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Abstract

Tracking trends in the abundance of wildlife populations is a sensitive method

for assessing biodiversity change due to the short time-lag between human pres-

sures and corresponding shifts in population trends. This study tests for pro-

posed associations between different types of human pressures and wildlife

population abundance decline-curves and introduces a method to distinguish

decline trajectories from natural fluctuations in population time-series. First, we

simulated typical mammalian population time-series under different human

pressure types and intensities and identified significant distinctions in popula-

tion dynamics. Based on the concavity of the smoothed population trend and

the algebraic function which was the closest fit to the data, we determined those

differences in decline dynamics that were consistently attributable to each pres-

sure type. We examined the robustness of the attribution of pressure type to

population decline dynamics under more realistic conditions by simulating

populations under different levels of environmental stochasticity and time-series

data quality. Finally, we applied our newly developed method to 124 wildlife

population time-series and investigated how those threat types diagnosed by our

method compare to the specific threatening processes reported for those popula-

tions. We show how wildlife population decline curves can be used to discern

between broad categories of pressure or threat types, but do not work for

detailed threat attributions. More usefully, we find that differences in population

decline curves can reliably identify populations where pressure is increasing over

time, even when data quality is poor, and propose this method as a cost-effective

technique for prioritizing conservation actions between populations.

Introduction

One approach to counteracting the world’s failure to

meet the Convention on Biological Diversity’s target of

“achieving a significant reduction in the rate of biodiver-

sity loss by 2010” (Convention on Biological Diversity

2002; Butchart et al. 2010) could be achieved through

more proactive conservation actions, which tackle poten-

tial wildlife losses before it is too late. Studying the

impact of anthropogenic activity at the population level is

particularly useful as this is also the scale at which

pressure first impacts a species; population decline there-

fore is a prelude to species extinction (Ceballos and

Ehrlich 2002; Collen et al. 2009). The status of wildlife

populations is also a more sensitive indicator of biodiversity

change compared species extinction due to the shorter

time-lag between human impact and corresponding shifts

in population trends (Ceballos and Ehrlich 2002; Balmford

et al. 2003). In addition to understanding the extinction

risk of species, identifying changes in wildlife population

dynamics can provide information on how populations

respond to management to inform future management

decisions (Yoccoz et al. 2001).

Although seemingly straightforward, detecting declines

can be both under or overestimated by measurement

and/or process error (Wilson et al. 2011). Mace et al.

(2008) proposed that populations affected by different

types of pressure should have different shaped decline
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curves, depending on the manner in which pressure-

induced mortality occurs over time. For instance, a popu-

lation affected by a constant loss of individuals each year

(e.g., under fixed quota harvesting regimes such as the

commercial hunting of Kangaroos; Pople and Grigg 1999)

should exhibit a linear decline, with an increasing decline

rate as the population becomes smaller (Fig. 1A). If a

population is affected by a slowing pressure, such as a

proportional reduction in harvested individuals over time

(e.g., characteristic of the “constant harvest rate strategy”

used in fisheries to calculate total allowable catch; Hjerne

and Hansson 2001) then it should decline in a concave,

exponential manner, with slowing rate of decline as the

population reduces in size (Fig. 1B). Such a characteristic

decline type may also occur when the number of individ-

uals harvested decreases over time, leading to stabilization

at a lower population size, e.g., as a result of the imple-

mentation of a managed harvesting program (Fig. 1C).

Finally, Mace et al. (2008) proposed that a population

that loses an increasing number of individuals over time

should decline in a quadratic, convex manner, with an

increasing decline rate as the population reduces in size

(Fig. 1D). This type of pressure may be caused by “conta-

gious” habitat fragmentation (Boakes et al. 2009) or due

to increasing hunting pressure as a result of increasing

economic or social value of a species with increasing

rarity (Courchamp et al. 2006). A population declining in

such a manner could also be experiencing inverse density

dependence, which would also cause decline rate to

increase as the population reduces in size (Allee 1931;

Myers et al. 1995; Courchamp et al. 1999, 2006).

We set out to test this decline-curve approach, both in

principle through model simulations and in practice by

addressing the following questions using a dataset of

wildlife population abundance time-series:

(1) How robust is the identification of Mace et al.’s

(2008) decline-curve types for different pressure types

under varying life history and data quality scenarios?

(2) Is it possible to detect differences in decline-curve

types in natural populations, relevant to different

conservation priorities?

(3) How do diagnosable decline-curve types correspond

to threatening processes reported for them?

Methods

This analysis was set in the context of the population

information used in calculating vertebrate population

trends for the Living Planet Index (LPI), which is a

global, composite index tracking overall changes in verte-

brate abundance since 1970 (Loh et al. 2005; Collen et al.

2009; McRae et al. 2012). It includes population abun-

dance estimates for about 12,000 time-series, varying
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Figure 1. Different types of population decline (reproduced from

Mace et al. 2008). Each graph shows population size declining over

time in response to (A) a constant removal of individuals, (B) a

proportional removal, (C) a proportional removal down to a

sustainable level, and (D) an increasing removal of individuals over

time.

ª 2013 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. 2379

M. D. Fonzo et al. Identifying Rapid Population Declines



from 3 to 100 years in length, across 2500 vertebrate

species, including 443 mammals. This allowed us to spec-

ify relevant parameter values for key demographic and

life-history variables for both the method development

and its application.

Simulation of decline-curve dynamics

We validated the theoretical underpinning of the

decline-curve approach by simulating population abun-

dance data for mammal species with slow, medium and

fast life-history speeds, under different harvesting regimes

to represent the pressure types described in Mace et al.

(2008). We chose to simulate a range of life-histories to

examine how well the decline-curve patterns could be

generalized across species. We used the logistic model of

density-dependent growth (eq. 1; Verhulst 1838), with

added environmental stochasticity:

Ntþ1 ¼ Nt þ rmax � Nt � 1�Nt

K

� �
(1)

where Nt+1 represents the population size in the next

year, Nt the population size in the current year, rmax, the

maximum intrinsic rate of population growth, and K is

the carrying capacity (Verhulst 1838). All analyses were

conducted in R.2.12.1. (R Development Core Team

2012). We represented the populations using a simple

scalar model to mirror the type of data collected through

basic monitoring schemes, in which detailed demographic

information is rarely available (Collen et al. 2009). In

order to simulate natural fluctuations in abundance, we

incorporated environmental stochasticity by sampling rmax

and K from random normal distributions, truncated at a

lower threshold of 0. Mean parameter values (and corre-

sponding standard deviations) chosen for populations

with different life-history speeds are summarized in

Table 1. The rmax values and coefficient of variation

(C.V) in rmax for slow, medium, and fast life-histories are

based on estimates validated by species experts and

published summaries (Fowler 1988; Gaillard et al. 2000;

Jones et al. 2009; E. J. Milner-Gulland pers. comm.). We

set C.V in K to an arbitrary value of 0.01 across all popu-

lations, and the upper thresholds of N and rmax to three

standard deviations greater than their respective mean

values. We did not include demographic stochasticity in

the models as we were not interested in the dynamics of

small populations, where this type of stochasticity may

mask patterns of external pressure.

We imposed realistic temporal autocorrelation by spec-

ifying the mean of the distributions for parameter values

in year t as equal to those in year t�1. 10,000 simulations

were generated for a period of 150 time-steps for each

population model. A population was deemed extinct

when its total size fell below one. For each of the 10,000

simulations, the first 50 years of data were discarded in

order to allow the population to stabilize, and a random

selection of 1000 of the simulations that survived for

longer than either 25 or 50 years post stabilization

(depending on the simulation scenario imposed) were

stored for analysis. Pressure was imposed from year 75

onwards according to different scenarios by removing

individuals each year after population renewal through

two harvesting strategies: a simulated removal of a fixed

number of individuals (F; to represent density-independent

threats, such as disease or certain overexploitation

regimes), or a simulated removal of a proportion of the

total population (P; to represent density-dependent threats,

such as proportional exploitation regimes or the effects of

habitat loss and degradation; Getz and Haight 1989). We

imposed a range of intensities for each removal type,

summarized in Table 2 (fully described values are in

Table S1.). In all cases, pressure was imposed each year

on the simulated population until the population went

extinct or the simulation period ended. Figure 2 shows

an example of 100 simulations of populations with

different life-history speeds, affected by 30% proportional

pressure.

Table 1. Basic life-history speed parameters used in population simulations.

Model parameter values

Life-history

speed Mean rmax C.V. of rmax S.d of rmax

Upper

threshold

rmax N1 K C.V of K SD of K

Upper

threshold

N

Slow 0.1 0.15 0.015 0.15 100 1000 0.01 10 1300

Medium 0.2 0.15 0.03 0.3 100 1000 0.01 10 1600

Fast 0.3 0.2 0.06 0.5 100 1000 0.01 10 1900

rmax represents the intrinsic rate of growth, K represents carrying capacity, C.V stands for coefficient of variation, SD for standard deviation, and

N for population size, with N1 being the population size at the start of the simulation.
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Detection of decline-curve dynamics

Before searching for differences in decline curves within a

simulated population, we smoothed the time-series using

generalized additive models (GAMs; Wood 2006), in

order to avoid picking up fluctuations resulting from

stochastic, environmental variation. Smoothed abun-

dance data are a more reliable indicator of population

change compared to unsmoothed data (Porszt et al.

2012). GAMs are also an improvement over other trend

analysis techniques (such as linear regression), as they

allow the change in mean abundance to be represented by

any smoothed curve shape that best-fits the data (Fewster

et al. 2000; though see Soldaat et al. 2007). The degree of

smoothness of the GAM was estimated automatically as

part of the model fitting using the generalized cross vali-

dation (GCV) method, constrained at one less than the

total length of the time-series (Fewster et al. 2000; Fedy

and Doherty 2011). To reduce overfitting of the data, we

included a penalty for each additional degree of freedom

within the model by increasing the gamma parameter of

the model to Wood’s (2006) suggested value of 1.4. The

GAM error distribution was left as default Gaussian.

As in recent population time-series analyses, (Siriwardena

et al. 1998; Fewster et al. 2000; Collen et al. 2009), we

detected shifts in population dynamics based on switches

in a smoothed trend’s second derivative sign. As the

simulated trends are nonparametric curves, the second

derivatives were not available directly as mathematical

expressions, so we calculated approximate second deriva-

tive values for the time-series algebraically, based on the

rate of change of the smoothed population abundance at

each time step (see example in Table 3.). We used switches

in the rate of change (or second derivative sign; herein

termed second derivative switch points – SPs) to discrimi-

nate between curve sections according to their transition in

decline speed. If a SP was recorded as occurring 1 year

before the population became extinct, the trend was only

analyzed up to the year preceding extinction.

To confirm that the SPs were associated with real

changes in abundance driven by external pressure and not

due to environmental stochasticity, we recalculated SPs

across 100 simulated time-series with similar demographic

properties under the same pressure scenarios as the focal

time-series. We simulated the time-series by generating

Table 2. Pressure scenarios imposed on populations with slow, med-

ium, and fast life-history speeds.

Scenario code Pressure type

Pressure

change

over time

P1 Proportional Constant

P2 Proportional Decreasing

P3 Proportional Increasing

F1 Fixed Constant

F2 Fixed Decreasing

F3 Fixed Increasing

For each scenario pressure was imposed at low, medium, and high

levels on populations starting both far (N1 = 500) and at carrying

capacity (N1 = 1000). Full details of scenarios in Table S2.
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Figure 2. Illustration of 100 simulations of populations with (A) fast,

(B) medium, and (C) slow life-history speeds under 30% proportional

pressure, with coefficient of variation (C.V) in K of 0.01. Pressure was

applied from year 25 onwards.
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new population counts for each year based on the

random normal distribution (with mean equal to the

smoothed count for that year and standard deviation

equal to the 95% confidence interval of the smoothed

model fit) and defined the SPs as the years which were

detected most frequently, out of all the time-series.

We applied the second derivative test (Larson et al.

1990) to determine the concavity of the curve between

SPs. We identified a curve as “concave” (curved inwards)

if its second derivative values were positive, and “convex”

(curved outwards) if its second derivative values were

negative. Before fitting functions to the data, we tested

whether a population time-series section was significantly

declining using a linear regression (with a = 0.05). We then

determined the particular decline-curve type for each

SP-delimited section longer than five data points (which we

picked as an arbitrary cut-off) by fitting linear, quadratic,

and exponential models to the data (detailed in Table 4),

roughly corresponding to the curve types proposed by

Mace et al. (2008). Specifically, we fitted the exponential

model using a “Self-starting asymptotic exponential”

function in R (“SSasymp”), whereas the others were fit

manually using the formulae in Table 4. If a section was

humped, concave or humped, convex, but was not signifi-

cantly declining, we assessed the significance of its declining

tail alone. If this was significant, we classed the whole

section as declining. We determined the best-fitting func-

tion using a multimodel inference approach (Burnham and

Anderson 2004), based on the model’s Aikaike’s Informa-

tion Criterion (AIC; Akaike 1973), which we corrected for

small sample size (AIC; eq. S1; Sugiura 1978) to avoid

overfitting (i.e., when n/k < 40; n = sample size and

k = number of parameters; Burnham and Anderson 2004).

We chose the model with lowest AICc (based on a thresh-

old of Δ AICc > 4; Burnham and Anderson 2004) as the

one which best represented the declining trend. We relaxed

the best-fit threshold to less than 4 when the model with

the lower AICc was the simpler model (i.e., we chose the

model with the least parameters if the difference between

models was less than 4). If the number of data points

within a declining section was two less than the number of

parameters within the fitted model, then it was not possible

to compute AICc, and we used ΔAIC to compare model

fits. We tested the robustness of the results for each sce-

nario by applying the steps described within this section to

1000 time-series generated under the same conditions.

Time-series degradation analysis

The simulations involve perfect datasets that are unrepre-

sentative of real world population data. We therefore

degraded the simulated datasets to investigate how well

more realistic data could be expected to retain a signal of

Table 3. Example of SP calculation based on the rate of change

between population counts.

Year 1 2 3 4 5 6

Population count 50 60 75 70 60 45

Change NA 10 15 �5 �10 �15

Rate of change NA NA 5 �20 �5 �5

SP presence NA NA 0 1 0 0

Change in population count was calculated by taking the yearly differ-

ence between counts, rate of change was calculated by taking the

difference in change in counts and SPs were identified when the rate

of changed switched from positive to negative.

Table 4. Model equations describing different decline-curve shapes.

Model

Curve-shape

distinction Formula Parameters

Linear No concavity Ni = m1Ti + c Nwe represents population size at time i,

Twe represents year i, c represents the

model intercept at Twe = 0, m1 represents

the model slope.

Quadratic Can be concave or convex.

Quadratic concave curves can be

distinguished from exponential

concave curves as their rate of

decline continues to decrease in a

constant manner, leading to a

right-hand side vertical asymptote.

Ni ¼ m1Ti þm2T2
i þ c Nwe represents population size at time i,

Twe represents year i, c represents the

model intercept at Twe = 0, m1 and m2

represent different model slopes.

Exponential In exponential concave declines,

decline rate slows as the population

reduces in size, leading to a

right-hand side horizontal asymptote.

Ni ¼ Asymþ ðRO� AsymÞe�1rcTi Nwe represents population size at time i,

Asym represents the horizontal asymptote

of the model, RO represents the intercept at

Twe = 0, lrc represents the model constant

(i.e., decay rate).
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pressure type identified in decline dynamics. Populations

of medium-speed life-history species, starting at a popula-

tion size close to K were simulated under increasing fixed

(F3) and constant proportional (P1) pressure across a set

of data quality degradation scenarios as follows:

● A shortening of time-series length in increments of

5 years, starting from 25 years: (a) either side of the

onset of pressure; (b) only following the onset of

pressure; and (c) only preceding the onset of pressure.

For the last scenario, the years following the onset of

pressure were reduced to two. This was not possible

for (a) and (b) due to the minimum data requirement

for second derivative calculation.

● A decrease in the frequency of population counts using

gaps of: 1, 2, 3, 5, and 8 years between counts, linearly

interpolating monitoring gaps using the R function

“interpNA” (“timeSeries” package).

● Added observation error by resampling yearly popula-

tion counts from a truncated normal distribution with

mean equal to the population count for that year, and

standard deviation (SD) equal to the SD of counts for

that year across all 1000 simulated time-series, multi-

plied by 1.5, 2, or 2.5 (depending on level of error).

All degradation scenarios were repeated 1000 times. In

order to determine the likelihood of identifying false posi-

tives, we tested our method on population simulations

with the same demographic characteristics as the above

time-series (i.e., with medium life-history speed para-

meters, starting close to K) but without any external

pressure or degradation (herein termed null models).

Application to wildlife populations

In order to assess whether our methods could be applied

to wildlife population time-series, we selected 124

mammal populations (Fig. 3) from the 1010 mammal pop-

ulation time-series in the LPI database. These represent 57

species spanning nine orders, and have the following

attributes:

(1) A minimum of three raw data points, which spanned

a total of more than 5 years, and a gap of <8 years

between data points.

(2) Data were only collected from approximately 1900

onwards (data spanned between 1900 and 2010).

(3) One or more threats attributed to the decline were

recorded in the database, which were subsequently

confirmed and updated by examination of the origi-

nal data source.

(4) Time-series were based on either full population

counts or based on model population estimates.

(5) Time-series were significantly (P < 0.05) decreasing

or non-significantly increasing (P > 0.05) over time

(based on linear regression).

(6) Time-series had low environmental stochasticity and

observation error (assessed by using time-series with

small 95% CI; populations with highly stochastic

fluctuations were excluded if the total reduction in

population size was less than the difference between

the upper and lower 95% CIs).

We refine the method for detecting decline-curve

dynamics (see above) by adding the following steps when

examining wildlife populations:

Figure 3. Location of mammal populations upon which we apply our decline-curve identification methods (n = 124).
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● Non-normality of the raw time-series data was

accounted for by fitting a univariate generalized linear

model (GLM) with poisson errors to the time-series

with respect to time. If data were overdispersed, we used

a quasipoisson link within subsequent GAM fitting.

● We set the upper degree of smoothness in each GAM

to 0.3 times the length of the time-series (which repre-

sents a good trade-off between complexity and

smoothness; Fewster et al. 2000; Fedy and Doherty

2011) and decreased smoothness to the lowest possible

level, by decrements of one.

● Frequency of SP-identification across years was calcu-

lated based on the SPs identified from each smoothing

level simulation. SPs years are those in which the

frequency of SP-detection was greater than the upper

99.99% confidence interval around the median SP

frequency. If none of the SP frequencies occurred at a

frequency higher than this, then the choice of the most

important SPs was from visual inspection of the

dynamics. Specifically, where there were a few, proxi-

mate SP years, the year with highest SP support was

designated as the SP for that period. In cases where

proximate years had the same frequency of SP support,

only the first year of the series was designated a SP.

● We tested whether the SP-delimited section was signifi-

cantly declining (P < 0.05) by fitting a linear regression

to the time-series section. If only part of the section

was declining (e.g., in quadratic convex declines), we

only fit the linear regression over this particular

section.

● A jackknife analysis was used to derive a confidence

limit around the best-fit decline-curve function.

Finally, we compared the pressure type which we

hypothesize to be affecting the population (based on its

decline curve) with information on the reported threatening

process affecting each population. If a population was

affected by more than one threat, then we recorded the

decline curves under each threat type. We excluded

climate change from the analysis as it was reported for

only one population.

Results

Detection of decline-curve dynamics

Simulations of mammal populations under a range of

pressure regimes indicated that only two pressure types

led to a consistent response across all life-history speeds,

starting population sizes, and pressure intensities tested in

this study (Fig. 4A–B; details in Table S2 and S3). Specifi-

cally, scenarios of constant, proportional pressure (P1)

and increasing fixed pressure types (F3) correspond to:
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Figure 4. Decline patterns found in wildlife populations, associated

with (A) simulated constant proportional pressure, (B) increasing fixed

pressure (C) increasing proportional pressure starting far from K, and

(D) decreasing proportional pressure. Red dots represent switch point

(SP) locations. Where applicable, each graph title corresponds to the

best-fit function of the first SP-delimited section.
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exponential, concave; and quadratic, convex decline

curves, respectively.

In addition to these robust associations we detected the

following easily identifiable patterns (Fig. 4C–D; details in
Table S2 and S3):

● Increasing proportional pressure types (P3) on popula-

tion simulations which start far from K consistently

result in quadratic, humped convex decline curves

followed by concave declines.

● Decreasing proportional pressure types (P2) are consis-

tently associated with concave declines; however, the

algebraic function which describes the declining curve

section is not consistent across scenarios. If pressure

decreases at a fast enough rate, then this can be identi-

fied by a final, upwards turn in the curve.

Time-series degradation analysis

All time-series degradations from constant proportional

pressure (P1) were best-fit by exponential, concave curves

at a significantly higher frequency than in the null models

(in which pressure was not imposed). The only exception

to this occurred when the time-series was shortened to

2 years prior to the onset of pressure, and the quadratic,

concave function was best-fit (Table 5 and S4; Two-sample

test for equality of proportions, v2 = 0.76, df = 1, P =
0.38). Constant proportional pressure (P1) was more likely

to result in exponential decline curves than in quadratic or

linear declines across all time-series length degradation

scenarios, whereas in scenarios where monitoring frequency

was decreased and observation error increased, this was

not always the case (Table S5.). For instance, when there

were gaps of more than 2 years between monitoring (but

less than five), there was no significant difference between

the frequencies at which an exponential concave curve

best-fit the decline compared to a quadratic, concave

curve. Where the gap in monitoring was more than

5 years, an exponential curve was identified at a signifi-

cantly lower frequency than a quadratic curve. In all

scenarios with observation error, the decline curves were

diagnosed as quadratic concaves at a significantly higher

rate compared with exponential concave curves. The only

scenario in which low, constant, proportional pressure

was significantly more likely to be diagnosed as having a

convex shape over a concave, was when there was a 8 year

gap in monitoring (Table S6; Two-sample test for equality

of proportions, v2 = 0.02, df = 1, P = 0.90).

Table 5. Best-fit function and concavity of best-fit decline curves caused by low, constant proportional pressure (P1), under different scenarios of

time-series quality degradation.

Best-fit function (out of 1000 simulations)

Concavity (out of 1000

simulations)

Degradation type Specific degradation Linear (%) Quadratic (%) Exponential (%) Concave (%) Convex (%)

Years either side of pressure 25 (None) 6.9 42.8 50.3 88.2 11.8

Years either side of pressure 20 6.6 37.4 56 89.7 10.3

Years either side of pressure 15 5.6 35.9 58.5 89.4 10.6

Years either side of pressure 10 8.8 23.3 67.9 90.8 9.2

Years either side of pressure 5 0.1 43 56.9 100 0

Years after pressure 20 7.4 38 54.6 88.2 11.8

Years after pressure 15 4.4 36.7 58.9 87.4 12.6

Years after pressure 10 8.9 28.4 62.7 87.6 12.4

Years after pressure 5 5.5 39.1 55.4 83.8 16.2

Years before pressure 20 9.9 38.4 51.7 90.5 9.5

Years before pressure 15 4.6 42 53.4 90.7 9.3

Years before pressure 10 5.8 38.6 55.6 93.3 6.7

Years before pressure 5 6.8 36.4 56.8 97.9 2.1

Years before pressure 2 18.8 68.9 9.6 59.5 40.5

Years between monitoring 1 6.2 39.2 54.6 88.8 11.2

Years between monitoring 2 7.8 43.4 48.8 88.7 11.3

Years between monitoring 3 9.5 43 47.5 88.3 11.7

Years between monitoring 5 21.3 44 34.7 67.6 32.4

Years between monitoring 8 21.5 61.9 16.6 50.2 49.8

Magnitude of observation error 1 15.8 51.5 32.3 78.7 21.3

Magnitude of observation error 1.5 12.5 62.5 24.4 78.3 21.7

Magnitude of observation error 2 10.8 65.4 21.9 76.7 23.3

Magnitude of observation error 2.5 12.8 72 13.3 70.8 29.2
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Quadratic convex declines were consistently identified

as best-fit curve in response to increasing, fixed pressure

(F3), regardless of any degradation in time-series quality

(Table 6). Indeed, quadratic convex decline curves were

identified across all such scenarios of degraded time-series

affected by increasing fixed pressure at a significantly

higher frequency than in the null population models

(Table 7 and Table S7), and compared with linear and

exponential functions (Tables S8 and S9).

Application to wildlife populations

We identified 159 decline curves in 124 population time-

series. Significantly more were concave (62.3%) than

convex (28.3%; Two-sample test for equality of propor-

tions, v2 = 35.65, df = 1, P < 0.001). 60.6% of all

concave decline curves were best described by exponential

functions and the remainder best-fit by quadratic func-

tions. Although quadratic convex declines were the next

most frequently diagnosed decline type, these were not

identified significantly more frequently than quadratic

concave declines (24.5%; Two-sample test for equality of

proportions, v2 = 0.40, df = 1, P = 0.52). Only 9.4% of

declines were linear. When we categorized decline curves

according to reported threat type (with multiple threats

per decline, n = 238; Fig. 5), exponential concave declines

were most prevalent in populations affected by exploita-

tion, habitat degradation, invasive species, and pollution.

Within disease-affected populations, we identified four

more quadratic convex declines than exponential concave

declines, and in populations affected by habitat loss, we

identified three more convex declines. Quadratic convex

and concave declines occurred in approximately the same

Table 6. Best-fit function and concavity of best-fit decline curves in medium life-history speed populations affected by increasing, fixed pressure

(F3), under different scenarios of time-series quality degradation.

Best-fit function (out of 1000 simulations)

Concavity (out of 1000

simulations)

Degradation type

Specific

degradation Linear (%) Quadratic (%) Exponential (%) Concave (%) Convex (%)

Years either side of pressure 25 (None) 1.7 98.3 0 1 99

Years either side of pressure 20 15.5 84.5 0 5.8 94.2

Years either side of pressure 15 14.4 85.5 0.1 6.6 93.4

Years either side of pressure 10 13.7 86 0.3 5.5 94.5

Years either side of pressure 5 4.2 95.5 3 7 93

Years after pressure 20 15.4 84.5 0.1 7.8 92.2

Years after pressure 15 16.9 82.8 0.3 8.8 91.2

Years after pressure 10 16.9 82.7 0.4 6.2 93.8

Years after pressure 5 4.9 94 1.1 10.3 89.7

Years before pressure 20 12.5 87.5 0 3.7 96.3

Years before pressure 15 11.1 88.8 0.1 5.4 94.6

Years before pressure 10 12.5 87.5 0 5.5 94.5

Years before pressure 5 11.6 88.4 0 3.3 96.7

Years before pressure 2 12.4 87.5 0.1 5.6 94.4

Years between monitoring 1 13.9 85.9 0.2 8.1 91.9

Years between monitoring 2 14.3 85.5 0.2 6.5 93.5

Years between monitoring 3 10.1 89.8 0.1 6.1 93.9

Years between monitoring 5 9.9 89.8 0.3 5.4 94.6

Years between monitoring 8 5.8 94.2 0 0.7 99.3

Magnitude of observation error 1 4.3 95.6 0.1 8 92

Magnitude of observation error 1.5 4.7 95 0.3 7.6 92.4

Magnitude of observation error 2 3.7 95.8 0.5 11.2 88.8

Magnitude of observation error 2.5 3.8 96.1 0.1 11 89

Table 7. Best-fit function and concavity of null model population

simulations with medium life-history speed characteristics, starting

close to K.

Curve type

Best-fit out of

1000 simulations

(%)

Linear 24.5

Quadratic 67.1

Exponential 8.4

Concave 52.1

Convex 47.9
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proportions across all threat types, with the exception of

disease-affected populations where quadratic convex

declines were much more frequent, and amongst those

affected by pollution, where convex declines were not

present at all. Linear declines were least common across

all threat categories.

Discussion

Reductions in population size are often recorded, but on

their own they can be weak indicators of the urgency or

importance of conservation interventions. This study illus-

trates how determining the dynamics of a population

decline can inform decisions about whether efforts for a

population’s conservation are urgent and should be

prioritized.

Validation of decline-curve associations

These analyses explore the idea that different threatening

processes may lead to different population decline

dynamics that should be diagnosable from good quality

monitoring data. Based on simulations, we found that

only two of the decline curves proposed by Mace et al.

(2008) were consistently attributable to the same pressure

types across different population life-history speeds, prox-

imity to carrying capacity, and pressure intensities. These

consistent decline-curve types are caused by constant,

proportional pressure (P1) and increasing, fixed pressure

(F3), and, respectively, result in exponential, concave and

quadratic, convex population decline curves. We show

that these curves are the result of different pressure

regimes and do not just arise by chance. Under more

realistic scenarios of wildlife population data collection,

quadratic convex curves caused by increasing, fixed pres-

sure (F3) appear to be extremely robust to simulated

deteriorations in data quality. In contrast, the dynamical

responses of populations to constant proportional pres-

sure (P1) are vulnerable to degrading data quality, and

have a tendency to switch from exhibiting exponential,

concave declines to quadratic, concave declines, especially

when there is little monitoring in advance of the pressure,

when monitoring intensity is sparse, or there are large

observation errors. This change in best-fit function may

be a consequence of the quadratic function being mathe-

matically simpler than the exponential, so it is more likely

to be identified in scenarios where the time-series is less

well documented. Despite the general decline-curve asso-

ciations which we detect in our analysis, when pressure is

very weak such dynamical patterns may become obscured

by population fluctuations due to environmental and

demographic stochasticity (Morris and Doak 2002), the

influence of intrinsic factors such as density dependence

(Lomolino and Channell 1995; Rodriguez 2002; Akc�akaya
et al. 2006) or observation error (Hilborn and Mangel

1997).

In addition to the above, robust decline-curve associa-

tions, we find a few easily identifiable trends which can

be used to inform understanding of how the pressure

acting upon a population is changing over time. These

include the detection of (a) a final concave, upwards turn,

associated with decreasing pressure; and (b) a hump in

the time-series, followed by a concave decline, which is

associated with increasing proportional pressure acting

upon a population that is far from carrying capacity. The

identification of a final, upwards turn can be explained by

the pressure reducing so much that it ceases to limit

population growth, with resulting recovery. The presence
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Figure 5. Distribution of decline curves

according to threatening process (based on

percentage identified out of all decline curves

ascribed with the same threat type; N.B.

multiple threats were reported for each

population time-series). N = 95 decline curves

affected by exploitation, 72 by habitat

degradation or alteration, 31 by disease, 25 by

habitat loss, eight by invasive species or genes,

and seven by pollution.
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of a hump in response to increasing, proportional pres-

sure suggests the pressure is initially weak enough to

allow population growth, but once it crosses a higher

intensity threshold the population starts to decline. The

decline curve switches from convex to concave as popula-

tion size diminishes and the pressure has a proportionally

smaller effect over time (even though it is still increasing).

We do not find any clear population dynamical responses

to constant, fixed or decreasing, fixed pressure, which

may be due to the nonlinear impact which a fixed

removal of individuals has on populations. Indeed, the

impact of fixed pressure upon a wildlife population will

vary depending on how fast as species can recover (based

on its intrinsic rate of growth) and its proximity to carry-

ing capacity (where a removal of individuals may be actu-

ally be beneficial when a population is near K).

Decline curves in wildlife populations

A search for consistent decline-curve patterns and specific

threat responses in noisy wildlife population time-series

identified three principal decline-curve types: quadratic

convex, quadratic concave, and exponential concave.

Overall, exponential concave declines are the most com-

mon in our dataset, suggesting that in most cases, popu-

lations are affected by proportional pressure that is

decreasing in intensity as populations decrease in abun-

dance. As quadratic convex declines result in the most

rapid population reductions, it is understandable that these

should be relatively rare within our dataset of well-moni-

tored mammals. Quadratic concave declines are equally

uncommon, perhaps because the pressures featured in this

dataset have not yet decreased to a level which allows pop-

ulation recovery. At the most basic level, convex decline

curves can be associated with increasing rates of decline in

response to pressure and concave curves with decreasing

decline rates. The distinction between exponential and

quadratic concave curves is harder to interpret given the

imperfect nature of wildlife data collection, nevertheless,

if the algebraic function can be distinguished this would

provide further insight into whether pressure is decreasing

because it has a proportional effect (and is therefore

decreasing with decreasing population size) or if it is

directly decreasing over time.

Relevance to the IUCN Red List

Identifying differences in the concavity of population

declines could provide an important refinement to the

classification of threatened species. Although “high popu-

lation decline-rate” is already a key criterion in the Inter-

national Union for Conservation of Nature’s (IUCN)

system for classifying threatened species (Mace and Lande

1991; IUCN Standards and Petitions Subcommittee

2013), it is only based on “percentage loss” and does not

include any information on whether the rate of loss is

changing over time. The addition of decline concavity to

the process of ascribing extinction-risk status may enable

us to identify species experiencing accelerating population

declines, potentially classifying them in a higher threat

category. Regardless, the reliability of the decline concav-

ity assessment could be used to allocate a higher priority

for conservation attention. This could also be used as a

method for prioritizing which populations of a threatened

species require more urgent conservation action, however,

such decisions should also be considered in light of the

feasibility and cost of their recovery (e.g., as described in

Joseph et al. 2009). The focus on decline-curve shape

could also be extended to the context of aggregate biodi-

versity trends (e.g., Collen et al. 2009), where it could

provide an additional method for classifying decline

severity. Given that funding for conservation is limited

(as discussed in MacKenzie 2009), statistically analyzing

population time-series for signals of convex declines

represents a potential cost-effective method for conserva-

tion decision making.

Lack of association with threats

Contrary to Mace et al.’s (2008) proposal, which links

four distinct decline trajectories with four broad catego-

ries of threatening processes, we do not find any clear

and consistent associations with particular threat types.

Our inability to match different decline curves to specific

threats, suggests that rather than using them as a way to

determine the particular cause of decline, they could

better be used to infer the type of pressure which is influ-

encing its dynamics. Given that it is currently so common

for drivers of biodiversity loss to act at the same time

upon wildlife populations (Brook et al. 2008; Acevedo-

Whitehouse and Duffus 2009; Laurance and Useche

2009), we propose using this method to determine the

nature of the pressure affecting a population (i.e., if it is

increasing, decreasing, or having a constant, proportional

effect). Such information could be used to identify the

principal threatening process out of a range of reported

threats with different pressure intensities and dynamics.

Obtaining a better understanding of the major threat

affecting a population will be critical for more effective,

directed conservation action.

Methodological issues

The choice of the logistic model to explore the response

of wildlife populations to different pressure regimes may

be perceived as a potential limitation of this study. Albeit

2388 ª 2013 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

Identifying Rapid Population Declines M. D. Fonzo et al.



widely used, it has a number of recognized failings that

we do not address, including the assumptions that: (1)

growth is linearly related to population density; (2) carry-

ing capacity is constant; (3) the rate of population change

responds immediately to variations in density; and (4)

there is no population structure (Turchin 2003; Clark

et al. 2010). While alternatives to the logistic model exist,

which account for these shortcomings (e.g., the theta-

logistic or matrix models; Leslie 1945; Gilpin and Ayala

1973) we chose to use the simplest unstructured discrete

time model for single species dynamics in order to

develop a method which could be applied to any popula-

tion time-series, irrespective of data quality. It is possible

that by specifying the section of the population upon

which pressure is acting we might identify a population

response which is stronger or weaker than those detailed

above, depending on the contribution of that particular

section to overall population growth (Caswell 2001),

however, the population’s general decline pattern should

remain the same. It is also likely that a population’s

decline-curve dynamics will remain consistent across the

effects of nonlinear density dependence (e.g., in large-

mammal species, where density-dependence is mainly

experienced close to carrying capacity and almost nonex-

istent at lower densities; Fowler 1981), as it will only be

possible to detect declines if the pressure imposed is

stronger than a population’s natural tendency to increase,

whether it is affected by density-dependence or not.

Decline-curve dynamics should also remain constant if

the population is affected by competition or predation by

neighboring species or by multiple threats, as long as the

pressure imposed by the principal threatening process is

strong enough to leave a distinct signal.

A further methodological caveat lies in the identifica-

tion of declines based on statistical hypothesis testing,

and best-fit decline curves according to a multimodel

inference framework. Both steps require sufficient

evidence (e.g., a sufficient number of data points) to

calculate, which may not always be available (as critiqued

in Nichols and Williams 2006). Furthermore, we base

decline significance tests using a Type I error rate (a) of

0.05, which is a widely accepted arbitrary cut-off that

may prevent the detection of declines that do not quite

fall within this criterion (causing a Type II error;

discussed in Di Stefano 2003), and could result in poten-

tial performance failings (e.g., Di Stefano 2001). We also

only assessed decline significance in relation to the first

data point of the time-series section in focus, which does

not provide any information on its decline relative to

historical baselines of population abundance (found to

be the most useful aspect defining the reliability of

decline indicators; Porszt et al. 2012). Finally, we used a

minimum DAICc of 4 in order to choose the best-fit

model for each decline-curve type, which may be too

high to distinguish more subtle differences in declines.

Further studies could examine the level of statistical

confidence which is required (e.g., through power analy-

ses) in order to categorize population dynamics into

different declining curve sections. The initial test for

decline significance may benefit from a more precaution-

ary approach, which would increase the risk of detecting

false positives. Following this step, a more detailed exam-

ination of decline-curve type would identify the more

rapid population declines.
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Supporting Information

Additional Supporting Information may be found in the

online version of this article:

Table S1. Full description of pressure scenario imposed

on populations with fast, medium, and slow life-history

speeds. N1 represents starting population size.

Table S2. Deterministic curve shapes produced by differ-

ent scenarios of proportional pressure on fast, medium,

and slow life-history speed population models. The sec-

tion of a decline curve before the switch point (SP) is

indicated by “A” and the following section by “B”.

Table S3. Deterministic curve shapes produced by differ-

ent scenarios of fixed pressure on fast, medium, and slow

life-history speed population models. The section of a

decline curve before the switch point (SP) is indicated by

“A” and the following section by “B”.

Table S4. Chi-square results from two-sample test for

equality of proportions between the best-fit results in null

population models and those in low, constant, propor-

tional pressure scenarios (P1). Significant differences at

a = 0.05 are indicated by a star.

Table S5. Chi-square results from two-sample test for

equality of proportions between best-fit frequencies for

each degradation scenario in populations with low, con-

stant, proportional pressure (P1). Significant differences

at a = 0.05 are indicated by a star.

Table S6. Chi-square results from two-sample test for

equality of proportions between the concavity frequencies

diagnosed for each degradation scenario in populations

with low, constant, proportional pressure (P1). Significant

differences at a = 0.05 are indicated by a star.

Table S7. Chi-square results from two-sample test for

equality of proportions between the best-fit results in null

population models and those in increasing fixed pressure

scenarios (F3). Significant differences at a = 0.05 are indi-

cated by a star.

Table S8. Chi-square results from two-sample test for

equality of proportions between best-fit frequencies for

each degradation scenario in populations with increasing,

fixed pressure (F3). Significant differences at a = 0.05 are

indicated by a star.

Table S9. Chi-square results from two-sample test for

equality of proportions between the concavity frequencies

diagnosed for each degradation scenario in populations

with increasing, fixed pressure (F3). Significant differences

at a = 0.05 are indicated by a star.-
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