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Design notes 
 
Amhelin has the typical length of AMPs characterised by comparable antimicrobial activities. The sequence 

is based on a repetitive PPPHPPH pattern (P – polar, H – hydrophobic) which promotes amphipathic helix 

formation and allows for the placement of i and i+7 residues in close proximity in the folded helix (Figure 

S1). i and i+7 residues are of the same type which allows hydrophobic and polar residues to segregate onto 

distinct regions or faces – the principle feature of AMPs. Importantly, the peptide folds only upon binding to 

microbial anionic membranes – another principle feature of AMPs. To achieve this, the pattern was tuned 

into a CNCHNCH repeat, where C is cationic and N is neutral polar. The pattern ensures the 1:1.5 ratio of 

hydrophobic and cationic residues to avoid cytotoxic and hemolytic effects of venom peptides. The neutral 

residues are separated in the sequence at standard i, i+3 and i, i+4 helical spacings and are alanines and 

glutamines. Having all-alanine or all-glutamine clusters may promote stronger hydrophobic interactions 

leading to uncontrolled aggregation which were to be avoided. Therefore, alanines and glutamines alternate 

in the neutral cluster which was also placed opposite to the hydrophobic face (Figure S1). Further, the 

sequence exhibits a canonical coiled-coil pattern in which hydrophobic side chains alternate three and four 

residues apart (i, i+3 and i, i+4 spacings). Such patterns are usually referred to as 3,4 hydrophobic patterns 

and are prerequisite for cooperative oligomerization. The hydrophobicity index for leucines is one of the 

highest (i) to strongly bind to lipids and (ii) to support cooperative AMP oligomerization in lipid bilayers. 
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Because the design is a helical peptide all amino acids used exhibit high helical propensity. Leucines and 

lysines are most common in AMPs. Leucines also provide a better control over oligomerization and 

aggregation and are more accessible synthetically with much lower solubility problems when compared to 

other hydrophobic amino acids (phenylalanines, tryptophans). Nonetheless, other amino acids showing 

similar hydrophobicity, hydrophilicity and helicity indexes can be used in the pattern achieving similar 

results. For example, another AMP sequence (AMP2) with activities comparable to those of amhelin (Table 

S1), comprises a combination of hydrophobic isoleucine and leucine residues that favour cooperative 

assembly of lower oligomers. The peptide forms expanding pores within the same timescales (Figure S6).  

 
Materials and methods 
 
High performance liquid chromatography. Analytical and semi-preparative gradient RP-HPLC was 

performed on a JASCO HPLC system using Vydac C18 analytical (5μm) and semi-preparative (5μm) 

columns. Both analytical and semi-preparative runs used a 10-60% B gradient over 50 min at 1 mL/min and 

4.5 mL/min respectively with detection at 230 and 220 nm. Buffer A – 5% and buffer B – 95% aqueous 

CH3CN, 0.1% TFA. 

Lipid vesicle preparation. The lipids, 1,2-dilauroylphosphatidylcholine (DLPC) and 1,2-dilauroyl-sn-

glycero-3-phospho-(1’-rac-glycerol) (DLPG), 75%/25% (w:w) used for liposome construction were from 

Avanti Polar Lipids (Alabaster, AL, USA). The lipids were weighted up, dissolved in chloroform-methanol 

(2:1, v:v), dried under a nitrogen stream, and placed under vacuum overnight. The resulting film was 

hydrated to 10 mg/ml total lipid concentration in 10 mM phosphate buffer, pH 7.4. The suspension was then 

extensively vortexed, sonicated (30°C), and extruded using a hand-held extruder (Avanti Polar Lipids) 

(fifteen times, polycarbonate filter, 0.05 μm) to give a clear solution containing small unilamellar vesicles 

(SUV), which were analysed (50 nm) by photon correlation spectroscopy. For solid state NMR the lipid film 

was rehydrated to 10 mg/ml in 20 mM HEPES buffer, pH 7. 75%/25% ratios of 1-palmitoyl-2-oleoyl-sn-

glycero-3-phosphocholine (POPC) with 1-hexadecanoyl-2-(9Z-octadecenoyl)-sn-glycero-3-phospho-(1'-rac-

glycerol) (POPG) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) with 1,2-dimyristoyl-sn-
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glycero-3-phosphoglycerol (DMPG) (all from Avanti Polar Lipids, Alabaster, AL, USA) were used to form 

thicker SLBs. 

Photon Correlation Spectroscopy. Vesicles were re-suspended to a final concentration of 1 mg/mL and 

were analysed on a Zetasizer Nano (ZEN3600, Malvern Instruments, Worcestershire, UK). Dynamic light 

scattering batch measurements were carried out in a low volume disposable cuvette at 25°C. Hydrodynamic 

radii were obtained through the fitting of autocorrelation data using the manufacture’s software, Dispersion 

Technology Software (DTS version 5.10). 

Sample preparation for surface imaging. Oxidised silicon substrates (University Wafer), were cut in to ~1 

cm2 pieces and ozone-cleaned. The SUV solution was poured over the substrate in the culture dish with 

shaking for 2 hours to enable lipid bilayer deposition on the surface. The substrates were plunged into a dish 

of water, and kept with shaking for 3 min (3 times) to remove vesicle excess (27). The surface lipid bilayer 

was then placed into a dish and treated with a 10-μM peptide solution (10 ml) for 30 min, followed by 

washing to remove peptide excess (the step was omitted for control samples that did not require peptide 

treatment). The substrate without drying was transferred into a 2-ml container filled with water which was 

plunged into a chamber with liquid nitrogen to quickly freeze the entire sample. The lid of the container was 

replaced with a perforated lid and the sample was freeze-dried. The same procedures were performed for 

both supported lipid-bilayer and bare substrates. Bacterial cells were imaged directly following peptide 

treatment and washing. 

Preparation of supported lipid bilayers for AFM in water. Supported lipid bilayers were formed on mica 

as described elsewhere (26) from a solution of 1.5 mg/ml DLPC:DLPG (3:1) in 150 mM NaCl, 20 mM 

HEPES pH 7.4 buffer with 20 mM MgCl2 and 20 mM CaCl2. After absorption, the solution was then washed 

three times with buffer, to remove the unfused vesicles from solution. Amhelin was introduced into the 100-

μl fluid cell (JPK Instruments, Berlin, Germany) at a final concentration of 0.5 μM.  

Minimum inhibitory concentrations assay. Minimum inhibitory concentrations (MIC) were determined by 

broth microdilution on Pseudomonas aeruginosa ATCC 27853, Escherichia coli K12, Staphylococcus 

aureus ATCC 25723, Micrococcus luteus NCIMB 13267 and Bacillus subtilis ATCC 6633 according to the 
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Clinical and Laboratory Standards Institute. Typically, 100 μl of 0.5 - 1 x 106 CFU per ml of each bacterium 

in Mueller Hinton media broth (Oxoid) were incubated in 96 well micro-titre plates with 100μL of serial 

two-fold dilutions of the peptides (from 100 to 0 μM) at 37°C on a 3D orbital shaker. The absorbance was 

measured after peptide addition at 600 nm using a Victor 2 plate reader (Perkin Elmer). Minimum inhibitory 

concentrations (MIC’s) were defined as the lowest peptide concentration after 24 hours at 37°C. All tests 

were done in triplicate. 

Stain-dead antimicrobial assay. E. coli culture (1 ml) was centrifuged  to give a cell pellet, which was 

washed twice with 10 mM phosphate buffer (pH 7.4) before being reconstituted in phosphate buffer to give 

OD600nm=0.008. 1 ml of the solution was dispensed in a 2-well glass chamber (LabTek) with diluted 

(1/500) propidium iodide (PI) (1mg/ml, from Invitrogen). The chambers with surface-settled bacteria (60 

min) were mounted on a confocal microscope (Olympus) equipped with an incubation chamber at 37°C. PI 

fluorescence emission was monitored at 625 nm for 60 min (3 frames/min) using an appropriate filter after 

the addition of peptide (1 ml). Recorded videos (XYZ) were analysed using Fidji software to plot the 

number of fluorescent (stain-dead) cells as a function of time (Fig. S1). 

Hemolysis assay. Hemolysis was determined by incubating 10% (v/v) suspension of human erythrocytes 

with peptides. Erythrocytes were rinsed 4 times in 10 mM PBS, pH 7.2, by repeated centrifugation and re-

suspension (3 min at 3000 x g). Erythrocytes were incubated at room temperature for 1 h in either deionised 

water (fully hemolysed control), PBS or with peptide in PBS. After centrifugation at 10.000 g for 5 min, the 

supernatant was separated from the pellet and the absorbance measured at 550 nm. Absorbance of the 

suspension treated with deionised water defined complete hemolysis. The values given in Table S1 

correspond to concentrations needed to kill a half of the sample population (50% lysis of human 

erythrocytes) and are expressed as median lethal concentrations – LC50. All tests were done in triplicate. 
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Figure S1. Peptide design. (A) Linear amhelin and AMP2 sequences aligned with the repetitive heptad patterns, 
PPPHPPH (top) and CNCHNCH (bottom). i, i+7 amino-acid pairs of the same type are colored. Different colors denote 
different pairs. i, i+3 and i, i+4 helical spacings are shown for N residues only for clarity. (B) Amhelin sequence 
configured onto an α-helical wheel with 3.6 residues per turn showing amino-acid clustering and i, i+7 pairs (colored as 
in (A)). (C) 31P MAS ssNMR spectra of three different AUVs mixed with amhelin at different lipid-peptide ratios. Full 
width half height ratios of PC and PG peaks from 100:0 to 50:1 lipid-peptide ratios show increases by 2.8% (DL), 21% 
(DM) and 42% (PO). 
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Figure S2. Antimicrobial activity of amhelin. (A) Topographic in-air AFM images of E. coli cells with and without 
amhelin including high-mag 3D images of individual cells. (B) Low-mag 3D images of bacterial cells incubated with 
amhelin. (C) Average number of stain-dead cells incubated with amhelin (blue) and the non-AMP, 
QIAALEQEIAALEQEIAALQ, (green) as a function of time. (D) Fluorescence microscopy images of PI-stained E. coli 
cells. Incubation conditions: 10 μM peptide, 30 min, at OD600nm=0.008. 
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Figure S3. Nano-SIMS images and line scans of supported lipid bilayers treated with 15N-amhelin. The line scans plot 
12C15N-/12C14N- ratios along the yellow lines in corresponding images. The natural abundance of 15N is 0.37%. Image 
sides are 30 μm (256 x 256 pixels). Incubation conditions: 10 μM peptide, 30 min, pH 7.4, 20 °C. 



 

8 
 

 

Figure S4. Nano-SIMS images of supported lipid bilayers without peptide treatment. Image sides are 30 μm (256 x 
256 pixels). 12C14N- images were set to royal color scale (0-30), and 12C15N- images were set to grey color scale (0-1). 
Ratios (12C15N-/(12C14N-+12C15N-)) of the above images are 0.367%, 0.364%, 0.372 and 0.369% respectively. 
Incubation conditions: no peptide, 30 min, pH 7.4, 20 °C. 
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Figure S5. In-air AFM images of control surfaces. (A) Supported lipid bilayers treated with the non-AMP. (B) Bare 
silicon wafer substrates treated with amhelin. Incubation conditions: 10 μM peptide, 30 min, pH 7.4, 20 °C. 
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Figure S6. In-water AFM imaging of AMP2-treated supported lipid bilayers. The circle highlights a pore. Color scales 
(see insets) – from left to right, the first three are 3 nm, the last one is 8 nm. Incubation conditions: 1 μM, pH 7.4, 20 
°C. 
 
 
 

Table S1. Biological activity of amhelin. 
 

Minimum inhibitory concentration (MIC), μMa HE (LC50), 
μMb 

E. coli 
(K12) 

P. aeruginosa 
(ATCC27853) 

B. subtilis 
(ATCC 
6633) 

S. aureus 
(ATCC6538) 

M.  luteus 
(NCIMB 
13267) 

3 12 6 >50 <12 >>600 

anon-AMP was inactive (>>250 μM); AMP2 has activities comparable with those of amhelin; bhuman 
erythrocytes 

 
 
 
Video legends 
 
 
Video S1. 100-ns molecular dynamics simulation of an amhelin insert. 

 

Video S2. 100-ns molecular dynamics simulation of a model octameric amhelin pore. 
 
 
 


