
Accurately Assessing the Risk of Schizophrenia
Conferred by Rare Copy-Number Variation Affecting
Genes with Brain Function
Soumya Raychaudhuri1,2,3, Joshua M. Korn1,2,4, Steven A. McCarroll1,5, The International Schizophrenia

Consortium", David Altshuler1,2,5,6, Pamela Sklar7,8,9, Shaun Purcell8,9*, Mark J. Daly1,2*

1 Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, United States of America, 2 Center for Human Genetic Research, Massachusetts

General Hospital, Boston, Massachusetts, United States of America, 3 Division of Rheumatology, Immunology, and Allergy, Brigham and Women’s Hospital, Boston,

Massachusetts, United States of America, 4 Graduate Program in Biophysics, Harvard University, Cambridge, Massachusetts, United States of America, 5 Department of

Genetics, Harvard Medical School, Boston, Massachusetts, United States of America, 6 Department of Molecular Biology, Massachusetts General Hospital, Boston,

Massachusetts, United States of America, 7 Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, United States of America, 8 Psychiatric and

Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America, 9 Stanley Center for Psychiatric Research, Broad

Institute, Cambridge, Massachusetts, United States of America

Abstract

Investigators have linked rare copy number variation (CNVs) to neuropsychiatric diseases, such as schizophrenia. One
hypothesis is that CNV events cause disease by affecting genes with specific brain functions. Under these circumstances, we
expect that CNV events in cases should impact brain-function genes more frequently than those events in controls. Previous
publications have applied ‘‘pathway’’ analyses to genes within neuropsychiatric case CNVs to show enrichment for brain-
functions. While such analyses have been suggestive, they often have not rigorously compared the rates of CNVs impacting
genes with brain function in cases to controls, and therefore do not address important confounders such as the large size of
brain genes and overall differences in rates and sizes of CNVs. To demonstrate the potential impact of confounders, we
genotyped rare CNV events in 2,415 unaffected controls with Affymetrix 6.0; we then applied standard pathway analyses
using four sets of brain-function genes and observed an apparently highly significant enrichment for each set. The
enrichment is simply driven by the large size of brain-function genes. Instead, we propose a case-control statistical test, cnv-
enrichment-test, to compare the rate of CNVs impacting specific gene sets in cases versus controls. With simulations, we
demonstrate that cnv-enrichment-test is robust to case-control differences in CNV size, CNV rate, and systematic differences
in gene size. Finally, we apply cnv-enrichment-test to rare CNV events published by the International Schizophrenia
Consortium (ISC). This approach reveals nominal evidence of case-association in neuronal-activity and the learning gene sets,
but not the other two examined gene sets. The neuronal-activity genes have been associated in a separate set of
schizophrenia cases and controls; however, testing in independent samples is necessary to definitively confirm this
association. Our method is implemented in the PLINK software package.
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Introduction

Multiple recent studies have demonstrated a convincing and

statistically significant excess of rare CNVs in individuals affected

by schizophrenia compared to unaffected individuals [1–4].

Similar observations have now been made separately in autism

[5–7] and bipolar disorder [8]. However, it is typically not readily

evident which individual CNV events are pathogenic since (1)

many rare events are seen in the general population and the excess

in cases is relatively modest and (2) individual events are too rare

to demonstrate definitive association in realistically sized patient

collections. Hence, it is challenging to translate these rare CNV

events into a clear understanding of disease pathology. To identify

candidate genes for follow-up, investigators have employed

statistical tests of gene set enrichment, originally developed as an

effective approach to interpret gene expression data [9].

Practically, these analyses identify functional gene sets or

‘pathways’ that are over-represented among those genes affected

by case CNVs compared to unaffected genes [1,8,10,11], often

relying on online resources such as Panther [12], Ingenuity

Pathway Analysis (Ingenuity Systems, www.ingenuity.com), and

Gene Ontology [13].

For example, gene set enrichment analyses by Walsh et al.

suggested that rare CNVs in schizophrenia preferentially disrupt
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those genes with neuro-developmental functions [1]; Zhang et al.

similarly reported that rare CNVs in bipolar disorder preferen-

tially overlap genes involved in behavior and learning [8]. More

recently Glessner et al. reported that genes affected by rare and

common CNVs in autism are also involved in brain function [11].

While these initial results are highly promising, the gene set

enrichment statistical framework as applied to copy number

variation is critically limited and potentially confounded.

The key analytical question in this setting is whether an event

that impacts a set of genes or a pathway, increases disease risk

compared to events that do not impact that pathway. Under the

hypothesis that events affecting a specific brain-function

pathway are pathogenic, the rate of those events affecting the

brain-function pathway should indeed be greater in cases than

in controls – ideally fully explaining the observed genome-wide

differences in case and control event rates. An alternative

possibility is that the increased rate and size of CNVs in cases

represents a mutational syndrome or genomic instability, and

that they are not in themselves pathogenic. Under that

possibility, case events should not preferentially impact any

particular gene set; however, differences is size and rate might

be observed.

The commonly used gene set enrichment analytical approach

used to address this question falls short on two accounts: (1) they

do not rigorously compare case event rates to control event rates

and (2) since they examine affected genes rather than events, they

do not accurately account for the fact that multiple genes might be

contributed from a single event or that single genes may be

affected by multiple events. Here we propose a straight forward

statistical test to explicitly compare the rate of CNVs impacting a

specific gene set in cases to the rate in controls that carefully

accounts for background differences in CNV rate and size.

A possible consequence of not rigorously comparing event rates

in cases to controls is that sets consisting of genes that are more

frequently affected by CNVs might spuriously appear to be highly

enriched in cases, but also will be highly enriched in controls.

Examples of such genes include large genes spanning a massive

portion of the genome or those whose functions are highly

redundant or non-essential. This is a particularly important issue

for neuropsychiatric disease considering the reportedly large size of

genes with brain function. Multiple studies of CNVs in the general

population have reported enrichment for neuro-physiological genes

[14,15] – suggesting that brain-function genes may be susceptible to

CNV events in general, possibly due to their large size or other

factors. In fact, published events in neuropsychiatric disease studies

often implicate large genes (see Table S1). Others have already

noted that gene size itself can bias pathway enrichment analyses in

other contexts, such as annotating non-coding elements for function

[16,17]. In particular, Taher et al noted that randomly selected

positions in the genome are enriched for proximity to genes involved

in ‘‘development’’, ‘‘cell-adhesion’’, and ‘‘nervous system develop-

ment’’ [17]. Some of the published disease studies attempted to

address this issue indirectly by applying similar analyses to control

events and note the lack of statistical evidence of enrichment for

brain function gene sets [1,8]; however, control events are typically

fewer and smaller, implicating many fewer genes, and therefore

simply comparing the statistical significance of gene set enrichment

results in cases and controls is not adequate.

One possible consequence of examining genes rather than the

events they occur in is that individual large events contribute many

genes and may skew the analysis much more than smaller events,

and cause spurious findings. This is of particular concern since

genes with common function can often cluster together on the

genome and a single event in one individual affecting a cluster of

related genes can naively appear to implicate an entire pathway

[18,19]. One interesting example is the reported enrichment of

psychological disorder genes in the Zhang et al data set (see Table S1);

11 of the 16 deleted psychological disorder genes are in the 22q11.21

region observed in two individuals in the data set [8]. These genes

are possibly annotated as psychological disorder genes since rare

deletions in 22q11.21 have long been observed among schizo-

phrenia cases [2]. Removal of the two individuals with 22q11.21

events eliminates any enrichment for the psychological disorder gene

set – suggesting that there is little evidence that this particular set is

necessarily relevant to disease outside of the 22q11.21 region. Of

course at least one gene in this region is pathogenic, but it is

unlikely that .10 in this region are and that in aggregate define a

key pathogenic set.

A second possible consequence of examining genes and not the

events they occur in is that genes affected in both cases and

controls, but at different rates, are not properly accounted for. For

instance, a critical gene affected by many pathogenic events

contributes equally to a gene set enrichment analyses as a gene

sporadically affected by a single event. One interesting example is

the NRXN1 gene, a large gene that plays an important role in

synaptic development [20]. Since CNV events affecting NRXN1

have been observed in both schizophrenic cases and controls, they

would contribute equally to a pathway analysis of case events as

they would to one of control events. However, the rate of

functional events observed in cases is significantly more than in

controls; pathway-based approaches could be bolstered if methods

explicitly take into account these differences between cases and

controls event rates for genes of interest.

Here, we describe a case-control statistical test, cnv-enrichment-test,

to explicitly compare the rate of CNVs impacting specific genes

sets in cases to controls. We show how cnv-enrichment-test is robust to

even extreme biases in gene size and case-control differences in

CNV rate and size. We also demonstrate how standard gene set

enrichment approaches is often confounded under realistic

scenarios, by gene size and other gene structural features; we

demonstrate these confounders in a set of 2,415 controls

genotyped for rare single-event deletions. We finally apply the

cnv-enrichment-test to examine genes with brain function within a

large dataset of CNVs identified in schizophrenia cases and

controls published by the International Schizophrenia Consortium

(ISC) [2] and demonstrate nominal evidence of association for

previously described gene sets.

Author Summary

Specific rare deletion and duplication events in the genome
have now been shown to be associated with neuropsychi-
atric diseases such as 16p11.2 to autism and 22q11.21 to
schizophrenia. However, controversy remains as to whether
rare events impacting certain pathways as a group increase
the risk of disease, and if so, what those pathways are. Other
studies have used standard gene-set enrichment approach-
es to demonstrate that events discovered in cases contain
more genes in neuro-developmental pathways than would
be expected by chance. However, these analyses do not
explicitly compare the relative enrichment in cases to any
enrichment that may also be present in controls. Therefore,
they can be confounded by the large size of brain genes or
by larger size or frequency of CNVs in cases. Here we
propose a case-control statistical test to assess whether a
key pathway is differentially impacted by CNVs in cases
compared to controls. Our approach is robust to skewed
gene sizes and case-control differences in CNV rate and size.

Pathway Analyses of Genes Affected by Rare CNVs
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Results and Discussion

Standard enrichment analysis to test gene sets affected
by rare CNVs

Set enrichment is the standard approach to test whether genes

impacted by CNVs in cases affect specific pathways. Specifically,

the overlap between the set of genes affected by CNVs is

compared to the set of genes with a particular function.

Genes affected by a CNV might be defined as disrupted genes or

overlapped genes. Disrupted genes are those genes that have a CNV

boundary that falls within the boundaries of its transcript [1].

Overlapped genes are a superset of those genes whose transcripts are

either disrupted by a CNV or are fully contained by a CNV [8].

Since genes rarely overlap each other, a single CNV event might

contribute up to two disrupted genes but many overlapped genes. Both

have been previously examined in the literature. Unless otherwise

specified, this study emphasizes overlapped genes.

After identifying the genes affected (overlapped or disrupted) by a

CNV, we then identify genes with a specific process or within a specific

pathway. We apply a two-tailed Fisher’s test to assess whether the

number of affected pathway genes is statistically significantly different

than might be affected by chance. The critical assumption in gene set-

based analyses is that there is a single independent observation per

gene, not connected to the gene’s size or structural features.

A case-control framework to test gene sets affected by
rare CNVs

As an alternative, we propose a simple case-control strategy to

test gene sets or pathways for association to disease: the ‘‘cnv-

enrichment-test’’. This strategy is consistent with the case-control

association framework used in CNV and SNP disease association

studies [21,22]. A direct case-control comparison avoids any

ascertainment bias that might be the consequence of structural

features of genes within a set, since the same biases will apply

equally to both cases and controls.

We are careful to control for case-control differences in CNV

rate and size, since those differences can artificially induce a

pathway association. For example, if the rare CNV rate in cases is

more frequent or larger than in controls, then on average all genes

will be impacted more often in cases, and any arbitrary gene set

might appear to be affected more commonly in cases than in

controls. Also, if rare CNVs are smaller but more frequent in cases

than in controls, then sets of larger genes might appear to be

impacted more often in cases than in controls.

To assess whether CNV events specifically overlapping genes in

the pathway of interest are enriched in cases compared to controls,

we propose the following logistic model:

log
pi,case

1{pi,case

� �
~hzb0

:cizb1
:sizc:gize

where pi is the probability that individual i is affected, ci is an

integer that indicates the number of rare CNVs that an individual i

has, si is the average size of those events, gi is the count of gene

within a pre-specified gene set affected by a cnv, and e is an error

term. The terms h, c, b0, and b1 are logistic regression parameters

that are optimally determined to maximize the likelihood of the

data. The h term (the intercept) represents the background log

likelihood for each individual, c is the increase in log-likelihood per

affected gene within the gene set, b0 is the increase in log-

likelihood per rare CNV, and b1 is the increase in log likelihood

per kilobasepair of average rare CNV size. The cnv-enrichment-test

simply tests if c is significantly different from 0.

In principle, previous studies in schizophrenia that have shown

excess CNVs in affected individuals corresponding to a positive b0.

It has also been demonstrated that individuals with neuropsychi-

atric disease often have larger events, consistent with a positive b1

term. On the other hand, if there is a ‘‘causal’’ gene set g, then

adding it to the model should attenuate the magnitude of both b0

and b1 and result in a convincingly positive c. An independent

odds ratio estimate, ec, can be calculated for the additional

increased risk of disease if an event affects a gene in set g.

This approach is not confounded by functionally related genes

that cluster on the genome. Since risk is estimated on a per

individual basis, a single spurious observation will not dramatically

impact the statistical significance of any of the parameter

estimates. So, a rare single event, which happens to overlap

multiple related genes within the gene set that is being tested, will

not contribute substantially to the significance of c - even though

potentially many genes from that pathway are implicated. Of

course, if many such events are observed, with a proclivity towards

either cases or controls, then estimates for c might appropriately be

more significant.

The approach can be extended to do a meta-analysis if patient

data is aggregated, and indicator variables are included to denote

the dataset that the patient sample was derived from. Indicator

variables would potentially account for specific differences across

data sets, such as the proportion of individuals that are cases and

also underlying biases in case severity.

This approach can be facilely applied to gene-sets ranging

widely in size. It can equally be applied to a single gene, for

example to identify whether a gene such as NRXN1 has more case-

events than control-events after controlling for genome-wide

differences in CNV size and rate. It can also be easily applied to

the set of all genes in the human genome to test if genes in general

are more often affected in cases than controls. We caution that in

data sets with too few individuals, association to smaller gene sets

might be difficult to detect given power limitations; furthermore

the asymptotic p-value might be inaccurate. In cases where too few

events have been genotyped the asymptotic p-value can be

replaced by a p-value based on robust permutation testing instead.

We have implemented this test in the publicly available genetic

data analysis software, PLINK [23].

CNV-enrichment-test is robust to skewed gene size, even
if there are case-control differences between the size and
rate of CNVs

To demonstrate that the cnv-enrichment-test does not detect

spurious associations due to gene features that predispose key gene

sets towards CNVs, we carefully considered gene size. We created

an extreme hypothetical scenario (S0, see Table S2). Here, every

fifth gene was designated as a hypothetical ‘‘brain gene’’; brain

genes were set to be considerably larger than other genes (50 kb

versus 10 kb). For a single hypothetical chromosome, 250 Mb in

length, we placed 2000 evenly spaced, non-overlapping genes. In

all scenarios we simulated CNV data for 2000 cases and 2000

controls, specifying the mean CNV size at 100 kb (range 10 kb to

150 kb, standard deviation 30 kb) and the CNV rate per

individual at 0.25. Reassuringly, in this simulation cnv-enrichment-

test for ‘‘brain-genes’’ demonstrated p,0.05 association in 4.1% of

10,000 simulated datasets, suggesting that it estimates the type I

error rate accurately (see Figure 1).

However, in practice, differences between the size and rate of

CNVs might be present due to true genetic differences between

cases and controls, as demonstrated in neuropsychiatric disease, or

technical differences in array intensity or genotyping platform.

Pathway Analyses of Genes Affected by Rare CNVs
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Our method must be robust to these differences and must not

spuriously identify pathways with large genes as a consequence of

these differences. To test for this we created four extreme scenarios

(S1–S4, see Table S2). Under S1, we dramatically reduced the

control rate of CNVs to 0.05/individual while retaining the same

rate in cases (0.25/individual). Under S2, we fixed the rate at

0.25/individual in both cases and controls, but reduced the mean

CNV size in cases (60 kb) compared to controls (100 kb). Under

S3, we assigned cases the greater rate and mean size (0.25/

individual and 100 kb) compared to controls (0.05/individual and

60 kb); this scenario is analogous to schizophrenia where events

are larger and more frequent in cases. Under S4, we assigned cases

had a greater rate, but smaller mean size (0.25/individual and

60 kb) compared to controls (0.05/individual and 100 kb); this

scenario might occur if higher quality genotyping is applied in

cases only resulting in better ability to detect smaller CNVs than in

controls. We found that the proposed method that controlled for

both CNV rate and average CNV size was robust under each of

these extreme scenarios and for 10,000 simulated datasets

demonstrated appropriate type I error rate at p,0.05 under all

scenarios (see Figure 1).

To illustrate the importance of controlling for CNV rate and

size in this setting where a pathway consists of systematically larger

genes, we examined more limited models that do not control for

either or both the CNV rate and size. All of these models caused

inappropriately high type I error rates under at least one of the

above scenarios (see Figure 1) and would demonstrate spurious

association to ‘‘brain genes’’. A simple association test (M0) that

does not account for either for CNV rate or size at all

demonstrates higher rates of false associations under all simulated

scenarios where there are case-control differences in size and rate

of CNVs (S1–S4). Similarly, controlling for differences in rate only

(M1) demonstrates higher rates of false associations under almost

all simulated scenarios, except for S0 and S1. Controlling for

differences in size only (M2) demonstrates higher rates of false

associations under almost all simulated scenarios, except for S0
and S3. Finally, controlling for differences in total CNV burden

(M3) demonstrates higher rates of false associations under S3 and

S4 all simulated scenarios.

Four plausible sets of genes with brain function
To broadly define genes that control brain function, we used a

gene expression tissue atlas to define a broad set of 2,531

preferentially brain-expressed genes (see Materials and Methods).

For secondary analyses, we compiled three more sets of general

interest to neuropsychiatric disease: (1) 455 neuronal-activity genes

defined by Panther and highlighted previously in schizophrenia by

Walsh et al [1], (2) 126 learning genes defined by Ingenutiy and

highlighted by Zhang et al in bipolar disease [8], and (3) 209 synapse

genes defined by Gene Ontology. The gene sets overlap; 12 genes

are in all four sets.

Application of set enrichment to rare CNVs in controls
demonstrates that brain function genes are enriched

To demonstrate some of the limitations associated with standard

set enrichment tests to assess critical gene functions examined the

aforementioned gene sets in rare CNVs from controls recruited

from the general populations. We used Affymetrix 6.0 chips in

conjunction with stringent and uniform quality control to

genotype 2,415 unaffected individuals (see Table S3 and Table

S4) from four separate studies [8,24–26]; hereafter referred to as

‘meta-controls’. We identified 1,054 single event deletions ranging

from 20 kb to 1.9 Mb in size. To obtain the most confident calls

possible, we focused only on deletions (see Materials and
Methods) – though including duplications does not substantially

impact our results.

Strikingly, many of the genes that are disrupted (and therefore

also overlapped) by rare deletions within the meta-controls have

been proposed as candidate genes for neuro-developmental

diseases including: GRM5, GRM8, FHIT, OPCML, PTPRD,

NRXN3, NRG3, CNTNAP2, AUTS2, CTNNA3, DLG2, ERBB4,

PTPRM, and NRXN1. All of these genes are among the largest in

the human genome, with transcripts extending from 550 kb to

Figure 1. Performance of each of the five proposed models (M0–M4) across five hypothetical scenarios. For each of the scenarios (S0–
S4) outlined in Table S2 we simulated 10,000 datasets to calculate the type I error rate for the enrichment test, for a nominal rate of 0.05. Only the
model M4, controlling for CNV rate and average size, obtains an appropriate type I error rate under all scenarios where case-control differences in
size and rate are presence. Other models, fail to adequately control for these confounders. The M4 model is presented in the main text as the cnv-
enrichment-test.
doi:10.1371/journal.pgen.1001097.g001

Pathway Analyses of Genes Affected by Rare CNVs
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2.2 Mb of genome. Except for GRM5 and PTPRM, they are all

greater than 1 Mb in length. In particular DLG2, ERBB4, PTPRM,

and NRXN1 were disrupted by 12 individual events in our study;

Walsh et al. highlighted these four genes as potentially pathogenic

based on pathway analysis [1].

As previously observed by Redon et al [14] and Yim et al [15],

genes affected by rare CNVs are involved disproportionately in

brain function in this control population. The set of genes

disrupted by deletions within the meta-controls are enriched for

brain-expressed genes (OR = 2.0, p = 261028) and other brain

function gene sets as well (see Figure 2). The enrichment is present,

though somewhat less pronounced, if all genes overlapping

deletions are included (OR = 1.63, p = 461026, see Figure 2).

Gene size confounds gene set enrichment approaches
To explain this enrichment of rare CNVs affecting brain-function

genes in controls, we conjectured that the gene set enrichment

approach is confounded by gene size. Three observations support

this possibility. First, the transcripts of brain-expressed genes are

significantly larger than of other human genes (p = 9610282 by non-

parametric rank-sum test, see Figure 3A). The median length of all

human gene transcripts is 28.2 kb; in contrast the median length of

brain expressed gene transcripts is 47.2 kb (1.7 fold longer). In fact

of the genes longer than 1 Mb, 32 out of 48 (67%) are brain-

expressed. Genes in the three other gene sets are also significantly

longer (1.2–3.1 fold). Second, we note that the genes affected by

CNVs are also large. Genes disrupted by events in these meta-

controls, as well as previously published data sets by Zhang et al,

Walsh et al, and the ISC were large (p,2610210, see Figure 3B).

The bias towards large genes is still present, though mitigated, if the

analysis is expanded to include all overlapping genes (p,0.01, see

Figure 3B). Smaller genes overlapping a CNV are much more likely to

be fully contained by that CNV while larger genes are more likely to

extend beyond the boundaries of the CNV and hence be disrupted by

that CNV. Third, almost all gene ontology [13] (GO) categories

consisting of genes with an average size .200 kb are preferentially

affected by rare deletions within the meta-controls (see Table S5).

These codes implicate functions such as cell adhesion and

recognition, neuron recognition, and synaptic pathways.

Random genomic segments also demonstrate
enrichment for brain genes

To quantify the extent to which observed enrichment for these

gene sets was simply a consequence of their large size, we tested

whether randomly placed genomic segments affect genes with

brain function genes preferentially also (see Table 1). We created

1,000 sets of 1,054 randomly positioned non-overlapping segments

of equal size and probe density as those rare deletions observed in

Figure 2. Neurodevelopmental gene sets are enriched in CNVs for affected and unaffected individuals. Here we present results from
three gene sets – neuronal-activity genes (A), brain-expressed genes (B), learning genes (C), and synapse genes (D). For each set we calculate
enrichment among genes disrupted by rare CNVs with a Fisher’s exact test in meta-controls and also within the affected and unaffected individuals in
the Walsh et al. study and the ISC study. We explicitly list all p-values ,0.1. Each point represents an odds ratio and is plotted with a 95% confidence
interval. A comparable degree of enrichment was observed across all data sets for each of the gene sets.
doi:10.1371/journal.pgen.1001097.g002

Pathway Analyses of Genes Affected by Rare CNVs
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the meta-controls (see Materials and Methods). Brain-

expressed genes were enriched among overlapping genes

[OR = 1.67 (1.17–2.26)] and disrupted genes [OR = 2.08 (1.71–

2.49)]; the enrichment for brain expressed and other brain genes

sets was comparable to the enrichment in observed data.

However, there are two key differences in the results of real rare

CNVs and simulated CNVs. Observed rare deletions overlap 35%

fewer genes than random segments – suggesting unsurprisingly

that deletions overlapping genes are selected against. Possibly,

events affecting potentially critical genes that, if affected, disrupt

normal human development are selected against. But, on the other

hand, the pattern for the largest genes is strikingly different – the

observed rare deletions actually overlap 26% more of those genes

.1 Mb in length than random segments. This suggests a

predilection for large genes that cannot be accounted for simply

by their larger genomic footprint.

Gene size, structure, and genic density all independently
predict whether a gene is independently affected by a
CNV

To explain the discrepancy between the size and number of

genes affected in real CNVs and simulated segments, we

speculated that while rare events affecting genes are negatively

selected against, those that affect large genes might be less strongly

selected against. Possibly, large genes have certain structural

features that tend to make them relatively preferred targets of rare

CNVs above and beyond their simple large size. For example, a

CNV within a long gene might be more likely to fall within a large

intron and not disrupt the coding sequence, and therefore have

less-clear relevance to gene function. Furthermore, since genes

tend not to overlap, a CNV of a particular size that overlaps larger

genes may affect fewer genes than one that overlaps many smaller

genes, and may therefore be less likely to impact some nearby

essential gene.

To test whether these factors might play a role we tabulated

three relevant structural features for each gene (see Materials
and Methods): (1) transcript length, (2) a gene neighborhood

density score, representing the expected number of additional

nearby genes that a randomly placed CNV affects, and (3) a gene

structure score, that represents the expectation that a randomly

placed overlapping deletion is fully intronic. The first parameter

simply accounts for the size of the ‘target’. The other two

parameters account for the possibility that CNVs overlapping

certain genes might be more likely to be functionally consequen-

tial. We found that all of these variables individually correlated

with the likelihood that a gene is overlapped by deletions in meta-

controls (see Figure S1). We then conducted a conditional analysis

and found that even though they are inter-correlated, they each

independently predict the probability that a gene is deleted in the

meta-controls – removal of any single parameter significantly

affects a logistic regression model’s predictive ability (see Table 2).

The additional factors of gene density and structure could account

for the reduced number of affected genes overall and the increased

proportion of larger genes compared to random segments in the

genome.

Figure 3. Genes with brain function and genes impacted by CNVs are large. A. Brain-expressed, neuronal-activity, learning, and synapse
gene sets consist of large genes. For each gene set we plot the length of each gene, relative to the median length of human genes (28.2 kb).
Median gene length is labeled and represented by a horizontal line. Box indicates the range of gene lengths (2.5%–97.5%). Outliers are plotted as
dark points outside the box. For each gene set we compared the length of genes within the set and outside the set with a two-tailed rank-sum
p-value. B. Genes overlapping and disrupted by rare CNVs are large. For each data set we plot the length of genes overlapping (left) and disrupted
by (right) rare CNVs, relative to the median length of human genes (28.2 kb). Median gene length is labeled and represented by a horizontal line.
Box indicates the range of gene lengths (2.5%–97.5%). Outliers are plotted as dark points outside the box. For each set we compared the length of
genes affected and not affected by CNVs with a two-tailed rank-sum p-value. To allow for consistent comparisons, we restricted meta-control
events to those .100 kb.
doi:10.1371/journal.pgen.1001097.g003
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One possible strategy to correct gene set based analyses is to

devise a score that encapsulates the structural features of genes,

and their predicted propensity to be affected by a CNV. This

provides a robust approach to assess pathway enrichment in he

suboptimal situation when controls are not available (e.g. when

evaluating a collection of de novo case-only Autism deletions). We

present such a CNV-propensity gene score (CNVprop) that

represents an empirical estimate of the log-likelihood that a gene

is overlapped by a CNV based on gene structural features based

on the parameters from Table 2. CNVprop can be used as a

covariate within a logistic regression framework in assessing

enrichment of a gene set. We provide the CNVprop scores of genes

in Table S6. While other methods to correct for gene size have

been proposed in the literature, they do not specifically account for

additional effects from gene density and intron structure, which

are likely specific to CNV events. This approach, however, is still

not ideal since it fails to account for multiple genes contributed by

a single event, or genes being affected multiple times by an

individual CNV event.

Gene enrichment of brain function genes in
schizophrenia case and control CNVs are equivalently
significant

To further demonstrate application of gene set analysis and its

potential pitfalls, we used a large data set published by the ISC

with many rare (,1% frequency) deletions and duplications

identified from 3,391 affected by schizophrenia and 3,181

unaffected individuals (see Table S3).

In order to replicate the analysis published by Walsh et al [1],

we conducted set-based analyses of genes disrupted by CNV

events within the ISC cases. We observed enrichment of brain-

expressed genes (p = 3610211, two-tailed Fisher’s exact, Figure 2).

However, when we examined genes disrupted within controls in the

ISC, we observed similar evidence for brain-expressed genes

(p = 3610210, see Figure 2). Critically, the odds ratios (ORs) for

enrichment of brain-expressed genes among genes disrupted in

affected individuals and unaffected individuals were difficult to

distinguish in this analysis. We observed similar trends towards

enrichment for brain-expressed genes overlapped by CNVs

(OR = 1.1, p = 0.06 for cases, OR = 1.08, p = 0.20 for controls,

data not shown) and overlapped by very rare single event CNVs

(OR = 1.5, p = 0.004 for cases, OR = 1.6, p = 0.01 for controls,

data not-shown). Furthermore, with the exception of the learning

genes, all brain function gene sets demonstrated significant

enrichment within ISC cases and controls (see Figure 2).

We applied the same analysis to a data set with a small number

of CNVs published by Walsh et al and demonstrated similar effects

(see Figure 2). Cases tended to be more statistically significant for

all of the gene sets than controls, since they were better powered

with more affected genes. However, confidence intervals were

wide in this analysis, and it was unclear it there were true case-

control differences.

In both data sets – while statistically significant enrichment for

brain function genes is observed in cases, it is not clear that the

effect size is any different than in controls.

Table 1. Properties of observed deletions in the meta-
controls versus randomly placed simulated deletions.

Meta-Controls
(observed rare
deletions)

Simulated
Segments

Segments

N 1054 1054

Median Length (kb) 51.1 51.1

Overlapping $1 Gene 412* 530 (498–557)

Disrupting $1 Gene 359* 472 (442–499)

Overlapping Genes

N 538* 818 (739–900)

Gene length (median, kb) 65.7 57.1 (45.5–71.2)

.100 kb length genes 225* 311 (284–339)

.500 kb length genes 74 74 (62–87)

.1Mb length genes 29* 23 (17–29)

Brain-Expressed (OR) 1.63 1.51 (1.26–1.77)

Neuronal Activity (OR) 1.61 1.67 (1.17–2.26)

Synapse (OR) 2.04 1.98 (1.28–2.93)

Learning (OR) 1.78 1.71 (0.86–2.78)

Disrupted Genes

N 345* 497 (462–532)

Gene length (median, kb) 162.9* 131.8 (115.9–152.1)

Brain-Expressed (OR) 2.04 2.08 (1.71–2.49)

Neuronal Activity (OR) 1.84 2.25 (1.50–3.07)

Synapse (OR) 2.33 2.85 (1.82–4.24)

Learning (OR) 2.84 2.25 (0.98–3.81)

Here we compare the observed properties for rare deletions in meta-controls to
that of 1000 simulated random segments, matched for size and probe-density.
For simulated random deletions for each property, we list the median value, and
in parentheses we list the 95% range. We have noted values from observed
deletions that deviate (p,0.05) from the simulations with asterisks (*). The first
set of values compare observed rare deletions to random segments. The
number and median length are the same since segments were matched for
these properties. In the next two lines we list the numbers of overlapping and
disrupted genes. The next set of values compare data on the set of genes
overlapping observed deletions to simulated segments. We list the number of
overlapping genes altogether, and exceeding specific gene length thresholds
(100 kb, 500 kb, and 1 Mb). Finally we list the odds ratio for the three brain-
function gene sets for the set of overlapping genes. The final set of values
compare similar data on the set genes disrupted by rare deletions to simulated
segments. Disrupted genes stratified by length is not shown, and is similar to
that of overlapping genes.
doi:10.1371/journal.pgen.1001097.t001

Table 2. CNV-propensity score parameters.

Multivariate Analysis

Parameter b p (model)

Gene size (Mb) 2.40 (1.78–3.01) 1.2610217

Gene neighborhood density
(genes/CNV)

20.11 (20.15–20.07) 1.461027

Gene structure score 1.31 (0.27–2.33) 0.019

Intercept 23.31 (23.46–23.15)

Each of the three parameters significantly improves the likelihood model
predicting whether a gene overlaps a rare deletion within the meta-controls.
We tested three parameters: (1) the gene size, which represents a
straightforward parameter representing the length of the gene in Mb, (2) the
gene neighborhood density score is the average number of additional
genes that a CNV overlapping the gene overlaps, and (3) the gene structure
score which is the proportion of CNVs overlapping a gene that is fully intronic.
For each parameter we list the multivariate logistic regression beta and 95%
confidence interval. We also list the statistical significance of the change in log-
liklihood by removing the variable from the model.
doi:10.1371/journal.pgen.1001097.t002
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Application of cnv-enrichment-test to previously
published schizophrenia data sets

We applied the case-control cnv-enrichment-test to check CNVs

published by the ISC and by Walsh et al to test whether case

events were enriched for genes with brain function relative to

controls. In the ISC data, we had already reported elsewhere

increased genome-wide rates and sizes for case CNVs [2]. Walsh

et al had demonstrated genome-wide enrichment separately.

We applied the cnv-enrichment-test to the four gene sets (brain-

expressed, neuronal-activity, learning and synapse as described above).

The results in Table 3 report the empirical 1-tailed p-values for a

test of enrichment of the genes in the set relative to the genome-

wide baseline rates of all CNVs; for the smaller gene sets standard

asymptotic tests yielded unreliable estimates, due to the sparse

nature of the data (for example 7 case events, 0 control events for

neuronal genes in Walsh et al). In this context, the empirical

significance values obtained via permutation will be robust to these

sparse cell counts. Of course, for the larger gene sets, and all of the

gene sets in the larger ISC data set, analytical p-values

corresponded closely to permuted p-values.

There was no evidence of enrichment among case-CNVs

compared to control CNVs for brain-expressed and synapse genes

(p.0.12, one-tailed analysis, see Table 3). This is in marked

contrast to the observed enrichment of these same brain gene sets

in the case-only analyses presented in Figure 2 that did not

account for gene size.

However, the neuronal-function gene set demonstrated evidence of

association to schizophrenia cases for both Walsh et al

(p = 0.00045) and the ISC data (p = 0.04). There was also evidence

of association of the learning gene set within the ISC data (p = 0.009)

but not in the Walsh et al data (p = 0.35).

We want to emphasize that these results are not adjusted for

multiple hypotheses testing – and the plausible number of

independent gene sets. In this study alone we have tested four

separate gene sets. Ultimately, convincing associations will require

larger data sets. As additional samples are genotyped for CNVs,

the relevance of the neuronal-function genes might be more clearly

established.

Of note, considering only deletions within the ISC data, the

effect of neuronal-function gene set enrichment is stronger

(p = 0.0067, with higher rates in cases). Similarly, considering

only deletions within the ISC data, the effect of the learning gene set

enrichment is also stronger (p = 0.002, with higher rates in cases).

In both cases neuronal-function and learning gene sets, the effect

sizes associated with an event affecting a gene is modest ranging

from 1.2–1.7. This suggests that even if the set associations are

ultimately validated, that rare CNV events affecting genes within

these sets certainly do not fully explain the pathogenicity of rare

CNVs.

Conclusions
The cnv-enrichment-test is an extremely versatile test to identify

whether a gene set of interest is associated with case-control status.

We have shown that it is robust to confounders, such as case-

control differences in CNV rate and gene size, while standard gene

set enrichment approaches are not.

Since the cnv-enrichment-test can be applied easily to a wide range

of gene sets, there may be the temptation to examine data sets by

testing a compendium of gene-sets. Generally, we discourage this

approach, and urge investigators to look at specific sets of interest.

Assessing the significance of association statistics when testing a

large compendium of gene-sets is complex since there is a large

number of highly overlapping sets; correcting for the large burden

of multiple hypotheses testing appropriately can be challenging.

However, should one decide to test such a compendium of gene-

sets, it is important that investigators permute the case-control

status within their own data set, and apply the same battery of tests

to make sure that the actual data set is obtaining levels of

significance that are beyond that of the permuted data sets.

We have also shown that pathway analyses with standard gene set

enrichment approaches are confounded by gene size and structure.

This issue is of particular importance when considering genes with

brain function – since those genes are significantly larger than other

human genes. We have demonstrated how a large set of brain-expressed

genes seem to be impacted by CNVs in both case and control

populations when using gene set enrichment approaches, and how

this effect is largely the consequence of the size of these genes. The

brain-expressed genes were selected for having significantly greater

expression in neuronal tissues as opposed to non-neuronal tissues.

Certainly genes with important brain functions that are ubiquitously

expressed in all tissues might be missed by such a strategy, as might

genes with very low expression levels overall. However, we observed

very similar results for three other separately curated sets of genes

with brain function; this suggests that gene size and spurious pathway

associations may be of particular importance for brain function genes.

The approach we describe here can be applied more broadly

than within the context of CNVs; the cnv-enrichment-test can be

applied to any situation where disease-associated genomic segments

are defined. For example, linkage disequilibrium blocks around

associated SNPs can be defined as disease-associated genomic-

segments. The potential for gene size and structure confounding

pathway analyses extends beyond CNV studies, and applies equally

to pathway analyses within other types of genetic studies, including

SNP association studies, as noted by Wang et al [27] and exon re-

sequencing studies. For example, in a study looking at classes of

Table 3. Assessing if brain-function genes increase schizophrenia risk in published CNV data sets.

Gene Set ISC Walsh et al

OR = (ec) P (empirical, 1 tailed) OR = (ec) P (empirical, 1 tailed)

Brain-Expressed 1.03 0.19 1.11 0.41

Neuronal Activity 1.18 0.038 N/A 0.0004

Learning 1.38 0.0085 1.66 0.35

Synapse 0.97 0.58 3.35 0.12

We used the cnv-enrichment-test to test whether any of four brain function gene sets were enriched in two CNV published datasets. In the first column we list the tested
gene set. In the second two columns we list results for the ISC data set, and in the final two columns we list results for the Walsh et al data set. For each data set we
present the odds ratio for schizophrenia for each gene set and the one-tailed empirical p-value.
doi:10.1371/journal.pgen.1001097.t003
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genes that are disproportionately affected by rare exonic mutations,

the total length of the coding sequence will be a key confounding

variable. Similarly, studies looking at classes of genes that contain a

single SNP nominally associated to disease, confounding variables

might include the number of independent SNPs examined, the

physical size of the gene, and the recombination hotspots across the

length of the gene. In any case, careful case-control comparisons are

essential to avoid these confounders.

Many of the genes involved in brain function are compelling

candidate genes for neurological and psychiatric diseases – and

indeed they may be the most vulnerable to CNVs. The purpose of

this manuscript is not to question the results of the original

publications, but to rather set up a rigorous statistical approach

that allows investigators to accurately estimate effect sizes of events

impacting specific gene sets of interest and also to precisely

replicate reported results.

Materials and Methods

Compiling Gene Sets
Brain-Expressed. To identify genes with specific expression in

the brain, we obtained a large publicly available human tissue

expression microarray panel (GEO accession: GSE7307) [28]. We

analyzed the data using the robust multi-array (RMA) method for

background correction, normalization and polishing [29]. We filtered

the data excluding probesets with either 100% ‘absent’ calls (MAS5.0

algorithm) across tissues, expression values ,20 in all samples, or an

expression range ,100 across all tissues. To represent each gene, we

selected the corresponding probeset with the greatest intensity across

all samples. We included expression profiles from some 96 healthy

tissues and excluded disease tissues and treated cell lines. We

averaged expression values from replicated tissues averaged into a

single value. To assess whether genes had differential expression for

CNS tissues, we compared the 27 tissue profiles that represented

brain or spinal cord to the remaining 69 tissue profiles with a one-

tailed Mann-Whitney rank-sum test. We identified those genes

obtaining p,0.01 as preferentially expressed.

Synapse. We downloaded Gene Ontology [30] structure and

annotations on December 2006. Since it was available, we used a

previous version of Gene Ontology to ensure independence from

the results of recent genetic scans. We expanded human gene

annotations to include annotations from orthologous genes,

identified through Homologene [30] from model organisms. We

identified those genes that were annotated with the ‘Synaptic

Junction’ code (GO:0045202), or descendents of that code.

Neuronal Activity. We downloaded the list of genes within

the category ‘Neuronal Activities’ (BP00166) listed in the Panther

database [12].

Learning. We downloaded the list of genes within the

category ‘Behavior-Learning’ listed in the Ingenuity Application.

To avoid spurious results and focus on a consistent set of genes

across all studies, we included in our analysis only autosomal genes

that (1) had at least one annotations in GO and (2) passed quality

control criteria in the data set used to identify brain-expressed

genes. The resulting set consisted of 14,565 annotated genes.

Obtaining Walsh CNV data
We obtained rare event deletions and duplications from Table 2

in the original publication of the data [1].

Obtaining ISC CNV data
Rare (,1% frequency) event deletions and duplications were

provided directly by request from the International Schizophrenia

Consortium.

Identifying Rare CNVs in the Meta-controls
We obtained data from unaffected individuals with informed

consent from four Institutional Review Board approved studies:

macular degeneration [26], myocardial infarction [25], bipolar

disease [8], and multiple sclerosis [24]. We obtained Affymetrix

6.0 raw intensity data for all samples and ran the Birdsuite

software on each plate individually [31]; CNV calls were based on

Birdseye output. We then analyzed healthy unaffected individuals

from each of four studies separately. First we filtered individuals on

SNP data, removing individuals with .5% missing data. Second,

in situations where Birdseye called two nearby segments (,10 kb)

with identical copy number and there was a low confident segment

in between (LOD,3), we merged those segments. Third, we

exclude all CNVs that (1) overlap CNVs from a map of common

variation [32], or (2) failed stringent quality control criteria

(,20 kb in length or ,10 LOD or ,10 probes). Fourth we

removed those individuals in each study that were outliers in either

excessive number of CNVs, or in excessive aggregate length of

CNVs – we defined outlier as the median plus the 1.5 times the

inter-quartile range. We then combined all CNVs into a single

data set, and identified single-events (i.e. non-overlapping)

deletions.

Placing Genomic Segments
We produced 1000 sets of non-overlapping segments through-

out the genome. Each set consisted of segments matched for size

and probe-denisty (+/210%) to each observed single-event

deletions in meta-controls. Since we were simulating rare events,

random events were not allowed to overlap regions with known

copy number variation [32] or in regions where we observed an

overlapping event (i.e. not a singleton) in the meta-controls.

Defining Gene Parameters
For each gene we defined three parameters (1) gene length, (2)

gene neighborhood density score, and (3) gene structure score.

Gene length was simply the length of the gene transcript in

mega-basepairs.

To calculate a neighborhood density score for a gene, we

consider a CNV overlapping a gene. The neighborhood density

score is then the expected number of additional nearby genes

overlapped by the same CNV. To empirically estimate the

distribution of sizes of rare CNVs, we utilized the sizes, s, of

observed single event deletions in the meta-controls. Then to

calculate the gene neighborhood density score, gdi, for gene i, we

used the following formula:

gdi~

P
s[observed

size

P
p[genomic
positions

overlapi(p,s):ðoverlapall(p,s){1Þ
P

s[observed
size

P
p[genomic
positions

overlapi(p, s)

where p is a genomic position, overlapi(p, s) is an indicator function

that is 1 if a segment of length s starting at position p overlaps gene

i, or is otherwise 0. Similarly overlapall(p, s) is the number of genes

that a segment of length s starting at position p overlaps. In the

numerator we subtract one off, since we want to exclude gene i

itself

To calculate a gene structure score, we calculated the expected

proportion of overlapping CNVs that would not affect the coding

sequence of the gene (i.e. be fully intronic). To empirically estimate

the distribution of sizes of rare CNVs, we again used the sizes, s, of

observed single event deletions in the meta-controls. Then to
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calculate the gene structure score, gsi, for gene i, we used the

following formula:

gsi~

P
s[observed

size

P
p[genomic
positions

overlapi(p,s):intronici(p, s)

P
s[observed

size

P
p[genomic
positions

overlapi(p, s)

where p is a genomic position, overlapi(p, s) is an indicator function

that is 1 if a segment of length s starting at position p overlaps gene

i, or is otherwise 0. Similarly intronici(p, s) is an indicator variable

that is 1 if a segment of length s starting at position p does not

overlap a coding sequence, or otherwise is 0.

Statistical Models to Assess Gene Set Enrichment Across
CNVs

In order to produce a framework to test gene-sets and their

association to disease, we used a linear/logistic regression

framework in which phenotype is regressed on the number of

genes intersected (or disrupted) by one or more CNVs and

covariates. We considered five different models to test for

enrichment of CNVs in a pathway of interest, and tested them

with simulated datasets.

For a disease outcome, a standard model, M0, is as follows:

log
pi,case

1{pi,case

� �
~hzc:gize

where for individual i, gi is the number of genes in a pathway of

interest that intersected/disrupted by a CNV. The h term is the

logistic regression intercept and represents the background log

likelihood for each individual, while c is the logistic regression

parameter for gi.

Model M1 controls for potential genome-wide differences in

CNV burden between cases and controls:

log
pi,case

1{pi,case

� �
~hzb0

:cizc:gize

where ci is the total number of CNVs in a given individual i. The

b0 term is the logistic regression parameter for ci.

Model M2 alternatively controls for CNV size:

log
pi,case

1{pi,case

� �
~hzb1

:sizc:gize

where si is the individual’s mean CNV size in kb. If for a particular

individual ci = 0 (i.e. they do not have any CNVs) then si is set to

the sample mean of s rather than 0 or missing. (Otherwise, if many

individuals have no CNVs, a strong correlation will be induced

between the rate and average size of CNVs.) The b1 term is the

logistic regression parameter for si.

Model M3 alternatively controls for an individual’s total CNV

burden expressed in terms of total kb deleted or duplicated,

written here as the product of ci and si:

log
pi,case

1{pi,case

� �
~hzb2

: ci
:sið Þzc:gize

The b2 term is the logistic regression parameter for (ci?si).

Finally, the cnv-enrichment-test model controls explicitly for

potential case/control differences in both the number and size

distributions of CNVs:

log
pi,case

1{pi,case

� �
~hzb0

:cizb1
:sizc:gize

This is the model introduced in the main text labeled as the ‘‘cnv-

enrichment-test’’. As above, if for a particular individual ci = 0 (they

do not have any CNVs) then si is set to the mean size of all CNVs

in the sample as opposed to zero.

Under all circumstances, the null hypothesis for the 2-sided test

of enrichment is H0: c = 0.

Testing Models in a Simulated Case-Control Framework
We conducted simulations to understand the performance

characteristics of these different analytic approaches (M0–M3 and

cnv-enrichment-test) to test for enrichment of case CNVs in a set of

genes. We explicitly adopt extreme conditions in these simulations,

to best illustrate the robustness of each approach under the

broadest range of conditions.

For each individual, we simulated data for a single hypothetical

chromosome, 250 Mb in length. We placed 2000 evenly-spaced,

non-overlapping genes on the hypothetical chromosome, where

every fifth gene was designated as a ‘‘brain gene’’. We assigned

brain genes to be considerably larger than other genes (50 kb

versus 10 kb). In all scenarios we simulated CNV data for 2000

cases and 2000 controls. For cases and controls, the mean CNV

size was either 60 kb or 100 kb, as detailed in Table S2 (range

10 kb to 150 kb, standard deviation 30 kb). Under all scenarios,

individuals had either 0 or 1 CNV, with rates given in Table S2.

All datasets were simulated under the null hypothesis of no

enrichment for brain genes; that is, CNVs were randomly placed

on the hypothetical chromosome, similarly for both causal and

controls. Under five scenarios, S0 to S4, we altered the mean

CNV rate and CNV size for cases and controls independently, in

order to induce enrichment of CNVs in brain genes arising solely

as a consequence of CNV rate and size. Under the first scenario,

S0, there were no differences between cases and controls in the

rate and size of CNVs: we therefore expected all methods to give

appropriate type I error rates here. Under S1, the rate of CNVs

was higher in cases. Under S2, the average CNV size was smaller

in cases. Under S3, cases had a greater number, and larger, CNVs

than controls. Under S4, cases had a greater number, but smaller,

CNVs than controls.

For each scenario, we simulated 10,000 datasets to calculate the

type I error rate for the enrichment test, for a nominal rate of 0.05.

Implementation
This test is implemented in PLINK v1.07 (–cnv-enrichment-

test). It is appropriate for either continuous or disease traits and

allows for the inclusion of multiple other covariates and for

empirical significance tests.

The following examples illustrate basic usage. If the file

genes.dat contains the locations of all genes (i.e. as available from

the resources section of the PLINK website, glist-hg18) and the file

pathway.txt is a file of gene names forming the pathway to be

tested for enrichment and the CNV data are in the files

mycnv.cnv, mycnv.cnv.map and mycnv.fam (see website CNV

page for details), then one can ask whether a) genes are enriched

for CNVs, b) a subset of genes are enriched, relative to the whole

genome, c) a subset of genes are enriched, relative to all genes. The

latter form of the enrichment test might be desirable, for example,
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to determine whether any enrichment is general to all genes, or

specific to a subset of genes.

a) Enrichment of genic CNVs

./plink ––cfile mycnv

––cnv-count genes.dat

––cnv-enrichment-test

b) Enrichment of pathway genes CNVs, relative to all
CNVs

./plink ––cfile mycnv

––cnv-count genes.dat

––cnv-subset pathway.txt

––cnv-enrichment-test

c) Enrichment of pathway genes CNVs, relative to all
genic CNVs

./plink ––cfile mycnv

––cnv-intersect genes.dat

––cnv-write my-genic-cnv

./plink ––cfile my-genic-cnv

––cnv-count genes.dat

––cnv-subset pathway.txt

––cnv-enrichment-test

The usual modifiers (to define intersection differently, allow for a

certain kb border around each gene, filter on CNV size, type or

frequency, etc) are all available. Under all circumstances, 2-sided

asymptotic p-values are returned. Alternatively, permutation testing

can be applied and 1-sided empirical p-values are returned (positive

enrichment in cases, based on estimated regression coefficient).

For additional information consult the PLINK website (http://

pngu.mgh.harvard.edu/purcell/plink/), the resources subsection

(gene list) (http://pngu.mgh.harvard.edu/purcell/plink/res.shtml),

or the CNV file format subsection (http://pngu.mgh.harvard.edu/

purcell/plink/cnv.shtml).

Supporting Information

Figure S1 Features predicting whether a gene overlaps a CNV

in the meta-controls. A. Here we plot the distribution of the genes

that are not deleted (n = 14,027, blue) and the genes that are

deleted (n = 538, red) separately for the meta-controls. Deleted

genes are larger with a median of 66 kb compared to genes not

deleted with a median of 27 kb. Medians and inter-quartile ranges

are indicated with the boxes, while the range indicates the 2.5 to

97.5 percentiles for both distributions. B. We plot the fraction

intrinic fraction score as a function of gene size. Larger genes tend

to have potentially greater proportions of events that could be fully

intronic. Red points indicate deleted genes while blue point

indicate the remainder. C. Here we plot the local gene density, i.e.,

the number of other nearby genes overlapped by a CNV as a

function of gene size. Events overlapping large genes tend not to

overlap other nearby genes. Red points indicate deleted genes

while blue points indicate the remainder.

Found at: doi:10.1371/journal.pgen.1001097.s001 (1.85 MB TIF)

Table S1 Gene size of brain genes highlighted in three CNV-

association studies. Here we list affected genes within gene sets

highlighted in three neuropsychiatric disease studies. In the first

column we list the study, in the next two columns we list the

functional gene sets and their source. In the fourth and fifth

column we list the genes, and their sizes. In the final column we list

the mean size. Many of the genes highlighted in all three studies

are very large genes. *For the Walsh et al. study, these genes were

compiled from multiple brain function gene sets.

Found at: doi:10.1371/journal.pgen.1001097.s002 (0.09 MB

DOC)

Table S2 Simulated distribution of CNV rate and size in cases

and controls. We tested different statistical models as outlined in

Materials and Methods (M0–M4) for false positive associations

under each of five extreme scenarios (S0–S4) outlined in the above

table. For a single hypothetical chromosome, 250Mb in length, we

placed 2000 evenly-spaced, non-overlapping genes. Every fifth

gene was designated as a ‘‘brain gene’’; brain genes were set to be

considerably larger than other genes (50kb versus 10kb). In all

scenarios we simulated CNV data for 2000 cases and 2000

controls, specifying the mean CNV size was either 60kb or 100kb

(range 10kb to 150kb, standard deviation 30kb) and CNV rate per

individual. Under the first scenario, S0, there were no differences

between cases and controls in the rate and size of CNVs: we

therefore expected all methods to give appropriate type I error

rates here. Under S1, the rate of CNVs was higher in cases. Under

S2, the average CNV size was smaller in cases. Under S3, cases

had a greater number, and larger, CNVs than controls. Under S4,

cases had a greater number, but smaller, CNVs than controls.

Found at: doi:10.1371/journal.pgen.1001097.s003 (0.04 MB

DOC)

Table S3 Collections examined in this study. Our study

examined affected and unaffected individuals from the ISC,

Walsh et al., and Zhang et al.. We also used unaffected populations

from four separate studies (meta-controls). For each study we list

the number of samples, the genotyping technology used to identify

CNVs (Representational Oligonucleotide Microarray Analysis

(ROMA), Affymetrix 5.0 (5.0) or Affymetrix 6.0 (6.0)), the number

of observed events, how we defined a ‘rare’ event, their size, and

the number of genes affected by those events.

Found at: doi:10.1371/journal.pgen.1001097.s004 (0.06 MB

DOC)

Table S4 Deletion in meta-controls events called in four

separate populations. Meta-control rare deletion events were

called based on Affymetrix 6.0 arrays. For each of the four

collections we list the number of samples, the number of rare

deletions .20 kb and the ratio of deletions to samples, the number

of rare deletions .100 kb and the ratio of deletions to samples,

and finally the median event size.

Found at: doi:10.1371/journal.pgen.1001097.s005 (0.04 MB

DOC)

Table S5 Gene ontology codes with the largest genes are

enriched in meta-controls. Here we list 13 GO codes with an

average gene length .200 kb and their descriptions in the first

four columns. In the next three columns we list the number of

genes for each code overlapping rare deletions in meta-controls,

the odds ratio, and the statistical significance. All enrichment

analyses p-values are calculated with Fisher’s exact test; enrich-

ment is calculated for both disrupted and deleted genes. In the

final three columns we list the number of genes disrupted by rare

deletions in meta-controls, the odds ratio, and the statistical

significance.

Found at: doi:10.1371/journal.pgen.1001097.s006 (0.06 MB

DOC)

Table S6 CNVprop scores of genes.

Found at: doi:10.1371/journal.pgen.1001097.s007 (0.66 MB

TXT)
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