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ON THE WRITHING NUMBER OF A NON-CLOSED

CURVE
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Nöthnitzer Str. 38, D-01187 Dresden, Germany

E-mail: star@mpipks-dresden.mpg.de

The paper deals with the definition and computation of the writhing
number of an arbitrary fragment of a space curve. The approach is based
on closing the tangent indicatrix with a geodesic. A relationship connect-
ing the writhe with the Gauß integral over the open curve is studied.
Single and double helical shapes are presented as examples.

1. Introduction

The term writhing number (or simply writhe) was first proposed by Fuller1

for a quantity Wr that arises as a difference between the linking num-

ber Lk and the twist (or twisting number) Tw of a closed ribbon in the

Călugăreanu-White-Fuller formula1,2,3

Wr = Lk − Tw .
The sense of this very simple-looking and very famous relationship is that

the right-hand side, though defined for a ribbon, depends only on its central

curve.

Since Wr is a characteristic of geometric complexity of a spatial curve,

it makes this quantity worthy of consideration when examining long phys-

ical objects.4 In particular, values of Wr have been computed in a number

of works for various models of large-scale structure of DNA (e.g., Refs. 5,

6, 7, 8) as well as for experimental data on these molecules.9 RNA ter-

tiary structures and protein folding are other neighbouring areas for an

application of the geometrical and topological tools developed in DNA

studies.10,11,12 However, in the strict sense, application of writhe is con-

fined to smoothly closed shapes, though quite a lot of interesting objects
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have their ends not joined (or joined non-smoothly), e.g., studies based on

the recently developed experimental techniques of manipulation with single

DNA molecules.13 In such problems, the model curves require an appropri-

ately defined measure to characterize their arrangement in space. Therefore,

it seems to be helpful to extend the notion of writhe to non-closed curves

and their fragments. Indeed, such attempts (explicit and implicit) have been

made.9,12,14,15,16,17,18,19,20,21 It happens that the definitions of the writhe

suggested by different authors are not consistent. One of the first works

where it was proposed how to compute the writhing number for an open

(and non-smooth) curve, is Ref. 22.

The aim of this paper is to give a consistent and natural generalization

of the notion of writhe to an arbitrary fragment of a curve and to present

explicit formulas for its computation as function of arc length. The basic

idea consists in a construction of the closure of the fragment under consid-

eration in such a way that it would correspond to the closure of the tangent

indicatrix by an arc of a great circle, as has been proposed by Maggs.19,20

This approach is fully consistent with the recipe, given by Le Bret23, on

how to close the tangent indicatrix of a polygonal line.

2. Notation and preliminaries

We start our consideration with a smooth non-self-intersecting curve A =

{r(s) : [0, L] → � 3} of class C2, s being the arc length. We assume that

the segment has a natural orientation in the direction the arc coordinate

increases. The concatenation of two segments A and B having, respectively,

a common ending and starting point will be written as A+ B.

A continuous vector function u(s) : [0, L] → S2 ≡ {z ∈ � 3; ‖z‖ = 1}
may be chosen such that u(s) · r′(s) = 0, ∀s; here ′ denotes the derivative

with respect to s. Let ε > 0 be small enough so that the ribbon Rε =

{r + µu,−ε ≤ µ ≤ ε} does not cross itself.

2.1. Twist, writhe and linking number

The twisting number of the ribbon (i.e., of the pair (r,u)) is defined by

Tw(r,u) =
1

2π

∫

A

r′ × u · du.

If r is of class C3 and r′′ 6= 0, then the twist of a ribbon may be decomposed

into the twist of the Frenet frame plus the twist of the ribbon relative to
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the Frenet frame:24

Tw(r,u) = TwF (r) +
1

2π

L∫

0

dφ.

The angle φ = φ(s) is an angle between u and the principal normal. By

the Frenet ribbon is meant a special one formed by the principal normal

vector to the curve. The Frenet ribbon is defined by the space curve r(s),

if r′′ 6= 0. The twist of the Frenet ribbon is

TwF (r) =
1

2π

L∫

0

τ (s)ds, (1)

where τ (s) is the torsion of the curve r(s). Clearly, for planar curves,

TwF = 0.

Now let the curve be smoothly closed: r(0) = r(L), r′(0) = r′(L). For

two closed curves A and B, A ∩ B = ∅, the Gauß linking integral gives an

integer-valued topological invariant

Lk(A,B) =
1

4π

∫

B

∫

A

(rA(s1) − rB(s2)) · (tA(s1)× tB(s2))

‖rA(s1) − rB(s2)‖3 ds1ds2,

called linking number.

The quantity called writhe may be expressed as the double integral

WrA =
1

4π

L∫

0

L∫

0

(r(s1)− r(s2)) · (t(s1)× t(s2))

‖r(s1)− r(s2)‖3 ds1ds2, (2)

where t = r′(s) is the tangent vector and s1, s2 are arc lengths. The right-

hand side of Eq. (2) is the Gauß linking integral in the singular case of being

over all distinct pairs of points on one curve. The writhe depends only on

the shape of the curve.

2.2. Basic relations

The following theorem is due to Fuller25,26 (we shall call it Fuller’s first

theorem).

Theorem Let B = {r(s)} be a closed oriented space curve of class C3 with

its tangent r′(s), s the arc length. The tangent traces out a closed curve

B̃(s) on the unit sphere which is piecewise of class C2. The curve B̃(s)

is divided into a finite family of non-self-intersecting closed piecewise C2
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space curves. Each curve of this family then encloses a domain Ωi defined

so that the geodesic normal points into its interior. Let SB be the sum of

the areas of these domains (the components are counted with multiplicity

determined by how many times the corresponding domains are encircled by

the curve). Then

Wr(r) =
SB
2π
− 1 mod 2.

Let the ribbon (r,u) also be closed: u(0) = u(L). Denote by Lk(r −
εu, r + εu) ≡ Lk(r,u) the linking number of the two boundary curves

r− εu and r + εu. For ε small enough, Lk(r,u) does not depend on ε. This

justifies omitting ε in the following. In other words, we shall be dealing with

arbitrarily narrow ribbons.

The famous Călugăreanu-White-Fuller theorem1,2,3 claims that the dif-

ference of the linking and twisting numbers is the writhe:

Lk(r,u)− Tw(r,u) =Wr(r).

3. Writhe of an arbitrary open segment

Consider a spatial curve segment A = {rA(s), s ∈ [0, LA]}, with the non-

vanishing tangent vector. The tangent indicatrix Ã need not be closed. Let

tA0 and tA1 be the tangent vectors at the beginning and end points of A,

respectively.

Following Maggs,19,20 we choose to close the tangent indicatrix Ã with

a geodesic G̃ in order to get a measure for the writhe of A (Fig. 1). This

choice is natural and is supported by treatment of analogous problems in

optics and quantum mechanics.27 (In the generic case tA0 6= ±tA1, there

are two possible geodesics, we take either of them; the cases tA0 = ±tA1

will be discussed later.) Let the tangent vectors at the ends of the geodesic

be denoted by nG0 and nG1.

It is only possible to define and compute the fractional part of the writhe

because the choice of closing geodesic is arbitrary. Then, the writhe of an

open segment A may be determined by the following relation:

WrA =
SA+G

2π
mod 1, (3)

where SA+G is the spherical area enclosed by Ã and G̃ (in the same sense as

in Fuller’s first theorem). We are able to specify the area only modulo 2π.

It may be shown that the curve A can be closed with a curve having

continuous tangent and such that its tangent indicatrix is G̃ plus possibly
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Fig. 1. The tangent indicatrix Ã of the segment A closed with a geodesic G̃.

some pieces of great circles that do not change the enclosed spherical area

modulo 2π.

Now construct a ribbon RA for the segment A in the same manner as

is done in the proof of Fuller’s first theorem.26 Generally, the ribbon RA is

determined by the unit principal normal vector nA(s). Therefore, for pieces

between possible inflection points of A with discontinuous normals, the

twist is computed as that of the Frenet ribbon by Eq. (1). In the vicinities

of the inflection points the ribbon RA is to be arbitrary modified to make

it continuous with a new modified generating vector uA. For the sake of

simplicity, we further assume that uA0 = nA(0) and uA1 = nA(LA). The

twist TwA is well-defined for the non-closed ribbon RA, which can be closed

with a ribbon RG based on the curve G. The ribbon RG may be constructed

such that its twist equals TwG = 1
2π

(γ1 +γ0), where γ0 is an angle from the

normal nG1 to uA0(= nA0) and γ1 from the normal uA1(= nA1) to nG0.

Applying the Gauß-Bonnet theorem28, we have

SA+G + 2πTwA + γ1 + γ0 = 0. (4)

Elimination of the area term from Eq. (3) and Eq. (4) results in an expres-

sion for the writhe

WrA = −TwA −
γ1 + γ0

2π
mod 1. (5)
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The angles γ1 and γ0 are determined by the equations

cos γ1 = nA1 · nG0, sin γ1 = (nA1 × nG0) · tA1,

cos γ0 = nA0 · nG1, sin γ0 = (nG1 × nA0) · tA0.

The vectors nG0 and nG1 may be easily expressed as functions of the

initial and terminal tangents of A. Indeed, the vector nG0 lies in the plane

spanned by the vectors tA0 and tA1. Besides, nG0 · tA1 = 0 and we may

write

nG0 = ±tA0 − (tA0 · tA1)tA1√
1− (tA0 · tA1)2

.

Similarly, the vector nG1 lies in the same plane and nG1·tA0 = 0. Therefore,

nG1 = ∓tA1 − (tA0 · tA1)tA0√
1− (tA0 · tA1)2

(the signs depend on the choice of the geodesic).

The angles γ1 and γ0 can be found from their trigonometrical functions

cos γ1 = ± nA1 · tA0√
1− (tA0 · tA1)2

, sinγ1 = ± bA1 · tA0√
1− (tA0 · tA1)2

, (6)

cos γ0 = ∓ nA0 · tA1√
1− (tA0 · tA1)2

, sinγ0 = ± bA0 · tA1√
1− (tA0 · tA1)2

, (7)

where bA(s) = tA(s) × nA(s) is the binormal vector and bA0 ≡ bA(0),

bA1 ≡ bA(LA).

We can conclude that Eq. (5), together with Eqs. (6), (7), provides a

means to compute the fractional part of the writhe for an (almost) arbitrary

curve with open ends.

It may happen that the tangent vector at the beginning is the same as

one at the ending point: tA0 = tA1. Then the tangent indicatrix is closed

and it sweeps the spherical area SA (Fig. 2). Equation (3) transforms to

WrA =
SA
2π

mod 1

and Eq. (5) to

WrA = −TwA −
γ

2π
mod 1, (8)

where γ is the angle from uA1 to uA0 (actually, from nA1 to nA0).

An analogue to Eq. (8) was used in the analysis of the elongation of a

supercoiled DNA molecule carried out by Bouchiat and Mézard17,18 (though

their angle χ is measured in the opposite direction to γ).



July 2, 2005 22:14 WSPC/Trim Size: 9in x 6in for Review Volume wr8b

On the Writhing Number of a Non-Closed Curve 531

n

n

t   = t

S

A
~

A1

A0

A0 A1

A

γ

Fig. 2. The closed tangent indicatrix Ã of the segment A.

Remark 1. It follows from the above that the writhe of a curve segment

(closed or open) whose tangent indicatrix is geodesic and such that tA0 +

tA1 6= 0, is an integer. In other words, the writhe of any planar curve is

always an integer.

Consider now the case tA0 = −tA1. The plane of the closing geodesic

G is then not determined. If we examine the behaviour of the tangent

indicatrix in the vicinities s = 0 and s = LA (also paying attention to

the neighbouring curves on S2 close to the critical one), then we see that

the plane of the closing geodesics may rotate through ∼ π as the length

of the segment changes so that the critical point tA0 = −tA1 is passed.

In mechanics terms, this phenomenon may be called flipping of the closing

segment. It is the critical point where the choice of one geodesic based on

a continuity argument is no longer valid.

Speaking more strictly, the value of the writhe for a segment with op-

positely directed ends is not determined. It may be ascribed a value which

is the average of the two limits taken as the length of the segment is pre-

critical and post-critical. This means that the great circle plane for the

closing geodesics in the critical point has to be taken orthogonal to the

limiting positions of both of the great circle planes chosen for the grow-

ing segment [ε, LA − ε] and the decreasing one [−ε, LA + ε] as ε → 0. (We

assume that the definition segment for the curve A may be infinitesimally
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extended in both directions.) Formally, this choice is a plane spanned by

tA0,nA0 + nA1. For such a closure, γ1 + γ0 = π and Eq. (5) becomes

WrA = −TwA −
1

2
mod 1,

while Eq. (3) does not change (as usual, SA+G means the area swept out

by the closed curve A+G defined as above). If, in addition, nA0 +nA1 = 0,

then a plane spanned by tA0 and bA0 has to be chosen.

Remark 2. In the above consideration we have used the ribbon based

on the principal normal (cf. Ref. 26), though any other continuous ribbon

may be taken to obtain essentially the same formula for writhe (of course,

the specific expressions for the angles γ1 and γ0 should be appropriately

modified).

In particular, the fractional part of writhe equals the twist of a special

ribbon such that its generating normal vectors at the ends have the property

that they could be transformed to each other by a parallel transport along

the closing geodesics (i.e., γ1 + γ0 = 0 mod 2π).

3.1. Broken curve

The above approach may be naturally extended to a sequence of disjoint

segments. Let A =
n∑
i=1

A(i) be a set of n continuous fragments. Each A(i) is

oriented so thatA
(i)
0 andA

(i)
1 are its initial and terminal points, respectively.

Based on A(i), a ribbon R
(i)
A may be built as was done for a single piece

of curve. We also construct n additional pieces that tie the end point of

the i-th fragment to the initial point of the subsequent one. We identify

formally the point A
(n+1)
0 with A

(1)
0 to make the entire curve closed. The

connecting parts are built in exactly the same way as the closure of a single

segment in the previous subsection. Thus, we can repeat our arguments to

obtain

WrA = −
n∑

i=1

Twi −
1

2π

n∑

i=1

(γ
(i)
1 + γ

(i)
0 ) mod 1, (9)

where Twi is the twist of the ribbon R
(i)
A , the angles γ

(i)
1 and γ

(i)
0 are deter-

mined by their trigonometric functions

cos γ
(i)
1 = ± n

(i)
A1 · t

(j)
A0√

1−
(
t

(j)
A0 · t

(i)
A1

)2
, sinγ

(i)
1 = ± b

(i)
A1 · t

(j)
A0√

1−
(
t

(j)
A0 · t

(i)
A1

)2
,
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cos γ
(i)
0 = ∓ n

(j)
A0 · t

(i)
A1√

1−
(
t

(j)
A0 · t

(i)
A1

)2
, sinγ

(i)
0 = ± b

(j)
A0 · t

(i)
A1√

1−
(
t

(j)
A0 · t

(i)
A1

)2
,

and t
(i)
Aυ,n

(i)
Aυ,b

(i)
Aυ are the Frenet frames at the beginning (υ = 0) and at

the end (υ = 1) of the i-th segment (i = 1, 2, . . . , n, j = 1 + (i mod n)).

Note that the value of writhe generally depends on both the order of

fragments and the orientations along them.

3.2. Non-smoothly closed loop

A special case arises when the segment A forms a non-smoothly closed

shape. This means a discontinuity of the tangent vector at the initial point

and the tangent indicatrix is not closed. The whole procedure described

above may be applied to such a loop although one complication appears: the

resulting closed curve to which the basic Călugăreanu-White-Fuller formula

is to be applied has a self-intersection point at the beginning of the loop

considered. Generally, the writhe is not defined for such shapes. However,

on the one hand, it can be shown that the Gauß integral exists unless the

tangent at the loop starting point is exactly opposite to the end tangent.

On the other hand, under the same limitation, we can restrict ourselves to

consideration of two limiting curves approaching the self-intersection shape

from two different sides. As is well known, the writhe jumps by 2 as a curve

crosses itself.25 Thus, the fractional part of the writhe is not affected by

self-intersection and may be computed by Eq. (3) or Eq. (5) in the same

way as for the open segment.

4. Writhe and the Gauß integral

The writhe of the smooth closed curve may be expressed as the double

integral Eq. (2). It is evident that the writhe for an open segment of length

L as defined above can no longer be computed as the Gauß integral over this

segment though, in most cases, the double integral itself is also well-defined

for smooth non-closed curves.

Our aim here is to obtain a formula connecting both values: on the one

hand, the writhe that relates the difference between the linking number and

the twisting for the ribbon built with the geodesic closure and, on the other

hand, simply the double integral taken over the open segment.
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4.1. Open curve and its closure

Consider an open smooth non-self-intersecting curve A = {r(s) : [0, L] →� 3} (Fig. 3). We assume here that the tangent vectors t(s) = r′(s) are

neither parallel nor antiparallel at the ends: t(0) 6= ±t(L) (we will examine

these cases later). We extend the curve A with two straight line segments:

B = {rB(s1) = r(L) + s1t(L), s1 ∈ [0, l]} and C = {rC(s2) = r(0) +

s2t(0), s2 ∈ [−l, 0]}. Note that both segments have the same length l. Now

connect the end points of B and C with the straight line segment Dl =

{rD(ξ) = (1− ξ)rB(l) + ξrC(−l) = (1− ξ)(r(L) + lt(L)) + ξ(r(0)− lt(0))}.
The direction of Dl is determined by its tangent

tD(l) =

drD(ξ)
dξ∥∥∥drD(ξ)
dξ

∥∥∥
=

rC(−l) − rB(l)

‖rC(−l) − rB(l)‖ .

A

B

C

D

E

F

t(0)

t(L)

l

Fig. 3. The curve A is extended with the straight line segments B and C and closed

with Dl.

Now let the lengths of B and C increase to infinity and compute the

limiting orientation of the tangent tD:

tD∞ = lim
l→∞

tD(l) = − t(L) + t(0)

‖t(L) + t(0)‖ . (10)

Thus, we see that in the limit l →∞, D∞ lies in the plane defined by the

initial and end tangents of the segment A.
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In the case when t(0) = ±t(L), we can also attach two straight line

segments. If t(0) = −t(L), then all straight lines connecting these segments

belong to the same plane defined by t(0) and r(L)− r(0). The case t(0) =

t(L) requires a special consideration.

What we have now is a closed circuit A + B + Dl + C. It is smooth

except for two points at the beginning and at the end of Dl. We modify B

and Dl in the small vicinity of where they join themselves by introducing

a planar curvilinear segment E with the tangent varying from t(L) to tD.

All three segments involved belong to the same plane spanned by t(L) and

tD. We can assume that the length of E does not depend on l. The length

of the shortened segment B∗ is decreased to be l∗.
A similar procedure may be carried out to smooth the join of the seg-

ments Dl and C. The new planar curvilinear segment F belongs to the plane

spanned by t(0) and tD. The length of F is the same for every l; without

loss of generality, we assume that the length of the shortened segment C∗
equals l∗, as well.

We have come to the smooth closed curve A+B∗+E+D∗+F +C∗. We

are interested in the limiting case when l∗ →∞. The tangent indicatrix of

the initial curve A is then closed by a geodesic corresponding to the limiting

curve E∞+D∞+F∞. This follows from the construction of the curves and

from Eq. (10). The limiting curve B∞+E∞+D∞+F∞ may be considered

as an implementation of the first part G of the closure suggested in Sec. 3.

Thus, the writhe of the open segment A may be computed as the writhe of

the limiting closed curve A+B∞+E∞+D∞+F∞+C∞ and its fractional

part satisfies Eq. (3) and Eq. (5).

However, for the smooth closed curve A+B∞+E∞+D∞ +F∞+C∞,

the writhe may be obtained independently by the double integral formula.

Since the circuit consists of 6 parts, we have to consider all pairs involved

in the double integration. For brevity, we will denote an integral over a pair

of curves P and Q by (P,Q). Clearly, (P,Q) equals (Q,P ).

Before proceeding, we obtain some simple estimate for the value of the

double integral

I2 =

L2∫

0

L1∫

0

IWr (σ1, σ2) dσ1 dσ2,

where

IWr (σ1, σ2) =
(r1(σ1)− r2(σ2)) · (t1(σ1) × t2(σ2))

‖r1(σ1)− r2(σ2)‖3 .
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The integral I2 is taken over two smooth curves r1(σ1), σ1 ∈ [0,L1] and

r2(σ2), σ2 ∈ [0,L2]. Let ∆ ≡ min
σ1,σ2

‖r1(σ1)− r2(σ2)‖ > 0. Then

|I2| ≤
L2∫

0

L1∫

0

|IWr(σ1, σ2)| dσ1 dσ2 ≤
L2∫

0

L1∫

0

dσ1 dσ2

‖r1(σ1)− r2(σ2)‖2 ≤
L1L2

∆2
.

(11)

Eq. (11) implies that lim
∆→∞

I2 = 0 for any two curves of finite length. If

one of the curves has its length of order ∆ or less, i.e., Li = O(∆), i = 1, 2,

and the other has finite length L3−i, then the integral I2 vanishes as ∆→∞.

We now return to the integral over pairs of curves. The integrals

(B∗, B∗), (B∗, E), (B∗, D∗), (E,E), (E,D∗), (D∗, D∗), (D∗, F ), (D∗, C∗),
(F, F ), (F,C∗), (C∗, C∗) equal zero because the integrand vanishes for copla-

nar curves. If t(0) = −t(L), then the whole closure is planar and the inte-

grals (B∗, F ), (E,F ), (E,C∗) also vanish for every l∗. If t(0) 6= ±t(L), then

the length of D∗ is of order l∗ for large l∗. Therefore, by applying Eq. (11),

we conclude that the integrals (B∗, F ), (E,F ), (E,C∗) as well as (A,E),

(A,D∗), (A,F ) all approach zero as l∗ → ∞. We denote the remaining

possibly non-zero integrals as follows:

Wy =
1

4π

∫

A

∫

A

IWr (s, s̃) ds ds̃,

Sw1 =
1

2π

∫

A

∫

B∞

IWr (s, s1) ds1 ds, Sw2 =
1

2π

∫

A

∫

C∞

IWr (s, s2) ds2 ds,

Sq =
1

2π

∫

C∞

∫

B∞

IWr (s1, s2) ds1 ds2.

We call them the wry, the swirl and the squint, respectively.

Thus, the writhe of A may be represented as a sum

Wr =Wy + Sw1 + Sw2 + Sq . (12)

The first summandWy is simply the double integral over the open segment

under consideration. Therefore, Eq. (12) provides a connection between this

integral and the writhe.

Let us now examine the case of parallel tangents t(0) = t(L). The two

attached segments B and C then have opposite directions and, instead of

the straight line D, we connect them by a circular arc D̆ joining B and C at
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the same distance l from the ends of A. The arc D̆ lies in the plane spanned

by the vectors r(L) − r(0) and t(0) and its length is of order l for large l.

Again, the smoothing curves E and F can be constructed in a similar way

as it is done in the regular case. Thus, we obtain the smooth planar closure

of the curve A.

After letting the lengths of B∗ and C∗ go to infinity and analysing the

double integral components in the expression for the writhe, we come to

the same Eq. (12) with the right-hand terms defined as above.

It may occur that the ray B or C intersects the curve A. Then, generally,

the writhe of the whole closed curve A+B +E+D+F +C is not defined.

The situation is the same as for a non-smoothly closed loop (Sec. 3.2). In the

generic case, when the tangents in the point of the intersection are neither

coincident nor of opposite direction, the fractional part of the writhe still

can be found by examination of the two limiting positions of the curves in

the vicinity of the intersection point. Since the writhe jumps by 2 as the

curve goes through itself, the half-sum of the writhes for those curves may

be taken as the value of the writhe. The same approach may be applied to

another singular case when the rays B and C cross each other. Moreover,

the constraint of non-self-intersection of the initial open fragment A may

also be weakened in the similar fashion.

Next we clarify the structure of the integrals Sw and Sq .

4.2. Swirl

Consider

Sw1 =
1

2π

L∫

0

∞∫

0

(r(s) − r(L) − s1t(L)) · (t(s) × t(L))

‖r(s) − r(L) − s1t(L)‖3 ds1 ds =

=
1

2π

L∫

0

(R(s) · (t(s) × t1)ÎSw (s) ds. (13)

Here we denote

ÎSw (s) =

∞∫

0

ds1

[(R− (R · t1)t1)2 + (R · t1 − s1)2]
3
2

and R ≡ R(s) ≡ r(s)− r(L), t1 ≡ t(L). We can represent ÎSw (s) as

ÎSw (s) =

∞∫

0

ds1

[a2 + (b− s1)2]
3
2

, b ≡ b(s) ≡ R·t1, a2 ≡ a2(s) ≡ (R−bt1)2,
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and carry out the integration to get

ÎSw (s) =
s1 − b

a2
√
a2 + (b− s1)2

∣∣∣∣∣

∞

0

=
1√

a2 + b2(
√
a2 + b2 − b)

. (14)

Substituting a(s), b(s) into Eq. (14) and the result into Eq. (13) yields

Sw1 =
1

2π

∫ L

0

R(s) · (t(s) × t1)

‖R(s)‖(‖R(s)‖ −R(s) · t1)
ds. (15)

Let us introduce the spherical coordinate system with the origin at the

point r(L) and let the z-axis be directed along the ray B (Fig. 4). Then

R(s) = (ρ cosψ cosφ, ρ cosψ sinφ, ρ sinψ), t1 = (0, 0, 1), and ρ ≡ ρ(s),

φ ≡ φ(s), ψ ≡ ψ(s) are the functions describing the curve A.

t(L)
r(s)

z

y

x

φ

ψ

ρ

Fig. 4. The spherical coordinates ρ, φ,ψ. The z-axis is directed along the tangent t(L)
at the end point of the curve r(s).

In these coordinates, Eq. (15) takes the form

Sw1 =
1

2π

L∫

0

φ′(1 + sinψ) ds.
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Note that the swirl is zero if φ(s) = const, i.e., if the whole curve A

is planar. The swirl also vanishes when ψ(s) = − π
2 which means that the

curve A is a straight line continuation of the ray B. It is natural that the

swirl is scale-invariant: it does not depend explicitly on how far the points

of the curve are from the ray. The second integral Sw2 over the ray C∞ has

the same structure.

4.3. Squint

Now consider the integral Sq over the two rays B∞ and C∞. It is convenient

to introduce special Cartesian coordinates with origin at the point r(0) and

the x-axis directed along r(L)−r(0) (Fig. 5). Let the y-axis lie in the plane

of the ray B∞ and the z-axis be chosen such that the whole coordinate

system is right-handed. Denote by φ ∈ [0, π] the angle from the x-axis

to the direction of t(L). The orientation of the ray C∞ is defined by two

angles: ψ ∈ [0, π] between the x-axis and t(0) and θ ∈ [0, 2π] between the

xy-plane and the plane spanned by the x-axis and t(0). In this coordinate

system we may represent both rays as follows:

rB(s1) = (g + s1 cosφ, s1 sinφ, 0), g ≡ ‖r(L)− r(0)‖,
tB = (cosφ, sinφ, 0), s1 ∈ [0,∞],

rC(s2) = (s2 cosψ, s2 sinψ cos θ, s2 sinψ sin θ),

tC = (cosψ, sinψ cos θ, sinψ sin θ), s2 ∈ [−∞, 0].

We wish to compute the integral

Sq =
1

2π

0∫

−∞

∞∫

0

(rB(s1) − rC(s2)) · (tB(s1)× tC(s2))

‖rB(s1)− rC(s2)‖3 ds1 ds2 =

=
1

2π
(tB × tC)

0∫

−∞

∞∫

0

rB(s1)− rC(s2)

‖rB(s1) − rC(s2)‖3 ds1 ds2 =

=
g

2π
sinψ sinφ sin θ

0∫

−∞

∞∫

0

1

(s2
1 + 2ps1 + q2)

3
2

ds1 ds2,

where p ≡ p(s2) ≡ g cosφ− s2(cosψ cos φ+ sinψ sinφ cos θ), q2 ≡ q2(s2) ≡
s2

2 − 2gs2 cosψ + g2.
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t(0)

t(L)

r(L)-r(0)

z

y

x

φ

ψ θ

Fig. 5. The angles φ, θ, ψ determine the orientation of the tangents t(0) and t(L) at
the ends of the curve segment.

It is easy to perform the first integration:

Sq =
g

2π
sinψ sinφ sin θ

0∫

−∞

(
s1 + p

(q2 − p2)
√
s2

1 + 2ps1 + q2

∣∣∣∣∣

∞

0

)
ds2 =

=
g

2π
sinψ sinφ sin θ

0∫

−∞

ds2

q(p + q)
=

=
g

2π
sinψ sinφ sin θ

0∫

−∞

1√
s2

2 − 2gs2 cosψ + g2
×

× ds2

g cos φ− s2(cosψ cos φ+ sinψ sinφ cos θ) +
√
s2

2 − 2gs2 cosψ + g2
.

The last integral can also be done and the result may be presented as

an algebraic formula which does not depend on g. However, the derivation

of the final expression involves complicated algebra, and we instead prefer
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to obtain Sq in a different way.

We can consider both rays and the straight line connecting them as

an (infinite) polygonal line with three links. The writhe of this line, as

defined in the previous section, is exactly equal to Sq . Then the squint is

essentially proportional to the signed area of the spherical triangle formed

by the geodesics that join the vertices corresponding to the vectors t(0),

r(L)− r(0), and t(L). The triangle has its two sides equal to ψ and φ and

the angle between them θ. By the cosine rule for sides of spherical triangles,

we find the third side χ from

cos χ = cosψ cos φ+ sinψ sinφ cos θ,

and the signed area of the triangle can be calculated by l’Huilier’s theorem29

as

S = 4ν arctan

√
tan

Σ

2
tan

Σ− φ
2

tan
Σ− ψ

2
tan

Σ− χ
2

,

where ν = sign((r(0) − r(L)) · (t(0) × t(L))) = sign(sinψ sinφ sin θ) and

Σ = 1
2
(φ+ ψ + χ). Then the squint is Sq = S

2π
.

5. Example: helical shapes of arbitrary length

Helical structures are common in DNA modelling. They are also often

met in various physical and, in particular, biomechanical models. Besides,

the computation of the writhe (and twist) of a helix (a helical ribbon) is

a favourite example of an application of Fuller’s first theorem (e.g., see

Refs. 24, 25, 30) though the author is not aware of works where the writhe

is computed for a piece of helix with a non-integer number of turns.

In this section we shall be dealing with a circular right-handed helix:

r(s) = (cos as, sin as,
√

1− a2s), s ∈ [0, L], s arc length, L the length of the

segment and a ∈ [0, 1]. The limiting values of the parameter a correspond

to a straight line (a = 0) and a circle of the unit radius (a = 1). The curve

is periodic with period T = 2π
a . The curvature and the torsion are κ = a2

and τ = a
√

1− a2, respectively. The tangent indicatrix of the helix is a

circular arc on S2 of radius a.
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5.1. Writhe of a single helix

Applying Eq. (5) to the single helix yields

Wr(L) =
1

π

[
arctan

(√
1− a2 sin

aL

2
, cos

aL

2

)
− L

2
a
√

1− a2

]
+

+2 round

(
aL

4π

)
, (16)

where we denote by z = arctan(x, y) a function such that sin z = x√
x2+y2

,

cos z = y√
x2+y2

, −π < z ≤ π and round(x) is the function that gives an

integer nearest to x; for half-integers round(n+ 1
2
) = n for negative n ∈ �

and round(n+ 1
2) = n+1 for non-negative n ∈ � . The last term in the right-

hand side of Eq. (16) is added to make the writhe a continuous function of

arc length L. Fig. 6 shows the writhe vs. number of periods L/T for three

different values of the parameter a.

a=0.9

a=0.6

a=0.3

L/T

Wr

32.82.62.42.221.81.61.41.210.80.60.40.2

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

Fig. 6. The writheWr of the circular helix as a function of the arc length L normalized
on the period T = 2π/a, for three different values of the parameter a.
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We may use Eq. (16) to compute the writhe for the particular lengths

L = πm
a (m is the number of half-periods):

Wr

(
mT

2

)
=
m

2
(1−

√
1− a2). (17)

For an integer number of periods, i.e., for even m, Eq. (17) coincides with

the expressions presented in Refs. 25, 30.

In the limiting case a → 0, Eq. (16) produces Wr → 0 as it should be

for a straight line. Another limiting value of the parameter is a → 1, the

helix approaches a circle r(s) = (cos s, sin s, 0), covered L/2π times. Then

Eq. (16) givesWr → round
(
L
2π

)
and, in particular,Wr → round

(
m
2

)
for m

half-periods. The latter should not be a surprise in case of even m, because

the closure chosen does not shrink to a point as the ends of the helical curve

approach each other in the limit after an integer number of periods.

5.2. Writhe of a double helix

The procedure for calculation of the writhe of a double helix is very similar

to that for a single helical shape. The helix is assumed to be closed at both

ends in the same manner as is described above for an arbitrary open curve.

The difference is that each of the two closing curves joins two different

helices. Each of the two helical curves will be called a strand. The length of

each strand is the same and is denoted by L. Both strands have the same

axis, otherwise they may be located arbitrarily with respect to each other

(as happens in B-form DNA, for example).

We apply Eq. (9) to two disjoint strands of the double helix and obtain

Wr = −L
π
a
√

1− a2 mod 1.

If we think about the double helix as a continuously growing structure, then

it is evident that the last equation gives not only the fractional part ofWr ,

but its exact value as function of one strand length. Note also the negative

sign of the writhe for the right-handed (a > 0) double helix.

Let h = L
√

1− a2 be the length of the axis of the double helix. Then

Wr = −ha
π
.

We see that the growing double helix delivers an example of a family of

curves A(h), parametrized with a continuous parameter h, such that the

writhe is a linear function of length. Clearly, the writhe per unit length of

the (double) helix axis is constant.
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Note also that the writhe, rather unexpectedly, does not depend on the

offset angle ϕ which controls the mutual location of the strands (in terms

of DNA we may reformulate the last observation as an invariance property

of writhe with respect to the widths of the minor or major grooves). The

symmetric case of 2ϕ = π was considered in Ref. 30, where a formula

was obtained for the limiting value of the writhe per unit length when the

integer number of turns tends to infinity.

We remark that the writhe for n-strand helical shapes (n ≥ 3) may be

easily computed on the basis of the results derived for the single and double

helices.

6. Conclusion

We have considered the generalization of the notion of writhing number

for an arbitrary space curve and we have obtained effective formulas for its

computation. The writhe of an open curve is defined here as a difference

between the linking number and the twist of a ribbon based on a curve

closure such that the tangent indicatrix is closed with a geodesic. The ap-

proach allows us to represent the writhe as a function of the arc coordinate

measured along a curve. In some sense, we can then think about the writhe

as being locally defined (cf. Ref. 31). The technique was extended to the

sequences of the disjoint fragments of curves in space.

A relation was established between the writhe and the Gauß integral

taken over the open fragment. It is shown, that the difference between these

two quantities may be represented as three single integrals. We clarified the

structure and meaning of these integrals.

Application of the formulas presented was illustrated on single and dou-

ble helices of arbitrary length. In particular, the writhe as a continuous func-

tion of arc length is defined for a helix. A double helix of finite length, with

“geodesic” closures at the ends, provides an example of a one-parameter

family of curves that realize linear dependence of writhe on length, and

the writhe is invariant with respect to the value of the offset between the

strands.
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17. C. Bouchiat and M. Mézard, Phys. Rev. Lett. 80, 1556 (1998).
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