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A striking feature of human perception is that our subjective experience depends not only on sensory information from the environment
but also on our prior knowledge or expectations. The precise mechanisms by which sensory information and prior knowledge are
integrated remain unclear, with longstanding disagreement concerning whether integration is strictly feedforward or whether higher-
level knowledge influences sensory processing through feedback connections. Here we used concurrent EEG and MEG recordings to
determine how sensory information and prior knowledge are integrated in the brain during speech perception. We manipulated listeners’
prior knowledge of speech content by presenting matching, mismatching, or neutral written text before a degraded (noise-vocoded)
spoken word. When speech conformed to prior knowledge, subjective perceptual clarity was enhanced. This enhancement in clarity was
associated with a spatiotemporal profile of brain activity uniquely consistent with a feedback process: activity in the inferior frontal gyrus
was modulated by prior knowledge before activity in lower-level sensory regions of the superior temporal gyrus. In parallel, we paramet-
rically varied the level of speech degradation, and therefore the amount of sensory detail, so that changes in neural responses attributable
to sensory information and prior knowledge could be directly compared. Although sensory detail and prior knowledge both enhanced
speech clarity, they had an opposite influence on the evoked response in the superior temporal gyrus. We argue that these data are best
explained within the framework of predictive coding in which sensory activity is compared with top-down predictions and only unex-
plained activity propagated through the cortical hierarchy.

Introduction
It is widely acknowledged that our subjective experience reflects
not only sensory information from the environment but also our
prior knowledge or expectations (Remez et al., 1981; Rubin et al.,
1997). A remarkable feature of the brain is its ability to integrate
these two sources of information seamlessly in a dynamic and
rapidly changing environment. However, the mechanisms by
which this integration takes place are still unclear. One proposal
is that perceptual processing is strictly feedforward, with sen-
sory information and higher-level knowledge integrated at a
postsensory decision stage in which multiple representations
are evaluated before a final interpretation is selected (Fodor,
1983; Norris et al., 2000). An alternative account argues that
sensory processing is directly modified by higher-level knowl-
edge through feedback connections (McClelland and Elman,
1986; Friston, 2010).

Here we explore how sensory information and prior knowl-
edge of speech content are integrated in the brain and modulate
the subjective clarity of speech. Speech perception is an ideal
context in which to study integration effects because in everyday
listening we constantly exploit prior information—such as a
speaker’s lip movements or semantic context—to interpret in-
coming speech signals (Sumby, 1954; Miller and Isard, 1963).
Furthermore, the cortical network supporting speech perception
is increasingly understood, showing a hierarchical organization
that progresses from sensory processing in the superior temporal
gyrus (STG) to more abstract linguistic and decision processes in
the inferior frontal gyrus (IFG) (Scott and Johnsrude, 2003;
Binder et al., 2004; Hickok and Poeppel, 2007). Given this ana-
tomical organization, long-standing debates concerning whether
speech perception is a purely feedforward process or includes
feedback mechanisms can be construed in terms of functional
interactions between the IFG and STG.

In the current study, listeners reported the subjective clarity of
degraded spoken words. We manipulated prior knowledge of
speech content by presenting matching, mismatching, or neutral
text before speech onset. We also parametrically varied the level
of speech degradation, and therefore the amount of speech sen-
sory detail, so that changes in neural responses attributable to
sensory information and prior knowledge could be directly com-
pared. Because subjective experience of speech clarity is similarly
enhanced by providing either more detailed sensory information
or prior knowledge of speech content (Jacoby et al., 1988), we
asked whether these two sources of enhanced subjective clarity
have equivalent effects on neural responses.
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A critical test that can distinguish be-
tween bottom-up and top-down accounts
is the timing of activity in sensory and
higher-level regions (cf. Bar et al., 2006).
We therefore combined high-density EEG
and MEG recordings to obtain precise
temporal and spatial measures of neural
activity during speech perception. If a
strictly bottom-up mechanism is involved
in integrating sensory information and
prior knowledge, sensory-related process-
ing in the STG should be modulated by
subjective clarity before abstract linguistic
or decision computations in the IFG.
Conversely, a top-down mechanism would
be reflected by the opposite pattern, with ab-
stract computations in the IFG being mod-
ulated before sensory-related processing in
the STG.

Materials and Methods
Participants. Eighteen right-handed partici-
pants were tested after being informed of the
procedure of the study, which was approved by
the Cambridge Psychology Research Ethics
Committee. All were native speakers of Eng-
lish, between 18 and 40 years old (mean � SD,
29 � 6 years) and had no history of hearing
impairment or neurological disease based on
self-report. Data from four participants were
excluded because of noisy EEG recordings
(from high impedances or excessive eye/move-
ment artifacts) resulting in 14 participants
(eight female) in the final dataset.

Stimuli and procedure. A total of 324 mono-
syllabic words were presented in spoken or
written format. The spoken words were 16 bit,
44.1 kHz recordings of a male speaker of south-
ern British English, and their duration ranged
from 317 to 902 ms (mean � SD, 598 � 81 ms).

Prior knowledge of speech content was ma-
nipulated by presenting a written version of the
spoken word before speech onset (matching
condition) (Fig. 1A). Effects from matching
written text were assessed relative to two con-
trol conditions in which prior knowledge was
not informative with respect to upcoming
speech. In the mismatching condition, the
written word was different from the spoken
word, and in the neutral condition, written text
contained a string of “x” characters. Written
words for the mismatching condition were ob-
tained by permuting the word list for their spo-
ken form. As a result, each written word in the
mismatching condition was also presented as a
spoken word and vice versa. Mean string length
was equated across conditions. Written text
was composed of black lowercase characters
presented for 200 ms on a gray background.

The amount of sensory detail in speech was varied using a noise-
vocoding procedure (Shannon et al., 1995), which superimposes the
temporal envelope from separate frequency regions in the speech signal
onto corresponding frequency regions of white noise. This allows para-
metric variation of spectral detail, with increasing numbers of channels
associated with increasing perceptual clarity. Vocoding was performed
using a custom MATLAB (MathWorks) script, using two, four, or eight
spectral channels logarithmically spaced between 70 and 5000 Hz (Fig.

1 B). Envelope signals in each channel were extracted using half-wave
rectification and smoothing with a second-order low-pass filter with a
cutoff frequency of 30 Hz. The overall RMS amplitude was adjusted to be
the same across all audio files. Pilot data showed that mean � SD word
report performance (across participants) at each of these sensory detail
conditions is 3.41 � 1.93, 17.05 �1.98, and 68.18 � 2.77%.

Manipulations of sensory detail (two-, four-, and eight-channel
speech) and prior knowledge of speech content (matching/mismatching/
neutral) were fully crossed, resulting in a 3 � 3 factorial design with 72

Figure 1. Stimulus characteristics. A, Example written–spoken word pairs used for matching, mismatching, and neutral con-
ditions. B, Example spectrograms for the three speech sensory detail conditions. Speech with a greater number of spectral channels
contained more sensory detail. C, Trial diagram showing the order and timing of events in each trial.
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trials in each condition. Trials were randomly ordered during each of
four presentation blocks of 162 trials. For each participant, each of the
spoken words appeared twice: either once as a matching trial and once as
a mismatching trial, or twice as a neutral trial. The first presentation of
each word occurred in the first two blocks of the experiment, and the
second presentation occurred in the final two blocks. The particular
words assigned to each condition were randomized over participants.

Stimulus delivery was controlled with E-Prime 2.0 software (Psychol-
ogy Software Tools). Trials commenced with the presentation of a writ-
ten word, followed 1050 ms later by the presentation of a spoken word
(Fig. 1C). Participants were instructed to rate the clarity of each spoken
word on a scale from 1 (“not clear”) to 8 (“very clear”). A response cue,
which consisted of a visual display of the rating scale, was presented 1050
ms after the onset of the spoken word. Participants used a four-button
box to navigate the rating scale and record their response. Subsequent
trials began 850 ms after participants entered their responses. All time
intervals were randomized by adding a random time of �0 –50 ms to
reduce unwanted phase-locking of non-experimental factors (e.g., antic-
ipatory responses). Before the experiment, participants completed a
practice session of 18 trials containing all conditions but using a different
corpus of words from those used in the main experiment.

Because of a software error, on �40% of trials, the response cue dis-
playing the rating scale was presented at the offset of the spoken word.
Because the average duration of the spoken words was 598 ms, this meant
that the response cue was presented on average 598 ms after speech onset,
which is earlier than the intended timing of 1050 ms. We tested whether
this erroneous timing of the response cue had any consequences for the
speech-evoked neural response by including a factor of cue timing (“early
response cue ” or “late response cue”) for the 450 –700 ms time window
(for how time-windows were selected, see below, Sensor-space statistical
analysis). This time window was tested because 97% of spoken words had
durations �450 ms. Therefore, for the majority of trials, the erroneous
timing of the response cue could only have affected speech-evoked neural
responses during this time window. A main effect of response cue timing
was found over a small cluster of occipital MEG gradiometers ( p � 0.01,
FWE corrected), but this did not interact with the experimental manip-
ulations of sensory detail and prior knowledge.

Data acquisition and pre-processing. Magnetic fields were recorded
with a VectorView system (Elekta Neuromag) containing a magnetom-

eter and two orthogonal planar gradiometers at
each of 102 positions within a hemispheric ar-
ray. Electric potentials were simultaneously re-
corded using 70 Ag–AgCl sensors according to
the extended 10 –10% system and referenced to
a sensor placed on the nose. All data were dig-
itally sampled at 1 kHz and high-pass filtered
above 0.01 Hz. Head position and EOG activity
were continuously monitored using four head
position indicator (HPI) coils and two bipolar
electrodes, respectively. A 3D digitizer (Fastrak
Polhemus) was used to record the positions of
the EEG sensors, HPI coils, and �70 additional
points evenly distributed over the scalp, rela-
tive to three anatomical fiducial points (the na-
sion and left and right pre-auricular points).

Data from the MEG sensors (magnetome-
ters and gradiometers) were processed using
the temporal extension of Signal Source Sepa-
ration (Taulu et al., 2005) in Maxfilter to sup-
press noise sources, compensate for motion,
and reconstruct any bad sensors. Noisy EEG
sensors were identified by visual inspec-
tion and excluded from additional analysis.
Subsequent processing was done in SPM8
(Wellcome Trust Centre for Neuroimaging,
London, UK) and FieldTrip (Donders Institute
for Brain, Cognition, and Behavior, Radboud
University, Nijmegen, The Netherlands) soft-
ware implemented in MATLAB. The data were
downsampled to 250 Hz and epoched �100 to

800 ms relative to speech onsets. Trials contaminated by EOG artifacts
were removed by rejecting trials for which the amplitude in the 1–15 Hz
range exceeded a set threshold of SD units from the mean across trials
(established individually for each participant by visual inspection of the
data). The remaining trials were low-pass filtered below 40 Hz and base-
line corrected relative to the 100 ms pre-speech period, and the EEG data
were referenced to the average over all EEG sensors. Epochs were aver-
aged across trials to remove non-phase-locked activity and derive the
evoked response.

Sensor-space statistical analysis. We restricted the search space for sta-
tistical analysis to portions of the evoked response when the signal-to-
noise ratio (SNR) was high by averaging across time within each of four
windows centered on prominent deflections in the evoked global field
power (RMS amplitude over sensors). Those time windows are shown in
Figure 2 and include the N100 (90 –130 ms) and P200 (180 –240 ms)
components. For late latencies when there were no clear peaks, two broad
windows were defined (270 – 420 and 450 –700 ms) that correspond ap-
proximately to the early and late portions of the N400 component (cf.
Desroches et al., 2009). After time averaging, F tests were performed
across sensor space while controlling the FWE rate using random field
theory (Kilner and Friston, 2010).

Before statistical analysis, the data were converted into 2D images by
spherically projecting onto a 32 � 32 pixel plane for each epoch time
sample and smoothed using a 5 mm � 5 mm � 10 ms Gaussian kernel. In
the case of gradiometers, an additional step involved combining the data
across each sensor pair by taking the RMS of the two amplitudes. Results
(condition means and error bars) are displayed by mapping statistically
significant data points back onto the nearest corresponding sensor in the
original head array.

Source reconstruction. To determine the underlying brain sources of
the sensor data, a multimodal source inversion scheme was used to inte-
grate data from all three neurophysiological measurement modalities
(EEG and MEG magnetometers and gradiometers). This has been shown
to give superior localization precision compared with considering each
modality in isolation (Henson et al., 2009). To begin with, two separate
forward models were constructed: one for the MEG sensors and another
for the EEG. Both models had in common the use of a T1-weighted
structural MRI scan obtained for each participant from which meshes

Figure 2. Time windows of the speech-evoked response over which the data were averaged before additional visualization and
statistical analysis. Waveforms represent the global field power across sensors (after averaging across conditions and participants).
Time windows are depicted by the areas shaded in gray. Topographic plots display the evoked response at each sensor averaged
across time within each window.
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(containing 8196 vertices) were generated for the scalp and skull surfaces.
Sensor locations and each participant’s scalp mesh were then aligned
using the digitized head shape. The MRI scan was also used to spatially
transform a canonical cortical mesh in standard Montreal Neurological
Institute (MNI) space to the individual space of each participant’s MRI.
To calculate the lead-field matrix, which specifies how any given source
configuration will appear at the sensors, single-shell and boundary-
element models were used for the MEG and EEG sensors, respectively. A
parametric empirical Bayes framework (Phillips et al., 2005) was used for
source inversion, using a LORETA (low-resolution brain electromag-
netic tomography)-like approach (Pascual-Marqui, 2002), which at-
tempts to minimize overall source power after initially assuming all
elements are active and spatially correlated over adjacent regions. Multi-
modal fusion of the data was achieved by using a heuristic to convert all
data to a common scale and by weighting each sensor type to maximize
the model evidence (Henson et al., 2009). An additional constraint was
imposed such that source solutions were consistent across participants,
which has been shown to improve group-level statistical power (Litvak
and Friston, 2008). Source power (equivalent to the sum of squared
amplitude) in the 1– 40 Hz range was derived from the resulting solutions
and converted into 3D images.

Significant effects from sensor space were localized within the brain by
averaging the 3D source power estimates across time within each window
and mapping the data onto MNI space brain templates. Source estimates
were subsequently converted into SNRs operationalized as statistical sig-
nificance of pairwise t tests at the group level (i.e., mean signal divided by
cross-participant variability). Given that the goal of source reconstruc-
tion was to localize the neural generators of sensor-space effects pre-
viously identified as significant, SNR maps are displayed with an
uncorrected voxelwise threshold ( p � 0.05).

Results
Behavioral results
Listeners’ subjective ratings of speech clarity for each condition
are shown in Figure 3. As expected, a repeated-measures ANOVA
revealed that increasing sensory detail significantly enhanced
speech clarity (F(2,26) � 298.62, p � 0.001). Critically, prior
knowledge of speech content provided by matching written text
similarly enhanced spoken word clarity, relative to mismatching
(F(1,13) � 91.72, p � 0.001) or neutral (F(1,13) � 62.36, p � 0.001)
contexts. Post hoc comparisons revealed that this occurred even
for two-channel speech, which contained the least amount of
sensory detail (matching � mismatching, t(13) � 10.18, p �

0.001; matching � neutral, t(13) � 6.71, p � 0.001; Bonferroni’s
corrected for multiple comparisons). In addition, there was a
small but significant decrease in clarity for mismatching com-
pared with neutral contexts (F(1,13) � 5.13, p � 0.04), indicating
that incongruent prior knowledge can reduce speech clarity.
However, the small magnitude of this effect suggests that incon-
gruent prior knowledge has a lesser impact on subjective clarity
than prior knowledge that is congruent with subsequent speech.

Sensor-space results
Sensors showing significant effects are shown in Figure 4, along
with whole-head topographies expressing critical condition dif-
ferences. Reported effects are all FWE rate corrected for multiple
comparisons across sensors using a threshold of p � 0.05.

Significant main effects of speech sensory detail (Fig. 4A) were
present 180 –240 ms and later (270 – 420 and 450 –700 ms) in the
MEG (magnetometer and gradiometer) sensors but were absent
in the EEG. The pattern of the means suggest that increasing
sensory detail results in a larger evoked response.

To test for significant effects of prior knowledge from match-
ing written text (Fig. 4B), a conjunction contrast (matching–
mismatching AND matching–neutral) was used to detect
significant differences in the evoked response between matching
prior context and both mismatching and neutral contexts (Nich-
ols et al., 2005). This conjunction contrast was motivated by our
assumption that the effects of prior knowledge arise primarily
when prior knowledge is congruent with speech, an assumption
supported by our behavioral results showing that the main dif-
ference between our conditions lies between matching and the
remaining mismatching/neutral conditions. Using a conjunction
contrast also allowed us to control for expectation before speech
onset (with the matching–mismatching contrast) while at the
same time ruling out any minor effects from incongruent prior
knowledge (with the matching–neutral contrast). Controlling for
expectation before speech onset was a critical part of our design to
ensure that we assessed only those effects of prior knowledge
occurring after speech onset, because they reflect genuine inte-
gration of prior knowledge and incoming sensory information
(cf. Arnal et al., 2009). Effects of prior knowledge from matching
text were widespread in the EEG data, being present in all time
windows, including the earliest 90 –130 ms period. There were
also effects in the magnetometers (270 – 420 and 450 –700 ms)
and gradiometers (450 –700 ms). Although the EEG evoked re-
sponse increased in the presence of matching written text, the
opposite was true for the MEG sensors (i.e., the evoked response
decreased). MEG effects of prior knowledge from matching text
were also opposite in direction to the MEG sensory detail effects
described previously (i.e., increased subjective clarity attributable
to prior knowledge resulted in reduction rather than enhance-
ment of the MEG response).

We additionally tested for effects of incongruent prior knowl-
edge with the contrast mismatching–neutral. No significant ef-
fects were found in any sensor modality or time window, which
further supports our decision to focus analysis on congruent ef-
fects of prior knowledge from matching text.

To further assess the relationship between neural and behav-
ioral changes attributable to prior knowledge we conducted a
single-trial analysis (Fig. 5) in which we correlated speech clarity
ratings with the amplitude of the MEG and EEG signals in peak
sensors showing an effect of prior knowledge (Fig. 5A; see also
Fig. 4B). To avoid floor and ceiling effects in clarity ratings, we
conducted this analysis only for responses to four-channel speech
because this produced a range of clarity ratings for all participants

Figure 3. Behavioral results showing speech clarity ratings averaged across participants.
The provision of increasing sensory detail and prior knowledge from matching text both led to
an enhancement in perceived speech clarity. Error bars represent SEM across participants cor-
rected for between-participant variability (Loftus and Masson, 1994). Braces show significance
of F tests comparing matching with mismatching and neutral conditions (***p � 0.001).
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in all three prior knowledge conditions. For each participant and
peak sensor, linear regression across single trials in each condi-
tion was used to quantify the change in neural response attribut-
able to a single-unit change in rated speech clarity (cf. Lorch and
Myers, 1990; Hauk et al., 2006) (for an example of data from one
participant, see Fig. 5B). As shown in Figure 5C, slope estimates
were significantly less than zero in the matching condition from
450 to 700 ms for a right frontal MEG magnetometer (two-tailed

paired t test, t(13) � �2.96, p � 0.05; Bonferroni’s corrected
across peak sensors). Regression slopes for mismatching and
neutral conditions were not significantly different from zero after
correcting for multiple comparisons but showed a positive trend
in the neutral condition (two-tailed paired t test, t(13) � 2.50, p �
0.08; Bonferroni’s corrected across peak sensors). In addition,
there was a significant difference in regression slopes from 450
to 700 ms between the matching condition and the average of

A B

Figure 4. Speech-evoked response at selected sensors averaged across participants. A, Increasing speech sensory detail resulted in an enhancement of the evoked response. Error bars represent
SEM across participants corrected for between-participant variability within each time window. Braces show time windows when there was a significant main effect of speech sensory detail for the
sensor plotted (*p � 0.05; **p � 0.01; ***p � 0.001; FWE corrected for multiple comparisons across sensors). Topographic plots show the difference in response between eight-channel and
two-channel speech. Small black dots on each topography depict locations of sensors showing significant effects for that time window, whereas large white circles depict locations of sensors from
which signal has been plotted in the bar graph above. B, Prior knowledge from matching text resulted in a reduction of the evoked response for the magnetometer and gradiometer sensors and an
enhancement for EEG sensors. Braces show time windows when there were significant differences between matching and both mismatching and neutral conditions (conjunction of matching–
mismatching AND matching–neutral). Topographic plots show differences for matching–mismatching and matching–neutral conditions. M, Matching; MM, mismatching; N, neutral.
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mismatching and neutral conditions (two-tailed paired t test, t(13) �
�3.32, p � 0.05; Bonferroni’s corrected for multiple compari-
sons across peak sensors). This difference in correlation from
prior knowledge parallels the pattern of the averaged (evoked)
data with the regression slopes being reduced for the matching
condition relative to mismatching and neutral conditions. This

further supports an association between reduced neural re-
sponses to degraded speech after matching written text and in-
creases in subjective speech clarity.

Source localization of sensor-space effects
In the sensor-space analysis described above, EEG and MEG sen-
sors showed different response profiles from prior knowledge:
EEG showed an enhancement in signal amplitude, whereas MEG
showed a reduction in amplitude. One explanation for this result
is a differential sensitivity to cortical regions across EEG and
MEG modalities. We therefore fused all three neurophysiological
measurement modalities (EEG and MEG magnetometers and
gradiometers) to obtain a single estimate of underlying cortical
generators.

Figure 6A depicts the cortical generators of the effects of in-
creasing speech sensory detail. At 180 –240 ms, eight-channel
speech showed greater source power than two-channel speech
over the left STG and angular gyrus. During later time windows
(270 – 420 and 450 –700 ms), this activation extended onto the
left middle and inferior temporal lobe.

As shown in Figure 6B, the earliest (90 –130 ms) effect of prior
knowledge from matching text reflected an increase in source
power in a prefrontal cluster encompassing the left IFG and pre-
central and postcentral gyri, which shifted anteriorly for later
time windows. From 270 to 420 ms, an additional increase in
source power for the matching condition appeared over left mid-
dle occipital gyrus that was accompanied by additional increases
from 450 to 700 ms over right middle temporal cortex and middle
frontal gyrus (extending onto superior frontal gyrus; right-
hemisphere effects are not shown in Fig. 6 but are listed in Table
1). The reduction of evoked response observed in MEG sensor
space (that occurred from 270 to 420 ms and from 450 to 700 ms)
only reached significance for the final time window from 450 to
700 ms. At this latency, there was a decrease in source power for
the matching condition over the left STG.

Hence, our source reconstruction suggests that the EEG en-
hancement and MEG reduction effects of prior knowledge local-
ize to the IFG and STG, respectively. This interpretation is
consistent with previous studies showing that EEG and MEG
provide complementary information on underlying cortical gen-
erators (Dale and Sereno, 1993; Sharon et al., 2007; Molins et al.,
2008; Henson et al., 2009).

Our source reconstruction additionally suggests that prior
knowledge from matching text modulates activity in a higher-
order cortical region (left IFG) before peri-auditory cortex (left
STG). This is precisely the finding predicted by a top-down
mechanism. Furthermore, the effect of prior knowledge on STG
activity is opposite in direction to the effect of sensory detail. We
tested for this pattern of results directly by conducting a separate
analysis in which we defined cortical regions of interest (ROIs)
based on the source power averaged across all time windows. We
selected a left frontal ROI by searching for voxels in which activity
was greater for the matching condition relative to the average of
mismatching and neutral contexts, using a voxelwise threshold of
p � 0.001 (uncorrected). This revealed a cluster centered on the
left IFG [peak at (�42, 28, 26), Z � 3.36], extending into the left
middle frontal gyrus (Fig. 7). A similar search was conducted to
define a left temporal ROI, for an effect in the opposite direction
(reduced activity for matching condition), which revealed a clus-
ter centered on the left STG [peak at (�56, �22, 4), Z � 3.70].

The graphs in Figure 7 depict differences in source power
between matching and the average of mismatching and neutral
conditions for the ROIs defined above. We entered these data

A

B

C

Matching Mismatching Neutral

Figure 5. Single-trial analysis correlating behavioral ratings of subjective clarity and neural
responses. A, Correlations were computed for sensors showing an effect of prior knowledge
(matching–mismatching AND matching–neutral) on the averaged (evoked) response. The top-
ographic plot shows the difference in evoked response between matching and average of mis-
matching and neutral trials from 450 to 700 ms. Small black dots indicate the locations of
sensors showing significant effects of prior knowledge on the evoked response (as in Fig. 4 B).
The white circle indicates the location of the right frontal magnetometer in which significant
correlations between behavioral and neural responses were found. The bar graph shows the
average signal from this magnetometer for each prior knowledge condition averaged over
sensory detail conditions. Error bars represent SEM across participants corrected for between-
participant variability, and the brace shows significance of F test comparing matching with
mismatching and neutral conditions (***p � 0.001; FWE corrected for multiple comparisons
across sensors). B, Linear regression was used to compute the relationship between single-trial
neural responses and clarity responses from each participant for the four-channel speech con-
dition from 450 to 700 ms after speech onset. Graphs show data from a single participant. C,
Regression slopes were significantly less than zero across participants for the matching condi-
tion and were significantly different between matching and the average of mismatching and
neutral (*p � 0.05; Bonferroni’s corrected for multiple comparisons across sensors). M, Match-
ing; MM, mismatching; N, Neutral.

8448 • J. Neurosci., June 20, 2012 • 32(25):8443– 8453 Sohoglu et al. • Predictive Top-Down Integration of Prior Knowledge



into a repeated-measures ANOVA with the factors time window
(90 –130 ms/450 –700 ms) and region (IFG/STG). This revealed
the expected main effect of region (F(1,13) � 40.18, p � 0.001), as
well as a significant interaction between time window and region
(F(1,13) � 32.03, p � 0.001). This confirms that activity in the IFG
was modulated before activity in the STG, consistent with a top-
down process.

Figure 7 additionally confirms that sensory detail and prior
knowledge of speech content have differential effects on the
evoked response. In the IFG (top graph), increasing sensory de-
tail and the presence of prior knowledge similarly enhanced the
evoked response. In the STG (bottom graph), the effect of prior
knowledge had the opposite effect on evoked responses com-
pared with the effect of sensory detail such that the evoked
response was reduced. This pattern was tested directly by incor-
porating the effect of sensory detail (8 –2 channels) into the
ANOVA described above so that the origin of changes to the
evoked response (sensory detail/prior knowledge) could be spec-
ified as a factor. This revealed a significant three-way interaction
between origin of clarity, time window, and region (F(1,13) �
28.71, p � 0.001).

Discussion
Our brains constantly integrate incoming sensory information
and prior knowledge to produce a unified perceptual experience.
In the current study, we investigated the way in which these dif-
ferent sources of information are rapidly combined during per-
ception of degraded speech. We manipulated both sensory detail
and prior knowledge of speech content and show that they simi-
larly enhance speech clarity, in accordance with previous behav-
ioral studies (Jacoby et al., 1988). Critically, by exploiting the
hierarchical organization of the cortical speech network into sen-

sory and more abstract linguistic processing (Scott and John-
srude, 2003; Hickok and Poeppel, 2007; Peelle et al., 2010), we
demonstrate that the spatiotemporal profile of neural responses
when prior knowledge facilitates speech perception is uniquely
consistent with top-down modulation: effects of matching writ-
ten text on speech processing occur in the IFG, a region associated
with more abstract processing of speech content, before they oc-
cur in lower-level sensory cortex (STG).

The IFG has been implicated in amodal phonological analysis
for written and spoken input alike (Price, 2000; Booth et al., 2002;
Burton et al., 2005; Hickok and Poeppel, 2007) and shows in-
creased responses when speech is degraded compared with when
it is clear (Davis and Johnsrude, 2003; Shahin et al., 2009). Ana-
tomically, data from nonhuman primates (Hackett et al., 1999;
Romanski et al., 1999; Petrides and Pandya, 2009) and conver-
gent evidence from functional connectivity (Anwander et al.,
2007; Frey et al., 2008; Saur et al., 2008) show reciprocal connec-
tions between auditory and prefrontal cortices (including the
IFG). These findings make the IFG well suited as the source of a
top-down process whereby prior knowledge of abstract pho-
nological content in speech (derived from prior matching
text) interacts with lower-level acoustic–phonetic representa-
tions in the STG.

The early differential engagement of the IFG at 90 –130 ms for
degraded speech that follows matching text suggests that the ef-
fects of prior knowledge on auditory processing occur subse-
quent to an initial feedforward sweep that rapidly projects a
representation of incoming speech to higher-level stages in the
processing hierarchy. Given the distorted nature of the speech
presented and the paucity of phonetic cues in the first 100 ms of a
spoken word (only the initial consonant and vowel will have been

Figure 6. Source power SNRs (in units of Z-scores) for critical contrasts overlaid onto MNI space template brains (only left hemisphere shown). A, Brain regions showing greater source power for
increasing sensory detail (8-channel � 2-channel speech). B, Brain regions showing differences in source power attributable to prior knowledge from matching text (conjunction of matching–
mismatching AND matching–neutral). Bar graphs show source power (before noise normalization) for a voxel in the left IFG (�54, 18, 20) and left STG (�56, �24, 4). Error bars represent SEM
across participants corrected for between-participant variability. M, Matching; MM, mismatching; N, neutral.
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heard; cf. Grosjean, 1980), a coarse-grained representation of
speech is likely to be involved. Nonetheless, there is sufficient
information present in the speech signal to detect correspon-
dence between current speech input and prior expectations. We
propose that an early frontal mechanism detects the correspon-
dence between written and spoken inputs rapidly after speech
onset before the emergence of top-down processing. In the cur-
rent study, this emergent top-down processing is reflected by
concurrent modulation of inferior frontal and superior temporal
cortices in later time windows from 270 to 420 ms and from 450
to 700 ms. This interpretation is consistent with a previous study
using audiovisual speech showing that early activation in the IFG
predicts the ensuing percept (Skipper et al., 2007), as well as
studies using static auditory and visual stimuli showing that feed-
back processing manifests during later portions (�200 ms) of the

evoked response (Bar et al., 2006; Garrido et al., 2007; Epshtein et
al., 2008). Strikingly, however, whereas top-down feedback can
easily change ongoing processing for static stimuli because the
sensory input is stationary and unchanging over the critical time
period, our findings demonstrate ongoing top-down processes
that track a dynamic and rapidly changing auditory signal. Ab-
stract phonological information (from prior matching text) is in
our work shown to modulate ongoing auditory processing of
degraded speech.

One striking finding from our study is that sensory detail and
matching prior knowledge of speech had comparable effects on
subjective experience (increasing the perceived clarity of de-
graded speech) but had opposite effects on the evoked response in
the STG. Whereas increasing sensory detail led to an enhance-
ment in the evoked response (i.e., a larger response for eight-

Table 1. Peak voxel locations (in MNI space) and summary statistics from source analysis

Contrast Time window Region Voxels (n) Coordinates (mm) Z

8 � 2 channels 180 –240 ms Left angular gyrus 643 �54, �60, 26 2.53
Superior temporal gyrus �60, �46, 14 2.41
Angular gyrus �40, �62, 26 2.09

8 � 2 channels 270 – 420 ms Left superior temporal gyrus 6184 �60, �20, 2 5.12
Superior temporal gyrus �52, �22, 12 4.72
Middle temporal gyrus �64, �36, 0 4.67
Left postcentral gyrus 1420 �24, �36, 62 3.63
Postcentral gyrus �22, �32, 72 2.92
Middle frontal gyrus �44, 14, 42 2.58
Right middle temporal pole 1493 40, 16, �34 3.31
Inferior temporal gyrus 42, �2, �44 2.99
Superior temporal pole 34, 4, �18 2.91
Right supramarginal gyrus 1008 38, �38, 44 2.69
Inferior parietal lobule 42, �52, 42 2.39
Inferior parietal lobule 38, �44, 38 2.37

8 � 2 channels 450 –700 ms Left superior temporal gyrus 11763 �58, �18, 2 4.62
Superior temporal gyrus �52, �20, 12 4.38
Superior temporal gyrus �46, �20, 6 4.02
Left calcarine gyrus 540 �8, �94, �6 2.66
Lingual gyrus �20, �94, �20 2.58
Calcarine gyrus �6, �92, �14 2.30

M � MM AND M � N 90 –130 ms Left postcentral gyrus 740 �62, �10, 20 2.74
Rolandic operculum �54, 4, 6 2.56
Inferior frontal gyrus �54, 18, 20 2.30

M � MM AND M � N 180 –240 ms Left inferior frontal gyrus 1151 �42, 30, 26 3.37
Middle frontal gyrus �38, 34, 32 3.28
Inferior frontal gyrus �48, 22, 30 3.06

M � MM AND M � N 270 – 420 ms Left middle occipital gyrus 651 �42, �84, 8 3.90
Left inferior frontal gyrus 1451 �36, 38, 12 2.63
Middle frontal gyrus �34, 36, 26 2.56
Inferior frontal gyrus �36, 28, 20 2.28

M � MM AND M � N 450 –700 ms Left middle occipital gyrus 906 �42, �84, 10 4.06
Middle occipital gyrus �48, �78, 0 3.76
Middle temporal gyrus �48, �68, 16 2.23
Right middle temporal gyrus 3091 58, �40, �14 3.58
Middle temporal gyrus 60, �54, 6 3.56
Middle temporal gyrus 62, �42, 0 3.48
Right middle frontal gyrus 1468 32, 4, 52 3.15
Superior frontal gyrus 28, 0, 46 3.00
Middle frontal gyrus 30, 14, 50 2.99
Left middle frontal gyrus 1130 �36, 36, 30 2.41
Inferior frontal gyrus �50, 24, 18 2.38
Inferior frontal gyrus �36, 28, 20 2.34

M � MM AND M � N 450 –700 ms Left superior temporal gyrus 1637 �56, �24, 4 3.72
Postcentral gyrus �58, �14, 16 3.64
Rolandic operculum �50, �26, 14 3.60

For display purposes, activations have been thresholded voxelwise at p � 0.05 (uncorrected) and clusterwise at k � 500 voxels ( p values are uncorrected because statistical tests were performed in sensor space, corrected for multiple
comparisons across sensors). M, Matching; MM, mismatching; N, neutral.
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channel than for two-channel vocoded speech), the provision of
prior knowledge reduced activity in the STG. The increased re-
sponse for speech with more sensory detail is consistent with a
number of previous studies that have shown increased hemody-
namic (Davis and Johnsrude, 2003; Scott et al., 2006) and neuro-
physiological (Luo and Poeppel, 2007; Obleser and Kotz, 2011)
responses for more spectrally detailed vocoded speech. However,
the few studies that have shown changes in neural activity attrib-
utable to prior knowledge have typically observed increased re-
sponses (Hannemann et al., 2007) that may arise from prefrontal
cortex (Giraud et al., 2004; Hervais-Adelman et al., 2012) or both
prefrontal and auditory areas (Wild et al., 2012). Thus, our find-
ing of opposite effects of sensory detail and prior knowledge in
the STG is without precedent in previous studies of the percep-
tion of degraded speech and is inconsistent with accounts in
which any enhancement to the perceived clarity of speech is ac-
companied by a corresponding increase in STG activity. It is,
however, in agreement with the finding that recall of degraded
spoken words from echoic memory is determined solely by the
fidelity of sensory input rather than perceived clarity from top-
down influences (Frankish, 2008). This suggests that, although
sensory information and prior knowledge both enhance percep-
tual clarity, their effects can be dissociated by other behavioral

measures and, as demonstrated here, by neural responses in the
STG.

One prominent model of speech perception that includes
feedback connections is TRACE (McClelland and Elman, 1986;
McClelland et al., 2006), which proposes hierarchically organized
layers of localist units that represent speech using increasingly
abstract linguistic representation (acoustic–phonetic features,
phonemes, and words). A distinctive feature of this model is the
presence of bidirectional connections between adjacent layers
that allow prior lexical or phonological knowledge to influence
ongoing phonological or acoustic–phonetic processes. This ar-
chitecture would at least superficially make this model well suited
to explaining the phonological–auditory interaction we are pro-
posing. However, in the TRACE model, sensory and top-down
inputs converge onto a single set of representational units (e.g.,
acoustic–phonetic units would be activated by both sensory and
top-down phonological input). Hence, assuming that greater ac-
tivation of model units corresponds to greater neural activity,
TRACE would predict equivalent neural responses to changes in
perceptual clarity caused by either sensory or top-down manip-
ulations. Because we saw opposite effects of sensory detail and
prior knowledge manipulations in the STG, we suggest that this
form of feedback is challenged by the present results.

A second class of computational model that appears better
able to account for the opposite effect of sensory and prior knowl-
edge manipulations seen in our results is a form of hierarchical
Bayesian inference termed “predictive coding.” This account,
which is gathering increasing experimental support (Murray et
al., 2002; van Wassenhove et al., 2005; Alink et al., 2010; Arnal et
al., 2011), proposes that top-down predictions are compared
with incoming sensory input and only unexplained activity (or
error) propagated through the remainder of the processing hier-
archy (Rao and Ballard, 1999; Friston, 2010). In the current con-
text, we propose that abstract phonological predictions in the IFG
(that originate from prior written text) are conveyed to the STG
as acoustic–phonetic predictions that are then compared with
neural representations of incoming speech input. Within this
framework, listening conditions in which top-down predictions
can explain a larger portion of sensory activity (such as when
speech follows matching text) would result in less error and a
reduction in activity, as seen in the STG in the present study.
Conversely, speech with more sensory detail (i.e., eight-channel
vs two-channel speech) should result in increased neural re-
sponses, because more spectrotemporal information is present in
the signal that needs to be processed. Thus, we argue that our
results are best described by predictive coding accounts, which
propose comparison of top-down predictions with sensory input
rather than the simple addition of top-down and sensory activa-
tion proposed in TRACE.

Although this predictive coding account of how prior knowl-
edge modulates speech clarity is compelling, we acknowledge that
the observed effects of matching text may be hard to distinguish
from other aspects of listeners’ perceptual processing that change
concurrently with speech clarity, such as their level of attention.
Indeed, the precise relationship between predictive coding and
attention is the subject of ongoing debate (cf. Summerfield and
Egner, 2009). Although this possibility cannot be ruled out com-
pletely, we observed that MEG responses to speech after match-
ing text were significantly correlated with trial-by-trial variation
in rated clarity and that this differed from the relationship seen
for trials without matching prior knowledge. Furthermore, ef-
fects of prior knowledge and sensory detail occurred in the same
brain regions (IFG and STG) and with a similar time course (e.g.,

Figure 7. Results from ROI analysis showing changes to the evoked response that originate
from sensory detail (8 –2 channel) and prior knowledge of speech content (matching–average
of mismatching and neutral). In the IFG [peak at (�42, 28, 26)], increasing sensory detail and
prior knowledge from matching text similarly enhanced the evoked response (top graph). In the
STG [peak at (�56, �22, 4)], the effect of prior knowledge had the opposite effect on the
evoked response compared with the effect of sensory detail such that the evoked response was
reduced (bottom graph). The two horizontal dotted lines in black denote a significance thresh-
old of p � 0.05 between which changes in source power from sensory detail and prior knowl-
edge were not significantly different from zero.
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in the STG, both effects co-occur from 270 to 700 ms). These
observations suggest that the effect of prior knowledge is to mod-
ulate the same neural processes that respond to changes in sen-
sory detail and that generate listeners’ perceptual experience of
speech clarity. Future work using transcranial magnetic stimula-
tion or other invasive methods will be required, however, to show
that there is a causal relationship between modulation of activity
in the IFG and STG and changes to speech clarity.

In conclusion, our data provide evidence that prior knowl-
edge is integrated with incoming speech through top-down feed-
back from the IFG to the STG. They additionally suggest that the
neural impact of prior knowledge is opposite to the effect of more
detailed sensory input despite both manipulations having the
same impact on subjective perceptual clarity. These results sug-
gest that the subjective experience of speech is governed by a
general principle of predictive coding in which top-down predic-
tions are compared with incoming sensory input and only unex-
plained activity propagated through the cortical hierarchy.
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(2007) Connectivity-based parcellation of Broca’s area. Cereb Cortex
17:816 – 825.

Arnal LH, Morillon B, Kell CA, Giraud AL (2009) Dual neural routing of
visual facilitation in speech processing. J Neurosci 29:13445–13453.

Arnal LH, Wyart V, Giraud AL (2011) Transitions in neural oscillations
reflect prediction errors generated in audiovisual speech. Nat Neurosci
14:797– 801.

Bar M, Kassam KS, Ghuman AS, Boshyan J, Schmid AM, Schmidt AM, Dale
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