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Abstract

The discovery of cis-regulatory elements is a challenging problem in bioinformatics, owing to

distal locations and context-specific roles of these elements in controlling gene regulation.

Here we review the current bioinformatics methodologies and resources available for

systematic discovery of cis-acting regulatory elements and conserved transcription factor

binding sites in the chick genome. In addition, we propose and make available, a novel

workflow using computational tools that integrate CTCF analysis to predict putative insulator

elements, enhancer prediction and TFBS analysis. To demonstrate the usefulness of this

computational workflow, we then use it to analyze the locus of the gene Sox2 whose

developmental expression is known to be controlled by a complex array of cis-acting

regulatory elements. The workflow accurately predicts most of the experimentally verified

elements along with some that have not yet been discovered. A web version of the CTCF

tool, together with instructions for using the workflow can be accessed from



2

http://www.xxxx.com. For local installation of the tool, relevant Perl scripts and instructions

are provided in the directory named “code” in the supplementary materials.

Introduction

The control of the precise spatial and temporal expression of genes is a fundamental aspect

of development. In the developing embryo, the complex biological machinery that governs

this precision has a remarkable capacity to process an enormous number of regulatory cues

for various biological processes. This results in sets of time-dependent and tissue-specific

regulatory outputs, critical in orchestrating different stages of embryonic development.

Capturing these transcriptional activation states by the embryo at the right stage and time

depends on several factors including the position of the gene in the genome, its local

chromatin structure and the transcriptional regulatory elements associated with each gene

(Maston et al., 2006; Vogelmann et al., 2011). Indeed the core promoters of genes, together

with nearby proximal regulatory elements, are essential for proper initiation of transcription

via recruitment of RNA polymerase II. However, their participation alone is not sufficient to

regulate the process of transcription because distal cis-acting regulatory elements, such as

enhancers, silencers, and insulators act in concert with promoters to streamline the process

of transcription (Figure 1). This poses two challenges. First, regulatory elements such as

enhancers are not necessarily located close to the genes they regulate, sometimes having

the ability to act over considerably large distances in the genome. To understand how

enhancers are constrained to act specifically within appropriate chromosomal domains is,

therefore, a fundamentally important question. Second, the presence of multiple regulatory

transcription factor binding sites (TFBS) within enhancers confers combinatorial control of

regulation, making it difficult to decipher their role in the context of spatial and temporal gene

expression.

Chromosome conformation capture (3C) studies have shown that long-range enhancer

function can be mediated by chromatin loops, hence facilitating the juxtaposition of distant

enhancer-bound transcription factors and their cognate promoters (Barrett et al., 2012;

Cullen et al., 1993; Dekker et al., 2002; Raab and Kamakaka, 2010). It has been proposed

that the well characterised insulator element CCCTC-binding factor (CTCF) might be

responsible for inducing these chromatin loops by binding to specific insulator sites, together

with the DNA-binding protein Cohesin (Feeney and Verma-Gaur, 2012; Kim et al., 2011).

This CTCF-mediated looping mechanism may provide a physical basis for the segregation of

functional domains by shielding biologically relevant enhancer-promoter interactions from

inappropriate regulatory interactions outside of these functional domains (Cuddapah et al.,

2009; Dean, 2011; Kornblihtt, 2012). Therefore, CTCF binding sites can predict the position
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of putative insulator regions, which can estimate the likely range of influence of genes and

enhancers within a region.

Here we review the current bioinformatics methodologies and resources available for

systematic identification of regulatory elements in the chick genome. We focus on

computational methodologies available for the discovery of cis-acting regulatory elements

and common approaches for Transcription Factor Binding Site (TFBS) analysis. In addition,

we propose and make available, a novel workflow using computational tools that integrate

tools for CTCF analysis to predict putative insulator elements, enhancer prediction and

TFBS analysis. Finally, to demonstrate the usefulness of this computational workflow, we

use it to analyze the gene Sox2, whose developmental expression is known to be controlled

by a complex array of at least 25 cis-acting regulatory elements (Uchikawa et al., 2003;

Uchikawa et al., 2004), comparing the results of our bioinformatics analyses with

experimentally verified data from the literature.

A review of current computational tools

The task of analysing gene regulation is complicated by the fact that it is context-dependent:

genes are regulated in time and space, in different cell types, and also vary between

different animals. The particular animal model being studied coupled with specific tissues or

cell lines of interest and specific developmental or other physiological processes can affect

how one goes about using the currently available computational resources. Analysis using

Bioinformatics normally begins with the identification of promoters and enhancers. These

methods tend to rely on nucleotide sequence conservation between orthologous genes as

criteria to identify putative regulatory elements (Wasserman and Sandelin, 2004). It is

generally accepted that the sequences close to a TSS (Transcription Start Site) may be

functionally important. However, the identification of these regions is not straightforward and

gains complexity with the addition of context-dependent alternative TSSs. The public

resource ‘Eukaryotic Promoter Database’ (http://epd.vital-it.ch/) (Perier et al., 2000) was

among the first to make available a collection of non-redundant eukaryotic RNA polymerase

II promoters, defined experimentally by a TSS. Although a useful resource, the approach

relies on the identification of core promoter elements without taking into account that a single

gene can have alternative TSSs. A number of programs have improved the success rate of

TSS detection by using training sets containing known promoter regions and CpG islands

(site of DNA methylation). Among the most popular ones are PromoterInspector from

Genomatix (http://www.genomatix.de/) (Scherf et al., 2000), FirstEF

(http://rulai.cshl.org/tools/FirstEF/) (Davuluri, 2003), and Eponine

(http://www.sanger.ac.uk/resources/software/eponine/) (Down and Hubbard, 2002). It is

http://epd.vital-it.ch/
http://www.genomatix.de/
http://rulai.cshl.org/tools/FirstEF/
http://www.sanger.ac.uk/resources/software/eponine/
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however worth noting that these techniques suffer from some important limitations. First, not

all of the TSSs reside proximally to a CpG island. Second, the correlation between CpG

islands and promoter regions does not always have a syntenic relationship among different

species. Alternative approaches using transcript data, are therefore necessary for further

improvement in this area of research (Wasserman and Sandelin, 2004).

An analysis of gene regulation would be incomplete without identifying enhancers since they

play a critical role in regulating tissue-specific gene expression (Jin et al., 2011). The VISTA

Enhancer Browser (http://enhancer.lbl.gov/) (Visel et al., 2007) is a popular resource which

facilitates comparative genome analysis for the purpose of discovering sets of highly

conserved non-coding DNA segments in vertebrates, which can then be tested for enhancer

activity. It provides a public database consisting of experimentally validated non-coding

fragments found to be highly conserved across vertebrate species including chick, and

showing enhancer activity in transgenic mice. As a part of the selection procedure prior to in

vivo testing, conservation together with relevant experimentally-determined epigenetic

enhancer marks (from ChIP-Seq experiments) are used as criteria to identify putative

enhancer sequences. However, to date, only 1760 predicted elements from this database

have been tested in vivo, of which just over half (893) were found to have enhancer activity

(http://enhancer.lbl.gov/), indicating that in validated studies, ~ 51% of predicted enhancers

(containing conserved TFBSs) have real biological function. Moreover, ChIP-Seq and other

methods of active enhancer detection yield context-specific results – therefore data from

established cell lines may not include information about the specific regulatory elements

involved in the biological process of interest. Due to these limitations, alternative

computational strategies for identifying other tissue-specific and time-dependent enhancers

become important.

Over the years, phylogenetic footprinting has gained widespread popularity as the gold

standard for computational prediction of cis-regulatory elements. This approach is based on

the assumption that sequence comparison of orthologous genomic regions in closely related

species can predict important biological functions (Woolfe et al., 2005). Because mutations

accumulate slowly within functional regions of genes, phylogenetic footprinting can identify

enhancers as conserved segments of DNA containing similar sets of transcription factor

binding sites retained through evolution. The availability of several genome assemblies has

simplified the task of identifying and subsequently analyzing these conserved regions.

Initially, this relied on constructing pairwise alignments between related species, but

resources such as the UCSC genome browser (http://genome.ucsc.edu/cgi-bin/hgGateway)

(Dreszer et al., 2012), ENSEMBL (http://www.ensembl.org/index.html) (Flicek et al., 2012),

ECRbase (http://ecrbase.dcode.org/) (Loots and Ovcharenko, 2007), and Vista portal

http://enhancer.lbl.gov/
http://enhancer.lbl.gov/
http://genome.ucsc.edu/cgi-bin/hgGateway
http://www.ensembl.org/index.html
http://ecrbase.dcode.org/
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(http://genome.lbl.gov/vista/index.shtml) (Brudno et al., 2007) now use multiple species

alignments to help carry out phylogenetic footprinting. The resulting inter-species conserved

sequences can then be analysed for the presence of TFBSs.

Transcription factor binding site analysis can be performed using known motifs or by

discovering enriched de novo motifs within the set of sequences. It is common practice to

represent known motifs as either a consensus sequence or a Position Frequency Matrix

(PFM), where the preference for each of the four bases A, T, G, and C is captured

(Hannenhalli, 2008). The TRANSFAC (http://www.gene-regulation.com/pub/databases.html)

(Matys et al., 2006), and JASPAR (http://jaspar.cgb.ki.se/) (Sandelin et al., 2004) databases

are the two leading resources that compile these motifs from the literature but unlike

TRANSFAC, JASPAR provides open data access to their matrices. In addition, the latter

provides the JASPAR CORE database, containing a collection of manually curated, non-

redundant profiles, which have been validated experimentally for multicellular eukaryotes. It

is worth noting that DNA motifs recognized by transcription factors can be short and

degenerate; therefore, computational approaches to identify TFBSs can suffer from high

error rates. A reliable approach is to combine TFBS analysis with phylogenetic footprinting,

as the occurrences of conserved binding sites across multiple closely related species

suggests a greater likelihood of the sites being biologically functional.

The choice of a particular tool or resource should be determined by the type of biological

question being investigated (Table 1). Several tools and resources are often used in parallel

in the form of a workflow. The following section provides a proposed workflow for analysis of

cis-regulatory elements useful for the study of gene regulation during chick development.

This is most useful when performed in parallel with an experimental workflow, such as that

described in the accompanying article (Streit et al., 2013).

Proposed workflow

Major challenges affecting the discovery of cis-acting regulatory elements include that they

can be located very far from the gene they regulate, and that they can regulate several

neighbouring genes, located up- or downstream, on either strand. Although comprehensive

genome-wide studies of chromatin dynamics in multiple cell types suggest that majority of

enhancer activity correlates with the expression of the most proximal genes, enhancers can

have the ability to act as long-range regulators; sometimes occupying locations up to 1

megabases away from the gene they regulate (Chan and Kibler, 2005). Because of this, it is

important to examine the regulatory architecture of the genome around the genes of interest

before focussing on enhancer detection. CTCF is a well characterised insulator protein

http://genome.lbl.gov/vista/index.shtml
http://www.gene-regulation.com/pub/databases.html
http://jaspar.cgb.ki.se/
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known to facilitate shielding of genes within specific regulatory modules, thereby preventing

them from being influenced by regulatory elements outside of these functional domains

(Cuddapah et al., 2009; Dean, 2011; Kornblihtt, 2012). Therefore, CTCF binding sites can

predict the position of putative insulator regions, which can estimate the likely range of

influence of genes and enhancers within a region. It is worth noting that in the event of

several genes being present within an isolated putative insulator region, it is possible for

them to either share the same, or have different regulatory elements. However, in both

cases, the sphere of influence of such regulatory regions will be restricted to the length of

the segregated insulated domain. The next step is to detect conserved non-coding segments

of DNA that may act as enhancers within these insulator regions. Finally, candidate

enhancer regions can be analyzed for the presence of transcription factor binding sites to

predict regulatory mechanisms that can then be tested experimentally. Taking all of the

above into account, we have developed a computational workflow (Figure 2).

CTCF insulator analysis

Genomic binding of CTCF at specific recognition sites induces chromosomal loops,

providing a physical basis for domain segregation (Kim et al., 2011). Therefore, our

proposed workflow begins with the task of predicting these CTCF-specific binding sites in

any chromosome and species of choice. The following is a description of a Perl script that

we developed to automate this task (A web version of the program can be accessed from

http://www.xxxx.com).

The JASPAR database contains a collection of 913 CTCF binding sites, represented as a

Position Frequency Matrix (PFM). The PFM is defined as a | Σ | x m matrix, where m is the

length of binding site and Σ = {A,T,G,C} is the alphabet of permitted symbols, populated with 

f(σ,j), the frequency of symbol σ at position j of the binding site. The result of this method of

representation is that the preferences for each of four bases A, T, G, and C are captured at

each position of the binding site (Figure 3a). The PFM for CTCF can then be used to scan

entire chromosomes to predict CTCF binding sites. To perform this scanning, the CTCF

PFM needs to be converted into a Position Weight Matrix (PWM) according to the following

equation:

w(σ,j) = log2 (((f(σ,j) + sqrt(N) x b(σ)) / (N + sqrt(N))) / b(σ)) 
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Where w(σ,j) is the weight of nucleotide σ at position j, N is the total number of binding sites

or the sum of all nucleotide occurrences in the column, and b is the prior background

frequency of the nucleotide σ.

The sum of weights for corresponding nucleotides at each column of the matrix then

estimates the likelihood of any sequence of length m to be an instance of a CTCF binding

site and takes into account the GC content of the genomic region being scanned (Figure 3b).

The Perl script automates the above analysis; starting from the first nucleotide of a selected

chromosome, calculates a weighted score in a one-nucleotide sliding window until both

strands of the entire chromosome have been scanned for CTCF sites. This procedure is

then repeated with randomly shuffled sequences from the same chromosome (to ensure that

it maintains the same GC content as the original chromosome) and a probability distribution

of weight scores is generated, comparing the number of occurrences of each given weight in

the empirical distribution with that in the null distribution (Figure 3c). From this, the False

Discovery Rate (FDR) is then computed as follows:

FDR = V / V+S

Where V is the number of sites of a given weight in the control sample (random shuffled

sequence) and S is the number of sites of a given weight in the test sample (actual

chromosome) (Figure 3d). A P-value for each weight is also calculated as follows:

P = A/B

Where A is the number of sites with weighted score equal to the cut-off and above in the

control sample, and B is the total number of sites in the control sample.

The FDR together with the P-value for each calculated weight of the CTCF motif provides

the user with statistical information from which a threshold of significance can be set. A

weight score of ≥18.0 with an FDR and P-value of 0 for instance, might generate 1160 CTCF 

binding sites from the test sample none of which are false positives as indicated by its FDR.

On the other hand, a weight score of ≥17.0 with an FDR of 8.5% and P-value of 7.5 x 10-7

might generate 1749 CTCF binding sites, 148 of which are expected to be false positives.

After selection of a weight threshold by specifying a cut-off for the FDR, the program will

display all CTCF sites with a weight equal to or above the user-defined threshold, together

with their genomic coordinates in the input chromosome, weight score of each site, and the

strand in which they appear.
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CTCF-bound sites can be classified into 1) constitutive sites, where CTCF will be bound at

the same genomic location in different tissues and are therefore largely context-

independent, and 2) labile sites, which may be involved in tissue-specific gene regulation. It

is thought that the former are more likely to act as insulators (Martin et al., 2011). For this

reason, as well as because in most situations the most relevant cell line or tissue sample for

the problem being studied will not have been analysed experimentally for CTCF binding, we

decided to focus on identifying putative constitutive CTCF sites. Having computationally

identified significant potential CTCF sites chromosome-wide in human, the next step at this

stage of the workflow is to compare these sites to existing ChIP-Seq CTCF-enriched regions

from several different tissue samples in human (downloaded from the UCSC genome

browser) to see if they constitutively fall in the same genomic locations. For synteny

analysis, the process of computationally predicting CTCF sites is then repeated in equivalent

chromosomes in chick and mouse, followed by the use of existing ChIP-seq CTCF-enriched

datasets (for both chick and mouse) generated from the laboratory of Gomez-Skarmeta

(Martin et al., 2011) to find constitutive sites in both species. Coincidence between these

experimental results and the computational predictions should predict the most likely

constitutive sites, and therefore syntenic putative insulators.

Enhancer discovery

Once candidate insulators encapsulating the gene of interest have been identified, the next

stage is to discover enhancers likely to regulate the gene within the insulated region.

DREiVe (Discovery of Regulatory Elements in Vertebrates) is a bioinformatics tool for

identifying regulatory elements (such as enhancers) as evolutionarily conserved, order-

independent clusters of short conserved DNA motifs in vertebrate species

(http://dreive.cryst.bbk.ac.uk/) (Yeowell and Sosinsky, 2012). By integrating a traditional

pattern discovery algorithm, SPLASH (Califano, 2000), with a novel local permutation

clustering algorithm, it offers a platform which relies on the evolutionary conservation of

transcription factor binding sites but without requiring prior knowledge of these transcription

factors or their cognate binding sites.

DREiVe analysis begins with the task of identifying Short Conserved Motifs (SCMs), which

occur at least once in each of a set of orthologous input sequences. This step is carried out

by the SPLASH algorithm, which identifies SCMs as conserved motifs represented as

regular expressions where rigid sites conserved across all species are denoted by their

corresponding nucleic acid symbols (A, T, G, C) and variable positions as wildcards (‘.’).

There are two specific critical parameters used by SPLASH to determine the class of motifs

identified. The first is the ‘motif density’, which is the minimum number of conserved

http://dreive.cryst.bbk.ac.uk/
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residues, k that occur over a window length, w. The second is the minimum number of

matching residues, l, which defines the length of the motif. As an example, the constraints

set by the parameters k=6, w=8, and l=9 would be satisfied by a motif such as

‘AC.T.AGGTA..T’. This is because in a sliding window length of 8 residues, 6 of them are

always conserved and the total number of conserved residues defining the length of the

motif is equal to 9.

The next step is to discover Local Permutation Clusters (LPCs), which are subsets of

conserved SCMs located within a user-defined maximum cluster length, l in each of the

orthologous species. The discovery of these SCMs within a pre-defined cluster length is

order-independent in the sense that the precise order of SCMs in each species-specific

cluster is irrelevant to the discovery of LPCs. The PromoClust algorithm is used to detect

maximal LPCs, followed by using a heuristic approach to assign a conservation score to

each position of the input sequences equal to the length of the SCM. The LPCs that are

assigned the highest conservation score are then reported as putative functional enhancers.

Transcription Factor Binding Site Analysis (TFBSA)

Following the identification of candidate enhancers using DREiVe, the next and final stage in

our workflow is to scan conserved SCMs present in the DREiVe-predicted enhancers

against a library of TRANSFAC and JASPAR PFMs. This enables us to detect sets of

conserved transcription factor binding sites in each candidate enhancer sequence. For this,

we use ‘matrix-scan’ from the Regulatory Sequence Analysis Tools (RSAT) workbench

(http://rsat.ulb.ac.be/rsat/) (Thomas-Chollier et al., 2011a). Matrix-scan accepts an unlimited

number of sequences in FASTA format as the input and requires the user to provide a set of

transcription factor matrices such as TRANSFAC and JASPAR PFMs. The program then

scans the input sequences against each PFM and at each position of the input sequence, a

sequence segment, S equal to the length of the PFM is assigned a weighted score (Ws).

This is calculated as the log ratio between two probabilities as follows:

Ws = log[P(S|M)/P(S|B)]

Where

M = P(S|M) – the probability of the sequence segment, S, given the PFM model

and P(S|B) – the probability of the sequence segment, S, given the background model

Selecting an appropriate background model is a prerequisite for accurate pattern discovery

because it is used to estimate the likelihood of sites occurring by chance alone. Matrix-scan

http://rsat.ulb.ac.be/rsat/
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allows users to specify a particular Markov order as a background model, where an order of

n suggests that the probability of each nucleotide base is reliant on n preceding nucleotide

bases in the sequence. Likewise, a Markov order of 0 means that each residue does not

depend at all on the preceding bases, and is therefore a Bernoulli model. Our complete

workflow is illustrated in Figure 2.

Cis-regulatory analysis of chick Sox2

To test the usefulness of our computational workflow to identify biologically significant

regions at each stage of cis regulatory analysis, we evaluated its potential by analysing the

locus of the gene Sox2. Sox2 is an important gene implicated in cell fate determination

especially in embryonic stem cells and neural development (Collignon et al., 1996;

Papanayotou et al., 2008; Pevny et al., 1998; Streit et al., 2000; Streit et al., 1998; Uchikawa

et al., 1999; Wood and Episkopou, 1999). Several studies have revealed that it is uniformly

expressed in the early neural tube, and is regarded as a pan-neural marker in early stages of

embryonic development (Darnell et al., 1999; Streit et al., 1997). Sox2 is expressed in

multiple locations during early development, related to its involvement in the regulation of

pluripotency in embryonic stem cells and early embryos (Kim et al., 2008), early neural plate

development (Rex et al., 1997; Streit et al., 2000; Streit et al., 1997; Uwanogho et al., 1995)

and placodal development (Uchikawa et al., 1999). Twenty-five separate enhancers have

been identified experimentally by pioneering work from the laboratory of Hisato Kondoh

(Uchikawa et al., 2003). These enhancers are located within a region spanning 16.7 kb

upstream and 32.5 kb downstream of the single exon Sox2 gene in chick (Uchikawa et al.,

2003). Each enhancer has a specific activity, directing expression to one or a few specific

sites of Sox2 expression in the normal embryo.

Identifying putative insulators of Sox2

We started computationally by identifying statistically significant CTCF sites across human

chromosome 3, which contains Sox2. We decided to use the human as a reference genome

because the chick genome assembly is still incomplete and poorly annotated; syntenic

relationships between human, mouse and chick are examined at a later stage in the

analysis. CTCF analysis shows that using a weight cut-off of ≥18.0 (FDR=4.13%, P-value 

=2.5 x 10-7), 1160 statistically significant CTCF binding sites are found throughout

chromosome 3 (Figure 4) (Supplementary table 1). Although our choice of cut-off was
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somewhat arbitrary, we decided to use ≥18 because lower values increase the FDR 

whereas higher values decrease the number of detected CTCF binding sites significantly

(Figure 4). We then compared the coordinates of this set of 1160 sites with those of ChIP-

Seq peaks derived from 23 different human cell-lines for CTCF enrichment (from the UCSC

genome browser) to identify the most likely constitutive CTCF sites. A total of 348 predicted

CTCF sites were found to coincide in both sets of data (computationally predicted and all

experimental ChIP-Seq sets), and we therefore define these as “constitutive” (Figure 4). The

next step was then to supply these 348 sites to the UCSC genome browser as user tracks to

identify the closest candidates encapsulating Sox2. From these 348 sites, we found a

putative constitutive CTCF site (CTACCAGCAGGGGGCGCAC) (hg19 coordinates

chr3:181,427,485-181,427,504) ~2.2 kb upstream of Sox2 and another

(GTCTGCCCTCTAGAGGCCA) (hg19 coordinates chr3:182,428,542-182,428,561) ~1 mb

downstream of Sox2 and ~100 kb upstream of the gene ATP11b (Figure 5a). Both sites are

located on the sense strand, and have weight scores of 23.6 (FDR=0, P-value=0) and 19.06

(FDR=0, P-value=0) respectively. Furthermore, we repeated this CTCF analysis with

equivalent regions in chick and mouse genomes, and found a syntenic region harbouring

Sox2 in both species (Figure 5b and 5c).

In chick, equivalent constitutive CTCF sites were found ~ 10 kb upstream and ~600 kb

downstream of Sox2. An additional computationally-identified (but not constitutive) site was

found ~ 300 kb downstream of Sox2 and ~100 kb upstream of ATP11b. This, together with

the constitutive site upstream of Sox2, forms a syntenic region equivalent to that in human

(Figure 5b).

These findings collectively suggest the presence of a ~300 kb putative insulator region

harbouring Sox2 in chick, sharing synteny with an equivalent ~ 1 mb region in human and

~700 kb region in mouse (Figure 5).

Computational discovery of Sox2 enhancers

Our next objective was to use DREiVe to discover putative enhancers within this ~ 1mb

candidate insulator region containing Sox2 in human. Performing DREiVe analysis using

human as the reference genome (hg19 build) with the parameters k=6, w=8, and l=9 led to

the discovery of 98 high scoring LPCs, conserved in human, mouse, chick, lizard, platypus,

opossum, cow and elephant (conservation score > 2) (Supplementary Table 2). Within this 1

mb genomic window, a particularly dense ~70 kb region (7% of the 1 mb window)

surrounding the Sox2 gene contained 27 (28%) of the LPCs (Figure 5a). We discovered that
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18 of 25 (72%) previously known enhancers of Sox2 identified by the laboratory of Hisato

Kondoh (Uchikawa et al., 2003) overlap with 18 of 27 (67%) of these DREiVe-predicted

LPCs (Figure 6). Among those identified by DREiVe were all of the neural Sox2 enhancers,

N1, N2, N3, N4, and N5, the nasal and otic placode enhancers, NOP-1 and NOP-2, and the

spinal cord enhancers, SC1 and SC2, all conserved in chick. Among the 7 Sox2 enhancers

not identified by DREiVe included the late lens enhancer, L and the dorsal root ganglia

enhancer, NC1 (Figure 6). Similarly, DREiVe predicted 9 conserved LPCs within this region

that were not identified experimentally, which suggests some degree of complementarity

between experimentally validated and computationally predicted Sox2 enhancers. Moreover,

it is worth considering that some of the 71 remaining highly conserved LPCs located within

the Sox2 insulators may contain novel enhancers for driving expression of Sox2 in a context-

dependent manner.

We also performed a separate but related analysis to identify Sox2 enhancers using the

bioinformatics software, EEL (Enhancer Element Locator). One of the key differences

between EEL and DREiVe is that the former requires a set of transcription factor PFMs from

JASPAR or TRANSFAC to locate enhancers sharing order-dependent binding sites between

two orthologous species. DREiVe on the other hand, is a de novo method which does not

rely at all on previous knowledge of binding sites, but rather locates enhancers sharing

order-independent patterns across multiple species. Results from this analysis show that

EEL only identified 6 of 25 (24%) of the Sox2 enhancers, conserved in human and chick.

Among those identified were the N2, N3, and N4 enhancers (Figure 6). This suggests that

the order-independent nature of the methodology underlying DREiVe has greater sensitivity

in identifying enhancers.

To predict regulation of Sox2, we subjected all 98 of the DREiVe-identified LPCs to

transcription factor binding site analysis using ‘matrix-scan’ from the RSAT toolkit

(Supplementary table 3). This identified several key conserved binding sites for important

factors regulating early neural activity in the N1-N5 enhancers. In particular, putative sites for

the HMG domain transcription factors Sox/LEF/TCF were found to be distributed among

these early neural enhancers in both human and chick, together with sites for POU family

proteins (Figure 7). These are again consistent with previous findings from the literature

(Takemoto et al., 2006; Uchikawa et al., 2003), suggesting that the specific experimentally

validated binding sites in the early neural enhancers of chick were accurately predicted by

this computational approach.
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Conclusions

Advances in computational biology and bioinformatics have made available a large number

of public resources to facilitate cis- regulatory analysis suitable for the chick genome. This

has in turn generated several different complementary techniques and methodologies for

conducting computational analysis, each having its own set of strengths and weaknesses. In

such a situation, the most effective approach is to select appropriate bioinformatics

methodologies and to integrate them into a functional workflow to streamline the overall

analysis. Here, we provide a new workflow integrating a novel tool for prediction of putative

insulators (CTCF analysis), with a tool for enhancer prediction and TFBS analysis. We then

test this approach by analysing the Sox2 locus, which reveals a good correspondence

between computationally predicted cis-regulatory sites and those that have been

experimentally determined.
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Software/
Tool

Description Chick data
analysis

Genome-wide High throughput
CTCF analysis

TFBS detection Enhancer
discovery

MEME
(Bailey et
al., 2009)

Discovers conserved sequence
motifs enriched in the users
input sequences. Some of its
programs include MEME (motif
discovery), GLAM2 (motif
discovery with gaps), and
TOMTOM (motif-motif database
searching).

YES, as long as
chick sequences
are provided as
input.

NO- limited to
number of

input
sequences.

NO YES NO

MATCHT
M

(Kel et al.,
2003)

Identifies TFBSs using an up-
to-date library of TRANSFAC
matrices. The algorithm uses a
matrix similarity score (MSS)
and a core similarity score
(CSS) to assess the quality of a
match between a TFBS and the
users input sequence(s).

YES, as long as
chick sequences
are provided as
input.

NO- limited to
number of
input
sequences.

YES, as long as the
CTCF matrix is

provided.

YES NO

MatInspe
ctor *

(Carthariu
s et al.,
2005)

Detects TFBSs using its own
repository of TF matrices. This
library of matrices consists of
matrix families built with similar
or functionally related TFBSs.

YES NO YES, as long as the
CTCF matrix is

provided.

YES NO

ModuleM
iner

(Van Loo
et al.,
2008)

Detects cis-regulatory motifs in
co-expressed human genes. It
uses a library of PFMs, and
implements a whole-genome
optimisation approach to look
for specific signals in the input
set that are not present in other
genes.

NO NO NO YES YES

AlignAC
E

(Hughes
et al.,
2000)

Uses a Gibbs sampling
technique to find patterns
conserved in a set of DNA
sequences.

YES NO NO YES NO

Cluster-
Buster
(Frith et

al., 2003)

Identifies cis-regulatory motifs
by searching for regions of the
sequence that resemble a
statistical model of a motif
cluster more than a background
DNA model.

YES NO NO YES YES

SCOPE
(Carlson

et al.,
2007)

Conducts de novo identification
of regulatory motifs in sets of
co-regulated genes.

YES NO NO YES NO

matrix-
scan

(RSAT)
(Thomas-
Chollier et

al.,
2011b)

Uses TF profiles from
TRANSFAC or JASPAR to
identify TFBSs for a set of given
input sequences.

YES NO YES, as long as the
CTCF matrix is
provided.

YES NO
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DREiVe
(Sosinsky

et al.,
2012)

A method to identify putative
regulatory regions by
comparing orthologous
genomic sequences. It
integrates the well known
SPLASH algorithm with a local
permutation clustering (LPC)
algorithm to discovery
conserved motifs across
multiple species.

YES NO – limited to
one gene at a
time

YES YES YES

Table 1 – Complementary bioinformatics tools available for cis-regulatory analysis.

Commercial products are highlighted with an asterisk.

Figure Legends

Figure 1. Regulation of Transcription – An overview of transcriptional regulatory elements,

illustrating how distal regulatory elements can interact with the core promoter.

Figure 2. A proposed computational workflow for cis-regulatory analysis – The

workflow can be divided into three principle stages; insulator analysis, enhancer prediction,

and transcription factor binding site analysis.

Figure 3. Computational CTCF analysis – A) Representation of the CTCF matrix from the

JASPAR database, B) the procedure used by our Perl script to calculate “weighted” scores

of CTCF binding sites across the chromosome, C) probability distribution showing

differences in frequencies of each weighted score between the empirical and null

distributions, D) calculation of False Discovery Rates (FDR) and P values.

Figure 4. A comparison between computationally-identified and ChIP-Seq derived CTCF

sites. All ChIP-seq datasets were downloaded from the UCSC genome browser (Dreszer et

al., 2011).

Figure 5. A) An overview of the Sox2 putative insulator region in Human. Red arrows

highlight the constitutive CTCF sites found both up (hg19 coordinates chr3:181,427,485-

181,427,504) and downstream (hg19 coordinates chr3:182,428,542-182,428,561) of Sox2.

The green block shows DREiVe-identified LPCs which overlap with known Sox2 functional

enhancers in human. B) An overview of the equivalent syntenic region in Chick, with red

arrows highlighting the CTCF sites and green blocks showing DREiVe-identified LPCs that

overlap with known functional enhancers of Sox2 in chick. Coordinates for CTCF site

upstream of Sox2: galGal3 chr9:18,000,253-18,000,272 and downstream of Sox2: galGal3

chr9:17,684,565-17,684,584. C) Equivalent syntenic region in mouse. Coordinates for CTCF

site upstream of Sox2: mm9 chr3:34,546,807-34,546,826 and downstream of Sox2: mm9

chr3:35,379,158-35,379,177. The UCSC genome browser was used to generate this

representation.
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Figure 6. Computational analysis of the Sox2 locus. DREiVe-predicted enhancers are

shown as red horizontal bars, EEL-predicted enhancers are shown as blue horizontal bars,

and previously known enhancers of Sox2 identified by Uchikawa et al., 2003 are shown as

brown horizontal bars. Red rectangles display overlapping regions between computationally

predicted and known enhancers.

Figure 7. Matrix Scan analysis of TFBSs found in the N1 and N2 enhancers of Sox2.
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