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This electronic supplement contains further details of statistical methods and 

procedures for assessing goodness of fit. 

 

Assessing the fit of confirmatory factor analysis (CFA) models 

For the CFA models, the Chi-square test, the comparative fit index (CFI; 4), the 

Tucker-Lewis index (TLI; 5), and the root mean square error of approximation 

(RMSEA; 6) were used.  Hoyle and Panter (7) recommend that a non-significant Chi-

square test, along with TLI and CFI values of ≥ 0.95, and a RMSEA value of ≤ 0.05, 

indicates acceptable model fit.  Bollen (1989), however, notes that the Chi-square 

statistic is highly sensitive to large sample sizes and may overestimate the lack of fit 

of a structural model.  Thus, the Chi-square test should be viewed in conjunction with 

the other fit indices.  A Chi-square difference test can be computed between nested 

factor models to examine whether a less stringent set of model constraints improves 

the model fit.  It is important to note that in  Mplus version 6, the Chi-square value 

obtained for WLSMV estimation (conducted in this study) cannot be used for Chi-

square difference testing in the usual manner and has to be adjusted using the 

DIFFTEST command. 

Estimating and assessing the fit of latent class (LCA) and factor mixture model 

(FMMA)  
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from UCL Discovery: http://discovery.ucl.ac.uk/1395134 



One problem that may arise when using algorithms to produce maximum-likelihood 

estimation is the presence of local maxima. This means that during the estimation 

process, there are several solutions around which a model may converge (i.e. local 

maxima, in which a model fits the data in an apparently satisfactory way), but there is 

only one best solution (i.e. the global maximum). The algorithm stops when a 

maximum is reached, but it cannot distinguish the global maximum from a local 

maximum (1). If a model converges around a particular local maximum, instead of 

the global maximum, the best fitting solution can be missed (2). To ensure successful 

convergence on the global maximum solution, LCA and FMMA models were 

estimated with different sets of random starting values (i.e. 500 random sets of 

starting values were used in the initial stage, and 20 optimizations were used in the 

final stage of convergence).  All models were inspected to identify whether the log-

likelihood value for each model was replicated several times, as this increases 

confidence that the solution obtained is not a local maximum (3). We report 

circumstances where the log-likelihood was not replicated (in Table 5).   

 

There is no single definitive method for deciding upon the optimal number of latent 

classes (9), and several statistical indices are conventionally used to assess the fit of 

the models.  For the LCA and FMMA models, the log-likelihood, the Akaike 

Information Criterion (AIC; 10), the Bayesian Information Criterion (BIC; 11), and the 

sample-size adjusted BIC (SSABIC; 12) were used as goodness-of-fit indicators.  A 

high log-likelihood value in conjunction with lower values on the AIC, BIC, and the 

SSABIC reflect a good-fitting model.  The BIC has been shown to be more reliable 

than the other information criteria (3).  For LCA models, the Lo Mendel Rubin 

Likelihood Ratio Test (LMR-LRT;13) and the entropy (14) can also be useful in 

determining the best fitting model.  The LMR-LRT compares models with different 

number of classes: a non-significant value suggests that the model with one fewer 

class is a better explanation of the data.  The entropy statistic, which ranges from 0 

to 1, is a standardized summary measure of the classification accuracy of placing 

participants into classes based on their model-based posterior probabilities.  Higher 

entropy values reflect better classification of individuals (14). 
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