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Modern neurostimulation approaches in humans provide controlled inputs into the operations of cortical regions,
with highly specific behavioral consequences. This enables causal structure–function inferences, and in combination
with neuroimaging, has provided novel insights into the basic mechanisms of action of neurostimulation on dis-
tributed networks. For example, more recent work has established the capacity of transcranial magnetic stimulation
(TMS) to probe causal interregional influences, and their interaction with cognitive state changes. Combinations of
neurostimulation and neuroimaging now face the challenge of integrating the known physiological effects of neu-
rostimulation with theoretical and biological models of cognition, for example, when theoretical stalemates between
opposing cognitive theories need to be resolved. This will be driven by novel developments, including biologically
informed computational network analyses for predicting the impact of neurostimulation on brain networks, as well as
novel neuroimaging and neurostimulation techniques. Such future developments may offer an expanded set of tools
with which to investigate structure–function relationships, and to formulate and reconceptualize testable hypotheses
about complex neural network interactions and their causal roles in cognition.
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Introduction

Over the past two decades, neurostimulation ap-
proaches have become successful tools for noninva-
sively studying the basic physiology of, and cognitive
processes in, the human brain. This review discusses
how the use of neurostimulation in combination
with neuroimaging has answered questions about
the relationship between the physiological impact of
transcranial magnetic stimulation (TMS) and its be-
havioral consequences, the distributed impact TMS
can have on functional brain networks, and how
this impact can be exploited to address novel ques-
tions about causal network interactions underlying
cognition.

[The copyright line for this article was changed on July
18, 2014 after original online publication.]

The format of this paper prevents an exhaus-
tive treatment of combinations of neurostimulation
and neuroimaging, and therefore the focus here
is on TMS and its concurrent combinations with
functional magnetic resonance imaging (fMRI) and
electroencephalography (EEG). Other neurostimu-
lation techniques provide equally powerful means
for transiently interacting with neural processing.
Of these, transcranial direct current stimulation
(tDCS) stands out in its capacity to interact with
ongoing neuronal activity.1–3 Although the relative
paucity of combined tDCS and neuroimaging stud-
ies prevents an in-depth review of the technique,4–8

many of the arguments presented here equally ap-
ply to tDCS. We furthermore focus on concurrent
combinations, and for elegant offline work, recent
reviews and examples are referred to.9–19 Focusing
on fMRI and EEG, the examples discussed in this
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review establish principles and ideas that similarly
apply to other imaging modalities. Finally, for safety
considerations,14,20,21 technical and methodological
details, and requirements for combining TMS with
neuroimaging, the reader may refer to previous
publications.14,22–36

The below discussion is divided into three parts,
the past, present, and potential future contributions
to the field. First, early work, particularly in the mo-
tor system, is reviewed that provided evidence for
the anatomically distributed effects of TMS. This
in turn led to the combination with neuroimag-
ing to study such effects with high anatomical
and temporal precision throughout the brain. Since
its implementation, the combination of TMS with
neuroimaging has established several, now widely
accepted insights into the basic mechanism of ac-
tion of TMS and its distributed impact on brain
networks. Next reviewed are more recent exam-
ples of combined TMS–fMRI and TMS–EEG that
demonstrate how interregional interactions depend
not only on anatomical connectivity, but also on
the activation state of network constituents. A key
question when evaluating successful combinations
of TMS and neuroimaging concerns their ability to
formulate novel and testable hypotheses about the
role of distributed brain networks for cognition. As
argued in the final section, the field is at a segue:
the potential of multimodal neurostimulation ap-
proaches for understanding human cognition has
not been fully exploited, but recent developments
provide an ever increasing arsenal of possibilities
for their use in establishing network accounts of
human cognition.

The past: resting state studies and
perturb-and-measure approaches

TMS stimulates cortical tissue through electromag-
netic induction by discharging a short (∼1 ms) but
strong (several kA) electrical current through an in-
duction coil, which is placed over a cortical region
of interest. The electric pulse induces a time-varying
magnetic field perpendicular to the stimulation coil
that passes through the scalp without attenuation,
and is therefore painless and well tolerated. The in-
duced electrical current may directly interact with
ongoing neural processing at the site of stimulation,
but also in remote and connected brain regions, as
discussed in further detail below. By having such di-
rect input into a cortical operation, one can study its

behavioral consequences and thereby ask questions
about the requirement of ongoing activity for a cog-
nitive operation. Early seminal studies by Amassian
et al.37,38 in the visual system provided the first com-
pelling examples of how the possibility to directly
and noninvasively interact with cortical processing
can be hedged to infer causal structure–function
relationships. In brief, these studies demonstrated,
with a high degree of both temporal and anatomical
specificity, that stimulation of early visual cortex can
transiently interfere with perception.37,39,40 Early
studies on human motor cortex, on the other hand,
have provided the first evidence that TMS is capable
of impacting distal sites. For example, a single pulse
applied to the primary motor cortex (M1) hand
representation can elicit motor-evoked potentials
(MEPs) in muscles of the contralateral hand.41–46

The generation of MEPs involves (at least) three
stages where signals are relayed first via synapses
onto corticospinal neurons, then via synapses onto
motor neurons located in the spinal cord, and fi-
nally, by the neuromuscular synapses that gener-
ate the evoked potentials recorded from peripheral
muscles.47 TMS to M1 also significantly influences
activity in the contralateral homologue,48–50 with
functional relevance to motor output.51

Behaviorally, the first double-coil TMS studies
provided a similar picture. For example, stimula-
tion of visual area V5/MT with one TMS coil was re-
ported to influence the excitability of primary visual
cortex, as assessed with subsequent TMS pulses ap-
plied with a second stimulation coil.52 Functionally,
this remote influence significantly affected visual
awareness,52 thus providing additional evidence that
even single TMS pulses can elicit remote responses
strong enough to shape behavior. Although the rela-
tionship between the physiological and behavioral
consequences resulting from TMS are more com-
plex than simply that of transient interference,53–55

it is clear that TMS has the capacity to provide focal
and temporally precise inputs into the operation of
a cortical region,53 with highly specific behavioral
consequences.56

But real progress in our understanding of lo-
cal and remote TMS effects came with the near-
simultaneous advent of combinations of TMS
combined with fMRI,57 EEG,58 and positron emis-
sion tomography (PET).59 Early studies employed
perturb-and-measure approaches60 in which TMS
is used at rest to cause activity in one brain region
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Figure 1. Subcortical activity changes evoked by TMS as mea-
sured using fMRI and PET. (A) Brief bursts of rTMS to the left
primary motor cortex (M1) evoke BOLD signal changes not
only in the vicinity of the stimulation site but additionally in
the ipsilateral motor thalamic nuclei (note: left and right rever-
sal). These subcortical effects occur even during subthreshold
TMS and therefore in the absence of evoked movements.68 (B)
Changes in extracellular dopamine concentration measured in
vivo using [(11)C]raclopride and positron emission tomogra-
phy. Repetitive TMS of the left dorsolateral prefrontal cortex
caused a reduction in [(11)C]raclopride binding in the left dor-
sal caudate nucleus compared with rTMS of the left occipi-
tal cortex.78 (C) Interaction of TMS (high and low intensity)
and median nerve stimulation (ON and OFF) within the thala-
mus. BOLD signal in the thalamus was highest during combined
right-hand somatosensory stimulation and high-intensity TMS
over the right parietal cortex.110

while concurrent neuroimaging characterizes the
distributed impact of this intervention. Two find-
ings of these early resting-state TMS–neuroimaging
studies are emphasized here, as they have particu-
lar relevance for later studies on cognition. First,
the early combinations, using both single pulses or
short bursts of TMS to motor cortical regions, es-
tablished the now accepted view that TMS can inter-

act with distal sites, including subcortical structures
(Fig. 1),61–68 in a dose-dependent manner.61,63,68–74

Such interactions might be predicted given the
strong anatomical projections across different cor-
ticobasal ganglia–thalamic loops,75–77 but direct
quantification of such interactions had not been
possible until the combination with neuroimaging.
Even more specific cortico–subcortical interactions
were demonstrated with combinations of TMS and
ligand-PET (albeit conducted with offline TMS).
These showed, for example, that stimulation of the
dorsolateral prefrontal cortex (DLPFC) can elicit
changes in dopamine release in the caudate nucleus
(Fig. 1),78 or in the putamen after M1 stimulation.79

Similarly, concurrent TMS–fMRI studies showed
that changes in subcortical activity during M1 stim-
ulation can be distinguished from those evoked by
stimulation of the dorsal premotor cortex (PMd),
despite considerable and expected overlap of their
anatomical footprints.61,68

Second, resting-state TMS–EEG studies have pro-
vided clear demonstrations that the impact of TMS
on remote regions is rapid and can spread over rel-
atively widespread areas of cortex even with ad-
ministration of single pulses or short stimulation
bursts.71,80–87 Indeed, TMS-evoked activity spreads
within tens of milliseconds to directly adjacent cor-
tical regions, but then quickly disperses to more
distal sites in a reverberating pattern.58,82,88 The
magnitude of this spread is dose dependent,71,89

and can also be observed even after single pulses
of stimulation.58,90 The changes in network activity
observed with neuroimaging in response to single
pulses or short bursts of TMS are thus not compen-
satory or plastic adjustments (as those likely induced
by offline repetitive TMS protocols), but instead re-
flect the immediate propagation or broadcasting of
the induced activity to distal, but connected, sites.

Together, this early combined resting-state
neuroimaging–TMS work provided empirical con-
firmation that the distributed impact of TMS is
spatially and temporally specific and occurs within
distinct anatomical networks.a It is important to
remember that this approach departs from the use

aPerhaps we owe the strength of such distal effects to
the fact that TMS interacts with the activity of relatively
large populations of neurons, compared to combined neu-
roimaging and microstimulation experiments in nonhu-
man primates.188–194 The exact extent of the functional
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of TMS in many behavioral applications, where it
is aimed at transiently and reversibly disrupting be-
havior to induce virtual lesions. Instead, TMS is now
used to cause activity in a cortical region, and mea-
sure with neuroimaging how this change is broad-
cast to distal regions, including subcortical sites.
Without such combinations, our inferences would
largely be confined to the cortex directly underneath
the stimulating coil (although we note that double-
coil TMS approaches also provide powerful ways for
looking at interregional influences on, for example,
M1 or V152,91–97).

Two key issues arise: first, earlier electrophysi-
ological and behavioral work has shown that the
impact of TMS depends on the excitability of con-
nections (and/or the current level of activity) at the
time of stimulation. Put simply, the more excitable
a given region or its connections are, the more likely
it is that TMS will influence activity in local and dis-
tant brain regions. For example, applying TMS to
M1 during voluntary contraction affects the size and
number of descending corticospinal volleys.98–100

This state-dependence of TMS is also supported
by studies in the visual cortex demonstrating that
the intensity of TMS-evoked perceived light flashes
(phosphenes) changes during migraine,101 spatial
attention,102 or neural adaptation paradigms.103–105

The next section will address how combined TMS
and neuroimaging has helped to understand state-
dependent network interactions.

The second issue is to what degree combined TMS
and neuroimaging has not just enriched our under-
standing about the mechanisms of action of TMS
itself, but has also provided novel views on the role
of network interactions in human cognition, which
is addressed in the final section.

The present: state-dependent network
effects and oscillatory changes

Recently published studies combining TMS with
neuroimaging extend the earlier work described,
now asking about changes in the influence of
TMS-targeted brain regions on anatomically remote

impact depends on many parameters, but can be as lit-
tle as 0.5–1 cm2,195 particularly when combined with
neuronavigation.196,197 But, as opposed to microstimu-
lation in nonhuman primates, the stimulation of much
larger populations of neurons may in fact be a prerequi-
site for substantial distal effects elicited by TMS.

regions that also change as a function of the behav-
ioral requirements. The spread of TMS-induced ac-
tivity to functionally connected areas is therefore a
means for probing the varying states of connectivity,
as stimulation can be applied during different be-
havioral states, at different times, to different areas.
This approach is briefly illustrated using examples
in which TMS was combined online with fMRI or
EEG. We particularly acknowledge here the signifi-
cant contribution Jon Driver made to the combined
TMS–neuroimaging field; he was very much at the
forefront of applying this approach to investigate
a variety of cognitive domains, and his success in
doing so is made apparent in this section.

State-dependent interhemispheric interactions
One striking result from early resting-state TMS–
neuroimaging combinations was the rapid and re-
liable spread of effects to the hemisphere contralat-
eral to the stimulation site.58,61–63,68,106 The nature
of such interhemispheric interactions among ho-
mologous premotor and M1 areas was the focus of a
concurrent TMS–fMRI investigation of simple force
production.107 Specifically, this study addressed the
hypothesis that the PMd might increase its influ-
ence with the contralateral PMd and M1 when a
voluntary motor action is performed, as opposed to
when at rest. By applying a short burst of TMS to
the left PMd, its influences on contralateral motor
regions during isometric force production or rest
were measured. TMS produced a differential effect
on blood oxygenation level–dependent (BOLD) sig-
nal changes both in the stimulated area, and in the
contralateral right PMd and M1. Critically, these
effects depended on the behavioral state (volun-
tary grip force production versus rest); at rest, TMS
led to a relative BOLD signal decrease in these re-
gions, whereas during grip, a relative increase was
observed (Fig. 2). The remote influences of TMS on
a known motor network therefore depend on the
trial-by-trial changes in the state of the targeted re-
gion at the time of stimulation, and can even reverse
with changes in state. This finding suggests that spe-
cific brain regions within a functional network only
influence one another when a specific behavioral
context is present, shown here as influences among
contralateral and homologous brain regions.

This work was extended using TMS in combina-
tion with arterial spin labeling,108 an MRI approach
that measures cerebral blood flow,28 now asking
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Figure 2. State-dependence of interhemispheric influences of
TMS in the motor system. Short bursts of TMS (high vs. low in-
tensity) were applied to the left PMd during left-hand isometric
force production (or nonmotor rest), concurrently with fMRI.
Within the task-related right PMd and M1 (i.e., contralateral
to TMS, top), TMS at high intensity leads to a relative activ-
ity increase (bottom), compared to low-intensity control TMS.
However, this effect is reversed during nonmotor rest, with high
TMS now leading to a relative activity decrease in contralateral
motor regions.108

about the role of the PMd in the mapping of pre-
learned associations to motor responses. TMS pro-
duced regional cerebral blood flow changes (rCBF)
on a task requiring sequences of previously learned
key presses in response to visual stimuli. Compared
to free selection of key presses, TMS increased rCBF
in the contralateral PMd and other regions of the
motor network, indicating a role for the PMd in the
mapping of external cues to motor movements, via
the formation of a transient functional network.

Finally, in another concurrent TMS–fMRI study,
TMS applied to the right parietal cortex dur-
ing wrist nerve stimulation (compared to no
stimulation) produced increased activity in the
contralateral primary somatosensory cortex and
subcortically in the thalamus. This provides an-
other example for causal interhemispheric inter-
actions, now in the somatosensory system.109 The
state-dependent effects support a role for the stimu-
lated parietal region in response enhancement via a
corticothalamic circuit when somatosensory inputs
are present. Collectively, these examples all show
the utility of combining online TMS with fMRI to
address specific questions related to the interplay
between regions in a functional network that can
involve brain regions contralateral to the point of
stimulation.

Anatomically distributed state-dependent
and top-down influences
More recent work has started to use concurrent
TMS–fMRI to investigate state-dependent interre-
gional interactions outside the motor system. Note,
however, that recent examples in the visual domain
are discussed here only in passing; for an in-depth
discussion of top-down visual influences, readers
can refer to the contribution by Ruff (this volume).

To investigate top-down influences in the domain
of multisensory integration, TMS has been applied
to an association area (intraparietal sulcus; IPS) to
examine TMS-modulated feedback to primary sen-
sory cortex during auditory, visual, or no external
stimulation.110 Participants were presented with dif-
ferent sensory stimulation during which effective,
ineffective, or no TMS was applied to the right IPS.
State-dependent effects resulting from visual stim-
ulation were produced in primary sensory areas;
IPS-TMS increased BOLD response in visual areas,
again supporting a role for this area in response
amplification/enhancement. When auditory or no
external stimulation was present, IPS-TMS instead
revealed cross-modal effects, in which early visual
cortex activity decreased, in addition to expected
increases in auditory cortex activations. These re-
sults suggested a role for the IPS in sensory gain
control or modulation of interactions between dif-
ferent sensory cortices.

The role of the parietal cortex in attention has
also been studied with concurrent TMS–fMRI.111,112

In these investigations, the top-down influence of
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Figure 3. Anatomically remote effects of TMS to reveal the mechanisms of DLPFC-based control on WM representations. (A)
Schematic of the right DLPFC stimulation site (upper), a region involved in distractor mitigation during WM. The impact of
stimulation was assessed in posterior visual category-specific areas (lower; fusiform face area (FFA) in red, parahippocampal place
area (PPA) in blue)). (B) Interparticipant mean BOLD percent signal changes due to effective vs. ineffective DLPFC-TMS are
shown in FFA (upper) and PPA (lower). Effective TMS increased BOLD in FFA specifically when faces were memory targets, in the
presence of house distractors. Analogously, effective TMS increased activity in PPA when houses were memory targets and faces
were distractors. Thus, DLPFC stimulation has an impact on the posterior region representing the current memory target (rather
than the current distractor), but only in the presence of distraction.114

parietal sites over visual cortex was shown, in which
TMS applied during the directing of covert atten-
tion toward one hemifield increased BOLD signal
in early visual areas. These findings show the causal
influence of parietal over visual areas during vary-
ing states of attention, and fit with models in which
modulatory effects of spatial attention on visual cor-
tex occur via effective connectivity with parietal re-
gions. More detailed descriptions of these studies,
and more examples of using TMS–fMRI to study
top-down effects in the visual system, are provided
by Ruff (this volume).

In another investigation of how a top-down con-
trol region exerts control over anatomically remote

visual areas, concurrent TMS–fMRI was used to
resolve the question of whether the DLPFC miti-
gates distraction during working memory (WM),
through an enhancement of relevant memory tar-
gets or suppression of irrelevant distractors.113 To
this end, during fMRI scanning, TMS was applied
to the right DLPFC to coincide with distractors,
and the resultant effects of TMS on the BOLD re-
sponse were measured in remote visual areas re-
sponding to either memory targets or distractors; in
this way, the recipient of the DLPFC control signals
(memory targets or distractors) would be revealed.
TMS increased BOLD signal in memory target re-
gions only, providing support for an enhancement
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mechanism of top-down DLPFC-mediated control
(Fig. 3). This result fits with previous findings in
which relevant (over irrelevant) information for the
task is preferentially targeted by DLPFC signals.114

Moreover, there was no effect of TMS on memory
target regions in the absence of distractors, provid-
ing further constraints on the role of the DLPFC
during WM (i.e., only when the contents of WM
need protection from external distraction). In sum,
these results provide a strong line of causal evidence
on the conditions under which the DLPFC is ef-
fectively connected to visual regions representing
memory targets during WM, with additional con-
clusions able to be made on the mechanism by which
a control region protects memory targets (i.e., via
their enhancement). More generally, this study is
an elegant example of the inferential power pro-
vided by concurrent TMS–fMRI, which has moved
beyond simply assessing which regions are function-
ally coupled during a task. The nature of the TMS
effect (i.e., an increase in BOLD signal in target-
relevant regions) suggests a mechanistic action of
DLPFC-based control, providing a unique form of
evidence that is consistent with those observed in
single unit recordings in monkeys, previous fMRI
studies,115 and models of (prefrontal-based) cogni-
tive control.116,117

Of note for the majority of the studies described
above is the use of TMS during fMRI in physiolog-
ical probe mode (i.e., without interfering with be-
havior). The reasons for this are often practical; for
most behaviors, more TMS than permitted by the
constrained TMS–fMRI environment must be given
to significantly interfere with behavior; but by not
disturbing behavior, networks can be investigated
under comparable behavioral conditions. At the
same time, the absence of behavioral consequences
of TMS may instead, or at least under certain con-
ditions, be due to rapid compensatory changes that
counteract the stimulation. This now opens the pos-
sibility to ask about the specific brain regions that
may enable such rapid compensatory adjustments,
and at which point in the information processing
stage such adjustments may occur.118 Furthermore,
by not modulating behavior, one of the strengths
of TMS is lost: the causal conclusions that can be
drawn when a disrupted brain region impairs per-
formance of the cognitive operation of interest. In a
rare example of TMS interference during concurrent
fMRI119 (see also Ref. 112 for a similar approach),

right (but not left) parietal TMS during visuospa-
tial task performance increased reaction times, with
concomitant decreases in BOLD signal in the stim-
ulated region and also in the right medial frontal
gyrus. The task-specific (i.e., state-dependent) ef-
fect of parietal TMS on the frontal cortex raised
the question of whether this disruption contributed
to the behavioral impairments observed. One in-
dication that this may have been the case was that
TMS-evoked activity changes in the right frontal
and parietal cortex correlated with the behavioral
impairments.

Another approach for disrupting behavior that
circumvents fMRI-imposed constraints is to use
an offline TMS protocol, applied immediately be-
fore scanning. Such offline approaches to investi-
gate compensatory or adaptive processes are not
discussed here, but for recent examples using this
approach to investigate the connectivity and mech-
anistic actions of the prefrontal cortex on poste-
rior visual perception–related regions, see Refs. 12
and 120.

TMS-induced oscillatory changes
TMS pulses can be applied rhythmically at frequen-
cies to match those of endogenous oscillations, and
this capacity offers the potential to causally unlock
the cognitive role of oscillations. Of particular in-
terest has been the role of � band oscillations. Tra-
ditionally known as the idling rhythm, � has been
associated more with a resting-type state than with
active cognitive operations.121 This view has under-
gone a recent shift, of which evidence using com-
bined TMS–EEG has contributed. For example, a
recent study demonstrated a dependence of the pre-
ceding � phase on the efficacy of phosphene produc-
tion by a single TMS pulse applied over the occipital
cortex.122 For frontal and occipital electrodes, the
phase of oscillations in the � range was systemat-
ically coupled with the probability of phosphene
report by participants for a period of up to 400 ms
prior to phosphene induction, a result that pro-
vides causal evidence for ongoing � oscillations in
sensory perception (see also Ref. 123). This idea
has been further consolidated in recent combined
TMS–EEG work on � oscillations and perception,
now applying TMS to the IPS during a Posner cue-
ing task to investigate the interaction between � and
endogenous allocation of attention.124 Specifically,
both the left and right IPS were targeted during the
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presentation of a cue indicating the location of an
upcoming visual target. TMS interfered with subse-
quent target detection and also disrupted occipito-
parietal � desynchronization in the hemisphere con-
tralateral to the cue, supporting a role for this region
in the allocation of spatial attention to one hemi-
field. However, right IPS TMS had an additional
effect of synchronizing � rhythms bilaterally, sug-
gesting a spatially nonselective role for � as well,
possibly to control visual cortex excitability prior to
an upcoming target, a result that is also in agreement
with parietal asymmetries revealed by concurrent
TMS–fMRI.73,125

It has been suggested, however, that � oscillations
might not just be related to processing in the visual
domain, but may also play an important role in de-
cision making. Recent work has elegantly addressed
the question regarding specific roles for � and � os-
cillations in a probabilistic reasoning task.126 Using
EEG, a recent study demonstrated that the arrival
and accumulation of evidence about an upcoming
decision, which was indicated via left or right hand
button press, was indexed by � and � oscillations
in sensorimotor cortex.126 To causally establish the
role of these oscillatory signatures for evidence ac-
cumulation and decision making, a subsequent ex-
periment applied short trains of 10 Hz TMS, during
EEG, over a region of the left IPS where sensorimo-
tor implementation of the decision was expected to
occur (Fig. 4). TMS now biased decision responses
toward the left hand, indicating disruption of evi-
dence integration for responses that were to be given
from the contralateral-to-TMS hand. TMS also af-
fected � band power, which, after TMS, showed
a positive correlation with an individual’s decision
threshold bias. Moreover, the largest � power in-
creases occurred when TMS was applied at a spe-
cific phase of the � cycle. No effects of TMS were
observed on �, however. These results thus pro-
vide a novel form of evidence for the causal role
of � oscillations in the processes underlying an
upcoming decision, perhaps reflecting the incom-
ing signals tracking probabilistic information that
goes toward response selection, with the IPS play-
ing a critical role.

Turning once again to WM, a role for oscilla-
tions in WM storage has also been proposed,127–129

which was directly tested using combined TMS–
EEG.130 During the maintenance period of a spatial
or object WM task, � frequency (10 Hz) repeti-

tive TMS was applied over the superior parietal
lobule (SPL), which was previously shown to be
affected by TMS during spatial WM.131 Correla-
tions between TMS-induced changes in task per-
formance and � band power were identified in
several (source-localized) brain areas related to
spatial WM, with TMS-induced impairment in spa-
tial WM accuracy corresponding specifically to de-
creases in � band power. Cross-frequency effects
between � and � were also modulated by TMS,
adding causal support for a proposed relationship
between these frequency bands.132 In addition to
demonstrating specificity for certain frequencies in
WM, these results also demonstrated the biasing
of endogenous oscillations by rhythmic TMS. An-
other study also used combined TMS–EEG to help
clarify the interaction between endogenous behav-
ioral states of WM and exogenously induced electro-
physiological effects by TMS, producing effects on a
range of EEG measures, including event-related po-
tentials and oscillations, that were consistent with
both behavioral state and the underlying physio-
logical state of the cortical target at the time of
stimulation.133

Several studies have used TMS to interact more
explicitly with endogenous oscillations related to
cognition to show the ability of TMS to bias, or en-
train, specific frequencies. An excellent example is
provided by a study134 that used concurrent TMS–
EEG to entrain and measure a cortical generator of
� oscillations related to shifts of attention and target
detection. TMS pulse trains were applied at a fre-
quency corresponding to each subject’s individual �,
with resultant effects on endogenous � from each
pulse, measured concurrently with EEG. Against a
series of control conditions, their results showed that
�-frequency trains of TMS started off with broad-
band, and topographically broad, increases in oscil-
latory power that narrowed to the � range as the
TMS train progressed in time. The phase of an in-
dividual’s intrinsic � cycle immediately prior to the
start of a TMS train also influenced TMS-induced
entrainment, with the strongest entrainment ob-
served when TMS pulses were phase locked to a
specific period in the � cycle. This phase locking
increased as, again, the number of TMS pulses ap-
plied in a train increased. These results complement
earlier work,127,129 and provide yet more evidence of
the causal effect that rhythmic TMS has on intrinsic
oscillations; TMS can synchronize oscillations and,
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Figure 4. Effects of intraparietal TMS during perceptual decision making on sensorimotor oscillatory activity. (A) TMS-induced
change in psychometric function during a perceptual decision-making task, for the left medial intraparietal area (MIP; green) vs. V5
(red) control stimulation (B) revealed a specific correlation between TMS-induced behavioral changes during a perceptual decision
task, and concurrently measured �-band changes for electrode positions overlying sensorimotor cortex in both hemispheres (C).127

as shown previously in a visual detection task, this
entrainment can have behavioral consequences.135

More recent developments in this area are discussed
in the following section.

The future: can neurostimulation be an
arbitrator for network accounts of
cognition and their physiological
underpinnings?

Next considered is how the field of cognition with
neurostimulation perhaps can and should progress.
Combined neurostimulation and neuroimaging ap-
plications for studies of cognition must be judged by
their ability to refine or reshape cognitive models by

exploring their implementation via neuroanatomi-
cal and neurophysiological underpinnings. Despite
the success of multimodal neurostimulation ap-
proaches, we argue that the impact of combined
neurostimulation and neuroimaging has yet to reach
its full potential when it comes to informing neural
models of cognition.

TMS as arbitrator for neural models
of cognition
Perhaps owing to the complexity of the TMS-
evoked physiology and the methodological prowess
required to conduct combined studies, much of
the work to date has been geared toward the
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understanding and characterization of the basic
physiology and state-dependence of TMS effects
in distributed networks, all prerequisites for an
in-depth understanding of the impact of TMS
(and indeed all forms of neurostimulation) on
cognition. One highly constructive role for TMS–
neuroimaging in particular may be that of an ar-
bitrator, in which the interventional capacity of
TMS can be used to distinguish between compet-
ing accounts about how specific cognitive processes
arise neurally. Specifically, the question is: To what
extent can these approaches provide novel insight
about cognition beyond established uses of TMS
for structure–function relationships? Can TMS also
be used to test for the requirement of specific re-
gional interactions in cognition, and can TMS-
evoked changes in such interactions allow for dis-
ambiguating competing cognitive theories?

One such example has already been provided,
in which concurrent TMS–fMRI was used to
adjudicate between two competing mechanisms (of
prefrontal-based control) in working memory.113

The physiological predictions (in terms of BOLD
signal increase in memory target areas) matched the
expected outcome corresponding to one of two the-
oretical functions for top-down control (enhance-
ment versus suppression). With the causal conclu-
sions permitted by TMS, this study provides a strong
line of evidence favoring a specific (theoretically de-
scribed) implementation of cognitive control. Fur-
thermore, other combined offline TMS–fMRI12 and
TMS–EEG studies120 revealed other prefrontal, but
anatomically distinct, regions also involved in the
control of task relevant versus irrelevant informa-
tion. This raises the question for future studies about
the specific roles of these three prefrontal regions,
and whether they indeed fulfill essentially the same
function. Alternatively, enhancement and suppres-
sion could be differentially invoked under different
conditions, by different brain regions (e.g., when
items are already in WM but face exogenous distrac-
tors versus when items among distractors are being
encoded, or need to be selected from among already
encoded items that have become distractors).

Note that an experiment utilizing concurrent
TMS–fMRI does not automatically confer an infor-
mative contribution to a (neuro)cognitive model.
The danger of simply applying an anatomical la-
bel to a function, albeit a causal one, remains (al-
though, to some degree, this problem applies to

all TMS approaches). However, concurrent TMS-
neuroimaging does hold a unique position through
its ability to produce specific context-based modula-
tions of physiological signals with direct and imme-
diate effects able to be observed. Another strength
of concurrent TMS–neuroimaging is that it provides
strong evidence about network accounts of cogni-
tion (i.e., how cognitive behaviors arise through
concerted communication between brain regions,
some of which may enact control over others). As
addressed below, the possible directionality of sig-
nals can be explored with formal models of effective
connectivity. However, we caution against the falla-
cies of reverse inference. It will not always be pos-
sible to unambiguously link TMS-induced changes
in neural activity and cognitive processing, partic-
ularly in cases where behavioral perturbations do
not occur. While it may be safe to conclude that
the TMS-induced impact on region A and its inter-
connected regions B and C varies as a function of
cognitive state (e.g., attention), one cannot conclude
that attention is enabled because of the interactions
between A, B, and C.

Combined TMS–neuroimaging and multivoxel
pattern analyses
Multivoxel pattern analysis (MVPA) is a recently de-
veloped approach to the analysis of neuroimaging
data that shows the information content of signals
in high dimensional data sets, such as those of fMRI,
EEG, and magnetoencephalography (MEG). Using
machine learning, MVPA can decode the informa-
tion contained in a signal, revealing the nature of
how a brain region or an electrophysiological signal
represents that information, and how it can change
over different stages of processing.136 For example,
returning to the experimental question of whether
the DLPFC enhances memory targets or suppresses
distractors during working memory,113 disrupting
the DLPFC might result in the representation of tar-
gets being affected such that the (MVPA-identified)
representations are decreased as a result of the dis-
turbance of top-down enhancement. Similarly, if
distractor suppression is also a DLPFC-based con-
trol mechanism, disruption of this might result in
the improvement of distractor decoding, due to the
lifting of suppression (unpublished data, Feredoes
et al.). Given that the technological requirements
for combining TMS with MVPA are already in place,
the experimenter is limited merely by their ability to
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formulate questions appropriate for this approach;
the ability to observe TMS-induced modulation
of information representation may significantly in-
crease the inferential power afforded by combined
TMS–neuroimaging.

Computational neurostimulation
Given the causal inferences afforded by TMS, it may
be integrated with emerging classes of connectivity
models, as a way to test their parameters and/or va-
lidity as a whole. Recent appraisals of neuroimaging
highlight the shift from establishing functional spe-
cialization of regions toward establishing the con-
nections between regions instead, and thus func-
tional integration;137,138 with this has come the
desire to establish causal links between such con-
nected regions via neurobiologically informed mod-
els that provide intermediate levels of description
about the basic physiology of TMS and its behav-
ioral consequences.

For example, biophysical models, such as those
instantiated in dynamic causal models (DCMs),
can in principle help to test whether remote stim-
ulation effects predominantly arise from ortho-
and/or antidromic stimulation of connections,
and/or via pyramidal projections or intra-regional
interneurons.53,55,139–141 In principle, DCMs for
electrophysiological data, such as provided by
MEG or EEG, are best equipped to address such
mechanistic questions, for example, by form-
ing deterministic generative models of ensem-
ble or population dynamics.142 DCMs now exist
for evoked responses,143 steady state responses,144

cross-spectral densities,145 phase coupling,146 and
induced responses,147 thus offering complementary
ways for investigating how TMS elicits observed
population responses, but also how such responses
affect cognitive processing.

One can furthermore proceed to ask about com-
peting candidate mechanisms by which cognitive
states might be maximally expressed in effective con-
nectivity changes, and how these changes then in-
teract with neurostimulation. For example, DCMs
also test for TMS-induced changes in physiologi-
cal responses, and their interaction with cognition.
By estimating parameters of the neural model, one
might expect that the most accurately predicted
physiological signals would correspond closely to
the observed fMRI/EEG/MEG signals. Put simply,
a realistic biophysical model should also be able

to explain an additional input into the system in
the form of a TMS-induced perturbation, and in
this way, a causal intervention dimension can be
added to modelling. In other words, the combina-
tion of in vivo perturbation through neurostimula-
tion, neuroimaging, and realistic brain models pro-
vides a computational neurostimulation approach
with which to investigate the impact on cognition
of physiological mechanisms of neurostimulation-
induced effects.148,149

In what could be considered a precursor to such
an approach, one study150 investigated how TMS-
evoked interregional influences within motor and
corticolimbic circuits change with drug-induced
global state changes. Using DCMs to investigate
TMS-evoked changes in effective connectivity and
their interaction with drug treatment, drug-specific
changes were demonstrated in the brain networks
targeted by TMS. This provides an example of how
concurrent TMS and neuroimaging can quantify
drug-induced changes in interregional interactions
(Fig. 4A). More significantly, it illustrates how con-
current neurostimulation and neuroimaging can be
used together with neurobiologically informed anal-
yses of effective connectivity to ask questions about
the rapid and flexible causal network interactions
during cognition.

TMS and entrainment
The previous sections described how TMS can en-
train � oscillations and how this entrainment re-
lates to endogenous attention134 (Fig. 4B). This ap-
plication of TMS promises a direct and therefore
powerful way in which to investigate how oscilla-
tions might be integral to cognition. The seemingly
fortuitous ability of TMS to be applied rhythmi-
cally to match natural oscillations of various fre-
quencies means a variety of questions are ready
to be answered using this approach. For example,
the proposed long-range communication role for
the lower frequencies151 can be tested by applying
TMS over one region and measuring the resultant
oscillatory changes in distant, connected regions.
Moreover, improvements in behaviors can also be
produced, via the boosting of frequency-specific
amplitudes with TMS.152 However, for this lat-
ter point, transcranial alternating current stim-
ulation techniques may be an alternative and
potentially more powerful way for inducing
behaviorally relevant entrainment,153–158 mainly
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because of their potential to entrain at high (e.g.,
� range) frequencies.159 Recent developments in
high-definition tDCS for increased focality of stim-
ulation may also enable more selective targeting of
cortical regions.160–164 Moreover, recent advances
in forward modelling of induced currents now al-
low, in principle, precise directing of induced cur-
rents onto the desired neural target structures.162,165

Together, these developments hold promise for
the use of tDCS in locally constrained neural
entrainment.

Thus, we predict a rapid growth in studies us-
ing neurostimulation to understand the role of spe-
cific frequencies of oscillations for specific cogni-
tive processes and for entrainment to facilitate their
function.

Neurostimulation and neurotransmitters
The burgeoning development of novel imaging
and neurostimulation approaches is likely to con-
tinue to fuel studies that address hitherto inac-
cessible questions. For example, the abovemen-
tioned DCMs empower one to use anatomically
constrained computational perturbations of spe-
cific neurotransmitters (i.e., testing hypotheses re-
garding neurotransmitter changes throughout the
brain evoked by neurostimulation). Importantly,
such changes can also be quantified both directly
at the stimulation site and throughout the brain
with magnetic resonance spectroscopy (MRS).166

MRS allows quantification of neurotransmitter con-
centrations within a defined region of interest in
the brain and has recently been used to mea-
sure both TMS- and tDCS-induced neurotrans-
mitter changes (albeit in offline approaches)167–171

(Fig. 5C). Moreover, it has become clear that
interindividual variation in, for example, MRS-
measured GABA levels relate to variation in task
performance in a number of regions.172–176 This
now opens up possibilities to address questions
about causal neuropharmacology by changing neu-
rotransmitter concentrations in a defined corti-
cal network through neurostimulation, and re-
lating such changes to task performance. One
crucial advantage of this approach is that, in princi-
ple, neurotransmitter concentrations can be mod-
ified in a more spatially selective way than other-
wise possible with pharmacological interventions,
although it remains to be seen whether MRS can
be usefully combined with concurrent neurostim-

ulation. Currently, the technology requires a pri-
ori focus on specific neurotransmitters (e.g., GABA
and glutamate/glutamine (Glx)), despite the known
impact of both TMS and tDCS on a larger va-
riety of neurotransmitters,2,177–179 and addition-
ally provides a relatively poor spatial resolution
(compared to fMRI and the focality of TMS),
with standard voxel-sizes at field strengths of 3T
of around 30 mm3. This inevitable sampling-
bias currently constrains inferences about causal
neurotransmitter–function relationships, but ad-
vances in multivoxel MRS180 (particularly at higher
field strengths) are likely to provide increasingly de-
tailed mappings of stimulation-evoked changes in
neurotransmitter concentration with relevance for
cognition.

Novel ways for neurostimulation
Other, potentially more powerful and more focal
neurostimulation techniques may be in the off-
ing and invite more speculative projections. Recent
work demonstrates the ability of micro-magnetic
stimulation (�MS) coils with dimensions of around
500 �m to stimulate retinal ganglion cells181

(Fig. 4D). Such coils can be used in vivo and in
vitro with high focality, and are inherently com-
patible with neuroimaging. Although it remains
to be shown that they can be usefully applied in
human studies, the possibility of selective stimu-
lation of small neural circuits appears achievable.
Other developments hint at the possibility of low-
intensity–focused ultrasound pulsation to interact
with neural processing,182,183 at a spatial scale of
2 mm or less184 (Fig. 4E). Pending demonstra-
tion that this technique can be safely applied in
humans to stimulate brain tissue, focal stimula-
tion beyond the range of present technology dur-
ing neuroimaging may become a possibility, again
being potentially compatible with neuroimaging,
including MR-based techniques.182 The increasing
feasibility of optogenetic approaches for studies of
behavior185 may, in the future, provide yet another
powerful avenue for neurostimulation. Optogenetic
stimulation is the excitation or inhibition of spe-
cific cell types and neural pathways through light
pulses. This provides a causal, time-resolved assay
in which to test for the contribution of specific neu-
ral circuit elements that participate or contribute to
the computations required for emergent behavior;
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Figure 5. The future of concurrent neurostimulation and neuroimaging in humans for studies of cognition. (A) Network analyses
such as dynamic causal modeling provide intermediate levels of description that link the physiological impact of neurostimulation
and its behavioral consequences, and allow for generating testable hypotheses about resulting network connectivity changes.
Adapted from Li et al .150 with permission. (B) Neurostimulation-induced entrainment of intrinsic cortical rhythms can have direct
consequences for perception, depending on the frequency of stimulation. This allows for identifying the causal role of oscillatory
activity for behavior, and holds the possibility to shape behavior through the selective entrainment of local and distributed oscillatory
activity. Adapted from Thut et al.134 with permission. (C) Combined magnetic resonance spectroscopy can quantify the specific
neurotransmitter changes induced by neurostimulation, potentially including online neurostimulation protocols. Moreover, the
changes can be directly related to behavior, and thereby provide causal links between stimulation-evoked neurotransmitter changes
in focal and defined parts of the brain, and cognition. Adapted from Stagg et al.167 with permission. (D) Micro-stimulation coils in
principle allow for selective stimulation of cortical micro-circuits, and include the possibility for application during neuroimaging
Adapted from Bonmassar et al.181 with permission. (E) Ultrasound stimulation holds promise to allow for targeted and selective
stimulation of neural tissue throughout the brain, including subcortical structures. Adapted from Tufail et al.184 with permission.
Note that for the examples in D–E, demonstration of their applicability in humans is pending.

optogentically controlled stimulation has recently
been used in conjunction with fMRI to investigate
the foundations of the BOLD fMRI signal.186 Any
transfer of this technique to humans is likely to be
at least a decade away, though recent work suggests

that translational applications could become feasi-
ble within such a time frame,187 and, if that is the
case, such applications could provide auxiliary in-
sights into the neural underpinnings of human cog-
nition. It is not clear whether and/or when some of
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these techniques will be safely transferrable to hu-
mans, but some of the rapid developments will, in
some form, make the transition to human studies
of cognition and the neural networks that underpin
behavior. This review does not cover an exhaustive
list of possibilities in which neurostimulation and
neuroimaging might be applied in the future, but
illustrates how extant combinations of these meth-
ods already offer us an expanded set of tools and a
rich vein of information with which to interrogate
and reconceptualize how complex neural network
interactions can give rise to behavior.

Conclusions

This review has illustrated the increasing sophisti-
cation of studies combining neurostimulation with
neuroimaging, as well as an exciting future outlook,
for studies of human cognition. As cognitive neuro-
science integrates with more fundamental aspects of
neurophysiology, we suggest that neurostimulation
will have an important role to play, given that it mod-
ulates neurophysiology at a fundamental level. The
shift in the use of neurostimulation to study cogni-
tion is already apparent, via the more complex com-
binations and experimental questions and designs
using combined neurostimulation-neuroimaging,
some of which we have described above. By con-
tinuing in this direction, along with developments
in the field of neurostimulation, the current pos-
sibilities and future developments hold promise to
establish a causal neurocognition account in the hu-
man brain.
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