃0δγ| ,

|Ω+,m↔−,m−1 − Ω−,m
′↔+,m′−1| =

Aiso

2
|(Rm +Rm−1)− (Rm′ +Rm′−1)− 4ω̃0δγ| .

(5.65)

For m = m′, these are both equal to 2ω0δγ ≡ 2B0γn which is independent of

Aiso and only varies with B0. Due to the small value of δγ , and excluding the

special case of two transitions becoming degenerate in frequency, this is the smallest

amount by which any two transitions may differ in the low-field regime and hence

it imposes a lower bound therein. At values of the magnetic field where ω0 ∼ Aiso

and 2ω0δγ > ωth, then |Ω− Ω′| > ωth for all pairs of transition frequencies {Ω,Ω′}.

In the high-field regime, however, as ΔΩ for transitions φ±m ↔ φ±m−1 becomes very

small, this argument will not hold.

5.4 Coherent control with pulsed magnetic resonance

This section aims to expand upon what was established in Sec.3.2.2 to account

for controllability of nuclear-electronic spin systems with magnetic resonance. The

dynamics between the eigenstates of H0 are governed by a right-handed (+) or left-

handed (−) circularly polarised magnetic field that couples to both the electron

and nuclear spins according to their respective gyromagnetic ratios. The interaction

Hamiltonian, then, can be expressed as

H±I (t) = ω1f(t) (cos[ωt]Fx ± sin[ωt]Fy)) (5.66)
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where ω1 = γeB1, f(t) is a function describing a pulse of duration τ , and Fx/y =

Sx/y + δγIx/y. We may write these spin operators in the eigenbasis of H0, {ϕi}, as

Sx/y =
∑
Ω Sx/y(Ω) and Ix/y =

∑
Ω Ix/y(Ω), where

Sx/y(Ω) =
∑

i,j

δ(Ω− ωij)〈ϕj|Sx/yϕi〉|ϕj〉〈ϕi|,

Ix/y(Ω) =
∑

i,j

δ(Ω− ωij)〈ϕj|Ix/yϕi〉|ϕj〉〈ϕi|. (5.67)

Here ωij = Ei−Ej where Ei is the energy of eigenvector ϕi. This notation is useful

because, as was encountered previously in Sec.2.4.2, the interaction picture operators

S̃x/y(Ω, t) are simply e−iΩtSx/y(Ω), and similarly for Ĩx/y(Ω, t). Because the transition

frequencies are almost always non-degenerate 50 the summation for Sx/y(Ω) and

Ix/y(Ω) will almost always contain only one term. Consequently, summing the terms

with frequency Ω and −Ω, where we have redefined Ω as the absolute value |Ω| which

is positive, gives

∑

ω∈{Ω,−Ω}

Sx(ω) + δγIx(ω) = [η(Ω) + δγξ(Ω)]σx(Ω),

∑

ω∈{Ω,−Ω}

Sy(ω) + δγIy(ω) = sign(Ω)[η(Ω) + δγξ(Ω)]σy(Ω), (5.68)

where, for a given pair {ϕi, ϕj} that satisfies Ei − Ej = Ω > 0, we have

σx(Ω) = |ϕi〉〈ϕj|+ |ϕj〉〈ϕi|, σy(Ω) = −i|ϕi〉〈ϕj|+ i|ϕj〉〈ϕi|. (5.69)

In addition

η(Ω) = 〈ϕj|Sxϕi〉,

ξ(Ω) = 〈ϕj|Ixϕi〉, (5.70)

and

sign(Ω) = 〈ϕi|(Sz + Iz)ϕi〉 − 〈ϕj|(Sz + Iz)ϕj〉 ∈ {1,−1}. (5.71)

It should be noted that equations (5.28)-(5.31), determining the relative c.w. tran-

sition rates, are proportional to (η[Ω] + δγξ[Ω])2. Also, at magnetic fields lower than

50 with the exception of φ+−I+1/2 ↔ φ−−I−1/2 and φ
−
−I+1/2 ↔ φ−−I−1/2 close to the type I cance-

lation resonance of Hm=−(I+1/2)
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∼ Aiso/2γn, Signy(Ω) = +1 for transitions φ+m ↔ φ±m−1 while Signy(Ω) = −1 for

transitions φ−m ↔ φ±m−1; here the former will utilise a RH driving field, whereas the

latter will employ a LH driving field. However, as mentioned earlier, because the

energy ordering of the states {φ+m} reverses at fields larger than ∼ Aiso/2γn, here

the transitions φ+m ↔ φ+m−1 will also utilise a LH driving field.

We wish to make the two-level approximation, where a single two-dimensional sub-

space can be considered in isolation. This subspace is {ϕ0, ϕ1} which satisfies

E0 − E1 = Ω0 > 0. Such selectivity can be achieved by tuning the frequency of

the driving field to be in resonance with Ω0, provided that we may make the ro-

tating wave approximation, covered in Sec.3.2.2.1. We can think of the issue of

selectivity in terms of the bandwidth of the pulse in the frequency domain. The

length of a pulse is limited by the strength ω1; it is the “area” under the pulse that

determines the amount by which the state is evolved, with stronger pulses requiring

shorter pulse lengths and vice versa. The Fourier transform of a square pulse of

duration τ , frequency ω, and strength ω1 is given by ω1sinc[ω τ
2
]. The shorter τ is,

due to ω1 being stronger, the larger the bandwidth of frequencies the sinc function

will act upon.

Let us consider the interaction Hamiltonian HI(t) in the rotating frame of H0 where

we have tuned the frequency of the driving field to be Ω0, and the polarity of the

driving field is appropriately set to sign(Ω0). Hence, we have

H̃I(t) = ω1f(t)
∑

Ω

e−itΩ (cos[Ω0t]Fx(Ω) + sign(Ω0) sin[Ω0t]Fy(Ω)) ,

= ω1f(t)
∑

Ω>0

[η(Ω) + δγξ(Ω)]

× (cos[(Ω0 − PΩΩ)t]σx(Ω) + PΩ sin[(Ω0 − PΩΩ)t]σy(Ω)) (5.72)

where we have assigned the parity as PΩ := signy(Ω0)signy(Ω) ∈ {±1}. Assuming

for a square pulse and a constant driving field strength ω1, the Rabi frequency within

each subspace is determined by

η(Ω) + δγξ(Ω). (5.73)

In the low-field regime the Rabi frequencies for all dipole-allowed transitions are of
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the same order of magnitude, being dominated by the η(Ω) term.

The rotating wave approximation, when valid, will allow us to omit all terms other

than that where Ω0 −PΩΩ = 0: where PΩ = +1 and Ω = Ω0. Here, the interaction

Hamiltonian reduces to

H̃I(t) =






ω1[η(Ω) + δγξ(Ω)]f(t)σx(Ω0) when ωt 7→ Ω0t,

ω1[η(Ω) + δγξ(Ω)]f(t)σy(Ω0) when ωt 7→ Ω0t+ π
2
,

(5.74)

thereby providing the generators for su(2) within our selected subspace. As discussed

in Sec.3.2.2.1, assuming for a square pulse, the RWA is valid up to an arbitrarily

small error ε when

max
Ω

(
ω1[η(Ω) + δγξ(Ω)]

|Ω0 − PΩΩ|

)

� 1. (5.75)

A heuristic way of ensuring this is by setting ω1/minΩ(ΔΩ) � 1. Because of

our choice of a circularly polarised driving field, coupled with the fact that we are

choosing to ignore the unique scenario where transition frequency degeneracy occurs,

and that minΩ(ΔΩ) is realised when PΩ = +1, we need only consider minΩ(ΔΩ)

from within the same transition type as the chosen one of frequency Ω0.
51 These

values of minΩ(ΔΩ) are given by Equations (5.57)-(5.58) when m′ = m− 1. For all

the transition types, ΔΩ increases with B0 and reaches its maximal value of order

∼ Aiso in the low-field regime. In the case of transitions φ±m ↔ φ∓m−1, minΩ(ΔΩ)

will have a value of Aiso as (γe + γn)B0/Aiso →∞, so the advantage of the low-field

regime rests on the fact that the transition φ−m ↔ φ+m−1 is dipole-forbidden at high

fields. More strikingly, minΩ(ΔΩ) for transitions of type φ±m ↔ φ±m−1 in the high-

field regime becomes increasingly smaller with stronger fields, vanishing altogether

as (γe + γn)B0/Aiso → ∞. Therefore, even though these transitions are driven by

NMR, with consequently much slower Rabi frequencies than ESR given a constant

ω1, accurate control at sufficiently large magnetic fields will require even slower Rabi

frequencies.

As a final remark, let us note that we require the ability to perform any U ∈

51This, of course, only applies in the case of I > 1 where there are indeed more than one
transition of a certain type. The case of I = 1/2 is different, and as shall become apparent, results
in the lack of an ability to achieve accurate speed-up in the low-field regime.
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SU(2[2I+ 1]) in order to attain controllability within the state space of the nuclear-

electronic spin system S(C2(2I+1)). This is indeed possible in all magnetic field

regimes, and here is a simple proof of principle argument: take for example a desired

unitary map of the form U : φ+m 7→ αφ+m + βφ−m′ where α, β ∈ C and m −m′ 6 2I.

All that is required is an initial set of pulses that prepare the state αφ+m + βφ−m−1,

followed by a string of π pulses that take φ−m−1 7→ φ−m−2 7→ . . . φ−m′ .

5.4.1 Linearly polarised fields and selectivity

As we have already covered in Sec.3.2.2.1, in most experimental situations one cannot

establish a circularly polarised field. Instead a linearly polarised magnetic field is

used, which is composed in equal parts of a RH and a LH field. In such a case, then,

Eq.(5.72) will be altered so as to include terms with both parity components {±1}

to give

H̃I(t) =ω1f(t)
∑

Ω>0,PΩ∈{±1}

[η(Ω) + δγξ(Ω)]

× (cos[(Ω0 − PΩΩ)t]σx(Ω) + PΩ sin[(Ω0 − PΩΩ)t]σy(Ω)) .

(5.76)

As a result the requirements for the rotating wave approximation will become more

stringent because, excluding the special instance of transition frequency degeneracy

and the transitions of type φ±m ↔ φ±m−1 in the high-field limit, minΩ(ΔΩ) will be

determined by Eq.(5.65), which is 2B0γn. In the low-field regime this is much smaller

than minΩ(ΔΩ) utilising a circularly polarised field, and will require much slower

Rabi frequencies for accurate control.

5.5 Summary

In this chapter we have investigated nuclear-electronic spin systems, with an elec-

tron spin of one-half coupled to an arbitrary nuclear spin via an isotropic hyperfine

interaction, and their closed system dynamics due to magnetic resonance. The
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eigenstates of these systems, save for two, are generally entangled with respect to

the nuclear and electronic spin subspaces, becoming separable asymptotically at

large magnetic fields. The larger the hyperfine coupling between the two spins,

the greater the magnetic fields at which an appreciable entanglement is present

become. This entanglement forces us to revisit the standard magnetic resonance

selection rules, ESR and NMR, and conceive of a more generalised selection rule for

such coupled systems, which we call nuclear-electronic magnetic resonance (NEMR).

The consequence of this is that transitions between eigenstates that, at sufficiently

large magnetic fields are to a good approximation described as NMR, have, in the

low-field regime, transition rates of the same order of magnitude as that which is

characteristic of ESR.

Even more interesting phenomena occur when the nuclear spin I is greater than

one. First is the possibility of low-field regime transitions between eigenstates that,

at high magnetic fields, are forbidden by both the NMR and ESR selection rules.

Secondly, there exist transitions that have frequency stationary points (FSPs), de-

fined as finite magnetic fields where the gradient of the transition frequency with

respect to the magnetic field vanishes. These occur when the expectation values of

the operator γeSz − γnIz on the two involved eigenstates equalise.

We showed that, provided the ability of tuning the frequency of the driving field

to the NEMR resonances, and given access to both right-handed and left-handed

circularly polarised driving fields, we can achieve full controllability of the system’s

Hilbert space by magnetic resonance. The two concomitant factors affecting the

speed of accurate control are the NEMR transition rates, and the gap between the

desired transition frequency and all other transition frequencies. Again, provided a

nuclear spin that is greater than or equal to one, in general both of these factors

are more favourable in the low-field regime, making it possible to gain a speed-up

of accurate control.
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Chapter 6

Open system dynamics

6.1 Introduction

In the previous chapter we considered nuclear-electronic spin systems as closed,

wherein their dynamics is governed by unitary evolution alone. Of course in reality

such systems will be embedded in a physical environment where they will interact

with external degrees of freedom which lie outside the ability of the experimentalist

to control. Such open quantum system dynamics will, generally, lead to decoherence.

The nature of the environment can, for the most part, be dichotomised as being

either bosons or spins. The former is applicable to, amongst others, spins in the

solid-state coupled to vibrational modes, or phonons, of the lattice. The dynamics

here, usually Markovian, can be described by the spin-boson model which is covered

extensively in the literature such as [Leggett et al., 1987; Weiss, 1999; Kramer, 2003]

to name a few. The latter case is usually found in spins in the solid-state, where

undesirable spin species in the lattice interact with the spin system of interest.

The theory of the spin bath is covered exemplarily in [Prokof’ev and Stamp, 2000].

In many cases, the spin bath is described by the central-spin model [Witzel and

Das Sarma, 2006; Yang and Liu, 2008] where the open system of interest is a central

spin coupled, independently, to many surrounding spins which may or may not be

interacting with one another.
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In this chapter I will consider open system dynamics for nuclear-electronic spin

systems. I aim to see how, all else being equal, the entanglement of the nuclear and

electronic spins found in the eigenstates of the system Hamiltonian in the low-field

regime affect the decoherence. Consequently, when studying the effects of Markovian

dynamics I will not consider the spin-boson model, responsible for the thermal noise

in solid-state spin impurities, but rather a phenomenological Markovian model where

the system experiences effective fluctuations in the external magnetic field B0. This

is because the decay rates in the spin boson model depend on the spectral density

function which is itself contingent upon the transition frequency, and hence the

value of the external field, thus making the prospect of comparison between the low-

field regime and high-field regime tenuous, if not impossible. This work is largely

based on the publication from my colleagues and me in [Mohammady et al., 2012].

After this I shall conceive the nuclear-electronic spin system as a central spin under

the influence of a spin bath, where the cause of decoherence is the entanglement

generated between the two. This work is the analytic companion to the numerical

analysis presented in [Balian et al., 2012]. It will be apparent that, although the two

models have a fundamentally different microscopic basis, the qualitative properties

of the two are in good accord.

In both studies, we always consider the system as initially being prepared in a

superposition established by a single resonance of NEMR, namely the transitions

φ±m ↔ φ±m−1 and φ±m ↔ φ∓m−1 , so that the experimentally accessible effects of de-

coherence by means of conventional magnetic resonance spectroscopy are described

in terms of a two-dimensional subspace of the system. I will show that if the inter-

action of the system and its environment is sufficiently weak so as to result in pure

decoherence with respect to the eigenbasis of the system Hamiltonian, in a pertur-

bative limit, the coherence time of the system can increase by orders of magnitude

at specific values of the external magnetic field B0. These are the so-called optimal

working points (OWPs), established when

〈φ±m|Szφ
±
m〉 = 〈φ±m−1|Szφ

±
m−1〉 and 〈φ±m|Szφ

±
m〉 = 〈φ∓m−1|Szφ

∓
m−1〉 (6.1)

which occur for superpositions between subspaces m and m − 1 if and only if
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−I + 3/2 6 m 6 0. These are possible only in systems with I > 1. The OWPs

are identified with the FSPs in the limit δγ → 0. These two-level subspaces, at

the OWPs, constitute decoherence free subspaces (DFSs) [Lidar and Whaley, 2003].

Owing to the magnetic field dependence of establishing these DFSs, which is a

parameter of the system Hamiltonian, we call this phenomenon parametric decou-

pling.

6.2 The basic model

Figure 6.1: The coupled nucleus and electron spins constitute the nuclear-electronic spin

system, and the environment interacts with the system via the electron spin.

As the gyromagnetic ratio of the nuclear spin is between three and four orders of

magnitude smaller than that of the electron, and since the nuclear spin wavefunction

is much more localised than that of the electron, the open system dynamics will be

dominated by the interaction of the electron with its environment. We are therefore

justified in constructing a model wherein only the electron spin interacts with its

environment, such that the total Hamiltonian is given by

H = Hn+e0 +He+EI +H
E

. (6.2)

As mentioned in Sec.2.4.3, a sufficient condition for decoherence to be pure with

respect to the eigenbasis of the system Hamiltonian is for the interaction Hamiltonian

to commute with Hn+e0 .
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We may also be interested in considering the nuclear spin independently, and talk

about decoherence in this subspace. Due to the interaction between the nuclear

and electronic spins, even though we posit that only the electron spin interacts with

the environment, the reduced system dynamics need not necessarily act locally on

the electron spin; the nuclear spin will generally be affected as well. We assume

that at some initial time the nuclear-electronic spin system and the environment are

separable, and then evolve the composite system due to the total Hamiltonian. The

reduced state of the nucleus after the joint evolution is

ρn(τ) = trE+e[Uτρ
n+e ⊗ ρEU †τ ]. (6.3)

where

Uτ = e−iτ(H
n+e
0 +He+EI +HE). (6.4)

This is, in general, different to the initial reduced state of the nucleus. A series of

conditions which, when all are met, form a sufficient criterion for ρn(τ) = tre[ρ
n+e],

up to a local unitary transformation, are

(i) [Hn+e0 , He+EI ]− = O.

(ii) The eigenstates of Hn+e0 are product states.

(iii) ρn+e = (1− λ)ρn1 ⊗ Πe+1/2 + λρn2 ⊗ Πe−1/2 where λ ∈ [0, 1].

Condition (i), which implies that the total nuclear-electronic spin system undergoes

pure decoherence, ensures that the joint unitary operator may be written as

Uτ = Un+eτ U e+Eτ = e−iτH
n+e
0 e−iτ(H

e+E
I +HE) (6.5)

where the order of application is unimportant. Consequently, if Un+eτ does not

generate entanglement between the electron and nuclear spins, as is ensured by

conditions (ii) and (iii), then the action of U e+Eτ will have no effect on the nuclear

spin.

The eigenstates of Hn+e0 are product states in the asymptotic high-field limit, where

the operator that commutes with the system Hamiltonian must be of the form

He+EI = Sz⊗B, where B is some operator acting on the environment. If we prepare,
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in the high-field limit, our state to initially be in the superposition ψ = αφ±m+βφ±m−1

we do indeed have a product state of the form

lim
(γe+γn)B0/Aiso→∞

ψ = |±1/2〉 ⊗ (α |m∓ 1/2〉+ β |m− 1∓ 1/2〉) (6.6)

where the state of the electron is an eigenstate of Sz. Clearly, the action of Un+eτ on

the system will only result in the superposition in the nuclear subspace picking up

a phase, leaving the system in a separable state. Consequently, the action of U e+Eτ

will not result in decoherence in the nuclear spin subspace.

The considerations above are tantamount to saying that, in the high-field limit, if

the decoherence mechanism results in pure dephasing with respect to the electron

spins, then the NMR superpositions will not decohere. If, on the other hand, the

electron spins were to undergo depolarising noise, the nuclear spin subspace would

still be affected.

6.3 Phenomenological model for Markovian dynamics

6.3.1 The master equation

In this section, I will develop a phenomenological Markovian master equation for

nuclear-electronic spin systems. The techniques used here have already been ex-

pressed previously in Sec.2.4.2 and, as a result, I will not go in too much depth

about the individual steps made.

We propose the stationary state of the environment to be % and the interaction

Hamiltonian to have a Schmidt-rank of one . Two cases shall be considered; where

the interaction Hamiltonian couples Sz with the bath, and where the interaction

Hamiltonian couples Sx with the bath. 52

Hn
I = VnSn ⊗ B n ∈ {x, z}. (6.7)

52Indeed, we may equivalently consider the case where the operator is any linear combination of
Sx and Sy as both will have the same effect.

135



The resulting non-unitary dynamics will be referred to as Z noise and X noise

henceforth. Here, Vx and Vz are the strengths of the interaction, defined as 2‖Hn
I ‖

so that ‖Sn ⊗ B‖ = ‖Sn‖ = 1/2, and B is a self-adjoint operator acting on the

bath. If Vnτenv � 1, where τenv is the correlation time of the bath, we are justified

in making the weak-coupling approximation, up to a certain accuracy ε, and hence

coarse-grain the dynamics by the time scale Δt. The smaller Vn is, the longer τenv

and by association Δt can be for the weak-coupling approximation to remain valid.

By following the procedures delineated in Sec.2.4.2, we arrive at the differential

equation

d

dt
ρ(t) = i [ρ(t), H0]−

+ V 2n
∑

Ω,Ω′

G(Ω)J(Ω,Ω′)
(
Sn(Ω)ρ(t)S†n(Ω′)− S†n(Ω′)Sn(Ω)ρ(t)

)
+H.C (6.8)

where

G(Ω) =

∫ Δt

0

dτeiΩτ 〈B̃†(τ)B̃(0)〉,

J(Ω,Ω′) = ei(Ω
′−Ω)Δt

2
sin[(Ω′ − Ω)Δt/2]

(Ω′ − Ω)Δt/2
. (6.9)

We are justified in making the secular approximation J(Ω,Ω′) = δ(Ω − Ω′) if the

condition Δt � 1/|Ω − Ω′| ∀ Ω 6= Ω′ is satisfied, which can be restated as the

requirement Vn/|Ω − Ω′| � 1 ∀ Ω 6= Ω′. In the low-field regime, the smallest value

by which any two frequencies can differ is 2B0γn; only in the high-field regime do

we find a smaller frequency difference, which vanishes as B0 → ∞. Consequently,

in the extreme limits of (γe + γn)B0/Aiso → 0 and (γe + γn)B0/Aiso → ∞, Vn must

be made infinitely small. The secular approximation is therefore most valid in the

low-field regime conditional on the relation Vn/2B0γn � 1 being satisfied.

Thus far, our derivation has not involved any phenomenology. It is in the eval-

uation of G(Ω) where this occurs. We require that the correlation function be a

Gaussian

〈B̃†(τ)B̃(0)〉 =
1

2
√
πχn

e−
τ2

4χn (6.10)

which, in the limiting case of χn → 0, tends to the Dirac delta function δ(τ). Because

of our coarse-graining approximations where Δt � Δτenv, the correlation function
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vanishes sufficiently fast so that we may take the upper limit of the integrand of

G(Ω) to infinity. The weaker Vn is, the larger χn can be for this approximation to

remain valid. To evaluate this function, we make the change in notation

G(Ω) =
1

2
Γn(Ω) + iΛn(Ω) (6.11)

where

Γn(Ω) =

∫ ∞

−∞

dτ

2
√
πχn

e−
τ2

4χn eiΩτ = e−χnΩ
2

,

Λn(Ω) =
1

2i

∫ ∞

0

dτ

2
√
πχn

e−
τ2

4χn

(
eiΩτ − e−iΩτ

)
. (6.12)

Thus, we finally have our Markovian master equation in Lindblad form

L [ρ(t)] = i [ρ(t), H0 +HLS]

+ V 2n
∑

Ω

e−χnΩ
2

(

S†n(Ω)ρ(t)Sn(Ω)−
1

2

[
ρ(t), S†n(Ω)Sn(Ω)

]
+

)

(6.13)

where L is the Liouville super-operator that generates the dynamical semigroup

eL , and

HLS = V 2n
∑

Ω

Λn(Ω)S†n(Ω)Sn(Ω) (6.14)

is the Lamb shift and changes the energy levels of the system. This is a negligible

effect here and we shall ignore it henceforth.

6.3.1.1 On adiabaticity

The above treatment is almost identical with that given by my colleagues and me

in [Mohammady et al., 2012], except that I have not explicitly used the notion of a

fluctuating magnetic field, but instead a quantum mechanical “bath” with Gaussian

correlation functions that are independent of the external field B0. Nevertheless, the

action of the bath on the system results in effective fluctuating magnetic fields. As

such, we may still make the identification χn ≡ |1/Ḃn(t)|, whereby we may treat the

exponent of the correlation function as an indicator for adiabaticity. The condition
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for adiabatic evolution can be quantitatively expressed as

∣
∣
∣
∣
∣
〈ϕj|Snϕi〉

Ḃn(t)

(Ωi↔j)2

∣
∣
∣
∣
∣
� 1. (6.15)

where, given a sufficiently slow magnetic field fluctuation, transitions between states

{ϕi, ϕj} are suppressed. Hence, it follows that the Markovian dynamics is

(i) Diabatic

If χnΩ2 → 0 ∀ Ω, then Γ(Ω) = e−χnΩ
2
→ 1 ∀ Ω

(ii) Adiabatic

If χnΩ2 →∞ ∀ Ω > 0, then Γ(Ω) = e−χnΩ
2
→ 0 ∀ Ω > 0

Under the adiabatic assumption, we may drop all terms of the master equation

where Ω > 0. This will result in pure decoherence, with the preferred basis being

that in which H0 is diagonal. Only Z noise can be treated adiabatically, as X noise

does not have any Sx(Ω = 0) terms.

How large χnΩ2 needs to be for the adiabatic approximation to hold depends on

the degree of precision ε we require, and the time-scale we wish to consider. If

χnΩ2 < ∞, then at infinite time the resultant state ρ(t = ∞) will not be given

by the adiabatic master equation where only terms with Ω = 0 are considered.

For finite times τ , however, the accuracy with which the adiabatic master equation

predicts the state evolution can be made arbitrarily high given arbitrarily large

values of χnΩ2. Furthermore, the adiabatic condition is compatible with the criteria

for Markovian dynamics only in the case where Vnχn � 1. Hence, χn →∞ implies

Vn → 0, meaning that the dynamics will tend to be entirely unitary. It is therefore

more a matter of Ω, rather than χn, being large that results in adiabatic, pure

decoherence.

6.3.1.2 Magnetic resonance studies of the Markovian dynamics

Now that we have determined our Markovian master equation, we may use it to

analyse the dynamics of our nuclear-electronic spin systems under the influence of
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a fluctuating magnetic field. The tools at our disposal are the magnetic resonance

experiments discussed in Sec.3.5. We may establish, with a series of pulses at a single

resonant frequency, any coherence within a dynamical selection rule allowed two-

dimensional subspace. These superpositions correspond to the transitions discussed

in Eqs.(5.28)-(5.31). The two observable phenomenon of interest are the dephasing

and depolarisation rates. Accordingly, we may discard the free Hamiltonian term of

the master equation and consider the dynamics in the interaction picture. 53 The

dephasing and depolarisation rates would, respectively, be determined by the time

behaviour of
√

tr[σ01x ρ̃(τ)]2 + tr[σ01y ρ̃(τ)]2 and tr[σ01z ρ̃(τ)]. Here {σ01x , σ
01
x , σ

01
z } are

in the basis of the initial superposition established, with ϕ0 being the excited state

and ϕ1 the ground state.

6.3.2 Analysis of Z noise

We wish to evaluate Eq.6.13 in the case of n = z, which we call Z noise. Before we

begin let us note what Sz, in the basis that H0 is diagonal, looks like. This is

Smz =






1
2

[cos(θm)σmz − sin(θm)σmx ] when − I + 1/2 6 m 6 I − 1/2,

±1
2
Π(φ±m) when m = ±(I + 1/2),

(6.16)

where the Pauli operators {σmi } are written in the basis {φ+m, φ
−
m}. Z noise can

be seen to confine interaction picture dynamics within m subspaces. Hence, for an

initial pure state Π(ψ) where ψ is a superposition of two H0 eigenvectors, one from

subspace m and another from subspace m−1, we need only consider the truncated 54

operator Smz ⊕ S
m−1
z ∈ Ls(C4). We may therefore characterise the dynamics within

the state space S(C4), such that every density operator may be written as

ρ(t) =
1

4

(
3∑

i,j=0

nij(t)σi ⊗ σj

)

, n00(t) = 1 (6.17)

53Owing to the fact that the magnetic resonance measurements available to us are the weak
ensemble measurements, we strictly cannot ignore ensemble effects on the measured dephasing.
However, by assuming either perfectly homogeneous magnetic fields, or at least a perfectly exe-
cutable Hahn echo, we can safely ignore such contributions.

54Of course, when a subspace m = ±(I + 1/2) is involved, we need only consider Ls(C3), but
considering this within the larger space Ls(C4) will not prove problematic.
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where the basis for ρ(t) is {φ+m, φ
−
m, φ

+
m−1, φ

−
m−1}. The truncated master equation

Eq.(6.13), in the interaction picture, can therefore be expressed as

L [ρ̃(t)] =
V 2z
4

∑

j,k∈{m,m−1}

cos(θj) cos(θk)

(

σjzρ̃(t)σkz −
1

2
[δjkΠ(j), ρ̃(t)]+

)

+
V 2z
4

∑

j∈{m,m−1}

e−χzΩ
2
j sin2(θj)

(

σj+ρ̃(t)σj− + σj−ρ̃(t)σj+ −
1

2
[Π(j), ρ̃(t)]+

)

(6.18)

where Π(m) = Π(φ+m) + Π(φ−m) is a projector onto the m subspace, σm± ≡ |φ
±
m〉〈φ

∓
m|

is an exchange operator, and Ωm = E+m−E
−
m. In the case that one of the subspaces

is m = ±(I + 1/2), as shown above, the electron spin operator is not given by a

Pauli matrix, but a rank-1 projector. Notwithstanding, we may still consider such

a case in our general treatment by envisioning these one-dimensional m spaces as

being a subspace of a fictitious two-dimensional space.

Because the density operator is characterised completely by the vector n(t), which

has sixteen elements, we may determine the dynamics by solving the sixteen simul-

taneous differential equations encapsulated by

dn(t)

dt
= L n(t) (6.19)

where L is the Liouville super-operator in matrix form. Furthermore, due to the

fact that L is Markovian, and hence generates a dynamical semigroup, the solution

to this is

n(t) = eLn(t0). (6.20)

We may therefore write n(t) in the eigenbasis of L , with eigenvectors {nl} and

eigenvalues {λl}, to evaluate the long-time dynamics of the system. In this basis,

n(t) is given as

n(t) =
15∑

l=0

clnle
tλl (6.21)

where {cl} ∈ C are determined by the initial conditions. The imaginary component

of λl will simply lead to unitary dynamics, whereas the real components are respon-

sible for decay. 55 As t→∞, n(t) will consist only of terms {nl : Re(λl) = 0}. The

stationary states are thus any superposition of such eigenvectors.

55In fact, the real component of λl must always be negative.
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We shall be considering general initial superposition states corresponding to the

transition types discussed in Eqs.(5.28)-(5.31). In the case of equal superpositions,

the corresponding non-zero elements of n(t0) are given by

(i) ψ(t0) = 1√
2

(
φ+m + φ−m−1

)
:

n00(t0) = 1, n11(t0) = 1, n22(t0) = −1, n33(t0) = 1.

(ii) ψ(t0) = 1√
2

(
φ−m + φ+m−1

)
:

n00(t0) = 1, n11(t0) = 1, n22(t0) = 1, n33(t0) = −1.

(iii) ψ(t0) = 1√
2

(
φ+m + φ+m−1

)
:

n00(t0) = 1, n03(t0) = 1, n10(t0) = 1, n13(t0) = 1.

(iv) ψ(t0) = 1√
2

(
φ−m + φ−m−1

)
:

n00(t0) = 1, n03(t0) = −1, n10(t0) = 1, n13(t0) = −1.

6.3.2.1 Adiabatic Z noise

The noise process is adiabatic in the limit χzΩ
2 → ∞, where e−χzΩ

2
→ 0 ∀ Ω > 0.

Hence, the σm± terms in Eq.(6.18) are omitted, and the resulting master equation in

the interaction picture takes the form

L [ρ̃(t)] =
V 2z
4

∑

j,k∈{m,m−1}

cos(θj) cos(θk)

(

σjzρ̃(t)σkz −
1

2
[δjkΠ(j), ρ̃(t)]+

)

(6.22)

which can also be written in the equivalent form

L [ρ̃(t)] = V 2z
∑

φj ,φk∈{φ
±
m,φ

±
m−1}

〈φj|Szφj〉〈φk|Szφk〉

×

(

Π(φj)ρ̃(t)Π(φk)−
1

2
[Π(φk)Π(φj), ρ̃(t)]+

)

. (6.23)

The ensuing Markovian dynamics will only result in exponential dephasing, which

we calculate as
√

tr[σegx ρ̃(τ)]2 + tr[σegy ρ̃(τ)]2 = e−τ/T2 . 1/T2 is the dephasing rate,

where T2 is the dephasing time. The dephasing rate is given by

1

T2
=
V 2z
8

(cos[θm] + cos[θm−1])
2 ≡

V 2z
2

(
〈φ±m|Szφ

±
m〉 − 〈φ

∓
m−1|Szφ

∓
m−1〉

)2
(6.24)
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for the initial states ψ = αφ±m + βφ∓m−1, and

1

T2
=
V 2z
8

(cos[θm]− cos[θm−1])
2 ≡

V 2z
2

(
〈φ±m|Szφ

±
m〉 − 〈φ

±
m−1|Szφ

±
m−1〉

)2
(6.25)

for the initial states ψ = αφ±m + βφ±m−1. In both cases, the initial superpositions in

the high-field limit are, respectively, given by ψe ⊗ |mI〉 and |mS〉 ⊗ ψn. Because,

in the high-field limit, adiabatic Z noise results in a pure dephasing channel acting

on the electronic spin subspace the dephasing rate of Eq.(6.24) maximises to V 2z /2,

whereas that of Eq.(6.25) vanishes entirely.

However, in subspaces {m,m− 1} where −I + 3/2 6 m 6 0, the dephasing rates in

both Eq.(6.24) and Eq.(6.25) vanish when 〈φ±m|Szφ
±
m〉 = 〈φ∓m−1|Szφ

∓
m−1〉 and respec-

tively when 〈φ±m|Szφ
±
m〉 = 〈φ±m−1|Szφ

±
m−1〉, even in the low-field regime. We label

the magnetic fields at which these conditions are satisfied in the low-field regime as

optimal working points (OWPs).

Furthermore, the steady state solution for adiabatic Z noise within the {m,m− 1}

state space S(C4) is given by

n(∞) = 1⊗ 1 + c11⊗ σz + c2σz ⊗ 1 + c3σz ⊗ σz. (6.26)

6.3.2.2 Diabatic Z noise

The noise process is diabatic in the limit χzΩ
2 → 0, where e−χzΩ

2
→ 1 ∀ Ω. Hence,

the resulting master equation in the interaction picture is

L [ρ̃(t)] =
V 2z
4

∑

j,k∈{m,m−1}

cos(θj) cos(θk)

(

σjzρ̃(t)σkz −
1

2
[δjkΠ(j), ρ̃(t)]+

)

+
V 2z
4

∑

j∈{m,m−1}

sin2(θj)

(

σj+ρ̃(t)σj− + σj−ρ̃(t)σj+ −
1

2
[Π(j), ρ̃(t)]+

)

.

(6.27)

Since the terms with Ω > 0 are included, there will generally be both dephasing and

depolarisation. There is, however, a nuance to be considered as regards to the mea-

surement of the depolarisation rate. The depolarisation process affects individual

m subspaces, where tr[σmz ρ̃(t)] = e−τ/T1 , with the depolarisation rate being given
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by
1

T1
=
V 2z
2

sin(θm)2 ≡ 2V 2z 〈φ
−
m|Szφ

+
m〉
2 (6.28)

which maximises at the type I cancelation resonance, and vanishes in the high-field

limit. However, we do not observe this directly with magnetic resonance. Recall

that the measurement procedure for detecting depolarisation is tr[σ01z ρ̃(t)], which

probes two different subspaces, each of which is depolarising at an exponential rate.

Consequently, given T 01 as the depolarisation time of the excited state and T 11 as

that of the ground state, and P 0 as the initial population of the excited state and

P 1 as that of the ground state, the measured depolarisation would be

tr[σ01z ρ̃(t)] =
1

2
P 0
(

1 + e−t/T
0
1

)
−

1

2
P 1
(

1 + e−t/T
1
1

)
. (6.29)

Consequently, we cannot, in general, ascribe an exponential depolarisation time for

the dynamical selection rule allowed subspaces.

As regards to the dephasing measurement, we may repeat the approach used for the

adiabatic case. The dephasing rate is given by

1

T2
=
V 2z
4

(1 + cos[θm] cos[θm−1]) ≡ V 2z

(
1

4
− 〈φ±m|Szφ

±
m〉〈φ

∓
m−1|Szφ

∓
m−1〉

)

(6.30)

for the initial states ψ = αφ±m + βφ∓m−1, and

1

T2
=
V 2z
4

(1− cos[θm] cos[θm−1]) ≡ V 2z

(
1

4
− 〈φ±m|Szφ

±
m〉〈φ

±
m−1|Szφ

±
m−1〉

)

(6.31)

for the initial states ψ = αφ±m+βφ±m−1. As with the case of adiabatic Z noise, in the

high-field limit the dephasing rate for Eq.(6.30) maximises to V 2z /2, whereas that for

Eq.(6.31) vanishes. However, due to the presence of depolarisation in the low-field

limit, there are no longer any OWPs for diabatic Z noise, and the dephasing never

vanishes in the low-field regime. Indeed, the dephasing rate of both Eq.(6.30) and

Eq.(6.31) reach ∼ V 2z /4 near the optimal working point of cos(θm) = − cos(θm−1),

which is half of the maximum value that is realised for Eq.(6.30) in the high-field

limit, but the maximum value that Eq.(6.31) attains at any field.

Additionally, we note that the stationary states, given an initial superposition that

does not involve subspaces m = ±(I + 1/2), are

n(∞) = 1⊗ 1 + c1σz ⊗ 1 (6.32)
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whereas those involving such subspaces are

n(∞) = 1⊗ 1 + c1(σz ⊗ σz − 1⊗ σz) + c2σz ⊗ 1. (6.33)

6.3.3 A comment on X noise

The treatment of X noise, where the interaction Hamiltonian of the open system

couples Sx to the bath, is not so simple to treat analytically in general. First of all,

there are no Sx(Ω = 0) terms and, hence, we can only consider the diabatic case.

More importantly Sx couples the entire Hilbert space. As a result we are unable

to truncate Sx into a subspace of a more manageable size. As I increases, thereby

enlarging the dimension of the system Hilbert space, the number of simultaneous

Bloch equations needed to be considered would quickly grow untractable.

However, by simple observation we can infer certain properties of X noise. Firstly,

in the low-field regime the stationary state for X noise is the maximally mixed state

1
d
1. This is because both 〈φ±m−1|Sxφ

±
m〉 and 〈φ∓m−1|Sxφ

±
m〉 are non-zero in the low-field

regime given any m. In the high-field regime, on the other hand, where the electron

and nuclear spins in the eigenstates of H0 are separable, X noise is restricted to

the {m,m− 1} subspace. The Lindblad master equation, in the interaction picture,

is

lim
(γe+γn)B0/Aiso→∞

L [ρ̃(t)] =
V 2x
4

(
∑

Ω

[σ+(Ω)ρ̃(t)σ−(Ω) + σ−(Ω)ρ̃(t)σ+(Ω)]− ρ̃(t)

)

(6.34)

where σ±(Ω) = | ± 1/2〉〈∓1/2| ⊗ ΠmI such that

tr[H0(Π±1/2 ⊗ ΠmI − Π∓1/2 ⊗ ΠmI )] = Ω. (6.35)

Note that the Lindblad operators contain projectors on the nuclear spin subspace,

and not the identity operator; X noise does not act locally on the electron spin even

in the high-field limit. This shouldn’t be surprising as [H0, Sx]− 6= O.

Given an initial ESR superposition

lim
(γe+γn)B0/Aiso→∞

αφ+m+βφ−m−1 = (α |+1/2〉+ β |−1/2〉)⊗|m− 1/2〉 ≡ ψESR⊗|m− 1/2〉

(6.36)

144



the depolarising channel E will result in the statistical mixture

E : Π(ψ)ESR ⊗ Πm−1/2 7→

(
1

2
Π+1/2 +

1

2
Π−1/2

)

⊗ Πm−1/2,

=
1

2
Π(φ+m) +

1

2
Π(φ−m−1). (6.37)

Here, the exponential depolarisation rate is

1

T1
=
V 2x
2

(6.38)

and the dephasing rate is half this

1

T2
=
V 2x
4
. (6.39)

Let us now turn to the case of an NMR superposition

lim
(γe+γn)B0/Aiso→∞

αφ±m + βφ±m−1 = |±1/2〉 ⊗ (α |m∓ 1/2〉+ β |m− 1∓ 1/2〉)

≡ |±1/2〉 ⊗ ψNMR. (6.40)

In this case, the depolarising channel E will lead to a statistical mixture

E : Π±1/2 ⊗ Π(ψNMR) 7→
1

2
Π±1/2 ⊗

(
Πm∓1/2 + Πm−1±1/2

)

+
1

2
Π∓1/2 ⊗

(
Πm±1/2 + Πm−1±1/2

)
,

=
1

4

(
Π(φ+m) + Π(φ−m) + Π(φ+m−1) + Π(φ−m−1)

)
. (6.41)

6.4 Non-Markovian dynamics due to a spin bath

6.4.1 Pure decoherence due to weak spin-bath coupling

Let the nuclear-electronic spin system be system A governed by the Hamiltonian

HA ∈ Ls(HA) given by Eq.(5.1), and let the bath of N spin objects be system

B governed by the Hamiltonian HB ∈ Ls(HB). Finally, let the electron spin of

the nuclear-electronic spin system interact with the spin bath with an interaction
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Hamiltonian HI ∈ Ls(HA ⊗ HB). Hence, the total Hamiltonian describing the

system-bath evolution is

H = HA +HI +HB

HI =
∑

i∈{x,y,z}

Si ⊗ Bi (6.42)

where Bi is some self-adjoint operator acting on the whole bath conditional on the

operator Si acting on the electron of the nuclear-electronic spin system. As stated

previously, the decoherence will be pure with respect to the eigenbasis of HA only

if [HA, HI ]− = O. Here we show how the decoherence can be pure in a perturbative

sense if this commutation relation is not satisfied.

By expressing the operators in the eigenbasis of the free Hamiltonians HA and HB

as

Si =
∑

Ω

Si(Ω) Bi =
∑

ω

Bi(ω) (6.43)

we may write the interaction Hamiltonian in the interaction picture as

H̃I(t) =
∑

i∈{x,y,z}

∑

ω,Ω

e−i(Ω+ω)tSi(Ω)⊗ Bi(ω) (6.44)

and a RWA interaction Hamiltonian, including only the terms diagonal with respect

to the eigenbasis of HA

H̃I(t)
RWA =

∑

ω,m

e−iωt
(
〈φ+m|Szφ

+
m〉Π(φ+m) + 〈φ−m|Szφ

−
m〉Π(φ−m)

)
⊗ Bz(ω). (6.45)

The unitary operator obtained by the Dyson series for H̃I(t) is

Ũt,t0 = 1 +
1

l!

∞∑

l=1




∑

i∈{x,y,z}

∑

ω,Ω

(e−i(Ω+ω)t − e−i(Ω+ω)t0)
Ω + ω

Si(Ω)⊗ Bi(ω)





l

(6.46)

which is convergent by ŨRWAt,t0
in the sense that d(ŨRWAt,t0

ψ, Ũt,t0ψ) < ε ∀ ψ ∈ HA⊗HB

if ∣
∣
∣
∣
∣
∣

∑

i∈{x,y,z}

∑

ω,Ω

(e−i(Ω+ω)t − e−i(Ω+ω)t0)
Ω + ω

〈ψ⊥|Si(Ω)ψ〉〈ϕ|Bi(ω)φ〉

∣
∣
∣
∣
∣
∣
� 1 (6.47)

for all pairs of orthogonal HA eigenstates {ψ, ψ⊥} ∈ HA and all pairs of HB eigen-

states {φ, ϕ} ∈ HB. 56 This condition is satisfied if ‖HA‖ � ‖HI‖.

56In other words, φ and ϕ may be the same eigenstate.
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The unitary operator ŨRWAt,t0
can be shown to be of the form

ŨRWAτ =
∑

m

Π(φ+m)⊗ Uφ+m
τ + Π(φ−m)⊗ Uφ−m

τ ,

Uφ±m
τ = e−iτ(HB+〈φ

±
m|Szφ

±
m〉Bz). (6.48)

We may identify {Uφ±m
τ } as unitary operators on the bath, conditional on the system

being in the state φ±m. Because all terms of the Hamiltonian permitting transitions

between the HA eigenstates were removed by the RWA, the quantum channel on the

system Hilbert space that results from ŨRWAτ leads to only pure decoherence.

6.4.2 Parametric decoupling

As was the case for the Markovian model of decoherence, we are interested in es-

tablishing a superposition between two eigenstates of HA with magnetic resonance.

These correspond to the transitions of types φ±m ↔ φ±m−1 and φ±m ↔ φ∓m−1. We may

generally consider such a superposition as

ψ = αϕ0 + βϕ1. (6.49)

Additionally, let us assume that the system and environment are initially in the

product state ρ = Π(ψ)⊗ % which we may express as

ρ =
∑

i

P (i)|φi〉Π(ψ)〈φi|. (6.50)

Furthermore, the terms of the unitary operator in Eq.(6.48) that we need to consider

here are

(Π(ϕ0) + Π(ϕ1))Ũ
RWA
τ (Π(ϕ0) + Π(ϕ1)) = Π(ϕ0)⊗ U

ϕ0
τ + Π(ϕ1)⊗ U

ϕ1
τ (6.51)

as, due to the orthogonality of the projectors Π(φ±m), the other terms are not sup-

ported by this subspace. This (generally) entangling unitary operation, together

with measurement of the environment as per Stinespring’s dilation theorem dis-
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cussed in Sec.2.2.7.2, will lead to the dephasing channel

Eτ [Π(ψ)] =
∑

i,j

P (i)〈φj|Ũτ |φi〉Π(ψ)〈φi|Ũ
†
τ |φj〉.

=
∑

i

P (i) (〈Uϕ0
τ φi|U

ϕ1
τ φi〉Π(ϕ1)Π(ψ)Π(ϕ0) +H.C)

+ Π(ϕ0)Π(ψ)Π(ϕ0) + Π(ϕ1)Π(ψ)Π(ϕ1). (6.52)

The dephasing, such that it can be measured in magnetic resonance experiments, is

calculated at arbitrary evolution time τ as

√
tr[σ01x Eτ [Π(ψ)]]2 + tr[σ01y Eτ [Π(ψ)]]2 ≡ 2|〈ϕ0|Eτ [Π(ψ)]ϕ1〉|,

= 2
∑

i

P (i) |〈Uϕ1
τ φi|U

ϕ0
τ φi〉〈ϕ0|ψ〉〈ψ|ϕ1〉| ,

= 2|αβ|
∑

i

P (i) |〈Uϕ1
τ φi|U

ϕ0
τ φi〉| . (6.53)

The exact determination of this quantity for any arbitrary evolution time τ will

require long computation times, which grow exponentially with the size of the bath.

There are numerical approximation techniques available, however, such as the clus-

ter correlation expansion [Witzel and Das Sarma, 2006; Yang and Liu, 2008] that,

provided the convergence criteria are satisfied, enable this value to be estimated at

much shorter computation times.

By reflecting upon the nature of the quantum channel in Eq.(6.52), two methods

of removing the decoherence present themselves; either ensure no measurements

are carried out on the environment such that the composite system will evolve

unitarily, and hence reversibly, or decouple the evolution of the system from that of

the environment. The former is impossible to achieve, as the spin bath is designated

the term “environment” precisely because processes taking place therein are beyond

the scope of the experimentalist to control; the “measurements” on the environment

are not carried out by any person, but are simply physical processes where the bath

spins themselves interact with other degrees of freedom. The only avenue left open

is thus decoupling of the evolution.

In the special case where the interaction Hamiltonian commutes with the free evo-

lution Hamiltonian of the bath, [HI , HB]− = O, we may use the Hahn echo to carry
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out dynamical decoupling as was discussed earlier in Sec.3.2.3. This is because the

commutation of the two Hamiltonians will allow us to identify Uϕ0
τ Uϕ1

τ = Uϕ1
τ Uϕ0

τ .

More generally, however, this commutation relation will not be satisfied, and the

Hahn echo cannot achieve dynamical decoupling. There is, however, a method of

decoupling the dynamics, not by dynamical intervention, but rather by tuning of the

parameter of the external magnetic field B0. Hence, we shall label this appropriately

as parametric decoupling.

Consider again the unitary operator Eq.(6.51) from our example above. This is an

operator with a Schmidt-rank of two, and hence is inseparable, if and only if the

conditional unitary operators are not equal: Uϕ0
τ 6= Uϕ1

τ . However, these unitaries

are respectively functions of 〈ϕ0|Szϕ0〉 and 〈ϕ1|Szϕ1〉 which are equal at the opti-

mal working point. At such a magnetic field value, therefore, the two conditional

unitaries will be identical, and Eq.(6.51) will simplify to

(Π(ϕ0) + Π(ϕ1))Ũ
RWA
τ (BOWP0 )(Π(ϕ0) + Π(ϕ1)) = (Πϕ0

τ + Πϕ1
τ )⊗ U (6.54)

where U = Uϕ0
τ = Uϕ1

τ . This is decoupled with respect to the system-bath partition,

and cannot establish entanglement between the subspaces in question.

It should be noted, however, that decoherence has not been removed entirely at the

OWPs. Our arguments have rested upon the structure of the unitary operator ŨRWAτ

which is generated by the approximative interaction Hamiltonian that is diagonal

with respect to the system Hamiltonian. At the optimal working points, the effect

of these non-diagonal terms in the Hamiltonian will become dominant and limit the

coherence time.

6.5 Summary

In this chapter we studied the open system dynamics of nuclear-electronic spin

systems, where we posited that only the electron spin interacts with the environ-

ment. Both a phenomenological Markovian model and a microscopic model of a

non-Markovian spin bath were investigated. In both cases, if the interaction Hamil-
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tonian involves only the Sz operator acting on the electron spin, and is weak enough

in comparison with the energy splitting of the system Hamiltonian, what results is

pure decoherence with respect to the system Hamiltonian eigenbasis in a pertur-

bative limit. Furthermore, two-dimensional subspaces spanned by {φ±m, φ
∓
m−1} or

{φ±m, φ
±
m−1} such that −I + 3/2 6 m 6 0 provide decoherence free subspaces at spe-

cific magnetic fields where, respectively, the conditions 〈φ±m|Szφ
±
m〉 = 〈φ∓m−1|Szφ

∓
m−1〉

and 〈φ±m|Szφ
±
m〉 = 〈φ±m−1|Szφ

±
m−1〉 are satisfied. We call these magnetic field values

the optimal working points (OWPs) which coincide with the FSPs in the limit of

δγ → 0. The reason pure decoherence is suppressed at the OWPs is that at such val-

ues of the magnetic field, which is a parameter of the system Hamiltonian, the joint

unitary channel acting on the system and its environment decouples with respect to

the system-environment partition, and hence does not establish any entanglement

between them. We therefore call this phenomenon parametric decoupling, in con-

trast with dynamical decoupling which uses dynamical intervention to decouple a

system’s evolution from that of its environment.

However, this decoupling of the interaction applies to the approximate unitary evolu-

tion operator acting on the system and its environment; the un-perturbative unitary

operator does not decouple, and at the OWPs the coherence time may be increased

by orders of magnitude, but is not removed entirely.

Bibliography

S. J. Balian, M. B. A. Kunze, M. H. Mohammady, G. W. Morley, W. M. Witzel,
C. W. M. Kay, and T. S. Monteiro. Measuring central-spin interaction with a
spin bath by pulsed ENDOR: Towards suppression of spin diffusion decoherence.
Phys. Rev. B, 86:104428, Sep 2012. doi: 10.1103/PhysRevB.86.104428. URL
http://link.aps.org/doi/10.1103/PhysRevB.86.104428.

Bernhard Kramer. Advances in Solid State Physics 43. Springer, 2003.

A. J. Leggett, S. Chakravarty, A. T. Dorsey, Matthew P. A. Fisher, Anupam Garg,
and W. Zwerger. Dynamics of the dissipative two-state system. Rev. Mod. Phys.,
59:1–85, Jan 1987. doi: 10.1103/RevModPhys.59.1. URL http://link.aps.org/

doi/10.1103/RevModPhys.59.1.

D. A. Lidar and K. B. Whaley. Decoherence-Free Subspaces and Subsystems. In

150

http://link.aps.org/doi/10.1103/RevModPhys.59.1
http://link.aps.org/doi/10.1103/RevModPhys.59.1
http://link.aps.org/doi/10.1103/PhysRevB.86.104428


F. Benatti and R. Floreanini, editors, Irreversible Quantum Dynamics, volume
622 of Lecture Notes in Physics, Berlin Springer Verlag, pages 83–120, 2003.

M. H. Mohammady, G. W. Morley, A. Nazir, and T. S. Monteiro. Analysis of
quantum coherence in bismuth-doped silicon: A system of strongly coupled spin
qubits. Phys. Rev. B, 85:094404, Mar 2012. doi: 10.1103/PhysRevB.85.094404.
URL http://link.aps.org/doi/10.1103/PhysRevB.85.094404.

N V Prokof’ev and P C E Stamp. Theory of the spin bath. Reports on Progress in
Physics, 63(4):669, 2000. URL http://stacks.iop.org/0034-4885/63/i=4/a=

204.

Ulrich Weiss. Quantum Dissipative Systems. World Scientific Publishing Company,
1999.

W. M. Witzel and S. Das Sarma. Quantum theory for electron spin decoherence
induced by nuclear spin dynamics in semiconductor quantum computer architec-
tures: Spectral diffusion of localized electron spins in the nuclear solid-state envi-
ronment. Phys. Rev. B, 74:035322, Jul 2006. doi: 10.1103/PhysRevB.74.035322.
URL http://link.aps.org/doi/10.1103/PhysRevB.74.035322.

Wen Yang and Ren-Bao Liu. Quantum many-body theory of qubit decoherence in a
finite-size spin bath. Phys. Rev. B, 78:085315, Aug 2008. doi: 10.1103/PhysRevB.
78.085315. URL http://link.aps.org/doi/10.1103/PhysRevB.78.085315.

151

http://link.aps.org/doi/10.1103/PhysRevB.78.085315
http://link.aps.org/doi/10.1103/PhysRevB.74.035322
http://stacks.iop.org/0034-4885/63/i=4/a=204
http://stacks.iop.org/0034-4885/63/i=4/a=204
http://link.aps.org/doi/10.1103/PhysRevB.85.094404


Chapter 7

Bismuth doped silicon and phosphorus

doped silicon: a comparative study

7.1 Introduction

Now that we have completed our general study of closed and open system dynamics

of nuclear-electronic spin systems, we may begin to apply our findings to two con-

crete examples: phosphorus doped silicon (Si:P) and bismuth doped silicon (Si:Bi).

Although the former has been subject to extensive study, and hence is of little in-

terest here, we present it alongside the more novel system of Si:Bi as a means of

comparison. To this end, we require numerical values for the parameters defining

the system Hamiltonian H0, which are provided in Table 7.1.

The electron gyromagnetic ratio is given by γe = βege, where βe = 13.9962 GHz/T is

the Bohr magneton, and ge is the electron g-factor which depends on the substance.

For Si:P and Si:Bi, the electron g-factor is provided by [Stesmans, 1993] and [Feher,

1959] respectively. Similarly, the nuclear gyromagnetic ratio is given as γn = βngn

where βn = 7.6 MHz/T is the nuclear magneton and gn is the nuclear g-factor

the value of which, for both bismuth and phosphorus, was taken from NMR tables

provided by www.webelements.com.

In what follows I shall take the general equations presented in the previous two sec-
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Si:P Si:Bi

S 1/2 1/2

I 1/2 9/2

γe 27.974 GHz/T 27.997 GHz/T

γn 17.251 MHz/T 6.963 MHz/T

δγ 6.167× 10−4 2.487× 10−4

Aiso 117.5 MHz 1.4754 GHz

Table 7.1: Numerical constants for Si:P and Si:Bi

tions and provide numerical solutions that compare the magnetic resonance proper-

ties of Si:Bi and Si:P.

7.2 Energy spectrum and entanglement
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Figure 7.1: The energy spectrum of Si:P and Si:Bi together with the entropy of entanglement

between the electron and nuclear spin of the eigenstates. This is represented by the colour scale.

The entanglement between the electron and nuclear spins can be seen to maximise near the

avoided crossings, where the type I cancelation resonance takes place.

Figures 7.1a and 7.1b depict, for Si:P and Si:Bi respectively, the eigenvalues of the

Breit-Rabi Hamiltonian, provided by equations (5.14) and (5.15), together with the

entanglement between the electron and nuclear spin of each eigenstate, calculated

by the entropy of entanglement given by Eq.(5.25). Let us now compare the key
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features of the two systems.

(i) Si:P has four eigenstates, and is thus described by the state space S(C4),

whereas Si:Bi owing to its larger nuclear spin has twenty eigenstates, exhibiting

a state space S(C20).

(ii) At magnetic fields that are larger than zero, the eigenstates separate into two

clusters with respect to their relative energies; the bottom cluster are the states

{φ−m} and the top cluster are the states {φ+m}.

(iii) The larger energies of Si:Bi compared with Si:P are due to the order of mag-

nitude larger isotropic hyperfine interaction strength. This, together with the

value of the nuclear spin I, also determines what magnetic field ranges consti-

tute the low-field regime; for Si:P this is approximately 0−0.01 T, whereas for

Si:Bi it is 0− 0.6 T.

(iv) The low-field regime is where the entanglement of the eigenstates, other than

states φ±±(I+1/2), is appreciably large. As δγ is ∼ 10−4 in both cases the energy

levels become stationary, with respect to the magnetic field, very close to the

type I cancelation resonances. These are the points at which the eigenstates

of subspaces −I + 1/2 6 m 6 0 are the maximally entangled Bell states

Ψ±. Si:P has only one subspace, m = 0, which exhibits this maximisation of

the entanglement at zero field. Si:Bi on the other hand has five subspaces,

m = {0,−1,−2,−3,−4}, which have a type I cancelation resonance at the

increasingly larger field values of {0 T, 0.05 T, 0.11 T, 0.16 T, 0.21 T}.

In most experimental situations the initial preparation that nature provides 57 is the

thermal state ρth, defined earlier in Eq.(3.60). Such states can, given a sufficiently

small magnetic field and temperature, exhibit entanglement. This is shown in Fig-

ures 7.2a for Si:P and 7.2b for Si:Bi. The measure of entanglement used for Si:P is

the concurrence, as it can be considered as two coupled qubits. The composite state

space of Si:Bi, on the other hand, is given by C2 ⊗ C10, for which the concurrence

57This can be attributed to open system dynamics that interact the system with a thermal bath,
such that ρth is the stationary state of the evolution after the system and the bath have reached
thermal equilibrium.
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is inappropriate. Consequently the negativity was used instead. As the ground

state of Si:P is maximally entangled at zero field, the concurrence of the thermal

state is also maximal at zero field and zero temperature. Staying at zero field, an

increase of temperature decreases the entanglement due to the reduction in purity

of the ensemble state. An increase in the magnetic field will also result in a loss of

entanglement. Si:Bi, on the other hand, is more complex. Here, the ground state

φ−4 has a negligible entanglement at zero field, and thus a small increase in temper-

ature increases the probability of sampling from the higher energy, more entangled

eigenstates. This in turn results in an increase of entanglement of the thermal state

which, at higher temperatures still, vanishes just as with Si:P.
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Figure 7.2: Entanglement between the electron and nuclear spin of the thermal ensemble state

ρth for Si:P and Si:Bi as a function of temperature and the external magnetic field.

7.3 Spectroscopic properties

7.3.1 Continuous wave spectroscopy

We may use the relative transition rates of all dipole allowed transitions, calculated

in Eqs.(5.28)-(5.31), coupled with their frequencies, shown by Eq.(5.32), to deter-

mine the c.w. spectroscopic properties of both Si:P and Si:Bi. These are shown,

respectively, in Figures 7.3a and 7.3b. As before, let us consider the key features of

the two spectra.
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(a) c.w. spectra of Si:P.

0 0.1 0.2 0.3 0.4 0.5 0.6
  0

  5

 10

F
re
q
u
en
cy
,
Ω
(G
H
z)

 

Magnetic field, B0 (T)

 0

0.2

0.4

0.6

0.8

1
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Figure 7.3: The c.w. spectra of Si:P and Si:Bi. The colour bar shows the relative rates of each

transition calculated using the equations (5.28)-(5.31) normalised so that ESR transition rates

are unity. The group of transitions around 60 MHz at 0.01 T for Si:P and 1 GHz at 0.6 T for

Si:Bi are, at high fields, described approximately by NMR selection rules. Hence, their transition

rates relative to those of the ESR lines become negligibly small at fields larger than ∼ 0.01 T and

∼ 0.6 T respectively.

(i) Si:P only has four first order dipole-allowed transitions. These are the ESR-

allowed transitions {φ+1 ↔ φ−0 , φ
+
0 ↔ φ−−1} and the transitions that are ESR-

allowed at low fields but ESR-forbidden and NMR-allowed at high fields,

{φ+1 ↔ φ+0 , φ
−
0 ↔ φ−−1}. Of course, as demonstrated experimentally by [Mor-

ishita et al., 2009], the double-transitions φ+0 ↔ φ−0 and φ+1 ↔ φ−−1 are also

allowed in second order perturbation theory, albeit with much weaker rates.

Our discussion here, however, concerns only first order transitions so these

shall be ignored. Note that the transitions of type φ−m ↔ φ+m−1 which are

dipole-forbidden at high field are not present here. On the other hand, Si:Bi

has a rich spectra of a total of thirty six transitions, eight of which are those

that are dipole-forbidden at high field.

(ii) Si:P, with I = 1/2, does not contain any FSPs in the low-field regime. 58 This

is because there is only one subspace where −I+ 1/2 6 m 6 0 is satisfied, and

low-field regime FSPs, as with the OWPs, require at least two such subspaces.

Si:Bi on the other hand has, corresponding to m ∈ {0,−1,−2,−3}, four fre-

58The Si:P transitions φ+1 ↔ φ+0 and φ
−
0 ↔ φ−−1 do have FSPs at the field value B0 ' 0.08 T.

This, however, is in the high-field regime for Si:P.
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quency minima at the increasingly larger magnetic fields of

{0.03 T, 0.08 T, 0.13 T, 0.19 T}, and also the four frequency maxima at the

increasingly smaller field values {2.61 T, 0.87 T, 0.52 T, 0.37 T}. 59

(iii) Due to the larger hyperfine interaction strength and nuclear spin of Si:Bi, the

transition from low-field to high-field regime occurs at larger magnetic field

values in Si:Bi than for Si:P. Consequently the transitions of type φ±m ↔ φ±m−1 in

Si:Bi continue to be ESR-allowed at magnetic fields where the same transitions

are approximately only NMR-allowed in Si:P.

7.3.2 Pulsed spectroscopy

For a given driving field strength ω1 the Rabi frequency, determined by the nutation

experiment in pulsed spectroscopy (see Sec.3.5.3), varies according to Eq.(5.73),

the transition rates of c.w. spectroscopy being the square of which. Therefore

in the high-field limit the Rabi frequencies of NMR transitions φ±m ↔ φ±m−1 are

approximately three orders of magnitude slower than those of the ESR transitions

φ+m ↔ φ−m−1. In the low-field regime, however, due to the entanglement in the

eigenstates, the transitions φ±m ↔ φ±m−1 become ESR-allowed and consequently gain

a three-orders of magnitude speed-up. While this may seem to suggest that accurate

control of these subspaces is also sped up by three orders of magnitude in the low-

field regime, we must not neglect the issue of selectivity. If the transition frequency

gaps Δ(Ω), which limit the Rabi frequency due to the relationship in Eq.(5.75), get

smaller in the low-field regime, then in order to achieve the same level of accuracy as

in the high-field regime slower pulses must be used. As discussed in Sections 5.3.4

and 5.4, however, the situation is in fact usually the opposite of this; the differences

in transition frequency for the high-field NMR transitions, given a nuclear spin

I > 1, are actually maximised in the low-field regime.

It may be illustrative to consider some concrete examples from Si:P and Si:Bi. Here,

we wish to demonstrate the relationship between the magnetic field regime, in the

59The frequency maximum that occurs at 2.61 T, however, also constitutes the high-field regime
for Si:Bi.
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sense that it affects the gap between transition frequencies, and accuracy of control.

As such, we must ensure that the Rabi frequency remains constant throughout.

Seeing as the Rabi frequency is given by ω1[η(Ω) + δγξ(Ω)], then, it follows that we

must vary ω1.
60 Furthermore, the discussion here only considers circularly polarised

driving fields, such that the smallest relevant frequency differences are, in the case

of Si:Bi, given by Equations (5.57)-(5.58). Si:P, on the other hand, only has one

transition of type φ+m ↔ φ+m−1 and similarly with φ−m ↔ φ−m−1. As such, the rele-

vant smallest frequency differences are determined, depending on the case, by other

combinations discussed in Section 5.3.4.

7.3.2.1 Si:Bi

For Si:Bi, Figures 7.4a and 7.4b show the smallest frequency difference min(ΔΩ)

where the desired transitions are, respectively, the high-field NMR transition φ+0 ↔

φ+−1 and the ESR transition φ+0 ↔ φ−−1. The accuracy of control for these transitions,

given a constant Rabi frequency, is demonstrated by Fig.7.4c. Here, the system is

initially set to Π+0 and the Liouville-von Neumann equation is numerically integrated,

using the Runge-Kutta-Fehlberg method, for a period of τ = π/(2ω1[η(Ω)+δγξ(Ω)])

which prepares the state ρ1(or ρ2) by tuning the frequency of the driving field to be

in resonance with Ω+,0↔+,−1(or Ω+,0↔−,−1). In different magnetic field regimes, the

driving field is adjusted so that the Rabi frequency is always ω1[η(Ω) + δγξ(Ω)] = 2

MHz (or 200 MHz). After completion, the trace distance is calculated between the

solution ρ1(or ρ2) and the desired state Π(φ+−1)(or Π(φ−−1)). Evidently, D[ρ1,Π(φ+−1)]

is minimised at ∼ 0.4 T, where the relevant min(ΔΩ) shown in Fig.7.4a maximises.

At higher and lower magnetic fields, accurate control for this transition requires

slower pulses. In contrast, as min(ΔΩ) in Fig.7.4b plateaus at its maximal value

after ∼ 1 T, D[ρ2,Π(φ−−1)] continues to decrease up to this field value, and does

not change considerably beyond this. Also notice that, while the Rabi frequency

used for the transition φ+0 ↔ φ−−1 is a hundred times greater than that used for

60It should be noted, however, that this arbitrary control of ω1 is unfeasible in practice, and we
only do this to allow for a systematic comparison of Rabi frequencies, field regime, and accuracy
of control.
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(d) Si:Bi control accuracy for transitions

φ−−5 ↔ φ±−4 with ω1(η(Ω) + δγξ(Ω)) = 200 MHz.

Figure 7.4: Accuracy of control in Si:Bi

φ+0 ↔ φ+−1, the former is always achieved with greater accuracies. This shows that,

even though both transitions have approximately the same transition rate in the

low-field regime, for any arbitrary accuracy the high-field NMR transition must be

more than a hundred times slower; the speed-up in the low-field regime is not as
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great as we would like it to be.

This is not very impressive, but I had chosen the worst-case scenario in Si:Bi.

Fig.7.4d, on the other hand, compares the accuracy and rate of control of the ESR

transition φ+−4 ↔ φ−−5 with the high-field NMR transition φ−−4 ↔ φ−−5. Note that

φ−−5 is the maximal m state φ−−I−1/2 of Si:Bi. As before, the system is initially set

to Π(φ−−5) and the von-Neumann equation with the appropriate driving field is in-

tegrated for the required period so as to constitute a π pulse and thereby prepare

states ρ1(or ρ2). In this case, the Rabi frequency is set to be 200 MHz for both

instances. The trace distance is then calculated between the prepared state and

the desired state Π(φ−−4)(or Π(φ+−4)). As can be seen, the two transitions can be

achieved with the same degree of accuracy and rate at ∼ 0.3 T. In such a situation

we do have genuine speed-up for the high-field NMR transition.

7.3.2.2 Si:P

For Si:P, Figures 7.5a and 7.5b show the relevant min(ΔΩ) for the ESR transition

φ+1 ↔ φ−0 and the high-field NMR transition φ+1 ↔ φ+0 , whilst Fig.7.5c compares the

accuracy of control between the two. Here, the system is initially prepared in state

Π(φ+1 ), and with a constant Rabi frequency of 2 MHz (or 20 MHz), the system is

evolved so as to constitute a π pulse so as to prepare ρ1(or ρ2). The trace distance is

then calculated between the prepared state and the desired state Π(φ+0 )(or Π(φ−0 )).

In both cases accuracy of control improves with the magnetic field, where one of

the relevant ΔΩ in the system grows larger from its vanishingly small value at zero

field. However, the other ΔΩ is constant at all fields, and poses a lower bound for

speed of accurate control.

7.3.2.3 Si:Bi in comparison with Si:P

Two differences between Si:P and Si:Bi now become apparent. First of all, due to

the larger hyperfine coupling in Si:Bi, resulting in larger ESR transition frequency

differences, accurate control within ESR subspaces can be achieved at much faster
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Figure 7.5: Accuracy of control in Si:P

speeds in Si:Bi than can be done in Si:P, at all magnetic fields. More interestingly,

however, is the potential for speed-up of transitions φ±m ↔ φ±m−1, which are classified

as NMR in the high-field limit, in the low-field regime. For Si:P, moving to the

low-field regime results in a diminution of ΔΩ. As such, even though the relevant

transition rates increase three-fold in the low-field regime, in order to maintain some

level of accuracy one must compensate by decreasing ω1 so as to achieve an overall

slower pulse. The situation in Si:Bi is different; moving to the low-field regime

results in an increase in the relevant ΔΩ for the high-field NMR transitions, such

that the increase in transition rates may be utilised to achieve a genuine speed-up

of accurate control, albeit not always by three orders of magnitude.
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7.4 Decoherence properties

According to the theoretical model of decoherence we discussed in Chapter 6 Si:P,

owing to its nuclear spin of I = 1/2, does not have any OWPs and, consequently, is

of little interest. We will therefore focus only on Si:Bi in this regard. Additionally

as the qualitative properties of our Markovian model of decoherence and the more

microscopically well-motivated, yet more arduous, model of spin-bath decoherence

are very similar, we shall only consider the prior.

Provided the presence of adiabatic Z noise, the OWPs of Si:Bi which are very close

to the low-field regime FSPs will offer decoherence free subspaces. This is shown

in Fig.7.6(a). Notice that the maximum dephasing rate of αφ±−3 + βφ±−4 is much

smaller than that of αφ±−3 + βφ∓−4. Figure 7.6(b) shows the dephasing rates for

the superpositions involving the maximal m state φ−−5, given adiabatic Z noise. As

is to be expected, the dephasing rate for the superposition αφ−−4 + βφ−−5 vanishes

asymptotically in the high-field limit, whereas that of the superposition αφ+−4+βφ
−
−5

maximises asymptotically in the high-field limit. Such transitions do not have any

OWPs and, as such, the dephasing rate never vanishes in the low-field regime.
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Figure 7.6: Dephasing rates of Si:Bi given adiabatic Z noise

Figures 7.7(a) and 7.7(b) compare the dephasing rates for the same transitions as

before, except with diabatic Z noise. The differences seen in Fig.7.7(b) are marginal,

but it is Fig.7.7(a) which has the most striking features. Here, the superposition
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αφ±−3+βφ∓−4 minimises its dephasing rate, and the superposition αφ±−3+βφ±−4 max-

imises its dephasing rate, at B0 = 0.1846 T. This is close, but not identical to, the

OWP cos(θ−3) = − cos(θ−4) at B0 = 0.1882 T. The reason that the dephasing rates

here are so much larger in the low-field regime than was the case for adiabatic Z

noise is that, at such field values, the depolarisation of each m subspace is maximal.

This in turn leads to dephasing.
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Figure 7.7: Dephasing rates of Si:Bi given diabatic Z noise

Figures 7.8a and 7.8b compare the numerically determined dephasing rates of di-

abatic Z noise and X noise, for all superpositions. Although the dephasing rates

given Z noise vary largely depending on magnetic field regime and initial superpo-

sition, X noise yields dephasing rates of ∼ V 2x /4 at all magnetic fields and for all

superpositions.

It is, however, in the density matrix tomography that the distinction between dia-

batic X and Z noise becomes most apparent. Figure 7.9a shows the population of

the matrix elements of the system density operator ρ at initial time. This corre-

sponds to the superposition

ψ =
1
√

3
φ+−3 +

2
√

3
φ−−4 ≡

1
√

3
ϕ12 +

2
√

3
ϕ9 (7.1)

where by ϕi we refer to the ith eigenstate, with ϕ1 ≡ φ−4 being the ground state and

ϕ20 the maximally excited state. 61 The following figures 7.9b and 7.9c show the

61Of course, at B0 & Aiso/2γn ' 110 T, the labeling of states ϕ11 to ϕ20 will reverse, with what
was initially labeled ϕ11 now being ϕ20 and so on.
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Figure 7.8: Si:Bi dephasing rates in units of V 2x/z/2 for diabatic Z and X noise.

matrix elements of ρ after the system has evolved for a time τ = 20/V 2z/x undergoing

diabatic Z noise or X noise respectively. Figure 7.9b(i) shows the case at the

optimal working point B0 = 0.188 T. Because Sz does not commute with H0 at

this field regime, and we have not made the adiabatic approximation, the system

does not undergo pure dephasing, but rather dissipative decoherence. Indeed, each

m subspace undergoes a depolarising channel. Hence, half the population of state

φ+−3 ≡ ϕ12 goes to state φ−−3 ≡ ϕ8, and similarly half the population of state φ−−4 ≡ ϕ9

goes to state φ+−4 ≡ ϕ11. Figure 7.9b(ii) shows the density matrix elements if the

state undergoes diabatic Z noise at B0 = 6 T, which is in the high-field regime.

Here, Sz does commute with the system Hamiltonian, and hence the system only

undergoes pure dephasing. it is therefore only the off-diagonal elements of ρ which

have disappeared.

Figure 7.9c(i) shows the case for X noise at the optimal working point. Here, the

exact tracking of the dynamics is a complicated affair, but we can see that many of

the diagonal elements of ρ are now populated, as the system is continuing towards

becoming maximally mixed. Figure 7.9c(ii), on the other hand, shows the matrix

elements of ρ at B0 = 6 T where, due to the separability of the electron and nuclear

spins, the system undergoes a depolarising channel in the subspace spanned by the

initial superposition.
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Figure 7.9: Density matrix tomography before and after the application of diabatic Z and X

noise in the low-field and high-field regimes of Si:Bi.
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7.5 Summary

In this chapter we applied the general analytic results pertaining to nuclear-electronic

spin systems to the specific cases of phosphorus-doped silicon (Si:P) and bismuth-

doped silicon (Si:Bi). Owing to the larger nuclear spin and hyperfine constant,

Si:Bi has many interesting properties that are not present in Si:P. These can be

enumerated thusly:

(i) Si:Bi is in the “low-field regime” at a large range of experimentally accessible

magnetic fields, 0 − 0.6 T, whereas this regime for Si:P is attained at much

smaller magnetic fields.

(ii) Magnetic resonance control of all two-dimensional subspaces allowed by the

NEMR selection rules are achievable at faster speeds in Si:Bi than is the case for

Si:P, owing to the larger hyperfine constant. Furthermore, the larger nuclear

spin in Si:Bi means that, for this system, control of subspaces spanned by

{φ±m, φ
±
m−1} can be achieved at faster speeds in the low-field regime than is

possible in the high-field regime. This is not so for Si:P.

(iii) Si:Bi has several two-dimensional subspaces that, at specific values of the mag-

netic field, are robust against pure decoherence due to effective “magnetic

field fluctuations” that affect only the electron spin. These “optimal working

points” do not exist in Si:P.

The simultaneous presence of optimal-working points and potential speed-up of mag-

netic resonance control in the low-field regime presents Si:Bi as an attractive source

of qubits for quantum computation.
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Chapter 8

Experimental investigations of Si:Bi at

S-band

8.1 Introduction
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Figure 8.1: C.w. experimental data for Si:Bi at 9.7 GHz, compared with theoretical

predictions. The large sharp resonance at 0.35 T is due to silicon dangling bonds, while the

remainder are caused by defects in the sapphire ring used as a dielectric microwave resonator.

The predictions made by our model are in good agreement with experimental data

available for Si:P and Si:Bi at X-band (9.7 GHz) ESR. Figure 8.1, for example,
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shows that the positions of the Si:Bi transitions in c.w. spectroscopy matches well

with our theoretical predictions. The relative strengths, however, agree to a lesser

degree. The observed transitions here correspond, in the most part, to the high-

field ESR transitions φ+m ↔ φ−m−1. However we have claimed that the ESR and

NMR selection rules, for nuclear-electronic spin systems, are asymptotic limits of

the more general NEMR selection rules. Consequently our model predicts that, at

X-band, we should also observe some of the transitions that are dipole-forbidden

at high field, φ−m ↔ φ+m−1, albeit with much smaller transition rates. For example,

the X-band transition φ−1 ≡ ϕ4 ↔ φ+0 ≡ ϕ15 occurs at B0 = 200.54 mT, which is

only 0.14 mT smaller than the field value of the X-band transition φ+1 ≡ ϕ16 ↔

φ−0 ≡ ϕ5, with a transition rate that is roughly a factor of ∼ 1/1000 with respect

to the latter. Unfortunately, the data used for the above figure exhibits broadening

of approximately 0.42 mT, which is larger than the separation between the two

transitions. As such, we are unable to observe such transitions here, no matter

how much we amplify the strength of the microwave field. However, recent studies

by [Wolfowicz et al., 2012] conducted on Si:Bi with isotopically purified silicon,

where the lack of spin-bath decoherence mechanisms lower the broadening to a

sufficient degree, have experimentally demonstrated the presence of transitions such

as these.

My colleagues and I, in a study conducted in ETH Zurich [Morley et al., 2013], have

also tried to verify the theoretical predictions made by our model using magnetic

resonance spectroscopy, but at S-band (4.044 GHz). Here, we predict to see the

transition φ+−4 ≡ ϕ11 ↔ φ−−5 ≡ ϕ10 at B0 = 345.02 mT and the transition φ−−4 ≡

ϕ9 ↔ φ−−5 ≡ ϕ10 at B0 = 145.63 mT, with the ratio of the c.w. transition rates,

calculated by equations (5.28)-(5.31), given as

I+↔−−4↔−5

I−−4↔−5

∣
∣
∣
∣
Ω=4.044 GHz

'








cos( θ−4
2

)

∣
∣
∣
∣
B0=345.02 mT

sin( θ−4
2

)

∣
∣
∣
∣
B0=145.63 mT








2

= 1.2 (8.1)
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and the ratio of the Rabi frequencies, determined by Eq.(5.73), given by

η(Ω) + δγξ(Ω)

∣
∣
∣
∣
B0=345.02 mT

η(Ω) + δγξ(Ω)

∣
∣
∣
∣
B0=145.63 mT

'

cos( θ−4
2

)

∣
∣
∣
∣
B0=345.02 mT

sin( θ−4
2

)

∣
∣
∣
∣
B0=145.63 mT

= 1.1. (8.2)

At X-band, the transition ϕ10 ↔ ϕ11 is observed at B0 = 566.86 mT, at which it is

characterised well by the ESR selection rule. The transition ϕ10 ↔ ϕ9, on the other

hand, is characterised well by the NMR selection rule at this field value. However,

as is evident by Eq.(8.1), both these transitions have, at S-band, a similar transition

rate. This is where the ESR and NMR selection rules no longer apply, and the true

characteristics of the NEMR selection rules make themselves manifest.

The S-band spectrometer used in this study was home-made by the ESR research

group at ETH-Zurich [Willer et al., 2000], whose function is described, in abstract

terms, in Sec.3.6. This spectrometer has a frequency range of ∼ 2− 4 GHz, and has

four microwave channels with a power output of ∼ 1 kW. The Si:Bi sample used was

a single float-zone crystal of natural silicon, bulk-doped in the melt with bismuth

atoms at a concentration of 3 × 1015 Bi cm−3.

8.2 C.w. spectroscopy

In order to ascertain the spectrum of Si:Bi at 4.044 GHz, we first conducted a

c.w. experiment. Initially the power to the strong magnet of the spectrometer was

engaged, subsequent to the water cooling being activated. In tuning mode, the

resonance frequency of the cavity was set to 4.044 GHz. The Si:Bi sample, held in

place within a quartz tube by a teflon rod and vacuum grease, was then placed inside

the cryostat, and its presence inside the cavity was confirmed when the resonance

frequency of the cavity was offset. The sample was then cooled to the desired

temperature by pumping liquid helium, and controlled to an accuracy of ±0.05 K.

Subsequent to this, the microwave frequency was tuned so as to become resonant

with the cavity and sample. Next, the iris size was changed so as to ensure that

the cavity was critically coupled; that all the incident radiation entered the cavity.
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Figure 8.2: Si:Bi c.w. spectra at 4.044 GHz. The blue dots correspond with the low-field

transition ϕ10 ↔ ϕ9, whereas the red dots are associated with the high-field transition

ϕ11 ↔ ϕ10. The yellow line is a differentiated Gaussian used to fit the experimentally acquired

data, while the stars indicate the theoretically calculated positions of the transitions.

After engaging the reference arm, the power and phase thereof were tuned so as to

maximise the diode current’s zero-value at around 200 μA to ensure operation in

the linear regime, where a linear increase in the incident microwave power results in

a linear increase in detected current. The modulation frequency was then set to 0.1

MHz, whilst the time constant and repetition times were set to 30 ms and 100 ms

respectively.

The experiment was conducted at 42 K because lower temperatures result in T1

times so long that, even with low microwave power, the spectra becomes saturated.

At 42 K, however, some of the bismuth donors will donate their electrons into the

conduction band of silicon which, due to their mobility, significantly reduce the

spin-lattice relaxation time and lower the saturation. At temperatures significantly

greater than 42 K, and as low as 60 K, the number of bismuth electrons that enter the

conduction band grows so large that the sample becomes conducting and resonance

is not established.

Figure 8.2 shows the c.w. spectrum of Si:Bi at 4.044 GHz. The broad “Drude”

resonance, owing to the large number of conduction electrons which absorb the

electric field and not the magnetic field of the microwave, have been subtracted.
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The stars indicate the theoretical position of the transitions, given the constants

provided in Table 7.1. These are in good agreement with the measured transitions.

The large peak at ∼ 144 mT is, as with the X-band data shown in Fig.8.1, attributed

to the silicon dangling bonds [Lenahan et al., 2002]. The Si:Bi resonance signals are

fitted by differentiated Gaussian functions which, after integration, yield Gaussian

functions whose area is proportional to the transition rate. Dividing the area of the

ϕ10 ↔ ϕ11 Gaussian by that of the ϕ10 ↔ ϕ9 Gaussian gives a transition rate ratio

of ∼ 1.2, which agrees very well with our prediction.

8.3 Pulsed spectroscopy

Upon ascertaining the spectrum of Si:Bi at 4.044 GHz, pulsed spectroscopic tech-

niques were used to investigate the dynamics. After the magnetic field was set so as

to be in resonance with our desired transition, the pulsed mode of the spectrometer

was activated. Because the measurement process here is different to that employed

in c.w. spectroscopy, and saturation is not a problem, we were able to operate at

temperatures as low as 8 K.

8.3.1 Nutation experiment

To ascertain the relative Rabi frequencies for the two transitions the nutation ex-

periment, described in Sec.3.5.3, was employed. The top of figure 8.3 shows the

measured Rabi oscillation for each of the two transitions. The microwave power

used to drive the nutation was unknown, but constant for both transitions. The

lower half of figure 8.3 shows the Fourier transform of the Rabi oscillations. The

ratio of the Rabi frequencies is ∼ 1.1 which, again, agrees with our predictions.

Both of the transitions, given the microwave power used, have a Rabi frequency of

∼ 0.015 ns−1, meaning that a π pulse is achieved in ∼ 30 ns.
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Figure 8.3: Si:Bi Rabi oscillations at 4.044 GHz. Here, given a constant microwave power, both

transitions have approximately the same Rabi frequency.

8.3.2 Relaxation times

The relaxation times of the system are determined using the dephasing measurement

scheme described in Sec.3.5.1 and the amplitude damping measurement scheme de-

scribed in Sec.3.5.2. The amplitude damping time-scale, also called the spin-lattice

relaxation time, is characterised by T1 using the fitting function e−t/T1 , whereas the

dephasing time-scale is characterised by the two parameters T2 and TS via the fit-

ting function e−t/T2−(t/TS)
n
. Figure 8.4(b) shows these values, measured for both

the transitions at 4.044 GHz, at various temperatures. Additionally, the relaxation

times for transition φ10 ↔ φ11 are shown at 9.7 GHz for comparison.

At large temperatures the dominant source of decay is the spin-lattice relaxation,

due to the interaction between the system and the phonons of the silicon lattice.

The details of this process are beyond the scope of this thesis, but roughly speaking
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Figure 8.4: Relaxation time scales of the two Si:Bi transitions at 4.044 GHz, as a function of

temperature. a) shows the measured dephasing at 8 K compared with spin-bath simulations

using the cluster correlation method performed by my colleagues in [Morley et al., 2013]. b)

shows the experimentally extracted T1, T2 and TS times as a function of temperature for both of

these transitions, as well as for the high-field transition φ10 ↔ φ11 at 9.7 GHz.

the spin-lattice relaxation rate is dependent on

(i) The interaction strength of the system with the phonons, being stronger for

electrons than for nuclei.

(ii) The temperature, due to the greater thermal vibrations of the lattice at higher

temperatures.

(iii) The transition frequency of the system involved in the relaxation process, which

determines the relaxation rate due to the spectral density function ωe−ω/ωc

where ωc is a cut-off frequency.
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The relevant time-scale here is T1 which is roughly the same for both of the 4.044

GHz transitions at all temperatures. If we posit that the dominant transitions of the

system involved in the relaxation process are within the two-dimensional subspace

of the initial pseudo-pure state, this observation can be attributed to the facts that

|〈ϕ10|Sxϕ9〉| ' |〈ϕ10|Sxϕ11〉| and that both of these transitions operate at the same

frequencies. This explanation is further supported by the fact that the transition

ϕ10 ↔ ϕ11 has shorter T1 times at 9.7 GHz than it does at 4.044 GHz, which is

correlated with the larger transition frequency and the fact that |〈ϕ10|Sxϕ11〉| is

larger at 9.7 GHz than it is at 4.044 GHz.

Because the dephasing is limited by T1, at temperatures above ∼ 18 K the dephasing

will follow an exponential fit where TS = 0 and T2 ≈ T1. At lower temperatures,

the T1 ceases to be the limiting factor on the dephasing, and the T2 and TS times

begin to plateau, not changing significantly below 10 K. We may infer that the

limiting decoherence mechanism at low temperatures is one whereby the spins have

a temperature-independent interaction with the environment. Furthermore, as the

T1 time grows as large as 100 ms at 10 K, whereas T2 and TS for both transitions

are around 1 ms, we may infer that this mechanism leads, at least approximately,

to pure decoherence. Because of the non-zero value of TS, however, which leads to

non-exponential dephasing, we know that it is not a Markovian process and, strictly

speaking, our treatment in Sec.6.3 does not apply here.

The limiting coherence time at such “cryogenic” temperatures is the TS which, in

natural silicon, is identified with spectral diffusion due to the spin bath of 29Si

isotopes. This hypothesis is strengthened by Fig.8.4(a), where the dephasing mea-

surement scheme is simulated given a spin-bath interacting only with the electron

spin of the bismuth donor. This is simulated, effectively, by solving Eq.(6.53) us-

ing the numerical approximation techniques of the cluster expansion. The reason

for the Gaussian-like shape of this decay can be qualitatively attributed to the

non-Markovian unitary evolution of the system and its spin-bath, just as the Rabi

oscillation in a two-level system follows a sinusoidal shape.

Figure 8.4 shows that, at 4.044 GHz, the TS timescale for the transition ϕ10 ↔ ϕ9
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is slightly longer than that of ϕ10 ↔ ϕ11, which is corroborated by the simulation of

the spin-bath model by the cluster expansion. A naive application of our Markovian

model of adiabatic Z noise, using equations (6.24) and (6.25), gives the ratio of

dephasing times for the two transitions as

T 10↔9S

∣
∣
∣
∣
B0=145.63 mT

T 10↔11S

∣
∣
∣
∣
B0=345.02 mT

=

cos4( θ−4
2

)

∣
∣
∣
∣
B0=345.02 mT

sin4( θ−4
2

)

∣
∣
∣
∣
B0=145.63 mT

= 1.4 (8.3)

which is also in good agreement with the experimentally determined TS coefficients.

This is unsurprising as in both models the effective cause of decoherence is due to

the elements of the Sz operator that are diagonal with respect to the Hamiltonian’s

eigenbasis. The only difference between the two models is that one is Markovian

and the other is not, which only results in a difference in the shape of the dephasing,

with one being exponential and the other Gaussian-like.

8.4 Summary

In this chapter we surveyed the experimental studies of Si:Bi at S-band (4.044 GHz)

conducted in ETH Zurich [Morley et al., 2013]. We observed that the high-field ESR

transition ϕ10 ↔ ϕ11 and high-field NMR transition ϕ10 ↔ ϕ9 have similar transition

rates at S-band, with a ratio that agrees well with our theoretical predictions. This

is attributed to the entanglement between the nucleus and electron spins present in

the Hamiltonian eigenstates in the low-field regime.

Furthermore, the decoherence properties of these two transitions were studied at low

temperatures, and it was found to agree well with a non-Markovian spin-bath model

where the electron spin interacts with the spin bath, leading to approximately pure

decoherence.
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Part III

Nuclear-electronic spin systems for
quantum information
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Chapter 9

Towards a scalable silicon quantum

computer: bismuth vis a vis phosphorus

9.1 Introduction

In the preceding four chapters we studied nuclear electronic spin systems, focusing

on the dynamical properties that can be probed by currently available magnetic

resonance technology, and provided a simple analytic model that was corroborated

experimentally for the novel system of Si:Bi. In this concluding chapter I shall take a

step back and, with the knowledge gained from the aforementioned analysis, reflect

upon the prospects of using the silicon-donor instantiation of nuclear-electronic spin

systems for the purpose of quantum information processing. We shall see that the

advantages of Si:Bi over Si:P depends strongly upon several concomitant factors

that we have not had time to consider in any detail. The resolution of such queries

are, as a consequence, left as open questions.

9.2 Meeting DiVincenzo’s criteria

It is useful to construct our discussion within the paradigm of DiVincenzo’s crite-

ria, discussed in Sec.4.4, and see how Si:P and Si:Bi fare in each. Although these
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only apply within the circuit model of quantum computation, they will nevertheless

present a qualitative measure of the advantages and disadvantages between the two

systems.

9.2.1 Access to a scalable Hilbert space

By definition, nuclear-electronic spin systems exist in a Hilbert space, so the first

half of this condition is automatically satisfied; a single donor of Si:P is exhibited

by the Hilbert space C4 whereas Si:Bi has the larger space C20. In order to have a

scalable Hilbert space, on the other hand, we need to be able to have many systems,

between which we can establish an interaction. Such an interaction may be effected

by the overlap of the respective wavefunctions, or by dipole interactions. Because

the nuclear spins are much more localised than the electrons, and that they also

have a much weaker gyromagnetic ratio, direct interaction between them is much

more difficult to realise than is the case for electrons. We may, therefore, set up

an exchange Hamiltonian, often also referred to as a Heisenberg or JJ-interaction,

between the electrons of adjacent donors

HJJ = J
∑

i∈{x,y,z}

Si ⊗ Si ≡ J Sz ⊗ Sz +
J
2

(S− ⊗ S+ + S+ ⊗ S−) (9.1)

where the strength J is a controllable parameter. Another proposal is that made by

[Stoneham et al., 2003], purporting the use of control atoms between the systems of

interest which, using optical means, can be excited to their Rydberg states. These

excited states have a much larger wavefunction, and would overlap with the elec-

tronic wavefunctions of the system of interest, and constitute an intermediated in-

teraction between the two. The interaction Hamiltonian for the system is thus

HJJ−JJ = ΠC
e




∑

i∈{x,y,z}

J1S
A
i ⊗ S

C
i + J2S

B
i ⊗ S

C
i



 (9.2)

where A and B are the systems of interest, and C is the control system whose excited

Rydberg state is denoted as ΠC
e .

A less technologically demanding proposal would be to establish a permanent in-

teraction between adjacent donors. This can be achieved by, for example, placing
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the donors close enough such that their electronic wavefunctions are constantly

overlapping, leading to an always-on exchange interaction that permits quantum

computation schemes such as that proposed by [Benjamin and Bose, 2003].

9.2.2 Initialisation

We require the ability to initialise all of our qubits to some fiducial state prior

to initialising any algorithm. In many physical systems the most readily available

method of initialisation is by cooling, or polarisation, of the ensemble to the ground

state. For nuclear electronic spin systems this is the state φ−I−1/2. Yet owing to

the small nuclear spin gyromagnetic ratio of systems such as Si:P and Si:Bi, the

amount of polarisation, achievable under the available temperatures and desirable

magnetic fields, is not satisfactory. It has been demonstrated, however, that the

system may be hyperpolarised 62 by optical means to the state φ−−I−1/2. For Si:P

this hyperpolarisation has been demonstrated to be as large as ∼ 68 % [McCamey

et al., 2009], achieved at a temperature of 1.37 K and a magnetic field of 8.5 T.

Si:Bi, on the other hand, has been hyperpolarised to ∼ 90 % [Sekiguchi et al., 2010]

at 1.5 K and 6 T. Of course, these numbers may be brought higher still with further

refinement of the techniques used, as is evident by the recent work of [Steger et al.,

2012] who, using isotopically purified silicon with less than 50 ppm 29Si isotopes,

allowing for donor densities of less than 1012 cm−3, managed to hyperpolarise Si:P

to ∼ 90 %.

9.2.3 Universal set of quantum gates

With magnetic resonance we are capable of performing any unitary operator from

the group SU(2) within any two-dimensional subspace, comprised of eigenstates

where a transition between the two is allowed by the dynamical selection rule for

Fx = Sx + δγIx. Consequently any single-qubit gate is achievable with magnetic

62A composite system is hyperpolarised to a state ψ if the percentage of the population in this
state is larger than would be given simple thermal polarisation. If the system

⊗N
n=1 ρ

n is fully
hyperpolarised, then it is brought to the state ψ⊗N .
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Figure 9.1: The CZ gate between electrons can be achieved using the Heisenberg interaction

Hamiltonian.

resonance and, additionally, a natural designation for the logical basis would be the

eigenstates of the Hamiltonian itself. This claim comes with the caveat that we

are able to either focus our driving magnetic field so as to only affect the desired

donor, or establish different resonant frequencies for all the systems, perhaps by a

gradient in the static magnetic field, so that we achieve single-donor selectivity even

with a non-resolving driving field. The single-qubit gates from the standard set, for

example, can be constructed as

Pπ/8 = ei
π
8 e−i

3π
2
σ̄xe−i

7π
4
σ̄ye−i

π
2
σ̄x ,

H = ei
π
2 e−i2πσ̄xe−i

3π
2
σ̄ye−iπσ̄x , (9.3)

where the basis on which they act are the two eigenstates {ϕ0, ϕ1} that obey

|〈ϕ0|Fxϕ1〉| > 0. Of course it is possible to use more than a two-level subspace

provided by the system in question. The entire Hilbert space may, in principle,

be manipulated by magnetic resonance pulses that are tuned, in sequence, to any

of the permissible transitions; we may perform any unitary operation on a single

system from the group SU(d). As such Si:P may provide two qubits whereas Si:Bi

can provide up to four qubits, leaving four energy levels to spare. Even if we were

inclined to do this, true two-qubit gates between adjacent donors are still required

for scalability. Assuming for a controllable interaction Hamiltonian of the form in

Eq.(9.1), as shown by [Loss and DiVincenzo, 1998; Schuch and Siewert, 2003], it is
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possible to establish the root-swap gate

√
SWAP = ei

π
8 e−i

π
2J H

JJ

(9.4)

between two adjacent donor electrons by activating the coupling for a period τ =

π/2J . This can in turn be used to construct the CZ gate, for the electrons, with

the sequence

CZ = e−i
π
4

(
e−i

π
2
σ̄z ⊗ e−i

3π
2
σ̄z
)√

SWAP
(
e−i

π
2
σ̄z ⊗ 1

)√
SWAP (9.5)

where the single qubit gates can, as previously stated, be realised by means of

magnetic resonance.

It should be noted that this scheme requires J to be strong in comparison with the

relevant energy differences of the states involved. However, if the energy differences

far outweigh the coupling strength, then the Hamiltonian of Eq.(9.1) simplifies to

an Ising interaction

HJJ ≈ HZZ = J Sz ⊗ Sz (9.6)

which can be used to establish a CZ gate with the sequence

CZ = e−i
π
4

(
e−i

3π
2
σ̄z ⊗ e−i

3π
2
σ̄z
)
e−i

π
J Sz⊗Sz . (9.7)

Note that this implementation of the CZ gate requires only one use of the Ising

interaction between the electrons, whereas that using the full exchange Hamiltonian

requires two root-swap gates [Makhlin, 2002].

A non-trivial question pertaining to quantum control now becomes apparent. It is

clear that we are capable, using such exchange interactions, to achieve controllability

in the composite electron system. It is not self evident, however, that we are also

capable of doing this, at all magnetic fields, in the composite nuclear-electronic spin

system. To elaborate on this we refer to Fig.9.1 where the nuclear-electronic spin

system on the left is labeled system A and that on the right system B, with an HJJ

interaction being established between the respective electronic subsystems of each.

Because of our ability to perform any unitary from SU(d) on a single donor with

magnetic resonance, the issue of controllability simplifies to the ability of preparing
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a maximally entangled state between two donors. In the high-field limit, then, the

two donors may initially be prepared in the product state

|+〉A,e ⊗ |mI〉
A,n ⊗ |+〉B,e ⊗ |m′I〉

B,n (9.8)

where |±〉 = 1√
2
(|+ 1/2〉 ± | − 1/2〉), such that after the application of the CZ gate

the composite system is transformed to

1
√

2

(
|−1/2〉A,e ⊗ |+〉B,e + |+1/2〉A,e ⊗ |−〉B,e

)
⊗ |mI〉

A,n ⊗ |m′I〉
B,n

= Φ+e ⊗ |mI〉
A,n ⊗ |m′I〉

B,n (9.9)

which is maximally entangled with respect to the electronic Hilbert spaces. 63

Clearly, by relabeling in the adiabatic basis, this state can also be written as

Φ+ =
1
√

2

(
φ−m

A ⊗ ϕB+ + φ+m
A ⊗ ϕB−

)
(9.10)

where ϕB± = 1√
2
(φ+m′±φ

−
m′−1), so that we have established a CZ gate in the adiabatic

basis also. Consequently we know that, at high field, the Heisenberg interaction

suffices for controllability within at least a four-dimensional subspace of the full

composite system. The question remains as to the possibility of controllability within

the full Hilbert space of the composite system, and/or the feasibility of doing so in

the low-field regime where the entanglement between the nuclear and electronic

spins of a single donor comes into play. A concrete resolution of this question

requires careful analysis of the Lie algebra provided by the Heisenberg interaction

and magnetic resonance pulses. The answer to this question will greatly affect any

possible advantage Si:Bi may have over Si:P; if we can only establish controllability

within a four-dimensional subspace of Si:Bi, even at high fields, then its larger

Hilbert space may not be of much use, and if it is impossible to obtain controllability

in the low-field regime then the OWPs will not offer an advantage either.

63 The nuclear spins here act as ancillary systems, and we may transfer the entanglement to
these spins using local NMR pulses.
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9.2.4 Coherence times compared with gate times

For fault-tolerant quantum computation, the coherence times of the system must be

sufficiently long in comparison with the gate times. At sufficiently low temperatures

the limiting cause of decoherence, which is approximately pure, is attributed to

the interaction of the central system of interest’s electron spin with the “bath” of

surrounding spin-half 29Si nuclei and other donor electron spins. As demonstrated

by [Tyryshkin et al., 2011] the limiting coherence time of Si:P with less than 50

ppm 29Si isotopes, in the high-field limit and at approximately 5 Kelvin, was the

T2 time, taking the value of ∼ 1 s. This is very long indeed, and as shown by

[Steger et al., 2012] who also used a lower concentration of donors, the nuclear spin

T2 time was brought to the even larger value of ∼ 180 s. Due to the similarity of the

decoherence mechanisms in both Si:P and Si:Bi, such impressively long T2 times can

be expected for isotopically enriched Si:Bi as well. Furthermore, due to the smaller

active region in Si:Bi, resulting from the greater localisation of the electron spin

wavefunction, we may expect even longer coherence times where the contribution of

the residue 29Si isotopes are reduced further still. In addition the quantum gates by

magnetic resonance can be achieved at much faster rates in Si:Bi than is possible

for Si:P, owing to the larger gap between the transition frequencies present in the

former system as a result of the larger hyperfine coupling strength. Therefore, Si:Bi

is the more advantageous system with respect to the gate time to coherence time

ratio.

An issue that has been discussed previously is the advantage of working in the

low-field regime. In the high-field limit, quantum gates in the ESR subspaces

spanned by {φ+m, φ
−
m−1} are much faster than those in the NMR subspaces spanned

by {φ±m, φ
±
m−1}. This is due to both the greater interaction strength between the

driving field and the electron spin, and the fact that ESR frequencies are much more

widely separated than is the case for the NMR frequencies. By moving to the low-

field regime, the speed of the quantum gates associated with ESR transitions in the

high-field limit decrease by a factor of one-half, but for Si:Bi it is possible to gain a

greater speed-up for gates in the high-field limit NMR subspaces. This, coupled with
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the presence of OWPs in Si:Bi, would suggest that working in the low-field regime

is preferable overall. However, when we have approximately removed the spin-bath

sources of decoherence, thermal noise becomes the dominant source of decoherence,

and we must ask how its effects vary for different subspaces and different magnetic

field regimes. Fig.8.4 demonstrates that, for Si:Bi at 4.044 GHz, the T1 time of

the high-field NMR subspace {φ−−4, φ
−
−5} is as short as that of the ESR subspace

{φ+−4, φ
−
−5}. This can be attributed to the similar rates of both these transitions,

as well as their similar transition frequencies. Therefore, if we are to limit ourself

to just a two-dimensional subspace of Si:Bi, it will always be preferable to work

in the high-field ESR subspaces {φ+m, φ
−
m−1} and not the high-field NMR subspaces

{φ±m, φ
±
m−1}, because while both will have similar T2 times at the OWPs, and are ex-

pected to also have T1 times of the same order of magnitude, the former will permit

much faster gate times due to the larger gap in its transition frequencies.

9.2.5 Measurement

Figure 9.2: An apparatus that performs strong, projective measurements on the electronic

subspace of a single nuclear-electronic spin system.

The issue of measurement is central to the experimental realisation of QIP in silicon.

In the work done in this thesis all “measurements” were in fact weak ensemble mea-

surements which only reveal the expectation values of sharp observables. What we

require, for quantum computation, is the ability to perform strong measurements,

described in Sec.2.2.5, where the different outcomes of a measurement can be distin-

guished from one another. Various techniques for strongly measuring single donor
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systems in silicon are concurrently being developed by several research groups. An

issue of great importance pertaining to our work is that, because of the difficulty

in establishing controlled interactions between the nuclear spin and a measuring

apparatus, especially in a way that leaves the electron spin unaltered, the research

to date has focused on either measuring with respect to the Hamiltonian eigenbasis,

or just the electron spin Sz operator. Some of these approaches are electrical spin

to charge conversion [Kane, 1998; Vrijen et al., 2000; Greentree et al., 2005; Angus

et al., 2008], electrically detected magnetic resonance (EDMR) [Sarovar et al., 2008;

Morley et al., 2008], magnetic resonance force microscopy [Rugar et al., 2004] and

optical read-out [Fu et al., 2004; Testolin et al., 2005].

One example is the scheme proposed by [Morello et al., 2010; Pla et al., 2012],

which in an abstract, ideal setting , can be described by a von Neumann-Lüders

measurement, described in Sec. 2.2.5.3, which uses a unitary interaction U between

the system and the apparatus’ charge degree of freedom, initially set to the state ϕ,

such that

U :






φ−m ⊗ ϕ 7→ φ−m ⊗ ϕ− ∀ m,

φ+m ⊗ ϕ 7→ φ+m ⊗ ϕ+ ∀ m.
(9.11)

This will allow us to store our quantum information within a two-dimensional sub-

space {φ+m, φ
−
m−1} and measure projectively with respect to this basis. However, we

may also use magnetic resonance to store our quantum information in the {φ−m} sub-

space, and with a π pulse of the correct frequency convert the joint object-apparatus

state

ψ ⊗ ϕ =
∑

m

αmφ
−
m ⊗ ϕ (9.12)

to (

αnφ
+
n+1 +

∑

m 6=n

αmφ
−
m

)

⊗ ϕ (9.13)

which is mapped by the measurement unitary U to

αnφ
+
n+1 ⊗ ϕ+ +

∑

m 6=n

αmφ
−
m ⊗ ϕ−. (9.14)
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The reduced density operator of the apparatus is then given by

|αn|
2Π(ϕ+) +

∑

mI 6=n

|αm|
2Π(ϕ−) (9.15)

and measurement of the apparatus with respect to the orthonormal basis {ϕ+, ϕ−}

describes the sharp observable with the two effects {Π(φ−n ),1 − Π(φ−n )}, and the

procedure can be repeated (given the same initial states of object and probe) for

all the resonance frequencies to achieve the sharp observable with the 2I + 1 effects

{Π(φ−m)}. To ensure that this measurement is repeatable however, we must perform

a second π pulse to send the post-measurement state Π(φ+n+1) to the state Π(φ−n ).

In the limit of (γe + γn)B0/Aiso → ∞, this measurement describes a projective

measurement on the nuclear spin.

9.3 Summary

In this chapter we considered the prospects of using the systems Si:Bi and Si:P as

platforms for quantum computation, comparing their merits with respect to DiVin-

cenzo’s criteria. The larger transition frequency gaps and the presence of decoher-

ence free subspaces in the form of optimal working points indicate Si:Bi as being the

more advantageous system. Furthermore, current experimental techniques permit us

to perform strong projective measurements on Si:Bi within either a two-dimensional

subspace {φ±m, φ
∓
m−1}, or a ten-dimensional subspace {φ−m}, at all magnetic fields,

compared with only a two-dimensional subspace of Si:P. This poses the possibility

of utilising a larger Hilbert space in a single site of Si:Bi.

Restricting ourselves to just a two-dimensional subspace {φ±m, φ
∓
m−1}, it is preferable

to operate in the low-field limit. This is because the gap in transition frequencies

do not change by much, and the transition rates only decrease by one-half, but the

presence of OWPs increase the spin-bath induced coherence times by a much higher

amount.

The main issue that has yet to be solved is that of scalability; can we perform

entangling gates between two sites of Si:Bi such that we are able to achieve full
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controllability in the composite “qubit” subspace, and do so at all magnetic fields?

If we are unable to do so in the low-field regime, then the advantages of the optimal

working points in Si:Bi will no longer exist for scalable quantum computation. This

shall be left as an open question.
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Chapter 10

Conclusions

10.1 Comprehensive summary

In this thesis it was shown that materials such as group V dopants in silicon – Si:P

and Si:Bi for example – at low temperatures can be modeled effectively as nuclear-

electronic spin systems. Within this paradigm, simple analytic expressions regarding

the magnetic resonance properties of such systems were developed which have been

shown to match well with experiment. One of the more interesting consequences

of this analysis is that it shows that conceptualising magnetic resonance in nuclear-

electronic spin systems as being either NMR or ESR is only valid in the asymptotic

high-field limit. The more general notion of nuclear-electronic magnetic resonance

(NEMR) was thus developed, of which NMR and ESR are asymptotic limits.

The possibility of achieving full quantum control, with magnetic resonance pulses

alone, of nuclear-electronic spin systems was also demonstrated. In high fields, pulses

within NMR subspaces take three orders of magnitude longer to perform than those

in ESR subspaces, owing to the weaker gyromagnetic ratio of the nuclear spin.

Accuracy of control, limited by the gap between the desired transition frequency

and all unwanted frequencies, can be mitigated to some extent by switching between

right-handed and left-handed circularly polarised driving fields. Furthermore, it was

shown that, in Si:P, accurate control of all subspaces is achieved with optimal speed
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in the high-field limit. In Si:Bi on the other hand, ignoring the effects of temperature-

dependent relaxation processes, a speed up of gates in the high-field NMR subspaces

can be realised by operating in the low-field limit. This is because, at such regimes,

the limiting transition frequency gap for these subspaces are maximised.

In addition, it was demonstrated that nuclear-electronic spin systems with nuclear

spins greater than one, such as Si:Bi but excluding Si:P, have certain magnetic field

values called optimal working points, which are closely associated with the field

values where the derivative of the transition frequency with respect to the magnetic

field vanishes, in the low-field regime. Each of these optimal working points in turn

has associated with it a two-dimensional decoherence free subspace, wherein pure

decoherence mechanisms due to the interaction of the environment with the electron

spin may be suppressed. These processes include, but need not be limited to, the

interaction of a bath of spin one-half 29Si nuclei with the donor electron spin.

It was also shown that, using an energy-dependent measuring scheme suggested

by recent work, we may perform strong projective measurements on up to a ten-

dimensional subspace of Si:Bi, compared with only a two-dimensional subspace of

Si:P, at all magnetic fields.

In summary, then, the larger hyperfine interaction strength and the nuclear spin of

Si:Bi, compared with those of Si:P, suggest it as an advantageous system for QIP. In

the low-field regime, excluding thermal noise contribution to decoherence, the speed

of our quantum gates are much faster than the coherence time of the system.

10.2 Open questions

There are several avenues left open for future research ranging from engineering con-

cerns such as building of magnetic resonance equipment that can operate at different

frequencies, and instruments that can measure and control a single spin object, to

more fundamental questions relating to the quantum mechanical phenomenon of

nuclear-electronic spin systems beyond magnetic resonance.
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To assess the true benefits of working in the subspaces spanned by {φ−m} in the low-

field regime, for example, both experimental and theoretical work must be done with

aims at understanding the behaviour of thermalisation across the different magnetic

field regimes. In other words, will the benefits of gate speed-up and increase of T2

times at the OWPs outweigh the concomitant decrease in T1 times?

Another important question that needs to be answered is the possibility of gener-

ating entanglement between adjacent donors with respect to the coupled nuclear-

electronic, or adiabatic, eigenbasis. We saw in the previous chapter that, by coupling

the electron spins of two adjacent sites with a Heisenberg interaction, we may gen-

erate entangling gates – such as the CNOT gate – that act on the electrons. It does

not follow, however, that this will allow for establishing a CNOT that acts on the

adiabatic basis in the low-field regime, where the eigenstates of the Hamiltonian of

a single system show entanglement between the electron and nucleus. Nor does this

suggest the possibility of generating entanglement between arbitrary subspaces of

the two systems; utilising the full ten-dimensional subspace of Si:Bi, that can be

measured projectively, in a scalable quantum computer would require a method of

entangling all ten of these degrees of freedom with the counterparts of an adjacent

system.

Interesting phenomenon may also be investigated by considering nuclear-electronic

spin systems with a Hamiltonian that couples to electric fields; this would be use-

ful for hybrid quantum computation architectures which involve superconducting

circuits that would be perturbed by the presence of a magnetic field.
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Appendix A

Angular momentum

From classical mechanics, and the theorem named after Emmy Noether, we know

that any continuous and differentiable coordinate transformation, that leaves the

equations of motion invariant, i.e. is a symmetry of the system, has associated

with it a conserved quantity. Conversely, as shown by use of the Poisson brackets,

such a conserved quantity is the generator of the aforementioned continuous and

differentiable coordinate transformation. Angular momentum is the quantity that

is conserved by rotational symmetries; it generates infinitesimal rotations in a sys-

tem. Although such a concept has an intuitive explanation regarding the rotation

of bodies in classical mechanics, the analogue to angular momentum in quantum

mechanics only has meaning in terms of the generators themselves, which are self-

adjoint operators on a Hilbert space. In this section, then, I shall briefly cover the

basics of angular momentum in quantum mechanics to the extent needed for this

thesis; for the intrinsic spin of a system. Further details can be found in [Sakurai,

1993].

The operators {Jx, Jy, Jz} form the set of mutually incompatible observables for the

spin of a particle. These obey the commutation relations

[Jx, Jy]− = iεxyzJz (A.1)

and generate the unitary transformations on the Hilbert space, that can be thought
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of as rotations, by the Taylor series

∞∑

n=0

=
(−iθJi)n

n!
≡ e−iJiθ (A.2)

where we note that J0i = 1.

We may define the operator ~J2 := J2x + J2y + J2z which commutes with each of

{Jx, Jy, Jz}; this operator is diagonal in the same basis as each of the angular mo-

mentum operators. By convention, we consider the system in the basis in which Jz

and ~J2 are both diagonal, labeled |mJ〉 such that

Jz|mJ〉 = mJ |mJ〉 ~J2|mJ〉 = J(J + 1)|mJ〉. (A.3)

To determine the possible values mJ can take given J , which itself can take only

integer or half-integer values, we introduce the ladder operators

J± := Jx ± iJy (A.4)

which have the properties

[J+, J−]− = 2Jz,

[Jz, J±]− = ±J±,

[~J2, J±]− = O. (A.5)

Because of the last of these commutation relations, the ladder operators do not cause

a change in J ; we may therefore consider this as the total angular momentum that

is conserved. Due to this angular momentum conservation, given a state with total

angular momentum J , there are states with a maximum and minimum value of mJ

; |mmaxJ 〉 and |mminJ 〉, such that

J+|m
max
J 〉 = φnull J−|m

max
J 〉 = φnull . (A.6)

It therefore follows that there are a finite number of values mJ can take, with the

range

mJ = −J,−J + 1, ..., J − 1, J . (A.7)

That is, mJ values are separated by unit intervals, and range between ±|J |. There-

fore, the Hilbert space of a system of spin J has dimension 2J + 1.

196



With some algebra utilising the commutation relations, the rules governing the ap-

plication of the ladder operators on the Jz eigenbasis can be expressed thusly:

J±|mJ〉 = C±|mJ ± 1〉

CJ
± :=

√
J(J + 1)−mJ(mJ ± 1) . (A.8)
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Appendix B

Bipartite entanglement measures

A bipartite system is inseparable, or entangled, if it cannot be written as a convex

combination of product states

ρ =
∑

i

P (i)ρAi ⊗ ρ
B
i . (B.1)

To quantify entanglement, we work in the paradigm of local operations and classical

communication (LOCC). A bipartite state ρ is said to be more entangled than the

state % if, using the class of operations allowed by LOCC, we can transform ρ to %,

but not the converse. Entanglement, then, is a quantity that cannot be increased by

LOCC. It follows that a good entanglement measure must depict such an ordering;

it must be an entanglement monotone. Two good review articles on entanglement

are [Plenio and Virmani, 2007; Horodecki et al., 2009]. In what follows I shall give

a brief description of the most commonly used entanglement measures which are

computationally easy to perform.

B.1 Entropy of entanglement

B.1.1 Von Neumann entropy and information

Analogous to classical information, the information in a quantum system can be

quantified by its von Neumann entropy [Schumacher, 1995]. The von Neumann
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entropy of a state ρ ∈ S(Cd) is given by

S(ρ) := −tr [ρ logd(ρ)] ≡ −
d∑

i=1

P (i) logd[P (i)] (B.2)

where the probabilities {P (i)} are the eigenvalues in the spectral decomposition of

ρ. The maximum value of the von Neumann entropy is logd(d) = 1, realised for

a maximally mixed state. To see how the von Neumann entropy gives quantum

information an operational meaning, consider a preparation device that produces

a product state % ∈ S(CdN ) composed of N pure states stochastically chosen from

the orthonormal basis {ϕi}di=1. The preparation device can thus be described by

the statistical ensemble ρ =
∑

i P (i)Π(ϕi). The composite system is then sent to a

receiver with access to a measuring device that can unambiguously distinguish each

of the orthogonal pure states, and who also has a priori knowledge of the statistical

ensemble. In the thermodynamic limit of N → ∞, the law of large numbers may

be applied to say that in any % that the preparation device produces, each pure

state Π(ϕi) appears NP (i) times; these are the so-called typical sequences, each of

which can be used to encode a message. There exists a unitary operator U that can

be used to compress the information content in all of the typical sequences % to a

subspace

S
(
CdNS(ρ)

)
(B.3)

such that the rest of the state space is redundant. The larger the von Neumann

entropy of the statistical ensemble ρ, the greater the information content is and,

consequently, the less U can compress the information. For example, if ρ = 1
d
1 then

S(ρ) = 1 and no compression is allowed. In the other extreme case, if ρ = Π(ϕi)

then S(ρ) = 0 and no data need be transmitted at all, as the a priori knowledge of

the receiver suffices for him to know what the sent message will be!

B.1.2 Entropy of entanglement

A unique measure of entanglement for pure bipartite states is given by the von

Neumann entropy of the reduced density operators of said state, called the entropy
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of entanglement. For a pure state Π(ψ) ∈ S(HA ⊗HB), this is given as

E[Π(ψ)] := S[ρB] ≡ S[ρA] (B.4)

which is normalised to one for a maximally entangled state. The reason that the

entropy of entanglement is symmetric for both subsystems is that it depends solely

on the Schmidt coefficients of the pure bipartite state in question. The vector

ψ ∈ HA ⊗ HB associated with the pure state Π(ψ) can be written in its Schmidt

form

ψ =
k∑

i=1

√
P (i)φi ⊗ ϕi (B.5)

where k 6 min(dA, dB) is the Schmidt-rank of ψ, and {φi}
dA
i=1 and {ϕi}

dB
i=1 are an

orthonormal basis of HA andHB respectively in which the reduced density operators

ρA and ρB are diagonal. The Schmidt coefficients are {
√
P (i)} where {P (i)} are

the eigenvalues of both the reduced density operators. As such, the entropy of

entanglement can simply be calculated as

E[Π(ψ)] = −
k∑

i=1

P (i)logN [P (i)] where N = min(dA, dB). (B.6)

The maximally entangled states represented in the Schmidt form are, equivalent up

to local unitary transformations, given by

Φ+ :=
1

√
min(dA, dB)

min(dA,dB)∑

i=1

φAi ⊗ ϕ
B
i . (B.7)

The entropy of entanglement gives entanglement an operational meaning in terms

of non-local information. A pure product state will have pure reduced density op-

erators, which in turn have zero entropy. Here, there is no non-local information.

On the other hand a maximally entangled state will in turn have maximally mixed

reduced density operators and, as such, a maximal amount of non-local information

contained in the correlations between the subsystems. This motivates the defini-

tion of entanglement as the ebit, where a maximally entangled state of two qubits

is one ebit. With access to the LOCC operation class, Alice may then teleport a

qubit of quantum information to Bob if each has a part of a maximally entangled
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state [Bennett et al., 1993]; in other words, if the two shared one ebit of quantum

information.

Another method of operationally defining entanglement is by how many maximally

entangled states we may distill. Given N copies of a pure bipartite state Π(ψ), the

number M of maximally entangled states that can be obtained by LOCC, in the

thermodynamic limit of N →∞, is given by

lim
N→∞

M

N
= E[Π(ψ)]. (B.8)

B.2 Entanglement of formation and concurrence

The von Neumann entropy satisfies the conditions for an entanglement measure for

pure states. But what about mixed states, or more specifically, a convex combination

of entangled pure states? These are not separable and hence also entangled, although

they can never be maximally entangled as these are always pure. However, we cannot

use the von Neumann entropy to determine how entangled they are. We need to

look for a more robust measure of entanglement. The entanglement of formation of

a bipartite state is defined as the minimum average entanglement – as given by the

von Neumann entropy – of an ensemble of pure states that would produce ρ

EF [ρ] = min
{Π(ψi)}

∑

i

P (i)E[Π(ψi)]. (B.9)

Clearly, as there are an infinite such pure state decompositions, performing this

minimisation is no easy task! However, an identity exists called the concurrence of

the density operator, C[ρ] [Wootters, 1998], which is defined for any ρ ∈ S(C2⊗C2)

that simplifies the problem. The concurrence is given by

C[ρ] = max{0, λ1 − λ2 − λ3 − λ4}

λi = R
[√

eigi[ρρ̆]
]
, λ1 > λ2 > λ3 > λ4

ρ̆ := (σy ⊗ σy)ρ
∗(σy ⊗ σy) (B.10)

where eigi[T ] is the ith eigenvalue of the operator T , and R[∙] : C → R gives the

real component of any complex number c. Here, ρ∗ is the complex conjugate of ρ
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64. The concurrence is an entanglement monotone and provides real values in the

range of [0, 1]. The entanglement of formation is calculated from the concurrence of

a state as follows:

EF [ρ] = F [C(ρ)],

F [C] = h

[
1 +
√

1− C2

2

]

,

h[x] = −xlog2x− (1− x)log2(1− x). (B.11)

clearly, for a pure state the above formula will just give the entanglement of the

state as is determined by the entropy of entanglement, and a concurrence of 1 is

achieved for the maximally entangled pure states.

B.3 The positive partial transposition criteria and negativity

Although the concurrence is a good measure for entanglement of an arbitrary state

ρ ∈ C2 ⊗ C2, we would like to determine whether or not a state in a higher di-

mensional state space is entangled, and also preferably develop an entanglement

monotone. As the state space S(Cd) is convex and the trace operation continuous,

we may use a self-adjoint operator W to identify a hyperplane of density operators

that bisect the state space. This hyperplane is defined by states % such that

tr[W%] = 0 . (B.12)

We may choose W such that all separable states are on one side, and all states on

the other are entangled 65. Such a witness must satisfy the following:

(i) W has at least one negative eigenvalue such that W < O

(ii) If ρ is separable, tr[Wρ] > 0

64A density operator is self-adjoint. But an adjoint of a matrix is the complex conjugate of its
transpose. Therefore ρ 6= ρ∗ unless all the matrix elements are real.
65Of course, some entangled states could be on the same side of the hyperplane as the separable
states, and as such that particular entanglement witness W will not detect the entanglement of
those states.
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Hence, a state ρ is witnessed to be entangled if and only if tr[Wρ] < 0. We may use

the Choi-Jamio lkwoski isomorphism, relating a quantum operation EB : HB → HB′ ,

where the dimension of HB and HB′ need not be the same, to the operator %(E)A+B

on HA+B according to the relation

%(E)A+B = 1A ⊗ EB
[
Π(Φ+)

]
(B.13)

to determine the nature of W . As W is negative, the operator related to it is

not completely positive. For a positive but not completely positive map PB we

have

tr[Wρ] = tr[1A ⊗ PB(Π(Φ+))ρ]

= tr

[
∑

m

(1A ⊗KB
m)Π(Φ+)(1A ⊗KB†

m )ρ

]

= tr

[
∑

m

(1A ⊗KB†
m )ρ(1A ⊗KB

m)Π(Φ+)

]

= tr[1A ⊗ PB†(ρ)Π(Φ+)]

= 〈Φ+|(1A ⊗ PB†[ρ])Φ+〉 < 0 only if ρ is entangled. (B.14)

Here, PB† is the dual map of PB. Unfortunately, the positive but not completely

positive maps are not well characterised for all dimensions, and determining the

appropriate entanglement witness W is not easy. However, for a bipartite system

Cd with d 6 6, i.e. for C2 ⊗ C2 or C2 ⊗ C3, a necessary and sufficient condition for

entanglement is given by the positive partial transpose condition (PPT). This follows

from the fact that a positive but not completely positive map P : S(Cd) → S(Cd′)

where d = 2 and d′ = 2 or 3 can be written as P = E1 + E2 ◦ T , with the completely

positive quantum operations E1 and E2, and where T is the transposition operator.

66 As such, the non-positive entanglement witness is solely determined by the non-

complete positivity of the partial transposition. This map is defined as

TB[∙] : TB[ρA+B] 7→ (ρA+B)TB

〈φAi ⊗ ϕ
B
i |(ρ

A+B)TBφAj ⊗ ϕ
B
j 〉 := 〈φAi ⊗ ϕ

B
j |ρ

A+BφAj ⊗ ϕ
B
i 〉 (B.15)

66The transpose of ρ gives T [ρ] = ρT such that 〈φi|ρTφj〉 = 〈φj |ρφi〉 for all vectors in the
orthonormal basis {φi}.
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for the orthonormal basis {φi} in HA and {ϕi} in HB. As can be determined easily,

given a separable state, the partial transposition thereof gives a positive operator

and hence a valid quantum state.

TB[ρA ⊗ ρB] := (ρA ⊗ [ρB]T ) ≥ O. (B.16)

This means that the separability of ρ is sufficient for ρTB to be positive. The converse

claim, that the separability of ρ is necessary for ρTB to be positive, is limited to the

dimension of the composite system. According to the PPT criterion, the separability

of ρ is necessary and sufficient for ρTB to be positive, given a composite system

with d 6 6. For higher dimensions however, although the presence of negative

eigenvalues for ρTB determines that ρ is entangled, the positivity of this operator

does not guarantee separability. As with the von Neumann entropy and concurrence,

the PPT criterion determines entanglement or separability in a symmetric manner

for both ρTB as well as ρTA .

The negativity [Vidal and Werner, 2002] of a bipartite density operator gives an

entanglement monotone based on the PPT criterion. As the partial transposition

does not affect the trace of the density operator ρ, we can label the positive and

negative eigenvalues of the matrix ρTA (or ρTB) as λi and μj respectively, such that

they always add to one. The negativity can therefore be defined as the amount by

which the absolute sum of the eigenvalues of ρTA differ from one.

N [ρA+B] := ‖(ρA+B)TA‖tr − 1

=
∑

i

λi + |μi| − λi + |μi|

=
∑

i

2|μi|. (B.17)

The maximum negativity of a system with Hilbert space of dimension dA × dB is

min(dA, dB)− 1, and so we use the normalised version

N [ρA+B] :=
‖(ρA+B)TA‖tr − 1

min(dA, dB)− 1
. (B.18)

204



The negativity and concurrence are related by the relation [Verstraete et al., 2001]

√
(1− C)2 + C2 − (1− C) ≤ N ≤ C. (B.19)
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Appendix C

Von Neumann-Lüders measurements with a

Gaussian probe state

When trying to measure a sharp observable on a finite dimensional Hilbert space, we

need not use a finite dimensional probe Hilbert space. Indeed, one interesting exam-

ple of the von Neumann-Lüders measurement model uses a probe that exists in the

infinite dimensional Hilbert space `2(R). The probe can be acted on by a coordinate

observable Q, with eigenvalues q, and a conjugate momentum observable P = −i∂q,

with eigenvalues p, which obey the canonical commutation relation [Q,P ]− = i1. If

the interaction Hamiltonian contains one of these observables acting on the probe,

the change in the value of the conjugate observable reveals the eigenvalue of the

observable we wished to measure.

Consider a sharp observable, given by the self-adjoint operator O, that we wish to

measure on a pure state with an associated vector ϕ. We add a probe state ψ which,

in the Q-representation, has the Gaussian wavefunction

ψ(q) =
1

√
ΔQ

√
2π
e
− q2

4Δ2
Q , (C.1)

and, in the P -representation, the Gaussian wavefunction

ψ(p) =
1

√
ΔP

√
2π
e
− p2

4Δ2
P . (C.2)
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Utilising the relations

1 :=

∫

R

dq|q〉〈q| =
∫

R

dp|p〉〈p| 〈p|q〉 =
1
√

2π
e−ipq, (C.3)

we may map between the Q-representation and P -representation wavefunctions

as

ψ(p) = 〈p|1ψ〉 =

∫

R

dq〈p|q〉〈q|ψ〉 =
1
√

2π

∫

R

dqψ(q)e−ipq

ψ(q) = 〈q|1ψ〉 =

∫

R

dp〈q|p〉〈p|ψ〉 =
1
√

2π

∫

R

dpψ(p)eipq (C.4)

which are Fourier transforms. It is simple to show that given a Q standard deviation

ΔQ, the P standard deviation is ΔP = 1/(2ΔQ).

The measurement Hamiltonian is of the form

H = gf(t)O ⊗ P (C.5)

where f(t) is non vanishing only during the time of the measurement and is nor-

malised such that
∫
dtf(t) = 1. An example of such a function is a Dirac delta

function. g is the strength of this interaction. We assume that either the system

Hamiltonian commutes with O or else the measurement process is fast enough that

the free evolution of the system may be neglected.

Let O have the eigenstates {φj} with the corresponding eigenvalues {aj} such that

we may write the initial object state as ϕ =
∑

j αjφj. The state transformation

after the interaction is given as

e−igO⊗Pϕ⊗ ψ(p) =
∑

j

αjφj ⊗ e
−(Δ2Qp

2+igajp) (C.6)

where we have omitted the normalisation constants of ψ(p) for clarity. Applying a

Fourier transformation on the probe wavefunction gives the state transformation in

the Q representation as

∑

j

αjφj ⊗ e
−
(q−gaj)

2

4Δ2
Q =

∑

j

αjφj ⊗ ψ(q − gaj). (C.7)

The composite state has some entanglement, with the Q value of the probe state cor-

related with the eigenvalue of O. For a measurement to be ideal in a coarse grained
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picture, such that measurement of the probe state unambiguously determines the

eigenstate of the observable O, the overlap between the different ψ(q − gaj) must

be brought arbitrarily low so they can be considered as effectively orthogonal 67.

Therefore, we require g to be strong compared to ΔQ such that ΔQ � gΔO, where

ΔO is the standard deviation in the eigenvalues of O.

The reduced state of the probe, after the measurement interaction, is then given by

the statistical mixture

ρ =
∑

j

|αi|
2Π(ψ(q − gaj)) (C.8)

where Π(ψ(q − gaj)) is the pure projector density operator of the probe. The

probability distribution gained by the measurement of Q on the probe will consist

of widely separated Gaussian functions centered on the values gaj. Consequently, a

single measurement will reveal which eigenstate the system has been measured to be

in, but generally68 there will be an error in the evaluation of the eigenvalue due to the

uncertainty ΔQ for the Gaussian probe state. For either N runs of the experiment

or a single run on an ensemble of N identical systems (each with their own probe

state) this error scales as 1/
√
N due to the central limit theorem. Because of the

strong value of g, this ideal measurement of a sharp observable is also referred to as

a strong measurement.

In the case of weak g where ΔQ � gΔO, however, there will be a large overlap be-

tween the probe vectors. The resultant probability distribution for Q can then be ap-

proximated by the first order expansion of the Taylor series to provide a single broad

67Strictly speaking, as all states are Gaussian their tails will continue to infinity and hence they
will never be exactly orthogonal. But we may consider them as affectively orthogonal in a coarse
grained picture.

68A single measurement can be used to accurately ascertain the measured eigenvalue in the limit
of ψ(q) being a delta function.
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Gaussian centered on the expectation value of O given by 〈O〉 =
∑d

j=1 |αj|
2aj.

P (q|ρ,Q) =
1

ΔQ

√
2π

∑

j

|αj|
2e
−
(q−gaj)

2

2Δ2
Q ≈

1

ΔQ

√
2π

∑

j

|αj|
2

(

1−
(q − gaj)2

2Δ2Q

)

=
1

ΔQ

√
2π

(

1−
q2 − 2qg〈O〉+ g2〈O〉2 + g2Δ2O

2Δ2Q

)

≈
1

ΔQ

√
2π
e
− (q−g〈O〉)

2

2Δ2
Q . (C.9)

A single measurement of Q in this case will give practically no information about

the system; with a large ensemble of N identically prepared systems we may only

ascertain the expectation value of O with arbitrary accuracy, but we can not deter-

mine the eigenstate of O the system has collapsed to. This is usually referred to as a

weak measurement, introduced by [Aharonov et al., 1988; Aharonov and Vaidman,

1990].
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