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Abstract

Candida orthopsilosis is closely related to the fungal pathogen Candida parapsilosis. However, whereas C. parapsilosis is a
major cause of disease in immunosuppressed individuals and in premature neonates, C. orthopsilosis is more rarely
associated with infection. We sequenced the C. orthopsilosis genome to facilitate the identification of genes associated with
virulence. Here, we report the de novo assembly and annotation of the genome of a Type 2 isolate of C. orthopsilosis. The
sequence was obtained by combining data from next generation sequencing (454 Life Sciences and Illumina) with paired-
end Sanger reads from a fosmid library. The final assembly contains 12.6 Mb on 8 chromosomes. The genome was
annotated using an automated pipeline based on comparative analysis of genomes of Candida species, together with
manual identification of introns. We identified 5700 protein-coding genes in C. orthopsilosis, of which 5570 have an ortholog
in C. parapsilosis. The time of divergence between C. orthopsilosis and C. parapsilosis is estimated to be twice as great as that
between Candida albicans and Candida dubliniensis. There has been an expansion of the Hyr/Iff family of cell wall genes and
the JEN family of monocarboxylic transporters in C. parapsilosis relative to C. orthopsilosis. We identified one gene from a
Maltose/Galactoside O-acetyltransferase family that originated by horizontal gene transfer from a bacterium to the common
ancestor of C. orthopsilosis and C. parapsilosis. We report that TFB3, a component of the general transcription factor TFIIH,
undergoes alternative splicing by intron retention in multiple Candida species. We also show that an intein in the vacuolar
ATPase gene VMA1 is present in C. orthopsilosis but not C. parapsilosis, and has a patchy distribution in Candida species. Our
results suggest that the difference in virulence between C. parapsilosis and C. orthopsilosis may be associated with
expansion of gene families.
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Introduction

Candida parapsilosis is one of the most common causes of Candida

infection and is second only to Candida albicans, particularly in

South America [1]. Infection rates are particularly high in

premature neonates and in young children [2]. C. parapsilosis is

found on the hands of health-care workers [3] and has been

associated with major outbreaks of infection, particularly in

neonatal intensive care units [4,5,6,7]. The presence of central

venous catheters (CVCs) and receiving parenteral nutrition are

also major risk factors [8,9].

Until recently, C. parapsilosis isolates (C. parapsilosis sensu lato)

were characterized as belonging to one of three groups (I to III)

[10,11]. In 2005, Tavanti et al [12] proposed that the degree of

diversity observed supported the designation of each group as a

separate species; Group I remained as C. parapsilosis sensu stricto

and Groups II and III isolates were renamed C. orthopsilosis and C.

metapsilosis. Although C. parapsilosis sensu stricto isolates are very

similar at the genetic level [13,14], there is considerable variation

among other isolates [15,16,17]. All species in the C. parapsilosis

sensu lato group are members of the CTG clade, which translate

CTG as serine rather than leucine [18]. Molecular analysis of the

C. parapsilosis sensu lato species is restricted by the lack of

molecular data. Whereas the C. parapsilosis sensu stricto genome

was sequenced in 2009 [19], leading to the generation of

microarrays and their application to whole genome transcriptional

profiling [20,21,22], there is very little information available from

the other species.

In recent years, several studies have measured the prevalence of

C. orthopsilosis and C. metapsilosis in human infection, in particular to

determine the fraction that were previously identified as C.

parapsilosis [23,24,25,26,27,28,29,30]. The estimates vary, from

frequencies of 1.7% (C. metapsilosis) and 1.4% (C. orthopsilosis) in

Spain [25] to 10.9% and 23.8% for C. orthopsilosis in South

America [24]and Malaysia [26]. There is not yet sufficient

information to determine whether the geographical variation

reflect a difference in virulence of the pathogen or in the host

response, but many of the studies are based on very small numbers

and so are subject to statistical anomalies. C. orthopsilosis is more

frequently identified than C. metapsilosis [31]; in addition, a very

small number of cases (0.8%) originally attributed to C. parapsilosis

are caused by a more distant relative, Lodderomyces elongisporus [32].

The lower numbers of infection associated with C. orthopsilosis and
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C. metapsilosis suggest that these species are less virulent than C.

parapsilosis. C. orthopsilosis however may still be a significant cause of

disease, and has been associated with two outbreaks of infection in

hospitals in Texas [11] and Brazil [33].

There are few differences in drug susceptibility among the three

species. C. orthopsilosis and C. metapsilosis tend to exhibit lower MICs

to amphotericin B and echinocandins than C. parapsilosis [24,34].

All three sensu lato species are less susceptible to echinocandins

than other Candida species, because of a proline-to-alanine

substitution in the target protein Fks1 (beta-glucan synthase)

[35]. Isolates of C. orthopsilosis and C. metapsilosis have an additional

isoleucine-to-valine substitution in the hot spot 2 region of Fks1

which is not associated with drug susceptibility [28]. C. parapsilosis

sensu lato species are generally susceptible to fluconazole [24].

However, the numbers of isolates tested remain small, and there

some differences have been found. For example, three resistant C.

metapsilosis isolates were identified in Taiwan [28].

Little is known about the virulence characteristics of C.

orthopsilosis and C. metapsilosis. Like C. parapsilosis, C. orthopsilosis

isolates are capable of inflicting damage on reconstituted human

epithelial and epidermal tissues, whereas C. metapsilosis is less

effective [36]. C. metapsilosis isolates are also less efficiently

phagocytosed than the other sensu lato species, and are more

susceptible to host responses [37]. Growth as biofilms is a major

virulence characteristic of C. parapsilosis. There are some reports

that suggest that C. orthopsilosis and C. metapsilosis are unable to form

any biofilms [23,38,39], whereas others show that all three species

form biofilms with similar structure [40], but C. orthopsilosis and C.

metapsilosis biofilms may be smaller [41].

It is highly likely that the definition of species from with the C.

parapsilosis sensu lato group is not yet complete. For example,

sequencing of the ITS region of 58 isolates from Brazil and India

indicated that they fell into 4 groups, with Group IV being most

closely related to Group II (C. orthopsilosis) [15]. We sequenced the

ITS of 13 isolates identified as C. orthopsilosis, and showed that the

majority fall into two groups, with one intermediate isolate [17].

This division was supported by an analysis of the structure of the

mating type locus, which also places C. orthopsilosis isolates in two

groups (called Type 1 and Type 2) [17]. The similarity of the

regulatory proteins in the mating idiomorphs from the two types

ranges from 80 to 93% [17]. The C. orthopsilosis type strain

ATCC96139T most closely resembles the Type 1 isolates.

However, the difference between the ITS sequences of the two

groups is very small (3 bp in a 412 bp region) and the two Types

(or sub-species) have not been experimentally or clinically

distinguished. Here, we describe the genome sequence of C.

orthopsilosis 90–125, which is characterized as a Type 2 sub-species

by analysis of its mating locus, and as an intermediate species by

ITS sequencing [12,17]. There has been significant rearrangement

in the chromosome structure relative to C. parapsilosis. We also

show that some gene families associated with pathogenesis in

Candida species are expanded in C. parapsilosis relative to C.

orthopsilosis.

Results and Discussion

De novo assembly of the C. orthopsilosis genome using
454 and Illumina technology

We obtained the genome sequence of C. orthopsilosis isolate 90–

125 [12] by using a combination of sequencing technologies. First,

106 sequence coverage was generated using a Roche GS FLX

instrument (LGC Genomics), and assembled into 39 scaffolds

using Newbler [42]. Data from a fosmid library (4800 paired-end

Sanger reads) were used to verify and merge the scaffolds into 8

superscaffolds. We then overlaid Illumina data from the same

strain (1056coverage from single reads) onto this structure using a

guided assembly method from Velvet [43]. Our final C. orthopsilosis

genome sequence consists mostly of sequence generated by

Illumina technology, imposed on 8 chromosomes whose large-

scale structure is derived from the 454 paired-end and Sanger

fosmid-end data. This hybrid assembly procedure exploits the best

features of the different technologies; fewer indel (insertion/

deletion) errors from the Illumina data, and better contiguity from

the longer Roche reads and their associated read-pair information.

The assembly consists of 8 superscaffolds, which are structurally

equivalent to chromosomes. The total length is 12.6 Mb, with the

largest chromosome being 2.9 Mb and the shortest 613 kb. 246

gaps remain, ranging in estimated size from 11 bp to 3 kb and

likely due to repetitive sequences in the genome.

Most C. orthopsilosis chromosomes show at least one translocation

event when compared to C. parapsilosis (Figure 1). By manually

identifying the major diagonals in Figure 1 and using GRIMM

[44], we found that the two genomes differ by a minimum of 7

reciprocal translocation steps. In addition, we found a total of 397

inversion events between the two genomes, including 240 small

inversions at single gene level [45] and 157 larger cases involving

more than one gene.

Annotation of the C. orthopsilosis genome
To annotate protein-coding genes we used a novel pipeline that

utilizes information on conserved synteny to make ortholog

inferences, which was developed for annotating genomes from

the family Saccharomycetaceae [46]. The pipeline used gene

sequences and gene order information from 11 Candida genomes

contained in the Candida Gene Order Browser (CGOB) database

[47] (Maguire et al, in preparation) as input. In essence, the

pipeline simultaneously constructs maps of the gene locations in

Figure 1. Dot matrix comparison of the C. parapsilosis and C.
orthopsilosis genomes. The horizontal axis represents a joining of the
8 largest C. parapsilosis superscaffolds, sorted by decreasing length. The
vertical axis represents a joining of the 8 C. orthopsilosis superscaffolds,
sorted and named by decreasing length. Sequence aligning between
the two species is represented in black if in the same direction, and in
red if in the opposite direction.
doi:10.1371/journal.pone.0035750.g001

Candida orthopsilosis Genome

PLoS ONE | www.plosone.org 2 April 2012 | Volume 7 | Issue 4 | e35750



the newly sequenced genome and its synteny relationship to other

genomes in the database.

The pipeline predicted more than 5200 gene models; some

short unconserved open reading frames were subsequently

removed during manual editing. Genes containing introns within

the coding sequence were identified by comparison with 355

orthologs from C. parapsilosis [48]. We identified 387 introns in 355

C. orthopsilosis genes (Table S1). We identified four introns with

presence/absence differences between C. orthopsilosis and C.

parapsilosis; two of these are found in C.albicans and C. parapsilosis

and are therefore likely to be ancestral, but have been lost in C.

orthopsilosis (Figure S1A–B). A third intron that is present in the C.

orthopsilosis gene CORT0D03940 and in C. albicans appears to have

been lost twice in parallel: once in C. parapsilosis and once in L.

elongisporus (Figure S1C). The fourth intron is found only in C.

parapsilosis (ortholog of CORT0H01800; Figure S1D) but exon 1 is

only 3 bp long and the alignment in this region is poor, so it is

difficult to define this event as a definite case of intron gain. For

five other C. parapsilosis intron-containing genes we were unable to

establish the structure of the C. orthopsilosis ortholog because it was

located at a gap in the genome sequence.

We annotated 82 tRNA genes using tRNAscan-SE [49]. While

the number of tRNAs we predicted is lower than in other Candida

species [19], this is consistent with the 91 predictions found in C.

parapsilosis using the same method [48]. The final version of the C.

orthopsilosis annotation includes 5700 ORFs (including 28 pseudo-

genes and 65 incomplete gene models), four rRNA genes in a

consensus rDNA unit, and 82 tRNA genes. 5570 ORFs have

homologs in C. parapsilosis.

Phylogenetic relationships and evolutionary divergence
in the C. parapsilosis species group

To investigate the phylogenetic relationship among C. orthopsi-

losis, C. parapsilosis and C. metapsilosis, we analyzed the concatenated

partial sequences of 1334 genes from all three species (see

Methods). C. orthopsilosis and C. metapsilosis form a clade, with C.

parapsilosis falling outside (Figure 2A). This topology agrees with

that found by Tavanti et al [12] by analysis of one gene (the ITS1

region of rDNA), but disagrees with Kosa et al [50] whose analysis

of seven genes from the mitochondrial genome placed C.

metapsilosis outside C. orthopsilosis and C. parapsilosis. Using the

Shimodaira-Hasegawa test [51] we found that the topology in

Figure 2A has a significantly higher likelihood than alternatives in

which either C. orthopsilosis or C. metapsilosis was an outgroup to the

other two (P,1023 in both cases).

To investigate rates of protein sequence evolution, and to

compare the C. orthopsilosis/C. parapsilosis species pair to the C.

albicans/C. dubliniensis pair [52], we measured the extents of

nonsynonymous sequence divergence (dN) in 5091 orthologous

genes that are present in all four species (Figure 2B). The average

dN value for the C. parapsilosis/C. orthopsilosis comparison (0.70) is

approximately twice that of the C. albicans/C. dubliniensis compar-

ison (0.36) suggesting that divergence time between C. parapsilosis

and C. orthopsilosis is twice as old as that between C. albicans and C.

dubliniensis. This result is consistent with the 1.8-fold difference in

branch lengths seen in Figure 2A.

Figure 2C compares the dN values for individual proteins in the

two interspecies pairs. As expected, the rate of sequence evolution

in the two comparisons is correlated for most proteins. We were

interested in identifying proteins that are exceptions to this

pattern, i.e. proteins that are evolving either unexpectedly quickly

or unexpectedly slowly in the C. orthopsilosis/C. parapsilosis

comparison relative to the C. albicans/C. dubliniensis comparison.

Among 15 outlying genes selected from Fig. 2C that have fast rates

Figure 2. Phylogeny and sequence divergence in the C.
orthopsilosis clade. (A) Phylogenetic relationship among 7 species,
from maximum likelihood analysis of concatenated partial sequences of
1334 proteins. Numbers indicate branch lengths. Bootstrap values on all
branches are 100%. (B) Histogram of distributions of nonsynonymous
substitution levels (dN) in 5091 orthologous genes for two independent
interspecies comparisons (C. orthopsilosis vs. C. parapsilosis, and C.
albicans vs. C. dubliniensis). (C) Scatter plot showing the correlation of
dN values for individual genes in the same two comparisons. The
regression line has been forced through the origin.
doi:10.1371/journal.pone.0035750.g002
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in the C. albicans/C. dubliniensis pair, three code for transcription

factors (Table S2). One of these is WOR2, a major regulator of the

white/opaque switch. This switch, which is a morphological

change associated with virulence [53,54], has been described only

in C. albicans and C. dubliniensis. Although C. parapsilosis and C.

orthopsilosis contain orthologs of WOR2, they do not undergo a

similar morphological switch. A second fast-evolving transcription

factor in the C. albicans/C. dubliniensis branch is CTA26, which is a

regulator of filamentous growth and a member of the TLO2 family

(van het Hoog, 2007). Whereas C. albicans and C. dubliniensis are the

only Candida species known to undergo true filamentation, C.

dubliniensis is much less efficient, and produces fewer filaments

[55,56]. The Tlo2 family has undergone a species-specific

amplification in C. albicans, and is represented by only two

members in C. dubliniensis [52]. CTA26 represents the ancestral

locus of the pre-amplification TLO2 family, and is conserved in all

Candida species. Our analysis suggests that the rapid divergence of

Wor2 and Cta26 between C. albicans and C. dubliniensis, relative to

the slow rate seen between C. orthopsilosis and C. parapsilosis, may be

related to the increased virulence of C. albicans. Many of the outlier

genes with relatively fast rates in the C. orthopsilosis/C. parapsilosis

comparison are of unknown function (Table S2). Two are

orthologs of genes regulated by Hap43 in C. albicans and may

therefore be expressed in response to iron levels [57] one is a

potential transcription factor of unknown function

(CORT0A07620), and one is a putative cyclin-like protein.

Gene content analysis in C. orthopsilosis shows little
difference in singleton genes but substantial difference
in gene family composition with respect to C. parapsilosis

Comparing the genomes of the highly pathogenic species C.

albicans with that of its much less virulent relative C. dubliniensis

revealed extensive gene loss and pseudogenisation in the latter

species, suggesting that C. dubliniensis is a defective pathogen that

degenerated from a virulent ancestor [52]. To determine if this is a

conserved feature of pathogenic Candida species, we compared the

gene content of C. orthopsilosis with that of other Candida species.

We used CGOB to identify genes that are missing from C.

orthopsilosis, but are present in at least four other Candida species

(Table S3). Many apparent individual losses in C. orthopsilosis

coincide with gaps in the genome sequence, and it is not possible

to be completely sure of their absence. However, C. orthopsilosis is

missing orthologs of C. parapsilosis GDX1 (gentisate dioxygenase)

and FPH1 (fumarylpyruvate dehydrolase), which may explain why

only C. parapsilosis can utilise gentisate [58].

Wohlbach et al [59] recently described the genome sequences of

two members of the CTG clade, Spathaspora passalidarum and

Candida tenuis. These species, together with P. stipitis, can naturally

ferment pentose sugars such as xylose, and have therefore

attracted considerable interest from the biofuel industry [60].

Although the ability to ferment xylose is rare, most of the CTG

clade species (with the exception of L. elongisporus) can grow on

xylose as a sole carbon source. Wohlbach et al [59] associated

xylose assimilation with 43 genes absent from xylose non-grower

species, and in particular 15 genes that are absent from L.

elongisporus but present in all other xylose assimilators. They

concluded that these genes are likely to be important for xylose

assimilation, and that they were lost in the L. elongisporus lineage.

The analysis did not include C. parapsilosis or C. orthopsilosis, the

closest relatives of L. elongisporsus that retain the ability to grow on

xylose [61]. We therefore expanded the analysis of the xylose-

associated genes to include all members of the CTG clade with

sequenced genomes (Figure S2). Firstly, we noticed that several

genes presumed to be absent from some species are in fact present

but are not annotated in the relevant genomes; many of these

genes are very short (Figure S2). Secondly, 11 of the 15 genes

inferred to be associated with xylose assimilation are also missing

from the genomes of C. parapsilosis and C. orthopsilosis, species that

retain the ability to grow on xylose. There are only 5 genes

uniquely absent from L. elongisporus (one of which was not

previously identified by Wohlbach et al [59]). Most of these

encode proteins of unknown function, although one is predicted to

encode an ammonium permease, and one has a potential DNA

binding domain. It would be interesting to test if introducing this

small number of genes into L. elongisporus would restore the ability

to grow on xylose. Our analysis suggests that only two genes in the

group are specific to the xylose fermenters (Schefferomyces stipitis, Sp.

passalidarum, C. tenuis). One is predicted to encode a very short

protein (73 aa) and one encodes a putative alpha-glucuronidase,

with a conserved domain associated with the removal of alpha-1,2

linked 4-O-methyl glucuronic acid from xylans. The latter gene in

particular may be an important requirement when attempting to

engineer other fungi to ferment xylans. A third putative xylose

specific gene identified by Wohlbach et al [59], encodes a putative

saccharolysin/oligopeptidase that is a member of a family present

in almost all the CTG clade species. The Sch. stipitis genome

contains an additional copy.

Overall, our analysis indicates that whereas there is very little

difference in the content of singleton genes (i.e. those not belonging

to gene families) in C. orthopsilosis and other species, there are some

differences in gene family composition (Table S3). Butler et al [19]

found that several gene families are amplified in the genomes of

pathogenic Candida species when compared to non-pathogenic

species and to other members of the Saccharomycotina. One such

amplification is the Hyr/Iff family, some of which are associated

with cell wall assembly [62,63,64]. Our original analysis [19]

identified 17 members of the Hyr/Iff family in C. parapsilosis. These

are located in tandem arrays (ranging from two to five copies) at

six genomic locations. In C. orthopsilosis however, there are only two

sites containing Hyr/Iff proteins, both syntenic with Iff proteins in

C. parapsilosis. We cannot determine exactly how many family

members are present in C. orthopsilosis because they coincide with

gaps in the genome sequence. However, most of the family

members present in C. parapsilosis are absent from the equivalent

positions in C. orthopsilosis, and there is no evidence that they have

been relocated to other parts of they genome.

Many of the Hyr/Iff family members in Candida species are long

proteins (.1,400 amino acids) that include regions of intragenic

repeats (ITRs). They are predicted to contain a GPI anchor and

are likely to be heavily glycosylated. They also contain secretion

signals at the N termini. It is therefore assumed that they are

located in the cell wall [62]. Six of the C. parapsilosis proteins are

large and fit this general pattern, with long intragenic repeats. Two

are adjacent on chromosome 6, and four are tandemly amplified

on chromosome 8. At the C. orthopsilosis equivalent of the

chromosome 8 locus, there are at least 3 Hyr/Iff genes. This

locus corresponds to the location of IFF6 in C. albicans and similar

genes in C. dubliniensis and C. tropicalis, which may reflect the

ancestral location. C. orthopsilosis has no Hyr/Iff genes at the

counterpart of the chromosome 6 locus.

Most (11) of the C. parapsilosis Hyr/Iff family are much shorter

proteins (approximately 400 amino acids). They contain the

conserved N terminal domain and a secretion sequence, but lack

the intragenic repeats and a GPI anchor. In contrast, only two of

the 12 C. albicans Hyr/Iff proteins lack GPI anchors [19]. Bates et

al [64] showed that deleting one of these (IFF11) results in a cell

wall defect, and that the deletion strains have highly attenuated

virulence in mouse models of infection. Iff11 is O-glycosylated and

Candida orthopsilosis Genome
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secreted [64]. The C. parapsilosis short Iff proteins are located in

tandem arrays at four locations, on chromosome 1 (2 copies),

chromosome 3 (5 copies) chromosome 4 (2 copies) and

chromosome 7 (1 gene and a pseudogene). Only one of these

proteins (CPAR2_301290) has a predicted GPI anchor [65]. The

gene amplification is specific to C. parapsilosis; there are only 5

copies in L. elongisporus. In C. orthopsilosis, there are no Hyr/Iff genes

at the counterparts of the loci on chromosomes 1, 3, and 7

(Figure 3 shows chromosome 3). At the chromosome 4 locus, C.

orthopsilosis contains at least one short IFF gene (CORT0C03535). It

is likely that amplification of the short Iff genes is important for the

increased virulence of C. parapsilosis relative to C. orthopsilosis.

Similarly, the loss of one Iff family member (Hyr1) has been

associated with decreased virulence of C. dubliniensis [52].

Another virulence-related family, ALS, which is associated with

adhesion, biofilm formation iron acquisition and endocytosis

[19,66,67,68,69], is more similar in size between C. parapsilosis and

C. orthopsilosis. There are 5 ALS genes in C. parapsilosis (one on

chromosome 5, and four in tandem on chromosome 4

corresponding to C. albicans ALS6-ALS7), and at least three in C.

orthopsilosis (an ortholog of the chromosome 5 gene, and at least

two genes in tandem at the chromosome 4 site).

The CFEM family, which contain an eight-cysteine EGF-like

domain, is associated with biofilm development, and acquisition of

iron from heme in Candida [70,71,72,73]. There are five members

in the C. albicans genome, which is expanded to seven in C.

parapsilosis by three tandem amplifications [74]. At least two of the

amplifications are also present in C. orthopsilosis; the third position

coincides with a gap in the sequence. However, whereas the role of

CFEM proteins in iron acquisition is conserved in C. albicans and

C. parapsilosis, the C. parapsilosis family has no obvious function in

biofilm growth [74]. The function of the CFEM family in C.

orthopsilosis has not been investigated.

We also noticed some amplifications that are partly shared by C.

parapsilosis and C. orthopsilosis. The C. albicans genome contains two

homologs of a transmembrane transporter, JEN1 and JEN2. JEN1

encodes a monocarboxylic acid (lactate) transporter, similar to the

function of the single S. cerevisiae homolog [75], and JEN2 encodes

a dicarboxylic acid transporter [75]. Expression of both genes is

induced in glucose-poor media, which may be important for early

stage infection of mammalian hosts [75]. Previous analysis of the

Jen protein family by Lodi et al [76] suggested that Jen2 is the

ancestral protein, which gave rise to Jen1 through gene

duplication. S. cerevisiae subsequently lost Jen2. There have been

Figure 3. Expansion of a Hyr/Iff gene cluster in C. parapsilosis. The diagram is redrawn from CGOB, and represents the gene order from 11
genomes of 10 species in the Candida clade. Horizontal blocks of color indicate chromosomes in individual species, and pillars contain orthologs.
Adjacent genes are joined by gray lines. The arrows indicate the direction of transcription. Genes 301290–301330 represent a tandem amplification of
5 Hyr/Iff genes that is unique to C. parapsilosis.
doi:10.1371/journal.pone.0035750.g003
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some rearrangements of the Jen family in the Candida clade; for

example, the D. hansenii genome encodes two copies of both JEN1

and JEN2, and C. lusitaniae has no copy of JEN1 but has two copies

of JEN2. However, there has been a particularly significant

expansion in the C. parapsilosis lineage. JEN1 is duplicated at the

original locus both C. parapsilosis and C. orthopsilosis. C. parapsilosis

has six additional copies, four of which are completely absent from

C. orthopsilosis (three in a tandem cluster CPAR2_407290–407310,

and CPAR2_403890). Another JEN1 homolog is retained in both

species (CPAR2_808330/CORT0C00840), and a further gene is

severely truncated in C. orthopsilosis but intact in C. parapsilosis

(CPAR2_407250/CORT0C06620). Thus C. parapsilosis has 8 JEN1-

like genes, C. orthopsilosis has 3–4, and C. albicans has only one.

C. parapsilosis also has three copies of JEN2, including a tandem

duplication at the ancestral locus where C. orthopsilosis has one

(CPAR2_402040/402050, CORT0E02090) and one additional

copy that is a pseudogene in C. orthopsilosis (CPAR2_107230,

CORT0B08430). The amplification of the Jen family may

contribute to the virulence characteristics of C. parapsilosis; Vieira

et al [75] suggested that the ability to metabolize mono- and di-

carboxylic acids is important for metabolism of Candida cells

engulfed by macrophages.

Most of the annotated genes that are unique to C. orthopsilosis are

small (,200 amino acids) and lack homologs in other databases.

We did not find any significant families of C. orthopsilosis-specific

genes. We identified one family that is unique to C. parapsilosis

(represented by CPAR2_502600, CPAR2_101640, CPAR2_600970,

CPAR2_805490 and a pseudogene CPAR2_301590), and which

have no similarities to any other known proteins. However, the

biological function of this family is unknown.

Analysis of drug efflux pumps
Although some species such as Candida krusei are inherently

resistant to antifungal drugs such as azoles, exposure to sub-

inhibitory concentrations can induce resistance in others, includ-

ing C. albicans, C. tropicalis and C. parapsilosis [77,78,79]. Acquired

resistance is most commonly associated with induction of

expression of the drug efflux pumps (belonging to the Major

Facilitator (MFS) and ATP binding cassette (ABC) superfamilies),

or with overexpression or point mutations in the target enzyme

lanosterol 14-alpha-demethylase (Erg11) (reviewed in [80,81]). In.

C. albicans gain-of-function mutations in the transcription factors

TAC1 [82] and MRR1 [83] result in increased expression of the

efflux pumps, whereas mutations in UPC2 are associated with

increased expression of ERG11 [84]. The Ndt80 transcription

factor also regulates expression of ergosterol synthesis genes [85],

but appears to play no role in azole resistance [86].

At present, there are relatively few reports describing azole

resistance in C. orthopsilosis [27,28,30,31,39,87]. However, analysis

of the dynamics of acquired resistance suggests that there may be

significant differences between the underlying mechanisms in C.

albicans and in the C. parapsilosis species complex [79].In C.

parapsilosis exposure to fluconazole, voriconazole or posaconazole

results in a more rapid acquisition of resistance than in C. albicans,

and the resistance levels are stable over at least 30 days following

removal of the drugs [79]. Resistance does not involve the ABC

efflux pumps [79]. Transcriptional profiling indicated that

fluconazole and voriconazole may induce resistance through

increased expression of MDR1 (an MFS efflux pump), similar to C.

albicans whereas posaconazole-induced resistance is associated with

increased expression of the ergosterol pathway [22].

Our analysis indicates that the Tac1, Mrr1, Upc2 and Ndt80

transcription factors are well conserved throughout the Candida

clade, including C. parapsilosis and C. orthopsilosis (not shown). We

therefore investigated the drug efflux pumps. There are approx-

imately 95 members of the MFS family in C. albicans [88]. The

Drug: H+ Antiporter-1 (DHA1) family is the largest sub-group (22

members) and includes MDR1 which is overexpressed in azole-

resistant isolates [80], and FLU1 which confers resistance to

fluconazole [89]. We find that there has been a substantial

expansion of the FLU1/TPO2 clade in C. parapsilosis (8 members)

and C. orthopsilosis (6 members) (Figure S3). There has also been an

expansion of the MDR1 group; both C. parapsilosis and C.

orthopsilosis contain an additional syntenic pair of Mdr1-like

proteins (Figure S3). Expression of two of the MDR1 homologs

(CPAR2_301760 and CPAR2_603010) is increased in azole-

resistant isolates induced by exposure to fluconazole and

voriconazole [22]. In contrast, there is little change in the PDR

sub-family of the ABC-type transporters associated with drug

efflux [90] (not shown), and activity is not affected in azole-

resistant isolates [79]. It is therefore likely that azole resistance in

the C. parapsilosis species group is associated with increased

expression of the MDR1 family.

Alternative splicing of TFB3 in Candida species
During annotation of the C. orthopsilosis genome we found

evidence that the gene TFB3 may be alternatively spliced in

multiple Candida species, potentially resulting in two different

versions of the protein. TFB3 codes for one of the nine subunits of

the general transcription factor TFIIH, and is highly conserved

between S. cerevisiae and vertebrates [91]. There is no intron in S.

cerevisiae TFB3. However, Mitrovich et al [92] identified an intron

near the 59 end of C. albicans TFB3, and we have found that introns

are present and spliced in TFB3 of both C. parapsilosis and C.

orthopsilosis (Figure S4).

Further analysis revealed that the TFB3 genes of seven species

in the Candida clade contain introns. Remarkably, even though the

introns are quite variable in length and sequence, they are all

multiples of 3 nucleotides long and contain no stop codons

(Figure 4). Thus unspliced mRNAs in these species could code for

protein isoforms that are 18–32 amino acid residues longer than

the spliced isoforms, for example extending the C. orthopsilosis Tfb3

protein from 343 to 361 residues. The spliced protein products

from the seven species are highly similar, whereas the amino acid

sequence corresponding to translation of the intron is quite

variable. It is very improbable that these intron sequences are all

translatable purely by chance, and more probable that the

unspliced mRNA is translated under some circumstances. In

analysis of published RNA-seq data from C. parapsilosis [48] and C.

albicans [93,94] and of our own unpublished data from C.

orthopsilosis, we found that about 10% of TFB3 transcripts retain

introns in C. orthopsilosis and C. albicans, whereas about 90% of

TFB3 transcripts are unspliced in C. parapsilosis (Figure S4). The

cause of this large variation among species is unknown.

In contrast to these seven species in the Candida clade that have

translatable TFB3 introns, two others (C. lusitaniae and M.

guilliermondii) have no apparent intron in TFB3. In Debaryomyces

hansenii, a TFB3 intron was annotated [95], and an unspliced

mRNA could potentially be translated by using a different start

codon (Figure 4), but readthrough translation is not possible.

To establish whether an intron in TFB3 was ancestrally present

at the base of the Candida clade we re-examined TFB3 gene

structures in the family Saccharomycetaceae, which is an outgroup

to this clade. Although S. cerevisiae TFB3 has no intron, we find that

many other Saccharomycetaceae species (such as Lachancea waltii,

Zygosaccharomyces rouxii and Vanderwaltozyma polyspora in Figure 4)

have an intron between the A and the TG of the start codon. This

intron interrupts TFB3 in the same phase (after base 1 of a codon)
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as the Candida intron, and the N-termini of these Saccharomyce-

taceae proteins are very similar, in length and in sequence, to the

spliced Candida products. Thus a phase 1 intron appears to have

been present ancestrally in the common ancestor of Saccharomy-

cetaceae and the Candida clade. However, the unspliced introns in

Saccharomycetaceae cannot code for extended proteins.

The amino terminus of Tfb3 contains a RING finger [96],

which is a zinc-binding domain proposed to play a role in

coordinating the structures of multiprotein complexes. Two zinc

ions are bound by seven cysteine and one histidine residues, and

two of these cysteines are located very close to the intron (arrows in

Fig. 4) and conserved between yeasts and human. In fact, the N-

terminus of Tfb3 from human, mouse and Xenopus

(MDDQGCPRCK [91]) is more similar to the spliced Candida

proteins than to S. cerevisiae Tfb3. Therefore, we hypothesize that

the RING finger domains of the spliced and unspliced forms of

Tfb3 protein may have different properties, possibly affecting the

properties of the TFIIH transcription factor and hence the

regulation of other genes.

Identification of an intein sequence in C. orthopsilosis
VMA1

The C. orthopsilosis ortholog (CORT0D07070) of the S. cerevisiae

VMA1 gene includes an intein, or ‘protein intron’, whereas C.

parapsilosis VMA1 does not (Figure 5). VMA1 codes for a vacuolar

ATPase, and was the first intein-containing gene described

[97,98]. Inteins excise from the host protein, repairing the

remaining ends by ligation to form a new peptide bond. The

VMA1 intein, called VDE or PI-SceI in S. cerevisiae, contains both

self-splicing domains and a homing endonuclease domain (HEG).

HEGs allow DNA coding for the intein to be copied to an empty

target allele by generating a double stranded break in the DNA

that is repaired by gene conversion [99].

The VDE intein is widespread in yeasts in the class

Saccharomycetes, including Candida tropicalis [100]. We found that

VDE is present in five of the 10 sequenced Candida genomes (C.

orthopsilosis, C. tropicalis, L. elongisporus, Sch. stipitis and D. hansenii) and

is missing in five (C. parapsilosis, C. albicans, C. dubliniensis,

Meyerozyma guilliermondii, Clavispora lusitaniae) (Figure S5). Both

groups include fully sexual and apparently asexual species [19]. In

many species, inteins are inherited horizontally, because the

homing mechanism ensures that they are inherited in the meiotic

products [97]. However, once they are fixed in the population the

HEG domain is likely to degenerate as there will no longer be a

selection for function [100]. For example, Posey et al [101] showed

that homing activity was functional in only two VDE genes from 12

species tested. The splicing domain however must remain intact so

that the host protein maintains its function. This is supported by

an analysis of the Candida inteins; the splicing domains (motifs A, B,

F and G, [102]) are relatively well conserved (Figure 5).

The homing (HEG) region of inteins contains four consensus

motifs, termed C, D, E and H [99,102,103]. Regions C and E are

the LAGLIDADG motifs, which form alpha helices. Two Asp (D)

residues within these motifs are essential for HEG function, both in

VDE and in the PRP8 intein in other fungi [104,105]. The motifs

are conserved in the Vma1 inteins from most of the Candida

species, including C. orthopsilosis, suggesting that homing may occur

(Figure 5). However, domains C and H are highly degenerate in L.

elongisporus, and the Asp associated with domain C is substituted in

this species as well as in the C. tropicalis and D. hansenii proteins

Figure 4. Potential in-frame translation of unspliced introns in Candida TFB3 genes. The 59 end of TFB3 genes from 14 yeast species are
shown, ending at a conserved region coding for the amino acid sequence DMCPICK. Exons and introns are written in upper and lower case,
respectively. Gray backgrounds indicate potential in-frame translation of introns. Spliced and unspliced mRNAs have been identified in three species:
C. orthopsilosis, C. parapsilosis and C. albicans. Probable intron branch sites are underlined. Upstream in-frame stop codons are boxed. Two possible
alternative gene structures are shown for D. hansenii. Arrows mark two Cys residues that form part of the RING finger domain. The topology of the
phylogenetic tree is from Fitzpatrick et al [126].
doi:10.1371/journal.pone.0035750.g004
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(Figure 5). It is possible that the intein-containing alleles are

already at a 100% frequency in populations of these species so that

homing is unnecessary. It is also possible that persistence of the

element is maintained by horizontal transfer [106].

Horizontal Gene Transfer of a MAT/GAT gene
Acquisition of genes by horizontal gene transfer (HGT) can

have a dramatic effect on the physiology of the recipient organism.

In fungi, particularly within the Pezizomycotina, transfer of genes

has changed host range, and secondary metabolism

[107,108,109]. HGT in Ascomycetes is relatively rare, but several

examples have been identified [110]. One of the best characterized

examples is the acquisition of a bacterial URA1 (dihydroorotate

dehydrogenase) gene by an ancestor of Saccharomyces cerevisiae,

which enabled the anaerobic biosynthesis of uracil [111]. Part of

the biotin synthesis cluster in S. cerevisiae and related yeasts was

built by HGT [112].

There are very few examples of HGT in Candida species,

possibly because the reassignment of the CTG codon to serine

inhibits expression of transferred genes [113]. We have previously

shown that the only detectable examples of recent HGT from

bacteria to this clade are restricted to the C. parapsilosis sensu lato

species [114]. A proline racemase gene was acquired by a recent

ancestor of C. parapsilosis sensu stricto, most likely from Burkholderia

[114]. Similarly, a homolog of Phenazine F (PhzF) was acquired in

an ancestor of C. parapsilosis and C. orthopsilosis from an alpha-

proteobacteria, following the loss of the original fungal-type PhzF

[114]. We confirmed that the PhzF gene is present in the whole

genome sequence of C. orthopsilosis (CORT0G03930).

We looked for further examples of HGT by comparing all the

genes that are unique to C. orthopsilosis to the non-redundant

database (nr) from NCBI. We also searched for C. orthopsilosis

proteins that are more similar to bacterial proteins than to any

open reading frame in C. parapsilosis. We identified one gene in C.

orthopsilosis that appears to have originated by HGT from a

bacterium (Fig. 6). The C. orthopsilosis CORT0E04740 gene encodes

a potential Maltose O-acetyltransferase (MAT)/Galactoside O-

acetyltransferase (GAT) enzyme. Members of this family add

acetyl groups to sugars in the cell wall; a well-known member is the

lacA gene in the E. coli lac operon [115]. The C. orthopsilosis MAT/

GAT is most similar to proteins from Sphingobacterium (68%

identity), and other bacteria in the clade Bacteroidetes.

The MAT/GAT gene appears to have been gained by the

common ancestor of C. orthopsilosis and C. parapsilosis. There is no

MAT/GAT gene at the syntenic position in the genome of L.

elongisporus or other Candida clade species. However, whereas the

Figure 5. Identification of intein sequences in the Vma1 proteins of Candida species. The figure shows the alignment of the intein (VDE)
sequences only; the alignment of the entire Vma1 proteins is shown in Figure S5. The motifs are labeled according to the nomenclature of Perler et al
[102]. Motifs A, B, F and G are important for self-splicing. Motifs C, D, E and H are associated with homing. Two aspartic acids within the LAGLIDADG
motifs in C and E that are required for homing are indicated with asterisks. The protein sequences were aligned and visualized using SeaView [122].
doi:10.1371/journal.pone.0035750.g005
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gene has been retained intact in C. orthopsilosis it has degenerated

into a pseudogene in C. parapsilosis, which is why we did not

identify it in our earlier analysis [114]. The Saccharomycotina

species also contain another distantly related member of the

MAT/GAT family (represented by CORT0C03620 in C. orthopsi-

losis and orf 19.7437 in C. albicans). The function is unknown,

although expression of the S. cerevisiae ortholog YJL218W is

increased during growth on oleate [116]. It is not known what

effect the acquisition of a novel MAT/GAT enzyme has on the

physiology of C. orthopsilosis.

Conclusions
The availability of the C. orthopsilosis genome sequence makes an

important contribution to comparative genome analysis of Candida

species, and in particular to the evaluation of virulence traits. We

have also provided the means for analysis of differences in biofilm

formation, drug resistance and pathogenicity of the C. parapsilosis

species group.

Methods

Genome sequencing and assembly
The genome sequence of the diploid Candida orthopsilosis strain

90–125 [12] was assembled de novo as a 12.7 Mb haploid consensus

by LGC Genomics (www.lgc.co.uk), using a Roche GS FLX

instrument with Titanium chemistry (848,000 paired reads;

approximately 106 coverage). These reads were assembled into

39 scaffolds (933 contigs) using Newbler [42]. Independently, 4800

paired Sanger reads were obtained from a fosmid library from the

same strain, assembled separately, and used to close some gaps in

the Roche assembly. Non-repetitive fosmid read pairs were

mapped to the assembly and used to verify the Roche scaffold

structure and to join some scaffolds, resulting in 8 superscaffolds.

We then integrated data from 1056 sequence coverage (35

million 78 bp single reads) of the same strain, obtained using an

Illumina GAII at University College Dublin. Genomic DNA was

extracted from cells grown in YPD at 30 C using a Genomic-tip

Figure 6. Horizontal Gene Transfer of a member of the MAT/GAT family in C. orthopsilosis. (A) Gene order surrounding the MAT/GAT gene
in C. orthopsilosis, and the syntenic regions in C. parapsilosis and L. elongisporus. The grey, green and blue arrows represent conserved genes in all
three species. The solid red arrow represents an intact ORF in C. orthopsilosis; the transparent red arrow represents a pseudogene in C. parapsilosis. (B)
Multiple alignment of the predicted MAT/GAT proteins from Sphingobacterium (Sb1 = ZP_03969495.1, Sb2 = YP_004319944.1), Pedobacter (Pb,
YP_003093425.1), C. orthopsilosis (Co) and C. parapsilosis (Cp). Yellow squares mark the presence of frameshifts (forward slash) and internal stop
codons (x) that result in a pseudogene in C. parapsilosis.
doi:10.1371/journal.pone.0035750.g006
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500/G column (Qiagen). 200 bp fragments, bound to custom

adaptors, were used with the Illumina v2 Standard Cluster

Generation Kit and v4 Sequencing Kits. We used the Illumina

data in two ways. First, some of the remaining gaps in the genome

were closed by contigs from a de novo Velvet assembly [43] of the

Illumina data. Second, we replaced approximately 98% of the

Roche data in our superscaffolds with Illumina data. This was

done by using the Columbus module of the Velvet package (www.

ebi.ac.uk/,zerbino/velvet), designed for resequencing projects, to

make a guided assembly of the Illumina reads, using the Roche

superscaffolds as a reference. We made a Python pipeline to

replace parts of the Roche superscaffolds with the corresponding

parts of the Illumina guided assembly, provided that the indel rate

between the two regions was less than 1 indel per 2 kb. All cases

where the level of indels exceeded 1/2000 were investigated

manually, and most were due to poly-N regions in the Roche data.

A consensus sequence for the ribosomal DNA repeating unit

was assembled manually and integrated into the scaffolds, and

separately submitted to NCBI (FN812686.1). The annotated

chromosomes have been submitted to EMBL with accession

numbers HE681719–HE681726.

Gene prediction and annotation
The C. orthopsilosis gene catalog was initially predicted using an

automated annotation pipeline [117] in combination with the

Candida Gene Order Browser [118], resulting in 5565 predicted

ORFs. The pipeline flagged potential errors due to insertions,

deletions, or frameshifts in 263 genes; where possible, these were

corrected following analysis of the raw sequencing data. A Perl

script was used to identify potential missing ORFs in intergenic

regions, which added 200 genes to the total. All remaining models

with frameshifts or internal stop codons were annotated as

pseudogenes. All predictions shorter than 150 amino acids were

compared to other Candida genomes using CGOB [118] and to the

non-redundant protein database from NCBI [119]. Models with

no conservation in any other species were removed from the

annotation. We included 65 incomplete gene models, caused by

gaps in the C. orthopsilosis genome, with orthologs in C. parapsilosis.

Where the models spanned a gap in the genome sequence, only

the larger of the two parts of the model was annotated. The C.

orthopsilosis annotation was integrated into CGOB [118], which

was then used as a framework for identifying orthologs of C.

orthopsilosis genes in other Candida species and for identifying

singletons, duplications and the insertion or deletion of genes in C.

orthopsilosis with respect to other species. This analysis also resulted

in the identification of a small number of genes that were originally

overlooked in the annotation of C. parapsilosis, which have been

added to a recent update for that species [48].

Orthologs of 355 genes containing one or more introns in the

coding sequences in C. parapsilosis [48] were manually annotated

using Artemis [120]. Introns within coding sequences in C.

orthopsilosis were predicted by alignment of the protein sequences

and manual identification of consensus splice sites. tRNA gene

structures were predicted using the online version of tRNAscan-SE

[49] with default parameters.

Phylogenetic and evolutionary analyses
We used data from 4800 Sanger reads (typically ,700 bp) from

a C. metapsilosis fosmid library (strain ATCC96143), in combina-

tion with the genome sequences of C. orthopsilosis and C. parapsilosis,

to investigate their phylogenetic relationship. We identified C.

metapsilosis reads that had a bidirectional (BLASTX and

TBLASTN) best hit relationship with a C. orthopsilosis gene. Reads

whose translation included .1 stop codon or .2 undefined amino

acid residues were discarded. We then used CGOB to extract

syntenic orthologs of the C. orthopsilosis gene in C. parapsilosis, L.

elongisporus, C. albicans, C. dubliniensis, and C. tropicalis. Only 1972

loci with an ortholog in all 6 species were retained. For each of

these we aligned the 6 proteins with the translation of the C.

metapsilosis read, using Clustal Omega [121]. To remove poor-

quality alignments we then discarded all gapped sites, and retained

each locus only where $50 residues were identical among all 7

species. Alignments that met these criteria were concatenated to

make a superalignment containing 262,175 amino acid sites,

derived from 1334 genes. A maximum likelihood phylogenetic tree

was constructed from the superalignment, using PhyML as

implemented in SeaView [122]. The parameters were the LG

substitution model, 4 rate categories, SPR+NNI branch inter-

change, with 5 randomized starting trees. We verified the topology

and carried out the Shimodaira-Hasegawa test using AAML from

the PAML package [123].

To calculate nucleotide substitution levels, a list of 5091 genes

with orthologs in C. orthopsilosis, C. parapsilosis, C. albicans and C.

dubliniensis was extracted from CGOB. Pairwise alignments within

each group were made with PAL2NAL [124] removing positions

with gaps. CodeML [125] was used to calculate dN and dS values,

using the F3X4 model, no variation among sites, and estimated

values for kappa, omega and alpha. To identify genes with genes

whose evolutionary rate may have changed between the C.

orthopsilosis/C. parapsilosis pair and the C. albicans/C. dubliniensis pair,

we first identified the 30 genes with the highest dN values for each

comparison, and then sorted these genes by the ratio of divergence

levels in the two species. Table S2 shows the 15 genes at each

extremity.

To quantify genomic rearrangement between C. orthopsilosis and

C. parapsilosis, we used GRIMM [44] to study large rearrange-

ments identified using dot-matrix plots, and custom scripts to study

small rearrangements. Genes without an ortholog in C. parapsilosis

were ignored.

Gene Family analysis
To investigate gene content differences between C. orthopsilosis

and C. parapsilosis we used orthology assignments obtained from

CGOB (Maguire at al., in preparation). We considered C.

orthopsilosis genes that had an ortholog in at least four Candida

species but not in C. parapsilosis, and C. parapsilosis genes with

orthologs in at least four Candida species but not in C. orthopsilosis.

Missing genes were verified manually. Species-specific pseudo-

genes and ORFs smaller than 150 amino acids were ignored. We

also ignored all cases in C. orthopsilosis that corresponded with a gap

in the genome sequence. The final list is included in Table S3.

Supporting Information

Figure S1 Intron gains and losses in C. orthopsilosis
and C. parapsilosis.

(TIF)

Figure S2 Conservation of xylose assimilation genes in
CTG clade species.

(PDF)

Figure S3 Phylogenetic analysis of the Drug H+ Anti-
porter-1 (DHA1) subfamily of the Major Facilitator
Superfamily (MFS) in C. orthopsilosis, C. parapsilosis
and C. albicans.

(TIF)
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Figure S4 Examples of RNA-seq reads showing spliced
and unspliced forms of the TFB3 transcript in three
Candida species.
(TIF)

Figure S5 Complete multiple alignment of the VMA
proteins in Candida species.
(EPS)

Table S1 Intron information for C. orthopsilosis.
(XLS)

Table S2 Genes with extreme differences in the dN
rates.
(XLS)

Table S3 Genes missing from C. orthopsilosis.

(XLS)
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