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ABSTRACT 

The main reasons behind the success of the petrochemicals industry are not only the vast 

array of products that it provides - considered vital to our daily functions - but also the added 

value that it brings to the crude oil barrel price, making it a reliable venture for any concerned 

party. However, the industry is now faced with a fluctuating market and an unstable economy, 

which makes it imperative to find a more abundant and sustainable feedstock. Of all 

petrochemical derivatives, polymers (and their related industries) occupy the major share, and 

this makes the plastics industry a growing sector in terms of processing and conversion. Both 

virgin and waste plastics represent an attractive source of energy and product recovery.  

 

The main objective of this work was to investigate the thermo-chemical treatment (TCT) of 

polymers at different scales, and the reactors studied ranged from micro laboratory scale to 

industrial units suitable for covering large market demands. Within this framework, the 

degressive behaviour of polyolefin polymers (three virgin grades and two recyclate ones) was 

investigated alongside the products yielded (gases (C1-C4), liquids (non-aromatic C5-C10), 

aromatics (single ring structures) and waxes (> C11). This was achieved in a micro scale 

isothermal pyrolysis process, using 15 mg in a laboratory thermogravimetric analyser covering 

the temperature range of 500-600°C. The analysis led to the development of an n
th
 order novel 

model on the basis of lumped products yielded by pyrolysis. The degradation mechanism was 

used to develop the mathematical breakdown of the primary, secondary and tertiary reactions. 

The model developed predicts the yield of the four different products and the polymer residual 

fraction at any operating condition proving to be a useful tool for reactor design and simulation, 

where the production of a specific chemical at a certain operating condition is paramount. 

 

In addition, laboratory scale isothermal pyrolysis experiments on end of life tyres (ELTs) 

were also conducted. This was achieved as a means to demonstrate the application of the 

concept previously applied to the polyolefins. A thermal cracking (degradation) scheme was 

proposed based on the global yielded products, which were lumped into four categories, namely 

gases (C1-C4), liquids (non-aromatic C5-C10), single ring aromatics (C5-C10), and char. The 

depolymerization kinetics (from primary, secondary and tertiary reactions) evaluation showed a 

high match with the experimental results obtained in this work. 
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Finally, a life cycle assessment (LCA) was conducted for three integrated scenarios that 

reflect the current (2012) treatment of waste plastics in the Greater London area. The scenarios 

studied utilised a fraction of the polymers treated as a feedstock for two industrial scale TCT 

technologies; namely a low-temperature pyrolysis reactor that works using BP
® 

technology and 

a hydrocracking unit that utilises the Veba-Combi Cracking (VCC
®
) concept. The scenarios 

studied also include transfer stations, a dry materials recovery facility (MRF) and a combined 

heat and power (CHP) incineration unit. The energy recovered via the different processes 

studied, as well as the chemicals and petrochemicals recovered, were all considered as credits in 

the LCA conducted. Chemicals obtained by the TCT units are very valuable and can replace 

refinery cuts and petrochemicals (e.g. syncrude (crude oil), naphtha, heavy (waxes) fraction 

(comparable to atmospheric residue), gases (C3 and C4) refinery cuts, etc.). This led to a techno-

economic analysis of the three integrated scenarios in order to assess the overall profitability. 

The analysis included capital, operating and maintenance costs, gate fees, transportation costs 

and corporation tax. The eligibility for governmental incentives (i.e. renewable obligation 

certificates (ROCs), levy exemption certificates (LECs) and packaging recovery notes (PRNs)) 

was also considered. 

 

The results obtained from the work carried out and reported in this thesis point towards 

ideal strategies for the treatment of polymers within the urban environment. It also provides a 

detailed understanding of potential products from polymers introduced to TCT units. This also 

aids the optimum recovery of petrochemicals, chemicals and energy from different TCT 

processes, and could help the UK Government in meeting its energy policy targets. It can also 

contribute to the energy security through diversification of supply. Finally, it provides a 

perspective on the integration between the crude oil upstream industry and different 

petrochemical complexes and oil refineries, through the use of different TCT units to increase 

the production of petrochemicals in existing plants.  
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Chapter 1 

General Introduction 

 

 

olymers are the most versatile materials of our modern times. With certain 

plasticisers and additives (e.g. pigments, concentrates, anti-blockers, light 

transformers (LT), UV-stabilisers, etc.), they become what we know as 

plastics. Being a crude oil derivative, polymers present themselves as an advantageous option 

for a number of thermal treatments. 

It is estimated that the production of plastics worldwide is growing at a rate of about 5% per 

year (APC, 2008) and this results in high estimates of almost 60% of plastic solid waste (PSW) 

being discarded in open space or being landfilled in many developing and developed countries 

(APM EU, 2008). Consequently, there is a desperate need for technologies that can recover 

products and energy, thereby solving the accumulated waste issue and tackling the increasing 

demand for energy worldwide.  

This chapter highlights the motivation behind the study conducted and presented in this 

thesis and concludes with an outline of the contents of this thesis.  

 

1.1. Introduction 

Thermo-chemical treatment (TCT) is the processing and treatment of polymers in the 

presence of heat under controlled temperatures. TCT is capable of recovering energy, 

monomer fractions and valuable products such as gases (rich with low cut refinery products and 

hydrocarbons), tars (waxes and liquids very high in aromatic content) and char (carbon black 

and/or activated carbon), and such technologies include pyrolysis and hydrogenation. 

Polymers are the basic building block of plastics, of which the UK consumed over 5 million 

tonnes in 2007 (WRAP, 2007), with 20,000 tonnes of plastics being sent to China on an annual 

basis for recycling, and a mere 7% being recycled in the UK (ImpEE, 2005). There are a 

P 
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number of reasons which drive authorities in the UK to consider plastic recycling, recovery and 

treatment. The high consumption of plastics combined with the potential for extending existing 

local authorities collection systems are amongst these reasons. 

Figure 1.1 illustrates the flow of plastics through the UK economy in the year 2000. The 

majority of the tonnage is within the consumed products sector and this leads to the disposal, 

treatment, recycling and energy from waste (EfW) technologies. Such technologies include (on 

an industrial scale) TCT processes (e.g. pyrolysis, hydrogenation, etc), incineration, and 

biological treatment, etc. 

 

  

 

  

 

 

  

 

 

 

 

 

 

 
Figure 1.1 - Flow of plastic materials through the UK economy (2000).  

Source: Smith, 2002; taken from Waste Watch final report (2003).  

Abb. EfW - energy from waste. 

 

Polymerisation technology still remains a success story and Europe is considered the major 

manufacturing region of plastics in the world. In 2007, the EU27+Norway and Switzerland 

produced 25% of the world’s plastic production capacity; this amounted to 260 million tonnes 

(PEU, 2008), employing more than 1.6 million people, with a turnover in excess of 300 billion 

Euros. Yet still only a small percentage of waste (approximately 20.4%) is recycled and the 

most common option for disposal is by landfill or (co)-incineration (Westerhout et al., 1998a; 

PEU, 2008), both of which are associated with major environmental burdens. A valuable 

alternative process would be to convert and upgrade PSW by applying pyrolysis, whereby 

different operating conditions yield different products. The kinetics of the thermal pyrolysis 

defines the optimum conditions to maximise the yield of a desired product and this is required 

for the design of commercial pyrolysis reactors.  
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Figure 1.2 illustrates the flow of plastics from conversion to the end of life phase in the 

EU27 (with Switzerland and Norway) countries. The energy recovery rate remained stable at 

29.2% reflecting how the sensitivity and planning complexity of this resource management 

technology has led to slow progress within society. In 2007, 12.4 million tonnes of plastics 

were landfilled, and despite a 3% per year growth over the past decade for post-consumer 

waste, the quantity going to landfill has remained stable (with recycling and recovery routes 

covering the tonnage obtained from the growth only). 

 
 
Figure 1.2 - Plastic materials from cradle to grave in the EU27+Switzerland and Norway.  
Source: PEU, 2008. 
Abb. PC - petrochemical. 
 

However, there remains a lack of understanding regarding the behaviour of polymers 

undergoing TCT (namely pyrolysis). A comprehensive model that accounts for all products and 

which can be applied by the concerned industry describing the degressive mechanism of the 

polymer tested, would be highly desirable. Another gap within the current research is the 

assessment of environmental burdens associated with TCT units, especially in the case of 

Greater London. Furthermore, techno-economic studies of TCT are scant and research and 

development (R&D) activities reports are not sufficiently transparent to show the recent status 

of the depolymerisation industry. 

 

1.2. Research Goals and Objectives 

The interest in thermo-chemical treatment (TCT) processes began in the 1950s, when the 

application of laboratory scale TCT with different media (such as the inert gases: N2, Ar, He, 

and partial oxygen) was focused on the elemental analysis it provided for the treated material. 

Soon after, different materials were used as feeds and interest in kinetics, design and 

implementing these processes on an industrial scale began to grow.  
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The industrial implementation of TCT units led to the recognition of the advantages it 

could provide. These include the production of valuable chemicals, petrochemicals and energy 

from the treatment of different materials, as well as the possibility of reducing the overall costs 

in crude oil complexes when TCT units are integrated within a processing scheme. Polymers 

are crude oil derived materials; hence they embody energy and a high calorific value that could 

be utilised as a feedstock rather than occupying a large proportion of municipal solid waste 

(MSW) and other solid waste streams and/or being discarded in open space. Thermo-

chemically treated plastics can produce a number of valuable petrochemicals, including 

benzene-toluene-xylenes (BTX), ethene, propene, butadiene and styrene, which are considered 

essential in any petrochemical chain. 

The treatment of polymers in the form of commercial grade plastics at different scales is 

the main theme of this work. This study may benefit both the crude oil industry and the solid 

waste management sector. A detailed understanding of thermo-chemical processes, the 

behaviour of materials subjected to TCT, the energy generated and products formed, may 

inform interested parties with different industrial infrastructure developmental options. In 

addition, there are possibilities for integration with other related industries, e.g. oil refineries, 

chemical and petrochemical complexes, etc. 

The main goal of this research is to study the TCT of polymers in a number of venues and on 

different scales. The main objectives are as follows: 

a. To investigate the behaviour of polymers at micro scale under thermal cracking 

conditions in inert atmospheres. N2 was chosen as a medium for thermolysis (i.e. the 

pyrolysis process) of the polymers studied. Three virgin polymers and two recyclate 

grades were subjected to isothermal pyrolysis in a thermogravimetric analyser (TGA), 

i.e. fixed bed laboratory reactor. The products yielded were identified and lumped into 

four categories: Gases (C1-C4), liquids (non-aromatic C5-C10), single ring aromatics 

(C5-C10) and waxes (> C11). The polymers degressive behaviour was studied and 

differences between the grades treated are also reported. 

b. To develop a novel model based on lumped product analysis (e.g. gases, liquids, 

aromatics, etc.) that accounts for the polymer fraction (residual) and the other formed 

products. Numerous attempts have been undertaken to develop a thermal degradation 

scheme, usually via a simple approach of parallel reactions from polymer to products 

(McCaffrey et al., 1995; 1998; Williams and Williams, 1997; 1999a; 1999b; Horvat 

and Ng, 1999). Yet differences are always present due to variations in polymer’s 

characteristics (e.g. molecular weight, presence of weak links, additives, etc.) and 

differences in experimental conditions from which kinetic data are calculated 
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(McCaffrey et al., 1995). In this work, a model of the n
th
 order is proposed based on the 

experiments conducted. The model determines the amount of liquids, gases, waxes and 

aromatics produced by weight (%). This ultimately will provide a better understanding 

of the TCT of the polymeric material and aid in the intensification of the process (in 

terms of product yields). The isothermal mode of operation was chosen and the model 

proposed was validated against experimental results. The mathematical model of the 

mechanism proposed was based on mass balances and kinetic rate equation analysis. 

The derivation of the model was based on mass fractions. 

c. To develop a thermal degradation mechanism using a similar approach as applied for 

the polyolefin materials based on laboratory scale isothermal pyrolysis experiments on 

end of life tyres (ELTs). The model was based upon the global yielded products, which 

were lumped into four categories, namely gases (C1-C4), liquids (non-aromatic C5-C10), 

single ring aromatics (C5-C10), and char. 

d. To perform a life cycle assessment (LCA) on different integrated scenarios 

(incorporating TCT units in the Greater London area, GLA) with the aim of evaluating 

the environmental burdens associated with the different stages of each scenario. The 

type of study performed was an attributional life cycle assessment (ALCA), which is 

concerned with describing the environmental relevant physical flows to/from a life 

cycle and its sub-systems (Eriksson et al., 2007). The environmental impacts avoided 

by the displaced energy and products recovered were included. The scenarios studied 

included transfer stations (TS), treatment of dry recyclables in a materials recovery 

facility (MRF, located in the Borough of Greenwich, London) and an incineration unit 

(IU, located in the Borough of Lewisham, London). Boroughs of the Greater London 

area and a city in Devon (namely Exeter) were chosen as points of waste origin. These 

boroughs were chosen due to the fact that current reports and industrial data show that 

the City of Exeter sends dry waste to the Greenwich MRF in London.  

e. To conduct a techno-economic analysis on the integrated scenarios, in order to assess 

the most profitable option for the GLA. Chemicals obtained by the TCT units are very 

valuable and can replace refinery cuts and petrochemicals (e.g. syncrude (crude oil), 

naphtha, heavy (waxes) fraction (comparable to atmospheric residue), gases (C3 and C4) 

refinery cuts, etc.). The techno-economic analysis included capital and operating and 

maintenance costs, gate fees, transportation costs and corporation tax (CT). The 

eligibility for governmental incentives (i.e. renewable obligation certificates (ROCs), 

levy exemption certificates (LECs) and packaging recovery notes (PRNs)) was also 

considered. 
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1.3. PhD Thesis Outline 

The thesis is divided into seven chapters. This introductory chapter addresses the main 

issues concerning polymerisation/depolymerisation, the benefits of TCT technologies and the 

overall work objectives. In Chapter 2, a review of the previously published literature relating to 

the subject matter is given. Research on both modes of pyrolysis (isothermal and dynamic) is 

presented and the main findings are illustrated. In addition, details of industrial technologies are 

described, with an emphasis on pyrolysis schemes. In Chapter 3, the effects of micro-scale 

pyrolysis (using TGA in isothermal mode) are studied to assess the behaviour of five different 

polyolefins in inert atmosphere pyrolysis. Chapter 4 presents the results of applying a similar 

lumped product model to isothermal results obtained from ELTs. In Chapter 5, a detailed 

review is given on LCA methodology and application. In Chapter 6, an attributional LCA is 

performed around the GLA, and the burdens associated with the scenarios developed are 

assessed. In addition, the integration of TCT industrial units with a MRF and an IU are 

discussed. The seventh and final chapter draws a number of conclusions from the work carried 

out, together with a number of recommendations for future work. 
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Chapter 2 

Literature Survey: Thermo-

Chemical Treatment Processes 

 

n this chapter chemical (tertiary) treatment of polymers, including advanced 

thermo-chemical treatment (TCT) processes in inert atmospheres (i.e. pyrolysis) 

is reviewed. A special emphasis is given to reactor design aspects, thermal 

cracking kinetics and conditioning effects on product yields.  Descriptions of 

different TCT processes, their benefits and current research activities are also detailed. Other 

processes and treatment methods (e.g. hydrolysis, hydrocracking, gasification, degradative 

extrusion, etc.) are also discussed to provide a detailed view of polymers thermo-chemical and 

chemical treatments. Experimental and kinetics modelling work in this thesis focuses on the 

pyrolysis of polymers and end of life tyres (ELTs, see Chapters 3 and 4); therefore, weight loss 

(degressive) kinetics and degradation mechanisms modelling are discussed in depth.  

 

Parts of this chapter were published in: 

 

Al-Salem, S.M., Lettieri, P. and Baeyens, J., (2009). Recycling and recovery routes of plastic 

solid waste (PSW): A review, Waste Management, 29(10); 2625-2643. 

 

Al-Salem, S.M., Lettieri, P. and Baeyens, J., (2010). The valorization of plastic solid waste 

(PSW) by primary to quaternary routes: From re-use to energy and chemicals, Progress in 

Energy & Combustion Science, 36(1); 103-129. 

 
 

2.1. Polymers and Polymerisation Technology 

Polymers have solely replaced classical materials in many sectors, specifically wood and 

metals. Polymers (and polymer composites) also contribute to our daily functions in many 

aspects and applications, from packaging, automobiles, clothing, appliances and electrical and 

vehicle equipment, to insulations, industrial applications, greenhouses, automotive parts, 

aerospace and mulches. Plastics (virgin or waste) are composed of polymers and additives, and 

I 
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understanding polymers, in terms of their structure and origin is paramount for the assessment 

and comprehension of their behaviour under thermal treatment conditions. Monomers are small, 

single molecules (e.g. hydrocarbons, amino acids, etc.) that bond together to form a polymer 

through a process called polymerisation. 

In a polymer, the structure (linear, branched or networked) and backbone is composed of a 

number of repeating units
1
 (McCrum et al., 1997). Due to the fact that polymers are vast (in 

type, behaviour, structure and synthesis mode), a number of classification systems have been 

developed and used over time. Today, the most common classification used is based upon a 

polymer’s response to heating, whereby polymers are classified as either thermoplastics or 

thermosets (Figure 2.1). Thermoplastics soften when heated and harden again once cooled. This 

is the most common type of polymer and encompasses almost all types of plastics and 

polyolefins.
2
 Due to these characteristics, thermoplastics make an ideal material for recycling 

purposes under thermo-chemical, thermal, and thermo-mechanical set-ups. Typical polymers of 

this sort are polyethylene (PE), polypropylene (PP), polystyrene (PS) and polyethylene 

terephthalate (PET). 

Polymerisation processes cover the majority of the petrochemicals industry worldwide. The 

main step in general and in polyolefin upgrading in particular, is the conversion process of the 

raw gas (e.g. ethylene, propylene, etc.) from naphtha or natural gas cracking to the desired 

polymer product (e.g. PE, PP, etc.). This process is by far the most important in the production 

cycle (under a pressure range of 100-300 psi and a temperature over 100°C), and is commonly 

achieved by means of catalytic conversion in fluidised bed reactors (FBR). Currently, BP
®
 

produces more than 150 commercial grades of polymers (mostly PE), mainly at Wilton 

(England), Grangemouth (Scotland), and Asian ventures in Indonesia, Malaysia and the 

Philippines. 

 

 

                                                 
1
 The repeating unit in a polymer chain is often referred to as the mer. Hence, a monomer is a single 

mer unit (n=1) and a repetition in the units along a chain is referred to as a polymer (n ≥ 103). 

 
2
 A polyolefin (PO) is a polymer produced from a simple olefin (alkene CnH2n) as a monomer. 

Examples of such include PE and PP which results from the original monomers of ethylene (ethene) 

and propylene (propene), respectively. 
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Figure 2.1 - Polymers classification (according to their physical properties) with respect to their behaviour and response to/after heating.  
Source: McCrum et al., 1997. 
Note: This is the most recent classification and currently is the most used one. 

Polymers 

Thermoplastics 

Softened when heated. 

Flexible, linear molecular chains 

that are tangled together. 

Represent 90% of plastics used 

 

Examples:  

PE, PP, PS, PVA, PCA, PET, 

PMMA. 

Linear polymer chains that are lightly 

cross linked. 

When stretched, chains partially untangle 

but do not deform permanently. 

 

Examples: 

Natural Rubber (NR), Synthetic Rubber 

(IR), Butyl Rubber (BR). 

Elastomers 

Consist of highly cross-linked 3D 

network. 

Remain rigid when heated. 

 

Examples: 

Vulcanized Rubber, Polyester 

fibreglass, Urea-Formaldehyde 

foam, Melamine Resin 

Thermosets 
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2.2. Plastic Solid Waste:  

Quantities, Generation and Trends 

Plastics as waste articles, are found in all major municipal solid waste (MSW) categories and 

plastic solid waste (PSW) is found to be comprised mainly of containers and packaging plastics 

(i.e. bags, sacks, and wraps; soft drink, milk, and water containers). These items represent the 

highest percentage in the final assessed stream of MSW (USEPA, 2002; 2008). 

In the UK, studies show that PSW constitutes 7% of the final waste stream (Parfitt, 2002), 

whereas in the US, PSW found in MSW has increased from 11% in 2002 (USEPA, 2002) to 

12.1% in 2007 (USEPA, 2008). Years of research, study and testing have resulted in a number 

of treatment, recycling and recovery methods for PSW that can be economically and 

environmentally viable (Howard, 2002). The plastics industry has successfully identified 

workable technologies for recovering, treating, and recycling of waste from discarded products. 

In 2002, 388,000 tonnes of PE were used to produce various components of textiles, of which 

378,000 tonnes were made from PE discarded articles (Gobi, 2002).  

The growth of post-consumer plastic waste is the result of several reasons, namely: 

a. Plastics continue to substitute alternative materials (e.g. wood, metal … etc.). 

b. Economic growth drives greater consumption.  

c. Smaller households require more packaging per person, thus more ready-made single-

portion meals, carrier bags, etc. are consumed. 

The plastics industry is committed to meeting the current needs of today without 

compromising the needs of tomorrow. In the UK, 95% of PSW arising from process scrap (≈ 

250,000 tonnes) was recycled in 2007 (EA, 2001). PSW from commercial grade resins have 

been successfully recycled from a number of end products, including: automobile parts, 

appliances, textiles, mulches, greenhouses and films. Polymerisation and plastic conversion has 

taken its toll on every economy, and it is estimated that the plastic sector accounts for 7.5% of 

the UK’s demand for chemicals annually (Waste Watch, 2003). However, more investment in 

monomers, valuable chemicals and energy recovery facilities is needed to divert streams which 

cannot be eco-efficiently recycled from landfill. An analysis of plastic materials consumption 

on a per capita basis shows a growth to approximately 100 kg in the North America Free Trade 

Agreement (NAFTA) countries and Western Europe (WE), with the potential to grow towards 

140 kg per capita by 2015. The highest potential for growth can be found in the rapidly 

developing parts of Asia, where currently the consumption per capita is only around 20 kg.  
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In a European context, it is the new member states which are expected to see the biggest 

percentage increase as their economies develop. The current average per capita consumption in 

these countries is between 50 and 55 kg, a little more than half of that of the old member states 

(PEU, 2008). 

The material recycling and energy recovery of post-consumer plastics waste varies 

significantly in different countries. In some countries like Switzerland, Germany and Denmark, 

there is very little landfill and these countries are very close to completing their diversion-from-

landfill strategy. The progress of this strategy is slow on average, with recycling (mechanical 

and chemical) across the EU27+Norway and Switzerland increasing from 19.5% in 2006 to 

20.4% in 2007, while energy recovery remained stable at 29.2%. Strong efforts will be required 

in many member states to capture the full potential offered by a diversion from landfill strategy, 

namely greenhouse gasses (GHGs) emission savings, enhanced resource efficiency, energy 

security and the avoiding of landfill penalties. 

In summary, the production of polymers and plastics conversion covers the majority of the 

petrochemicals and petrochemical derivatives industry and markets. This is reflected in MSW, 

in which PSW constitutes 7% of the final stream in the UK (Parfitt, 2002). The versatility and 

light weight of plastics (compared to wood, metals, etc.) are amongst the main reasons for the 

growth of post-consumer plastics. In NAFTA and WE countries, a potential growth to 140 kg 

per capita is anticipated by the year 2015 (PEU, 2008). These estimates show an urgent need for 

the recovery of chemicals, petrochemicals and energy from articles discarded or considered as 

scrap. 

2.2.1.  Re-Use and Major Sorting Techniques 

Re-using plastics is always noted as a preferable choice to recycling; it uses less energy and 

fewer resources, conserves fossil fuels since plastic production uses 4-8% of global oil 

production, i.e. 4% as feedstock and 4% during conversion (Perdon, 2004; JCR, 2006) and 

reduces carbon-dioxide (CO2), nitrogen-oxides (NOx) and sulphur-dioxide (SO2) emissions. 

Sorting of plastics is an essential step within recycling (MOEA, 2001; EPIC, 2003). 

In the case of rigid plastics, heavy medium separation is usually applied (Kang and 

Schoenung, 2005). This is achieved by adding a modifier to water or by using tetrabromoethane 

(TBE); however, this process is considered costly and can lead to contamination of the 

recovered plastics (Veit, 2002; Kang and Schoenung, 2005). Density sorting methods are not 

particularly helpful in PSW sorting because most plastics are very similar in density. To 

enhance the effectiveness of density separation, hydrocyclones (utilising centrifugal forces) are 

commonly used to enhance the material wettability (APC, 1999). Another major technique 
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employed in PSW sorting is triboelectric separation. Materials with a size between 2-4 mm are 

settled in a rotating drum to allow charging and sorting (Xiao, 1999). 

Since plastics are present in commercial and industrial waste (DEFRA, 2009), the recovery 

routes are of essential importance in the selection of the proper treatment method. Waste is 

typically discharged in depots which allow collection vehicles to avoid travelling uneconomic 

distances. These depots are typically referred to as transfer stations (TSs, Last, 2008a). When 

these TSs incorporate sophisticated methods for treatment and sorting, they are called material 

recovery facilities (MRFs) (Last, 2008b). Components of mixed waste (recyclables) are 

extracted through the use of mechanical means, and depending on the sophistication of the 

plant, organics can also be recovered (dirty MRFs). 

MRFs employ a system of conveyers which carry the recyclables over sorting screens. 

Nevertheless, a significant amount of hand-sorting of materials is typically employed in the 

process. A steady increase in clean (dry) MRFs has been reported in the UK, which is due to the 

introduction of separate recycling collections and an increase in recycling tonnage (Last, 

2008b). In contrast, dirty MRFs have had limited success in the UK due to the volatility of the 

recycling market (Last, 2008b).  

2.3.  Routes of Treatment and Recovery:  

Back to Petrochemicals via Depolymerization 

Value from PSW should be recovered through either recycling or energy and fuel recovery. 

Residual waste from different recycling processes (i.e. refuse-derived fuel, RDF) should be 

treated separately, either by thermo-chemical means or by incineration, and energy that is then 

recovered as heat or electricity, can be used for power generation. PSW recycling processes can 

be allocated into four major categories (Mastellone, 1999): re-extrusion (primary), mechanical 

(secondary), chemical (tertiary) and energy recovery (quaternary). Each method provides a 

unique set of advantages that makes it particularly beneficial for logistical requirements, 

applications or requirements. Primary treatment involves the introduction of plastic scrap into 

the heating system of a plant, and may be referred to as in-house recycling. Mechanical 

recycling (i.e. secondary or material recycling) involves physical treatment. Chemical recycling 

(encompassing feedstock recycling) produces feedstock chemicals for the chemical industry, 

and energy recovery involves complete or partial oxidation of the material, producing heat, 

power and/or gaseous fuels, oils and chars in addition to by-products that must be disposed of, 

e.g. ash. 
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The continued development of recycling and recovery technologies, investment in 

infrastructure, the establishment of viable markets and participation by industry, government 

and consumers, are all considered priorities of the highest order (Scheirs, 1998). In all recycling 

processes (plastic, metal, paper recycling, etc.), technical and economic feasibility and overall 

commercial viability of advanced recycling methods must be considered in each step of the 

recycling chain (Frisch, 1999). This in contrast makes it an absolute to maximise profits from 

structure design of any thermal treatments. Collection, processing, and marketing are each 

crucial to the success of chemical recycling and energy recovery. Today, with few exceptions, 

these technologies remain developmental and have not yet been proven to be sustainable in a 

competitive market. Nevertheless, they remain of considerable interest for their longer term 

potential. 

2.3.1. Chemical Treatment 

Chemical (tertiary) treatment is a term used to refer to advanced technology processes 

which convert plastic materials into smaller molecules, usually liquids or gases, which are 

suitable for use as a feedstock for the production of new petrochemicals and plastics 

(Mastellone, 1999). Almost no argument exists that states that the best utilisation of PSW is via 

tertiary treatments, i.e. chemical recycling, due to their high calorific value (Table 2.1). 

 
Table 2.1 Calorific Value of Major Polymers in Comparison to Common Fuels. 
Source: Williams and Williams, 1997; Mastellone, 1999. 
 

Item Calorific value (MJ kg-1) Item Calorific value (MJ kg-1) 

Polyethylene 
Polypropylene 
Polystyrene 
Kerosene 

43.3-46.5 
46.50 
41.90 
46.50 

Gas Oil         
Heavy Oil    
Petroleum 
Household PSW mixture 

45.20 
42.50 
42.30 
31.80 

 
The term chemical is used to indicate that the chemical structure of the polymer will be 

altered. Products of chemical recycling have proved to be useful as fuel, and the technology 

behind its success is the depolymerisation processes that can result in a very profitable and 

sustainable industrial scheme, providing a high product yield and minimal waste. Under the 

category of chemical recycling are advanced processes (similar to those employed in the 

petrochemical industry), such as pyrolysis, gasification, liquid-gas hydrogenation, viscosity 

breaking, steam or catalytic cracking and the use of PSW as a reducing agent in blast furnaces. 

Recently, much attention has been paid to chemical recycling (mainly non-catalytic thermal 

cracking (thermolysis), catalytic and steam cracking) as a method of producing various fuel 

fractions from PSW (Aherenfeldt, 2007; Robinson, 2009; Economopoulos, 2010; Buttler et al., 

2011; Blengini et al., 2012).  
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By their nature, a number of polymers are advantageous for such treatment; PET and certain 

polyamides (nylon 6 (PA 6) and nylon 66) can be efficiently depolymerised. In particular, PE 

has been targeted as a potential feedstock for fuel (gasoline) producing technologies, and there 

is also a growing interest in developing value added products such as synthetic lubricants via PE 

thermal degradation (McCaffrey et al., 1995). 

Ever since the first synthetic polymer was produced in the 1940s, PSW has been increasing, 

with recycling and recovery routes being researched globally (Horvat and Ng, 1999). Therefore, 

the production cycle of polymers must cover the integrated waste management system (IWMS) 

in every cradle to grave loop, as illustrated in Figure 2.2.  

The development of value added recycling technologies is highly desirable as it would 

increase the economic incentive to recycle polymers (Horvat, 1996). Several methods for 

chemical recycling are presently in use, such as direct chemical treatment involving gasification, 

smelting by blast furnace (Asanuma and Ariyama, 2004) or coke oven (Kato et al., 2004), and 

degradation by liquefaction (Steiner et al., 2002). Condensation polymers such as PET and 

nylon undergo degradation to produce monomer units, i.e. feedstock/monomer recycling 

(Yoshioka et al., 2004), while vinyl polymers such as polyolefins produce a mixture containing 

numerous components for use as a fuel. Various degradation methods for obtaining 

petrochemicals are presently under investigation, and conditions suitable for pyrolysis and 

gasification are being extensively researched (Aguado et al., 2007; Buttler et al., 2011). 

Catalytic cracking and reforming facilitates the selective degradation of waste plastics, and solid 

catalysts such as silica-alumina, ZSM-5, zeolites, and mesoporous materials are common for 

these purposes. These materials effectively convert polyolefins into liquid fuel, resulting in 

lighter fractions compared to thermal cracking. The main advantage of chemical recycling is the 

possibility of treating heterogeneous and contaminated polymers with limited pre-treatment. If a 

recycler is considering a recycling scheme with a target of 40% or more, it should deal with 

materials that are very expensive to separate and treat; thus, chemical recycling becomes a 

viable solution (Scheirs, 1998). Petrochemical plants are much greater in size (6-10 times) than 

plastic manufacturing plants. Therefore it is essential to utilise petrochemical plants and 

supplement their usual feedstock by using PSW derived feedstock. 
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Figure 2.2 - Treatment methods related to the production cycle of polymers.  
Source: Mastellone, 1999. 
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In summary, recycling and treatment of PSW can be allocated to four main categories 

(Mastellone, 1999), in which an ascending hierarchy has been established as follows: 

i.  Re-extrusion of polymers (primary treatment): in which the process scrap is re-

introduced into the production cycle. According to the UK Environmental Agency (EA, 

2001), 250 ktonnes of plastic were recycled in this manner in 2001. 

ii.  Mechanical (secondary) treatment: where plastics are subjected to physical treatment. 

This typically involves blending and extrusion processes. 

iii.  Chemical (tertiary) treatment of polymers: this group of technologies alter the chemical 

structure of the polymer, resulting in a number of chemicals. Treating heterogeneous 

and contaminated polymers with limited pre-treatment is one of the main advantages 

this method provides. When heat is used in controlled temperatures (with or without 

catalysts) this category is referred to as TCT. 

iv.  Energy recovery (quaternary treatment): this method involves complete or partial 

oxidation of the material, producing heat, power and/or gaseous fuels, oils, chars and 

ash.  

Valuable petrochemicals and energy can be recovered from various types of chemical 

treatments of polymers. Advantages of chemical treatment methods include the treatment of 

mixed and contaminated plastics with minimal pre-treatment, the production of valuable 

petrochemicals and the recovery of energy in the form of heat and electricity. Since most 

chemical treatment technologies are applied by crude oil processing production lines (e.g. 

pyrolysis, steam-cracking, hydrocracking), integration with refineries and petrochemicals 

complexes is an attractive option for major oil companies. It is essential to utilise petrochemical 

plants by supplementing their usual feedstock with PSW derived feedstock. In addition, the 

recovery of desirable chemicals and energy makes chemical means of treatment a very 

advantageous treatment method that warrants further research and development (R&D). 

2.3.2.  Thermolysis: Definition and Schemes 

Thermolysis is the treatment of PSW in the presence of heat under controlled temperatures 

without catalysts, and it is a TCT method. Advanced TCTs of PSW in the presence of heat 

under controlled temperatures provide a viable and an optimum engineering solution for energy 

and product recovery. Not only has this method recovered healthy monomer fractions, reported 

as up to 60% (Smolders and Baeyens, 2004), but it also produces valuable products that can be 

summarised as gases (rich with low cut refinery products and hydrocarbons), tars (waxes and 

liquids very high in aromatic content) and char (carbon black and/or activated carbon). 
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Thermolysis processes can be divided into advanced thermo-chemical processes or pyrolysis 

(thermal cracking in an inert atmosphere), gasification (in the sub-stoichiometric presence of 

air, usually leading to CO and CO2 production) and hydrogenation (hydrocracking) (Ahrenfeldt, 

2007). Figure 2.3 shows different thermolysis schemes, the main technologies and the main 

products obtained, as described by Mastellone (1999). 

 

Figure 2.3 - Different thermolysis schemes with reference to the main technologies.  
Source: Mastellone, 1999.   
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2.3.3. Advantages of Pyrolysis and Benefits to the Petrochemicals 

Industry and Production Cycle 

The development and expansion of the petrochemical industry in recent years has been 

characterised by a concentration of production and an increase in the size of individual process 

units and process sections. Along with the use of larger process units has come an improvement 

in the production economics and this has led to more favourable conditions for the combined 

utilisation of raw material resources (including by-products and wastes). 

Concurrently, the concentration of petrochemical production has led to problems in raw 

material supplies. Only the largest petroleum refineries can serve as a stable source of 

feedstock. However, the lack of any such refineries in many districts has created a need for 

establishing an autonomous raw material base equipped with specialised production units or 

refineries for primary crude oil processing with the specific purpose of producing petrochemical 

feedstock. It is difficult to produce large amounts of naphtha from pyrolysis (cracking) within 

the ranks of the existing fuel profile refineries. Consequently, there is a need to develop more 

industrial TCT units. 

Integrating upstream, downstream and end-of-stream (petrochemicals) processing in many 

production cycles will evidently aid in the supply chain and demand coverage.  This is the new 

trend currently studied in low feedstock cost countries (e.g. the State of Kuwait), and will 

ultimately reduce the cost of shared utilities and lower transportation cost (AOG, 2009). Many 

products from TCT (in general) and pyrolysis (in particular) can serve the industry as a number 

of refinery cut replacements. Figure 2.4 shows the major TCT products obtained from different 

feedstock recycling processes, and Table 2.2 summarises some of the petrochemicals that can 

be produced via pyrolysis. Other benefits of integrating pyrolysis units with existing refineries 

include: (i) high H/C ratios of polyolefins compared to heavy residues, hence the production of 

more valuable products upon thermal decomposition; (ii) synergistic effects can be observed 

upon processing of polyolefins with crude oil derivatives that produces better quality products 

(Butler et al., 2011). The possibilities for integration with existing oil refineries infrastructure 

are illustrated in Figure 2.5. 

Pyrolysis provides a number of other advantages, such as (i) operational advantages, (ii) 

environmental advantages and (iii) financial benefits. Operational advantages could be 

described through the utilisation of residual output of char being used as a fuel or a feedstock 

for other petrochemical processes. An additional operational benefit is that pyrolysis requires 

no flue gas clean up, as the flue gas produced is mostly treated prior to utilisation. 

Environmentally, pyrolysis provides an alternative solution to landfilling and reduces GHGs 

and CO2 emissions. Financially, pyrolysis produces a high calorific value fuel that could be 
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easily marketed and used in gas engines to produce electricity and heat. Several obstacles and 

disadvantages do exist for pyrolysis, mainly in the handling of the char produced (Ciliz, 2004) 

and the treatment of the final fuel produced, if specific products are desired. In addition, there is 

insufficient understanding of the underlying reaction pathways, which has prevented a 

quantitative prediction of the full product distribution. Recycling pyrolysis products back into 

the production cycle is the ultimate goal for petrochemical industries. Williams and Williams 

(1999b) describe the experiences of a UK consortium of companies regarding such potential 

petrochemical products, and these are discussed later in this thesis (see Chapters 5 & 6). 

 
Table 2.2 Summary of main petrochemicals (PCs) produced via pyrolysis of POs.  
Source: Butler et al. (2011) 

 

Product Price (€/tonne) Process Feedstock Intermediate/final product 

 
 

Ethene 

 
 

692-1,084 

 
 

Thermal cracking 

 
 
Ethane, propane, 
naphtha, gas oil 

 
PE manufacture (>50 wt%), 
antifreeze, polyester fibres, 
PVC, PS plastic & foam, 
soaps, plastics, detergents 
 

 
Propene 

 
692-1,279 

 
Thermal cracking 

 
Ethane, propane, 
naphtha, gas oil 

PP, plastics, fibres, foams, 
cumene (IP), C4 alcohols, 
oligemers, soaps, 
detergents 
 

 
Butadiene 

 
602-1,656 

 
Thermal cracking 

Dehydration 

Ethane, propane, 
naphtha, gas oil, 
butane/butenes 

SBR (tyres), elastomers, 
nylon monomers 
 
 

 
Benzene 

 
710-922 

 
Catalytic 

reforming/hydrodealkylation 

 
Naphtha, toluene 

Styrene, cumene, 
cyclohexane, polyurethanes 
 

 
 

Toluene 

 
 

582-828 

 
 

Catalytic reforming 

 
 

Naphtha 

 
 
Gasoline octane enhancer, 
benzene, TNT (explosive) 
 

 
 

Xylenes 

 
 

597-862 

 
 

Catalytic reforming 

 
 

Naphtha 

Gasoline, benzene, solvents, 
PET, textiles fibres, 
photographic film, bottles, 
plasticizers, unsaturated 
polyester resins, alkylated 
resins  
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Figure 2.4 - Possible chemical products obtained from TCT. Source: ISOPA, 2001. 
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Figure 2.5 - Integrating Pyrolysis with Oil Refineries Infrastructure. Source: Butler et al. (2011). 
Abb. LGO, Light Gas Oil; HGO, Heavy Gas Oil. 
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In conclusion, theromlysis produces monomer fractions (e.g. ethylene, propylene, styrene, 

butadiene, etc.) and valuable chemicals (e.g. waxes, syngas (CO + H2), etc.). Thermolysis 

includes a number of processes, of which pyrolysis stands as an advanced method of recovering 

valuable energy (e.g. heat) and petrochemicals (e.g. naphtha, toluene, ethylene, propylene, 

styrene, butadiene, etc.). Pyrolysis also provides a sound solution to the lack of raw materials 

supplies from refineries and petrochemical complexes, as it produces naphtha, heavy oil (HO) 

and waxes that could be fed into steam reforming, fluid catalytic cracking (FCC) and 

hydroprocessing units (which exist in crude oil refineries infrastructure). These units are used to 

produce chemicals, additives and polymerisation units’ feedstock. The residual output of char 

produced by pyrolysis can be used as a fuel or as a feedstock for other petrochemical processes. 

An additional benefit is that pyrolysis requires no flue gas clean up, as the flue gas produced is 

mostly treated prior to utilisation. Finally, it reduces GHGs and CO2 emissions and provides an 

alternative solution to landfilling. All the above can be considered as reasons for the pursuit of 

research into pyrolysis of organic materials.  

2.3.4. A Note on the UK Policies and Carbon Reduction Targets  

The UK emits around 160 million tonnes per year of carbon into the atmosphere, of which 

80% is from fossil fuel burning to supply energy demands (ACE, 2005). In 1992 the UK signed 

the Rio de Janeiro conference agreement to return GHGs to the 1990 level by the year 2000. 

This target was not achieved and in 1997 the UK agreed to cut the six main GHGs by 6% below 

the 1990 level between 2008 and 2012 (the Kyoto Conference agreement). This is reflected in 

the UK Carbon Emission Reduction Target (CERT) to make a 12.5% cut in GHGs by 2008/12 

and the Climate Change Act of 2008 requirement to cut GHGs emissions by 80% below the 

1990 level by 2050. OFGEM regulates the UK CERT scheme and reports suppliers’ progress 

towards their CERT target. The UK has achieved a 12.5% reduction in the Kyoto emission limit 

(between 1990 to 2008/12) and a 3.3% reduction in the year 2000 from the 1990 limits, with 

official reports showing that it will be possible to meet the target based on current trends (ACE, 

2005). This is due to the switch to gas and decline in industry emissions.  

Recent reports show a government commitment to set a new target of 50% reduction by the 

year 2025 (LessEn, 2011). This follows a briefing made by the energy secretary Chris Huhne in 

May 2011, who assured that there will be a review of the UK progress in early 2014 ensuring 

that the country is in line with Europe. This announcement makes the UK the first country in the 

world to have declared a legally binding target on GHGs beyond 2020 (LessEn, 2011).  

The work carried out in this thesis falls in line with the current EU directives, whereby 

stringent rules and regulations on waste handling, utilisation and disposal are enforced. Articles 

1-29 of EC directive 2008/98, stipulates measures for environment protection by reducing the 
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adverse impacts of waste generation and improving efficiency of resource use (EC 2008/98, 

2008). EC directive 94/62 enforces the management of packaging and packaging waste, and 

imposes the harmony of them both, in order to prevent environmental impacts, increase 

environmental protection and ensures functioning of internal markets (EC 94/62, 1994). In 

addition, directives EC 2002/96, EC 1999/31 and M 314, all enforce appropriate measures to 

minimise the disposal of waste (considered as many forms), reduce landfilling, and adopt 

technologies capable of recovery procedures (EC 2002/96, 2003; EC 1999/31, 1999; M 314, 

2004). 

2.4.  Established Technologies of Pyrolysis:  

Pilot and Industrial Scale 

Ideally, it is desirable to convert polymers (waste) into a high value refinery cuts for 

utilisation in petrochemical processes, e.g. light gases. In the case of PE, an interesting potential 

product would be a synthetic lubricant (poly-α-olefin based). This means that the product of the 

thermal cracking should be close to 1-decene in both chain length and molecular structure. This 

was the basis of the work by McCaffrey et al. (1995) on PE thermolysis in an inert atmosphere. 

The thermolysis of linear low density polyethylene (LLDPE) was studied at moderate 

temperatures (425-450°C) in a Pyrex kettle reactor, yielding a liquid product estimated as 82.5% 

of the initial charge to the reactor. The balance of the thermolysis reaction products was in two 

parts: a residue and a non-condensable gas fraction, with yields of 9.5 and 8.0%, respectively. 

The thermolysis of 60/40 mixtures of PE and PS was investigated at temperatures below 440°C 

and published in a follow up study by McCaffrey et al. (1996), where  the liquid yield from the 

mixture of 84.1% was comparable to the yields obtained with the individual polymers. The 

yields of styrene monomer, 57.1%, and α-olefins, 27.7%, increased over those obtained when 

the polymers were processed individually. A significant interaction was observed between the 

polymers in which the addition of PS enhanced the rate of thermolysis of PE. Other studies 

focusing on products in pilot scale reactors are summarised in Table 2.3. 
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Table 2.3 Review of studies focusing on products yield via different isothermal set-ups of pyrolysis. 

 

Reference Polymers tested/Experimental setup  Notes 

 
 

McCaffrey et al. (1998) 
 
 
 
McCaffrey et al. (1999) 
 
 
Kaminsky et al. (1995) 
 
 
 
 
 
 
Mastral et al. (2002) 
 
 
 
 
 
Williams and Williams (1997) 
 
 
 
 
Williams and Williams (1999a) 
 
 
 
 
 
 
 
Williams and Williams (1999b) 
 
 
 
 
 
Bagri and Williams (2002) 
 
 
 
 
Cunliffe et al. (2003a, 2003b)  
 
 
Cunliffe and Williams (2003) 

 
LLDPE and HDPE pyrolysis in kettle type 
reactor coupled with reactive distillation, 
yielding typical liquid product 
 
LLDPE and HDPE pyrolysis in kettle type 
reactor coupled with reactive distillation, 
obtaining conventional liquid product 
 
1-3 kg hr-1 FBR pyrolysis of mixed PSW (with 
0.66% chlorine)  
 
 
 
 
FBR pyrolysis of HDPE. Experiments took place 
at five temperatures: 650; 685; 730; 780 and 
850°C were carried out and the residence time 
was varied from 0.64 to 2.6 s. 
 
 
 
Fixed bed static-batch reactor pyrolysis of 
mixed and single HDPE, LDPE, PS, PP, PET and 
PVC 
 
 
FBR pyrolysis of PS in a temperature range of 
500-700oC.  
 
 
 
 
 
 
FBR pyrolysis of LDPE in a temperature range 
of 500-700oC 
 
 
 
 
Fixed bed pyrolysis of LDPE w/ zeolite catalyst 
 
 
 
Fixed/static bed pyrolysis of polyester, 
phenolic, epoxy, vinylester, PP and PET.  
 
Pilot static-bed reactor pyrolysis of brominated 
polyester/styrene 

 
Reactions were carried out at 
440oC, under N2 atmosphere 
 
 
LLDPE started to produce 
volatile products earlier than 
HDPE 
 
Products contained about 36% 
C2H4, 15% C3H6, 9% 1-C4H8 and 
butadiene and an additional 
15% pyrolysis gasoline 
 
Main product obtained was a 
waxy cream coloured material 
(wax). The yield of this product 
varied from 79.7 wt% at 0.8 s to 
68.5 wt% 
 
Product yield was 9.63% gas, 
75.11% oil, 2.87% char and 
2.31% HCl. Gases identified were 
H2, CH4, C2H4, C2H6, C3H6, C3H8, 
C4H8, C and CO. 
 
Products collected were a 
wax/oil condensate and a 
separate oil fraction. Gas content 
(mainly H2 and CH4) increased 
with OT. 
 
Gases recovered were: H2, CH4, 
C2H4, C2H6, C3H6, C3H8, and C4H8. 
Analysis of the oils showed that 
at the higher temperatures, the 
concentration of aliphatic 
species above about C30 was 
greatly reduced. 
 
Oils recovered consisted of 
aliphatic compounds (alkadiene, 
alkene and alkane) and their 
branched chain derivatives 
 
Main products derived were: oil, 
gas and solid residue. 
 
Significant effect of both the 
temperature and the amount of 
brominated resin on gas yield. 
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At elevated temperatures (around 850°C), PSW pyrolysis yields almost exclusively 

aromatics; C2H4 and CH4 (Mastral et al., 2002; Mastral et al., 2003). The increase of the 

aromatic fraction with increasing gas phase temperature has also been reported for PSW and 

MSW (Day et al., 1999; Brage et al., 2000). To crack polyaromatic hydrocarbons, very high 

temperatures (>1200°C) and long residence times are required. Typical cracking products (e.g. 

H2, C2H4 and C2H2) were also reported to increase with elevated operating temperatures by 

Zolezzi et al. (2004). 

Many of the products yielded by pyrolysis and gasification are highly marketable. 

However, the fact remains that there is an even larger market now emerging for residual solids, 

to be utilised as carbon black or activated carbon. Although large industrial scale units do exist 

for both pyrolysis and gasification, most could perform more effectively if they targeted certain 

products depending on feedstock, market performance and demand. All such issues could be 

solved by end-product unit design, thereby targeting desirable products more efficiently. 

Thermal decomposition schemes on the end-product (employing lumped product yield) are an 

essential step to developing and validating industrial units targeting desirable products yielded 

by pyrolysis. Advances in this area will aid in the improvement of pyrolysis and gasification 

reactors. 

One of the main technologies incorporated by a number of plants in Austria, Germany, 

Korea, Italy and Switzerland, is the PYROPLEQ
®
 process. This technology (dominant in the 

period between 1978 to1996) is based on pyrolysis at 450-500°C in an externally heated rotary 

drum  with gas combustion at 1200°C, and a typical feed to the process is PSW (post-consumer 

mixtures). A different process which has proved to be successful for PSW rich in PVC, is the 

Akzo process (Netherlands) (Tukker et al., 1999). This fast pyrolysis process with a capacity of 

30 kg hr
-1

is based on a circulating fluidised bed (CFB) system (two reactors) with subsequent 

combustion. Input to the process is shredded mixed waste including a high percentage of PVC 

waste. The main outputs consist of HCl, CO, H2, and CH4, and depending on the feedstock 

composition, other hydrocarbons and fly ash.  

ConTherm
®
 technology pyrolyses shredded fuels such as MSW and automotive shredder 

residues (ASR) as well as up to 50% post-consumer plastics, at 500-550°C in 100 kt/year rotary 

kilns supplied by TECHNIP and combusts the gas directly in a pulverised coal-fired boiler 

(Malkow, 2004). Residues from the process are screened and sorted to recover materials, mainly 

metals. The full scale industrial process of NRC
®
 is another successful pyrolysis scheme. This 

process is based on pyrolysis with subsequent metal extraction technology. The aim is to 

produce purified calcium chloride instead of HCl and the input to the process is PVC waste 

(cables, flooring, profiles, etc.). No other PSW type is fed to the processing line, which results 
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in calcium chloride, coke, organic condensate (for use as fuels) and heavy metals for metal 

recycling, as products. PKA pyrolysis is another type of pyrolysis process technology, described 

previously by PKA (2002) and Malkow (2004). The technology comprises a modular pyrolysis 

and gasification concept at high temperatures. The pyrolysis takes place at 500 to 550°C in an 

externally heated rotary kiln and the yield is a de-dusted and homogenised CO/H2 rich fuel gas. 

Char containing minerals and metals are conditioned by separating ferrous and non-ferrous 

metals, reduced in moisture to <10% and ground to <2 mm before being used as a fuel, a 

sorbent (i.e. activated carbon) or a raw material in brick production (Malkow, 2004).   

The PyroMelt process (developed by ML Entsorgungs und Energieanlagen GmbH) 

combines pyrolysis and slagging combustion yielding an eluation-resistant, recyclable 

granulated slag (Juniper, 2005). The feed to the process consists of MSW, hazardous waste, 

ASR and post-consumer plastic waste. Pyrolysis takes place prior to the combustion process and 

the resulting gas is subjected to multiple scrubbing steps using pyrolysis oil. This process cools 

the gas from the range of 500 to 600°C down to 120 to 150°C. However, the char is cooled to 

50°C and jointly combusted with a slurry composed of dust and heavy pyrolysis oils in a melt 

furnace (Kubota-Surface-Melt).  

One of the most important pyrolysis processes is the BP polymer cracking process (Tukker 

et al., 1999). BP Chemicals plc has led the promotion of polymer cracking technology for 

chemical recycling since its beginnings in the early 1990s. After a series of pilot trials 

(conducted between 1994 and 1998), a plant was established in Scotland with a capacity of 

25,000 tonnes/year. Figure 2.6 shows a schematic of the BP polymer cracking process. Size 

reduction is required for the feed, which is then fed to a heated FBR (operating at 500°C) in the 

absence of air. Input specifications for the process are shown in Table 2.4. Plastics crack 

thermally under these conditions to hydrocarbons which vaporise and leave the bed with the 

fluidising gas. PSW decomposition leads to HCl formation (from PVC), which is neutralised by 

bringing the hot gas into contact with a solid lime absorbent. For the plastic that enter the 

process, 85% by weight is passed on as hydrocarbon liquid and the remaining 15% is gas at 

ambient temperature. The gas has a high content of monomers (ethylene and propylene) and 

other useful hydrocarbons with only some 15% being methane (Brophy et al., 1997). Total 

solids produced are typically up to 0.2 kg/kg of total solids feed. 
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Figure 2.6 - BP polymer cracking process schematic. Source: Tukker et al. (1999).  

 

 
Table 2.4 BP polymer cracking process input specifications.  
Source: Tukker et al., 1999. 

 

Material Unit Normal Limit 

Polyolefins 
PS 

PET 
PVC 

Total Plastic Content 
Ash 

Moisture 
Metal pieces 

Size 
Fines sub-250 micron 

Bulk Density 

wt% 
wt% 
wt% 
wt% 
wt% 
wt% 
wt% 
wt% 
mm 
wt% 

kg m-3 

80 
15 
3 
2 

92 
2 

0.5 
- 

1-20 
- 

400 

min. 70 
max. 30 
max. 5 
max. 4 
min. 90 
max. 5 
max. 1 
max. 1 

 
max. 1 

300 

 

One of the main pyrolysis technologies is the BASF process (Figure 2.7). This process 

started with a pilot plant capacity of 15,000 tonnes/year in Ludwigshafen, Germany, in 1994. As 

is the case with many recycling schemes, the BASF process starts with a pre-treatment step, 

whereby the mixed PSW is ground, and separated from metals and agglomerated materials 

(Heyde and Kremer, 1999). The conversion of the PSW into valuable petrochemicals takes 

place in a multi-stage melting and reduction process. In the first stage the plastic is molten and 

de-halogenated to preserve the subsequent plant segments from corrosion. The hydrogen 

chloride separated out in this process is absorbed and processed in the hydrochloric acid 

production plant, and hence the major part of the chlorine present in the input (e.g. from PVC) 

is converted into saleable HCl. Minor amounts are available as NaCl or CaCl2 effluent (Heyde 

and Kremer, 1999). Liquefied plastic waste is heated to over 400°C and cracked into 



Chapter 2  Literature Survey: TCT Processes 28 

 

  

components of different chain lengths producing gases (20-30%) and oils (60-70%). Naphtha 

produced by the feedstock process is treated in a steam cracker, and the monomers (e.g. 

ethylene, propylene) are recovered. High boiling oils can be processed into synthesis gas or 

conversion coke and then be transferred for further use. 

 
Figure 2.7 - BASF pyrolysis process. Source: Tukker et al. (1999). 

 

An alternative technology that has proved to be very successful for PSW treatment 

(especially for the case of PVC cable waste) is the NKT process (Figure 2.8). This process is 

based on an initial pre-treatment step that involves separating light plastics (PP, PE, etc.) and 

other materials, e.g. wood, sand, iron, steel, brass, copper and other metallic pollutants. The 

PSW waste is then fed to a reactor at a low pressure (2-3 bars) and a moderate temperature 

(375°C). The process does not emit dioxins, chlorine, metals or plasticisers and there are no 

liquid waste streams in the process since all streams are recycled within the system. A small 

volume of carbon dioxide gas is formed by the reaction between lime/limestone and hydrogen 

chloride. Mixed PVC building waste containing metals, sand, soil, PE, PP, wood and rubber 

waste has been successfully treated. Other smaller scale pyrolysis processes are also available 

and operated for chemical treatments, and Table 2.5 summarises these pyrolysis processes and 

their current status. 
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Figure 2.8 - NKT process diagram.  
Source: Tukker et al. (1999).  
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Table 2.5 Summary of other pyrolysis processes, their operating conditions and current status. 

 

Technology name Operating conditions Notes  Reference 

 
 

KEU process 

Top=350-550oC 
Input: PVC waste 
(palletised) 
Output: Slag, dust and 
energy 

Pyrolysis in a vertical 
reactor 
Char produced is burned in 
a rotary drum incinerator 

 
 

Buhl, 1999. 

 
 
 
 

Wayene 

 
 
Top=900oC 
Input: PE, PP, PS 
Output: 75-89% medium 
oil, 15-20% light oil 

 
 
High temperature pyrolysis 
Proven capacity:  
50 tonnes/day 

 
 
 

Tukker, 1999 

 
 
 
 
 

Toshiba 

 
 
 
Input: PSW with 20% 
chlorine content 
(powder) 
Output: 90% oil 
Pop= > 10 atm 

 
 
 
Reports show technology in 
research stage. 

 
 
 
 
 

Tukker, 1999 

 
 
 
 
 

Berliner process 

Top=650-750oC 
 
 
Input: PSW 
Output: 5% cokes, 2% 
metals, 3% inert solids, 
38% BTX and  light 
fraction, 3% medium 
fraction and gas 

 
 
 
 
Pilot scale 
 
Proven capacity: 20,000 
tonnes/year 
 
 

 
 
 
 
 
 

Tukker, 1999 

 
 
 

Noell 

 
Top=650-750oC 
Input: PSW, 65% linear, 
20% cyclic and 15% 
PVC. 
Output: Slag, dust and 
energy 

 
 
 
Industrial scale and 
capacity proven. 

 
 
 

Tukker, 1999 

 

The most applied within this group of processes is the Noell process, for its ability to 

convert 25% of the feedstock to oil (Tukker et al., 1999). The process operates in a rotary kiln 

reactor with a 250 kg m
-3 

density for the feed. It is also worth mentioning that the pyrolysis 

process is rapidly gaining importance for polyolefin feedstock and polyurethane (PU) foams. 

Zia et al. (2007) reported the PU pyrolysis resulting from automobile seats and other end 

products, and a two zone pyrolysis reactor has also been suggested for PU char processing. 

 

A fresh industrial perspective on pyrolysis was discussed by Butler et al. (2011), in which 

the technology as a whole is put alongside mechanical treatment and incineration as a 

complementing waste management component (rather than a competing technology) in what is 

known as the cascade waste management concept (Figure 2.9). The MSW fraction is divided 
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into two streams; the pyrolysis suitable stream will not only contain plastics, but will also 

include the fractions that waste mechanical treatment facilities cannot deal with. 

 

 

Figure 2.9 - The cascade waste management concept as illustrated by Butler et al. (2011). 

 

2.4.1. Gasification 

Thermolysis technology covers gasification, in which air is used in a sub-stoichiometric 

ratio as a gasification agent to produce high calorific fuels (CPPIA, 2007). The main advantage 

of using air instead of O2 alone is to simplify the process and reduce costs. However, a 

disadvantage is the presence of N2 (inert) in air which causes a reduction in the calorific value 

of the resulting fuels due to the dilution effect on fuel gases. Consequently, steam is introduced 

in a stoichiometric ratio to reduce the presence of N2. Several types of gasification processes 

have already been developed and reported; however, their practical performance data have not 

necessarily been satisfactory for universal application.  

A significant amount of char is always produced in gasification which needs to be further 

processed and/or burnt. Other gasification schemes (mainly on the pilot scale) use a great deal 

of expensive pure oxygen, whilst others necessitate considerable amounts of expensive 

materials such as coke and limestone, and deposit much sludge from which metals cannot be 

separated. An ideal gasification process for PSW should produce a high calorific value gas, 

completely combusted char, a metal product which can easily be separated from ash and should 

not require any additional installations for air/water pollution abatement.  
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Gasification attempts have been reported since the early 1970s (Hasegawa et al., 1974; 

Buekens, 1978). The gasification into high calorific value fuel gas obtained from PSW was 

demonstrated in the research stages and results were reported and published in the literature for 

PVC (Borgianni et al., 2002), PP (Xiao et al., 2009) and PET (Matsunami et al., 1999). In 

addition, a need to utilise as much waste as possible to treat in co-gasification is something that 

has captured the attention of many researchers. Table 2.6 summarises the main gasification 

technologies available to treat and/or co-gasifiy PSW. 

In its industrial application, the feasibility of co-gasification for a number of waste streams 

(PSW, biomass, RDF, etc.) has been proven. A typical co-gasification scheme will include a 

two-step process of two adjacent gasification furnaces (Conesa et al., 1996; Ranzi et al., 1997; 

Zia et al., 2007). After pre-treatment (i.e. shredding), the mixed stream will be introduced to an 

RDF moulder in which air sorting takes place and steam treatment. Oxygen and steam will be 

introduced to the first gasifier operating at low temperatures (outlet steam temperature of 

1300°C) with circulating sand at a temperature around 700°C. In the second-stage high-

temperature gasifier, the gas from the low- temperature gasifier is reacted with steam typically 

at a temperature of 1500°C to produce a gas composed primarily of carbon monoxide and 

hydrogen. At the furnace outlet, the gas is rapidly cooled to below 200°C to prevent the 

formation of dioxins and chlorides (based on chlorine content on PSW). The granulated blast 

furnace slag also produced is used in civil engineering and construction materials. The gas then 

passes through a gas scrubber, and any remaining hydrogen chloride is neutralised by alkalis 

and removed from the synthetic gas. This synthetic gas is used as a raw material within the 

chemical industry to produce chemicals such as hydrogen, methanol, ammonia and acetic acid.
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Table 2.6 Summary of main Gasification technologies reported on PSW. 

 

Technology Summary Reference 

 
 

WGT process 

Different types of wastes (PSW, MSW, sludges) are mechanically pre-treated, sorting out incombustibles and granulated to 
optimum sized particles and fed into a cylindrical reactor for gasification at 700-900oC to yield a HCV gas. Upon discharge 
and subsequent separation of gas and char, the latter may be utilised via combustion in a boiler to raise steam. 

 
WGT, 2002 

 
 

Texaco process 

 
PSW is mildly thermally cracked (depolymerisation) into synthetic heavy oil and some condensable and non-condensable 
gas fractions. The non-condensable gases are reused in the liquefaction as fuel (together with natural gas). The 
gasification is carried out with oxygen and steam at a temperature of 1200 – 1500oC.  

 
Weissman, 1997;  

Croezen and Sas, 1997 

 
 

SVZ process 

 
Input is fed into a reactor (kiln), together with lignite (in the form of briquettes) and waste oil. Oxygen and steam are used 
as gasification media, and are supplied in counter flow with the input materials. Liquid hydrocarbons are further 
processed by oil pressure. The gas is used mainly for methanol production and around 20% is used for electricity 
production. 

 
 

Tukker, 1999 

 
 
 

Akzo Nobel 

 
The process consists of two separate circulating fluid bed (CFB) reactors at atmospheric pressure. The first is a 
gasification reactor in which waste (usually rich with PVC) is converted at 700-900oC into product gas (fuel and HCl gas) 
and tars. The second unit is a combustion reactor that burns the residual tar to provide heat for the gasification process. 
Circulating sand between the gasifier and combustor transfers heat between the two reactors.  

 
 

Tukker, 1999 
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2.4.2. Hydrogenation 

Hydrogenation (hydrocracking) by definition means the addition of hydrogen (H2) by 

chemical reaction (March, 1992). Many technologies employing PSW hydrogenation have 

failed or been abandoned during the pilot stages. The RWE process was one of these terminated 

projects which employed hydrogenation following the depolymerisation of plastic waste (10 kg 

hr
-1

), and HCl was removed afterwards for contaminated PSW. The RWE process operated in a 

temperature range between 400 to 500°C and the main outputs were 80% oil, 10% gas and 

solids. The Hiedrierwerke and Freiberg hydrogenation processes are two other examples of 

technologies currently terminated for financial reasons. Both processes employed a 

hydrocracking reactor above 400°C to produce rich oils (Nishino, 2005). 

The main technology applied in PSW recycling via hydrogenation technology is the Veba 

process. Based upon the coal liquefaction technology, Veba Oel AG
®
 converted coal by this 

process into naphtha and gas oil. The current PSW treatment technology employs a 

depolymerisation section where the agglomerated plastic waste is kept between 350-400ºC to 

effect depolymerisation and dechlorination (in the case of PVC rich waste). The overhead 

product is partially condensed (Horvat and Ng, 1999) and contains 18 % of the chlorine input; 

this is fed into a hydrocracker where the HCl is eliminated through the formation of water. The 

resulting Cl-free condensate and gas are mixed with the depolymerisate for treatment in the 

VCC section. The main outputs of the process can be summarised as follows: (i) HCl, (ii) 

Syncrude from the VCC section (chlorine free), (iii) Hydrogenated solid residue, and (iv) Off 

gas. The input for the depolymerisation section was described by Sas (1994) as follows: (i) 

Particle size < 1.0 cm, (ii) Bulk density ≥ 300 kg m
-3

, (iii) Water content < 1.0 wt%, (iv) PVC < 

4% ( ≤ 2 wt% chlorine), (v) Inert content < 4.5 wt% at 650 ºC, (vi) Metal content < 1.0 wt%,  

and (vii) Content of plastic ≥ 90.0 wt%. This should not to be confused with the Veba Combi 

Cracking (VCC) process which is described in Chapter 6. 

2.4.3. Treatments of a Chemical Nature 

In this section, other treatments of either a pure chemical nature or other (non-thermolysis) 

schemes employing polymer degradation technologies are detailed. One of the main 

technologies emerging from the 1980s is the degradative extrusion process, where plastic is 

degraded in an extruder for recovering certain chemicals. 

This process employs high operating temperatures and influences PSW degradation via 

mechanical and chemical energy (Michaeli and Lackner, 1995) and degradation promoting 

additives may be employed. The IKV process is one of the main technologies used in 

degradative extrusion, and the input to the process is PSW with a maximum PVC content of 
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80%. The operating temperature is between 300 to 400°C, employed in a pilot scale twin screw 

extruder (Brandrup et al., 1996). Other technologies employed are the Leuna and Stahlwerkke 

processes, with a 400 and 200 kg hr
-1

 capacity, respectively. Both processes operate in the range 

of 400°C for PSW with up to 50% PVC content. 

Another advantageous technology for use in chemical treatments is catalytic and steam 

cracking. The concept for both processes is the employment of either steam or a catalyst in a 

unit operation and Table 2.7 summarises the main technologies employed in steam and catalytic 

cracking of PSW. Whilst degradative extrusion, steam and catalytic cracking are employed 

worldwide, thermoplastics (mainly polyolefins) are advantageous for other recovery methods 

that are present in both pilot and industrial schemes. These schemes fall into the category of 

chemical recycling, and can be subdivided into feedstock (monomer) recycling and recycling of 

a chemical nature.  

Recycling PSW via pure chemical routes can be summarised by the following technologies: 

hydrolysis, glycolysis, fractionation, hydroglycolysis, aminolysis, methanolysis and acid 

cleavage. Table 2.8 summarises chemical recycling schemes, which fall outside the advanced 

TCT category. 
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Table 2.7 Summary of main steam and catalytic cracking technologies employed in PSW chemical recycling. 

 

Technology name Process conditions Notes References 

 
 
 
 

Fuji process 

 
 
 
Top= 400oC, Tip= 250oC 
Capacity (pilot): 500 ton/yr 
Capacity (input): 5000 ton/yr 

 
Industrial scale 
Low temperature catalytic cracking 
Employing pyrolysis technology 
Zeolite catalysts are used (ZSM5) 
Input: Polyolefin waste 
Output: 80% oil, 15% gas 
& 5% solid rest fraction 

 
 

Brandrup et al., 1996; 
Tukker et al, 1999 

 
 
 
 

 
 

Kentucky process 

 
Top= 400-4500C, P= 56 atm 
Input: PSW 
Output: 90% oil 

 
Developed in the University of Kentucky (US) 
Research stage 
Zeolite catalysts are used 

 
Tukker et al, 1999 

 
 
 
 

Leuna degradative 
extrusion + steam 
cracking process 

 

 
 
 
Top (extrusion) = 400-500oC, Top 
(extrusion)= > 8000C 
Input: 13 wt % PSW  
Output: C2, C3 and C4 monomers 
 

 
 
 
Description: light PSW fraction is treated with degradative 
extrusion and then mixed with paraffin from hydrocracking. This 
mixture is the input for steam cracker. 
Project showed good results but terminated due to lack of interest. 
 

 
 
 
 

Tukker et al, 1999 

 
 

Amoco 

Top= 490-580oC 
Input: PE, PP, PS, PSW mixed with vacuum 
gas oil 
Input quality: in solution 
Output: Naphtha, light mineral oil 

 
 
Research 

 
 

Horvat and Ng, 1999 
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Table 2.7 (Cont’d) Summary of main steam and catalytic cracking technologies employed in PSW chemical recycling. 

 

 
Mazda 

 
Input: Shreded PSW from scrap car 
parts. 
Output: 60% (oil + kerosene) 

 
Pilot 

 
Horvat and Ng, 1999 

 
 

Nikon 
 

 
Top= 200-250oC 
Input: PSW (10 mm in size) 
Output: 80% oil 

 
Pilot 
 
Metal catalyst are employed 

 
Horvat and Ng, 1999 

 
 
 

Molten Metal 
Technology 

 

 
 
Top= 1400oC 
Input: PSW and organic waste  
Output: synthesis gas, HCl, slag 

Research 
 
 
Nickel based catalyst are used 
30% HCl has been recovered in lab scale 

 
 

Blengini, 2009 

 
PC: process conditions, Top (

oC): operating temperatures,  

Tip (
oC): input temperatures 
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Table 2.8 Summary of chemical and monomer (feedstock) recycling schemes of a non thermo-chemical nature. 

 

Technology name Process conditions Notes References 

 
PET Hydrolysis 

 
Top = 200oC 
P = 2-5 MPa 

 
PET is heated with an excess of water at high 
temperatures 

 

APC, 1999; Brandrup et al., 1996; 
SubsTech, 2006 

 
PU Hydrolysis 

(Bayer General Motors) 

 
- 

 
Pilot scale 

 

APC, 1999; Brandrup et al., 1996; 
SubsTech, 2006 

 
PA 6 treatment via 

tehromlysis/hydrolysis 

 
Top = 300oC 
P = 20-100 bar 

 
Depolymerization (monomer) recycling with 
water at high temperatures 

 

SubsTech, 2006 

 
Methanolysis of PET 

 
Top > 200oC 
P > 2 MPa 

 
Metal catalysts are applied in this process 
Insensitive to contaminants 

 

Mastellone, 1999 

 
Glycolysis of PET 

 
Top > 200oC 
 

 
Acceleration with catalyst 

 

SubsTech, 2006 

PMMA depolymerization Top > 300oC 
 

Molten baths used (tin and lead) 
Several minutes residence time 

SubsTech, 2006; Recovinyl, 2008 

 
Acid cleavage of PA 6 

 
Phosphoric acid medium used 

 
Industrial scale 

 

SubsTech, 2006 
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2.5. Energy Recovery: Quaternary Treatments of Plastic 

Solid Waste via Combustion Processes 

Economic constrains pose a major dilemma in industry, especially for recovery methods 

which process scrap and heterogeneous waste streams. Energy recovery offers a solution to such 

problems by employing combustion processes to produce heat, steam and/or electricity. PSW 

has a high calorific value when compared to other materials due to its crude oil origins, as Table 

2.1 illustrates by comparison to gas oil, heavy oil and other crude oil derivatives. Since the 

heating value of plastics is high, they make a convenient energy source, and producing water 

and carbon dioxide upon combustion makes PSW similar to other petroleum based fuels. 

Chemical treatment of polymers, namely via pyrolysis, produces valuable chemicals and energy 

in the form of heat. This is considered one of the main advantages of pyrolysis and a reason for 

it being higher up the hierarchy than quaternary treatment methods. In this thesis, an 

incineration unit (IU) with combined heat and power (CHP) is included in the LCA study 

conducted in Chapter 6. Consequently, for completeness this section focuses on combustion 

processes as a possible route for MSW treatment.  

Energy recovery (quaternary treatment) methods include incineration under controlled 

conditions. This generates electricity in addition to reducing the volume of the waste. Excess 

heat produced in a plant can then be used in industrial or household heating schemes and this is 

known as a CHP scheme. The majority of incinerators in the UK employ moving grate 

technology, whereby a mechanical grate propels the waste into the furnace. In general, 

incineration of PSW results in a volume reduction of 90-99%, which reduces the need for 

landfilling. In the process of energy recovery, the destruction of foams and granules resulting 

from PSW also destroys chlorofluorocarbons (CFCs) and other harmful blowing agents present 

(APC, 1999). However, the presence of fire retardants (FRs) increases the complexity of energy 

recovery from waste.  

Dependency on fossil fuels as an energy source could be reduced by PSW utilisation in 

energy recovery schemes. It is estimated that by 2020, 17% of the UK’s electricity could come 

from waste compared to the 0.5% reported (Yassin et al., 2007). The Department of 

Environment, Food and Rural Affairs (DEFRA, UK) published a review in 2006 on England’s 

waste strategy and set a target of 25% MSW to be used in EfW, which corresponds to 700 MWe 

of electric capacity. Further to the DEFRA review, many associated agencies embraced the idea 

of direct incineration and the recovery of energy by thermal processing. Three new EfW plants 

in Hampshire accounted for 46% and 35% of its MSW and recycling capacities in 2004-2005, 

and a new EfW plant to treat 500,000 tonnes per year is under construction in Kent. In 

Sheffield, the existing EfW plant, with a capacity of 135,000 tonnes, is being replaced by a new 
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plant with a capacity of 225,000 tonnes (Ares and Bolton, 2002; Yassin et al., 2005; Quant, 

2005; Yassin et al., 2007). It should also be stated that PSW as a feedstock has two main 

objectives within the incineration industry: (i) to act as fuel to supply energy in its subsequent 

combustion phase, (ii) to act as a reducing agent in pyrolysis and gasification processes to 

replace coke (Westerhout et al., 1998b). Over the past decade, enviro-friendly chemical 

recycling processes have become of interest, and in the steel making industry the use of waste 

plastics as a supplemental fuel with coal has been explored (Janz et al., 1996; Ariyama, 1996). 

 

2.5.1. Co- Incineration of Plastic Solid Waste 

MSW can be accepted with high fractions of PSW in municipal solid waste incinerators 

(MSWIs). However, for such combustion processes to be applicable to PSW a number of issues 

arise. First, if one wants to produce reusable slags, the heavy metal input into the incinerator 

should be limited (March, 1992; Kowalska et al., 2002). Furthermore, an important point is the 

relatively low incineration temperature of MSWIs (around 850 ºC). Fluidized bed combustors 

(FBCs) are increasing in popularity for incineration due to; (i) less complex emissions control 

systems, (ii) high combustion efficiency with simple operation and a fast response, (iii) 

reduction in boiler size, and (iv) low corrosion with easier ash removal. Yassin et al. (2007) 

reviewed FBC technologies in Europe, where the revolving fluid bed developed by Ebara Co. is 

stated as being very rapidly utilised on the continent. More than 100 units are installed 

worldwide, including the Madrid plant unit which takes 10% of the city’s waste (with 9% 

commingled PSW) to produce electricity. The main principle for this technology is the 

mechanism of the internal furnace with no moving parts, which is equipped with a slanted bed 

floor to produce a revolving sand motion.   

Germany has the highest number of incinerators in Europe, with over 53 units with a 

capacity exceeding 10.7 million tonnes/year (Pollution Issue, 2007). In the USA, the design 

capacity (110 tonnes/day) of over 190 incinerators had been exceeded in 2006. In the EU, 

ISOPA (European Diisocyanates & Polyols Producers Association) supports the incineration of 

MSW with a high content of PSW (which make up on average 7% of MSW), which results in a 

high calorific value fuel with constant ash content (API, 2007).  

Many countries within the EU cover the electrical demand to hundreds of communities by 

direct incineration, e.g. Denmark, Sweden, and Germany. In the UK, DEFRA announced that 

currently 15 EfW plants exist in the UK with a design capacity exceeding 3 million tonnes of 

municipal waste (DEFRA, 2006). Co-incineration is also employed to generate energy and 

reduce air pollutants emission control problems. A number of European nations have adopted a 

strategy of mixing high content PSW residues with coal, capitalising upon the concept of 

economies of scale, yet still transportation issues arise in this case. Normally, it has been 
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demonstrated that fuels from waste within a distance of 80 km could support, at the maximum, a 

20 MW power plant, and this may be sufficient for industrial applications. A previous study by 

Boavida et al. (2003) investigated the co-combustion of PSW with coal using a FBC with the 

aim of achieving a fuel mixture with little variation in its heating value and simultaneously 

upgrading the mixture for energy purposes. The results indicated that the form in which the fuel 

is fed into the combustor significantly influences the combustion performance. Differences were 

observed in terms of the combustion efficiency and emissions when waste was fed in a densified 

or a fluffy state, or when mixed with coal. Part of the combustion of the waste material, contrary 

to that of coal, was observed to take place in the freeboard where the temperature was as much 

as 150°C above that of the bed. The addition of waste by 20% in weight was found to cause 

little disturbance in the bed temperature but relatively more enhanced variations in the 

freeboard, due to an increase in volatiles released. 

 

2.5.2. Blast Furnaces and Cement Kilns  

Many industrial schemes utilise cement kilns as incinerators. The cement industry has been 

using alternative fuels made from PSW for over two decades. Figure 2.10 illustrates 

schematically the concept of cement kiln processing of waste with a high PSW content.  

 
Figure 2.10 - Schematic of cement kiln combustion (McDoughall et al., 2008). 

 

The technological requirements of this industry make it particularly well suited to the 

incineration of fuels made from waste. Cement kiln operation lines are especially suitable for 

the use of PSW as a feedstock (Tukker et al., 1999). The incineration conditions in cement kilns 

make them suitable for using alternatives fuels made from PSW because of the following 
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factors: a high temperature, a sizeable kiln length, fuel remaining in a kiln for a long time, and 

the alkaline environment present within the kiln. Temperatures in the kiln are very high (the gas 

temperature in the combustion zone reaches 2000°C), and the gas residence time in 

temperatures around 1200°C is about three seconds given a 2-3% oxygen content in the gases. 

These conditions are far above the temperature level and time necessary for the total combustion 

of high molecular hydrocarbons. There are 250 cement plants within the EU producing 170 

million tonnes of cement per year (Janz and Weiss, 1996). In Poland there are 12 full-

production cycle cement plant and Poland produced almost 11 million tonnes of cement in 

2003. According to recent estimates, the greatest usage of alternative fuels in European 

countries is to be found in Holland (72%), Switzerland (34%) and Belgium (30%) (Tukker et 

al., 1999). 

Many cement kilns in the UK, Belgium, Holland, Switzerland and other countries have 

therefore started to use pre-treated waste streams as a fuel. One example is the cement plant 

owned and operated by Lafarge cement S.A. (Poland) using alternative fuels made from 

processed waste. In addition, the solid materials flow in the opposite direction to the 

incineration gases and the length of the kiln (200 m) results in a long residence time of 

incineration gases at high temperatures: 4 to 6 seconds at 1800°C and 15 to 20 seconds at 

1200°C (Horvat and Ng, 1999). Two processes are dominant in this application;  a dry process 

and wet combustion. In the dry process the raw materials are introduced in dry form into the 

kiln and in the wet process, these materials are introduced in the form of slurry. The type of 

process used depends, amongst others things, on the source of the kiln’s raw materials. A clear 

disadvantage of the wet process is that it needs much more energy than the dry process (5,000 

MJ/tonne against 3,600 MJ/tonne, respectively), since no water has to be evaporated in the dry 

process. In the canton of Zug (Switzerland) more than 30 fractions of waste are collected and 

sent for incineration outside the canton (Edelmann et al., 2005). In the period between 1995 

until 2000, all commingled PSW was send to the cement kiln of Untervaz. In 2001, the 

efficiency of the kiln was increased by 10% by altering the feed and recycling plastic bottles and 

containers from collection points. By 2001, 50% of all plastic waste was collected separately for 

cement production. 

Out of the different recycling technologies, recovery of energy and fuel from polymers is a 

very important and effective option. For the smelting of iron ore for pig iron production, coke is 

traditionally used in a blast furnace to generate CO and heat. PSW has replaced part of the coke 

or pulverised coal for pig iron production. Energy and chemical recycling processes have been 

developed worldwide to treat PSW via blast furnaces as a reducing agent for coal or coke 

implementing pyrolysis, gasification, a combination of both in a step wise fashion or 

combustion. This technology has been dominant in a number of markets and industries 
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worldwide and has been reported by a number of steel manufacturers, including the Bremen 

Steel Company in Germany and Pohang Iron and Steel Making Company in Korea (PISMC, 

1996a; 1996b, Asanuma et al., 1997).  

Current regulation in the EU and North America require 25% of the waste stream to be 

separated for recovery prior to incineration. However, this percentage varies from one country 

to another depending on the materials and amount of it in the final MSW line (USEPA, 1991). 

The US and EU regulations cover the main three types of MSWIs which can be classified as 

follows (depending on airborne emissions and feed processed): 

1. Mass Burn Combustors (MBCs): These incineration units process over 55% on average 

of the MSW in the EU and the US. MBCs accept all MSW except items that won't go 

through the feed line. Non-segregated refuse is placed on a grate that moves through the 

combustion chamber. Air is used in excess and is forced below and above the grate.  

2. Refuse Derived Fuel Combustors (RDFCs): These units require the waste to be 

processed prior to combustion. Processing typically includes shredding and removal of 

non-combustibles. RDFCs maybe co-fired with coal. 

3. Modular combustors: These combustors are the smallest in size and types vary in 

operation mode and percentage of excess air. 

Despite the relatively low contribution of PSW by weight to the MSW final stream, plastics 

contribute 25% to the total calorific value of the MSW content (Magee, 1989). Plastics 

(commercial grades, resin, master batches and pure polymers) all combust in two phases, a 

pyrolysis and a combustion phase (Figure 2.11).  
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Figure 2.11 - Flame dynamics showing separation of pyrolysis and oxidation (Wark et al., 1998).  

 

In the first phase, the plastics decompose chemically by heat into gases, the composition of 

which strongly depends on the polymer types, contents, and on the incineration process 

condition (temperature, pressure, etc., Boettner et al., 1973). The mixture of gases then enters 

the flame where combustion occurs. Regardless of the type of plastic materials combusting, 

gases from combustion processes are typically small and stable (two to three atoms) (Dynamac, 

1989) and include H2O, CO2, NO, CO and SO2. Incomplete combustion caused either by an 

insufficient amount of oxygen or a low flame temperature may lead to the emission of more 

complex compounds. Generally, the most concern in MSW incineration processes is regarding 

compounds resulting from incomplete combustion, e.g. chlorobenzene. Incomplete combustion 

can also lead to the release of certain amounts of particulates (soot), which may also disrupt the 

operation of the particulate collection devices. 

In conclusion, TCT technologies have been implemented in industry targeting rich refinery 

cuts and petrochemicals. Operating conditions, feedstock and unit type are the major factors that 

differentiate between technologies and product yields. At elevated temperatures (around 

850°C), PSW pyrolysis yields almost exclusively aromatics, C2H4 and CH4 (Mastral et al., 

2002; Mastral et al., 2003) and an increase in the aromatic fraction with increasing gas phase 

temperature has also been reported for PSW (Day et al., 1999; Brage et al., 2000). To crack 

polyaromatic hydrocarbons, very high temperatures (>1200°C) and long residence times are 

required. Typical cracking products (e.g. H2, C2H4 and C2H2) have also been reported to 
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increase with elevated operating temperatures (Zolezzi et al., 2004). In PSW pyrolysis and 

gasification, endothermic reactions involving steam and CO2 (Franco et al., 2003; Marquez-

Montesinos et al., 2002) and high heating rates, create a char which is more reactive and easier 

to deal with than char produced from other thermal processes (Zanzi et al., 1996; Zanzi et al., 

2002). As a result of these reactions, a high reaction temperature has been reported to increase 

the H2 concentration (Lv et al., 2004), gas yield (Pinto et al., 2002) and sometimes LHV 

(Narvaez et al., 1996) for a wide range of gasification configurations and oxidising media. 

Other thermolysis technologies (gasification, hydrogenation), treatments of a chemical 

nature (glycolysis) and combustion processes (incineration) were also reported. PSW 

incineration leads to a volume reduction of 90-99%, which reduces the reliability on landfilling. 

In the process of energy recovery, the destruction of foams and granules resulting from PSW 

also destroys CFCs and other harmful blowing agents present (APC, 1999). In incineration 

processes, the temperature is an essential parameter that leads to a reduction in CO and N2O 

accompanied with an increase in NOx. The addition of waste material is found to reduce N2O 

while enhancing NOx formation and this is believed to be due to the release of fuel-N from 

waste materials being mostly NH3 groups. The conversion of fuel-N to NOx varied from 4 to 6% 

and this is below what is usually observed in fluidised beds. Finally, thermolysis technologies 

(namely pyrolysis) alongside incineration units have a number of established technologies that 

present themselves as an advantageous route for chemical and energy recovery for treating a 

wide spectrum of feedstocks.   

2.6. Thermal Cracking & Weight Loss (Degressive) 

Kinetics 

An optimum TCT process is a process that recovers energy, concurrently recovers valuable 

products and solves the disposal problem (i.e. landfilling). A lack of fundamental data (e.g. the 

behaviour of materials being treated at different operating conditions, product yields and purity, 

etc.) hampers the optimal design and operation of pyrolysis reactors, hence the importance of 

kinetic studies (Oh et al., 2003). Understanding the behaviour of polymeric materials during 

their thermal degradation in the presence of inert (i.e. nitrogen, helium, argon, etc.) or partial 

oxidative atmospheres can aid in the understanding of pyrolysis, combustion and other thermal 

processes. The thermal decomposition of polymeric and lignocellulosic materials is a complex 

process which involves a number of chemical reactions as well as physical stages such as heat 

and mass transfer (Bilbao et al., 1997). This section focuses on the degressive behaviour of 

polymers subjected to pyrolysis and the different mathematical expressions derived to evaluate 

the kinetic parameters of the reactions.  
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Thermal degradation of organic materials allows the collection of a number of the 

constituting chemicals, combustible gases and/or energy, with the reduction of landfilling as an 

added advantage (Mastral et al., 2007). Pyrolysis is an advanced conversion technology that has 

the ability to produce a clean, high calorific value gas from a wide variety of feed streams. The 

hydrocarbon content of the feed is converted into a gas, which is suitable for energy production 

without the need for flue gas treatment. Pyrolysis is capable of treating many different solid 

hydrocarbon based wastes whilst producing a clean fuel gas with a high calorific value, 

typically between 22-30 MJ m
-3

, depending on the waste material being processed. A lower 

calorific value is associated with biomass waste, and a higher calorific value is associated with 

other wastes such as sewage sludge (Prestige Thermal, 2007). 

Gases can be produced with higher calorific values when the waste contains significant 

quantities of synthetic materials such as rubber and plastics. Solid char is also produced from 

the process, which contains both the carbon and the mineral content of the original feed 

material. The char can either be further processed onsite to release the energy content of the 

carbon, or utilised offsite in other thermal processes. Pyrolysis has been employed by a number 

of researchers to treat PSW or other waste, including biomass and rubbers (Ray et al., 2004; 

Yang et al., 2004) and TCT processes allow combustible gases and/or energy to be recovered 

whilst also reducing landfilling. Implementing these processes for a commercial scale reactor 

requires knowledge of the thermal degradation behaviour of the materials under different 

operating conditions. 

In polyolefins upgrading thermogravimetric analysis (TGA) is the most common technique 

used for thermal degradation on a micro laboratory scale, although it is often carried out at 

temperatures below 450°C. Consequently, extrapolating the results to the design of the reactors 

operating at higher temperatures remains speculative. Since the pyrolysis reaction is 

endothermic, heat needs to be supplied to the reactor either by a direct or an indirect manner. A 

number of different reactors have been reported using different heating methods by various 

authors and theses are summarised in Table 2.9. 
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Table 2.9. Review of thermal degradation (cracking) technologies categorized based on the heating 
method. 

 
Heat carrier loop with external heating 

Technology Reference 

 
Circulating Fluidized Bed (CFB) 

 
Bubbling Fluidized Bed (BFB) 

 
Rotating cone 

 
 

Spouted bed 
 

Stirred reactor 
 

 
Sodero et al., 1996; Lovett et al., 1997 
 
Mastellone, 1999 
  
Westerhout et al., 1997a; Westerhout et al., 1998b;  
Westerhout et al., 1998c 
 
Olazar et al., 1992; Aguado et al., 2000;  Aguado et al., 2002 
 
Masuda et al., 2001 
 

Direct contact or heating with carrier 

 
Lead bath 

 
Ablative reactor 

 
Vacuum and plasma reactors 

 

 
Smolders and Baeyens, 2004 
 
Rodriguez et al., 2001 
 
Huang and Tang, 2009 
 

 

Operating conditions always determine the fate of the reactions obtained. In order to obtain 

a maximum gas yield, secondary reactions are avoided by operating at high temperatures in a 

flash pyrolysis process (Ceamanos et al., 2002), whilst reducing residence time and operating 

temperatures in the pyrolysis process maximises the liquids yield (Williams and Williams, 

1997). Reactors used in pyrolysis can be also classified according to the residence time of the 

solid and gas phase in the reactor: a long residence time of the solids and a short residence time 

of the gas requires using a bubbling fluidised bed (BFB) reactor, a short residence time for both 

solid and gas phases is achieved in a core flow CFB reactor (Figure 2.12). 
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Figure 2.12 - Solid Residence Time (SRT) vs. Gas Residence Time (GRT) for common pyrolysis units. 

 

 

The kinetics of polymers thermal degradation is studied using either isothermal or dynamic 

(non-isothermal) methods. Dahiya et al. (2008) stated the advantages and disadvantages of 

isothermal measurements and the main advantages include: (i) changes in degradation 

mechanisms are easily detected due to the fact that reaction rates are obtained at a single 

temperature, hence a change in the order of the reaction can be determined; and (ii) kinetic rates 

can be obtained by solving analytical equations. However, the main disadvantages are: (i) 

several experiments are required at different temperatures, therefore varying sample properties; 

and (ii) the reaction takes place to a certain extent before the sample attains the desired constant 

temperature.  

Dynamic (non-isothermal) methods in a TGA set-up generally involve heating the reactant 

at a constant heating rate (β) from ambient temperature to one sufficiently high that a 

transformation occurs. The reaction is considered terminated when the transformation is 

suppressed or stopped. Dynamic techniques are frequently utilised in the study of reaction 

kinetics and their popularity is due to the fact that both analytical and kinetic data can be 

obtained simultaneously from a single experiment and in a relatively short period of time 

(Agrawal, 1992a). These experiments also provide another advantage, which is the ability to 

obtain data within a wide range of temperatures and they also provide the opportunity to study 

the influence of β on the reaction (Oh et al, 2003). Non-isothermal kinetic equations are 

mathematically more involved, and consequently are not without problems and complexities 
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(Agrawal, 1992b). The importance of reaction kinetics comes directly from the benefits they 

provide, in terms of unit operation and design. 

The kinetics of chemical reactions depends on the rate determining step (i.e. the slowest 

step), which in a solid state reaction can be: (i) the nucleation and growth of a product; (ii) 

diffusion; and (iii) chemical reactions at the interface. However, diffusion problems, heat and 

mass transfer rates are negligible in TGA pyrolysis studies due to small samples used (typically 

less than 20 mg) (Conesa et al., 1996; Bockhorn et al., 1999; Ceamanos et al., 2002). From the 

basic kinetic rate equation, one can derive the expressions for isothermal and dynamic 

techniques. Dahiya et al. (2008) classed the models of isothermal solid state reactions based on 

the type of the rate determining step (Table 2.10). Starting with the basic kinetic equation: 

 

)f(k
dt

dα α=         (2.1) 

 

where α is the degree of conversion defined as (mo-m)/( mo- m∞), with mo being the initial mass, 

m the mass at any time t and m∞ the final mass; t is the time (s), T is the temperature, k is the 

temperature-dependant rate constant and f(α) is the function that represent the reaction (rxn) 

model. And this can be often described by degressive kinetics as: 

nα)(1k
dt

dα −=         (2.2) 

 

where n is the reaction order and the rate constant k can be expressed using the Arrhenius-type 

temperature dependence: 

 

 /RT)Eexp(Ak a−=         (2.3) 

 

Hence, Equation (2.2.) becomes: 

 

n

a α)(1/RT)Eexp(A
dt

dα −−=       (2.4) 

 

The generalised expression for the dynamic method was also given by Dahiya et al. (2008) as: 

 

)E/RT)f((A/B)exp(
dT

dα α−=                                (2.5) 

 

where β is the heating rate (
o
C min

-1
) expressed as dT/dt, E is the apparent activation energy (kJ 

mol
-1

), A is the Arrhenius pre-exponential or frequency factor (min
-1

), sometimes denoted as P 
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and T is the temperature in K. 

 

There are several methods for deriving kinetic parameters from the previous equation, such as 

(i) the differential method, i.e. direct application of the equation; (ii) the difference-differential 

method, i.e. the Freeman and Carroll method; (iii) the integral method using a simple 

approximation of the exponential temperature integral, i.e. the Coats-Redfern method; and (iv) 

model-independent methods, i.e. isoconversional methods based on heating rate (such as the 

Ozawa-Flynn-Wall (OFW) method, the Friedman method or the Kissinger method). Table 2.11 

reviews these major methods and states their drawbacks and applications. 
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Table 2.10 Selected models of isothermal solid state reaction according to Dahiya et al. (2008). 

 

Model Class Name of model/equations Differential form, f(α) 

 
Diffusion-controlled models 

One dimensional 

Two dimensional 

Three dimensional – Jander’s equation 

1/2 α                                                      (2.6) 
1α)]ln(1[ −−−                                     (2.7) 

11/32/3 ]α)(1[1α)3/2(1 −−−−             (2.8) 

 
Nucleation and growth controlled models 

Avrami-Erofeev’s equation, with m = 1.5, 2, 3, 4 

First order rxn (random nucleation)  

1/mmα)]ln(1α)[m(1 −−−−                  (2.9) 

α1−                                                           (2.10) 

Contracting phase boundary  Plate (n = 1), cylindrical (n = 2) and spherical (n = 3) geometry  1)/n(nα)(1n −−                                          (2.11) 
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Table 2.11 Review of the main expressions for the dynamic models used in polymer degradation studies. Source: Dahiya et al. (2008). 

 

Method Expression(s) Notes 

 
 
 
 

Differential 

E/RTA/βln)
)

/
ln( −= )(

f(α

dtdα
;                                                                                                (2.12) 

Thus, a plot of the left-hand side vs. 1/T yields both E and A from the slope and intercept, respectively. For 
order-based models, i.e. those involving (1 − a), the reaction order (n) has to be determined by an independent 
method as such: 

n)1/(1

max nα1 −=− ;                                                                                                                           (2.13) 

α max is the fraction reacted at the maximum rate of decomposition. 

 
 
The suppression of errors due to the logarithmic  
form of dxs/dT and need for data filtration a
smoothing to obtain bias parameters are  
amongst its major drawbacks. 

 
 

Freeman and Carroll  
n

)α∆log(1

∆(1/T)

2.3RT

E

α)∆log(1

)∆log(dα/dT

s

+








−
=

−
;                                                                     (2.14) 

where the function withdrawn from the TGA curve is: 

f(xs) = (1 − α)n                                                                                                                                   (2.15) 

 
Widely used in literature, but eliminates the  
evolution of data, and inaccurate in  
maximum decomposition regions 

 
 
 

Integral method 

logp(x))
βR

AE
log()log +=(α                                                                                                    (2.16) 

p(x)
βR

AE
)g(α =                                                                                                                             (2.17) 

2

2
m(1/x))/(1

x

2
(1

x

x)exp(
p(x) −−

−
= ; where m = 0                                                         (2.18) 

 
The main controversy is around the p(x)  
expression were a number of authors  
have tried to adapt simpler and more  
representative expressions. 

 
Single heating rate- 
Isoconversion OFW 

method 

 

)1.05(E/R.TE/R)ln(k)xln(15.33βln os −=−++)(                                                     (2.19) 

Source: Ceamanos et al. (2002) 

 
The major disadvantage is that multi-step  
process during the course of reaction cannot be  
detected 
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2.7.  Effect of Operational Conditions, Sample Preparation 

and Conditioning  

Historically, the pyrolysis of polymers has been executed at different scales. TGA has been 

a widely popular method, especially for determining the reaction kinetics of the studied 

polymers (Conesa et al., 1996; Ceamanos et al., 2002; Park et al., 2000a; 2000b; Oh, et al., 

2003). Previous studies have demonstrated different experimental set-ups used with different 

inert atmospheres (at different scales), temperature ranges, sample amounts, heating rates (β) 

and pressures (Conesa et al., 1996; Bilbao et al., 1997; Bockhorn et al., 1998; 1999a; 1999b; 

Ceamanos et al., 2002; Park et al., 2000a; 2000b; Oh, et al., 2003, Berrueco et al., 2005).  

The heat transfer phenomenon (between the experimental system and the sample and inside 

the sample) is a major issue addressed previously by Ceamanos et al. (2002). This could be 

minimised by using a small amount of sample and low heating rates. As the pyrolysis 

temperature increases, the heat demand increases dramatically according to Arrhenius kinetics 

(knowing that the overall pyrolysis reaction is endothermic). Heat transfer problems across the 

boundary layer into the reacting solid surface (substrate) become acute at high heating rates. 

This was also detailed by Narayan and Antal (1996) who addressed the thermal lag (∆TTL) 

problem between the sample’s temperature and the temperature of the sample’s environment 

achieved by placing an external thermocouple onto the sample. The difference between these 

two temperatures is what they have defined as the thermal lag (∆TTL).  

There are great variations in the calculated kinetic parameters (namely the kinetic rate 

constants and activation energy), depending on the approach and the analytical method used (Oh 

et al., 2003). Consequently, the adequacy of the kinetic model assumed for the complex 

degradation mechanism is very important (Ceamanos et al. 2002). Differences due to the 

reaction mechanisms and kinetic evaluation methods have been reported in the past by various 

authors (Conesa et al., 1996; Bilbao et al., 1997; Bockhorn et al., 1998; 1999a; Ceamanos et al., 

2002; Park et al., 2000a; 2000b; Oh, et al., 2003). Conesa et al. (1996) showed that the initial 

weight of the sample and the surface pan area can affect the displacement of the weight loss 

curve. Ranzi et al. (1997) stressed the possible presence of mass and heat transfer limitations, 

generally not taken into account in kinetic data abstraction, which extend the range of variation 

of kinetics constants. Whilst Dahiya et al. (2008) stated that small errors in temperatures and 

heating rates cause notable deviations in kinetic parameters. In summary, operating conditions 

can affect significantly the results obtained by any experimental pyrolysis set-up. Some of the 

issues illustrated here are addressed in Chapters 3 and 4.  
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2.8.  Modelling & Reaction Mechanism Schemes 

Understanding the thermal chemistry of hydrocarbons is essential in a number of processes, 

these include: (i) petroleum, coal and biomass conversion to liquid fuels; (ii) the cracking of 

higher hydrocarbons to produce light olefins; (iii) the degradation of endothermic jet fuels; and 

(iv) the depolymerisation and recycling of synthetic polymers (Savage, 2000). This section 

reviews the degradation mechanism of PE in pyrolysis. The kinetic modelling work carried out 

in this thesis focuses on the development of a reaction mechanism model for the pyrolysis of 

PE. Consequently, previous studies focusing on the development of reaction mechanisms are 

reviewed in this section. 

The thermal degradation of polymers is a molecular deterioration process that occurs due to 

overheating, in which the long backbone chain of a polymer starts to separate (i.e. molecular 

scission) and react with another to change the properties of a polymer (ZEUS, 2005). In the case 

of PE pyrolysis, the depolymerisation mechanism involves several steps: initiation, free radical 

transfer (or propagation) and termination (Simha et al., 1958; Conesa et al., 1996; Horvat and 

Ng, 1999). Random chain scission, end chain scission, chain stripping, cross linking and coke 

formation are all types of reactions that a polymer undergoes when subjected to a heating 

condition (Oh et al., 2003). Bockhorn et al. (1999a) have illustrated their radical chain 

mechanism in a comprehensive way, as shown in Figure 2.13. The mechanism is initiated by a 

random scission of the polymer chain into primary radicals (Rp), β-scission then leads to the 

formation of ethene (C2H4) which is a by product that forms in the temperature range (430 – 

480°C), as stated by Bockhorn et al. (1999a). 

At lower temperatures, the formation of stable radicals (Rs) occurs due to intramolecular 

transfer. Subsequent β-scission of the secondary radicals contributes to the radical chain 

mechanism because the primary radical is produced in each step (propagation). Two β-scission 

reactions are possible: one leads to alkenes, whereas the other leads to the formation of a short 

primary radical and a polymer with a terminated double bond. The termination of the reaction is 

assumed via a combination reaction of the primary radicals. Further details of the mechanism 

can be found elsewhere (Bockhorn et al., 1999a; Ceamanos et al., 2002; ZEUS, 2005). One of 

the main aspects of the thermal decomposition of PE is that it melts at temperatures around 

120°C before it decomposes (Conesa et al., 1996). However, previous reports claim that PE has 

been found stable up to 290°C, with appreciable product formation at temperatures around 

370°C (Oakes and Richards, 1949). A number of reaction schemes for the pyrolysis of PE have 

been developed over the years and these are summarised in Table 2.12 alongside models found 

in the literature that are relevant to PE pyrolysis. 
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Figure 2.13 - Radical chain mechanism of thermal degradation of polyethylene (PE). Source: Bockhorn et al. (1999a). 
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Table 2.12 Summary of reaction schemes/models and the main mathematical breakdown of previous authors investigating polyethylene pyrolysis. 

 

Reference Model/scheme Main mathematical breakdown Main findings 

 
 
 
Conesa et al.(1994)- 
Three reaction scheme 

 
 

11

k bAaGP 1 +→                              (2.20) 

2

/

2

/k*k AbGaPP 32 +→→
   

(2.21) 

o2*1o PMk)
PP

P
S(k

dt
dPM −

+
−=                                 (2.22) 

)
PP

P
S(kPMk

dt
dPM

*3o2

*

o
+

−=                                  (2.23) 

)
PP

P
)((S/Mk)

PP

P
)((S/Mk

dt
dPE

*

*

o3*o1
+

−
+

=
     

(2.24) 

The kinetic rate constants were  
taken as a variable  
depending on the Arrhenius equation: 

/RT)Eexp(kk iioi −= : i = 1, 2, 3 (2.25) 

And the results could be summarized  
as follows: 
k01 = 2.892 x 1019 s-1 m-2 kg-1, E1 = 171.1 kJ mol-1 
k02 = 2.830 x 1013 s-1, E2 = 234.6 kJ mol-1 
k03 = 2.349 x 1020 s-1 m-2 kg-1, E3 = 195.8 kJ mol-1 

 
Conesa et al.(1994)- 
Zero kinetic 

 

bApaGpPE 1k +→                       (2.26) 

 

)(S/Mk
dt

dPE
o1=−                                                               (2.27) 

The kinetic rate constant was found equal to 8.5 x    
1018 s-1 m-2 kg-1 and activation energy was found    
164.3 kJ mol-1. 

 
 
 
 
Conesa et al. (1996) 

 
 
 

1

k GP 1→                                            (2.28) 

2

k*k GPP 32 →→                       (2.29) 

 
 

Pk)
PP

P
)((S/mk

dt
dP

2*o1 −
+

−=                                     (2.30) 

)
PP

P
)((S/mkPk

dt
dP

*o32

*

+
−=                                      (2.31) 

Results in dynamic runs: 
k1 = 4.852 x 109 kg s-1 m-2   (E1 = 1885 kJ mol-1) 
k2 = 2.670 x 1015 s-1              (E2 = 271.1 kJ mol-1) 
k3 = 2.319 x 1011 kg s-1 m-2 (E3 = 221.5 kJ mol-1) 
Results in isotehrmal runs: 
k1 = 4.730 x 1010 kg s-1 m-2   (E1 = 214.2 kJ mol-1) 
k2 = 1.600 x 1014 s-1                (E2 = 238.9 kJ mol-1) 
k3 = 1.600 x 1011 kg s-1 m-2   (E3 = 200.0 kJ mol-1) 

 
 
Horvat and Ng (1999); 
McCaffrey et al., 
(1995) 

 
Assuming that the polymer thermolysis 
occurs via a random chain scission and the 
molecules in the reactor reach a minimum 
chain length for evaporation. 

Atkinson and Maccallum (1971) model : 

t)1)kexp((aP

a]][P
aP

1aP
a..t)1)exp(k[(aW

W(t)
so

o

o

o

so

+

−
−

−−
−+

=        (2.32)           

: Po is the initial degree of polymerization 

The experiments were conducted in a  
semi-batch reactor, with an initial charge of 15 g  
and the following rate constants were estimated: 
ks(at 410oC) = 1.24 x 10-4 min-1 
ks(at 420oC) = 2.49 x 10-4 min-1 
ks(at 440oC) = 1.00 x 10-3 min-1 
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In conclusion, several authors have developed reaction mechanism schemes for the 

pyrolysis depolymerisation of PE (Conesa et al., 1994; 1996; McCaffrey et al., 1995; Horvat 

and Ng, 1999; Ceamanos et al., 2002). The reaction chemistry of PE depolymerisation was 

reported by Bockhorn et al. (1999a) and can be summarised as follows: 

• Initiation step: whereby the mechanism is initiated by a random chain scission of 

the polymer chain producing primary radicals (Rp).  

• Propagation: where stable radicals (Rs) are produced due to intramolecular 

transfer. Two possible β-scissions reactions are then possible. One leads to alkenes, 

whereas the other leads to the formation of a short Rp and a polymer with a 

terminated double bond. 

• Termination: assumed to be via combination, which leads to a residual polymer. 

Conesa et al. (1996) have stated that PE melts at a temperature around 120°C before it 

starts to decompose. In this thesis, an intermediate stage of PE (a molten state) has been 

considered producing waxes in the development of the reaction mechanism model (see Chapters 

3 and 4). Considering an intermediate state was also reported in earlier studies of pyrolysis by 

Conesa et al. (1996) and Ceamanos et al. (2002).  

 

2.9.  Micro Scale Studies in Thermogravimetric  

(TG) Fixed Bed Set-ups 

Pyrolysis produces three different phases: a solid phase (char, 5-25 wt %), a liquid phase 

(tars, 10-45 wt %) and a gas phase (Aznar et al., 2006, Zia et al., 2007). The first products 

yielded are usually in the range of C20 to C50. These products are cracked in the gas phase to 

obtain lighter hydrocarbons, as ethene (ethylene) and propene (propylene), which are unstable at 

high temperatures and react to form aromatic compounds such as benzene or toluene. If the 

residence time is long, then coke, methane and hydrogen will form (Westerhout et al., 1998a). 

In the TCT of polyolefins (mainly PE and PP), the products obtained depend mainly on the 

cracking reactions in the gas phase. Long residence times of volatiles in the reactor and high 

temperatures lead to a decrease in tar production but an increase in char formation (Cozzani et 

al., 1997). The main disadvantage of plastic pyrolysis is that it is necessary to control the 

chloride content (when present) in the feedstock and the risk of mal-fluidisation because of 

particle agglomeration (Kaminsky et al., 1995). It is believed that increasing the temperature to 

above 500°C and prolonging the gas residence time will result in a reduction of the tar content 

in the gas product from both pyrolysis and gasification of PSW, ASR, MSW and even mixtures 

of coal, biomass and PSW (Stiles and Kandiyoti, 1989; Pinto et al., 2003; Zolezzi et al., 2004; 



Chapter 2  Literature Survey: TCT Processes 58 

 

  

Miscolczi et al., 2004; Ciliz et al., 2004). At temperatures above 800°C, larger paraffins and 

olefins produced from the decomposition of plastics are cracked into H2, CO, CO2, CH4 and 

lighter hydrocarbons (Ponzio et al., 2006). As a result of methyl-group abstraction from 

aromatics and decomposition of paraffins, C2H4 and C2H2 are typically reported to increase with 

temperature (Ledesma et al., 2000). The abstraction of methyl groups and hydroxyl groups from 

aromatic structures implies that the aromatic fraction does increase with temperature even 

though the total amount of tar decreases. H2-abstraction from light hydrocarbons and cross-

linking reactions may also produce poly-aromatic hydrocarbons (PAH). 

Kinetic data obtained by previous authors confirms that different molecular structures lead 

to different mechanisms of decomposition and rates (Bockhorn et al., 1999b). Table 2.13 

reviews some of the major studies in the literature reporting on the apparent activation energy 

(Ea) and overall kinetic rate constant (ko) obtained from the pyrolysis of polymers under 

isothermal and dynamic conditions. 
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Table 2.13 Survey of apparent activation energy (Ea) and pre-exponential factor (ko) studies found in literature with emphasis on major polymers. 

 

Polymer Notes Ea (kJ mol-1) Rate Constant (ko)4 n Reference 

Polyethylene (PE) 

 
Synthesized Bakelite Corp PE 

 
 
 

PE 
 

BASF Corp Polymers 
HDPE 
LDPE 

 
 

HDPE 
 

LDPE 
 
 

Commercial grade USIFE HDPE 
Commercial grade USIFE LDPE 

 
 
 
 

HDPE 
LDPE (grade 1) 
LDPE (grade 2) 

 

 
In TG dynamic conditions (246-480oC)1,2 

ζ (wt%) = (mo-m)/m) = < 3  
ζ (wt%) = (mo-m)/m) = 3 – 15 

 
200 – 600 oC 

 
In TG dynamic conditions 

 387-467 oC 
387-467 oC 

 

In TG dynamic conditions (β = 5-10 oC min-1) 
400-485 oC 
410-485 oC 
375-480 oC 
380-485 oC 

 

In TG dynamic conditions (β = 1, 2, 5.5 K min-

1) 
327-487 oC 
327-487 oC 

 
In TG isothermal conditions  

400-450 oC 
400-450 oC 
400-450 oC 

 
 
Freeman & Carroll method 

201 
255 

 
259 

 
 

247-330 
163-230 

 
 

3041 
320 
2901 

303 
 
 

234 
206 

 
 

220 
241 
201 

 
 

 
- 
- 
 

7.2 x 1013 s-1 

 
 
- 
- 
 
 

1.3 x 1021 s-1 

7.1 x 1021 s-1 

3.1 x 1020 s-1 

5.8 x 1021 s-1 
 
 

9.3 x 1013 s-1 
1.2 x 1012 s-1 

 
 

1.9 x 1013 s-1 
1.0 x 1015 s-1 
9.8 x 1011 s-1 

 
 

 
0 

0 -1 
 

0.81 
 
 

0 -1 
0 -1 

 
 

1 
1 
1 
1 
 
 

0.74 
0.63 

 
 

1 
1 
1 

 
 
Anderson and Freeman (1961) 
 
 
 
Westerhout et al. (1997b)3 

 
 
Mucha (1976) 
Mucha (1976) 
 
 
Urzendowski and Guenther  
(1971) 
 
 
 
 
Wu et al.  (1993) 
Wu et al.  (1993) 
 
 
 
Westerhout et al. (1997b) 
 

Polypropylene (PP) 

 
IPP 

 
 

Temperature range: 380-435oC 

 
 

213 

 
 
- 

 
 
- 

 
 
Dickens (1982) 
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Table 2.13 (Cont’d) Survey of apparent activation energy (Ea) and pre-exponential factor (ko) studies found in literature with emphasis on major polymers. 

 

Polymer Notes Ea (kJ mol-1) Rate Constant (ko)4 n Reference 

 
BASF Corp PP (no additives) 
BASF Corp PP (no additives) 

 
PP fibres  

(Argon environnement) 
 
 

 
FU-CHU PP 

 
 

PP Grade 1 
PP Grade 2 

 
Isothermal set-up 

Dynamic set-up 
 

In TG dynamic conditions (β = 5, 10, 15, 20 K min-

1) 
ζ (wt%) = (mo-m)/m) = 5-90 
ζ (wt%) = (mo-m)/m) = 9-53 

ζ (wt%) = (mo-m)/m) = 10-50 
 

In TG dynamic conditions (β = 1, 2, 5.5 K min-1) 
 

In TG isothermal conditions 
400-440oC 
400-440oC 

 
220±5 

223.7±1.6 
 
 
 

83-128 
99 
99 

 
184 

 
 

244 
188 

 
log (ko) =15.06±0.06 min-1 
log (ko) = 15.90±0.02 min-1 

 
 
- 
- 
- 
 

6.3 x 1010 s-1 
 
 

3.2 x 1015 s-1 

2.2 x 1011 s-1 

 
1.1 

0.77 
 
 
- 
- 
- 
 

0.90 
 
 

1 
1 

 
Bockhorn et al. (1998) 
Bockhorn et al. (1998) 
 
Gambiroza-Jukic and  
Cunko (1992) 
 
 
 
Wu et al.  (1993) 
 
Westerhout et al. (1997b) 

Polystyrene (PS) 

 
PS 

 
PS 

 
Koppers Corp PS 

 
 
 

CHI-MEI PS 
PS 

 
PS 

 
 

TG Isothermal set-up 
 

TG Dynamic set-up 
 

In TG dynamic conditions (246-430oC)1,2 

ζ (wt%) = 0-10  
ζ (wt%) = 15-95 

 

In TG dynamic conditions (β = 1, 2, 5.5 K min-1) 
500-800oC 

In TG isothermal conditions 
365-400oC 

 
 

172±4 
 

322.8±2.4 
 
 

193 
231-273 

 
 

92 
 

204 

 
 

log (ko) =12.47±0.02 min-1 
 

log (ko) =24.61±0.19 min-1 
 
 
- 
- 
 

5.0 x 1010 s-1 
 
- 
 

3.3 x 1013 s-1 

 
 

1.04 
 

1.09 
 
 

0 
1 
 

0.5 
 

1 
 

1 

 
 
Knümann and Bockhorn  
(1994) 
Knümann and Bockhorn  
(1994) 
 
Anderson and Freeman  
(1961) 
 
 
 
Wu et al.  (1993) 
 
Mertens et al. (1982) 
 
Westerhout et al. (1997b) 

  Polyethylene terephthalate (PET) 

BASF Corp PET (no additives) 
BASF Corp PET (no additives) 

 
Isothermal 

Dynamic 

 
214 ± 2 
238.7 

 
log (ko) = 15.20±0.04 min-1 

log (ko) = 18.00 min-1 

 
1.15 
1.15 

 
Bockhorn et al. (1998) 
Bockhorn et al. (1998) 
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Table 2.13 (Cont’d) Survey of apparent activation energy (Ea) and pre-exponential factor (ko) studies found in literature with emphasis on major polymers. 

 

Polymer Notes Ea (kJ mol-1) Rate Constant (ko)4 n Reference 

 
PET (Source 1) 
PET (Source 2) 

 

 

In TG dynamic conditions (β = 10, 15, 25 K min-1) 

In TG dynamic conditions (β = 10, 15, 25 K min-1) 
 

 
ASTM E6985 method (162.15) 
ASTM E6985 method (162.15) 

 

 
ln(ko) = 26.37 min-1 
ln(ko) = 34.81 min-1 

 

 
1 
1 

 

 
Saha and Ghoshal (2005) 
Saha and Ghoshal (2005) 
 

 
1 Vacuum environment 
2 Possible heat and mass limitations during experimentation 
3 Taken from the cited. Original reference in German. 

4 Expressions reporting log(ko) are derived from the following: 
n

o α)E/RT).(1exp(k
dt

dα −−=  
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2.10. End of Life Tyres (ELTs):  

Thermo-Chemical Studies & Utilization 

Whereas the review of pyrolysis reported in the previous sections focused on polymer 

materials, here the focus is on end of life tyres (ELTs). A number of studies carried out in 

thermogravimetric systems show that ELTs start to thermally degrade at approximately 200°C 

and totally degrade at around 500°C (Berrueco et al., 2005). Previous reports of inert or partially 

oxidised atmosphere treatment tend to concentrate on intensifying the gas yield of the resultant 

products, and these are summarised in Table 2.14.  

Conesa and Font (1999) introduced the kinetic severity function (KSF) as a validation for 

their kinetic models (forming (n-pentane) C5). If a paraffin is designated by the subscript i (its 

number of carbons) and uses the subscript 5 to designate n-pentane, then the exponential form 

of the Arrhenius equation can be expressed as: 

 

/RT)EE).exp(/A(A/kk

/RT);E.exp(AkE/RT);.exp(Ak

55f5f

555ii

+−=

−=−=
    (2.33) 

 

The yields of the products obtained from a pyrolysis process are due to the decomposition 

of the raw material (primary reactions) and to the reactions the primary volatiles undergo 

(secondary reactions). The KSF was then defined by the following equation: 

 

.τkKSFConst.T:

.dtkKSF

5

τ

0

5

=⇒=

= ∫
       (2.34) 

 

where τ is the total time. The KSF is very useful both for correlating yield data and for 

designing and evaluating the performance of cracking coils. The most obvious advantage is that 

it recognizes and incorporates both time and temperature in such a way that it is consistent with 

kinetics. Such a methodology was primarily used for the thermal cracking of ELTs in Conesa et 

al. (2000) (see Table 2.14). 
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Table 2.14 Summary of previous studies on ELTs pyrolysis in inert, sub-stoichiometric and pure oxygen atmosphere. 

 

Reference Temperature range (oC) Main products (%) Comments 

 
 
 
 
Conesa et al. (2000) 

 
 
 
 

600-800 

 
 
 
 

Gases 6-37  

 
Three reactors were used, (sand) FBR, Pyroprobe pyrolyser and two 
horizontal quartz reactors. Very minimal liquid and char yield in a 
Fluidized bed reactor. The primary reaction was considered as follows: 

SsGsbA

bAaGELTs

s1k

p

pp

olysisPrimaryPyr

+→

+ →
                                   (2.35) 

Where p and s stand for primary and secondary products.  
 
Williams et al. (1990) 

 
300-720 

55 (Oil) 
10 (Gas) 

35 (Char) 

 
Experiments carried out in a static batch reactor with N2 jacket. 
 
 

Cunliffe and Williams (1999) 450-600 Gases 5-9 Experiments carried out in a static batch reactor with N2 jacket. 
 

 
Bouvier et al. (1987) 

 
327–525 

39 (Oil) 
6 (Gas) 

38 (Char) 

 
Externally heated retort reactor was used. 
 

 
Lucchesi and Maschio (1983) 

 
400–700 

 
38-49 wt% converted 

into oil 

 
Pyrolysis in a bench scale moving bed. The gas product contained 
mainly CH4, H2, CO, CO2 and light hydrocarbons. 

 
Wu et al. (1997) 

 
400-500 

 
30% carbon black 

 
Fluidized Bed Reactor (FBR) pyrolysis 
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Chen et al. (2001) investigated the pyrolysis of two tyre grades (passenger and truck) 

thermogravimetrically under a β of 5, 10, 20 and 30 K min
-1

 and a temperature range of 373-

1273 K. The initial reaction temperatures were 482-521 K for the tyre of the passenger car and 

458–511 K for the truck tyre. Both ELTs exhibited similar behaviours, which was as the initial 

reaction temperature decreased, both the reaction range and reaction rate increased when the 

heating rate increased. The overall rate equation for each tyre can be modelled satisfactorily by 

a simple equation from which the kinetic parameters, such as the activation energy (E), the pre-

exponential factor (A), and the reaction order (n) of unreacted material based on the Arrhenius 

form can be determined using Friedman’s method. 

 

The following reaction was assumed: 

 

volatilesELTs k→         (2.36) 

 

Further, the rate equation of conversion factor α is expressed in Arrhenius relation in the form of 

 

( )

)WW)/(W(Wα:

αE/RT).fA.exp(
dt

dα

foo −−=

−=
       (2.37) 

 

where t is the time (min), A the pre-exponential factor (min
−1

), E the activation energy (kJ/mol), 

T the reaction temperature (K), R the universal gas constant, W (mg) the mass of the sample at 

time t, and W0 (mg) and Wf (mg) are the initial and final (or residual) mass of the sample, 

respectively. The results show that the two ELTs behaved similarly and the average kinetic 

parameters of the two tyres were E =147.95± 0.21 kJ/mol, A = (6.295±1.275) × 10
10

 min
−1

, and 

n = 1.81±0.18. The predicted rate equations compare well with the measured data (Chen et al., 

2001). 

Laresgoiti et al. (2000) published their results on the pyrolysis of ELTs. Representative samples 

of a whole car tyre were pyrolysed under nitrogen in a 3.5 dm
3
 autoclave at 400, 500, 600 and 

700°C. Tyre pyrolysis gases were composed of CO, CO2, H2S, and hydrocarbons such as CH4, 

C2H4, C3H6, C4H8, etc. and the unsaturated derivatives. Multidimensional gas chromatography 

using three capillary columns installed in a sole furnace were used together with a thermal 

conductivity detector (TCD) and flame ionisation detector (FID) which were both connected on-

line. At higher temperatures, more COx (CO+CO2) was produced, which was derived from 

inorganic components. Leung and Wang (1998) investigated the kinetics of the pyrolysis and 

combustion of scrap tyres using thermogravimetric and derivative TGA methods. Three 

materials, namely tyre rubber powder, tyre fibre and wood powder were studied. The reaction 
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considered was as follows: 

 

CharMedium(2)Medium(1)ELT k2k1 →→→    (2.38) 

 

The reaction was mathematically expressed as follows: 

 

∑ ∑
= =

−−==
n

1i

n

1i

i α)E/RT).(1A.exp(ln/dtdαln]
dt

dα
ln[     (2.39) 

 

It was found that the process and kinetic parameters varied with heating rates but were less 

dependent on the powder sizes. The simulations by the proposed models agreed well with the 

experimental data. 

In conclusion, various authors have reported on the pyrolysis of ELTs in a number of 

experimental set-ups and on different scales (Lucchesi and Maschio, 1983; Bouvier et al., 1987; 

Williams et al., 1990; Wu et al., 1997; Cunliffe and Williams, 1999; Conesa et al., 2000; Chen 

et al., 2001). Gases, oil and char are the primary products found after the termination of the 

reaction, and gases and char are typically included in the development of the reaction 

mechanisms. In the studies published previously by Laresgoiti et al. (2000) and Chen et al. 

(2001), volatiles or medium stages of products were assumed, however no lumped product 

models have been developed in the past to include all the products yielded. This approach is 

developed and presented in this thesis (see Chapters 3 & 4). 
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Chapter 3 

On the Isothermal Pyrolysis of 

Different Polymer Grades of Virgin 

and Recyclate Polyolefins 

 
 

 

he objective of this chapter is threefold: to present the results from an 

investigation into the isothermal reaction kinetics associated with polymers 

thermal cracking; to assess the thermal behaviour of the materials under the 

same isothermal conditions; and to illustrate a novel model developed on 

the basis of product groups as yielded by pyrolysis. 

 

Over the past seventy odd years, the plastics industry has witnessed a drastic growth, namely in 

the production of synthetic polymers represented by polyethylene (PE), polypropylene (PP), 

polystyrene (PS), polyethylene terephthalate (PET), polyvinyl alcohol (PVA) and polyvinyl 

chloride (PVC). In particular, PE has been a target for product conversion, lubricant production 

and chemicals recovery. This chapter covers the pyrolysis of two virgin grades of high density 

polyethylene (HDPE), virgin low density polyethylene (LDPE) and two recycled grades of 

medium density polyethylene (MDPE) using thermogravimetric analysis (TGA) at high heating 

rates and pre-set temperatures, similar to industrial fast pyrolysis units. TGA is especially 

suitable given that the gas residence time is very short, thus limiting undesirable side-reactions. 

Experiments were carried out in the range of 500-600
o
C. The data obtained enabled the 

assessment of the degradation mechanism of the different polymers investigated, on the basis of 

lumped products, i.e. gases (C1-C4), liquids (non-aromatic C5-C10), aromatics (single ring 

structures) and waxes (> C11). The model developed predicts the pyrolysis yield of the four 

different products and the polymer residual fraction at any operating condition proving to be a 

useful tool for reactor design and simulation. 

 

T 
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Parts of this chapter were published in: 

 

Lettieri, P. and Al-Salem, S.M., (2011). Thermo-Chemical Treatment of Plastic Solid Waste, 

Chapter in ‘Handbook of Waste Management and Recycling’, Edited by: Trevor Letcher; 

Daniel Vallero, Elsevier, ISBN: 978-0-12381-475-3. 

 

Al-Salem, S.M. and Lettieri, P., (2010). Kinetic study of high density polyethylene (HDPE) 

pyrolysis, Chemical Engineering Research & Design, 88(12); 1599-1606. 

 

3.1.  Experimental & Methodology  

3.1.1. Materials and Experimental Set-up 

Thermogravimetric analysis (TGA) was performed on the polymers tested. Thermogravimetry 

is a thermal process used to determine changes in weight as a function of temperature in a 

controlled atmosphere. Three virgin polymers and two recyclate grades were tested and physical 

properties (melting temperature and particle density) are reported in Table 3.1. The experiments 

were conducted by Ravago Plastics Co. (Belgium) and weight fractions of polymer (xp) as a 

function of time (s), as well as the final collected weight fractions of lumped products (waxes 

(xw), gases (xg), liquids (xl) and aromatics (xa) were provided by the company. The reported 

polymer and products final fractions are the averaged value of the experiments repeated three 

times by the company. The TGA was conducted using a Universal V3.7A model thermobalance 

(fixed bed) reactor (Figure 3.1). Product analysis was carried out using a Hewlett Packard 6890 

chromatograph provided with thermal conductivity (TCD) and flame ionization (FID) detectors, 

being connected online to the balance by means of a thermostated line. Furthermore, lump 

product identification was carried out by means of a mass spectrometer (Shimadzu GCMS-

QP20 I OS). Polymer pellets were milled to a size below 0.1 mm (in diameter), and a sample of 

15 mg in weight was used in each individual TGA run to avoid heat and mass transfer problems. 

Pyrolysis products were lumped into gases (C1-C4), liquids (non-aromatic C5-C10), single ring 

aromatics (C5-C10) and waxes (> C11). 
 

 
Table 3.1. Virgin and recyclate grades of polymers used in the isothermal pyrolysis experiments. 
 

Polymer Tm (oC) Particle Density 

 ρ (g cc-1)1 

Notes 

High Density Polyethylene (HDPE no.1) 
High Density Polyethylene (HDPE no.2) 
Low Density Polyethylene (LDPE) 

133 
131 
109 

- 
0.952 
0.920 

Commercial grade 
Extrusion resin grade 
Film grade 

Medium Density Polyethylene (RMDPE no.1) 
Medium Density Polyethylene (RMDPE no.2) 

- 
- 

0.94451 
0.93611 

3x3 mm granules 
3x3 mm granules 

 

                                                 
1
 Density determined via gradient column test at the time of sample delivery in accordance with 

ASTM D-1505-96 (1990). 
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3.1.2. Polymer Loss & Product Formation Patterns 

Figures 3.2-3.16 show the polymer weight loss for HDPE nos.1 and 2, the LDPE and the 

MDPE nos.1 and 2. Analysis of the reaction time and the polymer weight loss aids the 

understanding of the behaviour exhibited by each polymer grade investigated. With regards to 

the virgin grades (HDPE nos.1, 2 and LDPE), at 500°C the HDPE no.1 experiment terminated 

at 510 s (Figure 3.2), whilst HDPE no.2 and LDPE terminated at 600 s (Figures 3.5 and 3.8). A 

TGA experiment terminates when there is complete loss of the polymer within the crucible 

(sample holder). This can be better observed during isothermal experiments rather than in 

dynamic set-ups, where residual polymer material was witnessed when commercial grades were 

used rather than pure chemicals. Isothermal runs are time dependent; hence, a run terminated 

when the total degradation of the polymer was achieved. 

LDPE showed a similar weight loss pattern to HDPE no.2 (Figures 3.5 and 3.8). At 500°C, 

LDPE exhibited a slightly quicker polymer loss (xp = 0.7) than HDPE no.2 (xp = 0.73) after 20 s 

of reaction time. At 550°C, LDPE lost over half its initial sample weight after 20 s of the 

experiment (xp = 0.21). There were no noticeable differences between the two recyclate grades 

of MDPE in terms of polymer loss (Figures 3.11-3.16). The melting point (Tm) of the LDPE 

tested is lower than the other two virgin HDPE grades (see Table 3.1), and this may explain why 

the polymer degraded slightly quicker than the other virgin grades and may also explain the 

variation in product formation.  

At 550°C, a rapid decrease in the polymer fraction was witnessed with the virgin grades 

(Figures 3.3, 3.6, 3.9). The typical shape of an S-curve was witnessed to quickly shrivel and 

decay. The time it took to record the last sample varied between the virgin grades, ranging from 

91 s in the case of HDPE no.1 to 200 s for LDPE. The higher the isothermal experimental 

temperature, the faster it took to reach full degradation. This has also been reported previously 

by many authors (Westerhout et al., 1997b; Ceamanos et al., 2002; Mastral et al., 2002).   
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Figure 3.1 - TGA set-up used in the pyrolysis experiments (Ravago Plastics Co, Belgium). 
Key: 1. Heating chamber; 2. N2 inlet; 3. Air inlet; 4. Control display. 
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Figure 3.2 - Experimental data (HDPE no.1) showing polymer fraction (xp) as a function of time (s) at 500oC. 
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Figure 3.3 - Experimental data (HDPE no.1) showing polymer fraction (xp) as a function of time (s) at 550oC. 
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Figure 3.4 - Experimental data (HDPE no.1) showing polymer fraction (xp) as a function of time (s) at 600oC. 
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Figure 3.5 - Experimental data (HDPE no.2) showing polymer fraction (xp) as a function of time (s) at 500oC. 
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Figure 3.6 - Experimental data (HDPE no.2) showing polymer fraction (xp) as a function of time (s) at 550oC. 
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Figure 3.7 - Experimental data (HDPE no.2) showing polymer fraction (xp) as a function of time (s) at 600oC. 
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Figure 3.8 - Experimental data (LDPE) showing polymer fraction (xp) as a function of time (s) at 500oC. 
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Figure 3.9 - Experimental data (LDPE) showing polymer fraction (xp) as a function of time (s) at 550oC. 
 

 

 

 

 

 

 

 

 

 



Chapter 3  Isothermal Pyrolysis of Virgin & Recyclate Polyolefins 74 

 

  

 

0

0.25

0.5

0.75

1

0 10 20 30 40 50 60 70 80

time (s)

x
p

LDPE 600C

 
 
Figure 3.10 - Experimental data (LDPE) showing polymer fraction (xp) as a function of time (s) at 600oC. 
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Figure 3.11 - Experimental data (MDPE no.1) showing polymer fraction (xp) as a function of time (s) at 500oC. 
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Figure 3.12 - Experimental data (MDPE no.1) showing polymer fraction (xp) as a function of time (s) at 550oC. 
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Figure 3.13 - Experimental data (MDPE no.1) showing polymer fraction (xp) as a function of time (s) at 600oC. 
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Figure 3.14 - Experimental data (MDPE no.2) showing polymer fraction (xp) as a function of time (s) at 500oC. 
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Figure 3.15 - Experimental data (MDPE no.2) showing polymer fraction (xp) as a function of time (s) at 550oC. 
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Figure 3.16 - Experimental data (MDPE no.2) showing polymer fraction (xp) as a function of time (s) at 600oC. 
 

 

Figure 3.17 shows the products collected experimentally for HDPE no.1, where wax 

formation was witnessed to decrease with increasing temperatures, although the gas yield 

increased with increasing temperatures. Figure 3.18 shows the products formed for HDPE no.2. 

Comparatively, a similar pattern was witnessed between the two HDPE grades in terms of 

temperature effect on product formation. HDPE no.2 resulted in a higher amount of wax 

compared to HDPE no.1 being formed at 500°C and there was a similar observation for 550°C 

and 600°C.  

Figure 3.19 shows the pyrolysis product formation for LDPE, and Figures 3.20-3.21 show 

the product formation resulting from the two RMDPE grades studied. In the case of LDPE, 

waxes ranged between 68.8 to 50.4 wt% (from 500°C to 600°C), and a similar pattern for the 

production of waxes was noted for the HDPE grades (Figures 3.17-3.18). The waxes formed as 

a final product were slightly higher for LDPE (50.4 wt% at 600°C) compared to the other two 

virgin grades of HDPE (48.7 wt% for HDPE no.1 and 44.1 wt% for HDPE no.2). 
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Figure 3.17 – Product fractions collected experimentally for HDPE no.1 as a function of temperature (oC). 
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Figure 3.18 - Product fractions collected experimentally for HDPE no.2 as a function of temperature (oC). 
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Figure 3.19 - Product fractions collected experimentally for LDPE as a function of temperature (oC). 
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Figure 3.20 - Product fractions collected experimentally for RMDPE no.1 as a function of temperature (oC). 
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Figure 3.21 - Product fractions collected experimentally for RMDPE no.2 as a function of temperature (oC). 

 

Both RMDPE grades showed a similar pattern in terms of pyrolysis products collected 

(Figures 3.20-3.21). The difference between the waxes, gases and liquids fractions is negligible 

when comparing the two RMDPE grades. In comparison, LDPE produced the highest amount of 

wax at 600°C, i.e. 50.4 wt% and HDPE no.1 produced the highest amount of gases at 600°C 

(44.1 wt%). Both RMDPE grades did not exceed 39 wt% in the gas fraction. In all the polymers 

tested, the aromatics fractions did not show a noticeable difference between experimental 

temperatures. 

Both RMDPEs produced lower amounts of liquids and aromatics compared to the other 

polymers tested (see Figures 3.17-3.21) and this could be attributed to two reasons. First, this is 

not the first heat cycle these polymers were exposed to, as producing recyclate grades is the 

result of a number of heating cycles and conversion processes that result in the final product. 

The second reason is the difference between commercial grades and laboratory prepared pure 

polymers. The presence of additives in the commercial grades affects the behaviour of the 

polymers under heating conditions. One of the main reasons for adding additives is to stabilise 

the polymer and preserve the integrity of the plastic when exposed to a direct heating source. 
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3.2.  A Novel Approach in Isothermal Kinetics:  

Lumped Product Analysis 

Numerous attempts have been undertaken to develop a thermal degradation scheme, usually 

via a simple approach of parallel reactions from polymer to products (McCaffrey et al., 1995; 

1998; Williams and Williams, 1997; 1999a; 1999b; Horvat and Ng, 1999). However, 

differences are always present due to variations in the characteristics of polymers (e.g. 

molecular weight, presence of weak links, additives, etc.) and differences in experimental 

conditions from which kinetic data are calculated (McCaffrey et al., 1995). In this work, a 

model of the n
th
 order is proposed based on the experiments conducted by Ravago Plastics Co. 

The model determines the fractions of polymer (xp), liquids (xl), gases (xg), waxes (xw) and 

aromatics (xa) produced. The model is based on the lumped products produced by the pyrolysis 

experiments. 

 

The product formation analysis was considered from an engineering perspective using 

lumped product analysis, and kinetics parameters were evaluated accordingly. The mechanism 

employed in the current study is illustrated in Equation (3.1). It was assumed that the polymer 

will form the waxes as an intermediate product, which will then progress to produce the other 

lumped products (gases, liquids and aromatics).  

 

G(L)

(A)

(L)

(G)

(W)(P) 5

4

3

2

1 k

k

k

k

k →
















→

→

→

→     (3.1) 

 

where P, G, L, W and A; stand for the polymer, gases, liquids, waxes and aromatics. k1, k2, k3, 

k4, k5, represent the kinetic rate constant (s
-1

) of the polymer thermal degradation to waxes 

(primary reaction) forming an intermediate (molten) stage; waxes to gases, liquids and 

aromatics (secondary reactions), liquid to gases (tertiary reaction). The subscripts denote the 

reaction path. 

 

The mathematical model of the mechanism proposed was based on mass balances and rate 

equation analysis and all reactions were assumed to be irreversible. Derivation of the model was 

based on mass fractions. The model was developed as a set of ordinary differential equations. 

The derivation of the model was based on kinetic rate equation mass balance on each 

component considered, i.e. polymer, waxes, gases, liquids and aromatics. Similar kinetic 

derivation was undertaken in the past (Bockhorn et al., 1999; Van de Velden et al., 2008). The 
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model developed is shown in Equations (3.2-3.6). The novelty of this model is to develop a 

lumped product approach to polymer pyrolysis, in order to understand the product formation 

mechanism. 

 

n

p1
p xk

dt

dx
−=        (3.2) 

 

)xkxkx(kxk
dt

dx
a4l3g2

n

p1
w ++−=      (3.3) 

 

l5w2
g xkxk

dt

dx
+=        (3.4) 

 

l5w3
l xkxk
dt

dx
−=        (3.5) 

 

w4
a xk

dt
dx

=         (3.6) 

 

The model was solved using Matlab software (version 7.6 2008) by applying the ODE45 build-

in function for a number of non-linear first order differential equations (4
th
 order Runge-Kutta 

method). To represent the experimental polymer fraction (xp) throughout the reaction time, 

theoretical fits were developed. The theoretical fits of polymer fractions (xp) at each temperature 

were input in the software, as well as the model equations (non-linear ordinary differential 

equations, Equations 3.2-3.6). The optimised solution in Matlab for the kinetic rate constants 

(k1-k5) and the reaction order (n) is a function of the rate equations and the reaction order 

(Equations 3.2-3.6). The absolute error between the theoretical fit and the software solution was 

minimized as an objective function by Matlab using Fminsearch, ODE-45 method, resulting in 

the highest regression coefficient (R
2
) obtained between the experimental (represented by the 

theoretical fits) and model solution for the polymer fraction (see results for all materials in 

Annex A and theoretical fits in Annex B). The software generated the optimized kinetic rate 

constants (k1-k5) and the reaction order (n) for the detailed degradation mechanism studied, as 

well as the polymer and products fractions as a function of time (s). 
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In mathematical terms, the optimisation problem is posed in Matlab as follows: 

 

∑
=

−
=

N

1i (exp)p

(th)p(exp)P

x

xx
min(O.F.)FunctionObjective     (3.7) 

 

subject to  

 

0k i ≥          (3.8) 

 

0to =          (3.9) 

 

1)(tx o1p =         (3.10) 

 

0)(tx)(tx)(tx)(tx owoaolog0
====     (3.11) 

 

1iii x)(tx −≥         (3.12) 

 

where N is the number of time steps between initial reaction time (to) and final reaction time (tf), 

xp(exp) is the experimental polymer fraction, xp(th) is the theoretical polymer fraction resulting 

from the set of differential equations (3.2.-3.6.), ki are the kinetic rate constant of the differential 

equations and are determined with the reaction order (n) by the software Matlab using built-in 

functions (Fminsearch) and (ODE 45), xp(to) is the polymer fraction at time equal to zero (start 

of reaction), xi is the product fraction at time equal to or greater to zero. The objective function 

is set as the sum of error between the experimental and theoretical polymer fractions as depicted 

in Equation (3.7). Equations (3.8-3.12) represent the optimisation bounds for the kinetic rate 

constants, initial reaction time, polymer and products fractions, respectively. The product 

fractions are calculated as a function of the rate equations, resulting in the highest regression 

coefficients (see Appendix A).  

 

The approach developed in this thesis of lumped product analysis eliminates concerns regarding 

thermal lag. This is due to the focus being on the final products obtained at a certain operating 

temperature and the determination of the activation energy of the reaction to validate the 

mechanism proposed (Equations 3.2-3.6). The main goal of the kinetics modelling detailed in 

this chapter is to establish a model that is applicable to different grades of PE and which could 

easily be used by industrial parties concerned with pyrolysis reactor development. 
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3.3.  Results & Discussion 

3.3.1. Overall Reaction Order (n) Evaluation and Products 

Formation Patterns 

Equations (3.2-3.6) were used for the evaluation of the reaction order (n) of polymer 

degradation, which was found to be between 0.97-1 (Table 3.2). The secondary and tertiary 

reactions are assumed to be of order 1 and this is in agreement with the results obtained by 

various authors. Ceamanos et al. (2002) evaluated the reaction order (n) as between 0.86-1, 

whilst Westerhout et al. (1997b) determined n to be equal to 1 in their isothermal pyrolysis 

analysis of different PE grades. Mucha (1976) evaluated the reaction order (n) of two grades of 

PE in dynamic conditions, and found it to range between 0-1. This is the reason why the 

reaction order is typically assumed to be equal to 1 in PE pyrolysis at temperatures above 390°C 

(Urzendowski and Guenther, 1971; Ceamanos et al., 2002). 

 

The kinetic rate constants (ki) were evaluated and are shown in Table 3.3. According to Van 

de Velden et al. (2008), the sum of the primary reactions rate constants equals the overall kinetic 

rate constant (ko). Hence in this work, the overall rate constant (ko) is equal to k1. 

 
Table 3.2 Isothermal reaction order (n) determined via the proposed model of the mechanism described in 
Eq.(3.1.). 

Polymer Reaction order (n) 

High Density Polyethylene (HDPE no.1) 0.97 

High Density Polyethylene (HDPE no.2) 0.97 

Low Density Polyethylene (LDPE) 
R. Medium Density Polyethylene (MDPE no.1) 
R. Medium Density Polyethylene (MDPE no.2) 

1.0 
0.98 
0.98 

 
Table 3.3 Results summary of the depolymerization reactions for the studied polymers in isothermal pyrolysis 
(500-600 oC), showing kinetic rate constants (s-1). 
 

Polymer T (oC) kl ≈ ko k2 k3 k4 k5 

 
HDPE no.1 

500 
550 
600 

0.66 x 10-2 

2.43 x 10-2 
0.29 

0.5 x 10-3 
0.29 x 10-2 
1.6 x 10-2 

3 x 10-3 
9.7 x 10-3 
2.0 x 10-3 

1 x 10-2 
4.9 x 10-3 
6.0 x 10-4 

1.1 x 10-2 
1 x 10-4 

0.89 

 
HDPE no.2 

 

500 
550 
600 

0.35 x 10-2 

2.65 x 10-2 
0.14 

1.9 x 10-3 
4.0 x 10-4 

1.04 x 10-2 

4.0 x 10-4 
1.01 x 10-2 
2.8 x 10-3 

4.0 x 10-4 
6.00 x 10-4 
1.00 x 10-4 

1 x 10-4 
1 x 10-4 
1 x 10-4 

 
LDPE 

500 
550 
600 

0.38 x 10-2 

7.78 x 10-2 
0.19 

0.40 x 10-3 
6.7 x 10-2 

0.63 x 10-2 

3.00 x 10-4 
3.50 x 10-3 
1.9 x 10-3 

2.00 x 10-4 
15.00 x 10-4 

9.0 x 10-4 

1 x 10-3 
0 

1 x 10-4 

 
RMDPE no.1 

 

500 
550 
600 

0.37 x 10-2 
6.55 x 10-2 

0.21 

1.3 x 10-3 
0.15 x 10-2 
0.62 x 10-2 

4.00 x 10-4 
1.5 x 10-3 

6.20 x 10-3 

5.0 x 10-4 
5.36 x 10-5 

1.0 x 10-4 

1 x 10-4 
1 x 10-4 
1 x 10-4 

 
RMDPE no.2 

 

500 
550 
600 

0.36 x 10-2 
0.065 
0.20 

0.30 x 10-2 
0.15 x 10-2 
3.2 x 10-2 

4.00 x 10-4 
0.15 x 10-2 
17.7 x 10-3 

1.00 x 10-4 
0.15 x 10-2 

0 

1 x 10-4 
1 x 10-4 

1.7 x 10-4 
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The overall kinetic rate constant (ko) ranged between 0.37 × 10
-2

 to 0.29 s
-1 

for the various 

grades of PE studied. This is in agreement with previous findings by Ceamanos et al. (2002), 

where ko (s
-1

) was found to range between 8.3 × 10
-5

 to 0.98 × 10
-2

 and Westerhout et al. 

(1997a), where ko (s
-1

) was found to range between 0.05 to 0.34. With regards to the kinetics of 

the products formation (Equations 3.2-3.6), one can observe the low value of k5 (liquids to gases 

formation in tertiary reaction) in the overall kinetic evaluation by comparison to other rate 

constants (ki) (Table 3.3). Although the value of k5 is relatively very small compared to other 

rate constants, it represents the tertiary reaction contribution for the final gas product, and thus 

could not be neglected. The overall kinetic rate constant (ko) was noticed to have a proportional 

relationship with the temperature. The overall rate constant (ko) controls the production of 

waxes and hence controls the production of the other products too. In addition, ko also 

represents the polymer loss kinetic rate constant (as presented in Equation 2.3).  

3.3.2. Model Prediction Results 

It is paramount to observe the behaviour of each product formed and how it corresponds to 

the polymer loss. Figures 3.22-3.26 present selected model results showing the product 

formation patterns. Generally, the polymer degrades whilst the products are formed. The wax 

formation curve reaches a peak point, after which it starts to decrease producing gases, liquids 

and aromatics at a higher rate. The model as presented in Equation 3.1, is capable of predicting 

the polymer fraction (xp) and the products fractions throughout the time course of the 

experiment, and the mechanism was chosen for its ability to accurately predict the fractions of 

polymers and products for all polyolefins tested. However, it is virtually impossible to develop a 

model that will predict polymer fractions and product yields with 100% accuracy for all 

experimental data. Consequently, it is important to investigate the model results as a function of 

temperature and type of polymer. It is also very important to investigate the model’s prediction 

at the end of the reaction time. The next section discusses the main findings in terms of 

experimental and model results of product yields for the different polymers studied. 
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Figure 3.22 - Model result showing product formation and polymer loss as a function of time (s) for HDPE no.1 
at 500oC . 
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Figure 3.23 - Model result showing product formation and polymer loss as a function of time (s) for HDPE no.1 
at 550oC . 
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Figure 3.24 - Model result showing product formation and polymer loss as a function of time (s) for LDPE at 
500oC . 
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Figure 3.25 - Model result showing product formation and polymer loss as a function of reaction time (s) for 
LDPE at 600oC . 

 



Chapter 3  Isothermal Pyrolysis of Virgin & Recyclate Polyolefins 88 

 

  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600

time (s)

x
i

Polymer Wax Gas Liquid Aromatics

 

Figure 3.26 - Model result showing product formation and polymer loss as a function of reaction time (s) for 
MDPE no.1 at 500oC . 

 

 

At 500°C, HDPE no.1 reached maximum degradation after 510 s (end of reaction). The 

final gas fraction (xg) was found to be 0.20, while the predicted value of the model was 

determined to be 0.20, resulting in a 0.2% error (Figure 3.22). At the end of the reaction for 

HDPE no.1 at 550°C, the xw value was experimentally evaluated as 0.58, whilst the model 

predicted 0.66, a 13% error (Figure 3.23). At 600°C, the pyrolysis reaction was faster and 

terminated after 66.3 s. The highest value of xw was 0.96 at 15.6 s. However, the final xw was 

determined as 0.52, with a 18% error from the experimental value of 0.44. 

As for HDPE no.2, the wax curve peaked at 389 s with a wax fraction (xw) value predicted 

to be 0.65 at 500°C. The gases and liquids fractions increased during the reaction. The waxes 

fraction (xw) had a final value of 0.68 (experimental) and 0.58 (model), resulting in a 15% error. 

The final liquid fraction (xl) was estimated to be 0.11 by the model, with a 1% error from the 

experimental value (xl =0.11). Comparatively, the wax formation in HDPE no.2 peaked some 

130 s later than HDPE no.1. The reaction time was also about 100 s higher, which explains the 

delayed wax formation. The delayed reaction time resulted in a lower value of wax peak too, 

some 20% less at peak point compared to HDPE no.1. The long reaction times by comparison 

with HDPE no.1 for 550°C and 600°C, resulted in a longer time for the waxes formed to reach 

their peak value. At 600
o
C, the final aromatics fraction (xa) for HDPE no.1 was determined by 

the model as 0.004. This results in a 0% error from the experimental value (xa = 0.004). The 
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final polymer fraction (xp) was determined as 0 by the model, resulting in a 0% error from the 

experimental value.  

With regards to the LDPE, the model prediction results at 500°C were as follows: fractions 

of polymer (xp), waxes (xw) and liquids (xl) were 0.11, 0.58 and 0.12, respectively. The final 

experimental values for the virgin LDPE at 500°C of the residual polymer, waxes and liquids 

formed were 0.10, 0.58 and 0.12, respectively, which corresponds to error values of 0.1%, 14% 

and 8%, respectively. At 600°C, the final predicted value for the aromatics was 0.004, 

demonstrating a high match with the experimental value of 0.004, and an error of 0%. A 0% 

error was also calculated between the experimental and model result for the polymer fraction 

(xp). A rapid decline was also observed for the polymer degradation, similar to the other virgin 

grades at this temperature (600°C).  

As expected, the model prediction values for both recyclate grades studied were very 

similar. For MDPE nos.1 and, the model predicted the value of 0.58 as a final wax fraction, 

whilst the experimental data showed a value of 0.68 (a 10% error at 500°C). A value of 0.11 

was predicted at 500°C for the liquid fraction of both MDPE grades, resulting in a 1% error 

from both experimental values of 0.108. A final polymer fraction was estimated by the model as 

0.11 for both MDPE nos.1 and 2, resulting in a 0.1% error. Notably, at 600
o
C the aromatic 

fraction (xa) was estimated as 0.004 by the model, resulting in a 0% error between the 

experimental and model results. Figures 3.27-3.32 show the model vs. experimental values for 

the polymer fraction (xp) for selected polymers at different temperatures. Ideally the plotted 

values should be on the diagonal to show a match between the experimental and theoretical 

results.  
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Figure 3.27 - Model vs. experimental values of polymer fraction (xp) for HDPE no.1 at 500oC . 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.28 - Model vs. experimental values of polymer fraction (xp) for HDPE no.1 at 550oC . 
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Figure 3.29 - Model vs. experimental values of polymer fraction (xp) for HDPE no.2 at 500oC . 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.30 - Model vs. experimental values of polymer fraction (xp) for HDPE no.2 at 600oC . 
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Figure 3.31 - Model vs. experimental values of polymer fraction (xp) for LDPE at 500oC . 
 
 
 
 

Figure 3.32 - Model vs. experimental values of polymer fraction (xp) for MDPE no.2 at 600oC . 
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HDPE no.1 showed a good match between the experimental and model results for the first 

50 s of the reaction at 500°C (Figure 3.27). Observing the behaviour of the two HDPE grades, it 

was noticed that HDPE no.2 had a smaller margin of error between the experimental and model 

results at 500°C (Figure 3.29). Results for 550°C and 600°C were all between the ±10% error 

lines. However, a noticeable deviation occurred at 40 s into the 550°C run. Figure 3.31 shows 

the results for LDPE, where at 500°C, the results showed almost a perfect match (corresponding 

with 600 s reaction time) and a ±10% deviation line was appropriate to show the maximum 

scatter. At 550°C the values plotted were scattered between deviations of ±10% (not shown), 

although at the start of the reaction, the error values exceed the 10% plotted value. This 

behaviour is very similar to that of HDPE no.1, MDPE no.1 and no.2 polymers at 550°C, where 

a ±10% deviation was needed to show the error. Thus, the higher the operating temperatures; 

the higher the error values and scatter for the model prediction against the experimental values 

(Figures 3.27-3.32). A very similar model performance was also witnessed for the two recyclate 

grades (Figures 3.32).   

 

3.3.3. Overall Activation Energy Evaluation 

To determine the overall activation energy (Eo) and pre-exponential factor (Po) for the 

whole of the reaction, the overall rate constants need to be determined at the operating 

temperature. The results show that the wax formation rate constant is the overall kinetic rate 

constant (ko). Using the Arrhenius first order equation (see Equation 2.3) Figure 3.33 was 

plotted, which reports the overall reaction kinetics. Table 3.4 summarises the overall reaction 

kinetics of the polymers studied and Figure 3.34 shows the results with respect to other authors’ 

findings. 
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Figure 3.33 - Overall Arrhenius plot (using overall kinetic rate constant, ko) for polymers tested showing points 
fitted for overall activation energy (Eo) and pre-exponential factor (Po) evaluation. 

 

 

 
Table 3.4 Overall reaction (rxn) kinetics showing rxn order (n), overall activation energy (Eo) and overall pre-
exponential factor (ko).  

 

Polymer reaction order (n) Eo (kJ mol-1) Po (s-1) 

HDPE no 1 
HDPE no 2 

LDPE 
MDPE no 1 
MDPE no 2 

0.97 
0.97 

1 
0.98 
0.98 

211 
209 
223 
230 
229 

9.1 x 1011 
4.8 x 1011 
5.6 x 1012 
1.5 x 1013 
1.4 x 1013 

 

The results obtained in this study were compared to those of previous researchers, which 

were obtained using different mechanisms and under different operating conditions. In this 

work, the overall activation energy ranged between 211 – 230 kJ mol
-1

, which fell between the 

range of values found within the literature:  Knümann and Bockhorn (1994), 268±3 kJ mol
-1

 for 

pure PE in isothermal conditions and 262.1±1.9 kJ mol
-1

 for pure PE in dynamic conditions; 

Westerhout et al. (1997b), 220-241 kJ mol
-1

 for PE in isothermal conditions; Mucha (1976), 

247-330 kJ mol
-1

 for HDPE in dynamic conditions and 163-230 kJ mol
-1

 for LDPE in dynamic 

conditions; and Ceamanos et al. (2002), 248.7 kJ mol
-1

 for HDPE in isothermal conditions, as 

well as other references reported in Figure 3.34. This shows that the mechanism considered in 

this work is applicable for different grades of PE.  
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As previously observed by Ceamanos et al. (2002), Figure 3.34 shows a linear relationship 

between log (ko) and Eo which is known as the kinetic compensation effect, and has been 

considered to be the result of mathematical, physicochemical and experimental causes. The 

coupling of the kinetic parameters can result in similar values of the kinetic constant, thus the 

activation energy and pre-exponential (frequency) factor must be considered apparent. 
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Figure 3.34 - Log (Po) (s-1) vs. Eo (kJ/mol) obtained by different authors with comparison to this work. 
* Taken from Ceamanos et al. (2002). 
Notes:  - Po unit in this figure was changed to s-1 to be consistent with work reported in this thesis. 

- xs refers to solid conversion in the above stated reference. 



Chapter 3  Isothermal Pyrolysis of Virgin & Recyclate Polyolefins 97 

 

  

3.4. Conclusions 

Pyrolysis is considered one of the advanced thermolysis processes in unit operations. It 

presents a number of advantages, namely the production and obtention of valuable chemicals 

and is also the focus of the analysis conducted in this thesis. Five polymers were used in this 

study, namely two virgin grades of HDPE, one virgin grade of LDPE and two recycled grades 

of MDPE. TGA results at high heating rates and pre-set temperatures (similar to conditions 

encountered in industrial fast pyrolysis units), was used to: 

i. Investigate the thermal cracking behaviour of the polymers studied 

ii. Determine the isothermal reaction kinetics associated with the polymers studied 

iii. Develop and validate a novel model based on the production and interaction of 

grouped products yielded by pyrolysis. 

The mathematical model of the mechanism proposed was based on mass balances and rate 

equation analysis, as presented in Equation 3.1. The reaction order (n) of polymer degradation 

ranged between 0.97-1, and the overall kinetic rate constant (ko) ranged between 0.37 × 10
-2

 to 

0.29 s
-1 

for the various grades of PE studied. This is in agreement with previous reports by 

various authors (Westerhout et al., 1997a; Ceamanos et al., 2002; Dahiya et al., 2008). The 

overall activation energy ranged between 211 – 230 kJ mol
-1

, which fell within the range of 

previous findings for PE pyrolysis. In addition, the mechanism proposed also enabled the 

assessment of the single path reactions of the products formed.  

Similar patterns were observed between the two HDPE grades in terms of wax formation, 

although HDPE no.2 resulted in a higher amount of wax being produced. In the case of LDPE, 

wax formation ranged between 68.8 to 50.4 wt% (between 500 to 600°C). This is due to the fact 

that virgin grade LDPE has a lower melting point than virgin grade HDPE, and it melts and 

forms the intermediate stage (i.e. waxes) quicker than the HDPE grades studied. This was 

reflected in the wax formation observed in this study. This fact also supports the mechanism 

proposed, whereby waxes are considered as an intermediate state. The fact that the lower the 

melting point the higher the amount of wax collected, justifies the assumption of considering 

waxes as an intermediate. 
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Chapter 4 

On the Isothermal Pyrolysis of End 

of Life Tyres 

 
 

ver since Charles Goodyear announced the discovery of the vulcanisation 

process back in 1843, tyre production has never stopped growing, which has 

led to the accumulation of scrap resulting from end of life tyres (ELTs). ELTs 

embody a high calorific value which makes them ideal for TCT (since over 

60% of their structure is polymer based) and energy recovery (via a number of 

thermal processes). This chapter presents the application of isothermal pyrolysis on ELTs and 

results obtained via isothermal thermogravimetry are shown. The main objective of this Chapter 

is to demonstrate the possibility of utilizing a pre-set temperature (T = 500°C) for the pyrolysis 

process to the benefit of intensifying the global product yields recovered. A degradation 

mechanism is proposed based on lumped products formed (similar to Chapter 3). Thermal 

degradation of ELTs was taken from a depolymerisation approach (ELTs encompass a large 

percentage of polyisoprene polymer). The products of ELTs pyrolysis were lumped into four 

categories, namely gases, liquids, char and aromatics.  

 

Parts of this chapter were previously published: 

 

Al-Salem, S.M., Lettieri, P. and Baeyens, J., (2009). Kinetics and product distribution of end of 

life tyres (ELTs) pyrolysis: A novel approach in polyisoprene and SBR thermal cracking, 

Journal of Hazardous Materials, 172(2-3); 1690-1694. 

 

Al-Salem, S.M., Lettieri, P. and Baeyens, J., (2010). The valorization of plastic solid waste 

(PSW) by primary to quaternary routes: From re-use to energy and chemicals, Progress 

in Energy & Combustion Science, 36(1); 103-129. 
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4.1. Introductory Remark 

ELTs contain a high fraction of polymers, namely polyisoprene (PI), polybutadiene (PBD) 

and a significant proportion of styrene-butadiene-rubber (SBR), with both natural and synthetic 

rubbers typically present in any commercial grade tyre. The synthetic rubber, which acts as an 

elastomer to withstand higher deformation, is typically a polymerised material of a variety of 

monomers (e.g. isoprene (2-methyl-1,3-butadiene), 1,3-butadiene, chloroprene (2-chloro-1,3-

butadiene), and isobutylene (methylpropene). SBR is a synthetic rubber made by the co-

polymerisation of styrene and butadiene. It has good abrasion resistance and good aging 

stability when protected by additives, and is widely used in car tyres, where it is blended with 

natural rubber. SBR can be produced from a solution or an emulsion, but in both instances the 

reaction is via free radical polymerisation.  

Natural rubber derived from latex is mostly polymerised isoprene with a small percentage 

of impurities in it which limit the range of available properties. In addition, there are limitations 

on the proportions of cis and trans
1
 double bonds resulting from the methods utilised to 

polymerise natural latex. This also limits the range of properties available to natural rubber, 

although these are improved by the addition of sulphur and vulcanisation (i.e. in the case of tyre 

production). ELTs make up a significant proportion of hazardous solid waste and the question 

of dealing with this has become ever more prominent. According to the European Tyres and 

Rubber Manufacturers Association (ETRMA), 3.28 × 10
6
 tonnes of ELTs were produced in the 

EU and similar estimates were given for the US in 2007. Worldwide, over 65% of ELTs are 

landfilled or discarded in the open resulting in numerous environmental burdens on their 

surroundings (Roy et al., 1999; Galvagno et al., 2002). ELTs pose a serious threat to developed 

societies for their disposal or re-use, because of their shape, size and physicochemical nature, 

coupled with the fact that they are very hard to recycle in conventional ways (Conesa et al., 

2000).  

Out of the total volume of ELTs arising in Europe, 34% were used in material recovery 

facilities in 2007. European Commission (EC) legislative decisions with regards to recycling, 

landfilling and waste thermal treatments, all address the issue of ELTs. Recent strategies 

regarding recycling and recovery in Europe (EC 2000-53) all stress better design is required to 

further develop approaches for the determination of best environmental options and for the 

setting of ELTs recycling and recovery rates within the EU. They also strongly recommend the 

implementation of LCA techniques to better utilise certain stages of the life cycle of ELTs to the 

benefit of both material recovering industries and ELT producers. In 2006, an EU ban on whole 

                                                 
1
 Functional group orientation. 
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and shredded tyre landfilling came into effect. ELTs are classified as durable products or special 

waste, and are collected separately from other types of solid waste by private companies that 

deal with their pre-preparation for thermal treatments. ELTs are often washed to remove debris, 

glass, stones and burned fragments. Under the EC’s waste directives (EC 2008-98; EC 2000-

76), the feed to pyrolysis reactors and other thermal units must undergo size reduction processes 

by concerned parties, and these processes include a two phase treatment. The first is concerned 

with the car or truck tyres granulation to form chip like feedstock ranging in diameter between 

0.1-0.5 mm (for granules). The second is concerned with the process conditions, whereby the 

unit is set to an optimum outlet zone temperature (for pyrolysis reactors) of between 450-500°C. 

This ensures that the pyrolytic char produced will be within the specification detailed by the EU 

market. Despite the well-known molecular chemical composition of natural/synthetic rubber, 

ELTs embody various “contaminants”: for natural rubber these include: S-vulcanisation, 

vulcanisation accelerators, such as derived from benzothiazole and sulfenamides; ZnO and 

certain fatty acids; reinforcing agents such as carbon black; and anti-degradants (amines, 

phenols, or phosphates). Synthetic rubber manufacturing applies either a Ziegler-Natta catalyst 

(TiCl3 or TiCl4 in combination with an organometallic compound, Et3Al), peroxide initiators for 

radical polymerisation or acids for cationic polymerisation. Other metals can also be present, 

such as sodium (BuNa-S), copper, manganese and nickel. The heating value of rubber is 

however higher than that of coal and biomass (Berrueco et al., 2005), which makes it an ideal 

feedstock for pyrolysis, gasification and combustion.   

The pyrolysis of ELTs (depolymerisation under an inert atmosphere) is receiving renewed 

attention for the simple fact that it yields condensable fractions and solid carbon residues highly 

desirable and easy to market. The solid residue produced may be directly used as a smokeless 

fuel (Berrueco et al., 2005), carbon black or activated carbon (Cunliffe and Williams, 1998). 

Although pyrolysis char is desirable in its own market, the presence of heavy metals (as a 

potential hazard) is usually reduced by further evaporation (Cunliffe and Williams, 1999). 

Liquid products resulting from ELTs pyrolysis consist of a complex mixture of organic 

compounds (5-20 carbons) which are very rich in aromatics (single ring structure). Thus, the 

derived oils can be used as fuels or petroleum refinery feedstock (Cunliffe and Williams, 1999). 

Further treatment (with rapid quenching) of liquid products resulting from pyrolysis leads to the 

minimal formation of char. However, the gas fraction (which could be used as a fuel) is 

composed mainly of CO, CO2, H2 and light hydrocarbons. The gas fraction obtained from the 

pyrolysis process is usually scrubbed to obtain the desired quality of the product, in terms of 

total hydrocarbon, soluble and particulate matter content. Hence, pyrolysis presents itself as a 

more sustainable option with a high recovery rate of products with a minimal contaminants 

discharge management.  
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Despite the growing spread of tyre incineration there is a general consensus that this 

technique causes hazardous pollutants emissions, due to the presence of primary contaminants 

and/or secondary precursors within the tyre material. Tyres also contain petrochemicals such as 

butadiene, styrene and benzene derivatives such as xylenes. Despite the high process efficiency 

of combustion, a small quantity of residual components can be detected in the combustion gas. 

Zinc is present in particularly high amounts since ZnO is used in the vulcanisation process. 

When co-incinerating tyres, an increase in the emission of heavy metals can be detected (up to 

8% Hg and 9% Zn, Silva et al., 2009). 

Pyrolysis also does not require any flue gas clean up as the flue gas produced is mostly 

treated prior to utilisation. It also provides an alternative solution to landfilling and reduces 

GHGs and CO2 emissions. Pyrolysis in particular, and TCT in general, are sound solutions 

providing a more environmentally-friendly integrated system to recycle ELTs and recover 

valuable petrochemicals.  

 

4.2. Prospects of End of Life Tyres Pyrolysis 

4.2.1. Materials and Methods 

Scrap tyre (ρ = 1.14 gm cc
-1

) were secured from UMAC (Antwerp, Belgium) and tested 

isothermally (Ravago, Belgium), where ultimate analysis showed a high match with previous 

reports (Cunliffe and Williams, 1998; 1999; Berrueco et al., 2005; Silva et al., 2009). In wt%, 

the ELT contained the following: 30% natural rubber (SMR-5CV), 30% styrene-butadiene-

rubber (SBR), 29% carbon black, 0.6% steric acid (C18H36O2), 2.9% zinc oxide softener (ZnO), 

0.9% S, 2.4% phenolic resin and 2.4% aromatic oil. The experiments were conducted by 

Ravago Plastics Co. (Belgium) and weight fractions of end of life tyres (xELT), as well as the 

weight fractions of lumped products (gases (xg), aromatics (xa), liquids (xl) and char (xc) were 

provided by the company as a function of time (s). The reported end of life tyres and products 

final fractions are the averaged value of conducting each experimental run three times by the 

company. 

 

4.2.2. Isothermal Runs and Products Distribution 

Previous reports on ELTs thermogravimetry show a typical derivative thermogravimetric 

curve with three decomposition steps: (i) decomposition of oils, plasticisers and additives 

between 200-325°C, (ii) polyisoprene (natural rubber) decomposition around 325-400°C, and 

finally (iii) at 400-500°C polybutadiene and SBR react (Senneca et al., 1999).  
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A pre-set temperature of 500°C was set to enable the decomposition of both polybutadiene 

(PBD) and polyisoprene (PI), with 15 mg (milled to below 0.1 mm to avoid mass and heat 

transfer resistance) of the sample being introduced into the thermobalance in order to conduct 

the TGA (Ravago Plastic Co., Belgium). Product analysis was carried out by means of a 

Hewlett Packard 6890 chromatograph provided with a thermal conductivity (TCD) and flame 

ionization detectors (FID) which were connected online to the balance by means of a 

thermostated line. Lumped product identification was carried out by means of a mass 

spectrometer (Shimadzu GCMS-QP20 I OS), and 99.9% pure nitrogen was used in the pyrolysis 

process. The pyrolysis products were grouped into rich gases (C1-C4), liquids (non-aromatic C5-

C10), single ring aromatics (C5-C10), and char. 

The main focus of ELTs pyrolysis and the gasification has always been maximizing the 

yields of gas products (Conesa et al., 2000; Berrueco et al., 2005). The final gas fraction in this 

process was evaluated at 0.02 wt%, which is what is found in many industrial pyrolysis 

processes. Maximum liquid condensate, measuring around 0.3% at the end of the run, was 

obtained (Figure 4.1). 
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Figure 4.1 – Products collected experimentally for ELT as a function of time (s). 

 

The main objective of the thermogravimetry was to obtain information about the thermal 

decomposition process of the tyre material and to compare it with previous isothermal reports 

found in the literature. Previous reports (Berrueco et al., 2005) show that a temperature of 

500°C was not reached via classical TGA experimentation, whilst in this work isothermal 

pyrolysis with a preset temperature of 500°C was optimal for ELTs decomposition, thus 

simulating pyrolysis and co-pyrolysis of industrial flash units. Another observed aspect in this 
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work was the residual amount of the original ELTs (i.e. residual char), which was measured at 

34% (metal and textile free), which is in agreement with previously published results (Conesa et 

al., 2000). Designing an industrial unit requires an understanding of the treated materials 

behaviour, and micro systems are seen fit according to a number of researchers in the field to 

determine weight loss kinetics (Roy et al., 1999; Conesa et al., 2000; Galvagno et al., 2002; 

Berrueco et al., 2005). It is imperative to have a proper scale-up of the process in order to 

establish a viable industrial design; yet a full product analysis is essential to understand the 

system’s behaviour under certain conditions. Integrating a pyrolysis unit in an industrial scheme 

requires utilities (oil, gas and electricity) to be secured, as well as a sound model that will 

predict residue amounts, products and the heat and energy balance. 

 

4.3.  A Novel Approach in the Thermal Cracking Kinetics 

of Polyisoprene and Styrene-Butadiene Rubber 

Equation 4.1 illustrates the thermal cracking mechanism proposed. The reactions are 

assumed to be irreversible, with the primary reaction being of a reaction order n.  
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→     (4.1) 

 

where ELT, G, L, A and C represent the fractions of ELT, gases, liquids, aromatics and char 

fractions, respectively, k1, k2, k3, k4, and k5, respectively stand for the kinetic rate constant (s
-1

) 

of the thermal degradation (primary reaction): ELT to gases, (secondary reactions): gases to, 

liquids, aromatics and char, (tertiary reaction): liquids to aromatics. 

Where previous thermal cracking models are based on radical concentration estimations 

(McCaffrey et al., 1995; 1999), the model proposed in this work is based on lumped product 

analysis, facilitating schemes for industrial pyrolysis units and providing an engineering 

approach for the concerned industry.  

The thermal cracking model shows n
th
 order primary cracking reaction (simplified in the 

previous equation) from ELTs to gases and the secondary reactions of gases to liquids, 

aromatics and char, and the tertiary side reaction of liquids to aromatics. The mathematical 

breakdown of the thermal cracking scheme of reactions is shown in the Equations 4.2-4.6: 
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n

ELT1ELT xk/dtdx −=        (4.2) 

 

)xkxkx(kxk
dt

dx
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n

ELT1
g ++−=      (4.3) 

 

L5g2
l xkxk
dt

dx
−=        (4.4) 

 

l5g3
a xkxk

dt
dx

+=        (4.5) 

 

g4
C xk

dt
dx

=         (4.6) 

 

where k1, k2, k3, k4, k5, correspond to the respective kinetic rate constants of (i) primary 

reactions of ELTs to gases and (ii) secondary reactions of gases to liquids, aromatics, char; (iii) 

tertiary reactions of liquids to aromatics. Fractions of ELT, aromatics, liquids, char and gases, 

are given as xELT, xa, xl, xc and xg, respectively. In mathematical terms, the optimisation 

problem is posed in Matlab as follows: 

 

∑
=

−
=

N

1i (exp)ELT

(th)ELT(exp)ELT

x

xx
min(O.F.)FunctionObjective     (4.7) 

 

subject to  

 

0k i ≥           (4.8) 

 

0to =           (4.9) 

 

1)(tx o1ELT =          (4.10) 

 

0)(tx)(tx)(tx)(tx ocoaolog0
====      (4.11) 

 

1iii x)(tx −≥          (4.12) 

 

where N is the number of time steps between initial reaction time (to) and final reaction time (tf), 

xELT(exp) is the experimental end of life tyre (ELT) fraction, xELT(th) is the theoretical ELT 

fraction resulting from the set of differential equations (4.2.-4.6.), ki are the kinetic rate constant 
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of the differential equations and are determined with the reaction order (n) by the software 

Matlab using built-in functions (Fminsearch) and (ODE 45), xELT(to) is the ELT fraction at time 

equal to zero (start of reaction), xi is the product fraction at time equal to or greater to zero. The 

objective function is set as the sum of error between the experimental and theoretical polymer 

fractions. Equations (4.8-4.12) represent the optimisation bounds for the kinetic rate constants, 

initial reaction time, ELT and products fractions, respectively. The product fractions are 

calculated as a function of the rate equations, resulting in the highest regression coefficients (see 

Appendix A). 

 

The model was solved using Matlab software (version 7.6 2008) by applying the 4
th
 order 

Runge-Kutta (RK) method. To represent the ELT fraction (xELT) throughout the reaction time, a 

theoretical fit was used. The absolute error between the theoretical fit and the software solution 

was minimized as an objective function using ODE-45 method in Matlab, resulting in the 

highest possible regression coefficient (R
2
) (see Annex A and B). The software will output the 

optimized kinetic rate constants (k1-k5) and the reaction order (n). A similar approach was 

undertaken in Chapter 3 for the polyolefins studied. 

 

Equations (4.2-4.6) permit the evaluations of the reaction order (n) of the ELTs 

degradation, which was found to be equal to 1.4. The secondary and tertiary reactions are 

assumed to be of order 1, and the kinetic rate constants (ki) were evaluated and are shown in 

Table 4.1. 

 
Table 4.1 Results summary of the depolymerization rxns of studied ELT in isothermal pyrolysis (500oC), 
showing kinetic rate constants (s-1) of single path reactions (ki) and overall rate constant (ko). 

 

Material T (
o
C) kl ≈ ko k2 k3 k4 k5 

ELT 500 0.011
 

0.009 0.0002 0.0049 0.0009 

 

Previous work by Chen et al. (2001) demonstrated the applicability of an n
th
 order model to 

produce volatiles (See section 2.10.). Their work showed a range of n = 1.63 – 1.98, depending 

on the grade of the tyre. They also compared their work with Conesa et al. (2000) who 

developed a first order model for the pyrolysis of tyres. In this work, the order of the reaction 

was set to be solved in the model and resulted in n = 1.4. 

Generally, ELTs degrade whilst the products are formed, and the gases production pattern 

reached a peak point, when the ELTs started to demonstrate a degradation pattern. This is the 

point where the products are more dependent on the gas collected (intermediate) stage, as 

described in the model mechanism. Prior to this point, the char, liquids and aromatics are 

produced with less rapidity (Figure 4.2). The model accounts for the residual tyres (xELT) 

fraction, as well as the products yielded by the pyrolysis reaction.  
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The gases reached a peak point after 88 s, when they started to decrease again with a final 

gas fraction (xg) of 0.43. The final char experimental value was estimated at 0.26. However, the 

model predicted a char value of 0.21, resulting in a 19% error. The error between the 

experimental (xl = 0.39) and model (xg = 0.31) values of liquid fraction was estimated as 20%. 

The error was estimated as 3% between the final experimental ELT fraction (xELT = 0.33) and 

the model value (xELT = 0.34). The model results and experimental values of end of life tyres 

fractions (xELT) were plotted against each other to look at the results compatibility. Figure 4.3 

shows the model vs. experimental values for the ELT grade studied. It can be seen that the mid 

section of the reaction points were more scattered than the rest, and this deviation occurs as the 

products evolve until they reach their final state (at 120 s). 
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Figure 4.2 - Model result showing product formation and ELT loss as a function of reaction time (s) at 500 oC. 
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Figure 4.3 Model vs. experimental values for xELT at 500oC 

. 
 

4.4. Concluding Remarks 

Laboratory scale isothermal pyrolysis experiments on ELTs were conducted. Conversion 

time and product analysis proved the high potential for this method to be carried out in 

industrial units. A thermal cracking scheme was proposed based on the global yielded products, 

which were grouped into four categories, namely gases (C1-C4), liquids (non-aromatic C5-C10), 

single ring aromatics (C5-C10), and char. The evaluation of depolymerisation kinetics (from 

primary, secondary and tertiary reactions) showed a high match with the experimental results, 

resulting in an overall rate constant (ko) of 0.011 (s
-1

).  

Results from this case study have demonstrated the potential for this scheme to be carried 

out in the future. Previous reports have focused solely on maximising gas yield, and differences 

and incoherence between previous reports are attributed to sample type and weight, operating 

conditions and the omission of heat and mass transfer, as well as the mode of pyrolysis. 
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Chapter 5 

Literature Survey: Life Cycle 

Assessment Methodology  

 

his chapter contains a review of life cycle assessment (LCA) and its 

standard methodology. Published reports on LCA and its application to 

thermo-chemical treatment (TCT) reactors, incineration units (IUs) and 

other thermal treatments are also presented. It also details different software 

packages used in performing LCA, in order to demonstrate the different 

capabilities of each. 

 

 

Parts of this chapter were published in: 

 

Al-Salem, S.M., Lettieri, P. and Baeyens, J., (2009). Recycling and recovery routes of plastic 

solid waste (PSW): A review, Waste Management, 29(10); 2625-2643. 

 

Al-Salem, S.M., Lettieri, P. and Baeyens, J., (2010). The valorization of plastic solid waste 

(PSW) by primary to quaternary routes: From re-use to energy and chemicals, Progress in 

Energy & Combustion Science, 36(1); 103-129. 

 

Al-Salem, S.M., Mechleri, E., Papageorgiou, L.G. and Lettieri, P. (2012). Life cycle assessment 

and optimization on the production of petrochemicals and energy from polymers for the 

Greater London Area, Computer Aided Chemical Engineering, 30(1), 101-106 & In: Proc 

of the 22
nd

 European Symposium on Computer Aided Process Engineering (ESCAPE 22), 

Part A; Edited by: Bogle, D., Fairweather, M., pp. 101-106, Elsevier. London (England), 

UK, 17
th
-20

th
 June. 
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5.1. Towards a More Sustainable Practice through 

Recognising Recovered Polymers as a Feedstock: 

Life Cycle Assessment Implementation 

LCA, as defined by Garcia-Serna et al. (2007), is:  

‘a process to evaluate the environmental burdens associated with a product, 

process or an activity by identifying and quantifying energy and materials used 

and wastes released to the environment; to assess the impact of those energy and 

material uses and releases to the environment; and to identify opportunities to 

effect environmental improvements’.  

The applicability of LCA is twofold. Firstly, LCA can be used for the quantification and 

evaluation of the environmental performance of a product or a process and thereby aid decision 

makers on choosing amongst alternatives (Moberg et al., 2005; Garcia-Serna et al., 2007; 

Eriksson et al., 2007, Tarantini et al., 2009). Secondly, it provides an excellent knowledge base 

for engineers and environmental mangers in the assessment of potential improvements in the 

environmental performance of a system (Garcia-Serna et al., 2007).  

In the following section, a brief history of LCA is given. The standardised methodology of LCA 

is also detailed with a review of the literature incorporating thermal treatments, recycling and 

polymer treatment processes. The results of each study are compiled and gaps in the published 

research are also indicated, as well as their relevance to the work conducted in this thesis. 

 

5.2. Background, Definitions & Terminology 

LCA is considered one of the best tools which can be implemented in eco-performances of 

design, processes, engineering solutions, waste management scenarios or disposal methods and 

systems. LCA is an objective methodology developed from chemical engineering principles and 

energy analysis, and is able to account for materials input, energy data, economical analysis and 

emissions related to the life cycle of a product, service or a process (Perugini et al., 2005). LCA 

accounts for every stage in the cycle of the product or service, from resource extraction (cradle) 

to the ultimate end-of-life treatment (grave), hence the term ‘life cycle’ is used. Recovery, 

disposal or production stages before the grave are typically referred to as gates. 

Understanding the importance of LCA can be witnessed from its development throughout recent 

history. In the early 1960s, concerns about the rapid depletion of fossil fuel grew and this 
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sparked the interest in finding ways to account for energy use (Ho, 2011). The first LCA report 

was published by Harold Smith in 1963 at the World Energy Conference, where his calculations 

were concerned with the requirements for the production of chemical intermediates 

(Tsilingiridis et al., 2004). Later, two studies initiated the trend of predicting finite resources in 

the world. These were: The Limits to Growth by D.H. Meadows et al., which was first published 

in 1972 in the US by Potomac Associates (Washington DC); and A Blueprint for Survival by 

Edward Goldsmith and Robert Allen, which appeared as a special edition of The Ecologist and 

was published as a book in 1972 by Ecosystems Ltd (Ho, 2011). The Coca-Cola
®
 Company 

conducted a LCA study on different beverage containers in 1969, and between the years 1970-

1975, the United States Environmental Protection Agency (USEPA) refined their methodology 

and created the resource and environmental profile analysis. More recently, the International 

Standardisation Organisation (ISO) developed the LCA standards between the years 1997-2006. 

The continued development of recycling and recovery technologies, investment in 

infrastructure, the establishment of viable markets and participation by industry, government 

and consumers, are all considered priorities of the highest order (Scheirs, 1998). Today, 90% of 

plastics used are synthesised using non-renewable fossil resources. Therefore, it is essential to 

integrate waste management schemes into the production cycle of plastics and treatment 

schemes of PSW. Whilst recycling is considered a sustainable practice, implying an integrated 

waste management (IWM) scheme provides a more sustainable use of energy and supplies 

(Figure 5.1).  

LCA schemes aid in the selection and application of suitable techniques, technologies and 

management programmes to achieve specific waste management objectives and goals. The 

target of IWM is to control the waste generation from processes to meet the needs of a society 

with minimal environmental impact and with efficient resource usage by activating the 

potentials of waste prevention, re-use and recycling. The IWM cycle can be sub-divided into six 

categories, namely: (i) waste generation, (ii) waste handling, sorting and processing at the 

source, (iii) collection, (iv) separation and processing, (v) transfer station handling and waste 

transport, and finally (vi) disposal. These functional groups are paramount, since they enable a 

framework to be developed and defined for evaluating the impacts of the proposed changes in 

solid waste functions (Al-Jayyousi, 2001). 
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Figure 5.1 - Respective roles of waste prevention and integrated waste management.  
Source: Kirkby et al., 2004. 
Note: In Life Cycle Assessment (LCA) studies, a 'system' is defined (with boundaries indicated by 

broken lines). Energy and raw materials from the 'environment' are used in the system. Emissions, 

including solid waste, leave the system and enter the environment. Waste prevention includes the role 

of cleaner production, innovative services, sustainable consumption and prevention by design.  

 

5.3. Life Cycle Assessment Methodology 

ISO methodology and standards state that the LCA structure consists of four very distinct 

phases, which together contribute to an integrated approach to waste management (ISO, 2006, 

Figure 5.2). These phases are (in consequential order): (i) goal and scope definition; (ii) life 

cycle inventory (LCI) or inventory analysis; (iii) life cycle impact assessment (LCIA) or impact 

assessment, and finally; (iv) interpretation. 

Goal and scope definition defines the extent and scope of the study, and most importantly 

its boundaries. It is essential to define why a LCA is to be carried out and what decision is to be 

informed by the results (Clift et al., 2000). Goal and scope definition is considered a very 

important element for the interested audience, describing the system studied as well as the 

options that will be compared (e.g. scenarios). The scope of the study is expressed in terms of 
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the system boundaries and the processes and operations which are to be included. 

LCAs are commonly carried out to compare a number of alternatives. The basis for 

comparison, common between all alternatives, is termed the functional unit (FU) of the study 

(Clift et al., 2000). It is paramount to distinguish between the ‘foreground’ system and the 

‘background’ system. The former being a set of processes whose selection or mode of operation 

is affected directly by decisions based on the study (in this case waste management activities), 

whilst the latter is defined as all other processes that interact with the foreground system, 

usually by supplying or receiving materials and energy (Figure 5.3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.2 - Phases of Life Cycle Assessment (LCA) indicating guidelines and standards for each. 
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Figure 5.3 - Foreground and Background systems used explicitly by the EA (UK).  
Source: Clift et al., 2000. 

 

As for the LCI, many consider this to be the core of an LCA investigation. This stage 

collects all inputs of materials and energy that cross the boundary between the product and the 

service system over the whole life cycle. Environmental burden assessments and quantification 

fall within this stage. The recommended way to report a LCI for a waste management scheme, 

according to Clift et al. (2000), is: direct burdens plus indirect burdens minus avoided burdens. 

Direct burdens are those associated with the waste management operations themselves (arising 

in the foreground system), whilst indirect burdens are associated with providing materials and 

energy to the waste management operations, i.e. those arising in the supply chain of materials 

and energy provided to the foreground system. Avoided burdens are those associated with 

economic activities that are displaced by materials and/or energy recovered. However, since 

indirect and avoided burdens cannot normally be defined, their numerical estimates should be 

obtained from a reliable database (Perugini et al. 2005), and examples of these are the European 

Reference Life Cycle, SimaPro and the Gabi Software databases. In this thesis, the way to 

report LCI as recommended by Clift et al. (2000) has been employed (see Chapter 6).  

In the LCIA stage, the main objective is to understand and evaluate the magnitude of the 

potential environmental impacts of a given system. This stage organises the LCI inputs and 

outputs into specific selected impact categories and models the inputs and outputs for each 

category into an aggregate indicator (Udo de Haes and Lindeijer, 2002). The final stage of a 

LCA is the interpretation stage, which involves all of the phases in the LCA process and 

reporting them accordingly.  
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A LCIA incorporates impacts and environmental burdens of the different stages of the life 

cycle. Two main categories fall under the remit of environmental impacts: depletion and 

pollution impacts. Depletion impacts include abiotic resource depletion (use of renewable and 

non-renewable resources, e.g. wind, water, etc.) and biotic resource depletion (use of natural 

resources, e.g. biosphere, forests, coal petroleum, etc.). Regarding the pollution impact category, 

this includes: ozone depletion, human toxicity, smog formation, acidification and global 

warming potentials, eutrophication, etc. Table 5.1 shows a number of quantification methods for 

the main burdens which are typically used in LCIA. 
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Table 5.1 Typical life cycle impact assessment (LCIA) categories and their quantification methods. 

 

Impact Category  Definition Quantification Methods  Notes Reference 

 
Ozone Depletion Index 

(ODI) 

 
The final sum of chemicals 
characterised with respect 

to their iODP . 

∑ ×=
i

ii )ODP(eODI                                                                        (5.1) 

where ei is the emission (Kg) of substance i and ODPi is the ozone 
depleting potential of substance i. 

 
Much of ODIs were stressed 
after the initial Montreal 
protocol entry in 1987. 

 
 
Bare et al. (2003). 

 
 

Global Warming Index 
(GWI) 

 
This category refers to the 
potential change in the 
earth’s climate caused by 
the build-up of (GHGs). 

∑ ×=
i

ii )GWP(eGWI                                                                       (5.2) 

where ei is the emission (Kg) of substance i and GWPi is the global 
warming potential of substance i. 

 
In this work, the Gabi 5 Database 
(DB) was used for the IU GWP 
calculation. 

 
Bare et al. (2003); 
Johnke (2000);  
USEPA, (2001). 

 
 
 

Energy credit/Total CO2 
emission 

 
 
This refers to CO2 emission 
calculation with regards to 
energy credits in a unit 
operation, typically an 
incinerator 

PPMixi,cCorrCorr EFenergydusable/useTEEmission ×−=    (5.3) 

iCorreqCO2 GWPEmissionTE ×=−                                                      (5.4) 

where Emissioncorr is the corresponding emission of substance i 
(tonne), usable/used energy is the energy consumption or production 
of the unit (kWh) and EFPPMIX is the emission factor of power plant 
mixtures for substance i (tonne). 

 
 
 
Assumptions could be found in 
indicated reference. 

 
 
 
Johnke (2000) 

 
 

Acidification Potential 
(AP) 

The process whereby air 
pollutants, mainly NH3, SO2 
and NOx, are converted into 
acidic substances. 

∑ =
×=

n

1i ii BecAP                                                                                (5.5) 

Where ecj represents the AP of substance i expressed relative to the 
value for SO2 and Bi is the emission (Kg) of substance i.  

For the case relevant to 
incineration of MSW, power 
plant mixtures could be used. 
See Johnke (2000); IPCC, 
(2006a, 2006b). 

 
Azapagic et al.  
(2004) 
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Table 5.1 (cont’d) Typical life cycle impact assessment (LCIA) categories and their quantification methods. 

 

 
 
 
 
 
 

 
Ecological Toxicity 

Potential (ETP) 

 
 
 
 
 
Quantitative 
measure that 
expresses the 
potential ecological 
harm of substances 
released into the 
surrounding 
environment. 
 
 

n

i

m

inm

i
S

PEC
CSR =                                                                                         (5.6) 

n

i

m

i
C

FA
ICR

∗

=                                                                                                 (5.7) 

]ICR[CSR

]ICR[CSR
ETP

m

x

nm

x

m

i

nm

inm

i
×

×
=                                                                    (5.8) 

]ETP[0.5]ETP[0.5(overall)ETP swair,

i

soilair,

i

air

i ×+×=                 (5.9) 

]ETP[0.5]ETP[0.5(overall)ETP swsw,

i

soilsw,

i

sw

i ×+×=               (5.10) 

where 
nm

iETP  is the ecotoxicity potential, 
nm

iCSR  is the concentration 

(mol/m3) of chemical i to source ratio in medium m based on a unit release 

(mol/m3) to compartment n, 
m

iICR  is the impact to concentration ratio for 

chemical i in m, which is the measure of potential impact. 

 
 
 
 

m

iPEC  is considered the 

predicted environmental 
concentration of chemical i. 
Whilst, FA* is the standard 

measure of harm, and 
n

iC  is the 

benchmark concentration for 
chemical i. 

 
 
 
 
 
 
 
Hauschild and 
Pennington,  
(2002); 
Bare et al. (2003). 

 
 

Fossil Fuel Index (FFI) 

 
An assessment of 
fossil fuel in a 
quantitative way 

∑ ×=
i ii )F(NFFI                                                                                      (5.11) 

Where Ni is the increase in energy input requirements per unit of fuel 
consumption of fuel i and Fi is the consumption of fuel i per product unit. 

 
 

- 

 
Geodkoop and 
Spriensma,  
(1999). 
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5.3.1. System Expansion and Problems Arising from Allocation 

System boundaries in Life Cycle Assessment (LCA) studies should always be clearly 

indicated. Inputs and outputs to the system are followed from ‘cradle’ to ‘gate’ or ‘grave’, and 

hence inputs are flows drawn from the environment and outputs are flows discarded to the 

environment (Finnveden, 1999; Ekvall et al., 2007). Both inputs and outputs should not have 

any human transformation affecting them. As previously discussed, a LCI is the phase of a LCA 

where energy and material flows are compiled and quantified and this is considered the core of a 

LCA investigation. However, an allocation problem (as it is commonly referred to) arises when 

a multifunction
1
 process is defined. Allocation problems can be classed as either methodological 

or open-loop recycling (Ekvall and Finnveden, 2001).  

Methodological allocation problems arise in a LCI when a multifunctional process fulfils 

one or more functions for the products life cycle, whilst also fulfilling another function for 

another product’s life cycle. The problem is in deciding what share of the environmental burden 

should be allocated to each process investigated. The second type of allocation problems occurs 

in open-loop recycling, i.e. when a material from one product is recycled into another. Here, the 

main life cycle fulfils a function in the life cycles of two products (Ekvall and Finnveden, 

2001). According to ISO 14041, allocation should be avoided through the division of the 

multifunction process or through system boundary expansion (Ekvall and Finnveden, 2001), 

with the latter being the more preferable option since it reflects the full life cycle of the product 

in a more realistic manner. System expansion is also a very adequate way in which to avoid 

allocation as long as data can be obtained for the alternative production or processing method 

(Ekvall and Finnveden, 2001). Finnveden (1999) addressed the issue of system boundary 

expansion to include several functions. Typically, different processes provide different functions 

and comparisons between the two would be difficult. Two methods are reported here to avoid 

the allocation problem by system expansion.  

The first method of comparison between two processes is to add the equivalent amount of 

product to one of the processes, and thus it is possible to compare the two processes. The second 

method is to subtract the product using an alternative method (i.e. off-setting). In this method, 

avoided emissions will occur and environmental interventions may be negative, and in such 

reports, the system is said to be credited with an equivalent amount of product (e.g. heat, 

electricity, etc.) being produced in an alternative manner (Finnveden, 1999). In fact, the input 

material to a life cycle can either be sent to landfill or re-enter further life cycles as a substitute 

for virgin materials. Substitution means avoidance of products manufactured from primary 

resources through secondary materials gathered from recovery and recycling. In other terms, the 

                                                 
1
 A multifunctional process is an activity that fulfils more than one function simultaneously 

(Ekvall and Finnveden, 2001).  
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production of a recycled material that re-enters further life cycles represents a potential credit 

for avoiding the production of an equivalent quantity of virgin products (Blengini et al., 2012). 

Finnveden (1999) also discussed in detail the drawbacks of using system boundary expansion, 

which can be summarised as follows: 

• The models get larger and more complicated. Models used in system expansion are 

often based on several critical assumptions concerning materials and energy sources 

being replaced. 

• Loss of transparency. This is the case when subtracted systems are used and the avoided 

function were not adequately described and justified. 

• Loss of the capability of studying one product in isolation, since it is now part of an 

expanded system. 

Finnveden (1999) also addressed the issue of ‘identical’ products in LCA systems. Identical 

products in a LCA context, does not mean that they have to be exactly identical in all aspects. It 

is sufficient simply if the products are providing a comparable function to a user or if they have 

the same environmental impacts, in which case the products can be disregarded. If the products 

are not providing comparable functions, then they cannot replace each other. If the products do 

not have the same environmental impacts, then at least the differences should be included in the 

LCA.  

In this thesis, the system expansion methodology to credit all potential products as 

described by Finnveden (1999) is used in Chapter 6. The attributional life cycle assessment 

(ALCA) study performed on the greater London area (GLA) considers the production of a 

number of valuable petrochemicals and energy from different technologies and processes. The 

petrochemicals, products and energy resulting from each scenario were off-set against 

conventional production methods (see Chapter 6). Off-setting the produced energy and products 

from the integrated scenarios avoids the allocation problem that could result from introducing a 

TCT unit to the baseline scenario (i.e. Scenario 1, see Chapter 6). The polymeric fraction 

introduced into the TCT reactors fulfils two functions simultaneously; it is the product from the 

MRF and the feed to either a pyrolysis reactor or a hydrocracking unit. Consequently, a 

multifunctional FU problem can be avoided by system expansion in this case (which was done 

in Chapter 6).  

System expansion also makes it possible to compare between the scenarios in a systematic 

approach, reflecting the full life cycle of the FU (Finnveden, 1999; Ekvall and Finnveden, 2001; 

Valerio 2009, Rigamonti et al., 2009). In addition, average and marginal electricity data can be 



Chapter 5  Literature Survey: LCA Methodology 120 

 

 

used to off-set the production of electricity. Average data typically reflects the current situation 

of the studied boundary. In contrast, marginal effects data are the consequences of infinitesimal 

or small changes in the volume produced of a good (Eriksson et al., 2007). Marginal effects data 

used include nuclear, wind, hard coal or natural gas energy production on a standalone basis. 

The UK combined cycle gas turbine (CCGT) heat generation data were used to off-set the heat 

production from the IU with CHP (see Chapter 6). Off-setting the energy produced against 

average and marginal data provides a realistic overview of the LCA performed, since it 

considers the UK national grid and other marginal sources that exist in this country. Sections 

5.5-5.6 summarise LCA studies addressing the system expansion concept (for avoiding 

allocation problems), avoided burdens and the thermal treatment of polymers in the urban 

environment. 

5.3.2. Hot Spot Analysis in LCA Studies  

Another concept commonly addressed by LCA studies is hot spot analysis (HSA). HSA is 

used to define the unit operations within a plant, process or activity that contribute to high 

emissions or environmental indicators in general (Patel et al., 2012). HSA can be performed on 

processes within a system or in a deeper manner going into the individual contributions of the 

different activities within a process. 

Chaya and Gheewala (2007) performed a LCA on two MSW to energy schemes 

undertaken in Thailand; incineration and anaerobic digestion (AD). The FU considered was one 

tonne of MSW which would be treated either by an incinerator with a 250 tpa capacity or an 

anaerobic digester with a 50 tpa capacity. Credits were provided to the incineration scheme for 

avoided electricity production, and to the AD for avoided electricity and fertilizer production. 

Data included in the study were obtained from a number of sources including the SimaPro 5 

software database and governmental databases. The study showed that the AD (-276 kg CO2-eq) 

was preferable to incineration (273 kg CO2-eq) in terms of global warming potential (GWP). 

AD was also preferable to incineration in terms of acidification potential (AP), which was 

estimated at 2.37 kg SO2-eq for incineration and -1.57 kg SO2-eq for AD. This was partly 

because more than 60% of the waste was biodegradable and thus suitable for AD. There were a 

number of hot spots identified in both schemes that could be improved, such as the lime 

production in the IU which contributed to the majority of the studied impacts. Replacing lime 

by other materials or methods that contribute to a smaller impact was recommended. For AD, 

nutrient enrichment processing was identified as a hotspot due to emissions into water. 

Patel et al. (2012) performed a LCA to identify if solid recovered fuel (SRF) plants at 

scales of 50 and 100 ktpa incorporating fluidized bed combustion (FBC) technology were 

environmentally friendly. The system boundary included power production, collection of the 
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MSW, pre-treatment of the MSW, the Fairport process for SRF production, pelletisation, 

transportation of the SRF to the power generating facility, storage of the SRF, storage of bottom 

ash, transportation of bottom ash to be used as secondary aggregate, and transportation of fly 

ash to a specialised landfill site. The HSA revealed that the most polluting units in the SRF 

plant arose from the energy production sub-system, specifically the combustor and boiler, with 

the combustor releasing twice as much as the boiler at7503 kg CO2/h and 3652 kg CO2/h, 

respectively. Blengini et al., (2012) studied the thermal treatment (as a recycling process 

implementing a furnace with a foaming process) of recycled foam glass in Italy. The three 

scenarios compared depended on the mixing ratio between soda lime glass and special glass. 

Scenario 1, 2 and 3 contained the following percentage of soda lime glass: 50%, 80% and 20%, 

respectively. System expansion was implemented in the study, thus net environmental gains 

relevant to glass and ceramic fragments/powders recovery, metal scrap recycling, plastic scrap 

energy recovery and landfill avoidance were allocated to recycled foam glass. Consequently, the 

adopted FU was 1 tonne of recycled foam glass aggregate. The results, normalised to the highest 

impact scenario, indicated that scenario 2 had the lowest gross energy requirement which was 

estimated at about 85%, whilst scenarios 1 and 3 resulted in a normalised estimate of 93% and 

100%, respectively. In contrast, the GWP (kg CO2-eq) of scenario 2 was normalised as 100%, 

whilst scenarios 1 and 3 resulted in an estimate of 93% and 96%, respectively. The energy use 

for the thermal process was determined to be a hot spot and the LCA results suggested 

switching to a natural gas powered kiln or an electric kiln powered with a natural gas co-

generator, the latter being the solution adopted by the industrial partner of this study’s authors. 

5.4. Types of LCA Studies: 

Does it Matter to Distinguish between the Different 

Types of LCA Conducted? 

LCA studies can be classified as either a consequential LCA (CLCA) or an ALCA (Brander 

et al., 2008). Policies such as the UK’s renewable transport fuel obligation and the EU’s 

renewable energy directive have been criticised for failing to distinguish between the two types 

(Brander et al., 2008) and this can lead to: 

1. Applying the wrong method to the case in hand. 

2. A combination of the two methods within a single analysis. 

3. A misinterpretation of the results obtained. 

4. An unfair comparison of the results derived from different methods. 

ALCA is concerned with describing the environmentally relevant physical flows to/from a 

life cycle and its sub-systems. It ideally includes average data on the unit processes (Eriksson et 
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al., 2007). ALCA provides information regarding the impacts of the processes used to produce a 

certain product and also includes the consumption and disposal of said product (Brander et al., 

2008). However, this type of study does not consider indirect effects arising from changes in the 

output of a product. ALCA is used to identify direct impacts within different parts of the life 

cycle. An overview of the main differences between the two types of LCA is given in Table 5.2. 

The LCA conducted in this work is of the attributional type. Energy requirements, production of 

chemicals and petrochemicals, recovery of power and heat and material flows of the system 

boundary were accounted for and are reported in Chapter 6. 
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Table 5.2  Main differences between Attributional LCA (ALCA) and Consequential LCA (CLCA). Source: Brander et al. (2008) 

 

 ALCA CLCA 

 
 

Definition (Eriksson et al., 2007) 

 
A methodology for life cycle inventory (LCI) analysis aims at 
describing the environmentally relevant physical flows to and 
from a life cycle and its subsystems. 

 
A methodology for describing how the environmentally 
relevant physical flows to and from the technosphere1 will 
change in response to possible changes in the life cycle. 
 

 
The study includes (Eriksson et al., 2007) 

 
It ideally includes average data on the unit processes. 

It includes unit processes that are significantly affected 
whether they are inside or outside the life cycle. It ideally 
includes marginal data on bulk production processes in the 
background system. 
 

 

Questions the method aims to answer 

What are the:  
i. total emissions from the processes  
ii. material flows directly used in the life cycle of a 

product 

What are the changes in total emissions as a result of a 
marginal change in the production (and consumption and 
disposal) of a product. 
 
 

 

Application 

Understanding the emissions directly associated with the life 
cycle of a product. Also appropriate for consumption-based 
emission. 
 

Applicable for informing consumers and policy-makers on 
the change in total emissions from a purchasing or policy 
decision. 

 

Not appropriate for  

Quantifying the change in total emissions resulting from policies 
that change the output of certain products 

Consumption-based emissions accounting. 
 
 

 

 

System boundary 

 
 
The processes and material flows directly used in the production, 
consumption and disposal of the product. 

 
All processes and material flows which are directly or 
indirectly affected by a marginal change in the output of a 
product (e.g. through market effects, substitution, use of 
constrained resources etc.). 
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Table 5.2 (Cont’d) Main differences between Attributional LCA (ALCA) and Consequential LCA (CLCA). Source: Brander et al. (2008) 

 

 

 

Uncertainty 

 
 
Low uncertainty because the relationships between inputs and 
outputs are generally stoichiometric 

 
 
Highly uncertain because it relies on models that seek to 
represent complex socio-economic systems that include 
feedback loops and random elements 

 
1The part of the physical environment affected through building or modification by humans 
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5.5. Application of Software and Simulation  

Environments in Life Cycle Assessment Studies 

In several countries, LCAs have been carried out to compare environmental impacts of 

applied waste management system strategies. Several computer aided solutions are currently 

available in the market, most of which are designed for end-point analysis, i.e. at the end of the 

process design (Garcia-Serna et al., 2007). These software packages provide the user with an 

environment in which processes can be simulated and data inputted to produce compiled results 

reports that follows the different stages of the life cycle. Examples of such software packages 

used in LCA methodology are SimaPro (Pre Consultants), Umberto (IFU Hamburg and IFEU 

Heidelberg) and Gabi (Department of Life Cycle Engineering at the University of Stuttgart and 

PE International GmbH). These software packages are based on the ISO 14040 methodology 

and all implement a number of databases (Pieragostini et al., 2012), such as, ECOINVENT 

database (Swiss Centre for Life Cycle Inventories). Table 5.3 contains a list of the most 

common software packages available together with a brief description of each package.  

The commercial WISARD (Waste Integrated System Assessment for Recovery and 

Disposal) LCA tool was developed in France by the Ecoblian Group. De Feo and Malvano 

(2009) used this particular tool in their study, which focused on the environmental impacts 

produced by MSW systems in Campania, a region in southern Italy. Twelve scenarios were 

considered, of which the first ten were based on a separated kerbside collection of paper and 

cardboard and dry residue. Scenario 11 was based on a combined kerbside collection of plastics 

(14% of total waste) and metals, and in scenario12 on a bring collection of glass, although 

scenarios 11 and 12 didn’t consider the thermal treatment of dry residues. The impact 

assessment categories evaluated were as follows: renewable energy use, non-renewable energy 

use, total energy use, water, suspended solids and oxydable matters index, mineral and quarried 

matters, GHGs, acidification, eutrophication, hazardous waste, non hazardous waste. The study 

indicated that metals and plastics treated after collection with no RDF incineration was not the 

most environmentally sound option for renewable energy use, total energy use, water, 

suspended solids and oxydable matters index, eutrophication, and hazardous waste. 
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Table 5.3 LCA software packages commonly used and available on the market.  
Source: Garcia-Serna et al., (2007) 

 

Software  Description  Company  

 
LCA 

 
LCA systematically describes and assess all flows to and from nature in a cradle to grave fashion. It is used 
commonly with life cycle analysis or Ecobalance studies. 

 
PER 

 
 
SimaPro 
 
 
 

 
The SimaPro family (different versions) allows the users to implement LCA in a flexible way. The user can collect, 
analyze and monitor the environmental performance of processes. The user can model LCA in a systematic way 
following the ISO 14040 recommendations. 

 
 

PER 
 
 

Umberto This software visualizes material and energy flows. It can model complex structure with its graphic interface. It 
can also model production facilities in a company, processes and value chains. 
 

German ifu 
Hamburg GmbH 
in cooperation 
with Ifeu 

 
Software 
Development 
Life Cycle 
(SDLC) 

 
This package is also known as a linear sequential model, where activities such as system/information engineering 
are modelled. 
 
 

 
Stylus Systems 
Inc. 

 
ECO-it 

This software allows you to model a complex product and its life cycle in a short period of time. It calculates the 
environmental burdens, and shows which part contributes most. Hence it is ideal for Hotspot Analysis (HSA). 

 
PER 

 
 
Gabi 

 
This software provides solutions for different problems regarding cost, environment, social and technical criteria, 
optimization of processes and manages external representation in these fields. 

 
PE Europe  
(University of 
Stuttgart)  
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The WISARD software was also used by Buttol et al. (2007) to compare three different 

scenarios of waste management in the district of Bologna, Italy, which included: waste 

collection, transportation, sorting, recycling, composting, incineration and landfilling. The three 

scenarios built using the software incinerated different amounts of collected waste (30%, 50% 

and 37%, respectively), and the main findings of the study can be summarised as follows: 

• In all scenarios, recycling was confirmed to save energy (by 3 to 5 times) when 

compared to landfilling. 

• In all scenarios, recycling emits the lowest level of volatile organic compounds. 

• Scenario 3 produced the lowest avoided impact of toxic compounds, expressed as 1-4 

dichlorobenzene-eq (1,4 DCB-eq). 

The Gabi software was used to model the waste management system of Prato, Italy by 

Tarantini et al. (2009). The study included five indicators: non-renewable primary energy, 

GWP, eutrophication potential, photochemical ozone depletion potential and 

environmental/human toxicity potential. The system modelled included RDF sent to an IU with 

CHP, organics sent to composting, metals recycling, mixed waste compounds landfilling and 

biogas recovery. The best performance in terms of avoided impact was obtained by PE and 

paper recovery. Therefore, a specific recommendation was made to the managing consortium of 

the Industrial area of Prato to improve polymers collection (namely PE).  

Luz et al. (2010) compared in a LCA context, the environmental impacts of sugarcane 

bagasse PP composites and talc PP composites used in the automotive industry. The FU of the 

study was the surface area covered inside one vehicle (m
2
). The LCA was performed using the 

Gabi 4.3 software. The energy consumption of option 1 (sugarcane bagasse PP, 115 MJ) proved 

to be less than option 2 (Talc filled PP, 144 MJ) and the GWP for the treatment options tested 

(incineration, recycling and landfill) was calculated. Recycling proved to the most enviro-

friendly option when compared with incineration.  

Santoyo-Castelazo et al. (2011) used Gabi software to study the electricity generation in 

Mexico in a LCA context. The goal of the study was to estimate the life cycle environmental 

impacts of electricity generation from the public sector in Mexico, and the FU was defined as 

the total annual amount of electricity generated by the public sector. The main source of the 

GHGs was reported to be fossil fuelled operated plants, contributing 87% to the GWP. The AP 

was also assessed in the study and over 65% of 1.5 million tonnes of SO2-eq per annum was 

estimated from the operation of heavy fuel oil power plants, mainly due to the high sulphur 

content (3-4%) of the oil used. The second largest contributor was the operation of coal power 

plants (20%). 
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A study carried out by the Milan Polytechnic Institute was reported by Rigamonti et al. 

(2009). The aim of this study was to determine the optimum level of separate collection in an 

integrated post consumer material system in Milan, Italy, and the environmental and energy 

impacts were assessed using the SimaPro 7 software and three integrated scenarios were 

modelled. The scenarios differed with each other in the quantity sent to material recovery and 

energy recovery. The main conclusions of the study can be summarised as follows: 

• For all the analysed materials, recycling is more efficient when compared with 

incineration.  

• The highest energy saving is related to aluminium recovery. 

• Incineration with energy recovery is environmentally preferable when the electricity 

produced is replaced (off-set) with electricity produced from coal. However, 

incineration is less preferable when electricity is replaced with electricity produced from 

natural gas in combined cycle plants. 

Eriksson et al. (2007) performed a CLCA with the aim of comparing district heating based 

on waste incineration with combustion of biomass or natural gas. The FU was 42 PJ (1 

Petajoule = 1 × 10
9
 MJ) of district heat, which is the amount released from incinerating all the 

waste in the study. Five technologies were compared with different fuel and/or energy recovery 

levels. These were: incineration with CHP production, incineration with district heat production 

only, biomass combustion with CHP production, biomass combustion with district heat 

production only, and natural gas combustion with CHP production. Avoided treatments were 

material recycling and landfilling. These avoided treatments were off-set against marginal data 

for wind, nuclear, biomass with CHP, coal, oil condense, hydro power and natural gas with 

CHP. Fourteen scenarios were developed by combining the different fuel types, energy recovery 

methods, avoided treatment and electricity scenario (based on marginal data), and the study was 

implemented using SimaPro 5 software. The main focus of the results was on the GWP impact 

assessment. Waste incineration with avoided landfilling scenarios gave the largest savings in 

GWP, regardless of the type of avoided electricity mix. Out of these, incineration with CHP 

gave the largest savings, especially for a high impact electricity mix. Biomass combustion 

performed the best with CHP, especially in combination with a replaced high gas price fossil 

intense power. 

In this thesis, the Gabi 5 software was used to verify the calculations performed numerically 

using Microsoft Office EXCEL 2003 (see Chapter 6). The data level in Gabi 5 is considered 

very high, comprehensive and has proven to be a useful tool historically (Buttol et al., 2007; De 

Feo and Malvano, 2009; Tarantini et al., 2009; Rigamonti et al., 2009; Valerio, 2010). The 

database for the software enables the calculation of different impact categories (e.g. GWP 
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expressed in Kg CO2-eq, AP expressed in SO2-eq, etc), an advantage in using software packages 

in modelling scenarios. In contrast, a lack of specific details in the exact methodology of the 

compiled results is a disadvantage when using such commercial software. In addition, non-

transparent datasets used by the software (e.g. transportation load calculations) pose a further 

disadvantage. 

5.6. TCT Reactors, Incineration Processes and Recycling 

Prior to the Environmental Act (1990), emissions in the UK were subject to single medium 

regulations covering releases to air, water and land. In 1976 the Royal Commission on 

Environmental Pollution highlighted that this was not an effective approach, and in 1999, the 

Integrated Pollution Prevention and Control EC Directive was implemented in the UK. Arena et 

al (2003a) conducted a LCA study focusing on the mechanical recycling option of PET and PE 

rigid packs within the Italian system. Six different scenarios, integrated by means of the 

combined use of the data gathered, were compared in terms of environmental burdens and 

resource consumption. The analytical comparison revealed that recycling was the best option 

when considering the hypothetical scenario of mechanically recycling all the collected waste. 

Although the case study did not reflect the reality of the situation, it emphasised how 

environmentally-friendly recycling can be, compared to energy recovery via incineration and 

landfilling. In a follow up study, Arena et al. (2003b) reported on the environmental burdens 

and materials consumption of the three different scenarios for the region of Campania, Italy. 

Landfilling was compared against RDF production and combustion and mass incineration, 

which proved to be a more viable strategic plan in terms of the environmental impact categories 

considered. 

Khoo (2009) evaluated eight thermal technologies in Singapore, namely: pyrolysis of 

MSW, pyrolysis-gasification of MSW, gasification of MSW, pyrolysis-gasification-oxidation of 

MSW, steam gasification of wood, CFB gasification of organic waste, gasification of RDF and 

gasification of tyres. Environmental impacts were determined using LCA focusing on the GWP, 

AP, eutrophication and ozone photochemical formation. The study focused on the production of 

product gas from an assortment of waste types chosen for their importance as intermediates for 

the production of other industrial products, including methanol, ammonia, etc. Total life cycle 

costing was introduced and Equation 5.12 was used to calculate this for each system: 
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where CT, C
P
, C

W
, C

L
 are the total processing, waste collection and landfilling costs, 

respectively. MSWT is the total MSW generated (tonnes) and Xw is the amount of waste 

feedstock for generating 1 tonne of product gas. The highest cost was calculated for tyres 
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gasification, whilst the RDF gasification was determined to be the lowest. The pyrolysis-

gasification of MSW option was determined to be the lowest in terms of AP, however the 

pyrolysis of MSW was determined to be the lowest in GWP (kg CO2-eq). Vink et al. (2003) 

used LCA to compare polylactide (PLA), a versatile polymer used to replace a number of 

conventional conversion plastic product materials, against a number of petrochemical based 

ones. Nylon 66 was the highest in terms of fossil fuel requirements, and nylon 6 was the highest 

in kg CO2-eq emission per kg polymer, when compared against polylactide (PLA), PCA, PS, 

PET and LDPE.  

Finnveden et al. (2005) evaluated different strategies for the treatment of solid waste in 

Sweden based on a life cycle perspective. The main goal was to identify advantages and 

disadvantages of the different methods for the treatment of solid waste. The waste materials 

included were food waste, newsprint, corrugated cardboard, mixed cardboard, PE, PP, PS, PVC 

and PET. The treatment methods considered were incineration (of all fractions) with heat 

recovery, landfilling (of all fractions) with landfill gas extraction, recycling (of all fractions 

except food waste), AD (of food waste) and large scale composting (of food waste). The FU of 

the study was the amount of waste fractions collected in Sweden during one year and the 

scenarios considered in the study were all established from a base scenario, which had relatively 

shorter transport distances than the rest. The remaining scenarios considered were developed 

based on transport distance and method, time period of scenario or avoided energy treatment 

(heat from natural gas or forest paper recycling replacing natural gas). A number of conclusions 

were drawn from the study and these can be summarised as follows: 

� Energy turnover for all treatment methods is negative for the whole system. This 

implies that the energy output from the system is larger than the energy input (excluding 

the energy content of the waste, which is constant in all cases and therefore 

disregarded). 

� For PET, the emissions contributing to global warming from incineration were similar 

to the emissions from landfilling. This is because all the fossil carbon is released during 

incineration, as well as during landfilling. 

� Recycling of paper and plastic materials is more favourable with regard to overall 

energy use, emissions of gases contributing to global warming and the total weighted 

results. 

� In the system studied, heat from the incineration of waste replaced either heat from 

forest residues or natural gas. If the waste can replace oil or coal as energy sources, and 

neither biofuel nor natural gas is an alternative, then a policy promoting incineration 

may be successful for paper materials regarding emissions of GHGs. 
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The second part of the study was published with the aim of testing the validity of the waste 

management hierarchy for the treatment of solid waste (i.e. re-use being most favourable and 

landfilling being least, Moberg et al., 2005). This was accomplished via a LCA on recycling, 

incineration with heat recovery and landfilling of recyclable waste in Sweden, and the same 

scenarios previously described in Finnveden et al. (2005) were considered. The different waste 

management options studied were landfilling, incineration, recycling of paper and plastic 

fractions, and digestion and composting of food waste. The main conclusion presented in the 

study was that the waste hierarchy is valid as a rule of thumb. Another conclusion was 

withdrawn regarding the considered energy recovery aspect. Even though 50% of the landfill 

gas was assumed to be collected and combusted with energy recovery, this only makes up part 

of the potential resource that the waste may constitute if treated by recycling or incineration. 

Björklund and Finnveden (2005) reviewed LCA studies of individual materials in household 

waste between the years 1995-2005. These materials included: PE, PET, aluminium, glass, 

cardboard, paper, newspapers, timber, naphtha, heavy oil, combustible gas, methanol and 

olefins, and publications focusing on recycling versus incineration and landfilling were 

reported. In terms of total energy and GWP categories, the reviewed studies were fairly 

consistent. Recycling showed the lowest impact on total energy use and GWP in most of the 

studies. Four key factors were identified from which it was possible to largely explain the few 

conflicting results: type of recycled materials, type of materials avoided by recycling, energy 

sources avoided by energy recovery from incineration, and the time perspective of landfills (i.e. 

a longer time perspective assumes that landfill decomposition will continue to cause 

environmental impact until all the material has been spread to the environment, and vice versa). 

Results from Denmark indicate that feedstock recycling is less favourable than the incineration 

of plastics with regard to GWP. However, this is contradicted by results from Germany, where 

feedstock recycling (TCT implementation) is the preferable option. Feedstock recycling 

produces high value output, but typically has high energy consumption, which reduces the 

overall performance (Björklund and Finnveden, 2005). Another notable point in the results 

presented was the fact that for plastics, landfilling can be preferable to incineration regarding 

GWP if the landfill is considered for a short time perspective. This is due to the 100 year time 

perspective of which there is no significant decomposition of plastic polymers and thus no GWP 

contribution. Economical analysis and overall costing were both lacking in the work presented. 

The profitability of a scenario often drives the implementation of the process, especially if 

scenarios have a similar environmental impact. 

In conclusion, LCA, both attributional and consequential, has been implemented in a 

number of studies to determine the best performance of processes, engineering solutions, waste 

management scenarios and disposal methods (Nicholas et al., 2000; Arena et al., 2003a, 2003b, 
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Perugini et al., 2005; Moberg et al., 2005; Finnveden et al., 2005). LCA accounts for every 

stage in the cycle of the product or service, from resource extraction (cradle) to the ultimate 

end-of-life treatment (grave), and hence the term ‘life cycle’ is employed.  

The LCA structure consists of four very distinct phases that contribute to an integrated 

approach to waste management. These phases are (in consequential order): (i) goal and scope 

definition; (ii) LCI or inventory analysis; (iii) LCIA or impact assessment, and finally; (iv) 

interpretation. Previous LCA reports have confirmed that recycling uses less energy than 

classical methods of waste disposal, i.e. landfilling (Buttol et al., 2007). Recycling also emits 

the lowest volatile organic compounds when compared to incineration and landfilling (Buttol et 

al., 2007). Improving the recovery of polymers (namely PE) has been reported to reduce 

environmental indicators (Tarantini et al., 2009).  

Incineration with energy recovery in CHP plants are environmentally preferable when the 

electricity produced is off-set against electricity produced from coal (Rigamonti et al., 2009). 

According to Eriksson et al. (2007), incineration in a CHP process gives the largest savings, 

especially for a high impact marginal electricity mix. However, Valerio (2009) recommends 

referring to the average electricity mix when off-setting electricity production. Past reports 

taking into account the production of national electricity mix to evaluate avoided electricity 

generation (i.e. off-setting against the national grid) (Valerio 2009, Rigamonti et al., 2009), 

confirm that recycling is the best option for energy savings and toxic environmental impacts in 

many geographical contexts (Europe, USA and China).  

Björklund and Finnveden (2005) confirmed that recycling showed the lowest impact on 

total energy use and GWP in most of the studies reviewed. Regarding TCT of plastics 

(especially feedstock recycling), results from Germany show such processes as the preferable 

option in terms of GWP against incarnation. Feedstock recycling produces high value output, 

but typically also has a high energy consumption, which reduces the overall performance 

(Björklund and Finnveden, 2005). Another notable point in the results presented was the fact 

that for plastics, landfilling can be preferable to incineration regarding GWP if the landfill is 

considered within a short time perspective. This is because there is no significant decomposition 

of plastic polymers within a 100 year time perspective and thus no GWP contribution. 

As a method for systematic environmental assessment, LCA still lacks clarity, 

sophistication and the proper complexity in its LCIA. A lack of complexity is the direct result of 

data availability in the literature and published reports. Clear calculations regarding reported 

impacts are also very scant, and typically one must rely on weighting methods. Furthermore, 

authors neglect the clear detailing of avoided burdens and in addition, the distinction between 

types of LCA (i.e. consequential and attributional) is rarely made clear.  
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This thesis undertakes a LCA study set in the GLA, which includes waste inputs and 

outputs, energy assessments and economic analyses of MRFs, TSs and other unit operations 

(see Chapter 6). In addition, implementing TCT units and their impact on existing systems has 

not been attempted previously for the City of London. The gaps in the recent research are 

addressed by the work presented in this thesis (see Chapter 6). The study carried out focuses on 

identifying and quantifying the environmental burdens, namely GWP and energy turnover 

associated with the life cycle of polymers treatment in the GLA. Three scenarios are defined to 

include conventional routes of treatment in London (dry product recovery through a MRF and 

incineration with CHP production), as well as implementing two TCT industrial units (pyrolysis 

and hydrogenation reactors) to the baseline scenario. Avoided treatments, such as landfilling, 

UK average grid mix and marginal electricity production, etc., where also included in 

developing the overall system studied. Landfilling was also compared to the system studied to 

demonstrate the effects of treating the FU in the studied scenarios with the unit operations 

investigated in this study. This type of analysis is classified as an ALCA, where average data 

are used to reflect the burdens quantified for all unit operations involved. 
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Chapter 6 

Life Cycle Assessment of Utilising 

Polymeric Fractions of MSW in the 

Greater London Area 

 

 

he aim of this chapter is to present the results of an attributional life cycle 

assessment (ALCA) study performed for three integrated scenarios 

reflecting the management, treatment and handling of polymers in the 

context of municipal solid waste (MSW) in the Grater London area (GLA). 

The study comprises a materials recovery route via a dry materials recovery 

facility (MRF), an energy recovery route (incineration unit (IU) with combined heat and power) 

and two thermo-chemical treatment (TCT) units with industrial scale technologies. The TCT 

units consist of a low temperature pyrolysis (LTP) reactor working under BP
®
 technology and a 

Veba-Combi Cracking (VCC
®
) hydrogenation reactor. The LTP process recovers 

petrochemicals (e.g. gases (C3-C4), liquid fractions (naphtha), waxes (atmospheric residue, AR) 

and heat in the form of steam, whilst the VCC
®
 process produces syncrude and e-gas which is 

comparable to natural gas. All the petrochemicals, chemicals, CO2 emissions and energy 

produced by the different technologies were considered as a credit to the overall system 

developed, due to the fact that the treated functional unit (FU) is of MSW origin and the 

technologies are all EfW processes.  

The system expansion methodology was applied to the three integrated scenarios (see Section 

5.3.1). The following alternatives were off-set: average electricity (UK mix) production, four 

alternatives for marginal electricity generation (natural gas, wind, hard coal and nuclear) and the 

UK combined cycle gas turbine (CCGT) heat generation marginal data for off-setting heat 

production from IU with CHP) (see Section 5.3.1). All the scenarios developed were compared 

to landfilling the amount entering the overall system (i.e. the FU). The study investigates the 

T 



Chapter 6 LCA of MSW Utilizing Polymers in London 135 

 

 

impact of introducing TCT units with the aim of petrochemicals recovery on the environment. 

All the calculations reported in Section 6.3 were undertaken using Microsoft Office Excel 2003, 

and the results obtained were later validated using Gabi 5 software. 
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6.1. Background, Problem Statement and Objectives: 

What Happens to Plastics in the Context of MSW 

Produced in the Capital? 

Municipal solid waste (MSW) is by far the most heterogeneous of all refuse (Pellencst, 

2010), and is the result of activities in the urban environment (cities, villages, municipalities). 

MSW consists of an organic fraction (wet waste: kitchen waste, food waste, straw, garden 

trimmings, sawdust, etc.) and a non-organic fraction (dry waste: glass, plastics, metals, ash, 

atone and bricks, etc.). The properties of waste differ immensely depending on many factors, 

such as the area of collection (rural, urban, industrial or commercial), seasonal variations and 

recycling levels (Yassin, 2007). For example, the fraction of plastics in MSW assessments 

differs significantly between countries; in the USA, plastics represent 12.1% of MSW (USEPA, 

2008), whereas in the state of Kuwait (a Middle Eastern country depending heavily on crude oil 

production), it represents 13% of the final stream of MSW (Al-Meshan et al., 2001). According 

to the UK Waste and Resources Action Programme (WRAP), PSW amounts to 7% of the UK 

MSW final stream and the UK consumes over 5 million tonnes of plastics annually. In this 

study, the waste fractions breakdown used in the technical and economic assessment are the 
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official Governmental assessment of MSW in the UK published by Parfitt (2002) for the UK 

WRAP. Figure 6.1 reports the waste percentages considered in this study. 
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Figure 6.1 - Waste breakdown in the UK used in this study. Source: Parfitt (2002). 

 

Plastic solid waste (PSW) produced in the UK capital is typically collected by different 

councils, boroughs, waste authorities and contractors. PSW ends up in different transfer stations 

(TSs) (see Section 2.2.1.) which distribute the waste to the relevant processing lines (Last, 

2008a; 2008b). Waste management activities in and around London include waste incineration 

and materials recovery.
1
 Furthermore, the current economic climate gives PSW a new 

perspective as a sustainable feedstock. Since polymers have a high calorific value (see Table 

2.1), treating PSW thermo-chemically is a more preferable route to dry recovery processes (i.e. 

recovery through MRFs alone), incineration processes and the conventional route of landfilling. 

Since thermo-chemical treatment (TCT) processes recover a number of valuable petrochemicals 

(e.g. gases (C3-C4), liquid fractions (naphtha), waxes (AR), syncrude, e-gas and energy 

(typically in the form of heat), utilising PSW as a feedstock for such processes on an industrial 

scale warrants investigation and further study. This chapter reports the results of a life cycle 

assessment (LCA) study conducted on a system developed that comprises of a materials 

recovery route via a dry materials recovery facility (MRF), an energy recovery route (CHP IU) 

and two TCT industrial scale technologies. The TCT units are a LTP reactor working under BP
®
 

technology and a VCC
®
 hydrogenation reactor. 

                                                 
1
 Personal Communication: Mr. Terry Dickinson (Greenwich MRF Site Manager, Dec 2009). 
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Available reports in the literature are typically council reports or private consultancy 

findings (Didsbury, 2006; Waste Watch, 2003; ADAS, 2008). The UK Office for National 

Statistics (ONS, 2009) published in their 2009 report the amount of co-mingled waste produced 

by each individual in the country (0.495 tpa of total waste per resident). This value was 

considered in this study in order to determine the total amount of waste produced in each 

borough served by the MRF station and the CHP IU plant (see Sections 6.2.1-6.2.2). Table 6.1 

indicates the population of each borough and the breakdown of waste fractions considered in 

this study. The plastics breakdown (%) is shown in Table 6.2.  

The Greenwich MRF (see Section 6.2.1) processes the dry fraction generated from the 

Boroughs of Greenwich and Lewisham, as well as the City of Exeter, Devon. This amounts to 

137,303 tpa, which was considered to be the MRF throughput in this analysis. The IU (see 

Section 6.2.2) processes co-mingled waste generated from the Boroughs of Greenwich, 

Lewisham, Westminster and Bromley. In addition, the IU feed stream also includes 30,000 tpa 

of collected waste from the GLA (SELCHP, 2010). In this study, the latter was assumed to be 

organic waste as no details on the waste composition were available. Furthermore, no glass or 

metals were assumed to enter the IU feed stream and hence the glass, metals packaging and 

white goods fractions generated from Bromley and Westminster (39,468 tpa) were excluded 

from the IU throughput. This assumption was made due to the fact that the MRF receives dry 

waste from three points of origin only (Greenwich, Lewisham and Exeter). The excluded waste 

fractions consisting of metals and glass amounts to 39,468 tpa; therefore, the IU throughput feed 

consists of the wet waste fractions generated by Greenwich, Lewisham, Bromley and 

Westminster. It also includes the 30,000 tpa of organics collected from the GLA and it was also 

assumed that the wet fraction of Exeter is sent to the IU plant. This is consistent with the 

maximum capacity of the IU plant (420,000 tpa) declared by the company (SELCHP, 2010). 

This also services the integration strategy undertaken in this work, by delivering the waste from 

similar points of origin to the unit operation lines. Therefore, the IU throughput amounts to 

414,838 tpa, which is equal to the total amount of organics from all the boroughs (303,269 tpa), 

total amount of plastics (18,418 tpa), fines (7,894 tpa), textiles (7,894 tpa), paper and cardboard 

(47,362 tpa) from Westminster and Bromley and 30,000 tpa of collected organic waste from the 

GLA. 
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Table 6.1 Boroughs considered in the study showing the waste breakdown and location of recycling centre chosen. 

 

Borough Greenwich (B1) Lewisham (B2) Exeter (B3) Westminster (B4) Bromley (B5) 

Population 
Waste generation (tonnes/year)* 
Plastic (dense + film) (tonnes/year) 
Textiles (tonnes/year) 
Glass (tonnes/year) 
Metal packaging (tonnes/year) 
White goods/metal (tonnes/year) 
Fines (tonnes/year) 
Paper & cardboard (tonnes/year) 
Dry Fraction (non-organic) (tonnes/year)** 
Organic waste (tonnes/year)*** 
Recycling centre chosen 

222600 
110187 

7713 
3306 
7713 
3306 
5509 
3306 

19834 
50686 
59501 

Birchmere Depot 

261600 
129492 

9064 
3885 
9064 
3885 
6475 
3885 

23309 
59566 
69926 

Re-use & RC 

118800 
58806 
4116 
1764 
4116 
1764 
2940 
1764 

10585 
27051 
31755 

Devon RC 

236031 
116835 

8178 
3505 
8178 
3505 
5842 
3505 

21030 
53744 
63091 

Cringle Dock TS 

295532 
146288 
10240 
4389 

10240 
4389 
7314 
4389 

26332 
67293 
78996 

Civic Centre 

 
* Considering 0.495 tonnes of waste generated/resident. Source: ONS (2009). 
** Dry fraction of waste was considered as 46% of the total waste, which includes the following: Plastics, textiles, glass, metal packaging, white goods/metal, fines, paper and 
board. 
*** Organic waste was considered as the remaining fraction, which amount to 54%. 

 

 
Table 6.2 Polymer by Type in Each Borough. 
 

Borough Percentage* Greenwich (B1) Lewisham (B2) Exeter (B3) Westminster (B4) Bromley (B5) 

Plastic amount (tonnes/year) 
Polyethylene (LDPE+HDPE) 
Polypropylene (PP) 
Polyvinyl Chloride (PVC) 
Polystyrene (PS) 
Rest 

- 
37.5 (24.3+13.2)  
18.5 
18.8 
6.3 
18.9 

7713 
2892 
1427 
1450 
486 

1458 

9064 
3399 
1677 
1704 
571 

1713 

4116 
1544 
762 
774 
259 
778 

8178 
3067 
1513 
1538 
515 

1546 

10240 
3840 
1894 
1925 
645 

1935 
 
* Source: Waste watch (2003). 
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The work presented in this chapter attempts to answer the following questions by 

conducting an ALCA on three different integrated scenarios that reflect the management of 

MSW in London: 

• By implementing industrial scale thermo-chemical treatment (TCT) units, will the overall 

system developed be more environmentally friendly? 

• Can the thermo-chemical treatment (TCT) units implemented improve the system 

developed financially by increasing its techno-economic performance? 

The specific methodological aspects are described in detail below. Mass and energy calculations 

with respect to each process and activity are shown, and in addition, the analysis takes into 

account the products and energy displaced. The amount of energy or product is subtracted by 

the amount resulting from an alternative method (i.e. off-setting); thus, avoided emissions will 

occur and environmental interventions may be negative. In such reports, the system is said to be 

credited with an equivalent amount of product (e.g. heat, electricity, etc.) being produced in an 

alternative manner. This procedure is in line with the system expansion methodology (see 

Chapter 5) which enables different waste management systems to be compared and can be used 

to evaluate product/material displacement. 

6.2 Developing the Integrated Scenarios 

In order to develop an overall system that reflects the current waste management in 

London, the conventional treatment practices for waste management must be considered. In 

London, waste is mainly treated by material recovery (through dry MRFs) or by incineration 

units (IU, operating in a CHP process).
1
 Consequently in this work, a MRF was chosen to 

operate alongside an IU to produce heat and power. The MRF chosen is an actual dry facility 

located in Greenwich. In addition, the IU is an actual plant located in Lewisham that operates a 

mass-burn industrial unit (South East London Combined Heat and Power, SELCHP). Details of 

each will be illustrated in the following sections. In reality, both plants operate on a standalone 

basis, i.e. with no exchange of material between their waste treatment activities. However, in 

this study the overall system developed, based on integrating the operations of these two plants 

and the source of feed to provide a more efficient and environmentally friendly solution will be 

investigated. The functional unit (FU) of this study was considered to be 552,141 tpa, which is 

equal to the combined total of the MRF and the IU throughput.  

The study also includes the environmental impacts expressed as global warming potential 

(GWP) and calculated as kg CO2-eq. The avoided burdens in the IU were also considered by 

                                                 
1
 Personal Communication with Mr. Terry Dickinson (Greenwich MRF Site Manager, Dec 

2009). 
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displacing electricity and heat production, whilst the products of the MRF station are also 

displaced by their commercial production process. The incineration bottom ash (IBA) recovered 

is off-set against commercial aggregate production and the products of the TCT industrial units 

are also displaced by commercial refining and petrochemicals processes. Figure 6.2 shows the 

overall system investigated in this work, indicating the foreground system (resulting in direct 

burdens), background system (resulting in indirect burdens) and the avoided burdens displaced. 

The background system includes a compensatory supply system for the power input and other 

auxiliary processes (electrical inputs to unit operations, etc.).  

The total life cycle inventory in this study was reported as the sum of the following (Clift et 

al., 2000): 

 

 

 

In this study, three integrated scenarios for the processing of MSW are considered. Scenario 

1 (baseline) considers the conventional route of waste treatment (MRF+IU), whilst scenarios 2 

and 3 incorporate a pyrolysis and a hydrogenation reactor, respectively. The different 

combinations of the scenarios investigated are summarised in Table 6.3 and each scenario is 

schematically represented in Figures 6.3-6.5. The electrical production was displaced using 

average and marginal data (i.e. UK electricity mix, nuclear, hard coal, wind and natural gas). 

The combinations studied were also compared to a landfilling scenario (combination 1) in 

which all the waste is directly sent to landfill.  

In the UK, the proximity principle has been described and implemented in many facilities 

involving energy from waste (EfW) treatment, and it has been part of the IU (SELCHP) 

operation described in Section 6.2.2, and other EfW schemes (Yassin, 2007; SELCHP, 2010; 

DECC, 2010). The principle is concerned with treating the waste as close as possible to its point 

of origin and in this study, the proximity principle was considered in the development of the 

overall system studied. The TCT units are all assumed to be on the same location as the MRF 

station to avoid the extra travelling distance to deliver the plastic feed to the LTP or 

hydrogenation unit. By developing the overall system thus, the proximity principle is met. 

Direct burdens 

(resulting from the 

Foreground) 

Indirect burdens 

(resulting from the 

Background) 

Avoided burdens 

(resulting from the 

displaced products) 

+ - 
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Figure 6.2 - Overall LCA Scenarios Investigated. 
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Table 6.3 Combinations Studied in this Work. 

 

No. Energy Recovery  
Method 

Scenario  
Considered 

Electricity Production 
Technology 

Heat Production 
Technology 

Avoided Burden  
(Off-set) 

1 Landfill EfW Landfilling the FU - - EfW EU25 Model 
2 CHP IU Scenario 1 UK Grid Mix UK CCGT MRF Products, landfill, IBA and power 
3 CHP IU Scenario 1 UK Marginal Natural Gas UK CCGT MRF Products, landfill, IBA and power 
4 CHP IU Scenario 1 UK Marginal Nuclear UK CCGT MRF Products, landfill, IBA and power 
5 CHP IU Scenario 1 UK Marginal Hard Coal UK CCGT MRF Products, landfill, IBA and power 
6 CHP IU Scenario 1 UK Marginal Wind UK CCGT MRF Products, landfill, IBA and power 
7 CHP IU and Heat from LTP Scenario 2 UK Grid Mix UK CCGT MRF Products, landfill, IBA and power 
8 CHP IU and Heat from LTP Scenario 2 UK Marginal Natural Gas UK CCGT MRF Products, landfill, IBA and power &LTP products 
9 CHP IU and Heat from LTP Scenario 2 UK Marginal Nuclear UK CCGT MRF Products, landfill, IBA and power &LTP products 
10 CHP IU and Heat from LTP Scenario 2 UK Marginal Hard Coal UK CCGT MRF Products, landfill, IBA and power &LTP products 
11 CHP IU and Heat from LTP Scenario 2 UK Marginal Wind UK CCGT MRF Products, landfill, IBA and power &LTP products 
12 CHP IU Scenario 3 UK Grid Mix UK CCGT MRF Products, landfill, IBA and power &VCC products 
13 CHP IU Scenario 3 UK Marginal Natural Gas UK CCGT MRF Products, landfill, IBA and power &VCC products 
14 CHP IU Scenario 3 UK Marginal Nuclear UK CCGT MRF Products, landfill, IBA and power &VCC products 
15 CHP IU Scenario 3 UK Marginal Hard Coal UK CCGT MRF Products, landfill, IBA and power &VCC products 
16 CHP IU Scenario 3 UK Marginal Wind UK CCGT MRF Products, landfill, IBA and power &VCC products 
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Figure 6.3 - Scenario 1 Flow Diagram. 
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Figure 6.4 - Scenario 2 Flow Diagram. 
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Figure 6.5 - Scenario 3 Flow Diagram. 
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Table 6.4 Key to Scenario 1 Flow Diagram 

No. Flow Quantity  Unit Notes No. Flow Quantity  Unit Notes 

1 110,187 tpa  13 137,303 tpa MRF Feed 

2 50,686 tpa Transferred to MRF 14 9,611 tpa Plastics Recovered  

3 59,501 tpa  15 4,119 tpa  

4 129,492 tpa  16 9,611 tpa  

5 59,566 tpa Transferred to MRF 17 4,119 tpa  

6 69,926 tpa  18 6,865 tpa  

7 58,806 tpa  19 4,119 tpa  

8 58,806 tpa Transferred to MRF 20 24,715 tpa  

9 99,310 tpa  21 414,383 tpa IU throughput 

10 99,310   tpa  22 3.82 x 108 kWh/year electricity  Electrical Generation 

11 124,346 tpa  23 1.2 x 109 kWh/year heat  Heat Generation 

12 30,000 tpa  24 82,968 tpa  IBA Produced 
 

Table 6.5 Key to Scenario 2 Flow Diagram 

No. Flow Quantity  Unit Notes No. Flow Quantity  Unit Notes 

1 110,187 tpa  17 4,119 tpa  

2 50,686 tpa Transferred to MRF 18 6,865 tpa  

3 59,501 tpa  19 4,119 tpa  

4 129,492 tpa  20 24,715 tpa  

5 59,566 tpa Transferred to MRF 21 414,383 tpa IU throughput 

6 69,926 tpa  22 3.82 x 108 kWh/year electricity  Electrical Generation 

7 58,806 tpa  23 1.2 x 109 kWh/year heat  Heat Generation 

8 58,806 tpa Transferred to MRF 24 82,968 tpa  IBA Produced 

9 99,310 tpa  P1 1470 tpa Gas Fraction 

10 99,310   tpa  P2 4480 tpa Waxes 

11 124,346 tpa  P3 2650 tpa liquids 

12 30,000 tpa  P4 400 tpa CaO 

13 137,303 tpa MRF Feed P5 770 tpa CaCl2 

14 8,611 tpa Plastics Recovered  P6 760 tpa Sand 

15 4,119 tpa  P7 460 tpa Waxy Filter 

16 9,611 tpa  P8 14800 MJ/year P-Steam 
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Table 6.6 Key to Scenario 3 Flow Diagram 

No. Flow Quantity  Unit Notes No. Flow Quantity  Unit Notes 

1 110,187 tpa  15 4,119 tpa  

2 50,686 tpa Transferred to MRF 16 9,611 tpa  

3 59,501 tpa  17 4,119 tpa  

4 129,492 tpa  18 6,865 tpa  

5 59,566 tpa Transferred to MRF 19 4,119 tpa  

6 69,926 tpa  20 24,715 tpa  

7 58,806 tpa  21 414,383 tpa IU throughput 

8 58,806 tpa Transferred to MRF 22 3.82 x 108 kWh/year electricity  Electrical Generation 

9 99,310 tpa  23 1.2 x 109 kWh/year heat  Heat Generation 

10 99,310   tpa  24 82,968 tpa  IBA Produced 

11 124,346 tpa  P1 822 tpa Syncrude 

12 30,000 tpa  P2 90 tpa E-Gas 

13 137,303 tpa MRF Feed P3 50 tpa Solid Residues 

14 8,611 tpa Plastics Recovered  P4 4 tpa CaCl2 
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6.2.1. The Greenwich Material Recovery Facility Station 

The increase in co-mingled waste has led to an increase in the number of MRFs in the UK, 

especially in England where there are currently 61 MRFs operating. The development of more 

MRF stations in the UK Capital was announced by the Mayor of London in 2008 (LALD, 

2008). Currently, there are four MRFs operating in London: 

1. Greenwich MRF - operated by Veolia Co. 

2. Crayford MRF - operated by Grosvenor. 

3. East London Waste Authority MRF (recently commissioned). 

4. Western Riverside Waste Authority (recently commissioned). 

A typical MRF will employ a system of conveyers to carry the waste over sorting screens, 

including inclined tables, air classifiers, etc. The carried waste will later be divided using 

magnetic and eddy current separators which may employ advanced optical recognition 

equipment (Last, 2008b).  

The MRF station in Greenwich was visited in order to gather a more coherent insight on 

the current dry processing scheme being undertaken in the capital. The main purpose of the visit 

was to gather as much on-site data as possible in order to understand the operations involved 

with waste handling, especially plastics. The Greenwich MRF station operates within a closed 

loop system.
1
 and is a dry-MRF type, i.e. no organics are present or treated in the processing 

line. The station accepts dry recyclables from the following:
2
  

1. Borough of Greenwich (London). 

2. Borough of Lewisham (London). 

3. City of Exeter (Devon). 

The Greenwich MRF station was considered in this study as the route for dry recyclables in 

the overall system developed and the maximum capacity of the station (146,000 tpa) was used 

in this study. The plant processing stages involve nine different separation steps that consume 

diesel and electricity, but no crude oil or steam is involved in the different processing stages of 

the plant. The first stage is the ‘separation by size’, whereby the fibres and containers are 

separated by a Trommel Machine which is fitted with a crash spoiler to crush: a) fibres 

(including paper, newspaper); and b) containers (plastic bottles, cans, containers). The second 

                                                 
1
 The closed loop system operated in Greenwich MRF involves the transport of waste from 

points of origin (Transfer Stations, boroughs, collection depots) to the plant, treatment of waste 

on-site and selling the recovered bulk with no waste fraction sent to landfill. 

  
2
 Personal Communication with Mrs. Barbara Luvsby (2011) and Mr. Terry Dickinson (2009 

Site Manager). 
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stage is the ‘separation by type’ step (or ballistic step), where an angle deck with peddles is used 

and the separation of 2D and 3D objects takes place (i.e. fibres and containers, respectively). 

The third stage is the ‘rotating magnet’ stage, where the main function is to separate steel from 

the main stream of waste; separated steel goes straight to storage bunkers. The fourth stage is 

the aluminium separation which is achieved via an ‘electrical current’. Stage five is the ‘disc 

screen’, where glass is broken and paper is transferred to a separate machine. The sixth stage in 

the station is the ‘manual sorting’ where employees take all of the dry waste present that has 

escaped from the previous steps except for the paper. The seventh stage is the ‘plastic sorting’ 

step, which is typically undertaken according to market demands and sales figures and at the 

time of the visit, the market was demanding mixed plastic. Until 2011, sorting occurred for PET 

only, although the plant includes an option for sorting ‘by laser’ for four polymer categories: 

PET, HDPE, clear and coloured plastic. Stage eight is concerned with paper and newspaper 

sorting (transfer to storage bunkers). Lastly, the two ‘hydraulic presses’ are used to press the 

paper into cubic bulks ready for shipment and transfer. Figure 6.6 shows schematically the dry 

waste through the different stages of the MRF.  
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Stage 1 
 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 6.6 - Greenwich MRF Throughput Breakdown Considered in this Analysis. The ONS (2009) amount of waste generated by each individual in the UK, which is 0.495 tpa, 
was considered. The waste fractions breakdown of Parfitt (2002) was considered in this schematic and in this analysis in general. 
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Performing the energy and mass balances on the MRF represented in Figure 6.6 enables the 

comparison of the technical performances of the different treatment options and the scenarios 

considered in this study. The MRF station production line depends on the amount of dry waste 

fed into its processing line. The MRF consumes diesel in its different processing stages and 

diesel consumption was calculated with respect to the total MRF throughput, as shown in 

Equation 6.1 (ADAS, 2008). 

TP1.73(litres)DC ×=       (6.1) 

where DC is the total diesel consumed (litres) in the MRF station and TP is total co-mingled 

throughput of the MRF station (tpa). Equation 6.2 estimates the electrical consumption of the 

MRF station, as described by ADAS (2008). 

TP30(kWh)EC ×=        (6.2) 

where EC is the total electricity consumed in the MRF station (kWh) and TP is total co-mingled 

throughput of the MRF station (tpa). In this thesis, it was assumed that the MRF sends no waste 

fraction to landfill as this reflects the practice of the actual MRF station in Greenwich. In order 

to calculate the carbon emission (kg CO2/year) resulting from the MRF processing line, the 

conversion factor of 2.68 kg CO2/litre was used for the total amount of diesel consumption (UE, 

2010).  

Energy consumption contributes to the total carbon footprint of any establishment. The 

electricity mix in the UK consists of a number of contributing sectors that result in what is 

known as the average mix. These sectors and their contribution are as follows: natural gas 

(45%), hard coal (32%), nuclear (13.5%), hydro energy (2.4%), wind (2%), fuel oil (1.6%), 

biogas (1.4%), EfW (0.74%), biomass (0.7%) and coal gases (0.35%) (Gabi 5 DB V5.43). This 

electricity mix was used in this analysis to calculate the CO2 emitted from the electricity 

consumed in the MRF, and the conversion factor of 0.05 kg CO2/kWh was used to calculate the 

emitted carbon dioxide for the electricity consumed in the MRF station (Gabi 5 DB V5.43). The 

MRF station recovers dry recyclables that can be sold, including plastics, glass, steel, etc. In this 

work, the MRF credits the system developed by displacing the amount of CO2 that would be 

produced by the conventional production methods. It was assumed that each product produced 

by the MRF replaces the conventional market product with a 1:1 ratio. The products separated 

in the MRF station were credited using the conversion factors reported in Table 6.7.  
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Table 6.7 Conversion Factors used to Credit the Overall System for the MRF Products against Commercial Virgin Products. 
 
 

MRF Product Commercial Product kg CO2-eq/tonne Product Reference 

Plastics Virgin LLDPE Production 2 Greene, 2012 
Glass Commercial Glass 8.4 GRB, 2012 

Metal Packaging Steel 1.1 (kg CO2-eq/kg Product) TATA Steel, 2012 
White Goods and Metal Scrap Steel 1.1 (kg CO2-eq/kg Product) TATA Steel, 2012 

Textiles1 Fabrics 12.5 (kg CO2-eq/kg Product) TW, 2012 
Paper & Cardboard2 Paper 800 ARJOWIGGINS, 2010 

Fines2 Paper 800 ARJOWIGGINS, 2010 
 

Notes: 
1 This is the direct footprint of manufacturing plants from yarn to customer, including spinning, dying, cutting and transport. 
2 Paper produced from virgin fibres. 
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6.2.2. Incineration Unit with Combined Heat and Power 

Energy recovered from waste incineration was considered in this study. The SELCHP plant 

is located in London within the Borough of Lewisham, and is considered the major supplier of 

energy from waste (EfW) in the Capital. It operates an incineration unit (IU) based on the mass-

burn process (see Section 2.5.2) and the company is generally recognised as the first EfW IU in 

the UK (SELCHP, 2010). The maximum capacity of the plant is reported to be 420,000 tpa of 

waste and the feed to the IU consists of co-mingled waste that originates from the Boroughs of 

Westminster, Bromley, Lewisham, Greenwich and a collection delivery from all of the GLA. 

The electricity is generated using a 35 MW steam turbine generator, operating at a 

temperature of 395°C and a pressure of 46 bar. The electrical current is transformed to 132 kV 

for national grid exporting. The combined heat and power (CHP) plant was assumed to produce 

both electricity for the national grid and heat from the boiler system. The electrical generation 

was calculated for the CHP plant studied (Equation 6.3), as well as the heat generated by the 

CHP system (Equation 6.4, Zahari et al., 2010): 










×

××
=

(kJ/MJ)1000(MJ/kWh)3.6
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Heat

  (6.4) 

 

where ITPi is the throughput of the component i (tpa), HHVi is the higher heating value of 

component i, ηelec is the electrical generation efficiency of the unit, ηHeat is the heat generation 

efficiency of the unit and ηBoiler is the average efficiency of a domestic heat boiler in the UK. 

The formulation includes the conversion of the dimensions to obtain the electrical and heat 

generation in kWh per year. It was assumed that no glass, metal packaging, white goods or 

scrap metal (including aluminium) entered the IU feed stream. According to Finet (1987), the 

higher heating value (HHV) is the quantity of heat emitted during the complete combustion of 1 

kg of MSW. The HHV numerical values for the different components in this analysis were 

taken as follows (Finet, 1987):  

HHV(1) = 34500 kJ/kg  - plastics 

HHV(2) = 19500 kJ/kg - textiles 

HHV(3) = 34500 kJ/kg - fines 

HHV(4) = 16500 kJ/kg - paper and cardboard 
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HHV(5) = 18000 kJ/kg - organics  

The electricity and heat generation efficiencies were taken for the standard CHP plant as 

reported by Murphy and McKeogh (2004): the value of ηelec was taken as 18%, whilst ηHeat 

equals 50%. The maximum seasonal efficiency of domestic boilers (ηBoiler) was taken in this 

study as 92% (EF, 2003). 

Bottom ash is produced from incineration as a result of the combustion process and is the 

largest residue resulting from incineration processes. It differs in composition, but consists 

mainly of aggregate (80%), organics (5%) and other trace amounts (WMW, 2012), and it is used 

mainly in infrastructure projects (WMW, 2012). In Switzerland, bottom ash is mainly landfilled, 

however, in countries like Demark and Sweden it is used as road fillers (WMW, 2012). In this 

study, bottom ash was estimated as 20% of the IU throughput (Rand et al., 2000) and it was 

assumed to be split into two fractions. The first fraction (60% IBA produced) is sold as an 

aggregate, and the remainder is landfilled. This is a common practice through the EU25 

countries and the assumption is based on the Gabi 5 software built-in incineration process which 

considers a similar practice for the IBA produced by incinerators (Gabi 5 DB V5.43, see Annex 

B). The fraction sold provides a source of revenue that credits the system developed. In this 

study, the IBA is credited by displacing the commercial processes otherwise required for 

aggregate production. According to Mitchell (2010), the carbon footprint of commercial 

aggregate production is equal to 34.4 kg CO2/tonne, and this conversion factor was used in the 

analysis to credit the amount of aggregate (60% IBA) produced by the IU.  

In order to calculate the amount of CO2 emitted from the IU, the Gabi 5 software database 

was consulted to extract relevant conversion factors. In this study, the conversion factor used for 

the calculation of CO2 emissions was 899.15 kg CO2/tonne throughput (Gabi 5 DB V5.43), and 

the CO2 emitted from the IU was considered as a direct burden in the final assessment of the 

system developed. The UK average electricity mix was used in this analysis to credit the 

electricity produced from the IU, and the average electricity mix conversion factor used was 

0.05 kg CO2/kWh, similar to the MRF station calculations (Gabi 5 DB V5.43). Marginal data 

were also used to credit the electricity produced. Each marginal data conversion factor 

corresponds to a combination number (Table 6.3), and this was utilised to compare between the 

different electricity off-setting options in order to determine the optimal environmental one. The 

marginal electricity conversion factors used were extracted from the Gabi 5 software, as 

reported in Table 6.8. The UK CCGT heat generation marginal value was used to off-set the 

heat production from the IU, where the heat is credited with 0.553 kg CO2/ kWh, as previously 

reported by Staffell et al. (2012) in their UK study.  
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Table 6.8 Marginal Electricity Production Technology Conversion Factors in the UK Considered to Credit the 
Overall System Developed in this Work 
Source: Gabi 5 Database (DB Version 5.43) 

 

Power Source kg CO2-eq/ kWh (elec.) 

Natural Gas 3 x 10-2 
Nuclear 4 x 10-4 
Hard Coal 8 x 10-2 
Wind 7 x 10-4 

 

 

6.2.3. Transfer Stations Considered 

Generated waste from each individual point of origin (borough, city, etc.) is typically 

transferred to a large collection centre or a depot known as a transfer station (TS). This activity 

is considered as a part of the development of the system studied in this work. The location of 

these TSs is depicted (with respect to each borough) in Figure 6.7 and Table 6.9 summarises the 

distances between the TSs and the MRF and IU plant sites.  

Table 6.9 Transfer Station (TS) Distances Considered in this Study 
 

Borough Transfer Station Name Distance to MRF (miles) Distances to IU (miles) 

Greenwich Re-use & Recycling Centre 3 8.5 
Lewisham Re-use & Recycling Centre 7.6 6.9 
Exeter Devon-Recycling Centre 211 204.1 
Westminster Cringle Dock Transfer Station - 5.7 

Bromley Bromley- Civic Centre - 9.2 
GLA Collection to IU - - 151 

 

Notes:  
1 Assumed distance for the GLA collection to IU.  
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Figure 6.7 - Location of Recycling Centres and Boroughs Considered in the Study. 
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Veolia Environmental 
Services PLC 
Nathan Way-Thamesmead 
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Greenwich: Re-use & Recycling 
Centre 
Birchmere Depot-Greenwich Council 
Greenwich SE28 8BF 

Lewisham 
Re-use & Recycling Centre 
Landman way-off surry canal 
rd. New cross-London SE14 
5RS 

Bromley- Civic 
Centre 
Stockwell Close 
BR1 3UH 

City of Exeter in Devon (Devon-
Recycling Centre) 
Exton Road 
EX2 8LX 

Westminster 
Cringle Dock Transfer Station 
Cringle St, Battersea SW8 5BX 
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The TS diesel and electrical consumption for its processing line were calculated using Equations 

6.5 and 6.6 (ADAS, 2008). Similar to the calculations for the MRF station, the carbon emission 

(kg CO2/year) resulting from the transfer station (TS) processing line were evaluated using the 

conversion factor 2.68 kg CO2/litre (UE, 2010).  

TSTP0.47(litres)TSDC ×=       (6.5) 

 

TSTP1(kWh)EC ×=        (6.6) 

 

where TSDC is the total diesel consumed (litres) in the TS station, TSTP is total co-mingled 

throughput of the TS station processed in tpa and EC is the total electricity consumed in the 

MRF station (kWh). The UK average electricity grid mix was used in this analysis to off-set the 

CO2 emitted from the electricity consumed in the TS (similar to the MRF). The conversion 

factor of 0.05 kg CO2/kWh was used to calculate the emitted carbon dioxide from the TS 

stations (Gabi 5 DB V5.43), and is considered as a direct burden on the overall system 

developed.  

6.2.4. Transport   

The transportation distances vary between the different unit operations considered in this 

work (Table 6.9). Transportation contributes to the total environmental burden in terms of 

airborne pollutants and these include CO, NOx, PM10, etc., CO2 is also considered as a part of 

the transportation load activity. The contribution of CO2 is the result of the diesel consumed by 

the trucks that transport the waste from the TSs to the MRF and the IU sites. The transportation 

burden is considered a direct emission that is added to the final GWP evaluation. It was 

assumed that each borough manages ten diesel engine trucks, which were assumed to have a 

capacity of 40 tonnes (maximum). Each truck operates with a maximum payload (40 tonnes), 

i.e. full capacity, as described by the Volvo Truck Co. (2008) and the number of trips required 

by each truck was calculated as shown in Equation 6.7. 

k)(truck/weeNTck)(tonne/truMPL

ek)(tonnes/weWG
NTR

×
=      (6.7) 

 

where NTR is the number of trips required for each truck to and from the TS, WG is the amount 

of waste transferred by each truck (tonne/week), MPL is the maximum truck payload (40 

tonnes/truck) and NT is the number of trucks managed by each borough for TS activities (10 

trucks/week). 
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The trucks operated were assumed to be of a long haul traffic-trailer type, with a fuel 

consumption of 0.53 l/km (0.85 l/mile, Volvo Truck Co., 2008). The diesel consumption was 

calculated for each round trip (Equation 6.8) and consequently for the number of trips required 

(NTR, Equation 6.9). 

2week)le(litres/miCons(miles)diek)(litres/weCD ××=   (6.8) 

 

truck)CD(litres/(truck)NTNTR(litres)DCT ××=    (6.9) 

 

where NTR is the number of trips required for each truck to and from the transfer station, CD is 

the amount of diesel consumed (litres/week) for each truck in a round trip, Cons is the fuel 

consumption of the truck engine (0.85 litres/mile), DCT is the diesel consumed for the number 

of trips required (litres), and NT is the number of trucks (10 trucks). Equation 6.8 was 

multiplied by 2 to account for the each truck’s round trip, i.e. to and from the TS. 

In order to calculate the amount of CO and NOx emitted from the truck exhaust, the Euro 4 fuel 

category was assumed for the truck engine emissions (Volvo Truck Co., 2008) and the 

conversion factors were taken from the engine specifications described by Volvo Truck Co. 

(2008). The conversion factors used in this study were 13 g/litre for NOx and 1 g/litre for CO. 

NOx and CO contribute to the total GWP of the system studied and by obtaining the amount of 

CO and NOx which are released, the amount of CO2-eq can be calculated by using the emission 

factors for NOx and CO, as reported by IPCC (2006). The amount of CO2-eq resulting from the 

CO and NOx was calculated as follows: 

1000(g/kg)

NOx)/kgCO8(kg)NOx/litres13(g/year)DCT(litres
][kgNOx

eq2

eqCO2

−

−

××
=   (6.10) 

 

1000(g/kg)

CO)/kgCO3(kgCO/litres)1(g/year)DCT(litres
][kgCO

eq2

eqCO2

−

−

××
=       (6.11) 

 

where DCT is the diesel consumed for the number of trips required (litres/year), NOx-eq is the 

emitted amount of NOx in terms of (kg CO2-eq), CO-eq is the emitted amount of CO in terms of 

(kg CO2-eq) and 8 (kg CO2-eq/kg NOx) and 3 (kg CO2-eq/kg CO) are the emission factors for 

converting the NOx and CO emission into CO2-eq. 
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6.2.5. Thermo-Chemical Treatment Technologies Incorporated in 

the System  Developed  

In this study two TCT industrial technologies (the BP
®
 LTP and VCC

®
 hydrogenation 

processes) were incorporated in the overall system developed. In order to compare each 

technology with the conventional waste treatment routes employed in London, each TCT 

technology is assigned to a different scenario. The first scenario (baseline) includes the MRF 

and IU to reflect the current waste treatment route in London, the second includes the MRF, IU 

and the LTP process, while the third scenario includes the MRF, IU and VCC process. The feed 

to each TCT technology in scenarios 2 (LTP) and 3 (VCC) is assumed to be a fraction of the 

plastics recovered by the MRF. The following sections (6.2.5.1–6.2.5.2) describe the TCT units 

incorporated in this study in detail. 

6.2.5.1. Low Temperature Pyrolysis Technology 

The pyrolysis technology incorporated in this work is the BP
®
 LTP or polymer cracking 

technology has been described previously by Tukker et al. (1999) and Perugini et al. (2005). 

This pyrolysis technology was commissioned by BP
®
 in a pilot scale and is also known as BP 

cracking technology (Williams and Williams, 1999a, 1999b). The process accepts dry plastics 

as indicated by the feed criteria described in Table 6.10.  

It was assumed that the unit receives a plastics feed of 1,000 tpa from the plastics produced 

by the Greenwich MRF station (Table 6.11), which mainly consists of polyolefins (PE+PP) 

(83%) (Tukker et al., 1999). It is very important to satisfy the chlorine content in the pyrolysis 

reactor by not exceeding the PVC amount being fed to the unit. The plastics breakdown 

previously shown in Table 6.2 was considered in this analysis to calculate the plastics 

breakdown.  

Table 6.10 LTP Reactor Feed Criteria  
 

Polymer Type Input % of the Feed Mix Amount Fed in this Study 

Polyolefins (PE+PP) > 83% 830 tpa 
Polyvinyl Chloride (PVC) < 2% 20 tpa 
Polystyrene (PS) <15% 150 tpa 
Reminder Fraction Produced by MRF - 8611 tpa 

 

Table 6.11 MRF Plastics Throughput Break Down 

Polymer Type Recovered Amount (tpa) 

Plastics throughput (MRF) 9611 
Polyolefins (PE+PP) 5382 
PVC 1807 
PS 606 
Reminder Fraction Produced by MRF 1817 
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Plastics (namely polyolefins) undergo a certain treatment, mainly concerned with size and 

chlorine content reduction, to meet with the requirements of the BP
®
 polymer cracking 

(pyrolysis) process. Introducing a pyrolysis reactor provides the option of recovering a number 

of valuable chemicals (considered in this study), including rich gases and tars (heavy waxes and 

liquids). These chemicals can substitute a number of petrochemicals and in a consequential 

order include, propane (C3) and butane (C4), AR, naphtha and heat (energy) in the form of p-

steam (Perugini et al., 2005).  

Table 6.12 summarises the inputs and outputs of the BP LTP technology. The input materials 

were off-set to calculate their CO2 contribution to the overall system and were considered as a 

direct burden. The products were also off-set and were considered as an avoided emission in this 

study. Table 6.12 also indicates the off-setting factors used in this study for the LTP process 

inputs and outputs considered. 
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Table 6.12 Summary of Inputs and Outputs Considered in this Study for the LTP Process and their Off-setting Factors. 

 

Input Materials Amount Required (Perugini et al., 2005) Emission of Material  Notes Reference 

Sand 0.0085 kg/kg Feed - - - 
CaO 0.046 kg/kg Feed - - - 
Water 0.002 m3/kg Feed - - - 
Naphtha 0.131 MJ/tonne Feed 1.3 (kg CO2-eq/ kg Naphtha) Direct Burden Shell,2010 
Electric energy 0.212 MJ/tonne Feed 0.05 (kg CO2-eq/kWh) UK Grid Mix. Gabi 5 

Output Products Amount Obtained Emission of Product Notes Reference 

Gases (C3-C4) 0.147 kg/kg Feed 1.3 (kg CO2-eq/ kg Naphtha) Assumed to replace Naphtha Shell,2010 
Liquid (Naphtha) 0.265 MJ/kg Feed 1.3 (kg CO2-eq/ kg Naphtha) Avoided Burden Shell,2010 
Wax (AR) 0.448 kg/kg Feed 1.3 (kg CO2-eq/ kg Naphtha) Assumed to replace Naphtha Shell,2010 
CaO 0.04 kg/kg Feed - - - 
CaCl2 0.077 kg/kg Feed - - - 
P- Steam (Heating) 1.48 MJ/kg Feed 0.533(kg CO2-eq/ kWh) UK CCGT Staffell et al. (2012) 
CO2 0.345 kg/kg Feed - Avoided Burden - 
NOx 0.003 kg/kg Feed 8 (kg CO2-eq/ kg NOx) Emission Factor IPCC (2006) 
Sand & Coke 0.076 kg/kg Feed - Landfilled  
Waxy filter 0.046 kg/kg Feed - Landfilled  
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6.2.5.2. Veba-Combi Cracking Hydrogenation 

By definition, hydrogenation is the process of molecular cracking into highly reactive free 

radicals which are saturated with hydrogen as they form. The process integrated here and 

previously described by Tukker et al. (1999) is known as the VCC process. The main criterion 

of polyolefin feed is concerned with the PVC content (≤ 10%) and in this study the VCC unit 

has a PVC content of 10%. The feed in such processes is typically sent to a depolymerising unit 

to produce a light top product (consisting of 71 wt% C5
+
, with a boiling range of 400°C and 

non-condensable (C3-C4) gases) and a heavy bottom product. The main product of this process 

is the syncrude produced, which can replace crude oil in a 1:1 ratio. The MRF throughput and 

plastics breakdown considered is similar to that for the LTP process (Table 6.11). The process is 

assumed to have a throughput feed of 1,000 tpa (again similar to the LTP process) and Table 

6.13 summarises the process throughput and the plastics breakdown considered in this study. 

Table 6.14 shows the main input materials and chemicals produced by the VCC process and 

their off-setting values considered in this study.  

Table 6.13 VCC Unit Feed Criteria  

 

Polymer type Amount (tpa) %of the VCC Feed 

Plastics Mix (VCC Feed) 1000 100 
PO (PP+PE) 900 90 
PVC 100 10 
Reminder Fraction Produced by MRF 8611 - 
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Table 6.14 Summary of Inputs and Outputs Considered in this Study for the VCC Process and their Off-setting Factors.  

 

Input Materials Amount Required Perugini et al. (2005) Emission of Material  Notes Reference 

Steam 0.112 MJ/kg Feed 0.533(kg CO2-eq/ kWh) UK CCGT Staffell et al. (2012) 
Electric energy 0.96 MJ/kg Feed 0.05 (kg CO2-eq/ kWh) UK Grid Mix. Gabi 5 
Natural gas 4.62 MJ/kg Feed 73.1(kg CO2-eq/ mmBTU)  Felton et al. (2011) 
CaO 0.001 kg/kg Feed - - - 
Hydrogen 0.011 kg/kg Feed - - - 

Output Products Amount Obtained Emission of Product Notes Reference 

Syncrude (Crude Oil) 0.822 kg/kg Feed 0.43 (tonne CO2/bbl) Replacing Crude Oil Barrel Production USEPA, 2012 
E-gas (Natural Gas) 0.09 kg/kg Feed 73.1(kg CO2-eq/ mmBTU) Replacing Natural Gas Production Felton et al. (2011) 
HCl 0.005 kg/kg Feed 1100 (kg CO2-eq/ tonne HCl) Replacing Commercial HCl Production Azapagic (2012) 
CaCl2 0.0041 kg/kg Feed - - - 
NH3 0.006 gm/kg Feed - - - 
Hydrocarbons 2.23 gm/kg Feed - - - 
Solid waste 0.05 kg/kg Feed - Landfilled - 
CO2  0.44 kg/kg Feed - Avoided Burden - 
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6.2.6. Landfill 

Few countries have reached a zero reliance on MSW landfill disposal. Sweden is a prime 

example, where household municipal and combustible wastes are strictly prohibited from being 

landfilled (Erikson et al., 2007), and countries like Germany, Belgium and France are 

approaching such a status, whilst in the UK, 50% of the waste is still landfilled. The Gabi 5 

database (DB V5.43) reports the landfill sites existing in the EU25 countries, including those in 

the UK (see Annex C). The landfill model built into Gabi 5 is based on energy recovery, 

whereby the landfill gas is collected from and split into two fractions: the first is flared and the 

second one is fed to a CHP process.  

In this study, the standard EU25 landfill model available within the Gabi 5 software was 

used to develop the landfill scenario. The landfilling burden value was taken as 533.4 (kg CO2-

eq/ tonne landfilled). In this work the landfill burden is considered as an avoided burden. 

The transportation to the landfilling site was also accounted for in this study following the 

same approach as described in Section 6.2.4. The Basildon landfill site in Essex (SS16 4UW), is 

the closest to the IU and MRF and is approximately 36.4 miles from both sites. The fractions 

landfilled were assumed to be: 

• 40% of the IBA produced by the IU (3,318 tpa) with CHP in all scenarios 

• Waxy filter produced by the LTP process (46 tpa) in scenario 2 

• Solids produced by the LTP process (200 tpa) in scenario 2 

• Solid waste fraction (50 tpa) produced by the VCC hydrogenation (hydrocracking) 

process in scenario 3 

6.3. Results and Discussion 

Previous studies have indicated that the most significant impact categories for waste 

management are:  the use of natural resources, energy turnover (energy output minus input) and 

GWP (Santoyo-Castelazo et al., 2012, Eriksson et al., 2007; Finndeven et al., 2005). In this 

section, the focus will be on the total energy turnover and GWP for the three scenarios studied. 

It is also important to note that the results presented below are often negative; this means that 

environmental interventions can be avoided and the studied scenario is credited. This argument 

strengthens the case for viewing waste as a resource rather than a burden on the urban 

environment, society and the industrial community.  

6.3.1. Energy Use 

Results for the energy consumed in each scenario are shown in Table 6.15. The energy 

consumed is the result of the energy input to the system studied, including utilities to the 
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different unit operations for the treatments and the TS. The energy demand for implementing 

TCT units in the form of a pyrolysis process (LTP) and a hydrogenation unit (VCC) did not 

increase the energy consumption of scenarios 2 and 3 by significant amount compared to the 

baseline scenario (scenario 1). Björklund and Finnveden (2005) reported in their LCA review of 

TCT options that such processes demand a higher energy consumption when compared to 

recycling and recovery processes. However in this study, both TCT units are relatively smaller 

in scale (1,000 tpa) than the MRF and the IU, which leads to a negligible increase in energy 

demand. Figure 6.8 shows the total energy turnover for the three scenarios studied.  

Table 6.15 Energy consumed with Respect to the Studied Scenarios 

Scenario No. Treatment Option Energy Consumed (kWh/year) 

Scenario 1 (Baseline) MRF+IU 4.68 x 106 

Scenario 2 MRF+IU+LTP 4.68 x 106 

Scenario 3 MRF+IU+VCC 4.68 x 106 
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Figure 6.8 - Total Energy Turnover for the Three Studied Scenarios. Scenario 1: MRF+IU, Scenario 2: 
MRF+IU+LTP, Scenario 3: MRF+IU+VCC. 

 

The energy turnover for all three scenarios is negative (Figure 6.8). This indicates that the 

energy output is larger than the energy input, which thereby credits all the scenarios in this 

study. Furthermore, the energy turnover was of the same order of magnitude in all the scenarios 

studied. The energy output of the LTP process is dependent on the plastics throughput which 

strengthens the argument for diverting more plastics towards pyrolysis in the GLA, resulting in 

the production of more clean energy. Scenario 2 (MRF+IU+LTP) did not demonstrate a 

significant increase in energy turnover due to the scale of the pyrolysis reactor (1,000 tpa) used. 
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6.3.2. Global Warming Potential 

GWP is used for each scenario to analyse the carbon savings. These were noted previously 

and tabulated in a number of combinations with respect to the avoided electricity production 

process (Table 6.3). The ALCA in this study is combined with system expansion, which enables 

the assessment of the avoided burdens from the processes included in the overall system (Figure 

6.2).  

Figure 6.9 shows the GWP calculated for all the activities considered in scenario 1 with 

respect to the electricity avoided treatment. Combination 1 considers landfilling the total 

amount of the functional unit (552,141 tpa), whilst scenario 1 (combinations 2-6) includes the 

treatment of waste in the Greenwich MRF and the IU (CHP) of the SELCHP plant. 
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Figure 6.9 - GWP (kg CO2-eq/year) for Combinations 2-6 Considering Scenario 1 (MRF+IU) for the Treatment of 
the Waste Including the Polymeric Fraction. 
 

All the combinations studied for scenario 1 are negative, which indicates that all the 

treatments considered credit the scenario studied. Furthermore, combination 5 (avoided burden 

resulting from electricity produced from marginal hard coal technology) shows the optimal 

treatment of all combinations studied in scenario 1 (Figure 6.9). This is due to the fact that the 

hard coal off-setting conversion factor was the highest of all the avoided electricity treatment 

options (see Table 6.8). Higher avoided burden factors result in larger GWP savings (Erikson et 

al., 2007). Subsequently, scenarios 2 and 3 (implementing pyrolysis and hydrogenation, 

respectively) with hard coal electricity production gave the largest GWP savings (combinations 

10 and 15, Figures 6.10-6.11).  



Chapter 6  LCA of MSW Utilizing Polymers in London  

 

 

167

Scenario 2 shows the largest carbon savings in comparison to the other two scenarios 

studied (Figure 6.10). This is due to larger amount of products being produced by the LTP 

process, which contributes to the total avoided burdens of this scenario. Products off-set for the 

BP LTP process included waxes (comparable to AR), gases (comparable to pentane (C3) and 

butane (C4) refinery cuts) and liquids (comparable to naphtha). These were all off-set with 

respect to commercial naphtha production. AR and both C3 and C4 refinery cuts are of crude oil 

refining origin, and were assumed to be of the same carbon footprint as the naphtha oil refining 

product. This assumption was made because of the lack of data for the carbon emission for AR 

and both C3 and C4 refinery cuts. Other off-set products for scenario 2 were heat (steam from 

LTP), CO2 and NOx emitted from the process. 
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Figure 6.10 - GWP (kg CO2-eq/year) for Combinations 7-11 Considering Scenario 2 (MRF+IU+LTP) for the 
treatment of the waste including the polymeric fraction. 
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Figure 6.11 - GWP (kg CO2-eq/year) for Combinations 12-16 Considering Scenario 3 (MRF+IU+VCC) for the 
treatment of the waste including the polymeric fraction. 

 

Scenario 3 (Figure 6.11) shows further GWP savings when compared to the baseline 

scenario, i.e. scenario 1. Off-set (credited) products from the VCC included syncrude 

(comparable to crude oil), E-gas (comparable to natural gas) and HCl (replacing conventional 

HCl production), and the CO2 emitted from the hydrocracker was considered as an avoided 

burden. All the scenarios studied had similar avoided treatments for the MRF and IU processes. 

Landfilling the waste resulting from the IU (40% IBA, all scenarios), the LTP process (waxy 

filter residue and solids, scenario 2) and the VCC process (solid waste from hydrocracker, 

scenario 3) were considered as an avoided treatment. Carbon emissions from the processing 

lines and electricity input to both the MRF and the five TSs, as well as the electricity input to 

the TCT units were considered as a direct burden on the system. Table 6.16 shows the GWP for 

all combinations with respect to each scenario considered and the electricity production 

processes. 

Implementing the pyrolysis process (scenario 2) increases the overall GWP savings. By 

comparing the most environmentally friendly combination (combination 10, pyrolysis with 

electricity produced from hard coal) to combinations 5 and 15 (baseline and hydrogenation with 

electricity produced from hard coal, respectively), a 1.2 × 10
7
 kg CO2-eq (compared to scenario 

1) and 9 × 10
6
 kg CO2-eq (compared to scenario 3) of GWP savings are achieved per year due to 

the implementation of the pyrolysis process. This indicates that pyrolysis is more preferable 

than PSW incineration and hydrogenation in terms of carbon savings.   
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Table 6.16 GWP (kg CO2-eq/year) for all considered combinations in this study. Italic row indicates the least favourable of the system studied. Bold row indicates the most 

favourable of the system studied.  

Combination GWP (kg CO2-eq/year) x108 Scenario Considered Avoided Treatment for Electricity Production 

1 
2 
3 
4 

5 
6 

2.97 
-3.85 
-3.80 
-3.67 

-3.97 
-3.67 

Landfilling 
1 (MRF+IU) 
1 (MRF+IU) 
1 (MRF+IU) 

1 (MRF+IU) 
1 (MRF+IU) 

Energy recovery in Landfill 
UK Electricity Mix 
UK Marginal Natural Gas 
UK Marginal Nuclear 

UK Marginal Hard Coal 
UK Marginal Wind 

7 
8 
9 
10 
11 

-3.98 
-3.92 
-3.80 
-4.09 
-3.80 

2 ( MRF+IU+LTP) 
2 ( MRF+IU+LTP) 
2 ( MRF+IU+LTP) 
2 ( MRF+IU+LTP) 
2 ( MRF+IU+LTP) 

UK  Electricity Mix 
UK Marginal Natural Gas 
UK Marginal Nuclear 
UK Marginal Hard Coal 
UK Marginal Wind 

12 
13 
14 
15 
16 

-3.88 
-3.83 
-3.70 
-4.00 
-3.70 

3 ( MRF+IU+VCC) 
3 ( MRF+IU+VCC) 
3 ( MRF+IU+VCC) 
3 ( MRF+IU+VCC) 
3 ( MRF+IU+VCC) 

UK  Electricity Mix 
UK Marginal Natural Gas 
UK Marginal Nuclear 
UK Marginal Hard Coal 
UK Marginal Wind 
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6.3.3. Validation of Results using the Gabi 5 Software 

A number of software packages exist and are available for LCA analysis and end-product 

development (see Section 5.5). In this work Gabi 5 was used to validate the work presented in 

Section 6.3.2. Gabi has been used in previous LCA studies investigating the waste management 

field (Tarantini et al., 2009; Luz et al., 2010; Santoyo-Castelazo et al., 2011). Gabi is marketed 

by PE Europe Co. and was developed in Germany by the University of Stuttgart. The software 

incorporates a database that includes a number of built-in processes and emission factors that 

benefit from industrial and applied research data (mainly from Europe). Scenario 1 was built-in 

the simulation environment of Gabi to verify the calculations performed numerically and check 

for discrepancies between both sets of results. The aim was to compare the values of GWP 

(expressed in kg CO2-eq) obtained from the calculation performed in EXCEL with those 

obtained through Gabi 5.  

6.3.4. Setting-up the Scenario in Gabi 

The Gabi software used was of a version 5 with a database version of 5.43 (2012). Scenario 1 

includes the following unit operations (see Figure 6.2-6.3): 

• 5 TSs that transfer the co-mingled waste to the Greenwich MRF and to the IU located in 

the Borough of Lewisham (SELCHP). Details of the TSs and their throughputs were 

reported in Table 6.4 and the distances from the MRF and IU were reported in Table 

6.9. Throughputs and distances were input in Gabi 5 for the scenario modelled and each 

transfer station was built as a separate auxiliary process. The utilities calculated from 

Equations 6.5-6.6.for each transfer station were entered into the software.  

• The Greenwich MRF station processing 137,303 tpa of dry waste only was simulated in 

Gabi 5, with its throughput originating from three boroughs (Greenwich, Lewisham and 

City of Exeter). Figure 6.6 shows the feed breakdown for the different processes in the 

MRF. The MRF was built as an auxiliary process and figures for the utilities (electrical 

and diesel consumption, see Equations 6.1-6.2) where entered into the software. 

• The IU model used by the Gabi software is for a European average waste to energy 

(WtE) plant, based on the treatment of average European MSW.  

The IU model used by the Gabi 5 software considers a feed of homogenous waste 

throughput for a typical moving-grate, mass-burn incineration technology as used in Europe to 

meet the legal requirements set by the EU. The feed is assumed to be of a calorific value 0.06 

GJ/tonne of MSW for electricity generation and the heat generation (in the form of steam) is 

based on 0.22 GJ/tonne of MSW fed to the IU. The software builds on industrial data gathered 
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from across Europe and does not calculate the electricity and heat generation based on the 

specific waste fractions in the throughput of the feed (as undertaken in this work, see Equations 

6.3-6.4).  

The GWP for one tonne of throughput is reported by Gabi 5 as 899.15 kg CO2-eq, which 

was the figure used in the numerical calculations. This value includes the CO2, NOx, CO and 

other contributors to the total CO2 being emitted by the IU. Environmental impacts for waste 

collection, transport or any pre-treatment of the waste are not included in the data set for the 

built-in IU in Gabi. This is a similar assumption to that previously used when calculating in 

EXCEL. A schematic representation of the IU built-in model in the Gabi 5 software is given in 

Appendix C.  

In Gabi 5, diesel used for transportation is modelled as a crude oil and bio components fuel 

supply production mix from a refinery (10 ppm sulphur, 5.75 wt% bio components). The 

amount of diesel in Gabi is entered as a weight (kg) and a diesel density of 0.832 kg/litre was 

used to convert the amounts entered. In addition, the UK grid mix was chosen to be modelled as 

the input electricity source to the units in the model. 

The transportation activities in Gabi were modelled through the trucks managed for 

transporting the different waste fractions. The average truck emission category for the EU was 

chosen, which is based on the status of the January 2010 EU driving share code, with respect to 

a 1980 engine performance. The sulphur content of the diesel was declared in the database as 10 

ppm, but the specific emissions of ammonia, benzene, carbon dioxide, carbon monoxide, 

methane, nitrogen monoxide, nitrogen dioxide, nitrous oxide, NMVOC, particulate PM2.5, 

sulphur dioxide, were not given. However, the database literature shows that the GWP 

calculated in Gabi for transportation incorporates the above mentioned chemicals relevant to the 

GWP calculations. Input parameters for distances in (km) and payload (40 tonnes, as in the 

EXCEL calculations), where provided as inputs to the model (Table 6.9).  

6.3.5. Results Obtained from Gabi Software 

Figure 6.12 shows the whole system for scenario 1 as modelled in the Gabi 5 software. The 

different flow streams of the system were tracked, i.e. followed through the different processes, 

to account for the cradle to grave assessment of the technosphere (see values in Table 6.17). 
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Figure 6.12 - Scenario 1 Modelled in Gabi 5 Software. 
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Table 6.17 Flows Modelled in the Gabi 5 Software for Scenario 1. 

Point of Origin Flow Name  
Fed to MRF 

Flow  
Amount (tpa) 

Flow Name  
Fed to IU 

Flow  
Amount (tpa) 

Greenwich P1 50,686 P6 59,501 
Lewisham P2 59,566 P7 69,926 
Exeter P3 27,051 P8 31,755 
Westminster P4 - P9 99,310 
Bromley P5 - P10 124,346 
GLA Collection  - - P11 30,000 

 

The EXCEL calculations accounted for the different activities set within the boundaries of 

the scenario. The GWP of these activities are as follows:    

• Transportation of IBA to the landfill site, which was calculated as described in 

Section 5.2.8. The GWP from this burden (including NOx and CO contribution to 

the transportation load) was equal to 1.8 × 10
5
 kg CO2-eq.  

• The amount of GWP resulting from the combustion processes of the IU, which was 

equal to 3.7 × 10
8
 kg CO2-eq. 

• Transportation activities to and from the MRF and IU from the five TSs, which 

amounted to 2.5 × 10
6
 kg CO2-eq.  

• The MRF processing line and electricity input GWP contribution, which was 

calculated to be 8.3 × 10
5
 kg CO2-eq. 

• The five TS processing lines and electricity input GWP contribution, which was 

calculated to be 7.3 × 10
5
 kg CO2-eq.    

The total GWP calculated using EXCEL for scenario 1 in this study was equal to 3.77 × 10
8
 kg 

CO2-eq. Figure 6.13 shows the total GWP produced using the Gabi 5 simulated scenario 1, as 

well as the single GWP contribution of each element of the simulation (GWP from electricity 

input to MRF and TS, transportation by trucks to MRF and TS and the incineration process). 

The total GWP calculated by Gabi 5 for the modelled case of scenario 1 is 3.74 × 10
8
 kg CO2-eq 

(Figure 6.13). This results in a negligible discrepancy between the value obtained with EXCEL 

and the value produced by the software (<1% difference). This minor discrepancy results from 

the transportation element in the simulated case of scenario 1. The total transportation load 

calculated in EXCEL amounts to 2.7 ×10
6
 kg CO2-eq, however the results obtained using Gabi 5 

show a value of 1.1 × 10
6
 kg CO2-eq for the different transportation activities (see Figure 6.13, 

transportation trucks and rest). Gabi 5 implements the EU guidelines averaged across the whole 

continent, with truck trailers following the 1980 engine specification (including fuel 

consumption). Whilst in EXCEL calculations the truck engines where assumed to be of a Volvo 

truck long-haul type with consumed fuel at the rate of 0.53 l/km (Volvo Co., 2008). 
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Figure 6.13 - GWP expressed in kg CO2-eq Calculated by the Gabi 5 software for Scenario 1. 

 

The software calculates the electricity and heat generation based on the throughput of the waste 

incineration process, which resulted in different electrical and heat outputs from the IU, 

compared with the reported values in Section 6.3.1. The electrical and heat generated values 

from the IU calculated in EXCEL for all three scenarios were: 3.82 × 10
8
 and 1.2 × 10

9
 

kWh/year, respectively, whereas the values produced by the software were 1.19 × 10
8
 and 3.5 × 

10
8
 kWh/year, respectively. In assuming a homogenous mixture of feed with an average 

calorific value for all sorts of throughput, the IU output does not reflect the actual waste 

incineration for a specified case, thus demonstrating a disadvantage in relying on the software. 

In reality, waste is rarely constant in terms of calorific value as it originates from a number of 

sources and is the result of human activities that can change according to a number of socio-

economic factors. The numerical calculations reflect a more realistic status for the waste 

fractions being treated in the IU and a more transparent overview of the processes considered 

(see Section 6.2.2.).  

6.4. Techno-Economic Performance Assessment   

The objective of this section is to investigate the economic viability of the overall system 

developed. The economic viability is assessed by determining costs and revenues for each 

scenario investigated. Capital costs (CC), operating and maintenance costs (OMC), 

transportation costs, collection costs, depreciation, corporation tax and gate fees are all included 

in this analysis. Governmental incentives, including Renewable Obligation Certificates (ROCs), 

Levy Exemption Certificates (LECs) and Packaging Recovery Notes (PRNs) were also 

included.  
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6.4.1. Capital Costs 

Capital costs (CC) are defined as the capital sum needed to supply the necessary 

manufacturing and plant facilities (Patel et al., 2011). The scenarios developed in this study 

include the following unit operations: transfer stations (TSs), dry materials recovery facility 

(MRF) station, incineration unit (IU) plus a combined heat and power (CHP) plant, low 

temperature pyrolysis (LTP) unit and a VCC technology hydrogenation plant (Figure 6.2). 

Typical CC of mass-burn IUs (similar to the IU investigated in this work) are shown in Table 

6.18 (DLD, 2002) with plant scales ranging from 50-500 ktpa.  

Table 6.18 Capital Costs (CC) of Incineration Units (IU) in the UK with respect to Capacity.  
Source: DLD (2002) 

 

Capacity Range (ktpa) Capital Cost (£m) 

50 16 
100 28 
150 41 
200 47 
400 87 
500 93 

 

Capital costs (CC) vary according to the plant scales. The Marshall and Swift (M&S) all-

industry equipment index (formerly known as the Marshall and Stevens Index) is the most 

common index applied to correct (update) capital costs (CC) and operating and maintenance 

costs (OMC) (Stabert and Kundra, 2007). The Marshall and Swift (M&S) indices are developed 

for the US market but are used in this study for the UK on the studied scenarios. Table 6.19 

shows the M&S indices used in Equation 6.12 to update the CC. Where cost data were 

unavailable, the sixth-tenth rule empirical correlation was used (Equation 6.13). The sixth-tenth 

rule has been recommended by Stabert and Kundra (2007) for scaling up or down equipment 

capacities, including capital and operating costs.  

  

)
I

I
(CC

Original

Updated

OriginalUpdated ×=

    (6.12) 

 

 

  

n)
OCp

DCp
(OCPC ×=

     (6.13) 

 

where Cupdated is the capital cost (CC) at the required time, COriginal is the capital cost (CC) at the 

original cost time, IUpdated is the M&S index at the updated required time, IOriginal is the M&S 

index at the original cost time, PC is the predicted cost, OC is the original cost, DCp is the 

desired capacity and OCp is the original capacity. The value of n was taken as 0.6 as 

recommended by Stabert and Kundra (2007). 
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Table 6.19 M&S Indices used in this work.  
Source: Stabert and Kundra (2007) 
 

M&S Index Year 

1061.9 
1104.2 
1468.6 

1998 
2002 
2009 

 

Table 6.20 shows the updated IU plant data used in this work. The IU plant investigated has 

a capacity of 420 ktpa, hence the updated capital cost (CC) is £119 m. 

 

Table 6.20 Updated Capital Costs for the Incineration Unit used in this Study. 

Capacity Range (ktpa) Capital Cost (£m) Updated Cost (£m) 

50 16 21.3 
100 28 37.2 
150 41 54.5 
200 47 62.5 
400 87 115.7 
500 93 123.7 

 

Graham and Dougherty (2006) reported the costs of running a MRF plant in the UK 

processing up to 87,500 tpa. The average capital cost (CC) of a fully (dry) co-mingled MRF was 

reported to be £4.25 m (DLD, 2002). Using Equation 6.12, the updated average capital cost 

(CC) is calculated to be £5.65 m assuming the maximum capacity of 87,500 tpa. Consequently, 

different capital costs (CC) can be obtained for the dry MRF stations in the UK (Table 6.21). 

The MRF station in this study has a 146 ktpa capacity, which corresponds to a capital cost (CC) 

of £7.7 m. 

 

Table 6.21 Updated Capital Costs for the MRF Stations in the UK used in this Study. 

Unit Capacity (ktpa) Capital Cost (£m) 

87.5 5.6 
100 6.1 
146 7.7 
150 7.8 
200 9.3 

 

The capital costs (CC) of the BP LTP process were reported by Tukker et al. (1999). These 

ranged between £15-20 m (average £17.5 m). By applying the M&S indices between the years 

1998 and 2009 to update the average CC of the LTP process, a value of £24.2 m is obtained for 

a capacity of 25 ktpa. The capital costs (CC) shown in Table 6.22 were used in this work to 

obtain the capital cost (CC) of the LTP process.  
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Table 6.22 Updated Capital Costs for the LTP Process in the UK used in this Study. 

Unit Capacity (ktpa) Capital Cost (£m) Unit Capacity (ktpa) Capital Cost (£m) 

5 9.21 50 36.68 
10 13.97 75 46.79 
15 17.81 80 48.63 
20 21.17 100 55.60 
25 24.20 125 63.57 
30 27.00 150 70.92 

 

The capital cost (CC) for the hydrocracking unit was taken from pyrolysis/gasification 

plants category, as described by DLD (2002). Similar to the IU, MRF and LTP processes, the 

average CC were updated using the M&S indices for different plant capacities. Table 6.23 

shows the CC for the VCC hydrocracking process used in this study. 

Table 6.23 Updated Capital Costs for the VCC Process in the UK used in this Study. 

Unit Capacity (ktpa) Capital Cost (£m) Unit Capacity (ktpa) Capital Cost (£m) 

5 11.13 50 44.31 
10 16.87 75 56.52 
15 21.52 80 58.75 
20 25.57 100 67.17 
25 29.24 125 76.79 
30 32.62 150 85.66 

 

The capital costs (CC) of the five transfer stations (TS) were also considered. The capacity 

of each TS differs based on the population of the borough it serves. Dirty MRF stations perform 

a similar function to TS (see Section 2.2.1) and CC for TS were taken from DLD (2002) for 

dirty MRF stations. Table 6.24 shows the CC updated using the M&S indices.  

Table 6.24 Updated Capital Costs for the Transfer Stations (TS) used in this Study. 

Unit Capacity (tpa) Capital Cost (£m) 

60,000 8.8 
100,000 11.97 
110,000 12.67 
120,000 13.35 
130,000 14.01 

 

6.4.2. Capital Recovery Factor & Interest Rate  

A capital recovery factor (CRF) is defined as the ratio of a constant annuity to the present 

value of receiving that annuity for a length of time. Using Equation 6.14 the CRF was 

calculated for this work. The CRF is applied to the CC of each unit in order to account for the 

total project life time (assumed to be 20 years) and the interest rate (taken to be 7.5% for the UK 

market). Therefore, the capital costs (CC) for the units in each scenario are calculated using 

Equation 6.15. 
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 iCa CCCRFCC ×=      (6.15) 

where CRF is the capital recovery factor calculated to be 0.09 in this work, ir is the interest rate 

which is assumed to be 7.5%, m is the project life time taken as 20 years, CCa is the actual CC 

used in the final economic assessment in this work for unit i and CCC i is the updated capital cost 

of unit i (see Section 6.4.3). 

6.4.3. Collection, Running, Operating & Maintenance Costs and 

Gate Fees 

Gate fees are costs that off-set the different operating and running costs of a plant (Yassin, 

2007). In this study, the MRF gate fee is considered as a running cost for the Greenwich MRF 

station. Plastics handled in a TCT facility will divert the amount processed from landfilling (or 

other processes) and hence the gate fees of such facilities (i.e. LTP and VCC) are taken as 

revenue.  

The different boroughs investigated in this study house a varied population and each 

borough council is responsible for setting up the collection for each household. This typically 

includes four box bags individually assigned to: organics, paper and cardboard, mixed glass and 

tinfoil and plastics (Didsbury, 2006). A running collection cost is also part of the collection 

costs of each borough’s annual budget. A set-up cost of £45 per household per year and a 

running cost £2.30 per household per year were considered in this study (Didsbury, 2006). 

Table 6.25 shows the collection costs for each borough considered in this study, with a 

breakdown of the box bags assumed to contain the co-mingled waste collected. 

Table 6.25 Collection Cost Breakdown with Respect to Each Borough Number of Households. 

Borough  
Greenwich 
(B1) 

Lewisham 
(B2) 

Exeter 
(B3) 

Westminster 
(B4) 

Bromley 
(B5) 

No. Households (ONS, 2009) 92,788 107,412 46,573 91,172 125,866 

Box Bag no.1 Organics 59,501 69,926 31,755 63,091 789,96 

Box Bag no.2 P & C 26,445 31,078 14,113 28,040 35,109 

Box Bag no.3 Mixed Glass 77,13 9,064 4,116 81,78 10,240 

Box Bag no.4 Plastics & Tinfoil 16,528 19,424 8,821 17,525 21,943 

Total TS Feed (tpa) 110,187 129,492 58,806 116,835 146,288 

Setting up Cost  (£) 4,175,460 4,833,540 209,5785 410,2740 5,663,970 

Running Cost (£/year) 213,412 247,048 107,118 209,696 289,492 

Total Collection Cost  (£/yr) 4,388,872 5,080,588 2,202,903 4,312,436 595,3462 
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Other running costs, OMC and gate fees involved in this study are described as follows: 

• TS running costs: £47.73 per tonne throughput was used for each of the five TSs 

(ADAS, 2008). 

• MRF gate fee: £30 per tonne throughput for the Greenwich MRF (Graham & 

Dougherty, 2006; Graham, 2009). 

• IU OMC: £40 per tonne (DLD, 2002). 

• Landfill gate fees: £33 per tonne throughput in each scenario (HE EPI). 

• Transportation standing charges: standing charges (per year) for the different 

transportation activities of the trucks managed included (per truck per year): road 

tax (£245), insurance (£1,020), depreciation (£4,737) and breakdown cover (£50) 

(AA, 2010). 

• Transportation running costs: running costs for trucks managed (per year) included 

(per truck per year): tyres (£0.021), service labour cost (£0.0323), replacement parts 

(£0.0312), truck driver salary (£24,000), two loader salaries (£21,000 per loader) 

and the diesel cost (UK average for 2010, £1.213 per litre) (WRAP 2009; AA, 

2010). 

6.4.4. Projected Revenues  

Projected revenues for each scenario depend on the sales of electricity, heat, chemicals and 

petrochemicals produced by the thermo-chemical treatment (TCT) units, governmental 

incentives in the UK including renewable obligation certificates (ROCs), levy exemption 

certificates (LECs) and packaging recovery notes (PRNs) and sales of aggregate from the 

incineration bottom ash (IBA) recovered. The different revenues considered are described as 

follows: 

• BP LTP process gate fee: £172 per tonne throughput for the pyrolysis process 

(scenario 2) (Tukker et al., 1999). 

• VCC unit gate fee: £220 per tonne throughput for the hydrocracking process 

(scenario 3) (Tukker et al., 1999). 

• Sales of electricity: the UK standard price of £0.188/ kWh was assumed (UK 

energy, 2010). 

• Sales of heat: the heat produced from the IU (all scenarios) and LTP process 

(scenario 2) was sold at a price of £0.039/ kWh (BEC, 2010). 

• Renewable Obligation Certificates (ROCs): a value of £38.69/kWh was used, which 

is the reported price of ROCs in 2011 (Ofgem, 2011). This is a UK Governmental 

incentive provided for IU produced energy (Electricity only). According to the 
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ROCs banding table published by the department of energy and climate change 

(DECC) in 2012, pyrolysis receives 2 ROC/kWh for electricity production. Hence, 

no ROCs are received by the BP process in scenario 2 (heat production only in the 

form of p-steam). 

• Levy Exemption Certificates (LECs): this represents the exemption value for the 

climate change levy on energy for CHP plants in the UK. The rate used is 

£4.56/kWh electricity. (Inenco, 2010). 

• Packaging Recovery Notes (PRNs): these are part of the UK producers’ 

responsibility requirements as introduced in 1994. PRNs are defined as a type of 

document that provides evidence that waste packaging material that has been 

recycled into a new product. The profit from PRN sales is included in the total 

profits of each scenario. PRNs are given to the recovered products from a MRF 

station and a PRN is granted for each tonne of packaging material that has been 

recovered and recycled. PRNs considered in this study were for glass (£3.93/PRN, 

assuming 50% is recovered for packaging uses), plastics (£10.667/PRN, 4% only, 

which is the dense plastics content, Waste Watch, 2003) and steel (£6.208/PRN, 

considered in this study as metal packaging and white goods/and scrap metals). 

These prices were taken from Letsrecycle (2010) for the average prices between 

January and June of 2011. 

• Sales of aggregate: the price for IBA recovered from the IU (60% of the recovered 

fraction was assumed to be sold as aggregate) was taken from WMW (2012) for 

aggregate (£3.5/tonne). 

• Sales of MRF recovered products: recovered products from the Greenwich MRF 

station (in all three scenarios) were assumed to be sold at the price of recovered 

waste fractions (Table 6.26). It was assumed in this work that the extracted amount 

of plastics for the TCT units feed in scenario 2 and 3 will not affect the price of the 

plastic fraction sold by the MRF station. 

• Sales of chemicals and petrochemicals produced by the TCT units: prices for 

equivalent products produced by the TCT units (LTP in scenario 2 and VCC in 

scenario 3) are reported in Table 6.27. The products are all valuable chemicals that 

compete in the international market and make TCT an attractive recovery route.  
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Table 6.26 Prices of dry fractions of waste, virgin and recycled polymers. 

 

Item Price (£/tonne)* Notes 

Plastic 
Textiles 
Glass 
Metal pack 
White goods/scrap metals 
Fines 
Paper and cardboard 

30.4 
- 

4.00 
124.10 
124.10 

5.00 
15.50 

Mixed Plastics*** 
N/A 

Mixed culet glass price**  
Price for metals*** 

Price for metals*** 

Price for wood taken form Letsrecycle.com for Oct 2010 
Price for paper*** 

 
* (1 € = £ 0.88) 

** taken form www.wrap.org.uk/recycling_industry/market_information/market_knowledge 

*** taken from Economopoulos (2010). 

 
 
 
Table 6.27 Thermo-Chemical Treatment (TCT) units main products and their prices. 
 

Unit Main Products/PC Replacement or Equivalents  Price1 Avg. Price2 

 
 

LT Pyrolysis 
Process 

Gas fraction/C3-C4 Refinery Cut+ 
 
Waxes/AR+ 
Liquids/Naphtha+ 
CaO-CaCl2 

515.99 (C3) ($/T) 
521.95 (C4) ($/T) 
162.84 (AR) ($/T) 
458.13 (Nap) ($/T) 
CaO3 (190$/tonne) 

2002-2010 
2002-2010 
2000-2002 
2000-2010 

- 

 
Hydrocracking 

Process 

E-Gas (fraction)/Natural Gas+ 
Syncrude/Crude Oil+ 
Solid Residues 
CaCl2 

5.97 (NG) ($/mmBTU) 
52.35 (Brent) ($/bbl) 
- 
199 $/tonne 4 

2000-2010 
2000-2010 

 
Note:  

*Products marked with (+) indicate their inclusion as an avoided burden in this study. 
1Personal communication with Eng. Ayyed Al-Fadhlee, Kuwait Petroleum Cooperation (KPC).  

Tel: +965-24993037, email: ayf@kpc.com.kw  
2 Average prices between these years, except 2010 up to July.  
3 Taken from: alibaba.com 
4 (1.54 = £ 1) 

 

The annual total profit for each scenario is calculated (before taxation) as: 

PRCostTP r −=∑     (6.16) 

where TP is the annual project profit including CC and running costs in the first year (£), ∑Costr 

is the total running, gate fees and OMC of all units in the project (£) and PR is the projected 

revenue from the total sales of the project (£). Consequently, if the project is in deficit (not 

profitable), then the outcome of Equation 6.16 will be positive.  

6.4.5. Corporation Tax  

Corporation tax is applied on the projects taxable profits (Patel et al., 2011).
1
 The amount of 

                                                 
1
 Products from EfW schemes are exempted from other taxes in the UK including carbon tax. 

Personal Communication with Ms. Chandini Patel, Ofgem, UK. 
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corporation tax payable is calculated according to the following equation: 

TRCa)]Dpn)[(PtpCT ×−+=     (6.17) 

where CT is the corporation tax payable (£), Ptp is the pre-tax profits from sales over the project 

life span (£), Dpn is the annual straight line depreciation charge (£), Ca is the capital allowances 

replacing the depreciation charges and taken as £25,000 per annum (HMR&C, 2009; 2012), and 

TR is the tax rate on profits taken as 28% (Patel et al., 2011). 

The depreciation (Dpn) considers the project’s need for investment over the life span of the 

project in a way that reflects its reducing value (Patel et al., 2011). Equation 6.18 shows the 

formula used in this study to calculate the Dpn. 

N
RCDpn −=       (6.18) 

where C is the investment cost taken as the total CC calculated in Equation 6.15 (£), R is the 

residual value of the asset taken as 10% of the investment cost (C) and N is the project life span 

(years).  

In this work, the profitability of each scenario is determined by comparing the net present value 

(NPV) and the internal rate of return (IRR). NPV and IRR are standardized financial tools to 

assess the profitability of projects. A scenario is economically attractive if it has the highest IRR 

and the NPV is greater than zero (Yassin et al, 2009, Patel et al., 2011). The NVP is an indicator 

of how much value the project adds to the investment and refers to the present values of all 

costs and associated revenues and is calculated according to Equation 6.19 (Yassin et al, 2009, 

Patel et al., 2011). 

  ∑
=

−
+

=
20

1n
n

n TPC
i)(1

CF
NPV     (6.19) 

where NPV is the net present value (£), CFn is the annual cash flow (revenues – operating costs) 

(£), i is the discount rate taken as 6% for the UK market (Patel et al., 2011) and TPC is the total 

plant cost (£). The IRR is calculated as the discount rate that makes the NPV equal to zero using 

the IRR function in Microsoft EXCEL (Yassin et al, 2009, Patel et al., 2011) 
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6.5. Economic Performance  

The economic performance of all three scenarios is summarised in Table 6.28 where the 

capital cost (CC) and operating and maintenance cost (OMC) are reported for each scenario. 

Running costs for each scenario includes transportation, collection and operating and 

maintenance. Pre-tax annual profits (£/yr), net present value (£) and internal rate of return (%) 

for the entire duration of the scenarios life (20 years), are also reported. In addition to the results 

of the scenarios developed and discussed in Section 6.2, results of the addition of 1 ktpa units of 

LTP and VCC to each scenario are reported. Four LTP reactors were added to scenario 2 

(Pyrolysis) and five to scenario 3 (hydrocracking) to cover the maximum amount of available 

plastics and reactor feed criteria in each scenario (see Sections 6.2.5.1-6.2.5.2). Moreover, 

results of adding 50, 100 and 150 ktpa units of LTP and VCC were included, assuming the same 

reactor feed criteria and the availability of treatable plastics from elsewhere. This was 

performed to investigate the impact of thermo-chemical treatment (TCT) unit capacity on net 

present value (NPV) and internal rate of return (IRR) with a similar order of magnitude to the 

capacity of the MRF and IU in the studied system.  

The results show that hydrogenation represents the most expensive option due to the higher 

capital cost it requires, ranging from £12.8 m to £21 m for the studied scenarios (Table 6.28). In 

contrast, the cheapest option is always the non thermo-chemical scenarios (MRF+IU), with no 

additional running and capital costs of either pyrolysis or hydrocracking reactors. Therefore, 

thermo-chemical treatment (TCT) units, namely LTP and VCC, need to project a very high 

revenue to overcome the additional CC they impose. There were no noticeable differences in 

NPV and IRR using the maximum treatable plastics in the studied scenarios, i.e. with the 

addition of 1 to 5 ktpa VCC units or 1 to 4 ktpa LTP units. 

The gate fees for both thermo-chemical treatment (TCT) plants (LTP and VCC) represent 

an additional profit in the range of £0.17 to 26 m for LTP and £0.22 to 33m for the VCC, 

depending on the capacity considered. However, the corporation tax (CT) which is dependent 

on pre-tax profit and capital costs (CC) is highest in scenarios with hydrocracking. This is due 

to the higher pre-tax profits and CC of scenario 3 (hydrocracking) compared to scenarios 1 and 

2 (pyrolysis) over the scenario’s lifetime. In fact, there were no noticeable differences in NPV 

and IRR up to the point of introducing a 50 ktpa of either a pyrolysis or hydrocracking unit to 

the baseline scenario (MRF+IU) (see Table 6.28). A 96% increase in pre-tax annual profit (TP) 

is calculated for the 150 ktpa VCC unit addition to the base scenario (MRF+IU). Furthermore, a 

19% increase in corporation tax is also reported for the addition of the 150 ktpa VCC unit due to 

higher profits. Moreover, the hydrocracking scenario studied at 150 ktpa shows the highest net 

present value (NPV) and internal rate of return (IRR). This is due to the high profits it projects 
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from the hydrocracking product sales which overcomes all its costs and results in an increase of 

in NPV by 98% and in IRR by 60% compared to the baseline scenario (MRF+IU). The addition 

of the LTP unit was also profitable at scales exceeding 50 ktpa (Table 6.28). However, the 

profitability from the VCC hydrogenation sales exceeded the ones generated from the LTP 

process due to product sales and prices (see Table 6.27).  
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Table 6.28 Economic Performance of the Scenarios Studied. 

MRF+IU MRF+IU 
+LTP(1ktpa) 

MRF+IU 
+VCC (1ktpa) 

MRF+IU 
+LTP (2ktpa) 

MRF+IU 
+VCC (2ktpa) 

MRF+IU 
+LTP (3ktpa) 

MRF+IU 
+VCC (3ktpa) 

Total Capital Cost (£m/yr) 12.4 12.7 12.8 13.1 13.2 13.4 13.6 

Project Life (years) 20 20 20 20 20 20 20 

Collection Cost (£m/yr) 22 22 22 22 22 22 22 

MRF Gate Fee (£m/yr) 4.1 4.1 4.1 4.1 4.1 4.1 4.1 

TS Running Cost (£m/yr) 26.8 26.8 26.8 26.8 26.8 26.8 26.8 

Transportation Cost (£m/yr) 4.3 4.3 4.3 4.3 4.3 4.3 4.3 

Landfill Gate fees (£m/yr) 1.1 1.1 1.1 1.1 1.1 1.1 1.1 

Landfill Transportation Cost (£m/yr) 0.72 0.72 0.72 0.72 0.72 0.72 0.72 

IU O&M Cost (£m/yr) 18.7 18.7 18.7 18.7 18.7 18.7 18.7 

LTP Gate Fees (£m/yr) - 0.17 - 0.34 - 0.51 - 

VCC Gate Fees (£m/yr) - - 0.22 - 0.44 - 0.66 

IU Sales (£m/yr) 117 117 117 117 117 117 117 

IBA Sales (£m/yr) 0.17 0.17 0.17 0.17 0.17 0.17 0.17 

MRF Sales (£m/yr) 2.1 2.1 2.1 2.03 2.03 2.0 2.0 

LEC Sales (£m/yr) 1.7 1.7 1.7 1.7 1.7 1.7 1.7 

ROC Sales (£m/yr) 14.8 14.8 14.8 14.8 14.8 14.8 14.8 

PRN Sales (£m/yr) 0.12 0.12 0.12 0.12 0.12 0.12 0.12 

Pre-tax Annual Profit1 (£m/yr) -58 -58.3 -58.1 -58.5 -58 -58.8 -58.1 

Corporation Tax (£m) 759 760.3 760.8 760.9 761.9 761.4 763.1 

IRR (%) 33 33 33 33 33 33 33 

NPV (£m) 630.2 632.7 630.1 635.3 629.1 637.8 628.9 

NPV (£/tonne) 57.1 57.3 57.1 57.5 57 58 57 
 
Notes: 1Calculated from Equation 6.16. The negative sign indicates that the project is in profit. 
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Table 6.28 (Cont’d) Economic Performance of the Scenarios Studied. 

MRF+IU 
+LTP(4ktpa) 

MRF+IU 
+VCC (4ktpa) 

MRF+IU 
+VCC (5ktpa) 

MRF+IU 
+LTP (4ktpa)2 

MRF+IU 
+VCC (5ktpa)2 

Total Capital Cost (£m/yr) 13.4 14.1 14.5 13.1 14.1 

Project Life (years) 20 20 20 20 20 

Collection Cost (£m/yr) 22 22 22 22 22 

MRF Gate Fee (£m/yr) 4.1 4.1 4.1 4.1 4.1 

TS Running Cost (£m/yr) 26.8 26.8 26.8 26.8 26.8 

Transportation Cost (£m/yr) 4.3 4.3 4.3 4.3 4.3 

Landfill Gate fees (£m/yr) 1.1 1.1 1.1 1.1 1.1 

Landfill Transportation Cost (£m/yr) 0.72 0.72 0.72 0.72 0.72 

IU O&M Cost (£m/yr) 18.7 18.7 18.7 18.7 18.7 

LTP Gate Fees (£m/yr) 0.68 - - 0.68 - 

VCC Gate Fees (£m/yr) - 0.88 1.1 - 1.1 

IU Sales (£m/yr) 117 117 117 117 117 

IBA Sales (£m/yr) 0.17 0.17 0.17 0.17 0.17 

MRF Sales (£m/yr) 2.1 2.1 2.1 2.1 2.1 

LEC Sales (£m/yr) 1.7 1.7 1.7 1.7 1.7 

ROC Sales (£m/yr) 14.8 14.8 14.8 14.8 14.8 

PRN Sales (£m/yr) 0.12 0.12 0.12 0.12 0.12 

Pre-tax Annual Profit1 (£m/yr) -59.1 -58 -58 -59.1 -58.3 

CT Payable over 20 years (£m) 762.2 764 765.1 762 765.1 

IRR (%) 33 33 32 33 33 

NPV (£m) 641.1 628.1 627.5 641 632.6 

NPV (£/tonne) 58 57 57 58 57 
 
Notes: 1Calculated from Equation 6.16. The negative sign indicates that the project is in profit.  
2Upscaled at the capital cost to maximum allowable feed of plastics. 
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Table 6.28 (Cont’d) Economic Performance of the Scenarios Studied. 

MRF+IU 
+LTP (50ktpa) 

MRF+IU 
+VCC (50ktpa) 

MRF+IU 
+LTP (100ktpa) 

MRF+IU 
+VCC (100ktpa) 

MRF+IU 
+LTP (150ktpa) 

MRF+IU 
+VCC (150ktpa) 

Total Capital Cost (£m/yr) 16 16.7 17.8 17.8 19.3 21 

Project Life (years) 20 20 20 20 20 20 

Collection Cost (£m/yr) 22 22 22 22 22 22 

MRF Gate Fee (£m/yr) 4.1 4.1 4.1 4.1 4.1 4.1 

TS Running Cost (£m/yr) 26.8 26.8 26.8 26.8 26.8 26.8 

Transportation Cost (£m/yr) 4.3 4.3 4.3 4.3 4.3 4.3 

Landfill Gate fees (£m/yr) 1.1 1.1 1.1 1.1 1.1 1.1 

Landfill Transportation Cost (£m/yr) 0.72 0.72 0.72 0.72 0.72 0.72 

IU O&M Cost (£m/yr) 18.7 18.7 18.7 18.7 18.7 18.7 

LTP Gate Fees (£m/yr) 8.6 - 17.2 - 26 - 

VCC Gate Fees (£m/yr) - 11 - 22 - 33 

IU Sales (£m/yr) 117 117 117 117 117 117 

IBA Sales (£m/yr) 0.17 0.17 0.17 0.17 0.17 0.17 

MRF Sales (£m/yr) 2.1 2.1 2.1 2.1 2.1 2.1 

LEC Sales (£m/yr) 1.7 1.7 1.7 1.7 1.7 1.7 

ROC Sales (£m/yr) 14.8 14.8 14.8 14.8 14.8 14.8 

PRN Sales (£m/yr) 0.12 0.12 0.12 0.12 0.12 0.12 

Pre-tax Annual Profit1 (£m/yr) -72.5 -75.3 -87.1 -87.1 -102 -114 

CT Payable over 20 years (£m) 795 820 831 831 866 941 

IRR (%) 36 40 39 39 43 53 

NPV (£m) 787 817 946 946 1106 1250 

NPV (£/tonne) 71.3 74 86 86 100 113 
 
Notes: 1Calculated from Equation 6.16. The negative sign indicates that the project is in profit.  
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In this study, the hydrocracking scenario at 150 ktpa is revealed to be the most profitable 

one. However, governmental incentives to overcome corporation tax imposed on energy from 

waste (EfW) projects are lacking in the UK. Corporation tax on pyrolysis and hydrogenation is 

an obstacle that needs to be dealt with to encourage future investors to view plastics as a 

profitable feedstock. At scales exceeding 150 ktpa, both pyrolysis and hydrogenation proved to 

be profitable in this study. However, the corporation tax was a barrier that hindered the 

economic model performance for small scale (1 to 5 ktpa) TCT plants. In addition, there are no 

governmental incentives for heat production by pyrolysis (or gasification) in the UK. In fact, 

other than electricity produced by pyrolysis or gasification, no governmental incentives are 

granted to any TCT industry in the UK (see Band Table in Ofgem, 2011). Scenario 2 

(MRF+IU+LTP) was determined to be the most environmentally friendly in terms of carbon 

savings (see Section 6.3.2). However, the results of this study point towards hydrogenation 

being more profitable at high economies of scale than incineration, dry materials recovery and 

pyrolysis. 

6.5.1. Sensitivity Analysis   

In this section, the effects of changing the input parameters on the economic performances of 

the different scenarios are evaluated. Fourteen different input parameters have been chosen for 

the sensitivity analysis and the effects of ±10% changes in these variables on the net present 

value (NPV) and internal rate of return (IRR) have been examined.  

 

6.5.1.1. Effects of Changes in Input Parameters    

Sensitivity analysis is a useful tool in evaluating the final calculated values of a techno-

economic assessment. Sensitivity analysis takes into account the uncertainties in the input 

parameters, including increases or decreases in time dependant parameters, such as prices, 

efficiencies, etc. This can point to where the impacts of such parameters are most influential on 

the calculated profit. The results of the sensitivity analysis are presented in Tables 6.29-6.30, 

where the profit sensitivity is shown as the percent difference of the output with respect to its 

original value.  

In Tables 6.29-6.30, the sensitivity analysis shows that the IU electrical efficiency, 

electricity selling price and waste calorific value have the greatest impact on the project total 

profit. In contrast, the capital cost (CC), PRN prices, and LEC prices had a negligible effect on 

the NPV and IRR.  

 

 

 



Chapter 6  LCA of MSW Utilizing Polymers in London  

 

 

189

 

Table 6.29 Sensitivity analysis results on the NPV performed on the three studied scenarios (±10% 

Change). 

 

 

 

 

 

 

 

 

 

 

 

 

Scenario no. 1 2 3 

Unit Operations MRF+IU MRF+IU+1ktpa LTP MRF+IU+1ktpa VCC 

 
Base Value (£/tonnes) 57.1 57.3 57.1 

    

Input parameter  % Change % Change % Change 

IU Elec. Eff +10% 16 16 16 
IU Elec. Eff -10% -16 -16 -16 

IU Heat Eff +10% 8 8 8 

IU Heat Eff -10% -8 -8 -9 

Capital Costs +10% 0 0 0 

Capital Costs -10% 0 0 0 

ROCs Price +10% 3 3 2 

ROCs Price -10% -3 -3 -3 

LEC Price +10% 0 0 0 

LEC Price -10% 0 -1 0 

PRNs Price +10% 0 0 0 

PRNs Price -10% 0 0 0 

Elec. Price +10% 13 13 13 

Elec. Price -10% -13 -13 -13 

Heat Price +10% 8 8 8 

Heat Price -10% -8 -8 -8 

Discount Rate (i) +10% -5 -5 -5 
Discount Rate (i) -10% 5 5 5 

IU OMC +10% -3 -3 -3 

IU OMC -10% 3 3 3 

Tax Rate +10% 0 0 0 

Tax Rate -10% 0 0 0 

Collection Cost +10% 4 4 4 

Collection Cost -10% -4 -4 -4 

Transportation Cost +10% 1 1 1 

Transportation Cost -10% -1 -1 -1 

Calorific Value +10% 26 26 26 

Calorific Value -10% -21 -21 -21 
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Table 6.30 Sensitivity analysis results on the IRR performed on the three studied scenarios (±10% 

Change). 

 

 

 

 

 

 

 

 

 

 

Scenario no. 1 2 3 

Unit Operations MRF+IU MRF+IU+1ktpa LTP MRF+IU+1ktpa VCC 

 
Base Value (£/ tonnes) 33 33 33 

    

Input parameter  % Change % Change % Change 

IU Elec. Eff +10% 30 27 30 
IU Elec. Eff -10% -30 -30 -30 

IU Heat Eff +10% 15 15 15 

IU Heat Eff -10% -15 -15 -15 

Capital Costs +10% -3 -3 -3 

Capital Costs -10% 6 6 6 

ROCs Price +10% 6 6 6 

ROCs Price -10% -3 -3 -3 

LEC Price +10% 3 3 3 

LEC Price -10% 0 0 0 

PRNs Price +10% 0 0 0 

PRNs Price -10% 0 0 0 

Elec. Price +10% 24 24 24 

Elec. Price -10% -24 -24 -24 

Heat Price +10% 15 15 15 

Heat Price -10% -15 -15 -15 

Discount Rate (i) +10% 0 0 0 
Discount Rate (i) -10% 0 0 0 

IU OMC +10% -9 -9 -9 

IU OMC -10% 12 9 12 

Tax Rate +10% -24 -24 -24 

Tax Rate -10% 30 30 30 

Collection Cost +10% -9 -12 -12 

Collection Cost -10% 12 12 12 

Transportation Cost +10% 0 0 0 

Transportation Cost -10% 0 0 0 

Calorific Value +10% 48 48 48 

Calorific Value -10% -42 -42 -42 
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6.5.1.2. Effects of Changes in Electrical Generation Efficiency    

The electrical generation efficiency of the IU (mass-burn) was a very sensitive parameter to 

change, affecting in turn the NPV and IRR calculated in all three scenarios. This is 

demonstrated in this study when the scenarios’ NPV and IRR increased by 16% and 30% with a 

10% change, respectively. The incineration efficiency used in this study (ηelec = 18%) is a 

reasonable average value for combustion worldwide (Murphy and McKeogh, 2004). In the UK, 

this average efficiency for an IU is also acceptable for mass-burn processes and Murphy and 

McKeogh (2004) reported a similar average electrical generation efficiency in their study. In 

addition, a maximum of 22% was also reported for a similar unit in their study. 

6.5.1.3. Effects of Changes in Heat Generation Efficiency 

Heat generation efficiency proved to be a quite sensitive parameter. A high efficiency of 

50% was used in this work, which is quite common in the CHP industry; hence in reality this 

value is unlikely to change. 

6.5.1.4. Effects of Changes in Electricity and Heat Selling Prices and ROCs 

Prices 

The price of electricity and heat (as utilities) is ever changing in the UK. Utilities companies 

are one of those responsible for this and play a major role in setting the prices. Revenue 

represented as NPV and IRR gained from electricity sales showed a ±13% and ± 24% change in 

the sensitivity analysis carried out (Tables 6.29-6.30). A change of ±8% and ±15% was obtained 

for the heat selling price. It is essential to keep the electricity and heat prices at a price equal to 

or higher than ones used in this study to ensure a profit from the three scenarios. The same 

argument could also be put forward for the ROC prices. The UK Government announced that 

suppliers of electricity will be entitled to ROCs until the 31
st
 March 2037 (Patel et al., 2011). 

6.5.1.5. Effects of Changes in IU OMC and Discount Rate 

Running and operating costs are very hard to predict, as they are subject to labour, 

chemicals, suppliers, purchase and handling costs. In this analysis, the effect of changing the 

incineration unit’s (IU) operating and maintenance cost (OMC) was assessed. The IU OMC 

proved to be a sensitive parameter when subjected to a ±10% change. A ±3% change in NPV 

and a ±12% change in IRR were witnessed. It is very important to keep the IU OMC (£40 per 

tonne) subjected to a minimal change to ensure the profitability of the project. Additionally, the 

discount rate has proven to be a sensitive parameter. All NPV calculated at a discount rate (i) of 

6% were positive, showing a ±5% change (see Table 6.29). The discount rate was taken as 6% 

in this study as previously used for EFW UK projects by Patel et al. (2011). However, HM 

treasury recommends a 3.5% discount rate to be used in all public sector projects (Yassin et al., 

2009). Hence, in this work higher risks associated with private investments are accounted for.  
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6.5.1.6. Effects of Changes in Waste Calorific Value 

The sensitivity of the economic performance to change in the calorific value of waste is 

very important. This is especially true for the IRR which showed up to a ±48% change (see 

Table 6.30). Since unit performance is related to its input, waste with higher calorific value 

results in more energy recovery. This allows the IU to produce more electricity and heat to 

supply the needs of the market. Therefore, it is crucial that changes in waste composition are 

kept to a minimal. This is very difficult as waste composition is unlikely to remain stable, due to 

changing recycling rates, population habits and waste policies. Nonetheless, techno-economic 

studies should account for the changes in the waste calorific value during the plant’s lifetime.  

 

6.6 Conclusions 

This chapter has reported the results of an attributional life cycle assessment (ALCA) performed 

on three scenarios that reflect plastics treatment in the greater London area (GLA). The 

polymeric fraction treated by the three integrated scenarios was part of the municipal solid 

waste (MSW) produced by the residents of the boroughs of Greenwich, Lewisham, 

Westminster, Bromley and the City of Exeter, Devon. At present, these boroughs send their 

MSW to an incineration unit (IU) with combined heat and power (CHP) and a dry materials 

recovery facility (MRF). This conventional processing of waste treatment was considered as the 

baseline scenario (scenario 1), and was compared with two other scenarios set within the same 

system boundaries. Scenarios 2 and 3 implement a pyrolysis reactor and a hydrogenation reactor 

to an extracted stream of the MRF plastics products, respectively.  

Avoided burdens, through material recycling, incineration and thermo-chemical treatment 

(TCT), were included in the scenarios investigated as part of the system expansion methodology 

followed. These included the MRF products, electricity and heat produced from the incineration 

unit and gases, liquids, waxes and energy in the form of steam for the pyrolysis process. In 

addition, it included syncrude, gases and HCl from the hydrogenation unit. Average and 

marginal electricity production technologies were considered as avoided burdens for each 

investigated scenario and these technologies included the UK average electricity grid mix and 

four marginal electricity production processes (wind, nuclear, hard coal and natural gas). The 

UK marginal combined cycle gas turbine (CCGT) production mix was used to off-set the heat 

produced by each scenario.  

In terms of global warming potential (GWP), the marginal hard coal treatment technology 

showed the highest GWP savings for all studied combinations for the three scenarios. This is 

due to the fact that the hard coal off-setting conversion factor was the highest of all the avoided 
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electricity treatment options, resulting in larger carbon savings. All the combinations studied for 

the three scenarios were negative, which indicates that all the treatments considered credited the 

system studied. Scenario 2 showed the largest carbon savings in comparison to the other two 

scenarios. This is due to larger amount of products produced by the low temperature pyrolysis 

(LTP) process, which contributes to the total avoided burdens of this scenario. An increase of 

1.2 × 10
7
 kg CO2-eq (compared to scenario 1) and 9 × 10

6
 kg CO2-eq (compared to scenario 3) of 

GWP savings are achieved per year due to the implementation of the pyrolysis process. This 

indicates that pyrolysis is more preferable than PSW incineration and hydrogenation in terms of 

carbon savings. 

Economically, hydrogenation is the most favourable option for waste treatment (including the 

polymeric fraction) at the scale of 150 ktpa for the VCC unit. Additionally, it gave the highest 

net present value (NPV, £113 per tonne) and internal rate of return (IRR, 53%) compared to 

scenario 1 (NPV of £57 per tonne and an IRR of 33%) and scenario 2 at a scale of 150 ktpa for 

the LTP unit which resulted in a NPV of £43 per tonne and IRR of 43%. However, the 

corporation tax (CT) is highest in scenarios with hydrocracking. This is due to the higher pre-

tax profits and CC of scenario 3 (hydrocracking) compared to scenarios 1 and 2 (pyrolysis) over 

the scenario’s lifetime. A 96% increase in pre-tax annual profit (TP) is calculated for the 150 

ktpa VCC unit addition to the base scenario (MRF+IU). Furthermore, a 19% increase in 

corporation tax is also reported for the addition of the 150 ktpa VCC unit due to higher profits. 

The addition of the LTP unit was also profitable at scales exceeding 50 ktpa. However, the 

profitability from VCC sales exceeded the ones generated from the LTP process due to product 

sales and prices. 

Finally, both TCT technologies implemented in this study (scenario 2 and 3) to treat plastics 

have proven to be more environmentally friendly and economical than incineration (scenario 1). 

In particular, pyrolysis has shown greater carbon savings than incineration and hydrocracking. 

However, governmental incentives to overcome corporation tax imposed on energy from waste 

(EfW) projects are lacking in the UK. Corporation tax on pyrolysis and hydrogenation is a 

serious obstacle that needs to be dealt with in order to encourage future investors to view 

plastics as a profitable feedstock. If such policies were to be proposed in the future, EfW 

technologies would be considered as both green and profitable technologies that could be 

developed in the UK. 
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Chapter 7 

Conclusions and Future Work 

Polymers are the most versatile material of the modern age and are the basic building 

block of what we know as plastics. Polymers are a crude oil derivative, the result of oil 

refineries and the conversion of petrochemicals, including ethylene, propylene, styrene, 

benzene, etc. Polymers have a very high calorific value compared to other crude oil products, 

(such as kerosene, gas and heavy oil, etc) and other municipal waste fractions (such as organics, 

textiles and plastic solid waste mixtures). The UK has committed to a new target of 50% 

reduction of greenhouse gases (GHGs) by 2025 compared to the 1990 levels and currently 80% 

of the UK carbon emission is the result of fossil fuels burning. Consequently, the development 

of low carbon technologies and efficient waste management treatments are crucial. These 

technologies include thermolysis and treatments of a chemical nature of solid waste produced 

by the different activities of our urban environment.  

The main objective of this work was to investigate the thermo-chemical treatment (TCT) of 

polymers at different scales. The research investigated TCTs ranging from laboratory scale 

processes to industrial scale units. The different products yielded by laboratory and industrial 

scale TCT units were assessed and in addition, the formation mechanism of such products was 

also evaluated in a laboratory scale pyrolysis process. The contribution that such technologies 

make to our urban environment was addressed through a life cycle assessment (LCA) approach.  

Within this framework, the thesis began with a comprehensive review providing an insight 

into the different types of chemical treatments and TCT at different scales of operation and in 

addition, the different types of products recovered from each industrial unit were assessed. The 

review also included a detailed illustration of the reaction mechanisms used to describe the 

products formed by pyrolysis. This was undertaken because the experimental and kinetics 

modelling work undertaken in this thesis was on the pyrolysis process.  

At the laboratory scale, the pyrolysis of five polyolefins under isothermal conditions was 

studied in a thermogravimetric analyser using data provided by Ravago Plastics (Belgium) for 

polyolefins and end of life tyres (ELTs). This was performed to determine the polymers 
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degressive behaviour, as well as the chemicals yielded by this process and led to the 

development of a novel approach to model the depolymerisation of polyolefin reactions based 

on lumped products. The depolymerisation model included primary, secondary and tertiary 

reactions that contribute to the different products formed by pyrolysis. The model enabled the 

kinetic assessment of the pyrolysis reaction and resulted in an overall activation energy that was 

in agreement with previous findings reported in the literature. The same method was applied to 

analyse the results from the isothermal pyrolysis of end of life tyres (ELTs), and a model was 

proposed based on an isothermal experiment performed at 500°C to determine the products 

yielded by the reaction. 

This thesis assessed the effect of implementing TCT reactors, such as pyrolysers, on the 

urban environment by performing an attributional life cycle assessment (ALCA) as part of the 

waste management treatment strategy of London. A life cycle assessment (LCA) accounts for 

every stage in the cycle of a product or process, from resource extraction (cradle) to the ultimate 

end-of-life treatment (grave). Reports showed that material recycling emits the lowest volatile 

organic compounds when compared to incineration and landfilling. Improving polymers 

recovery (namely PE) has been reported by Tarantini et al. (2009) to reduce environmental 

indicators. Incineration with energy recovery in combined heat and power (CHP) plants are 

environmentally preferable when the electricity produced is off-set against electricity produced 

from coal. A limited number of reports on the technical and economic data for industrial scale 

TCT technologies are available in the literature (Tukker et al., 1999, Holighaus et al., 1994; 

Perguini et al., 2005). In fact, a comparative assessment of such technologies against 

conventional methods has never been undertaken in the UK and this is considered a gap in the 

recent research activities that warrants further investigation.  

The ALCA was conducted on three scenarios that reflect the management of waste in the 

greater London area (GLA). All scenarios included a materials recovery facility (MRF), an 

incineration unit (IU) with combined heat and power (CHP), and transfer stations (TSs) for 

waste segregation. The MRF represents the Greenwich MRF station which was visited in 

December 2009. The purpose of the visit was to gain knowledge of the different operations 

undertaken within the station that can contribute to the overall energy and environmental 

burdens as well as the economic aspects investigated. The IU (with combined heat and power, 

CHP) incorporated in this work represents the South East London Combined Heat and Power 

(SELCHP) station located in Lewisham (London). A baseline scenario (scenario 1) was defined 

to reflect the current route of treatment in the GLA and this included a MRF and IU. Scenarios 2 

and 3 implemented a BP low temperature pyrolysis (LTP) unit and a VCC hydrogenation unit, 

respectively. The feeds for both industrial scale TCT units were taken as 1000 tpa of the plastics 

extracted from the MRF recovered products. The scenarios studied treat plastics produced from 
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the following locations: 

1. Borough of Greenwich 

2. Borough of Lewisham 

3. Borough of Bromley 

4. Borough of Westminster 

5. City of Exeter (Devon) 

Finally, the techno-economic performance of these scenarios was evaluated. The net 

present value (NPV) and internal rate of return (IRR) for each scenario was determined and the 

most profitable routes of treatment were identified. The total costs included capital costs (CC) 

and operating and maintenance costs (OMC) together with revenues obtained including 

governmental incentives such as renewable obligation certificates (ROCs), levy exemption 

certificates (LECs) and packaging recovery notes (PRNs). 

 

7.1. Main Conclusions  

The main conclusions of this thesis are summarised below: 

• A novel kinetic model based on lumped products was proposed in this work for the 

pyrolysis of polyolefins and end of life tyres (ELTs) tested. This lumped product approach 

has not been attempted in the past for pyrolysis reaction kinetics. Results were in 

agreement with previous findings validating the developed mechanism and approach. 

• Pyrolysis also showed the largest carbon savings in comparison to hydrogenation and 

materials incineration. This is due to the large amount of products produced by pyrolysis, 

which contributes to the total avoided burdens and credits for the system studied. 

• From an economic point of view, hydrogenation is the most favourable option as it results 

in the highest net present value (NPV) and internal rate of return (IRR) compared to 

pyrolysis and incineration. This is mainly due to the revenue hydrogenation generates from 

the sales of its products (syncrude, naphtha, etc.) and gate fees. 

• The sensitivity analysis revealed that the waste calorific value, electrical and heat 

generation efficiencies of the IU are the most sensitive parameters which greatly affect the 

economic performance of polymers pyrolysis, hydrogenation and incineration. 
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7.2. Key Highlights Extracted From the Thesis   

The main highlights from the thesis are summarised below: 

• A model that can be applied to all polyolefins tested was proposed that involved the 

primary reaction of depolymerisation of the polymer material to an intermediate stage 

(waxes), a secondary reaction that produced gases, liquids and aromatics, and finally, the 

tertiary reaction which contributes to the liquid fraction from the gases formed. The lumped 

product approach proposed in this work was not performed in the past on pyrolysis 

degradation mechanisms. The reaction order (n) of polymer depolymerisation ranged 

between 0.97-0.1, and the overall kinetic rate constant (ko) ranged between 0.37 × 10
-2

 to 

0.29 s
-1 

for the various grades of PE studied, which is in agreement with previous reports by 

various authors (Ceamanos et al., 2002; Dahiya et al., 2008). The overall activation energy 

ranged between 211 – 230 kJ mol
-1

, which fell within the range of previous findings for PE 

pyrolysis (see Figure 3.39). A similar approach has not been undertaken in the past on 

pyrolysis kinetics modelling. This approach eases the development of future models for 

pyrolysis reactions and can lead to a simple relationship being applicable in industry that 

can determine the products yielded at different temperatures for different polymers.  

• Specific patterns were observed during the pyrolysis experiments of the polymers tested. 

Waxes (> C5) always resulted in the highest estimated fraction of the final products 

assessed (44 to 69%). This is in agreement with previous findings by Aznar et al. (2006) 

and Zia et al. (2007), which showed that tars (including waxes) form the largest fraction of 

the pyrolysis products on average (45%). The melting point of the virgin grades (HDPE 

and LDPE) had a direct impact on their wax formation and it was noted that the lower the 

melting point the quicker the wax formed as the reaction progressed.  

• The model proposed was able to determine the polymers fractions at different reaction 

times, which were compared to the experimental results obtained. HDPE no.1 

demonstrated an almost an identical match between the experimental and model results for 

the first 50 s of the reaction at 500°C. Observing the pattern for the two HDPE grades, it 

was noted that HDPE no.2 had a smaller margin of error between the experimental and 

model results for the 500°C experiment. Results for 550°C and 600°C were all within a 

±10% margin of error. At 550°C the values plotted were scattered within a ±10% deviation, 

which covered the error for the LDPE. This behaviour is very similar to that exhibited by 

HDPE no.1, MDPE no.1 and no.2 polymers at 550°C. It was observed that based on the 

mechanism proposed, the higher the operating temperatures the higher the error of the 

model prediction versus experimental values. 
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• A thermal cracking scheme was proposed for the end of life tyres (ELTs) grade studied 

based on the global yielded products, which were lumped into four categories, namely 

gases (C1-C4), liquids (non-aromatic C5-C10), single ring aromatics (C5-C10), and char. 

Evaluation of the depolymerisation kinetics (from primary, secondary and tertiary 

reactions) showed a high match with the experimental results, resulting in an overall rate 

constant (ko) of 0.011 (s
-1

). Results from this case study showed the potential for this 

kinetics modelling approach to be carried out in the future. Previous reports have focused 

solely on maximising gas yield; however, the products yielded by the isothermal pyrolysis 

experiments showed a very promising result, with gases and char (marketed as carbon 

black) constituting 60% of the total products formed. However, more data points are 

necessary in order to thoroughly validate the work presented here for ELTs. This will aid in 

the development of a general model that could help develop a kinetics relationship 

applicable in industry.  

• Attributional life cycle assessment (ALCA) was conducted on three scenarios that reflect 

the management of waste in the greater London area (GLA). The energy turnover for all 

three scenarios is negative, indicating that the energy output is larger than the energy input, 

which credits all the scenarios in this study. The energy turnover was of the same order of 

magnitude in all scenarios studied, although the energy outputs in scenarios 2 and 3 are 

dependent on their plastics throughput as feed. This strengthens the argument for diverting 

more plastics towards pyrolysis and hydrogenation in order to produce more EfW in 

London.  

• The global warming potential (GWP) is used for each scenario to analyse the carbon 

savings. The attributional life cycle assessment (ALCA) in this study is combined with 

system expansion, which enables the assessment of the avoided burdens from the processes 

included in the system studied. Different electricity production technologies were assigned 

to combination numbers. These technologies included the average UK electricity mix, 

marginal hard coal, marginal nuclear, marginal wind and marginal natural gas. All the 

combinations studied are negative, which indicates that all the treatments considered credit 

the scenario studied. Furthermore, combination 5 (avoided burden resulting from electricity 

produced from marginal hard coal technology) shows the optimal treatment of all 

combinations studied in scenarios 1, 2 and 3. This is due to the fact that the hard coal off-

setting conversion factor was the highest of all the avoided electricity treatment options. 

• Scenario 2 shows the largest carbon savings in comparison to the other two scenarios 

studied. This is due to larger amount of products produced by the LTP process, which 

contributes to the total avoided burdens of this scenario. By comparing the most 
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environmentally friendly combination (combination 10, pyrolysis with electricity produced 

from hard coal) to combinations 5 and 15 (baseline and hydrogenation with electricity 

produced from hard coal, respectively), 1.2 × 10
7
 kg CO2-eq (compared to scenario 1) and 9 

× 10
6
 kg CO2-eq (compared to scenario 3) of GWP savings are achieved per year due to the 

implementation of the pyrolysis process. This indicates that pyrolysis is more preferable 

than PSW incineration and hydrogenation in terms of carbon savings. 

• The economic viability of the overall system was investigated. The three scenarios 

investigated include a dry materials recovery facility (MRF), incineration unit (IU) 

combined with a heat and power (CHP) plant, low temperature pyrolysis (LTP) plant and a 

VCC hydrogenation plant. The addition of a 1 ktpa unit of both TCT units (i.e. LTP and 

VCC) to the overall system was investigated accommodating the maximum available 

amount of plastics in the scenarios. Moreover, the addition of a 50, 100 and 150 ktpa units 

of LTP and VCC was investigated to assess the overall economic viability of the developed 

system with scales high enough to compete with the MRF and IU. 

• Economically, hydrogenation is the most favourable option for waste treatment (including 

the polymeric fraction) at the scale of 150 ktpa for the VCC unit. Additionally, it gave the 

highest net present value (NPV, £113 per tonne) and internal rate of return (IRR, 53%) 

compared to scenario 1 (NPV of £57 per tonne and an IRR of 33%) and scenario 2 at a 

scale of 150 ktpa for the LTP unit which resulted in a NPV of £43 per tonne and IRR of 

43%.  

• Furthermore, the corporation tax (CT) is highest in scenarios with hydrocracking. This is 

due to the higher pre-tax profits and CC of scenario 3 (hydrocracking) compared to 

scenarios 1 and 2 (pyrolysis) over the scenario’s lifetime. A 96% increase in pre-tax annual 

profit (TP) is calculated for the 150 ktpa VCC unit addition to the base scenario 

(MRF+IU). Moreover, a 19% increase in corporation tax is also reported for the addition of 

the 150 ktpa VCC unit due to higher profits.  

• The addition of the LTP unit was also profitable at scales exceeding 50 ktpa. However, the 

profitability from the VCC hydrocracking unit sales exceeded the ones generated from the 

LTP process due to higher pre-tax profits generated from product sales.  

• A sensitivity analysis was performed on the three scenarios’ input parameters to test their 

effect on the project’s total cost. This revealed that the waste calorific value, electrical and 

heat generation efficiencies of the IU are a very sensitive parameter which greatly affects 

the economic performance of the scenario.  
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In conclusion, this thesis addressed the performance of thermo-chemical treatment (TCT) units 

at industrial and laboratory scales, as well as their impact on the urban environment. The thesis 

also highlights the feasibility of integrating TCT as part of the waste management strategy for 

plastic solid waste (PSW). Pyrolysis proved to be a very promising process that can successfully 

produce highly desirable petrochemicals and energy from polymers. It was shown that on a 

small scale (laboratory) it has the potential to produce large fractions of waxes, gases and 

liquids that could be comparable in calorific value to petrochemicals and refinery cuts such as 

naphtha, butane and pentane, however their use in the UK is still very limited. With the 

exception of the Compact Power Plant in Avonmouth (near Bristol) which treats MSW, 

organics and medical waste via pyrolysis, there are no other serious industrial efforts utilising 

pyrolysis currently being undertaken in the UK. However, at large scales (150 ktpa) 

hydrogenation has proven to be an economical option that can compete with incineration and 

dry materials recovery in the UK. It is estimated that plastics recovery in the UK is lower than 

that of Germany by 50% (PE, 2007). The pyrolysis process has proven to be an environmentally 

friendly option which with energy production could be integrated into existing waste treatments 

infrastructures. With the right level of incentives and the political will, the work undertaken in 

this thesis demonstrated that TCT, particularly pyrolysis, is a promising technology for the 

improvement of waste management strategies and the reduction of the carbon footprint of 

plastics.  

 

7.3. Future Work and Recommendations   

This thesis has considered thermo-chemical treatment (TCT) of polymers at different scales 

by testing polymers in a micro laboratory scale pyrolysis process and implementing TCT 

industrial units to an urban environment (London). Future work could be to establish more 

environmentally friendly and energy efficient systems in the future. The recommendations given 

below are to be considered by an ascending order of priority.  

As a next step, it would be useful to test more polymers in pyrolysis, gasification, 

hydrogenation and combustion laboratory experiments in an isothermal set-up to gain a more 

detailed comparison between the differences in product yields resulting from these processes 

against the same polymers tested in this work. Such work would complement the kinetics 

modelling undertaken here and could result in a more generic model being employed for these 

TCT processes that describes the depolymerisation mechanism of these reactions. More 

synthetic grade and pure laboratory preparations of polymers should be also tested and 

compared with the results obtained here. This could lead to understanding the differences 
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between the products formed by thermo-chemically treating commercial grades, pure polymers 

and recyclate grades recovered from different industrial processes (in-house recycling, 

containers, bottles, etc). In addition, it would be useful to up-scale these processes to a pilot 

plant process to gain a better understanding (if any) between the kinetic modelling conducted on 

laboratory micro scales and pilot plant ones. The kinetic model proposed in this work would 

benefit from pilot plant experiments to verify the approach and account for any differences in 

products obtained. 

The isothermal pyrolysis of end of life tyres (ELTs) would benefit by experimenting with a 

large spectrum of tyre grades from a number of sources, in order to establish a database that can 

help develop further the tyre pyrolysis industry in this country. More experiments on ELTs 

would lead to a wider understanding of their depolymerisation mechanisms. In addition, the 

kinetics modelling approach developed in this thesis could be implemented for more polymer 

filled (rich) feedstock, such as polymer composites. This would lead to generalising the kinetics 

modelling approach undertaken in this work and would accommodate a larger range of 

polymers. Performing pilot scale experiments may also lead to a deeper understanding of the 

effect of scale.    

In Chapter 6, the study focused on the greater London area (GLA) by developing the 

scenarios for boroughs that are located in the proximity of central and suburban London. The 

life cycle assessment (LCA) conducted in this thesis can be expanded in a number of ways. 

Firstly, more boroughs could be incorporated in the analysis to expand the boundaries of the 

study. These boroughs could be included with respect to other MRFs in London in order to 

incorporate more processing lines in the scenarios studied. This will also reflect a more realistic 

scenario for the additional plastic materials needed to develop 150 ktpa scale TCT plants. 

Secondly, hotspot analysis (HSA) could be performed to understand which step in the IU, MRF, 

LTP and VCC processes contribute the most to the environmental burden emissions. To achieve 

this, an industrial partner in this field would be highly desirable. Thirdly, more TCT reactor data 

could be utilised to expand the work carried out in this thesis. TCT units such as the Pyromelt 

process, Texaco gasification and blast furnace application units have all been successful in the 

past. A close industrial relationship could benefit the work carried out here in implementing 

TCT units in London and other urban communities, by securing data not available within the 

available literature. It will also lead to understanding the changes on products recovered from 

different TCT units resulting from the kinetics model developed. This will result to a more in-

depth study of the impact of the kinetic parameters estimated on the environmental and 

economical performance of the TCT units studied. 

The CHP plant considered in this study was assumed to have 100% market penetration. In 
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other words, the electricity and heat are always assumed to be sold to distributing companies 

regardless of their current demands. This warrants an investigation in the long run into district 

heating and power distribution to local communities, as well as the cost and technologies of 

storing energy in such units. This could lead to a detailed comparison with different scenarios 

that the LCA work presented in this thesis can build on.  

Electricity production off-setting data used in this thesis reflected the UK average and 

marginal data. However, it would be more desirable to see whether further GWP savings could 

be achieved when electricity production is considered as a marginal hydro process or production 

for district heating. Can such technologies compete against off-setting the electricity produced 

from hard coal marginal data? This point leads to investigating more heat production off-setting 

methods (e.g. steam turbines), and comparing them against the CCGT marginal production 

conversion factor used in this work.  

The crude oil industry has benefited immensely from the development of TCT reactors. 

This is due to the fact that most TCT reactors use similar technologies to those already existing 

in oil refineries and petrochemical complexes (e.g. steam and catalytic cracking). Performing an 

environmental and economical assessment study on the prospects of integrating existing crude 

oil processing complexes and TCT reactors is definitely a highly desirable research prospect in 

the future. This would show whether TCT units could decrease the carbon footprint of refineries 

and petrochemical complexes. It would also provide an economical foundation for increasing 

the feedstock of a refinery (by adding a PSW throughput) and gaining a higher profit margin 

that contributes to the existing refinery production line. In addition, the quality issue of TCT 

units could be addressed and solved simultaneously. The products generated from the TCT units 

could be mixed with products from oil processing complexes to improve the quality of them (if 

needed) or be marketed separately. This economic assessment could help to improve the 

economic performance of such oil complexes and improve the economic performance of TCT 

processes.  

Finally, in order to find the optimal economy of scale for the LCA system studied in 

Chapter 6, a multi-objective optimisation framework could be formulated. Solving the 

superstructure resulting from integrating the carbon savings and techno-economic performance 

of the system studied would yield trade off solutions. These would point towards the optimal 

scale for all the units considered (MRF, IU, VCC and LTP), as well as the optimal 

environmental and economical solution.  
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List of Abbreviations  

AET;  Aquatic Ecotoxicity 

ALCA;  Attributional Life Cycle Assessment 

AR;  Atmospheric Residue 

ASR;  Automobile Shredded Residue 

BFB;  Bubbling Fluidized Bed  

CERT;  UK Carbon Emission Reduction Target 

CFB;  Circulating Fluidized Bed 

CHP;  Combined Heat & Power 

CLCA;  Consequential Life Cycle Assessment 

DAR;  Depletion of Abiotic Resources 

EA (UK); Environmental Agency (in the United Kingdom) 

EfW;  Energy from Waste 

ELT;  End of Life Tyres 

FBR;  Fluidized Bed Reactor 

FID;  Flame Ionization Detector 

FT;  Fourier Transform 

GC;  Gas Chromatography 

GHGs;  Greenhouse Gases 

GLA;  Greater London Area 

GMRF;  Greenwich Materials Recovery Facility 

GRT;  Gas Residence Time 

H/C;  Hydrogen to Carbon 

HAT;  Human Air Toxicity 

HC;  Hydrocarbons 

HST;  Human Soil Toxicity 

HT;  Human Toxicity 

HWT;  Human Water Toxicity 

IPCC;  International Panel on Climate Change 

IPPC;  Integrated Pollution Prevention and Control 

IR;  Infrared 

ISO;  International Standardization Organization 

ISW;  Industrial Solid Waste 

IU;  Incineration Unit 

IWM;  Integrated Waste Management  

KSF;  Kinetic Severity Function 
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LCA;  Life Cycle Assessment 

LCI;  Life Cycle Inventory 

LCIA;  Life Cycle Impact Assessment 

LCPD;  Life Cycle Product/Process Design 

LP;  Linear Programming 

LTP;  Low Temperature Pyrolysis 

LTs;  Light Transformers 

MILP;  Mixed Integer Linear Programming 

MINLP;  Mixed-Integer Non-Linear Programming 

MO;  Multi-Objective 

MRF;  Materials Recovery Facility 

MS;  Mass Spectrometry 

MSW;  Municipal Solid Waste 

NAFTA; North America Free Trade Agreement 

NTR;  Number of Trips Required 

OF;  Objective Function 

PAHs;  Polycyclic Aromatic Hydrocarbons 

PC;  Petrochemical 

POF;  Photochemical Oxidant Formation 

PRNs;  Packaging Recovery Notes 

PSW;  Plastic Solid Waste 

RCEP;  Royal Commission on Environmental Pollution 

RDF;  Refuse Derived Fuel 

RK;  Runga-Kutta 

rxn;  Reaction 

SBR;  Styrene Butadiene Rubber 

SRT;  Solid Residence Time 

TCD;  Thermal Conductivity Detector 

TCT;  Thermo-Chemical Treatment 

TET;  Terrestrial Ecotoxicity 

TGA;  Thermogravimetric Analysis 

THC;  Total Hydrocarbons 

TOC;  Total Organic Carbons 

TS;  Transfer Station 

UV;  Ultra Violet 

WDA;  Writing-Down Allowance 
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Polymer Abbreviated Names 

ABS;  Poly (Acrylonitrile, Butadiene, Styrene) 

EPS;  Expanded Polystryene 

EVA;  Ethylene Vinyl Acetate 

HDPE;  High Density Polyethylene 

IPP;  Isotactic Polypropylene 

LDPE;  Low Density Polyethylene  

LLDPE; Linear Low Density Polyethylene 

MDPE; Medium Density Polyethylene 

PCA;  Polycarbonate  

PE;  Polyethylene 

PET;  Polyethylene Terephthalate 

PI;  Polyisoprene 

PLA;  Polylactide  

PMMA; Poly (methyl methacrylate) 

PP;  Polypropylene 

PS;  Polystyrene 

PVA;  Polyvinyl Alcohol 

PVC;  Polyvinyl Chloride 

 

List of Symbols  

a;  Degree of polymerization of the largest molecule that can be vaporized 

Ai;  Tars formed in reaction i. 

AP;  Acidification Potential (kg SO2-eq) 

AP;  Primary tars 

Bi;  Emission (kg) of Substance i. 

CCH4;  Amount of Carbon in Methane Emitted from Landfill (Gg/annum). 

Ci
n
;  Benchmark Concentration (mol/m

3
) for Chemical i.  

CSRi
nm

; Concentration (mol/m
3
) of chemical i to source ratio in medium m (soil, water, 

etc) based on a unit release (mol/m
3
) to compartment n (air, water, etc.). 

DOC ;  Degradable Organic Carbon Generation (Gg/annum) 

Ea;  Apparent activation energy (kJ mol
-1

) 

eci; The AP of Substance i Expressed Relative to the Value for SO2 

ei;  Emission (kg) of Substance i. 

EmissionCorr; Corresponding emission of substance i (tonne). 

ETPi
air,m

;  Emission to air. 
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ETPi
nm

; Ecotoxicity Potential Expressing Release of Chemical i to Compartment n in 

Terms of Equivalent Quantities of Chemical i Released to the Same 

Compartment. 

ETPi
sw,m

;  Emission to Surface Water (sw). 

f(α);  Function that represent the rxn model 

FA
*
;  Standard Measure of Harm, e.g. fraction of species adversely affected 

Gi;  Gases formed in reaction i. 

GP;  Primary gases 

GWI;  Global Warming Index 

GWP;  Global Warming Potential (kg CO2-eq) 

GWPi;  Global Warming Potential of Substance i 

IBA;  Incinerator Bottom Ash  

ICRi
m
; Impact to Concentration Ratio for Chemical i in Environmental Medium m 

mo;  Initial charge of polymer (gm) 

Mo;  Initial mass of the sample 

MSWT;  Total Municipal Solid Waste Produced by a System 

N;  Number of TG data points 

n;  Reaction order 

ODIi;  Ozone Depleting Index 

ODPi;  Ozone Depleting Potential of Substance i 

On;  Alkene in Ranzi et al. (1997) model 

OT;  Operating Temperature  

P,   Polymer (Radical Chain Mechanism) 

PE;  Amount of polyethylene present at any time, PE = P + P
*
. 

PECi
n
; Predicted Environmental Concentration (mol/m

3
) of Chemical i in Medium m  

Pn;  Polymer in Ranzi et al. (1997) model 

QCH4;  Annual CH4 Emission from Landfill (Gg/annum). 

RDF;  Refuse Derived Fuel 

Rp;  Primary radical (Radical Chain Mechanism) 

Rs,   Stable radical (Radical Chain Mechanism) 

S;  Surface exposed to the surrounding atmosphere (m
2
)  

Si
n
;  Continuous Release in (mol/day) to Compartment n  

TCT;  Thermo-Chemical Treatment 

TEi,cCorr; Corresponding Total Emission of Substance i,. 

Tm;  Melting temperature (
o
C) 

Tmax;  Peak temperature (K) 

W(t); Mass of the polymer in the reactor at time (t) in gm (Horvat and Ng ,1999) 
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Wo;  Initial mass of the polymer (gm) 

xi;  Weight fraction of component i 

Xw;  Amount of Waste Feedstock for Generating 1 tonne of Product Gas 

 

 

Greek Letters 

ζ;   wt% Conversion = (mo - m)/m)  

α;  Degree of polymer conversion = )mm)/(m(m oo ∞−−  

β;  Heating rate (
o
C min

-1
) 

 

Subscripts 

1; Primary reaction in the scheme (wax formation) 

2; Secondary reaction in the scheme (gas formation) 

3;  Secondary reaction in the scheme (liquid formation) 

4; Secondary reaction in the scheme (aromatic formation) 

5; Tertiary reaction in the scheme (liquid to gases) 

a; Aromatics 

f; Final  

∞; Final state (e.g. last recorded temperature) 

g; Gases 

l; Liquids 

p; Polymer 

w; Waxes 
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Appendix A 

 

Theoretical Fit and Model Results as a function of reaction 

time (s) 
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Figure A.1 – Theoretical fit and model results of polymer fraction (xp) for HDPE no.1 at 500oC with a regression 
coefficient (R2) of 0.97. 
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Figure A.2 – Theoretical fit and model results of polymer fraction (xp) for HDPE no.1 at 550oC with a regression 
coefficient (R2) of 0.95. 
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Figure A.3 – Theoretical fit and model results of polymer fraction (xp) for HDPE no.1 at 600oC with a regression 
coefficient (R2) of 0.98. 
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Figure A.4 – Theoretical fit and model results of polymer fraction (xp) for HDPE no.2 at 500oC with a regression 
coefficient (R2) of 0.99. 
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Figure A.5 – Theoretical fit and model results of polymer fraction (xp) for HDPE no.2 at 550oC with a regression 
coefficient (R2) of 0.97. 
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Figure A.6 – Theoretical fit and model results of polymer fraction (xp) for HDPE no.2 at 600oC with a regression 
coefficient (R2) of 0.99. 
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Figure A.7 – Theoretical fit and model results of polymer fraction (xp) for LDPE at 500oC with a regression 
coefficient (R2) of 0.99. 
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Figure A.8 – Theoretical fit and model results of polymer fraction (xp) for LDPE at 550oC with a regression 
coefficient (R2) of 0.98. 
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Figure A.9 – Theoretical fit and model results of polymer fraction (xp) for LDPE at 600oC with a regression 
coefficient (R2) of 0.99. 
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Figure A.10 – Theoretical fit and model results of polymer fraction (xp) for MDPE no.1 at 500oC with a 
regression coefficient (R2) of 0.99. 
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Figure A.11 – Theoretical fit and model results of polymer fraction (xp) for MDPE no.1 at 500oC with a 
regression coefficient (R2) of 0.98. 
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Figure A.12 – Theoretical fit and model results of polymer fraction (xp) for MDPE no.1 at 600oC with a 
regression coefficient (R2) of 0.99. 

 

 

 



 Annex A  

 

VII 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600

time (s)

x
p

Model

Fit

 

Figure A.13 – Theoretical fit and model results of polymer fraction (xp) for MDPE no.2 at 500oC with a 
regression coefficient (R2) of 0.99. 
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Figure A.14 – Theoretical fit and model results of polymer fraction (xp) for MDPE no.2 at 550oC with a 
regression coefficient (R2) of 0.98. 
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Figure A.15 – Theoretical fit and model results of polymer fraction (xp) for MDPE no.2 at 600oC with a 
regression coefficient (R2) of 0.99. 
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Figure A.16 – Theoretical fit and model results of End of life tyres fraction (xELT) with a regression coefficient 
(R2) of 0.96. 
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Appendix B 

 

Theoretical Fits used for the Runge-Kutta Solution in the 

Matlab to Represent the Experimental Polymer Weight Loss 

 
Table B.1. Data fit equation* parameters used to represent the experimental polymer fraction (xp) in solving 
the 4th order Runge-Kutta system in the case of HDPE no.1, showing %Sum of error (%SE) and the regression 
coefficients (R2) between experimental and calculated data points. 

 

T (oC) Reaction time (s) a b c d %SE R2 

500 
550 
600 

510 
91.7 
66.3 

4.32 
5.5 

3.85 

4.32 
5.67 
3.85 

0.11 
3.22 x 10-5 

0.54 

0.97 
3.24 
1.4 

106.07 
98.09 
371.8 

0.97 
0.98 
0.99 

* The data fit equation used was the following: 
dp

c(t)b

a
x

+
= ; where xp is the polymer fraction and 

t is the time (s). 

 

 
Table B.2. Data fit equation* parameters used to represent the experimental polymer fraction (xp) in solving 
the 4th order Runge-Kutta system in the case of HDPE no.2, showing %Sum of error (%SE) and the regression 
coefficients (R2) between experimental and calculated data points. 

 

T (oC) Reaction time (s)** a b c d %SE R2 

500 
550 
600 

600 
160 
80 

29.50 
0.04 
0.14 

29.75 
- 
- 

0.003 
- 
- 

1.74 
- 
- 

93.60 
850.65 
103.19 

0.99 
0.99 
0.99 

* The data fit equation used was the following (at 500oC): dp c(t)b
ax

+
= ; where xp is the 

polymer fraction. At both temperatures of 550 and 600oC, the following exponential fit was used: 

at)exp(xp −= . 

** To avoid dividing by zero, at 550oC; xp was taken as 0.001 and at 600 oC it was taken as 0.0001. 
 
 
Table B.3. Data fit equation* parameters used to represent the experimental polymer fraction (xp) in solving 
the 4th order Runge-Kutta system in the case of LDPE, showing %Sum of error (%SE) and the regression 
coefficients (R2) between experimental and calculated data points. 

 

T (oC) Reaction time (s)** a b c d %SE R2 

500 
550 
600 

600 
160 
80 

32.95 
7.35 
0.19 

33.05 
7.35 

- 

0.003 
0.001 

- 

1.78 
3.32 

- 

109.81 
364.84 
195.55 

0.99 
0.99 
0.99 

*The data fit equation used was the following (at 500 and 550oC): dp c(t)b
ax

+
= ; where xp is the 

polymer fraction. At 600oC, the following exponential fit was used: at)exp(xp −= . 

** To avoid dividing by zero, at 550 and 600oC the xp value was taken as 0.0001. 
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Table B.4. Data fit equation* parameters used to represent the experimental polymer fraction (xp) in solving 
the 4th order Runge-Kutta system in the case of grade no.1 of the recycled MDPE, showing %Sum of error 
(%SE) and the regression coefficients (R2) between experimental and calculated data points. 

 

T (oC) Reaction time (s)** a b c d %SE R2 

500 
550 
600 

600 
120 
40 

32.94 
7.35 
0.23 

33.06 
7.35 

- 

0.004 
0.0009 

- 

1.72 
3.32 

- 

73.88 
218.40 
123.45 

0.99 
0.96 
0.99 

*The data fit equation used was the following (at 500 and 550oC): dp c(t)b
ax

+
= ; where xp is the 

polymer fraction. At 600oC, the following exponential fit was used: at)exp(xp −= . 

** To avoid dividing by zero, at 550oC xp was taken as 0.001 and at 600oC it was taken as 0.0001. 
 
 
Table B.5. Data fit equation* parameters used to represent the experimental polymer fraction (xp) in solving 
the 4th order Runge-Kutta system in the case of grade no.2 of the recycled MDPE, showing %Sum of error 
(%SE) and the regression coefficients (R2) between experimental and calculated data points. 

 

T (oC) Reaction time (s)** a b c d %SE R2 

500 
550 
600 

600 
120 
40 

34.41 
7.35 
0.23 

34.58 
7.35 

- 

0.003 
0.0009 

- 

1.77 
3.32 

- 

97.95 
216.51 
119.59 

0.99 
0.96 
0.99 

* The data fit equation used was the following (at 500 and 550oC): dp c(t)b
ax

+
= ; where xp is the 

polymer fraction. At 600oC, the following exponential fit was used: at)exp(xp −= . 

** To avoid dividing by zero, at 550oC xp was taken as 0.001 and at 600oC it was taken as 0.0001. 

 

Table B.6. Data fit equation* parameters used in solving the 4th order Runge-Kutta system in the 
case of Belgian grade ELT, showing % sum of error (%SE) and the regression coefficients (R2) 
between experimental and calculated data points. 
 

T (oC) Reaction time (s) a b c d %SE R2 

500 120 0.22 0.22 0.02 0.58 71.32 0.96 

* The data fit equation used was the following:
dELT

c(t)b

a
x

+
= ; where xELT is the ELT fraction. 
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Appendix C 

 

Gabi Extracted Models for Incineration Processes and 

Landfills 

 

 

 

Figure B.1 - Gabi Incineration Model. 
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Figure B.2 - Gabi Landfill (EfW) Model. The data used in this work for comparison with landfilling considers 

this landfill model extracted from Gabi software. 
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